WorldWideScience

Sample records for climatic change impact

  1. Economic impacts of climate change

    OpenAIRE

    Tol, Richard S.J.

    2015-01-01

    Climate change will probably have a limited impact on the economy and human welfare in the 21st century. The initial impacts of climate change may well be positive. In the long run, the negative impacts dominate the positive ones. Negative impacts will be substantially greater in poorer, hotter, and lower-lying countries. Poverty reduction complements greenhouse gas emissions reduction as a means to reduce climate change impacts. Climate change may affect the growth rate of the economy and ma...

  2. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  3. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    , the inseparability of the development and climate agendas, and the rate of assimilation of climate and development information in key institutions. They are drawn from the Development Under Climate Change (DUCC) project carried out by UNU-WIDER of which the countries of the Greater Zambeze Valley formed a part......In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate...... change and the ongoing internalization thereof by key institutions in developing countries. The articles in this special issue set forth a set of technical contributions to this improved understanding. We also summarize five major lessons related to uncertainty, extreme events, timing of impacts...

  4. Schneider lecture: From climate change impacts to climate change risks

    Science.gov (United States)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  5. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  6. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  7. The Economic Impact of Climate Change

    OpenAIRE

    TOL, Richard S.J.

    2008-01-01

    I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be pr...

  8. Environmental impact of climate change in pakistan

    International Nuclear Information System (INIS)

    Climate change results in the increase or decrease in temperature and rainfall. These have significant impact on environment - impinge agricultural crop yields, affect human health, cause changes to forests and other ecosystems, and even impact our energy supply. Climate change is a global phenomenon and its impact can be observed on Pakistan's economy and environment. This paper contains details concerning the climate change and environmental impacts. It takes into account current and projected key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and environment. The purpose of the study is to devise national policies and incentive systems combined with national level capacity-building programs to encourage demand-oriented conservation technologies. Recommendations are also made to abate the climate change related issues in country. (author)

  9. Climatic change: possible impacts on human health

    OpenAIRE

    Beniston, Martin

    2005-01-01

    This paper addresses a number of problems relating climatic change and human health. Following an introduction that outlines the over-arching issues, a short summary is given on climatic change and its anthropogenic causes. The rest of the paper then focuses on the direct and indirect impacts of global climatic change on health. Direct effects comprise changes in the hygrothermal stress response of humans, atmospheric pollution, water quality and availability; indirect effects include the pot...

  10. Impacts of climate change on fisheries

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    Evidence of the impacts of anthropogenic climate change on marine ecosystems is accumulating, but must be evaluated in the context of the "normal" climate cycles and variability which have caused fluctuations in fisheries throughout human history. The impacts on fisheries are due to a variety...

  11. Impacts of Climate Change on Brazilian Agriculture

    OpenAIRE

    Assad, Eduardo; Pinto, Hilton S.; Nassar, Andre; Harfuch, Leila; Freitas, Saulo; Farinelli, Barbara; Lundell, Mark; Erick C.M. Fernandes

    2013-01-01

    This report evaluates the requirements for an assessment of climate change impacts on agriculture to guide policy makers on investment priorities and phasing. Because agriculture is vital for national food security and is a strong contributor to Brazil's GDP growth, there is growing concern that Brazilian agriculture is increasingly vulnerable to climate variability and change. To meet nat...

  12. The Poverty Impacts of Climate Change

    OpenAIRE

    Skoufias, Emmanuel; Rabassa, Mariano; Olivieri, Sergio; Brahmbhatt, Milan

    2011-01-01

    Over the last century, the world has seen a sustained decline in the proportion of people living in poverty. However, there is an increasing concern that climate change could slow or possibly even reverse poverty reduction progress. Given the complexities involved in analyzing climate change impacts on poverty, different approaches can be helpful; this note surveys the results of recent re...

  13. Distributional Aspects of Climate Change Impacts

    International Nuclear Information System (INIS)

    This paper gives a brief review about the state of knowledge on the distributional aspects of climate change impacts. The paper is largely limited to the distribution of impacts between countries (in Section 2). Although there are virtually no estimates reported in the literature, the distribution of impacts within countries is also important. Impact estimates for different sectors (agriculture, health, sea level rise) provides little guidance for estimating differential impacts within countries. It is even harder to find estimates based on social classes. The paper restricts itself to equity about the consequences of climate change. Equity issues about the consequences of emission reduction are ignored here, but should of course be part of a policy analysis. Equity issues about procedures for decision making are also ignored. The paper is organised as follows. Section 2 reviews recent estimates of the regional impacts of climate change. Section 3 discusses alternative ways of aggregating regional impact estimates. Section 4 focusses on the vulnerability of the poor to climate change impacts, both with respect to exposure as well as to their limited capacity for adaptation. Section 5 discusses the impacts of economic development and other dynamic changes on vulnerability. The paper abstains from a discussion of aggregating climate change impacts over time, partly because the literature on that is too substantial to be reviewed here, and partly because, under virtually all scenarios, the current generation is the poorest and therefore particularly worthy in equity considerations. In Section 6 we present salient conclusions

  14. Impacts of climate change in the Netherlands

    International Nuclear Information System (INIS)

    The main conclusion of the study on the title subject is that the impacts of climatic change in the Netherlands are still limited. However, the impacts will be stronger in the next decades and will be even problematic at the end of this century. In this book an overview is given of probable changes in the climate for the Netherlands, danger for flooding in specific areas of the Netherlands, changes of the nature, impacts for agriculture, tourism and recreation, and industry and businesses, and risks for public health

  15. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  16. Projected Climate Change Impacts on Pennsylvania

    Science.gov (United States)

    Najjar, R.; Shortle, J.; Abler, D.; Blumsack, S.; Crane, R.; Kaufman, Z.; McDill, M.; Ready, R.; Rydzik, M.; Wagener, T.; Wardrop, D.; Wilson, T.

    2009-05-01

    We present an assessment of the potential impacts of human-induced climate change on the commonwealth of Pennsylvania, U.S.A. We first assess a suite of 21 global climate models for the state, rating them based on their ability to simulate the climate of Pennsylvania on time scales ranging from submonthly to interannual. The multi-model mean is superior to any individual model. Median projections by late century are 2-4 degrees C warming and 5-10 percent precipitation increases (B1 and A2 scenarios), with larger precipitation increases in winter and spring. Impacts on the commonwealth's aquatic and terrestrial ecosystems, water resources, agriculture, forests, energy, outdoor recreation, tourism, and human health, are evaluated. We also examine barriers and opportunities for Pennsylvania created by climate change mitigation. This assessment was sponsored by the Pennsylvania Department of Environmental Protection which, pursuant to the Pennsylvania Climate Change Act, Act 70 of 2008, is required to develop a report on the potential scientific and economic impacts of climate change to Pennsylvania.

  17. Impact of Climate Change on Riverbank Erosion

    Directory of Open Access Journals (Sweden)

    Most. Nazneen Aktar

    2014-04-01

    Full Text Available Bangladesh is one of the most climate vulnerable countries in the world. This country is highly vulnerable to climate change because of a number of hydro-geological and socio-economic factors such as geographical location, topography, extreme climate variability, high population density, poverty incidence and dependency of agriculture on climate. Presently this country has been experiencing different hydro-meteorological disastrous events that have never been experienced before. Along with other natural disasters, floods are expected to be impacted by climate change in the future. Since floods are always associated with riverbank erosion, it is essential to assess the impact of climate change on bank erosion. Riverbank erosion is also a serious hazard that directly or indirectly causes the suffering of millions of people. Beyond that, most of the old cities and important infrastructures in this country are situated on riverbanks since once upon a time waterway transportation was the main mode of travel. Moreover, people like to reside near rivers because of their dependency on river water for irrigation purposes. So a major part of the total population of this country lives near riverbanks, which frequently makes them victims of riverbank erosion. The major rivers, the Jamuna, the Ganges and the Padma, annually erode thousand hectares of floodplain land and damage or destroy infrastructures. Consequently, this natural disaster has become a major social hazard. This study aims to find out the relationship between floods and bank erosion; and hence the impact of climate changes on riverbank erosion. Since there is no record on riverbank erosion, this study attempts to measure it with the help of satellite images. It has been found in this study that climate change will play a significant role in riverbank erosion. On an average, the riverbank erosion along the major three rivers will be increased by 13% by 2050 and it will be increased by 18% by

  18. Impact of climate change and agriculture adaptation

    International Nuclear Information System (INIS)

    The author outlines and discusses the various impacts climate change can have on agriculture, notably due to the increase of CO2 and other greenhouse gases in the atmosphere, to temperature increase, to the modification of rainfalls, and therefore to differences in evaporation, drainage, run-off, cloud cover. He notably discusses the impact in terms of photosynthesis, of crop production in tempered or tropical regions. He also discusses the impact of extreme events (notably frost), comments how recent evolutions noticed by farmers could prefigure the future. He addresses the issue of adaptation which could mean a change of local practices or a displacement of activities

  19. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    OpenAIRE

    T.M. CORNEA; Dima, M.; Roca, D.

    2011-01-01

    Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC) [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ...

  20. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  1. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    OpenAIRE

    Kanchan Joshi; Preeti Chaturvedi

    2013-01-01

    Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  2. Climate Change Impacts on Marine Ecosystems

    Science.gov (United States)

    Doney, Scott C.; Ruckelshaus, Mary; Emmett Duffy, J.; Barry, James P.; Chan, Francis; English, Chad A.; Galindo, Heather M.; Grebmeier, Jacqueline M.; Hollowed, Anne B.; Knowlton, Nancy; Polovina, Jeffrey; Rabalais, Nancy N.; Sydeman, William J.; Talley, Lynne D.

    2012-01-01

    In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

  3. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  4. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N;

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...

  5. What's happening out there? (Climatic change impacts)

    International Nuclear Information System (INIS)

    This article briefly comments on some stumbling-blocks to climatic change modelling accuracy - in assessments of the greenhouse effect, 25% (missing link) of atmospheric carbon dioxide absorption is still unaccounted for; 1989 World Bank estimates of the Amazon rain forest deforestation rate have since proven to be inaccurate; there are difficulties in assessing the movement of the earth's crust relative to variations in sea level; and different studies vary in results relative to global temperature measurement and trend assessment. The need for an assessment of the economic impacts of increased atmospheric concentrations of carbon dioxide is also pointed out

  6. Australian climate change impacts, adaptation and vulnerability

    International Nuclear Information System (INIS)

    Full text: Full text: The IPCC Fourth Assessment Report on impacts, adaptation and vulnerability made the following conclusions about Australia (Hennessy et al., 2007): Regional climate change has occurred. Since 1950, there has been 0.70C warming, with more heat waves, fewer frosts, more rain in north-west Australia, less rain in southern and eastern Australia, an increase in the intensity of Australian droughts and a rise in sea level of about 70 mm. Australia is already experiencing impacts from recent climate change. These are now evident in increasing stresses on water supply and agriculture, changed natural ecosystems, and reduced seasonal snow cover. Some adaptation has already occurred in response to observed climate change. Examples come from sectors such as water, natural ecosystems, agriculture, horticulture and coasts. However, ongoing vulnerability to extreme events is demonstrated by substantial economic losses caused by droughts, floods, fire, tropical cyclones and hail. The climate of the 21st century is virtually certain to be warmer, with changes in extreme events. Heat waves and fires are virtually certain to increase in intensity and frequency. Floods, landslides, droughts and storm surges are very likely to become more frequent and intense, and snow and frost are very likely to become less frequent. Large areas of mainland Australia are likely to have less soil moisture. Potential impacts of climate change are likely to be substantial without further adaptation; As a result of reduced precipitation and increased evaporation, water security problems are projected to intensify by 2030 in southern and eastern Australia; Ongoing coastal development and population growth, in areas such as Cairns and south-east Queensland, are projected to exacerbate risks from sea level rise and increases in the severity and frequency of storms and coastal flooding by 2050. Significant loss of biodiversity is projected to occur by 2020 in some ecologically rich

  7. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Kanchan Joshi

    2013-03-01

    Full Text Available Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  8. Climate Change Impacts on the Congo Basin Region

    NARCIS (Netherlands)

    Ludwig, F.; Franssen, W.; Jans, W.W.P.; Kruijt, B.; Supit, I.

    2012-01-01

    This report presents analyses of climate change impacts in the Congo Basin on water for agriculture and hydropower, forest ecosystem functioning and carbon storage and impacts of climate variability and change on future economic development. To quantify the impacts of future climate we developed a m

  9. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change Gerrit Hansen Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced climate change are a

  10. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  11. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  12. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  13. Impacts of Climate Change on Inequities in Child Health

    OpenAIRE

    Bennett, Charmian M.; Sharon Friel

    2014-01-01

    This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world’s poorest and socially-disadvantaged children, who already have poor survival rates and low life expect...

  14. The Poverty Impact of Climate Change in Mexico

    OpenAIRE

    de la Fuente, Alejandro; Olivera Villarroel, Marcelo

    2013-01-01

    This paper examines the effects of climate change on poverty through the relationship between indicators of climate change (temperature and rainfall change) and municipal level gross domestic product, and subsequently between gross domestic product and poverty. The evidence suggests that climate change could have a negative impact on poverty by 2030. The paper proposes a two-stage least sq...

  15. Climate change impact on hydrological extremes along rivers in Flanders

    OpenAIRE

    Boukhris, O.

    2008-01-01

    This PhD thesis presents the development of a methodology that analyzes potential climate change impacts on hydrological extremes along rivers in Flanders (Belgium).The main objective of this study is to show whether hydrological modelling techniques driven by climate modelling techniques and climate change scenarios enable a prediction of the long-term evolution of the hydrological system of the studied area.The climate change impact analysis is based on a continuous simulation approach: The...

  16. The impact of climate change on agriculture

    OpenAIRE

    John Quiggin

    2008-01-01

    It is now virtually certain that Australia and the world will experience significant climate change over the next century, as a result of human-caused emissions of carbon dioxide (CO2) and other greenhouse gases. This note is a brief discussion of the projected effects of climate change on agriculture, under ‘business as usual’ conditions in which global concentrations of CO2 grow steadily and under the assumption that a global mitigation effort successfully stabilises global concentrations o...

  17. Climate Change Impacts and Risks for Animal Health in Asia

    OpenAIRE

    Forman, S.; Hungerford, N.; Yamakawa, M; Yanase, T.; Tsai, H J; Joo, Y.S.; Yang, D. K.; Nha, J. J.

    2008-01-01

    The threat of climate change and global warming is now recognised worldwide and some alarming manifestations of change have occurred. The Asian continent, because of its size and diversity, may be affected significantly by the consequences of climate change, and its new status as a 'hub' of livestock production gives it an important role in mitigating possible impacts of climate variability on animal health. Animal health may be affected by climate change in four ways: heat-related diseases a...

  18. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  19. Impact of Climate Change on Poverty in Laos

    OpenAIRE

    Kyophilavong, Phouphet; Takamatsu, Shinya

    2011-01-01

    The climate change is global problems. It is predicted to have more severe impact on developing country which most of population are poor. The main impact of climate change on poverty is changing crop productivity and commodity prices. However, there are few studies on the relationship between climate change and poverty. Therefore, this study will use Laos which has a high share of agriculture sector on GDP and high poverty rates as a case study to assess the impact the climate change on nati...

  20. The direct impact of climate change on regional labour productivity

    OpenAIRE

    Kjellstrom, Tord; Kovats, R Sari; Simon J. Lloyd; Holt, Tom; Richard S.J. Tol

    2008-01-01

    Global climate change will increase outdoor and indoor heat loads, and may impair health and productivity for millions of working people. This study applies physiological evidence about effects of heat, climate guidelines for safe work environments, climate modelling and global distributions of working populations, to estimate the impact of two climate scenarios on future labour productivity. In most regions, climate change will decrease labour productivity, under the simple assumption of no ...

  1. Modeling of climate change impacts on agriculture, forestry and fishery

    International Nuclear Information System (INIS)

    Changes in climate affect agriculture, forest and fisheries. This paper examines the climate change impact on crop production, fishery and forestry using state - of - the - art modeling technique. Crop growth model InfoCrop was used to predict the climate change impacts on the yields of rice, wheat and maize in Bangladesh. Historical climate change scenario has little or no negative impacts on rice and wheat yields in Mymensingh and Dinajpur but IPCC climate change scenario has higher negative impacts. There is almost no change in the yields of maize for the historical climate change scenario in the Chittagong, Hill Tracts of but there is a small decrease in the yields of rice and maize for IPCC climate change scenario. A new statistical model to forecast climate change impacts on fishery in the world oceans has been developed. Total climate change impact on fishery in the Indian Ocean is negative and the predictor power is 94.14% for eastern part and 98.59% for the western part. Two models are presented for the mangrove forests of the Sundarbans. To bole volumes of the pioneer, intermediate and climax are simulated for three different logging strategies and the results have been discussed in this paper. (author)

  2. Detection and Attribution of Anthropogenic Climate Change Impacts

    Science.gov (United States)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  3. The impact of climate change on birds: a review

    OpenAIRE

    Weiwei Wu; Haigen Xu; Jun Wu; Mingchang Cao

    2012-01-01

    The impact of climate change on biodiversity has become a hot issue. This paper reviews the effects of climate change on avian distribution, phenology and population dynamics according to the results of the latest research. Due to climate change, bird distributions have shifted towards high-latitude and high-altitude areas, which is changing more quickly than before. However, the breeding area which bird lived was changed different from the non-breedings. In addition, the ranges of many speci...

  4. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated...... in impact assessments. This warrants the question: How do we assess the climate change related impacts of a project that inherently has a positive effect on climate? This paper is based on a document study of EIA reports from Denmark. The results show that climate change is included in most of the EIA...... reports reviewed, and that only climate change mitigation is in focus while adaptation is absent. Also the results point to focus on positive impacts, while the indirect negative impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA....

  5. Impacts of Climate Change on Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M. [Marine Biological Laboratory, Woods Hole, MA (United States)

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  6. Impact Assessment of Climate Change on Forestry Development in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Forestry and forest ecosystem are highly sensitive to climate change.At present,studies about the responses of forests to climate change in China are more focused on physical influences of climate change.This paper firstly divided the key impact factors of climate change on forest and forestry developing into direct factors and indirect factors,and then made an assessment on climate change affecting future forestry development from the aspect of forest products and ecological services.On this basis,the adap...

  7. Impact of Climate Change in Nigeria

    OpenAIRE

    N.B. Ikenweiwe; A.I. Opele; S.O. Ayoola,; A.A. Idowu,

    2011-01-01

    Climate change is an adverse environmental phenomenon that is causing enormous concern all over the world. It refers to some anomalies in the climate system that is a result of human activities. These anomalies include increase in the concentration of GHGs, HFCs and CFCs in earth’s atmosphere, which will ultimately leadto global warming. In fact, global warming has already begun, as earth’s temperature has risen between 0.4 and 0.8°C in the last 100 years. Nigeria is one of the world’s most d...

  8. Impact of Climate Change in Nigeria

    Directory of Open Access Journals (Sweden)

    N.B. Ikenweiwe

    2011-01-01

    Full Text Available Climate change is an adverse environmental phenomenon that is causing enormous concern all over the world. It refers to some anomalies in the climate system that is a result of human activities. These anomalies include increase in the concentration of GHGs, HFCs and CFCs in earth’s atmosphere, which will ultimately leadto global warming. In fact, global warming has already begun, as earth’s temperature has risen between 0.4 and 0.8°C in the last 100 years. Nigeria is one of the world’s most densely populated countries with a population of 180 million people, half of which are considered to be in abject poverty. Nigeria is recognized as beingvulnerable to climate change. Climate change and global warming if left unchecked will cause adverse effects on livelihoods in Nigeria, such as crop production, livestock production, fisheries, forestry and post-harvest activities, because the rainfall regimes and patterns will be altered, floods which devastate farmlands wouldoccur, increase in temperature and humidity which increases pest and disease would occur and other natural disasters like floods, ocean and storm surges, which not only damage Nigerians’ livelihood but also cause harm to life and property, would occur. The paper provides a strong starting point and a useful guide for furtherinvestigations and solution finding projects, both at the local and international levels which focus on more specific issues like public health, food security, energy, adaptations and barriers to them.

  9. Modeling Climate Change Impacts on the US Agricultural Exports

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-quan; CAI Yong-xia; Beach Robert H; McCARL Bruce A

    2014-01-01

    Climate change is expected to have substantial effects on agricultural productivity worldwide. However, these impacts will differ across commodities, locations and time periods. As a result, landowners will see changes in relative returns that are likely to induce modiifcations in production practices and land allocation. In addition, regional variations in impacts can alter relative competitiveness across countries and lead to adjustments in international trade patterns. Thus in climate change impact studies it is likely useful to account for worldwide productivity effects. In this study, we investigate the implications of considering rest of world climate impacts on projections of the US agricultural exports. We chose to focus on the US because it is one of the largest agricultural exporters. To conduct our analyses, we consider four alternative climate scenarios, both with and without rest of world climate change impacts. Our results show that considering/ignoring rest of world climate impacts causes signiifcant changes in the US production and exports projections. Thus we feel climate change impact studies should account not only for climate impacts in the country of focus but also on productivity in the rest of the world in order to capture effects on commodity markets and trade potential.

  10. Climate change -- Its impacts on Bangladesh

    International Nuclear Information System (INIS)

    Predictions regarding the possible effects of global warming on Bangladesh's climate are uncertain. However, the predictions for 2030 made by four General Circulation Models all suggest that there might be increased precipitation, with estimates ranging between 5 and 100% increases in rainfall. Increases of these magnitudes, if they were to occur, would have significant implications for agriculture, flooding, river sediment loads, and flood protection works. Increased flooding of the coastal areas of countries like Bangladesh is a possibility, and enormous health and economic distress and human suffering may follow. With the change in temperature, there may be unpredictable change in bacterial and viral morphology with health hazards of unpredictable limits. It has been estimated that a 100 cm rise in sea level in the Bay of Bengal would result in 12--18% of land areas of Bangladesh being lost to the sea, including most of the Sundarbans. Although it is difficult to predict the timing and magnitude of all the global changes including sea-level rise, climate change, etc., it is anticipated that one of the most serious consequence for Bangladesh would be the reduction of already minimal land: person ratio and consequently exacerbating pressure on the remaining natural resources. Bangladesh is in favor of an international agreement for assistance to vulnerable countries like Bangladesh to take necessary preparations and adopt measures to survive a sea-level rise, climate change, increased flooding, and more frequent storm surges

  11. Assessing the observed impact of anthropogenic climate change

    Science.gov (United States)

    Hansen, Gerrit; Stone, Dáithí

    2016-05-01

    Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the IPCC’s Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their respective impacts to human influence is still weak. Moreover, anthropogenic climate change has been a major influence for approximately three-quarters of the impacts observed on continental scales. Hence the effects of anthropogenic emissions can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems.

  12. Impacts of Climate Change on Inequities in Child Health

    Directory of Open Access Journals (Sweden)

    Charmian M. Bennett

    2014-12-01

    Full Text Available This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world’s poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health.

  13. Impacts of Climate Change on Inequities in Child Health.

    Science.gov (United States)

    Bennett, Charmian M; Friel, Sharon

    2014-12-03

    This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world's poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health.

  14. Impacts of Climate Change on Inequities in Child Health.

    Science.gov (United States)

    Bennett, Charmian M; Friel, Sharon

    2014-01-01

    This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world's poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health. PMID:27417491

  15. Impacts of climate change on electricity network business

    International Nuclear Information System (INIS)

    Climate has a significant impact on the electricity network business. The electricity network is under the weather pressure all the time and it is planned and constructed to withstand normal climatic stresses. The electricity network that has been planned and constructed now, is expected to be in operation next 40 years. If climatic stresses change in this period, it can cause significant impacts on electricity network business. If the impacts of climate change are figured out in advance, it is possible to mitigate negative points of climate change and exploit the positive points. In this paper the impact of climate change on electricity network business is presented. The results are based on RCAO climate model scenarios. The climate predictions were composed to the period 2016. 2045. The period 1960.1990 was used as a control period. The climate predictions were composed for precipitation, temperature, hoarfrost, thunder, ground frost and wind. The impacts of the change of the climate variables on electricity network business were estimated from technical and economical points of view. The estimation was based on the change predictions of the climate variables. It is expected that climate change will cause more damages than benefits on the electricity network business. The increase of the number of network faults will be the most significant and demanding disadvantage caused by climate change. If networks are not improved to be more resistant for faults, then thunder, heavy snow and wind cause more damages especially to overhead lines in medium voltage network. Increasing precipitation and decreasing amount of ground frost weaken the strength of soil. The construction work will be more difficult with the present vehicles because wet and unfrozen ground can not carry heavy vehicles. As a consequence of increasing temperature, the demand of heating energy will decrease and the demand of cooling energy will increase. This is significant for the electricity

  16. Uncertainty assessment tool for climate change impact indicators

    Science.gov (United States)

    Otto, Juliane; Keup-Thiel, Elke; Jacob, Daniela; Rechid, Diana; Lückenkötter, Johannes; Juckes, Martin

    2015-04-01

    A major difficulty in the study of climate change impact indicators is dealing with the numerous sources of uncertainties of climate and non-climate data . Its assessment, however, is needed to communicate to users the degree of certainty of climate change impact indicators. This communication of uncertainty is an important component of the FP7 project "Climate Information Portal for Copernicus" (CLIPC). CLIPC is developing a portal to provide a central point of access for authoritative scientific information on climate change. In this project the Climate Service Center 2.0 is in charge of the development of a tool to assess the uncertainty of climate change impact indicators. The calculation of climate change impact indicators will include climate data from satellite and in-situ observations, climate models and re-analyses, and non-climate data. There is a lack of a systematic classification of uncertainties arising from the whole range of climate change impact indicators. We develop a framework that intends to clarify the potential sources of uncertainty of a given indicator and provides - if possible - solutions how to quantify the uncertainties. To structure the sources of uncertainties of climate change impact indicators, we first classify uncertainties along a 'cascade of uncertainty' (Reyer 2013). Our cascade consists of three levels which correspond to the CLIPC meta-classification of impact indicators: Tier-1 indicators are intended to give information on the climate system. Tier-2 indicators attempt to quantify the impacts of climate change on biophysical systems (i.e. flood risks). Tier-3 indicators primarily aim at providing information on the socio-economic systems affected by climate change. At each level, the potential sources of uncertainty of the input data sets and its processing will be discussed. Reference: Reyer, C. (2013): The cascade of uncertainty in modeling forest ecosystem responses to environmental change and the challenge of sustainable

  17. Climate change and global crop yield: impacts, uncertainties and adaptation

    OpenAIRE

    Deryng, Delphine

    2014-01-01

    As global mean temperature continues to rise steadily, agricultural systems are projected to face unprecedented challenges to cope with climate change. However, understanding of climate change impacts on global crop yield, and of farmers’ adaptive capacity, remains incomplete as previous global assessments: (1) inadequately evaluated the role of extreme weather events; (2) focused on a small subset of the full range of climate change predictions; (3) overlooked uncertainties related to the ch...

  18. Climate Change Impacts on Worldwide Coffee Production

    Science.gov (United States)

    Foreman, T.; Rising, J. A.

    2015-12-01

    Coffee (Coffea arabica and Coffea canephora) plays a vital role in many countries' economies, providing necessary income to 25 million members of tropical countries, and supporting a $81 billion industry, making it one of the most valuable commodities in the world. At the same time, coffee is at the center of many issues of sustainability. It is vulnerable to climate change, with disease outbreaks becoming more common and suitable regions beginning to shift. We develop a statistical production model for coffee which incorporates temperature, precipitation, frost, and humidity effects using a new database of worldwide coffee production. We then use this model to project coffee yields and production into the future based on a variety of climate forecasts. This model can then be used together with a market model to forecast the locations of future coffee production as well as future prices, supply, and demand.

  19. Impact of climate change on waterborne diseases

    Directory of Open Access Journals (Sweden)

    Enzo Funari

    2012-12-01

    Full Text Available Change in climate and water cycle will challenge water availability but it will also increase the exposure to unsafe water. Floods, droughts, heavy storms, changes in rain pattern, increase of temperature and sea level, they all show an increasing trend worldwide and will affect biological, physical and chemical components of water through different paths thus enhancing the risk of waterborne diseases. This paper is intended, through reviewing the available literature, to highlight environmental changes and critical situations caused by floods, drought and warmer temperature that will lead to an increase of exposure to water related pathogens, chemical hazards and cyanotoxins. The final aim is provide knowledge-based elements for more focused adaptation measures.

  20. Impact of climate change on Antarctic krill

    NARCIS (Netherlands)

    Florentino De Souza Silva, A.P.; Atkinson, A.; Kawaguchi, S.; Bravo Rebolledo, E.; Franeker, van J.A.

    2012-01-01

    Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of

  1. Climate change and Public health: vulnerability, impacts, and adaptation

    Science.gov (United States)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  2. Global climate change impacts on forests and markets

    Science.gov (United States)

    Tian, Xiaohui; Sohngen, Brent; Kim, John B.; Ohrel, Sara; Cole, Jefferson

    2016-03-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, the MC2 model. The results suggest that climate change will cause forest outputs (such as timber) to increase by approximately 30% over the century. Aboveground forest carbon storage also is projected to increase, by approximately 26 Pg C by 2115, as a result of climate change, potentially providing an offset to emissions from other sectors. The effects of climate mitigation policies in the energy sector are then examined. When climate mitigation in the energy sector reduces warming, we project a smaller increase in forest outputs over the timeframe of the analysis, and we project a reduction in the sink capacity of forests of around 12 Pg C by 2115.

  3. Impact of Climate Change on Forests in India

    OpenAIRE

    Ravindranath, NH; Joshi, NV; Sukumar, R.; Saxena, A.

    2005-01-01

    Global assessments have shown that future climate change is likely to significantly impact forest ecosystems. The present study makes an assessment of the impact of projected climate change on forest ecosystems in India. This assessment is based on climate projections of Regional Climate Model of the Hadley Centre (HadRM3) using the A2 (740 ppm CO2) and B2 (575 ppm CO2) scenarios of Special Report on Emissions Scenarios and the BIOME4 vegetation response model. The main conclusion is that und...

  4. Impact of climatic change on alpine ecosystems: inference and prediction

    OpenAIRE

    YOCCOZ, Nigel G.; Anne Delestrade; Anne Loison

    2011-01-01

    Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal), and therefor...

  5. Impact of Climate change on Milk production of Murrah buffaloes

    OpenAIRE

    A. Ashutosh; Gupta, S.K.; Kumar, A.(State University of New York at Buffalo, Buffalo, USA); Singh, S. V.; Upadhyay, R. C.

    2010-01-01

    Global warming is likely to impact productivity of buffaloes due to their sensitivity to temperature changes. Air temperature, humidity, wind velocity and solar radiation are the main climate variables that affect buffalo production in tropical climate. In the present study sensitivity of lactating Murrah buffaloes to sudden temperature (Tmax, Tmin) change and THI have been analyzed from milk production and climatic records (1994-2004) of Karnal. Algorithms were developed and validated on lac...

  6. Vulnerability and Adaptation to the Health Impacts of Climate Change

    OpenAIRE

    Antonio Postigo

    2008-01-01

    Antonio Postigo argues that in contrast to the increasing recognition of the environmental outcomes of climate change, its consequences on human health have received little attention. These health impacts will be largely shaped by socio-economic factors being more severe among vulnerable communities in developing countries. He outlines the need to integrate health vulnerabilities into climate change mitigation and adaptation strategies. Greater consideration of the health effects of climate c...

  7. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2012-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  8. Potential impacts of climatic change upon geographical distributions of birds

    DEFF Research Database (Denmark)

    Huntley, Brian; Collingham, Yvonne C.; Green, Rhys E.;

    2006-01-01

    Potential climatic changes of the near future have important characteristics that differentiate them from the largest magnitude and most rapid of climatic changes of the Quaternary. These potential climatic changes are thus a cause for considerable concern in terms of their possible impacts upon...... biodiversity. Birds, in common with other terrestrial organisms, are expected to exhibit one of two general responses to climatic change: they may adapt to the changed conditions without shifting location, or they may show a spatial response, adjusting their geographical distribution in response...... to the changing climate. The Quaternary geological record provides examples of organisms that responded to the climatic fluctuations of that period in each of these ways, but also indicates that the two are not alternative responses but components of the same overall predominantly spatial response. Species unable...

  9. Salmon Population Summary - Impacts of climate change on Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This work involves 1) synthesizing information from the literature and 2) modeling impacts of climate change on specific aspects of salmon life history and...

  10. Potential impacts of climate change on Manitoba Hydro

    International Nuclear Information System (INIS)

    An overview of Manitoba Hydro's system was presented during this PowerPoint presentation which focused on significant climate trends, the potential impacts of climate change and climate change initiatives at Manitoba Hydro compared to other utilities. Ninety-five per cent of the electricity generated in Manitoba comes from hydroelectricity from the Churchill/Nelson River drainage basin. Twelve existing generating stations in the province contribute to the total installed generating capacity of 5500 MW, of which 300 MW is exported to Saskatchewan, 200 MW to Ontario and 2000 MW to the United States. Significant climate trends indicate that temperatures are increasing and there is a greater incidence of extreme weather events which can affect water supply. Manitoba Hydro must plan future resource needs and estimate climate change impacts on future projects. The potential negative impacts of climate change include an impact on water supply as well as an impact on the balance of energy supply and demand. The potential positive impacts of climate change include increased river flows in some regions resulting in higher water supplies. This presentation also outlined emission management initiatives at Manitoba Hydro with reference to policy issues for Kyoto ratification, export rates with environmental premiums, domestic emission trading, and demand-side management. Targeted measures such as wind power, landfill gas and hydrogen were also outlined. 10 figs

  11. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Hydropower is the leading source of electrical production in many countries. It is a clean and renewable source and certainly will continue to play an important role in the future energy supply. However, the effects of climate change on this valuable resource remain questionable. In order to identify the potential initiatives that the hydropower industry may undertake, it is important to determine the current state of knowledge of the impacts of climate change on hydrological variables at regional and local scales. Usually, the following steps are taken. First, general circulation models (GCMs) are used to simulate future climate under assumed greenhouse gas emission scenarios. Then, different techniques (statistical downscaling/regional climate models) are applied to downscale the GCM outputs to the appropriate scales of hydrological models. Finally, hydrologic models are employed to simulate the effects of climate change at regional and local scales. Outputs from these models serve as inputs to water management models that give more details about hydropower production. In the present study, realized by OURANOS upon the request of CEATI, a critical review of the methods used to determine impact of climate change on water resources and hydropower generation is carried out. The major results from recent studies worldwide are reported and future scientific actions to better understand climate change impacts on the hydrological regime are identified. The study is expected to provide direction for the hydropower industry to mitigate the impacts of climate change. (author)

  12. Comparing Forecasts of the Global Impacts of Climate Change

    International Nuclear Information System (INIS)

    This paper utilizes the predictions of several Atmosphere-Ocean General Circulation Models and the Global Impact Model to create forecasts of the global market impacts from climate change. The forecasts of market impacts in 2100 vary considerably depending on climate scenarios and climate impact sensitivity. The models do concur that tropical nations will be hurt, temperate nations will be barely affected, and high latitude nations will benefit. Although the size of these effects varies a great deal across models, the beneficial and harmful effects are offsetting, so that the net impact on the globe is relatively small in almost all outcomes. Looking only at market impacts, the forecasts suggest that while the global net benefits of abatement are small, the distribution of damages suggests a large equity problem that could be addressed through a compensation program. The large uncertainty surrounding these forecasts further suggests that continued monitoring of both the climate and impacts is worthwhile

  13. Learning to Adapt. Organisational Adaptation to Climate Change Impacts

    International Nuclear Information System (INIS)

    Analysis of human adaptation to climate change should be based on realistic models of adaptive behaviour at the level of organisations and individuals. The paper sets out a framework for analysing adaptation to the direct and indirect impacts of climate change in business organisations with new evidence presented from empirical research into adaptation in nine case-study companies. It argues that adaptation to climate change has many similarities with processes of organisational learning. The paper suggests that business organisations face a number of obstacles in learning how to adapt to climate change impacts, especially in relation to the weakness and ambiguity of signals about climate change and the uncertainty about benefits flowing from adaptation measures. Organisations rarely adapt 'autonomously', since their adaptive behaviour is influenced by policy and market conditions, and draws on resources external to the organisation. The paper identifies four adaptation strategies that pattern organisational adaptive behaviour

  14. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    Science.gov (United States)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  15. Methodologies for assessing socio-economic impacts of climate change

    International Nuclear Information System (INIS)

    Much of the studies on climate change impacts have focused on physical and biological impacts, yet a knowledge of the social and economic impacts of climate change is likely to have a greater impact on the public and on policymakers. A conventional assessment of the impacts of climate change begins with scenarios of future climate, commonly derived from global climate models translated to a regional scale. Estimates of biophysical conditions provided by such scenarios provide a basis for analyses of human impacts, usually considered sector by sector. The scenario approach, although having considerable merit and appeal, has some noteworthy limitations. It encourages consideration of only a small set of scenarios, requires bold assumptions to be made about adjustments in human systems, provides little direct analysis of sensitivities of human social and economic systems to climate perturbations, and usually invokes the assumption that all factors other than climate are stable and have no synergistic effects on human systems. Conventional studies concentrate on average climate, yet climate is inherently variable. A common response to this situation is to propose further development of climate models, but this is not a sufficient or necessary condition for good and useful assessments of impacts on human activities. Different approaches to socioeconomic impact analysis are needed, and approaches should be considered that include identification of sensitivities in a social or ecological system, identification of critical threshold levels or critical speeds of change in variables, and exploration of alternative methodologies such as process studies, spatial and temporal analogues, and socio-economic systems modelling. 5 refs., 3 figs

  16. Climate Change: Socio-Economic impacts and violent conflict

    NARCIS (Netherlands)

    Ierland EC; Klaassen MG; Nierop T; van der Wusten H; PB-NOP; LUW

    1996-01-01

    This report contains a literature study on the socio economic impacts of climate change and the possibilities of violent conflicts enhanced by the greenhouse effect. The socio economic impacts are classified according to the economic sectors in chapter 2 of the study. The impacts on property, ecos

  17. A hybrid approach to incorporating climate change and variability into climate scenario for impact assessments

    OpenAIRE

    Gebretsadik, Yohannes; Strzepek, Kenneth; Schlosser, C. Adam

    2014-01-01

    Traditional 'delta-change' approach of scenario generation for climate change impact assessment to water resources strongly depends on the selected base-case observed historical climate conditions that the climate shocks are to be super-imposed. This method disregards the combined effect of climate change and the inherent hydro-climatological variability in the system. Here we demonstrated a hybrid uncertainty approach in which uncertainties in historical climate variability are combined with...

  18. Impacts of Europe's changing climate- 2008 indicator-based assessment

    NARCIS (Netherlands)

    Swart, R.J.

    2008-01-01

    The report presents past and projected climate change and impacts in Europe by means of about 40 indicators and identifies sectors and regions most vulnerable with a high need for adaptation. The report covers the following indicator categories: atmosphere and climate, cryosphere, marine biodiversit

  19. Impacts of climate change on resource management in the north

    International Nuclear Information System (INIS)

    A Canada/USA symposium was held to communicate with people of the Arctic regions of North America about current issues in climate and climatic change; to promote dialogue between northern groups about various aspects of the climate problem relevant to northern people; and to discuss and formulate recommendations regarding management of northern resources that might be affected by global warming and associated regional climatic change. Papers were presented on the impacts of climatic change on water resources and hydrology, snow cover and sea ice, forest ecosystems, wildlife and marine resources, offshore petroleum operations, engineered structures, and the socio-economic system in the north. Arctic research programs and international initiatives on climatic change were also described. Separate abstracts have been prepared for 21 papers from this symposium

  20. Predicting the Impacts of Climate Change on Central American Agriculture

    Science.gov (United States)

    Winter, J. M.; Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Agriculture is a vital component of Central America's economy. Poor crop yields and harvest reliability can produce food insecurity, malnutrition, and conflict. Regional climate models (RCMs) and agricultural models have the potential to greatly enhance the efficiency of Central American agriculture and water resources management under both current and future climates. A series of numerical experiments was conducted using Regional Climate Model Version 3 (RegCM3) and the Weather Research and Forecasting Model (WRF) to evaluate the ability of RCMs to reproduce the current climate of Central America and assess changes in temperature and precipitation under multiple future climate scenarios. Control simulations were thoroughly compared to a variety of observational datasets, including local weather station data, gridded meteorological data, and high-resolution satellite-based precipitation products. Future climate simulations were analyzed for both mean shifts in climate and changes in climate variability, including extreme events (droughts, heat waves, floods). To explore the impacts of changing climate on maize, bean, and rice yields in Central America, RCM output was used to force the Decision Support System for Agrotechnology Transfer Model (DSSAT). These results were synthesized to create climate change impacts predictions for Central American agriculture that explicitly account for evolving distributions of precipitation and temperature extremes.

  1. Extended impacts of climate change on health and wellbeing

    International Nuclear Information System (INIS)

    Highlights: • Incorporates wellbeing into understandings of climate change impacts on health. • Considers a range of secondary impacts of climate change on health and wellbeing. • Examines co-benefits and dis-benefits of climate change adaptation and mitigation strategies for health and wellbeing. • Emphasises the spatially and socially differentiated repercussions of adaptation and mitigation measures. - Abstract: Anthropogenic climate change is progressively transforming the environment despite political and technological attempts to reduce greenhouse gas emissions to tackle global warming. Here we propose that greater insight and understanding of the health-related impacts of climate change can be gained by integrating the positivist approaches used in public health and epidemiology, with holistic social science perspectives on health in which the concept of ‘wellbeing’ is more explicitly recognised. Such an approach enables us to acknowledge and explore a wide range of more subtle, yet important health-related outcomes of climate change. At the same time, incorporating notions of wellbeing enables recognition of both the health co-benefits and dis-benefits of climate change adaptation and mitigation strategies across different population groups and geographical contexts. The paper recommends that future adaptation and mitigation policies seek to ensure that benefits are available for all since current evidence suggests that they are spatially and socially differentiated, and their accessibility is dependent on a range of contextually specific socio-cultural factors

  2. THE IMPACT OF CLIMATE CHANGE UPON WINTER RAINFALL

    Directory of Open Access Journals (Sweden)

    Numan Shehadeh

    2013-01-01

    Full Text Available Climatic models that project the impact of climate change upon rainfall in the Eastern Mediterranean region predict that the negative impact will be more pronounced upon winter rainfall rather than Fall or Spring rainfall where instability conditions become more pronounced. Those models, also, predict that, due to the great geographical diversity, projected rainfall trends in the above region will show great spatial variability. Therefore, this study aims to analyze the possible impact of climate change upon winter rainfall (December, January and February in Jordan. Data from six meteorological stations that represent well the spatial variation of rainfall in the country is used. Various statistical techniques are applied in this study including, linear regression, t- test, moving averages and CUSUM charts. Results of the analysis reveal a decreasing rainfall trend in all the sample stations. However, the decreasing trends are significant at the 0.05 level in three stations only (Salt, Amman and Irbid. The negative impact of climate change upon winter rainfall totals in the northern and central parts of Jordan, where most of winter rainfall is associated with Mediterranean depressions, is statistically significant at the 0.05 level. However, such impact is not significant in the southern and eastern parts of the country, where a greater portion of winter rainfall is associated with khamasini depressions and instability conditions. Further research analyzing the impact of climate change upon other climatic elements such as temperature, relative humidity and dust storms is needed.

  3. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  4. Little auks buffer the impact of current Arctic climate change

    DEFF Research Database (Denmark)

    Grémillet, David; Welcker, Jorg; Karnovsky, Nina J.;

    2012-01-01

    Climate models predict a multi-degree warming of the North Atlantic in the 21st century. A research priority is to understand the impact of such changes upon marine organisms. With 40-80 million individuals, planktivorous little auks (Alle alle) are an essential component of pelagic food webs...... in this region that are potentially highly susceptible to climatic effects. Using an integrative study of their behaviour, physiology and fitness at three study sites, we evaluated the impact of ocean warming on little auks across the Greenland Sea in 2005-2007. Contrary to our hypothesis, the birds responded...... to a wide range of sea surface temperatures via plasticity of their foraging behaviour, allowing them to maintain their fitness levels unchanged. Predicted effects of climate change are significantly attenuated by such plasticity, confounding attempts to forecast future impacts of climate change by envelope...

  5. U.S. Global Climate Change Impacts Report, Adaptation

    Science.gov (United States)

    Pulwarty, R.

    2009-12-01

    Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The

  6. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  7. Climate change impacts on water barriers and possibilities

    DEFF Research Database (Denmark)

    Frederiksen, Peter

    The purpose is to elucidate climate change impacts on water related to precipitation, catchment hydrology, water management and land development in fruit export regions at the desert margin in Chile. The case is a region exposed to intense globalization and severe climate change. A timeline (past...... of water rights, conflicts between water managers, the absence of risk-aversion strategies in times of drought, the lack of a unified irrigation systems, and the lack of control and regulation of irrigation water explained by the absence of dams. Climate change is expected to result in a 40 % decrease...... two-century climate change impacts on water barriers and possibilities only explain a part of their complexity in space and time....

  8. Assessment of the Health Impacts of Climate Change in Kiribati

    Directory of Open Access Journals (Sweden)

    Lachlan McIver

    2014-05-01

    Full Text Available Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.

  9. Assessment of the health impacts of climate change in Kiribati.

    Science.gov (United States)

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-05-01

    Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health. PMID:24830452

  10. Climate change in the oceans: Human impacts and responses

    Science.gov (United States)

    Allison, Edward H.; Bassett, Hannah R.

    2015-11-01

    Although it has far-reaching consequences for humanity, attention to climate change impacts on the ocean lags behind concern for impacts on the atmosphere and land. Understanding these impacts, as well as society’s diverse perspectives and multiscale responses to the changing oceans, requires a correspondingly diverse body of scholarship in the physical, biological, and social sciences and humanities. This can ensure that a plurality of values and viewpoints is reflected in the research that informs climate policy and may enable the concerns of maritime societies and economic sectors to be heard in key adaptation and mitigation discussions.

  11. Climate change in the oceans: Human impacts and responses.

    Science.gov (United States)

    Allison, Edward H; Bassett, Hannah R

    2015-11-13

    Although it has far-reaching consequences for humanity, attention to climate change impacts on the ocean lags behind concern for impacts on the atmosphere and land. Understanding these impacts, as well as society's diverse perspectives and multiscale responses to the changing oceans, requires a correspondingly diverse body of scholarship in the physical, biological, and social sciences and humanities. This can ensure that a plurality of values and viewpoints is reflected in the research that informs climate policy and may enable the concerns of maritime societies and economic sectors to be heard in key adaptation and mitigation discussions. PMID:26564848

  12. Public health responses to climate change health impacts in Indonesia.

    Science.gov (United States)

    Wirawan, I Made Ady

    2010-01-01

    Although climate change is a global concern, there are particular considerations for Indonesia as an archipelagic nation. These include the vulnerability of people living in small islands and coastal areas to rising sea levels; the expansion of the important mosquito-borne diseases, particularly malaria and dengue, into areas that lack of immunity; and the increase in water-borne diseases and malnutrition. This article proposes a set of public health responses to climate change health impacts in Indonesia. Some important principles and practices in public health are highlighted, to develop effective public health approaches to climate change in Indonesia. PMID:20032032

  13. Assessment of the Health Impacts of Climate Change in Kiribati

    OpenAIRE

    Lachlan McIver; Alistair Woodward; Seren Davies; Tebikau Tibwe; Steven Iddings

    2014-01-01

    Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest prior...

  14. Finnish food chain impacts on climate change

    OpenAIRE

    Kurppa, Sirpa; Virtanen, Yrjö

    2010-01-01

    The evaluation of the food chain’s environmental impacts was conducted using an environmentalaccounting model developed specifically for the Finnish food chain. The model is based on production and environmental impact data from year 2005. The model considers both Finnish production and Finnish imports in addition to their transport. The targets of the evaluation were the environmental impacts, in 2005, stemming from production. Environmental impacts of the end-use phase were not assessed....

  15. Identifying potential local climate change impacts and adaptation options

    International Nuclear Information System (INIS)

    The subjects discussed in this presentation concern developing resilience to climate extremes and adapting to climate change as local issues; examples of two approaches in New Zealand to helping local groups identify impacts and adaptation options; providing guidance to help councils take a risk management approach; regional scenario numbers for assessments; local workshops in Eastern Regions; and resource kits. The presentation is summarized as follows: Adaptation to climate change is a local issue; Successful adaptation depends on local councils, farmers and industry; Guidance is now available in NZ to help councils address climate change impacts and adaptation within their operations, planning and risk management frameworks; Various approaches are being taken to effectively communicate this information; Personal interactions between local community members, council staff and scientists help with uptake; Approaches which help people draw on their own local knowledge and experience are appreciated

  16. Climate Change Impacts on US Agriculture and Forestry: Implications of Global Climate Stabilization

    Science.gov (United States)

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. Although there have been n...

  17. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  18. Climate Change Impacts on Central China and Adaptation Measures

    Institute of Scientific and Technical Information of China (English)

    REN Yong-Jian; CUI Jiang-Xue; WAN Su-Qin; LIU Min; CHEN Zheng-Hong; LIAO Yu-Fang; WANG Ji-Jun

    2013-01-01

    In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the scenario A1B, it is reported that temperature, precipitation, days of heat waves and extreme precipitation intensity will increase at respective rates of 0.38◦C per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.

  19. Climate Change Impacts on Migration in the Vulnerable Countries

    Science.gov (United States)

    An, Nazan; Incealtin, Gamze; Kurnaz, M. Levent; Şengün Ucal, Meltem

    2014-05-01

    This work focuses on the economic, demographic and environmental drivers of migration related with the sustainable development in underdeveloped and developed countries, which are the most vulnerable to the climate change impacts through the Climate-Development Modeling including climate modeling and panel logit data analysis. We have studied some countries namely Bangladesh, Netherlands, Morocco, Malaysia, Ethiopia and Bolivia. We have analyzed these countries according to their economic, demographic and environmental indicators related with the determinants of migration, and we tried to indicate that their conditions differ according to all these factors concerning with the climate change impacts. This modeling covers some explanatory variables, which have the relationship with the migration, including GDP per capita, population, temperature and precipitation, which indicate the seasonal differences according to the years, the occurrence of natural hazards over the years, coastal location of countries, permanent cropland areas and fish capture which represents the amount of capturing over the years. We analyzed that whether there is a relationship between the migration and these explanatory variables. In order to achieve sustainable development by preventing or decreasing environmental migration due to climate change impacts or related other factors, these countries need to maintain economic, social, political, demographic, and in particular environmental performance. There are some significant risks stemming from climate change, which is not under control. When the economic and environmental conditions are considered, we have to regard climate change to be the more destructive force for those who are less defensible against all of these risks and impacts of uncontrolled climate change. This work was supported by the BU Research Fund under the project number 6990. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  20. Climate Change Impacts on Crop Production in Nigeria

    Science.gov (United States)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  1. Impacts of Climate Change on the Climate Extremes of the Middle East

    Science.gov (United States)

    Turp, M. Tufan; Collu, Kamil; Deler, F. Busra; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The Middle East is one of the most vulnerable regions to the impacts of climate change. Because of the importance of the region and its vulnerability to global climate change, the studies including the investigation of projected changes in the climate of the Middle East play a crucial role in order to struggle with the negative effects of climate change. This research points out the relationship between the climate change and climate extremes indices in the Middle East and it investigates the changes in the number of extreme events as described by the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI). As part of the study, the regional climate model (RegCM4.4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) is run to obtain future projection data. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  2. Climate change impact on river flows in Chitral watershed

    International Nuclear Information System (INIS)

    The impact of climate change has always been very important for water resources in the world. In countries like Pakistan where different weather conditions exist, the effects of climate change can be more crucial. Generally, the climate changes are considered in terms of global warming i.e. increase in the average temperature of earth's near surface air. The global warming can have a strong impact on river flows in Pakistan. This may be due to the melting of snow and glaciers at a higher rate and changes in precipitation patterns. Glaciers in Pakistan cover about 13,680 km/sup 2/, which is 13% of the mountainous regions of the Upper Indus Basin. Glacier and Snow melt water from these glaciers contributes significantly to the river flows in Pakistan. Due to climate change, the changes in temperature and the amount of precipitation could have diversified effects on river flows of arid and semi-arid regions of Pakistan. This paper reviews the existing research studies on climate change impact on water resources of Pakistan. The past trend of river flows in Pakistan has been discussed with respect to the available data. Further, different projections about future climate changes in terms of glacier melting and changes in temperature and precipitation have also been taken into consideration in order to qualitatively assess the future trend of river flows in Pakistan. As a case study, the flows were generated for the Chitral watershed using UBC Watershed Model. Model was calibrated for the year 2002, which is an average flow year. Model results show good agreement between simulated and observed flows. UBC watershed model was applied to a climate change scenario of 1 deg. C increase in temperature and 15% decrease in glaciated area. Results of the study reveal that the flows were decreased by about 4.2 %. (author)

  3. Estimating the impacts of climate change on Brazilian regions

    OpenAIRE

    Azzoni, Carlos; Haddad, Eduardo

    2011-01-01

    An integrated approach projects the economic impacts from climate change and adaptation and mitigation policies, explicitly considering the various territorial scales in Brazil (macro-regions, states, micro-regions, and networks of cities). A computable general equilibrium (GCE) model was used to simulate two climate change-free scenarios regarding the future of Brazil’s economy that are consistent with the global economic development trends under IPCC’s scenarios A2 and B2. Climate shock...

  4. Projected impacts of climate change on marine fish and fisheries

    DEFF Research Database (Denmark)

    Hollowed, Anne B.; Barange, Manuel; Beamish, Richard J.;

    2013-01-01

    This paper reviews current literature on the projected effects of climate change on marine fish and shellfish, their fisheries, and fishery-dependent communities throughout the northern hemisphere. The review addresses the following issues: (i) expected impacts on ecosystem productivity and habitat...... quantity and quality; (ii) impacts of changes in production and habitat on marine fish and shellfish species including effects on the community species composition, spatial distributions, interactions, and vital rates of fish and shellfish; (iii) impacts on fisheries and their associated communities; (iv......) implications for food security and associated changes; and (v) uncertainty and modelling skill assessment. Climate change will impact fish and shellfish, their fisheries, and fishery-dependent communities through a complex suite of linked processes. Integrated interdisciplinary research teams are forming...

  5. Modelingthe impacts of climate change on China's agriculture

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The impacts of climate change on China's agriculture are measured based on Ricardian model. By using county-level cross-sectional data on agricultural net revenue, climate, and other economic and geographical data for 1275 agriculture-dominated counties in the period of 1985-1991, we find that both higher temperature and more precipitation will have overall positive impact on China's agriculture. However, the impacts vary seasonally and regionally. Higher temperature in all seasons except spring increases agricultural net revenue while more precipitation is beneficial in winter but is harmful in summer. Applying the model to five climate scenarios in the 2020s and 2050s shows that the North, the Northeast, the Northwest, and the Qinghai-Tibet Plateau would always benefit from climate change while the South and the Southwest may be negatively affected. For the East and the Central China, most scenarios show that they may benefit from climate change. In conclusion, climate change would be beneficial to the whole China.

  6. Potential impacts of climatic change on European breeding birds.

    Directory of Open Access Journals (Sweden)

    Brian Huntley

    Full Text Available BACKGROUND: Climatic change is expected to lead to changes in species' geographical ranges. Adaptation strategies for biodiversity conservation require quantitative estimates of the magnitude, direction and rates of these potential changes. Such estimates are of greatest value when they are made for large ensembles of species and for extensive (sub-continental or continental regions. METHODOLOGY/PRINCIPAL FINDINGS: For six climate scenarios for 2070-99 changes have been estimated for 431 European breeding bird species using models relating species' distributions in Europe to climate. Mean range centroid potentially shifted 258-882 km in a direction between 341 degrees (NNW and 45 degrees (NE, depending upon the climate scenario considered. Potential future range extent averaged 72-89% of the present range, and overlapped the present range by an average of 31-53% of the extent of the present range. Even if potential range changes were realised, the average number of species breeding per 50x50 km grid square would decrease by 6.8-23.2%. Many species endemic or near-endemic to Europe have little or no overlap between their present and potential future ranges; such species face an enhanced extinction risk as a consequence of climatic change. CONCLUSIONS/SIGNIFICANCE: Although many human activities exert pressures upon wildlife, the magnitude of the potential impacts estimated for European breeding birds emphasises the importance of climatic change. The development of adaptation strategies for biodiversity conservation in the face of climatic change is an urgent need; such strategies must take into account quantitative evidence of potential climatic change impacts such as is presented here.

  7. Uncertainty in projected impacts of climate change on biodiversity

    DEFF Research Database (Denmark)

    Garcia, Raquel A.

    are difficult to model. The effect of such bias against narrow-ranging species is often overlooked in assessments of biodiversity impacts, but our results for sub-Saharan African amphibians show that it trickles down to conservation strategies. Finally, assumptions about the climatic tolerance of species......, their dispersal ability, and other characteristics are also shown to alter model projections for sub-Saharan African amphibians. Despite numerous calls to address the uncertainty challenge, appropriate treatment of uncertainty has yet to be formalised in assessments of biodiversity impacts under climate change...... information about the variability of projections in the ensemble. The second example examines model outputs for sub-Saharan African amphibians in the light of species' vulnerability to climate change. An analytical framework is developed for distinguishing between different climatic threats and opportunities...

  8. Regional Climate Change Impacts in the United States

    Science.gov (United States)

    Hayhoe, K.; Burkett, V.; Grimm, N.; McCarthy, J.; Miles, E.; Overpeck, J.; Shea, E.; Wuebbles, D.

    2009-05-01

    Climate change will affect one region differently from another. For that reason, the U.S. Unified Synthesis Product "Global Climate Change Impacts in the United States" broke down its assessment of climate change impacts on the country into 8 regions. Key highlights include: In the Northeast, agricultural production, including dairy, fruit, and maple syrup, will be increasingly affected as favorable climates shift northward. In the Southeast, accelerated sea-level rise and increased hurricane intensity will have serious impacts. In the Midwest, under higher emissions scenarios, significant reductions in Great Lakes water levels will impact shipping, infrastructure, beaches, and ecosystems. In the Great Plains, projected increases in temperature, evaporation, and drought frequency exacerbate concerns regarding the region's declining water resources. In the Southwest, water supplies will become increasingly scarce, calling for trade-offs among competing uses, and potentially leading to conflict. In the Northwest, salmon and other cold-water species will experience additional stresses as a result of rising water temperatures and declining summer streamflows. In Alaska, thawing permafrost damages roads, runways, water and sewer systems, and other infrastructure. And in the U.S. islands in the Caribbean and Pacific, climate changes affecting coastal and marine ecosystems will have major implications for tourism and fisheries. In addition, significant sea-level rise and storm surge will affect coastal cities and ecosystems around the nation; low-lying and subsiding areas are most vulnerable.

  9. Climate change impacts on hydrology and water resources

    Directory of Open Access Journals (Sweden)

    Fred Fokko Hattermann

    2015-04-01

    Full Text Available Aim of our study is to quantify the impacts of climate change on hydrology in the large river basins in Germany (Rhine, Elbe, Danube, Weser and Ems and thereby giving the range of impact uncertainty created by the most recent regional climate projections. The study shows mainly results for the A1B SRES (Special Report on Emission Scenario scenario by comparing the reference period 1981–2010 and the scenario periods 2031–2060 and 2061–2090 and using climate projections of a combination of 4 Global Climate Models (GCMs and 12 Regional Climate Models (RCMs as climate driver. The outcome is compared against impacts driven by a more recent RCP (Representative Emission Pathways scenario by using data of a statistical RCM. The results indicate that more robust conclusions can be drawn for some river basins, especially the Rhine and Danube basins, while diversity of results leads to higher uncertainty in the other river basins. The results also show that hydrology is very sensitive to changes in climate and effects of a general increase in precipitation can even be over-compensated by an increase in evapotranspiration. The decrease of runoff in late summer shown in most results can be an indicator for more pronounced droughts under scenario conditions.

  10. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Science.gov (United States)

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  11. Climate Change Impacts of US Reactive Nitrogen Emissions

    Science.gov (United States)

    Pinder, R. W.; Davidson, E. A.; Goodale, C. L.; Greaver, T.; Herrick, J.; Liu, L.

    2011-12-01

    By fossil fuel combustion and fertilizer application, the US has substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here, we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions. We use the global temperature potential (GTP) as a common metric, and we calculate the GTP at 20 and 100 years in units of CO2 equivalents. At both time-scales, nitrogen enhancement of CO2 uptake has the largest impact, because in the eastern US, areas of high nitrogen deposition are co-located with forests. In the short-term, the effect due to NOx altering ozone and methane concentrations is also substantial, but are not important on the 100 year time scale. Finally, the GTP of N2O emissions is substantial at both time scales. We have also attributed these impacts to combustion and agricultural sources, and quantified the uncertainty. Reactive nitrogen from combustion sources contribute more to cooling than warming. The impacts of agricultural sources tend to cancel each other out, and the net effect is uncertain. Recent trends show decreasing reactive nitrogen from US combustion sources, while agricultural sources are increasing. Fortunately, there are many mitigation strategies currently available to reduce the climate change impacts of US agricultural sources.

  12. U.S. Global Climate Change Impacts Overview

    Science.gov (United States)

    Karl, T. R.

    2009-12-01

    This past year the US Global Change Research Program released a report that summarized the science of climate change and the impacts of climate change on the United States, now and in the future. The report underscores the importance of measures to reduce climate change. In the context of impacts, the report identifies examples of actions currently being pursued in various sectors and regions to address climate change as well as other environmental problems that could be exacerbated by climate change. This state-of-knowledge report also identifies areas in which scientific uncertainty limits our ability to estimate future climate changes and its impacts. Key findings of the report include: (1) Global warming is unequivocal and primarily human induced. - This statement is stronger than the IPCC (2007) statement because new attribution studies since that report continue to implicate human caused changes over the past 50 years. (2) Climate Changes are underway in the Unites States and are projected to grow. - These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons lengthening ice-free seasons in the oceans and on lakes and rivers, earlier snowmelt and alteration in river flows. (3) Widespread climate-related impacts are occurring now and are expected to increase. - The impacts vary from region to region, but are already affecting many sectors e.g., water, energy, transportation, agriculture, ecosystems, etc. (4) Climate change will stress water resources. - Water is an issue in every region of the US, but the nature of the impacts vary (5) Crop and livestock production will be increasingly challenged. - Warming related to high emission scenarios often negatively affect crop growth and yields levels. Increased pests, water stress, diseases, and weather extremes will pose adaptation challenges for crops and livestock production. (6) Coastal areas are at increased risk from

  13. Climate change and its gendered impacts on agriculture in Vietnam

    Directory of Open Access Journals (Sweden)

    Trung, P.T

    2013-03-01

    Full Text Available Studies have shown that Vietnam is one of the countries that most affected by climate change because of its geographical and natural conditions together with its fast but massive and unplanned urbanization. There are many research and studies that have been conducted to assess the impacts of climate change on different sectors in Vietnam. Agriculture plays an important role in the country’s economy in terms of poverty reduction, food security, employment and export but projected to be heavily affected because of sea level rise, floods or droughts etc. A large proportion of Vietnam’s population, especially women, involves with agricultural works and production. So, this paper using a gender perspective will examine possible impacts that climate change has been causing to women and men differently in order to propose some solutions for the facing problems. Since the paper only utilizes available resources, it can serve as a concept note for further works in the future.

  14. Climate Change Impacts of Irrigation on the Central High Plains

    Science.gov (United States)

    Cotterman, K. A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2015-12-01

    Since the 1940s, the High Plains Aquifer (HPA) has been pivotal for irrigation over the Central High Plains (CHP), a region spanning parts of five states in the central U.S.. Today after decades of over-pumping, many areas of the CHP are no longer able to irrigate due to localized depletion of the HPA. With a range of global climate models predicting an increase in temperature and decrease in growing-season precipitation for the CHP, demand for irrigation is likely to increase and exacerbate drawdown and depletion of the aquifer. Here we apply the Landscape Hydrology Model (LHM) coupled with the crop simulation model SALUS to simulate irrigation water use in response to historical climate and land use. This model is validated using historical groundwater levels. We then simulate future climate scenarios to predict how irrigation demand and water availability will alter the hydrology of the CHP. This study provides a predictive relationship of future irrigation demand linked to both climate change and agricultural management, and presents a modeling approach to answer two questions: How will future climate change affect irrigation demand? How will climate change and irrigation demand affect groundwater availability for the future? Different climate scenarios based on the representative concentration pathways (RCPs) are used to simulate the impact of different projected future climate conditions through the year 2100. By examining predicted groundwater levels along with saturated thickness we analyze where irrigation is likely to be viable in the future and compare this to current irrigation extent.

  15. The Impact of Climate Change on Agriculture in Asia

    Institute of Scientific and Technical Information of China (English)

    Robert Mendelsohn

    2014-01-01

    Asian agriculture is responsible for two thirds of global agricultural GDP. There have been numerous studies exploring the impact of climate change on crops in speciifc locations in Asia but no study has yet analyzed crops across the entire continent. This study relies on a Ricardian study of China that estimated climate coefifcients for Chinese crops. These coefifcients are then used to interpolate potential climate damages across the continent. With carbon fertilization, the model predicts small aggregate effects with a 1.5°C warming but damages of about US$84 billion with 3°C warming. India is predicted to be especially vulnerable.

  16. Climate change. Socio-economic impacts and violent conflict

    International Nuclear Information System (INIS)

    The results of a literature study on the socio-economic impacts of climate change and the possibilities of violent conflicts enhanced by the greenhouse effect are presented. The socio-economic impacts are classified according to the economic sectors agriculture, forestry, fishery, energy, water, construction, transport, tourism and recreation and discussed in Chapter 2. The impacts on property, ecosystems and human well being are outlined in chapter 3. Chapter 4 deals with climate change and environmental security, and discusses the most important concepts of security and their relation to climate change. Chapter 5 deals with already existing and potential conflicts, that may be enhanced by the greenhouse effect as a result of resource scarcity, particularly related to availability of food and water. On the basis of the literature study and an analysis of research gaps propositions are made on new areas of research to be undertaken. The study emphasizes the need to further study the impact on agriculture in semi-arid zones, the impact on water availability in sensitive regions, a further analysis of the consequences of sea level rise particularly in sensitive areas and with regard to forced migration. Also further studies are required into the socio-economic impacts of changes in human health and mortality due to climate change, in relation to diseases. Special attention should be paid to migration because of environmental degradation and flooding. Extreme weather events have already been studied, but there still is a need for further insights into how extreme weather events will affect society, taking into account adaptive behaviour. Finally, in the area of socio-economic impacts, the implications of changes in ecosystems and biodiversity require further attention as these effects may be large but, at the same time, difficult to assess in economic terms. 175 refs

  17. Climate change impact on wetland forest plants of SNR Zasavica

    Directory of Open Access Journals (Sweden)

    Čavlović Dragana

    2012-01-01

    Full Text Available Wetlands are among the most vulnerable habitats on the planet. Very complex forest ecosystems are also parts of wetlands. Research and analysis of forest vegetation elements, leads to a conclusion about ecological conditions of wetlands. The aim of the paper is detail forest vegetation study, and analyzing the impact of climate changes on wetland forest vegetations of the strict protection area at the SNR Zasavica Ramsar site. Field research was carried out by using Braun-Blanquet’s Zurich-Montpelier school method. Phytogeographical elements and life forms of plants were determined subsequently, in order to get indicator values of wetland plants. Coupled Regional Climate Model (CRCM, EBU-POM was used for the climate simulations. Exact climatic variables for the site were determined by downscaling method. Climatic variables reference values were taken for the period of 1961-1990, and climate change simulations for the period 2071-2100 (A1B and A2. Indicator values of forest plants taken into consideration were humidity and temperature; therefore, ecological optimums were determined in scales of humidity and temperature. Regional Climate Model shows that there will be a long and intensive dry period in the future, with high temperatures from April till October. Continental winter will be more humid, with higher precipitation, especially in February. Based on the analysis of results it was concluded that wetlands are transitional habitats, also very variable and therefore vulnerable to changes. The changes may lead to the extinction of some plant species.

  18. Climate Change Impacts on High-Altitude Ecosystems

    OpenAIRE

    Harald Pauli

    2016-01-01

    Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  19. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Science.gov (United States)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  20. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison M.; Zhang, Xuesong; Jones, Russ; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, B. J.; McFarland, Jim; Strzepek, K.; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  1. Global Catastrophes in Perspective: Asteroid Impacts vs Climate Change

    Science.gov (United States)

    Boslough, M. B.; Harris, A. W.

    2008-12-01

    When allocating resources to address threats, decision makers are best served by having objective assessments of the relative magnitude of the threats in question. Asteroids greater than about 1 km in diameter are assumed by the planetary impact community to exceed a "global catastrophe threshold". Impacts from smaller objects are expected to cause local or regional destruction, and would be the proximate cause of most associated fatalities. Impacts above the threshold would be expected to alter the climate, killing billions of people and causing a collapse of civilization. In this apocalyptic scenario, only a small fraction of the casualties would be attributable to direct effects of the impact: the blast wave, thermal radiation, debris, ground motion, or tsunami. The vast majority of deaths would come later and be due to indirect causes: starvation, disease, or violence as a consequence of societal disruption related to the impact-induced global climate change. The concept of a catastrophe threshold comes from "nuclear winter" studies, which form the basis for quantitative estimates of the consequences of a large impact. The probability estimates come from astronomical observations and statistical analysis. Much of the impact threat, at its core, is a climate-change threat. Prior to the Spaceguard Survey of Near-Earth Objects (NEOs), the chance of dying from an asteroid impact was estimated to be 1 in 25,000 (Chapman & Morrison, 1994). Most of the large asteroids have now been discovered, and none is on an impact trajectory. Moreover, new data show that mid-sized asteroids (tens to hundreds of meters across) are less abundant than previously thought, by a factor of three. We now estimate that the lifetime odds of being killed by the impact of one of the remaining undiscovered NEOs are about one in 720,000 for individuals with a life expectancy of 80 years (Harris, 2008). One objective way to compare the relative magnitude of the impact threat to that of

  2. Potential Impacts of Climate Change in the Great Lakes Region

    Science.gov (United States)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  3. Impact of climate change on water quality in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Verweij, W.; Van der Wiele, J.; Van Moorselaar, I.; Van der Grinten, E.

    2010-08-15

    Climate change aggravates existing problems with surface water quality in the Netherlands. New water quality problems are not expected. That is the conclusion of a literature search carried out by RIVM, focused on the expected impact of climate change on water quality, including effects on ecology, human health and some economic sectors. RIVM therefore recommends authorities not to develop new policy but to incorporate the possible impacts of climate change into existing policy. The Water Framework Directive targets may become unfeasible as a result of the additional pressure caused by climate change. RIVM also recommends stronger integration between policy areas and closer cooperation between authorities. The first step in this project was drawing up an inventory of climate change projections. Average temperature is expected to rise and the variation within seasons is expected to increase. The next step was investigating the corresponding effects for the quality of surface water in the Netherlands. The chemical quality of surface water will deteriorate and the concentration of oxygen will decrease. Additionally, the effects of eutrophication, like algal blooms, will increase. Climate change will increase pressure on ecosystems caused by salinisation, acidification, eutrophication and fragmentation. As a result, new plant and animal species may appear in the Netherlands, having spread from the south, while other species may disappear. Micro-organisms might cause health risks when the climate changes but the reverse might also be the case. Higher temperatures may have consequences for public water supply because surface water may not be used as a source when temperature standards are exceeded.

  4. European information on climate change impacts, vulnerability and adaptation

    Science.gov (United States)

    Jol, A.; Isoard, S.

    2010-09-01

    Vulnerability to natural and technological disasters is increasing due to a combination of intensifying land use, increasing industrial development, further urban expansion and expanding infrastructure and also climate change. At EU level the European Commission's White Paper on adaptation to climate change (published in 2009) highlights that adaptation actions should be focused on the most vulnerable areas and communities in Europe (e.g. mountains, coastal areas, river flood prone areas, Mediterranean, Arctic). Mainstreaming of climate change into existing EU policies will be a key policy, including within the Water Framework Directive, Marine Strategy Framework Directive, Nature protection and biodiversity policies, integrated coastal zone management, other (sectoral) policies (agriculture, forestry, energy, transport, health) and disaster risk prevention. 2010 is the international year on biodiversity and the Conference of Parties of the biodiversity convention will meet in autumn 2010 (Japan) to discuss amongst other post-2010 strategies, objectives and indicators. Both within the Biodiversity Convention (CBD) and the Climate Change Convention (UNFCCC) there is increasing recognition of the need for integration of biodiversity conservation into climate change mitigation and adaptation activities. Furthermore a number of European countries and also some regions have started to prepare and/or have adopted national adaptation plans or frameworks. Sharing of good practices on climate change vulnerability methods and adaptation actions is so far limited, but is essential to improve such plans, at national, sub national and local level where much of the adaptation action is already taking place and will be expanding in future, also involving increasingly the business community. The EU Clearinghouse on CC impacts, vulnerability and adaptation should address these needs and it is planned to be operational end of 2011. The EEA is expected to have a role in its

  5. Malaria and Climate Change: Discussion on Economic Impacts

    Directory of Open Access Journals (Sweden)

    Md. S. Mia

    2011-01-01

    Full Text Available Problem statement: Climate change is a global environmental change that is adversely affecting human health by causing various health impacts in countries throughout the world. Climate is the most influential driving force of vector-borne diseases such as malaria. Changes in climate factors substantially affect reproduction, development, distribution and seasonal transmissions of malaria. Climate change increases the outbreak of malaria which causes adverse economic impacts in endemic regions. This study reviews literature related to economic impacts of malaria at different levels such as household and national level. The study also focuses on the impacts of malaria on the economic growth of various nations. Approach: Literatures were identified for review through a comprehensive search by using electronic and non-electronic databases. Several electronic databases were searched for published literature in a systematic way using a range of key words relating to economic impacts of malaria illness. Related literature and documents were also found through communicating with colleagues working in this research area. Related literature and documents were also found through communicating with colleagues working in this research area. Results: The literature review indicates that malaria causes great economic losses at household level through human morbidity and mortality and consequently lower labor productivity, disability and poverty. At the national level, malaria affects negatively the trade, investments, savings and tourism sector. Macroeconomic studies estimated that the annual growth rate of per capita GDP of malaria endemic countries was 0.25-1.3% points lower per year than that of non-malarious countries. Conclusion: Reducing the burden of malaria could help to break the vicious cycle between illness and poverty that contributes to economic growth of the endemic countries. Therefore, further research is urgently needed to

  6. [Impact of climatic change on soybean production: a review].

    Science.gov (United States)

    Hao, Xing-yu; Han, Xue; Ju, Hui; Lin, Er-da

    2010-10-01

    Since the industrial revolution, the rapid increase of global atmospheric concentration of CO2 and other greenhouse gases has induced the global warming and the change of global precipitation pattern. The growth, development, yield, and quality of soybean are subject to all these changes of climatic conditions. Soybean is one of the major grain and oil crops in the world and in China, and any change in the soybean production under future climate scenario will affect the grain- and edible oil security nationally and internationally. This paper reviewed the effects of elevated atmospheric CO2, global warming, and water stress on soybean growth, and discussed the future research needs, which could provide scientific basis for realizing soybean production in the future and for implementing in advance proper policies in the context of climatic change impact on soybean production.

  7. Assessing the impacts of climatic change on mountain water resources.

    Science.gov (United States)

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades.

  8. The impact of climate change on coastal ecosystems: chapter 6

    Science.gov (United States)

    Burkett, Virginia; Woodroffe, Colin D.; Nicholls, Robert J.; Forbes, Donald L.

    2014-01-01

    In this chapter we stress two important features of coasts and coastal ecosystems. First, these are dynamic systems which continually undergo adjustments, especially through erosion and re-deposition, in response to a range of processes. Many coastal ecosystems adjust naturally at a range of time scales and their potential for response is examined partly by reconstructing how such systems have coped with natural changes of climate and sea level in the geological past. Second, coasts have changed profoundly through the 20th Century due to the impacts of human development (such as urbanisation, port and industrial expansion, shore protection, and the draining and conversion of coastal wetlands), with these development-related drivers closely linked to a growing global population and economy. It remains a challenge to isolate the impacts of climate change and sea-level rise from either the natural trajectory of shoreline change, or the accelerated pathway resulting from other human-related stressors. There exists a danger of overstating the importance of climate change, or overlooking significant interactions of climate change with other drivers.

  9. Impacts of climate change on the global forest sector

    Science.gov (United States)

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  10. Agricultural climate change impact: General concerns and findings from Mali, Kenya, Uganda, and Senegal

    OpenAIRE

    Butt, T.; Angerer, J; Dyke, P.; Kim, M.; Kaitho, R.; Stuth, J.

    2004-01-01

    This paper discusses concerns about the impact of climate change on agriculture. Methods for assessing the impacts of climate change and the results from impact assessments in Mali, Kenya, Uganda, and Senegal are presented.

  11. Modeling impacts of climate change on freshwater availability in Africa

    Science.gov (United States)

    Faramarzi, Monireh; Abbaspour, Karim C.; Ashraf Vaghefi, Saeid; Farzaneh, Mohammad Reza; Zehnder, Alexander J. B.; Srinivasan, Raghavan; Yang, Hong

    2013-02-01

    SummaryThis study analyzes the impact of climate change on freshwater availability in Africa at the subbasin level for the period of 2020-2040. Future climate projections from five global circulation models (GCMs) under the four IPCC emission scenarios were fed into an existing SWAT hydrological model to project the impact on different components of water resources across the African continent. The GCMs have been downscaled based on observed data of Climate Research Unit to represent local climate conditions at 0.5° grid spatial resolution. The results show that for Africa as a whole, the mean total quantity of water resources is likely to increase. For individual subbasins and countries, variations are substantial. Although uncertainties are high in the simulated results, we found that in many regions/countries, most of the climate scenarios projected the same direction of changes in water resources, suggesting a relatively high confidence in the projections. The assessment of the number of dry days and the frequency of their occurrences suggests an increase in the drought events and their duration in the future. Overall, the dry regions have higher uncertainties than the wet regions in the projected impacts on water resources. This poses additional challenge to the agriculture in dry regions where water shortage is already severe while irrigation is expected to become more important to stabilize and increase food production.

  12. Climate change impacts and adaptation: a Canadian perspective. Transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    A brief summary of research over the past five years in the field of climate change, as it relates to key sectors in Canada, is presented in the report entitled: Climate change impacts and adaptation: a Canadian perspective. The emphasis of this chapter is on transportation, the role of adaptation in reducing vulnerabilities, and capitalizing on potential opportunities. Other sectors, such as fisheries, the coastal zone, tourism and human health might be affected by decisions made with regard to transportation. The areas that seem most vulnerable to climate change in transportation include northern ice roads, Great Lakes shipping, coastal infrastructure threatened by sea-level rise, and infrastructure located on permafrost. Most of the attention has been devoted to infrastructure and operations issues in northern Canada, despite most of the transportation activities taking place in southern Canada. Milder and or shorter winters might lead to savings, but additional knowledge is required before quantitative estimates can be made. The changed frequency of extreme climate events, and or changes in precipitation may influence other weather hazards or inefficiencies. If Canadians are prepared to be proactive, the report indicated that the effects of climate change on transportation may be largely manageable. 77 refs., 2 tabs., 3 figs.

  13. Climate change impacts and adaptation: a Canadian perspective. Transportation

    International Nuclear Information System (INIS)

    A brief summary of research over the past five years in the field of climate change, as it relates to key sectors in Canada, is presented in the report entitled: Climate change impacts and adaptation: a Canadian perspective. The emphasis of this chapter is on transportation, the role of adaptation in reducing vulnerabilities, and capitalizing on potential opportunities. Other sectors, such as fisheries, the coastal zone, tourism and human health might be affected by decisions made with regard to transportation. The areas that seem most vulnerable to climate change in transportation include northern ice roads, Great Lakes shipping, coastal infrastructure threatened by sea-level rise, and infrastructure located on permafrost. Most of the attention has been devoted to infrastructure and operations issues in northern Canada, despite most of the transportation activities taking place in southern Canada. Milder and or shorter winters might lead to savings, but additional knowledge is required before quantitative estimates can be made. The changed frequency of extreme climate events, and or changes in precipitation may influence other weather hazards or inefficiencies. If Canadians are prepared to be proactive, the report indicated that the effects of climate change on transportation may be largely manageable. 77 refs., 2 tabs., 3 figs

  14. Impacts and adaptation for climate change in urban forests

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    Changes to urban trees as a result of climate change were reviewed in order to aid urban forest managers in the development of adaptive climate change strategies. Various climate change models have predicted that winter and spring temperatures will increase. Higher amounts of precipitation are also anticipated. Higher temperatures will results in evapotranspiration, which will cause soil moisture levels to decline. Climatologists have also suggested that very hot days, winter storms and high rainfall events will increase in frequency. In addition, higher levels of atmospheric carbon dioxide (CO{sub 2}) will affect photosynthesis, with associated impacts on urban tree growth. Higher temperatures and longer growing seasons will allow insect populations to build up to higher levels, and warmer and dryer summers are likely to bring longer fire seasons and more severe fires. Urban trees under stress from drought and higher temperatures will be increasingly vulnerable to existing urban stressors such as air pollution and soil compaction. However, the ecological services provided by trees will become more valuable under future climate change regimes, particularly for shading and space cooling, as well as soil aeration and stabilization and the uptake of storm water. It was suggested that future tree growth may be enhanced on sites with adequate water and nutrients, but will probably decline in areas that are already marginal. It was recommended that urban forest managers assess the present vulnerability of trees to climate-related events in order to prepare for future change. Managers should also assess their capacity to implement various strategies through municipal and provincial partnerships. It was observed that decisions taken now about forest management will play out over several decades. It was concluded that maintaining a flexible and resilient urban forest management system is the best defence, as specific climate change impacts cannot be predicted. 18 refs., 4

  15. Impacts of climate change on water resources and agriculture

    International Nuclear Information System (INIS)

    The changes in climate projected to result from increasing concentrations of greenhouse gases will lead to impacts on important resources, including agriculture, fresh water, natural ecosystems, and coastal developments. A growing body of climate impact research already suggests that important effects will be felt in all countries, sometimes in severe and dramatic ways. This chapter focuses on the potential impacts of changes in climate on water resources and agriculture in the US and the Soviet Union, although many other impacts will also occur. These other effects include a rising sea level that will threaten coastal regions and natural ecosystems; altered productivity of ocean and freshwater fisheries as a result of changes in temperatures, ocean currents, and nutrient flows; worsened urban air quality if rising temperatures increase the formation of low-level ozone; forest migration and diebacks, increased pest outbreaks, and greater frequency of fires; and more frequent and more intense storms. Better understanding of potential impacts, and the consequences of the relatively rapid rate at which they may occur, requires intensified efforts

  16. Globalisation and climate change in Asia: the urban health impact.

    Science.gov (United States)

    Munslow, Barry; O'Dempsey, Tim

    2010-01-01

    Asia's economic development successes will create new policy areas to address, as the advances made through globalisation create greater climate change challenges, particularly the impact on urban health. Poverty eradication and higher standards of living both increase demand on resources. Globalisation increases inequalities and those who are currently the losers will carry the greatest burden of the costs in the form of the negative effects of climate change and the humanitarian crises that will ensue. Of four major climate change challenges affecting the environment and health, two—urban air pollution and waste management—can be mitigated by policy change and technological innovation if sufficient resources are allocated. Because of the urban bias in the development process, these challenges will probably register on policy makers' agenda. The second two major challenges—floods and drought—are less amenable to policy and technological solutions: many humanitarian emergency challenges lie ahead. This article describes the widely varying impact of both globalisation and climate change across Asia. The greatest losers are those who flee one marginal location, the arid inland areas, only to settle in another marginal location in the flood prone coastal slums. Effective preparation is required, and an effective response when subsequent humanitarian crises occur.

  17. Globalisation and climate change in Asia: the urban health impact.

    Science.gov (United States)

    Munslow, Barry; O'Dempsey, Tim

    2010-01-01

    Asia's economic development successes will create new policy areas to address, as the advances made through globalisation create greater climate change challenges, particularly the impact on urban health. Poverty eradication and higher standards of living both increase demand on resources. Globalisation increases inequalities and those who are currently the losers will carry the greatest burden of the costs in the form of the negative effects of climate change and the humanitarian crises that will ensue. Of four major climate change challenges affecting the environment and health, two—urban air pollution and waste management—can be mitigated by policy change and technological innovation if sufficient resources are allocated. Because of the urban bias in the development process, these challenges will probably register on policy makers' agenda. The second two major challenges—floods and drought—are less amenable to policy and technological solutions: many humanitarian emergency challenges lie ahead. This article describes the widely varying impact of both globalisation and climate change across Asia. The greatest losers are those who flee one marginal location, the arid inland areas, only to settle in another marginal location in the flood prone coastal slums. Effective preparation is required, and an effective response when subsequent humanitarian crises occur. PMID:21506298

  18. Choice of baseline climate data impacts projected species' responses to climate change.

    Science.gov (United States)

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. PMID:26950769

  19. Choice of baseline climate data impacts projected species' responses to climate change.

    Science.gov (United States)

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses.

  20. Human Interventions versus Climate Change: Impacts on Water Management

    Science.gov (United States)

    Gautam, M. R.; Acharya, K.

    2009-12-01

    Water availability and occurrence of water induced disasters are impacted by both natural and human centric drivers. Climate change is considered to be one of the noted drivers in this regard. Human interventions through land use/land cover change, stream and floodplain regulations via dams, weirs, and embankments could be other equally important group of drivers. Unlike developed countries that have both resources and capabilities to adapt and mitigate the impact of such drivers, developing countries are increasingly at more risk. Identifying roles of such drivers are fundamental to the formulation of any adaptation and mitigation plans for their impacts for developing countries. In this study, we present a few examples from three regions of Nepal- a developing country in South Asia generally considered as a water rich country. Through results of modeling and statistical analyses, we show which driver is in control in different watersheds. Preliminary results show that climate change impact appears to be more prominent in large snow-fed river basins. In the smaller non-snow-fed watersheds originating from the middle hill, the impacts are not explicit despite perception of local people about changes in the water availability. In the southern belt bordering India, the impacts of river regulation on downstream areas are found to be the principal cause of flooding/inundation.

  1. Impacts of climate change and variability on European agriculture

    DEFF Research Database (Denmark)

    Orlandini, Simone; Nejedlik, Pavol; Eitzinger, Josef;

    2008-01-01

    and simulation models, including review and assessment of tools used to relate climate and agricultural processes; evaluation of the current trends of agroclimatic indices and model outputs, including remote sensing; developing and assessing future regional and local scenarios of agroclimatic conditions......Climate plays a fundamental role in agriculture because of to its influence on production. All processes are regulated by specific climatic requirements. Furthermore, European agriculture, based on highly developed farming techniques, is mainly oriented to high quality food production that is more...... susceptible to meteorological hazards. These hazards can modify environment-genotype interactions, which can affect the quality of production. The COST 734 Action (Impacts of Climate Change and Variability on European Agriculture), launched in 2006, is composed of 28 signature countries and is funded...

  2. Climate variability: Possible changes with climate change and impacts on crop yields

    International Nuclear Information System (INIS)

    A pilot study was carried out of the sensitivity of the CERES wheat model, a deterministic crop-climate model, to changes in the interannual variability of temperature and precipitation. The study was designed to determine the effect of changed temperature variance on the mean and variance of the simulated yields, to compare the effect with the effect of mean temperature changes, and to determine the interacting effects of changes in mean and variance of temperature. The CERES model was applied to 29 cropping years (1952-1980), using three different soil types and two different management practices (fully irrigated and dryland). The coefficients of variation of the yields for irrigated and dryland conditions are plotted against variance change. It was found that in both management systems, the yield response is usually greater to increases rather than decreases in variance. The combined effect of mean and variance temperature changes are most striking under irrigated conditions, with a dramatic decrease in yield variability in the high mean climate change scenario with decreased temperature variance. This suggests that the variability decrease might mitigate the effect of a mean increase in temperature. This result is not found with the dryland case, where decreased temperature variability has little impact on yield variability. 12 refs., 4 figs

  3. Burning Fossil Fuels: Impact of Climate Change on Health.

    Science.gov (United States)

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases. PMID:26721565

  4. Burning Fossil Fuels: Impact of Climate Change on Health.

    Science.gov (United States)

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases.

  5. The impact of climate change on persistent contrail occurrence

    Science.gov (United States)

    Irvine, Emma; Shine, Keith; Stringer, Marc

    2016-04-01

    The formation of persistent contrails by aircraft flying through cold ice-supersaturated (CISS) regions contributes to anthropogenic climate change. However, as the climate itself changes during the 21st century, the potential for the formation of persistent contrails may also change. We recently (doi: 10.5194/esd-6-555-2015) found a global-mean decrease in the frequency of CISS regions of one third (11 to 7%) by the end of the 21st century, relative to present-day conditions, using climate model data from CMIP5. This decrease is dominated by the large decrease in CISS frequency in the tropics where the models predict strong upper-tropospheric warming, to levels above the threshold temperature at which contrails can form. The situation for the northern hemisphere mid-latitudes is less clear and dependent on model, latitude and season. Actual changes to contrail cover during this period will depend also on flight routing. An example is shown for the north Atlantic, where aircraft routing is strongly wind-dependent and therefore will be affected by changes to the jet stream. Here we combine our analysis of changes in CISS with projected changes in aircraft routes (which are calculated using the climate model winds), to estimate the net impact on persistent contrail occurrence in this region. We distinguish between the effect on eastbound flights, which generally aim to exploit the jet stream, and westbound flights that aim to avoid it.

  6. Plantation forestry in Brazil: the potential impacts of climatic change

    International Nuclear Information System (INIS)

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO2 enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  7. Plantation forestry in Brazil: the potential impacts of climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, P.M. [National Institute for Research in the Amazon, Manaus (Brazil). Dept. of Ecology

    1999-11-01

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO{sub 2} enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  8. Plantation forestry in Brazil: the potential impacts of climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, P.M. [National Institute for Research in the Amazon, Manaus (Brazil). Dept. of Ecology

    1999-07-01

    Most climatic changes predicted to occur in Brazil would replace yields of silvicultural plantations, mainly through increased frequency and severity of droughts brought on by global warming and by reduction of water vapor sources in Amazonia caused by deforestation. Some additional negative effects could result from changes in temperature, and positive effects could result from CO{sub 2} enrichment. The net effects would be negative, forcing the country to expand plantations onto less-productive land, requiring increased plantation area (and consequent economic losses) out of proportion to the climatic change itself. These impacts would affect carbon sequestration and storage consequences of any plans for subsidizing silviculture as a global warming mitigation option. Climate change can be expected to increase the area of plantations needed to supply projected internal demand for and exports of end products from Brazil. June-July-August (dry season) precipitation reductions indicated by simulations reported by the Intergovernmental Panel on Climate Change (IPCC) correspond to rainfall declines in this critical season of approximately 34% in Amazonia, 39% in Southern Brazil and 61% in the Northeast. As an example, if rainfall in Brazilian plantation areas (most of which are now in Southern Brazil) were to decline by 50%, the area needed in 2050 would expand by an estimated 38% over the constant climate case, bringing the total area to 4.5 times the 1991 area. These large areas of additional plantations imply substantial social and environmental impacts. Further addition of plantation area as a global warming response option would augment these impacts, indicating the need for caution in evaluating carbon sequestration proposals. (author)

  9. Climate Change Impacts in a Colombian Andean Tropical Basin

    Science.gov (United States)

    Ocampo, O. L.; Vélez, J. J.; Londoño, A.

    2012-12-01

    Climate change and climate variability have a large impact on water resources. Developing regions have less capacity to prepare for, respond to, and recover from climate-related hazards and effects, and then, populations may be disproportionately affected. In Colombia, the geographical location and the marked irregularity in the terrain, give as a result, a complex climate. These factors have contributed to the water supply of the territory. Unfortunately, the visualization of abundant and inexhaustible water resources created a great disregard for them. Besides, the water supply is not distributed uniformly across the country, and then there is water-deficit in some areas as Andean Region, where the largest population and the main development centers are located. In recent decades, water conflicts have emerged locally and regionally, which have generated a crisis in the allocation mechanisms and have improved the understanding of the water situation in Colombia. The Second National Communication to CCMNU alerts on possible future consequences of climate change and the need for regional studies for understanding climate change impacts on the fragile ecosystems of high mountains as paramos and fog forest, which are water production regulators. Colombian water resources are greatly affected by changes in rainfall patterns influenced by El Niño and La Niña. The recent disasters in the 2010-2011 rainy seasons have caught the attention of not only the authorities but from the scientific community to explore strategies to improve water management by tracking, anticipating and responding to climate variability and climate change. Whereas sound water management is built upon long-term, the country is undertaking a pilot exercise for the integrated management of water resources, five Basins are selected, among them, is the Chinchiná River Basin; this Andean tropical Basin is located on the western slopes at the central range in the Andes between 4°48 and 5°12 N

  10. Biophysical climate impacts of recent changes in global forest cover.

    Science.gov (United States)

    Alkama, Ramdane; Cescatti, Alessandro

    2016-02-01

    Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change.

  11. Biophysical climate impacts of recent changes in global forest cover

    Science.gov (United States)

    Alkama, Ramdane; Cescatti, Alessandro

    2016-02-01

    Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change.

  12. The poverty impacts of climate change : a review of the evidence

    OpenAIRE

    Skoufias, Emmanuel; Rabassa, Mariano; Olivieri, Sergio

    2011-01-01

    Climate change is believed to represent a serious challenge to poverty reduction efforts around the globe. This paper conducts an up-to-date review of three main strands of the literature analyzing the poverty impacts of climate change : (i) economy-wide growth models incorporating climate change impacts to work out consistent scenarios for how climate change might affect the path of pover...

  13. Drivers of climate change impacts on bird communities.

    Science.gov (United States)

    Pearce-Higgins, James W; Eglington, Sarah M; Martay, Blaise; Chamberlain, Dan E

    2015-07-01

    Climate change is reported to have caused widespread changes to species' populations and ecological communities. Warming has been associated with population declines in long-distance migrants and habitat specialists, and increases in southerly distributed species. However, the specific climatic drivers behind these changes remain undescribed. We analysed annual fluctuations in the abundance of 59 breeding bird species in England over 45 years to test the effect of monthly temperature and precipitation means upon population trends. Strong positive correlations between population growth and both winter and breeding season temperature were identified for resident and short-distance migrants. Lagged correlations between population growth and summer temperature and precipitation identified for the first time a widespread negative impact of hot, dry summer weather. Resident populations appeared to increase following wet autumns. Populations of long-distance migrants were negatively affected by May temperature, consistent with a potential negative effect of phenological mismatch upon breeding success. There was evidence for some nonlinear relationships between monthly weather variables and population growth. Habitat specialists and cold-associated species showed consistently more negative effects of higher temperatures than habitat generalists and southerly distributed species associated with warm temperatures. Results suggest that previously reported changes in community composition represent the accumulated effects of spring and summer warming. Long-term population trends were more significantly correlated with species' sensitivity to temperature than precipitation, suggesting that warming has had a greater impact on population trends than changes in precipitation. Months where there had been the greatest warming were the most influential drivers of long-term change. There was also evidence that species with the greatest sensitivity to extremes of precipitation have

  14. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Hydroelectricity is a clean and renewable energy source for many countries, and is expected to play an important role in future energy supplies. However, the impact of climatic change on hydroelectricity resources is not yet understood. This study provided a critical review of current methods used to determine the potential impacts of climatic change on hydroelectric power production. General circulation models (GCMs) are used to predict future climate conditions under various greenhouse gas (GHG) emissions scenarios. Statistical techniques are then used to down-scale GCM outputs to the appropriate scales needed for hydrological models, which are then used to simulate the effects of climatic change at regional and local scales. Outputs from the models are then used to develop water management models for hydroelectric power production. Observed linear trends in annual precipitation during the twentieth century were provided. The theoretical advantages and disadvantages of various modelling techniques were reviewed. Risk assessment strategies for Hydro-Quebec were also outlined and results of the study will be used to guide research programs for the hydroelectric power industry. refs., tabs., figs

  15. Modeling Climate Change Impacts on Landscape Evolution, Fire, and Hydrology

    Science.gov (United States)

    Sheppard, B. S.; O Connor, C.; Falk, D. A.; Garfin, G. M.

    2015-12-01

    Landscape disturbances such as wildfire interact with climate variability to influence hydrologic regimes. We coupled landscape, fire, and hydrologic models and forced them using projected climate to demonstrate climate change impacts anticipated at Fort Huachuca in southeastern Arizona, USA. The US Department of Defense (DoD) recognizes climate change as a trend that has implications for military installations, national security and global instability. The goal of this DoD Strategic Environmental Research and Development Program (SERDP) project (RC-2232) is to provide decision making tools for military installations in the southwestern US to help them adapt to the operational realities associated with climate change. For this study we coupled the spatially explicit fire and vegetation dynamics model FireBGCv2 with the Automated Geospatial Watershed Assessment tool (AGWA) to evaluate landscape vegetation change, fire disturbance, and surface runoff in response to projected climate forcing. A projected climate stream for the years 2005-2055 was developed from the Multivariate Adaptive Constructed Analogs (MACA) 4 km statistical downscaling of the CanESM2 GCM using Representative Concentration Pathway (RCP) 8.5. AGWA, an ArcGIS add-in tool, was used to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and the KINematic runoff and EROSion2 (KINEROS2) models based on GIS layers. Landscape raster data generated by FireBGCv2 project an increase in fire and drought associated tree mortality and a decrease in vegetative basal area over the years of simulation. Preliminary results from SWAT modeling efforts show an increase to surface runoff during years following a fire, and for future winter rainy seasons. Initial results from KINEROS2 model runs show that peak runoff rates are expected to increase 10-100 fold as a result of intense rainfall falling on burned areas.

  16. Scenarios of long-term farm structural change for application in climate change impact assessment

    NARCIS (Netherlands)

    Mandryk, M.; Reidsma, P.; Ittersum, van M.K.

    2012-01-01

    Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, ada

  17. The impacts of climate change on agriculture in Manitoba

    International Nuclear Information System (INIS)

    A study was carried out to examine the potential effects of a doubled carbon dioxide climate change scenario on gross margins received from cropping enterprises and the patterns of crop production in Manitoba, Canada. The 1987 run of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) was chosen to supply climatic data. Models were developed for yield changes in existing crops, crop migration, and economic impacts. Three scenarios were considered: scenario 1 using historical seeding dates and climates, scenario 2 using historical seeding dates and a flat 3 degree C temperature increase, and scenario 3 where seeding is advanced 14 days and temperatures increase by 3 degree C. The results suggest that climatic warming will have a beneficial effect on the cropping sector in Manitoba. Gross margins are 53% greater in scenario 2 and 190% greater in scenario 3 when the increased area of productive land is considered. Wider cultivation of higher value crops offsets the negative effect of decreased yields of other crops. The changed climate will favour the introduction of longer maturing varieties of existing crops, greater commerical production of existing crops such as sunflowers, soybeans and corn, and the introduction of totally new crops such as sorghum. 26 refs., 1 tab

  18. Adapting to the impacts of climate change and variability

    International Nuclear Information System (INIS)

    A workshop was held to encourage awareness of the climate change impact issues and build collaboration among the Great Lakes/St. Lawrence basin (GLSLB) research, resource management, and policy-making community; to identify research opportunities to address the issues of water management, ecosystem health, human health, and land use and management; and to recommend directions and priority areas for future studies to develop an integrated climate impact assessment for the GLSLB. Presentations at the workshop were on topics including an overview of the GLSLB Project, the impacts of climate change on water supply and demand, and impacts on water quality, fisheries, wetlands, agriculture, shoreline management, and human health. Panel sessions were also convened to discuss information requirements that would assist in decision- and policy-making and to address the concept of integration. Working groups on water management, ecosystem health, land use and management, and human health were formed and made recommendations. A synthesis is presented of the reports from and recommendations of the four working groups as well as extended abstracts of the plenary presentations. A separate abstract has been prepared for one of the presentations from this workshop

  19. Climate variability, climate changes and their impact on water cycles

    International Nuclear Information System (INIS)

    Water availability in Pakistan particularly depends upon both summer and winter rainfall in plains and snowfall over the mountains. Climatically being located in subtropical region, the major amount of rainfall is in monsoon season, which extends from July, to September. Incidentally the deficient or surplus rainfall years are dependent upon intensity of Monsoon current. The same Monsoon current is also responsible for rainfall over the catchment area of eastern rivers i.e. Sutlej, Ravi, Chenab. These catchments are located across the border of eastern rivers. Westerly wave component is another aspect, responsible for rainfall in Jhelum and Indus River though some times Monsoon depressions penetrate up to Jhelum and give heavy rainfall along the route over the Eastern rivers causing the net surplus water availability. The rainfall pattern determines the agriculture output and the crops to be sown along with the area determination. This is particularly dictated by the different regimes of the Monsoon rainfall to mitigate both the surplus and deficient water availability, comprehensive study of statistical data indicates future reservoir/dam location, its construction, and a shift in crops pattern and water utility in commensurate with Climatological dictates in this region of south Asia. (Author)

  20. Current climate variability and future climate change: Estimated growth and poverty impacts for Zambia

    OpenAIRE

    Thurlow, James; Zhu, Tingju; Diao, Xinshen

    2011-01-01

    Economy-wide and hydrological-crop models are combined to estimate and compare the economic impacts of current climate variability and future anthropogenic climate change in Zambia. Accounting for uncertainty, simulation results indicate that, on average, current variability reduces gross domestic product by four percent over a ten-year period and pulls over two percent of the population below the poverty line. Socio-economic impacts are much larger during major drought years, thus underscori...

  1. Evaluating the impact of climate change on dam safety

    International Nuclear Information System (INIS)

    This paper presents a newly developed flood frequency model which can be used to forecast potential future flood levels based on current climate trends. It can then be used to assess the long-term safety of an important asset. Information from a meteorological station in North Bay, Ontario confirms that there has been a statistically evident trend for warmer winters over the last 3 decades. The model was used to assess the impact of climate change on dam safety. Results suggest that if the current climate trend continues, there may be a significant increase in the magnitude of the inflow design flood (IDF) for dams located on small-to medium-sized watersheds. However, the magnitude of IDF for dams located on large watersheds would likely be reduced. The model can be used to quantify potential future risks both in the design of new dams and in the long-term planning for existing dams. It is noted that there could be an unquantified risk if there was a rapid change in the climate. In order to address this issue, methodologies must predict the direction of change, estimate the magnitude of the changes, and evaluate the reliability of the predictions based on an assessment of the existing data sets and the predicted future conditions. 27 refs., 5 figs

  2. Impact of Climate change on Milk production of Murrah buffaloes

    Directory of Open Access Journals (Sweden)

    A. Ashutosh

    2010-02-01

    Full Text Available Global warming is likely to impact productivity of buffaloes due to their sensitivity to temperature changes. Air temperature, humidity, wind velocity and solar radiation are the main climate variables that affect buffalo production in tropical climate. In the present study sensitivity of lactating Murrah buffaloes to sudden temperature (Tmax, Tmin change and THI have been analyzed from milk production and climatic records (1994-2004 of Karnal. Algorithms were developed and validated on lactating buffaloes during 2005-2006 at the Institute. A sudden change (rise or fall in Maximum/Minimum temperature during summer and winter was observed to affect milk production. The decline in minimum temperature (>3°C during winter and increase (>4°C during summer than normal were observed to negatively impact milk production upto 30% on the next or subsequent days after extreme event. The return to normal milk production depended on severity and time period of thermal stress/ event occurrence. The R² was very low for cool period observed during Feb- April/Sept-Nov and actual effect on milk production was minimum. This indicated that low THI had a relatively small effect on milk production performance. The lactation period of animals are shortened during extreme summer when THI were more than 80 and reproductive functions were also adversely affected. Thermal stressed buffaloes did not exhibit estrus or exhibited estrus for short period. The potential direct effects of possible climate change and global warming on summer season milk production of Murrah buffaloes were evaluated using widely known global circulation model UKMO to represent possible scenarios of future climate. Both milk production and reproductive functions of Murrah buffaloes are likely to be affected due to warming effects.

  3. Climate Change Impacts on North Dakota: Agriculture and Hydrology

    Science.gov (United States)

    Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.

    2011-01-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.

  4. Impacts of northern climate changes on Arctic engineering practice

    International Nuclear Information System (INIS)

    Potential impacts of climate changes on engineering design practices in the Arctic are discussed with reference to permafrost engineering aspects, hydrology, and coastal and sea ice processes. Permafrost generally remains thermally stable only when mean annual air temperature remains 2-4 degrees below zero and the original surface conditions remain unchanged. It has been demonstrated that a temperature rise of only 1-2 degrees is very critical. The many different climate change forecasts make it difficult to design structures in permafrost with definite levels of confidence over a project's lifetime (i.e. up to 50 years). Consequences of climate warming on transportation-related structures can be estimated to a certain degree by examining experience with natural permafrost surfaces affected by land clearing or with structures built in permafrost. Melting of permafrost will be accompanied by surface settlements, slumping of slopes and banks, and creation of thaw pits and ponds, with eventual distress to many surface structures such as pavements and foundations. Designing for a warmer climate is illustrated for the case of the Bethel Highway, the first in Alaska to be designed for a progressively warmer climate. Increased water flows both from ice melting and increased precipitation in a warmer climate will make forecasting of discharge levels in drainage basins a difficult task. Of great concern to engineers is the potential for increased erosion and sediment loadings in streams. In coastal engineering, the effects of rising sea levels, increased open-water areas, and more severe storms foreseen in a warmer climate will require heavier and more elevated shore protection. On the other hand, shipping and offshore operations will be made easier. 9 refs., 4 figs

  5. Impacts of Climate Change on Brazilian Agriculture : Refocusing Impact Assessments to 2050

    OpenAIRE

    World Bank

    2010-01-01

    This report evaluates the requirements for an assessment of climate change impacts on agriculture to guide policy makers on investment priorities and phasing. Because agriculture is vital for national food security and is a strong contributor to Brazil's GDP growth, there is growing concern that Brazilian agriculture is increasingly vulnerable to climate variability and change. To meet nat...

  6. Regional Risk Assessment for climate change impacts on coastal aquifers.

    Science.gov (United States)

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems. PMID:26282744

  7. Interdisciplinary cooperation on impacts of climate change in the Arctic

    Science.gov (United States)

    Wardell, Lois; Chen, Linling; Strey, Sara

    2012-09-01

    Impact of Climate Change on Resources, Maritime Transport and Geopolitics in the Arctic and the Svalbard Area; Svalbard, Norway, 21-28 August 2011 Drastic changes in the Arctic climate directly relate to resource and transport development and complex geopolitical challenges in the Arctic. To encourage future interdisciplinary cooperation among political, social, and climate scientists, 30 early-career researchers from varied backgrounds—including climate change, resources, polar maritime transport, and geopolitics—assembled in Svalbard, Norway. Ola Johannessen, president of the Norwegian Scientific Academy of Polar Research, led this diverse group to highlight the importance of collaboration across disciplines for broadening the terms in which assessments are defined, thus collapsing distinctions between the physical and the human Arctic. He also highlighted the feasibility of conducting effective assessment exercises within short time frames. The group was also mentored by Willy Østreng, author of Science Without Boundaries: Interdisciplinarity in Research, Society, and Politics, who aided participants in understanding the process of interdisciplinary collaboration rather than creating an assemblage of discrete findings.

  8. Volcanic Impacts on Short- and Long-Term Climate, Comparison with Anthropogenic Climate Change

    OpenAIRE

    Czopak, Claudia 1990

    2012-01-01

    Volcanic eruptions cause the formation of sulphate aerosols in the atmosphere, which change radiative forcing and thereby have an impact on the climate system. In this paper, I summarise observed short-term effects, for example surface cooling. I then discuss how short-term volcanic forcing can be transformed into long-term climatic changes by long dynamical feedbacks and briefly look into how volcanic eruptions might increase the possibility of El Niño events. As historical examples for pote...

  9. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  10. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    Science.gov (United States)

    Zanin, Marina; Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.

  11. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges

    Science.gov (United States)

    Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map’s coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445

  12. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    Science.gov (United States)

    Zanin, Marina; Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445

  13. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.

    Science.gov (United States)

    Newbery, Fay; Qi, Aiming; Fitt, Bruce Dl

    2016-08-01

    Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembles in climate change modelling and crop modelling is contributing towards measures of uncertainty in climate change impact projections but other aspects of uncertainty remain largely unexplored. Impact assessments are still concentrated on few crops and few diseases but are beginning to investigate arable crop disease dynamics at the landscape level.

  14. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.

    Science.gov (United States)

    Newbery, Fay; Qi, Aiming; Fitt, Bruce Dl

    2016-08-01

    Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembles in climate change modelling and crop modelling is contributing towards measures of uncertainty in climate change impact projections but other aspects of uncertainty remain largely unexplored. Impact assessments are still concentrated on few crops and few diseases but are beginning to investigate arable crop disease dynamics at the landscape level. PMID:27471781

  15. Tanzanian rangelands in a changing climate: Impacts, adaptations and mitigation

    Directory of Open Access Journals (Sweden)

    Sangeda A. Z.

    2014-01-01

    Full Text Available Livestock are central to the livelihoods of Tanzanians who rely on them for income via sales of milk, meat, skins and draught power. Owning livestock is amongst the ways in which many Tanzanians could diversify their risks, increase assets and improve their resilience to changes in climate. Though local coping strategies can deal with shocks in the short-term, they are hardly able to cope with more frequent and severe climate events. Observably, temperature, rainfall and atmospheric CO2 concentration interact with grazing and land cover change to influence rangeland quality and composition. Increased temperature increases drought stress and tissue lignifications in plants and, consequently, affects their digestibility and decomposition rate. Increased temperature and lower rainfall also increases vegetation flammability resulting in a shift in species composition due to increased fire frequency. Literature indicates that, Tanzania rangelands receiving between 400 and 1000 mm of rain per year (e.g. Kongwa, Monduli, Kiteto, Simanjiro, Ngorongoro, Babati, Hanang, Mbulu and Karatu have greatest impact on climate change on surface drainage. A 10% drop in rainfall of 1000 mm per year in a rangeland results in a decline in surface drainage of only 17%, while in areas of 500 mm per year will result in a 50% decline. Interventions such as controlled animal stocking rates, sustainable yield and use of good pasture will lessen the negative impacts of climate change on rangelands. Opportunities for reducing greenhouse gas emissions on rangelands include maintaining or increasing carbon sequestration through better soil management and reducing methane production by altering animal management practices on rangelands. There is a need to focus on enabling herd mobility through securing better access to water resources, land use planning, and improve early warning systems and supporting a diversification of livelihoods.

  16. Climate change impacts on cereal crops in Northeast Bulgaria

    Science.gov (United States)

    Alexandrov, V.

    2009-09-01

    Global climate change will impact all economic sectors to some degree, but agricultural production is perhaps the most sensitive and vulnerable. World agriculture, whether in developing or developed countries, remains very dependent on climate resources. For example, agriculture in Europe only accounts for a small part of the GDP, and the vulnerability in the overall economy to changes that affect agriculture is therefore low, however the local effects on society might be large. This study shows some model results on climate change impacts on crops in Northeast Bulgaria. Changes in phenological dates and crop yields of winter wheat and maize are simulated by a crop model. RoIMPEL model dynamically calculates the variables with a time step of 1 day as it has functions to derive daily weather data) from monthly values. A screening of soil/climate conditions to evaluate the land suitability for a given crop is first performed. For suitable land, the daily dynamics of the crop development stages up to harvest, and of water-, temperature-, and nitrogen-stresses are the main crop processes simulated in RoIMPEL for each crop. The accumulation of biomass is based on the radiation use efficiency and the net photosynthetically active radiation. The radiation use efficiency is CO2 concentration sensitive. The radiation-potential daily biomass increase is corrected by temperature, water and nitrogen stresses. Additional penalties on crop yields are included through alarm criteria (unfavourable weather parameters during the most sensitive development stages) based on crop specific physiology. The model results are presented in various maps, etc.

  17. Estimating Non-Market Impacts of Climate Change and Climate Policy

    International Nuclear Information System (INIS)

    A number of studies over the past few decades have attempted to estimate the potential impacts of climate change and climate policy. For reasons related to, inter alia, our incomplete understanding of the workings of many natural and social systems, the tremendous spatial and temporal variability in these systems, and the long time frames over which the issue of climate change will play out, there are large degrees of uncertainty in these estimates. Some of the most rancorous debates, however, have focused on those studies that have attempted to place economic values on these impacts. This should not be surprising as the outcomes of these studies have played an important role in the debates over climate policy. Rightly or wrongly, the estimates presented in these studies are often held up against similar estimates of the costs of mitigating against climate change. The process of economic valuation of environmental and social issues is still relatively young, much less its application to the potential impacts of climate change and climate policy. Issues such as climate change push existing techniques to their limits, and possibly beyond. Among the topics that have raised the most concern are the choice of the proper baseline against which to make comparisons, the treatment of uncertainty in human and natural systems, incomplete accounting, the actual valuation of specific impacts, and the aggregation of impacts over time and across widely differing societies. Some of the more recent studies have tried to address these issues, albeit not always satisfactorily. One aspect that makes the economic valuation of environmental and social issues difficult is that it requires addressing impacts that are not typically associated with economic markets, so called nonmarket impacts. In addition to not being traded in markets, many of these impacts affect goods and services that have the characteristic of being public goods, i.e. it is not possible to restrict their use to a

  18. Anthropogenic climate change impacts on ponds: a thermal mass perspective

    Directory of Open Access Journals (Sweden)

    John Matthews

    2010-12-01

    Full Text Available Small freshwater aquatic lentic systems (lakes and ponds are sensitive to anthropogenic climate change through shifts in ambient air temperatures and patterns of precipitation. Shifts in air temperatures will influence lentic water temperatures through convection and by changing evaporation rates. Shifts in the timing, amount, and intensity of precipitation will alter the thermal mass of lentic systems even in the absence of detectable ambient air temperature changes. These effects are likely to be strongest in ponds (standing water bodies primarily mixed by temperature changes than by wind, for whom precipitation makes up a large component of inflows. Although historical water temperature datasets are patchy for lentic systems, thermal mass effects are likely to outweigh impacts from ambient air temperatures in most locations and may show considerable independence from those trends. Thermal mass-induced changes in water temperature will thereby alter a variety of population- and community-level processes in aquatic macroinvertebrates.

  19. Toward Collective Impact for Climate Resilience: Maximizing Climate Change Education for Preparedness, Adaptation, and Mitigation

    Science.gov (United States)

    Ledley, T. S.; Niepold, F., III; McCaffrey, M.

    2014-12-01

    Increasing the capacity of society to make informed climate decisions based on scientific evidence is imperative. While a wide range of education programs and communication efforts to improve understanding and facilitate responsible effective decision-making have been developed in recent years, these efforts have been largely disconnected. The interdisciplinary and trans-disciplinary nature of the problems and potential responses to climate change requires a broad range of expertise and a strategy that overcomes the inherent limitations of isolated programs and efforts. To extend the reach and impact of climate change education and engagement efforts, it is necessary to have a coordination that results in greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network has facilitated a series of discussions at six professional meetings from late 2012 through spring 2014 to begin to develop and define the elements of collective impact on climate change education and engagement. These discussions have focused on getting input from the community on a common agenda and what a backbone support organization could do to help extend their reach and impact and enable a longer-term sustainability. These discussions will continue at future meetings, with the focus shifting to developing a common agenda and shared metrics. In this presentation we will summarize the outcomes of these discussions thus far, especially with respect to what activities a backbone support organization might provide to help increase the collective impact of climate change education effort and invite others to join the development of public-private partnership to improve the nations climate literacy. The cumulative input into this evolving discussion on collective

  20. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten;

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future....

  1. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    OpenAIRE

    Heinke, J.; Ostberg, S.; S. Schaphoff; Frieler, K.; C. Müller; Gerten, D.; Meinshausen, M.; Lucht, W.

    2013-01-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of tempe...

  2. Potential impacts of climate change on production of biofuels in agriculture the Nordic and Baltic Region

    DEFF Research Database (Denmark)

    Porter, John R.

    2006-01-01

    Report prepared for: "Nordic Project on Climate and Energy; Impacts of Climate change on Renewable Energy Sources and their role in the Nordic Energy System"......Report prepared for: "Nordic Project on Climate and Energy; Impacts of Climate change on Renewable Energy Sources and their role in the Nordic Energy System"...

  3. Impact of climate change on carbon cycle in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kankaala, P.; Ojala, A.; Tulonen, T.; Haapamaeki, J.; Arvola, L. [Helsinki Univ., Lammi (Finland). Lammi Biological Station

    1996-12-31

    The impacts of the expected climate change on Finnish lake ecosystems were studied with the biota of the mesohumic Lake Paeaejaervi, southern Finland. Experimental conditions, from small-scale experiments on single species level to a large-scale ecosystem manipulation, were established to simulate directly the future climate and/or loading of nutrients and dissolved organic matter (DOM) from the drainage area. The experimental studies were accomplished by modelling the carbon flow in the pelagic food web as well as the growth of littoral macrophytes. The main hypothese tested were as follows: As a consequence of the climate change (rising temperature and increasing precipitation) the loading of nutrients and dissolved organic matter (DOM) from the drainage area to the lake will increase. In the pelagic zone this will be first reflected i higher productivity of primary producers and bacteria, but will later affect the entire food chain. Increase in atmospheric CO{sub 2} concentration and ambient temperature as well as longer growing season will enhance the overall productivity of littoral macrophytes. The higher productivity of the littoral zone will be reflected in the pelagic zone an thus may change the whole ecosystem of the lake

  4. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.;

    2016-01-01

    Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated...... with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability...... uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gains on the seasonal-to-decadal time-scale.Weconclude that all parts of marine science could benefit from a greater exchange of ideas, particularly concerning such a universal problem such as the treatment...

  5. Evaluation of climate change impacts on energy demand

    DEFF Research Database (Denmark)

    Taseska, Verica; Markovska, Natasa; Callaway, John M.

    2012-01-01

    Although previous climate change research has documented the effects of linking mitigation and adaptation in the energy sector, there is still a lack of integrated assessment, particularly at national level. This paper may contribute to fill this gap, identifying the interactions between climate...... change and the energy demand in Macedonia. The analyses are conducted using the MARKAL (MARKet ALlocation)-Macedonia model, with a focus on energy demand in commercial and residential sectors (mainly for heating and cooling). Three different cases are developed: 1) Base Case, which gives the optimal...... electricity production mix, taking into account country’s development plans (without climate change); 2) Climate Change Damage Case, which introduces the climate changes by adjusting the heating and cooling degree days inputs, consistent with the existing national climate scenarios; and 3) Climate Change...

  6. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    OpenAIRE

    S. P. Bindra; Hamid, A.; S. Abulifa; H.S. Al Reiani; Hammuda Khalifa Abdalla

    2014-01-01

    This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achi...

  7. Potential Impact of Climate Change on Rained Agriculture of Ningxia

    Directory of Open Access Journals (Sweden)

    Zhenning Ma Hongxiang Chen

    2013-07-01

    Full Text Available Rain fed agriculture in Ningxia is one of the most vulnerable sector to climate change, as the available water and land resources are limited and most of the province’s land is arid. In this study, a crop simulation model (DSSAT was used to assess the impact of climate change scenario on rainfed maize and potato in the southern mountain areas in Ningxia. Analysis of observed crop data showed differences between cultivated and harvested areas for both crops in the study area with variations among years. Results from DSSAT model for years showed that it was able to capture the trend of yield over the years realistically well. The model predicted an average yield of maize of 5450 kg/ha, which was close to the average (5446kg/ha yield reported by the Department of statistics of Ningxia (DOSN and an average predicted yield of potato was 2350 kg/ha while the DOSN average was 2358 kg/ha, with higher RMSE for maize (1046kg/ha than for potato (358kg/ha. Predictions of future yield for both crops showed that the responses of maize and potato were different under different climate changes scenarios. The reduction of rainfall by 10-20% reduced the expected yield by 7-12% for maize and 9-18% for potato, respectively. The increase in rainfall by 10-20% increased the expected yield by5-9% for maize and 10-20% for potato, respectively. The increase of air temperature by 1,2,3 and 4°C resulted in deviation from expected yield by -3.3, -0.27,+6.1 and +12.5 % for maize and -18.4, -15.7, -8 and +0.4 % for potato, respectively. These results indicated that potato would be more negatively affected by the climate changes scenarios and therefore adaptation plans should prioritize the areas cultivated with this crop.

  8. The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy

    Science.gov (United States)

    DeWaters, J.; Powers, S. E.; Dhaniyala, S.

    2014-12-01

    Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content

  9. Impacts of Projected Climate Change on Urban Water Use

    OpenAIRE

    United States Department of the Interior, Bureau of Reclamation

    1994-01-01

    Urban water use, particularly outdoor use, responds to changes in temperature, precipitation, and other climatic parameters. This study significantly improved the capacity of an existing regional water demand model to estimate the response of both residential and commercial-industrial water demand to changes in climatic parameters. The resulting functional relationships derived from historic time-series climatic and water use data were applied to global climate scenarios for the four Wasatc...

  10. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    Directory of Open Access Journals (Sweden)

    S. Hagemann

    2012-12-01

    Full Text Available Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three and hydrological models (eight were used to systematically assess the hydrological response to climate change and project the future state of global water resources. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change. But there are also areas showing a robust change signal, such as at high latitudes and in some mid-latitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence. In many catchments an increase of available water resources is expected but there are some severe decreases in central and Southern Europe, the Middle East, the Mississippi river basin, Southern Africa, Southern China and south eastern Australia.

  11. Health Impacts in a Changing Climate - An Overview

    Science.gov (United States)

    Louis, V. R.; Phalkey, R. K.

    2016-05-01

    In the past decades the topic of climate change has been subjected to intense scientific scrutiny, and since the mid-1990's it has become an increasingly political issue. Because of increased temperatures and more frequent and intense extreme weather events, the number of direct injuries and deaths will increase, along with infectious diseases, whether food, water or vector-borne; respiratory and cardiovascular diseases are expected to rise due to worsened air pollution and extreme heat. In a context of on-going environmental degradation, local food-producing systems, both marine and terrestrial, will be affected and the risk of malnutrition, especially in children, will increase. These impacts on health and livelihood are expected to be significant factors in the spread of regional social crises, potentially leading to forced migration, conflicts and increased poverty. The link between health and climate change operates through a variety of pathways that are now well established. In addition to taking climate mitigation measures, it will also be necessary to take adaptation measures, such as strengthening health systems, improving preparedness and developing early warning systems. There is now a broad scientific consensus on the issue and the science is sufficiently robust to enable a coordinated response to meet this global challenge.

  12. Relationship Between Climate Change Impact, Migration and Socioeconomic Development

    Science.gov (United States)

    Sann Oo, Kyaw

    2016-06-01

    Geospatial data are available in raster and vector formats and some of them are available in open data form. The technique and tools to handle those data are also available in open source. Though it is free of charge, the knowledge to utilize those data is limited to non-educated in the specific field. The data and technology should be promoted to those levels to utilize in required fields with priceless in developing countries. Before utilize open data, which are required to verify with local knowledge to become usable information for the local people as priceless data resources. Developing country, which economic is based in agriculture, required more information about precise weather data and weather variation by the climate change impact for their socioeconomic development. This study found that rural to urban migration occurs in the developing countries such agriculture based country likes Myanmar when the agriculture economic are affected by unpredictable impact by the climate change. The knowledge sharing using open data resources to non-educated local people is one of the curable solutions for the agriculture economy development in the country. Moreover, the study will find ways to reduce the rural to urban migration.

  13. Climate change impacts and uncertainties in flood risk management: Examples from the North Sea Region

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, D.; Graham, L.P.; Besten, J. Den; Andreasson, J.; Bergstroem, S.; Engen-Skaugen, T.; Foerland, E.; Groen, R.; Jespersen, M.; Jong, K. de; Olsson, J.

    2012-07-01

    This report presents methods used for estimating the hydrological impacts of climate change and their uncertainties, the expected impacts on extreme flows in Norway, and in Sweden with particular reference to Lake Vaenern, and examples of climate change impacts on river discharge and on agriculture in the Netherlands. Work considering changes in extreme precipitation is also reported, as are methods and strategies for communicating climate change impacts in flood management practice. (eb)

  14. Chapter 1. Impacts of the oceans on climate change.

    OpenAIRE

    Reid, PC; Fischer, AC; Lewis-Brown, E.; Meredith, MP; Sparrow, M; Andersson, AJ; Antia, A.; Bates, NR; Bathmann, U.; Beaugrand, G.; Brix, H.; Dye, S.; Edwards, M.; T. Furevik; Gangstø, R.

    2010-01-01

    The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the wor...

  15. Climate change impact on China food security in 2050

    OpenAIRE

    Ye, Liming; Xiong, Wei; Li, Zhengguo; Yang, Peng; Wu, Wenbin; Yang, Guixia; Fu, Yijiang; zou, Jinqiu; Chen, Zhongxin; Van Ranst, Eric; Tang, Huajun

    2013-01-01

    International audience Climate change is now affecting global agriculture and food production worldwide. Nonetheless the direct link between climate change and food security at the national scale is poorly understood. Here we simulated the effect of climate change on food security in China using the CERES crop models and the IPCC SRES A2 and B2 scenarios including CO2 fertilization effect. Models took into account population size, urbanization rate, cropland area, cropping intensity and te...

  16. Agriculture in a changing climate: impacts and adaptation

    NARCIS (Netherlands)

    Reilly, J.; Baethgen, W.; Chege, F.E.; Geijn, van de S.C.; Lin Erda,; Iglesias, A.; Kenny, G.; Patterson, D.; Rogasik, J.; Rötter, R.; Rosenzweig, C.; Sombroek, W.; Westbrook, J.; Bachelet, D.; Brklacich, M.; Dämmgen, U.; Howden, M.

    1996-01-01

    This chapter deals with sensitivities, adaptive capacity and vulnerability of agriculture to climate change. It covers: the direct and indirect effects of changes in climate and atmospheric constituents on crop yield, soils, agricultural pests, and livestock; estimates of yield and production change

  17. Impact of climate change on arid lands agriculture

    Directory of Open Access Journals (Sweden)

    El-Beltagy Adel

    2012-04-01

    Full Text Available Abstract The planet earth, on which we live in communities, is being increasingly 'ruptured' because of human activities; its carrying capacity is under great stress because of demographic pressures. The pressure is especially affecting the people living in the dry areas because of the marginal and fragile nature of the resources they have access to. There are over 2,000 million hectares of land that have been degraded, with a loss of agrobiodiversity, increased water scarcity and increased natural resource destruction. Superimposed on this is the fact that the neglectful and exploitive use of natural resources has set the train of global climate change in motion. It is anticipated that the impact of climate change will cut across all boundaries. Crops, cropping systems, rotations and biota will undergo transformation. To maintain the balance in the system, there is a need for new knowledge, alternative policies and institutional changes. The marginalized people in dry areas are likely to be most seriously hit by the shifts in moisture and temperature regimes as a result of the global climate change. To help them cope with the challenges, there is a need for a new paradigm in agricultural research and technology transfer that makes full use of modern science and technology in conjunction with traditional knowledge. This necessitates more investment by international agencies and national governments for supporting the relevant integrated research and sustainable development efforts, with full participation of the target communities. Only such an approach can enable the vulnerable communities of the dryland areas to use the natural resources in a sustainable manner and thus help protect the environment for future generations. The clock is ticking and the future of the world lies in the collective responsibility and wisdom of all nations on this planet. This should be reflected in the endorsement of a solid future plan.

  18. Climate change impacts on the temperature of recharge water in a temporate climate

    Science.gov (United States)

    Murdock, E. A.

    2015-12-01

    Groundwater outflows into headwater streams play an important role in controlling local stream temperature and maintaining habitat for cool and cold water fisheries. Because of the ecological and economic importance of these fisheries, there is significant concern about the impacts of climate change on these habitats. Many studies of stream temperature changes under climate change assume that groundwater outflows will vary with long-term mean air temperature, perhaps with a temporal lag to account for the relatively slow rate of heat diffusion through soils. This assumption, however, ignores the fact that climate change will also impact the temporal patterns of recharge in some regions. In Southern Wisconsin, much of the annual recharge comes from the spring snowmelt event, as a large amount of meltwater is released onto saturated soils with little to no active transpiration. Using the Simultaneous Heat and Water (SHAW) model populated with climate date from the North American Regional Climate Change Assessment Program (NARCCAP), we show that the temperature of water passing below the rooting zone in a simulated corn planting in Southern Wisconsin will change significantly less than the air temperature by midcentury. This finding highlights the importance of understanding the variability of heat flow mechanisms in the subsurface while assessing climate change impacts on surface water resources. In landscapes such as Wisconsin's driftless area, where deep aquifers feed numerous localized headwater streams, meltwater-driven recharge may provide a buffer against rising air temperatures for some time into the future. Fully understanding this dynamic will allow for targeted conservation efforts in those streams that are likely to show higher than average resilience to rising temperatures, but which remain vulnerable to development, stormwater runoff, agricultural pollution and other ecological threats. In a world with dwindling coldwater resources, identifying and

  19. Chicxulub impact, climate changes and mass-extinctions

    Science.gov (United States)

    Smit, J.

    2010-03-01

    sections mentioned above. At the K/Pg itself, no unambiguous indications for a sealevel change have been documented anywhere, although in the Gulf sometimes a tsunami or gravity flow deposit with Chicxulub ejecta has been mistaken for a transgressive sequence. Therefore, there is no obvious connection between any sealevel change and climate changes around K/PgB. The impact ejecta (Ir, shocked qz) are global and occur exactly at K/PgB. Thus far, only one impact, the Chicxulub impact has been identified. However, the occurrence of multiple impacts remains a distinct possibility, as double craters exist, and a shower of impacts, possibly as result of a breakup event (Baptistina, Bottke, 2007) in the asteroid belt is possible. However, such hypothesis requires extraordinary evidence because of the extremely small probability! Thus far, the evidence for an impact after K/PgB is based on ambiguous evidence in reworked sediments in Beloc, Haiti and Coxquihui, Mexico, but nowhere outside the Gulf of Mexico. Evidence for a Chicxulub impact about 0.3 Ma before another, equally large, impact at K/PgB likewise has been interpreted from disturbed sediments in the Gulf, and is therefore highly suspect (Keller, 2009). Widespread evidence from the double K/PgB ejecta layer in coal-swamp deposits in the US western interior demonstrates that the K/PgB impact and the Chicxulub impact are the same. This leaves the Chicxulub impact as the only agent that can be held responsible for the mass-extinctions. The question is, what environmental or climate changes were induced by the impact, and on what timescales? Pre-impact signals for change (diversity, stable isotope shifts) are influenced by leaching or bioturbation of the uppermost 10 cm of the Cretaceous. He-isotopes do not support a scenario where the Chicxulub impact occurs within a pedestal of cometary debris, the arrival of which could lead to environmental stress. The effects of the Chicxulub impact must have been almost immediate. Even

  20. Climate change impacts on extreme events in the United States: an uncertainty analysis

    Science.gov (United States)

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...

  1. Minimizing Climate Change Impacts through the Application of Green Building Principles

    OpenAIRE

    Baharuddin

    2014-01-01

    The presentation explains the climate change and the role of green building in minimising the impact of climate change. The presentation covers the emerging issues, sustainable building, green building certification which covers: sustainable site, water efficiency, energy and

  2. The impact of SciDAC on US climate change research and the IPCC AR4

    International Nuclear Information System (INIS)

    SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change

  3. Climate Change

    Science.gov (United States)

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  4. Impacts of Climate Change on Dengue Risk in Brazil

    OpenAIRE

    Pereda, Paula Carvalho; Menezes, Tatiane; Denisard C. O. Alves

    2014-01-01

    Climate has relevant impacts on human health. According to the World Health Organization (WHO), climate-sensitive health problems kill millions of people every year and undermine the physical and psychological health of millions (WHO, 2012). In the particular case of vector-borne diseases, climate conditions assure the vectors' survival and reproduction and, consequently, the transmission of the diseases (Kelly-Hope and Thomson, 2008). Increases in heat, precipitation, and humidity can allow ...

  5. Contribution of human and climate change impacts to changes in streamflow of Canada.

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2015-12-04

    Climate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.

  6. Potential impact of climate change on schistosomiasis transmission in China.

    Science.gov (United States)

    Zhou, Xiao-Nong; Yang, Guo-Jing; Yang, Kun; Wang, Xian-Hong; Hong, Qing-Biao; Sun, Le-Ping; Malone, John B; Kristensen, Thomas K; Bergquist, N Robert; Utzinger, Jürg

    2008-02-01

    Appraisal of the present and future impact of climate change and climate variability on the transmission of infectious diseases is a complex but pressing public health issue. We developed a biology-driven model to assess the potential impact of rising temperature on the transmission of schistosomiasis in China. We found a temperature threshold of 15.4 degrees C for development of Schistosoma japonicum within the intermediate host snail (i.e., Oncomelania hupensis), and a temperature of 5.8 degrees C at which half the snail sample investigated was in hibernation. Historical data suggest that the occurrence of O. hupensis is restricted to areas where the mean January temperature is above 0 degrees C. The combination of these temperature thresholds, together with our own predicted temperature increases in China of 0.9 degrees C in 2030 and 1.6 degrees C in 2050 facilitated predictive risk mapping. We forecast an expansion of schistosomiasis transmission into currently non-endemic areas in the north, with an additional risk area of 783,883 km(2) by 2050, translating to 8.1% of the surface area of China. Our results call for rigorous monitoring and surveillance of schistosomiasis in a future warmer China. PMID:18256410

  7. Ocean Biological Pump Sensitivities and Implications for Climate Change Impacts

    Science.gov (United States)

    Romanou, Anastasia

    2013-01-01

    The ocean is one of the principal reservoirs of CO2, a greenhouse gas, and therefore plays a crucial role in regulating Earth's climate. Currently, the ocean sequesters about a third of anthropogenic CO2 emissions, mitigating the human impact on climate. At the same time, the deeper ocean represents the largest carbon pool in the Earth System and processes that describe the transfer of carbon from the surface of the ocean to depth are intimately linked to the effectiveness of carbon sequestration.The ocean biological pump (OBP), which involves several biogeochemical processes, is a major pathway for transfer of carbon from the surface mixed layer into the ocean interior. About 75 of the carbon vertical gradient is due to the carbon pump with only 25 attributed to the solubility pump. However, the relative importance and role of the two pumps is poorly constrained. OBP is further divided to the organic carbon pump (soft tissue pump) and the carbonate pump, with the former exporting about 10 times more carbon than the latter through processes like remineralization.Major uncertainties about OBP, and hence in the carbon uptake and sequestration, stem from uncertainties in processes involved in OBP such as particulate organicinorganic carbon sinkingsettling, remineralization, microbial degradation of DOC and uptakegrowth rate changes of the ocean biology. The deep ocean is a major sink of atmospheric CO2 in scales of hundreds to thousands of years, but how the export efficiency (i.e. the fraction of total carbon fixation at the surface that is transported at depth) is affected by climate change remains largely undetermined. These processes affect the ocean chemistry (alkalinity, pH, DIC, particulate and dissolved organic carbon) as well as the ecology (biodiversity, functional groups and their interactions) in the ocean. It is important to have a rigorous, quantitative understanding of the uncertainties involved in the observational measurements, the models and the

  8. Impact of carbonaceous aerosol emissions on regional climate change

    Science.gov (United States)

    Roeckner, E.; Stier, P.; Feichter, J.; Kloster, S.; Esch, M.; Fischer-Bruns, I.

    2006-11-01

    The past and future evolution of atmospheric composition and climate has been simulated with a version of the Max Planck Institute Earth System Model (MPI-ESM). The system consists of the atmosphere, including a detailed representation of tropospheric aerosols, the land surface, and the ocean, including a model of the marine biogeochemistry which interacts with the atmosphere via the dust and sulfur cycles. In addition to the prescribed concentrations of carbon dioxide, ozone and other greenhouse gases, the model is driven by natural forcings (solar irradiance and volcanic aerosol), and by emissions of mineral dust, sea salt, sulfur, black carbon (BC) and particulate organic matter (POM). Transient climate simulations were performed for the twentieth century and extended into the twenty-first century, according to SRES scenario A1B, with two different assumptions on future emissions of carbonaceous aerosols (BC, POM). In the first experiment, BC and POM emissions decrease over Europe and China but increase at lower latitudes (central and South America, Africa, Middle East, India, Southeast Asia). In the second experiment, the BC and POM emissions are frozen at their levels of year 2000. According to these experiments the impact of projected changes in carbonaceaous aerosols on the global mean temperature is negligible, but significant changes are found at low latitudes. This includes a cooling of the surface, enhanced precipitation and runoff, and a wetter surface. These regional changes in surface climate are caused primarily by the atmospheric absorption of sunlight by increasing BC levels and, subsequently, by thermally driven circulations which favour the transport of moisture from the adjacent oceans. The vertical redistribution of solar energy is particularly large during the dry season in central Africa when the anomalous atmospheric heating of up to 60 W m-2 and a corresponding decrease in surface solar radiation leads to a marked surface cooling, reduced

  9. Systematic Modeling of Impacts of Land Use and Land Cover Changes on Regional Climate: A Review

    OpenAIRE

    Xiangzheng Deng; Chunhong Zhao; Haiming Yan

    2013-01-01

    There have been tremendous changes in the global land use pattern in the past 50 years, which has directly or indirectly exerted significant influence on the global climate change. Quantitative analysis for the impacts of land use and land cover changes (LUCC) on surface climate is one of the core scientific issues to quantitatively analyze the impacts of LUCC on the climate so as to scientifically understand the influence of human activities on the climate change. This paper comprehensively ...

  10. The impacts of climate change across the globe: a multi-sectoral assessment

    OpenAIRE

    Arnell, N. W.; Brown, S.; Gosling, S.N.; Gottschalk, P.; Hinkel, J.; Huntingford, C.; Lloyd-Hughes, B.; Lowe, J. A.; Nicholls, R. J.; Osborn, T. J.; Osborne, T. M.; Rose, G. A.; Smith, P; Wheeler, T.R.; Zelazowski, P

    2016-01-01

    The overall global-scale consequences of climate change are dependent on the distribution of impacts across regions, and there are multiple dimensions to these impacts. This paper presents a global assessment of the potential impacts of climate change across several sectors, using a harmonised set of impacts models forced by the same climate andsocio-economic scenarios. Indicators of impact cover the water resources, river and coastal flooding, agriculture, natural environment and built envir...

  11. Ozone and climate change impacts on forest ecosystems

    OpenAIRE

    Giulia Carriero

    2016-01-01

    The increase of tropospheric ozone pollution is affecting forest ecosystems as climate change. This thesis reports the interactions of plant responses to ozone and soil nutrients considering implications for future climate change. The study focuses on mechanisms of action of: ozone pollution on tree functionality and ozone and soil nutrients on BVOC emitted by vegetation

  12. Impacts of Climate Change on Locust Outbreaks in China's History

    Institute of Scientific and Technical Information of China (English)

    YU Ge

    2009-01-01

    @@ Global warming is causing the climate to change, lakes to dry up and less rain to fall. In population ecology, researchers have found that climate change plays an important role in controlling the size of species populations. To proof this model, long-term observational data are crucial, making researchers to turn to historical records of locust outbreaks.[1

  13. Projected impact of climate change on hydropower potential in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Huijuan, Cui

    2016-08-22

    In China, hydroelectric power is abundant, and half of hydropower potential is currently unexploited. Hydropower has been an important electrical energy during the past decades, and is still growing rapidly in China. However, hydropower is highly dependent on streamflow and is sensitive to climate change. It is of great interest to examine the impact of climate change on hydropower potential against the background within the context of the undergoing fast development of hydropower in China. Future changes in gross hydropower potential (GHP) of China are projected using simulations from eight global hydrological models (GHMs) forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Developed hydropower potential (DHP), based on existing reservoirs and installed hydropower capacity (IHC) in 2004, is also estimated by incorporating a hydropower module. Results show that GHP will generally decrease in southern China and increase in northern China; annual GHP would change by -1.7% to 2% in the near future (2020-2050), and increase by 3-6% of present GHP at the late 21st century (2070-2099). Annual DHP will decrease by about 2.2-5.4% (0.7-1.7% of total IHC) and 1.3%-4% (0.4-1.3% of total IHC) in 2020-2050 and 2070-2099, respectively, which are mostly contributed by the large DHP decrease in South Central China (SCC) and Eastern China (EC), where most reservoirs and large IHC are currently located. The hotspot region of hydropower in Southwest China, where many hydropower stations are under planning or construction, show increases of near 2-6% and 4-11% in annual GHP for the 2020-2050 and 2070-2099, respectively. In another hotspot region, Sichuan and Hubei provinces, DHP will decrease by 2.6-5.7% (0.46-0.97% of total IHC) and 0.8-5% (0.13-0.91% of total IHC) in the 2020-2050 and 2070-2099, respectively. This is mainly due to the significant reduction in discharge; meanwhile, increasing floods

  14. Research Advances of Impacts of Climate Changes on Crop Climatic Adaptability

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Agriculture received most direct influences from climate changes. Because of climate changes, agricultural climate resources changed and thus influenced climate adaptability of agricultural products. The growth and output of crops were finally affected. The calculation method and application of agricultural products in recent years were summarized. Several questions about the response of agricultural crops to climate elements were proposed for attention.

  15. Parametric assessment of climate change impacts of automotive material substitution.

    Science.gov (United States)

    Geyer, Roland

    2008-09-15

    Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e., its computational structure is separated from the required input data, which is not traditionally done in LCAs. The parameterization increases scientific rigor and transparency of the assessment methodology, facilitates sensitivity and uncertainty analysis of the results, and also makes it possible to compare different studies and explain their disparities. The state of the art of the modeling methodology is reviewed and advanced. Assessment of the GHG emission impacts of material recycling through consequential system expansion shows that our understanding of this issue is still incomplete. This is a critical knowledge gap since a case study shows thatfor materials such as aluminum, the GHG emission impacts of material production and recycling are both of the same size as the use phase savings from vehicle mass reduction. PMID:18853818

  16. The Impacts of Climate Change on Poverty in 2030 and the Potential from Rapid, Inclusive, and Climate-Informed Development

    OpenAIRE

    Rozenberg, Julie; Hallegatte, Stephane

    2015-01-01

    The impacts of climate change on poverty depend on the magnitude of climate change, but also on demographic and socioeconomic trends. An analysis of hundreds of baseline scenarios for future economic development in the absence of climate change in 92 countries shows that the drivers of poverty eradication differ across countries. Two representative scenarios are selected from these hundred...

  17. Impact of Climatic Change on Agricultural Production and Response Strategies in China%Impact of Climatic Change on Agricultural Production and Response Strategies in China

    Institute of Scientific and Technical Information of China (English)

    Liu Yansui; Liu Yu; Guo Liying

    2011-01-01

    A number of studies indicate that global climate warming has been increasing, especially in recent decades. Climate warming greatly affects global agro-production and food security-- becoming a hotspot of global environmental change. This paper proposes a structural and orientational framework for scientifically addressing climatic change impact on agroroduction. Through literature reviews and comparative studies, the paper systematically summarizes influencing mechanisms and impact of climate warming on such agro-production factors as light, temperature, soil quality and water environment. The impact of climate warm- ing on cultivation regions, cropping systems, crop pests, agro- production capacity, agro-economy and farm management is analyzed. Then, suitable climate-adapting agro-development strategies are put forward for different regions in China. The strategies are carefully selected from a repository of international tested climatic change countermeasures in agriculture at national or district level.

  18. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  19. Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening

    Science.gov (United States)

    Parkes, B.; Challinor, A.; Nicklin, K.

    2015-08-01

    The impact of geoengineering on crops has to date been studied by examining mean yields. We present the first work focusing on the rate of crop failures under a geoengineered climate. We investigate the impact of a future climate and a potential geoengineering scheme on the number of crop failures in two regions, Northeastern China and West Africa. Climate change associated with a doubling of atmospheric carbon dioxide increases the number of crop failures in Northeastern China while reducing the number of crop failures in West Africa. In both regions marine cloud brightening is likely to reduce the number crop failures, although it is more effective at reducing mild crop failure than severe crop failure. We find that water stress, rather than heat stress, is the main cause of crop failure in current, future and geoengineered climates. This demonstrates the importance of irrigation and breeding for tolerance to water stress as adaptation methods in all futures. Analysis of global rainfall under marine cloud brightening has the potential to significantly reduce the impact of climate change on global wheat and groundnut production.

  20. Climate change impact assessment on food security in Indonesia

    Science.gov (United States)

    Ettema, Janneke; Aldrian, Edvin; de Bie, Kees; Jetten, Victor; Mannaerts, Chris

    2013-04-01

    As Indonesia is the world's fourth most populous country, food security is a persistent challenge. The potential impact of future climate change on the agricultural sector needs to be addressed in order to allow early implementation of mitigation strategies. The complex island topography and local sea-land-air interactions cannot adequately be represented in large scale General Climate Models (GCMs) nor visualized by TRMM. Downscaling is needed. Using meteorological observations and a simple statistical downscaling tool, local future projections are derived from state-of-the-art, large-scale GCM scenarios, provided by the CMIP5 project. To support the agriculture sector, providing information on especially rainfall and temperature variability is essential. Agricultural production forecast is influenced by several rain and temperature factors, such as rainy and dry season onset, offset and length, but also by daily and monthly minimum and maximum temperatures and its rainfall amount. A simple and advanced crop model will be used to address the sensitivity of different crops to temperature and rainfall variability, present-day and future. As case study area, Java Island is chosen as it is fourth largest island in Indonesia but contains more than half of the nation's population and dominates it politically and economically. The objective is to identify regions at agricultural risk due to changing patterns in precipitation and temperature.

  1. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  2. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities

    Science.gov (United States)

    Sahoo, G. B; Forrest, A. L; Schladow, S. G ;; Reuter, J. E; Coats, R.; Dettinger, Michael

    2016-01-01

    Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m2/decade although the summer (May–October) average SI increased at a higher rate (25.42 kg/m2/decade) during the period 1968–2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21st Century, and the B1 in which emissions slow and then level off by the late 21st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m2/decade and 8.66 kg/m2/decade, respectively for GFDLA2 and GFDLB1, respectively during 2014–2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

  3. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    Science.gov (United States)

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  4. Impact of climate change on the forests, the agroforestry systems and the wildlife

    OpenAIRE

    Quinta-Nova, L.C.

    2011-01-01

    The main impacts of climate change on wildlife are: shifts and fluctuations of habitats and habitat conditions; synergetic effects between climate change and habitat fragmentation; increase number of species threatened with extinction; and changes in the distribution of most types of vegetation. In this presentation it was addressed the synergetic effects of between climate change and habitat fragmentation.

  5. Cultural dimensions of climate change impacts and adaptation

    Science.gov (United States)

    Adger, W. Neil; Barnett, Jon; Brown, Katrina; Marshall, Nadine; O'Brien, Karen

    2013-02-01

    Society's response to every dimension of global climate change is mediated by culture. We analyse new research across the social sciences to show that climate change threatens cultural dimensions of lives and livelihoods that include the material and lived aspects of culture, identity, community cohesion and sense of place. We find, furthermore, that there are important cultural dimensions to how societies respond and adapt to climate-related risks. We demonstrate how culture mediates changes in the environment and changes in societies, and we elucidate shortcomings in contemporary adaptation policy.

  6. Future Projection of Ocean Wave Climate: Analysis of SST Impacts on Wave Climate Changes in the Western North Pacific

    OpenAIRE

    Shimura, Tomoya; Mori, Nobuhito; Mase, Hajime

    2015-01-01

    Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of...

  7. Climate change impacts on chosen activities from the energy sector

    International Nuclear Information System (INIS)

    The present work, results of a study carried out about the possible impact of climate change on the energy sector in the province Camaguey are shown. First of all, the main activities in companies, utilities, and farms related to the most significant energy consumption were chosen in order to model corresponding equivalent fuel consumption. Impacts were determined taking into account differences between present and future consumptions for each kind of energy. In developed countries, this kind of work is done using well-known empirical-statistical models, which usually require a lot of data at a nation-wide scale, but to attempt it in an undeveloped country demands the use of specific methodology, which in this case was non-existent and required us to create it. This resulted in a carefully posed question since we had to take into consideration that the spatial scale is only that of a province, and so it was necessary, above all, to study specific characteristics of provincial fuel consumption. We used the Magic-Scengen system and SRES scenarios, and outputs of general circulation models like HadCM2 to obtain values of chosen climatic variables for use in energy consumption regression models, previously developed for each kind of activity in the corresponding companies, firm, and facilities included in the present research. It made possible to estimate energy consumption in each activity at the selected time periods centered at 2020, 2050, and 2080. The study shows that impact could rise the consumption by 2,5% of the present energy level in this territory

  8. Risk of severe climate change impact on the terrestrial biosphere

    International Nuclear Information System (INIS)

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO2 concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  9. Impacts of Climate Change on Forest Ecosystems in Northeast China

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Ying; ZHAO Chun-Yu; JIA Qing-Yu

    2013-01-01

    This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous forests has been increasing at an average rate of 3.9 d per decade. Regional warming favors the growth of temperate broad-leaved forests and has a detrimental effect on the growth of boreal coniferous forests. Over the past hundred years, the forest edge of the cool temperate zone in the southern Daxing’anling region has retreated 140 km northward. From 1896 to 1986, the northern boundary of broad-leaved forests in Heilongjiang province has extended northwestward about 290 km. Future climatic changes (until 2060) may lead to the northern deciduous needle forests moving out of China’s territory altogether. The occurrence cycles of pests and diseases have shortened; their distribution ranges have expanded. The life cycle of tent caterpillars (Malacosoma neustria testacea Motschulsky) has shortened from 14-15 years in the past to 8-10 years now. The pine caterpillar (Dendrolimus tabulaeformis Tsai et Liu), which has spread within western Liaoning province and the nearby areas, can now be found in the north and west. Lightning fires in the Daxing’anling region have significantly increased since 1987, and August has become the month when lightning fires occur most frequently. Overall, the net primary productivity (NPP) of forest in Northeast China has increased. The NPP in 1981 was around 0.27 Pg C, and increased to approximately 0.40 Pg C in 2002. With the current climate, the broad-leaved Korean pine forest ecosystem acts as a carbon sink, with a carbon sink capacity of 2.7 Mg C hm-2. Although the carbon sink capacity of the forest ecosystems in Northeast China has been weakened since 2003, the total carbon absorption will still increase. The forest ecosystems in Northeast China are likely to remain a significant carbon sink, and will play a

  10. Teasing out the impacts of climate change on agricultural development

    OpenAIRE

    Knox, Jerry W.; Kay, Melvyn G.

    2010-01-01

    plethora of articles, books, and academic papers. Not least are the detailed and extensive publications of the Inter-Governmental Panel on Climate Change (IPCC) which set out in their latest assessment (AR4), the scientific, technical, and socio-economic information relevant for understanding the risks posed by human- induced climate change, and the policy options for dealing with it. Although it is useful to study and identify the specific benefits and risks of a changing c...

  11. Integrating Water into an Economic Assessment of Climate Change Impacts on Egypt

    OpenAIRE

    Yates, D

    1996-01-01

    Recent research indicates that larger countries, with multiple agro-climatic zones, have the capacity to adjust to marginal climate changes which could occur over the next century. However, in countries with fewer adaptation options and with increasing dependency on imports to meet growing domestic demands, climate change might have significant impacts. To date, little has been done on assessing integrated impacts of climate change in developing countries. This motivates the need for imp...

  12. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-12-01

    Full Text Available The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will

  13. Climate , communication and participation impacting commitment to change

    NARCIS (Netherlands)

    Rogiest, S.E.A.M.; Segers, J.; van Witteloostuijn, Arjen

    2015-01-01

    Purpose Through the combination of change process, context and content this paper aims to provide a deeper understanding of failure or success of organizational change. This study considers the effect of organizational climate on affective commitment to change simultaneously with quality change comm

  14. Climate and change: simulating flooding impacts on urban transport network

    Science.gov (United States)

    Pregnolato, Maria; Ford, Alistair; Dawson, Richard

    2015-04-01

    National-scale climate projections indicate that in the future there will be hotter and drier summers, warmer and wetter winters, together with rising sea levels. The frequency of extreme weather events is expected to increase, causing severe damage to the built environment and disruption of infrastructures (Dawson, 2007), whilst population growth and changed demographics are placing new demands on urban infrastructure. It is therefore essential to ensure infrastructure networks are robust to these changes. This research addresses these challenges by focussing on the development of probabilistic tools for managing risk by modelling urban transport networks within the context of extreme weather events. This paper presents a methodology to investigate the impacts of extreme weather events on urban environment, in particular infrastructure networks, through a combination of climate simulations and spatial representations. By overlaying spatial data on hazard thresholds from a flood model and a flood safety function, mitigated by potential adaptation strategies, different levels of disruption to commuting journeys on road networks are evaluated. The method follows the Catastrophe Modelling approach and it consists of a spatial model, combining deterministic loss models and probabilistic risk assessment techniques. It can be applied to present conditions as well as future uncertain scenarios, allowing the examination of the impacts alongside socio-economic and climate changes. The hazard is determined by simulating free surface water flooding, with the software CityCAT (Glenis et al., 2013). The outputs are overlapped to the spatial locations of a simple network model in GIS, which uses journey-to-work (JTW) observations, supplemented with speed and capacity information. To calculate the disruptive effect of flooding on transport networks, a function relating water depth to safe driving car speed has been developed by combining data from experimental reports (Morris et

  15. Using climate analogues for assessing climate change economic impacts in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Hallegatte, S. [Centre National de Recherche Meteorologique, Toulouse (France); Hourcade, J.C. [Centre International de Recherche sur l' Environnement et le Developpement, 45bis Av de la Belle Gabrielle, F-94736 Nogent-sur-Marne (France); Ambrosi, P. [Laboratoire des Sciences du Climat et de l' Environnement, Paris (France)

    2007-05-15

    This paper aims at proposing a way to get round the intrinsic deadlocks of the economic assessment of climate change impacts (absence of consistent baseline scenario and of credible description of adaptation behaviours under uncertainty). First, we use climate scenarios from two models of the PRUDENCE project (HadRM3H and ARPEGE) to search for cities whose present climates can be considered as reasonable analogues of the future climates of 17 European cities. These analogues meet rather strict criteria in terms of monthly mean temperature, total annual precipitations and monthly mean precipitations. Second, we use these analogues as a heuristic tool to understand the main features of the adaptation required by climate change. The availability of two analogues for each city provides a useful estimate of the impact of uncertainty on the required adaptation efforts. Third, we carry out a cost assessment for various adaptation strategies, taking into account the cost of possible ill-adaptations due to wrong anticipations in a context of large uncertainty (from sunk-costs to lock-in in suboptimal adaptation choices). We demonstrate the gap between an enumerative approach under perfect expectation and a calculation accounting for uncertainty and spillover effects on economic growth.

  16. Impact of climatic change on alpine ecosystems: inference and prediction

    Directory of Open Access Journals (Sweden)

    Nigel G. Yoccoz

    2011-01-01

    Full Text Available Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal, and therefore species distribution. Finally it can effect interactions among species – snow cover for example can affect the success of some predators. One characteristic of alpine ecosystems is the presence of snow cover, but surprisingly the role played by snow is relatively poorly known, mainly for logistical reasons. Even if we have made important progress regarding the development of predictive models, particularly so for distribution of alpine plants, we still need to set up observational and experimental networks which properly take into account the variability of alpine ecosystems and of their interactions with climate.Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir, mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles. Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes ou la date d’éclosion des insectes. Il peut ensuite affecter directement la démographie des espèces (survie, reproduction, dispersion et donc à terme leur répartition. Il peut enfin agir sur les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains prédateurs. Une caractéristique des

  17. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts.

    Science.gov (United States)

    Bonebrake, Timothy C; Boggs, Carol L; Stamberger, Jeannie A; Deutsch, Curtis A; Ehrlich, Paul R

    2014-10-22

    Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent.

  18. Evaluating the impacts of climate change on diurnal wind power cycles using multiple regional climate models

    KAUST Repository

    Goddard, Scott D.

    2015-05-01

    Electrical utility system operators must plan resources so that electricity supply matches demand throughout the day. As the proportion of wind-generated electricity in the US grows, changes in daily wind patterns have the potential either to disrupt the utility or increase the value of wind to the system over time. Wind power projects are designed to last many years, so at this timescale, climate change may become an influential factor on wind patterns. We examine the potential effects of climate change on the average diurnal power production cycles at 12 locations in North America by analyzing averaged and individual output from nine high-resolution regional climate models comprising historical (1971–1999) and future (2041–2069) periods. A semi-parametric mixed model is fit using cubic B-splines, and model diagnostics are checked. Then, a likelihood ratio test is applied to test for differences between the time periods in the seasonal daily averaged cycles, and agreement among the individual regional climate models is assessed. We investigate the significant changes by combining boxplots with a differencing approach and identify broad categories of changes in the amplitude, shape, and position of the average daily cycles. We then discuss the potential impact of these changes on wind power production.

  19. The Economic Impact of Climate Change in the 20th Century

    OpenAIRE

    Tol, Richard S. J.

    2011-01-01

    PUBLISHED The national version of FUND3.6 is used to infrapolate the impacts of climate change to the 20th century. Carbon dioxide fertilization of crops and reduced energy demand for heating are the main positive impacts. Climate change had a negative effect on water resources and, in most years, human health. Most countries benefitted from climate change until 1980, but after that the trend is negative for poor countries and positive for rich countries. The global average impact was posi...

  20. Climate change impacts on hydrological extremes in Central Europe

    Science.gov (United States)

    Fokko Hattermann, Fred; Huang, Shaochun; Kundzewicz, Zbigniew W.; Hoffmann, Peter

    2016-04-01

    An increase of hydro-climatic extremes can be observed worldwide and is challenging national and regional risk management and adaptation plans. Our study presents and discusses possible trends in climate drivers and hydro-climatic extremes in Europe observed and under future climate conditions. In a case study for Germany, impacts of different regional climate scenario ensembles are compared. To this end, a hydrological model was applied to transform the scenarios data into river runoff for more than 5000 river reaches in Germany. Extreme Value Distributions have been fitted to the hydrographs of the river reaches to derive the basic flood statistics. The results for each river reach have been linked to related damage functions as provided by the German Insurance Association considering damages on buildings and small enterprises. The robust result is that under scenario conditions a significant increase in flood related losses can be expected in Germany, while also the number of low flow events may rise.

  1. Climate Change and Sugarcane Production: Potential Impact and Mitigation Strategies

    OpenAIRE

    Duli Zhao; Yang-Rui Li

    2015-01-01

    Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bioenergy worldwide. The increasing greenhouse gas emission and global warming during climate change result in the increased frequency and intensity of extreme weather events. Climate change is expected to have important consequences for sugarcane production in the world, especially in the developing countries because of relatively low adaptive capacity, high vulnerability to natural hazards, and poor forecasting systems ...

  2. Cross-sectoral conflicts for water under climate change: the need to include water quality impacts

    OpenAIRE

    Vliet, van, L.P.W.; Ludwig, F; Kabat, P.

    2013-01-01

    Climate change is expected to increase pressures on water use between different sectors (e.g. agriculture, energy, industry, domestic uses) and ecosystems. While climate change impacts on water availability have been studied widely, less work has been done to assess impacts on water quality. This study proposes a modelling framework to incorporate water quality in analyses of cross-sectoral conflicts for water between human uses and ecosystems under climate change and socio-economic changes. ...

  3. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  4. DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.

    Science.gov (United States)

    Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.

    2012-04-01

    At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate

  5. Impacts of Future Climate Change on Ukraine Transportation System

    Science.gov (United States)

    Khomenko, Inna

    2016-04-01

    Transportation not only affects climate, but are strongly influenced with the climate conditions, and key hubs of the transportation sector are cities. Transportation decision makers have an opportunity now to prepare for projected climate changes owing to development of emission scenarios. In the study impact of climate change on operation of road transport along highways are analyzed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean and maximum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 8 cities (Dnipropetrovsk, Khmelnytskyi, Kirovohrad, Kharkiv, Odesa, Ternopil, Vinnytsia and Voznesensk) situated down the highways. The highways of 'Odesa-Voznesensk-Dnipropetrovsk-Kharkiv' and 'Dnipropetrovsk-Kirovohrad-Vinnytsia-Khmelnytskyi-Ternopil' are considered. The first highway goes across the Black Sea Lowland, the Dnieper Upland and Dnieper Lowland, the other passes through the Dnieper and Volhynia-Podillia Uplands. The both highways are situated in steppe and forest-steppe native zones. For both scenarios, significant climate warming is registered; it is revealed in significant increase of average monthly and yearly temperature by 2-3°C in all cities in questions, and also, in considerable increment of frequency of days with maximum temperature higher than +30 and 35°C, except Kharkiv, where decrease number of days with such temperatures is observed. On the contrary, number of days with daily mean temperature being equal to or below 0°C decreases in the south of steppe, is constant in the north of steppe and increases in the forest-steppe native zone. Extreme negative temperatures don't occur in the steppe zone, but takes place in the forest-steppe zone. Results obtained shows that road surface must hold in extreme maximum temperature, and in the forest-steppe zone hazards of extreme negative temperatures

  6. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    Science.gov (United States)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial

  7. Uncertainties in Agricultural Impact Assessments of Climate Change

    DEFF Research Database (Denmark)

    Montesino San Martin, Manuel

    Future food security will be challenged by the likely increase in demand, changes in consumption patterns and the effects of climate change. Framing food availability requires adequate agricultural production planning. Decision-making can benefit from improved understanding of the uncertainties...

  8. Climate change impact on a groundwater-influenced hillslope ecosystem

    NARCIS (Netherlands)

    Brolsma, R.J.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2010-01-01

    This study investigates the effect of climate change on a groundwater-influenced ecosystem on a hill slope consisting of two vegetation types, one adapted to wet and one adapted to dry soil conditions. The individual effects of changes in precipitation, temperature, and atmospheric CO2 concentration

  9. Climate change impact on a groundwater-influenced hillslope ecosystem

    NARCIS (Netherlands)

    Brolsma, R.J.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2010-01-01

    This study investigates the effect of climate change on a groundwater‐influenced ecosystem on a hill slope consisting of two vegetation types, one adapted to wet and one adapted to dry soil conditions. The individual effects of changes in precipitation, temperature, and atmospheric CO2 concentration

  10. Review: Sugarcane production: Impact of climate change and its mitigation

    Directory of Open Access Journals (Sweden)

    ASHOK K. SRIVASTAVA

    2012-10-01

    Full Text Available Sugarcane is a climatic sensitive crop: therefore, its spatial distribution on the globe is restricted as per the suitability of various climatic parameters. The climate change, though, a very slow phenomenon is now accelerated due to natural, as well as enormous human activities disturbing the composition of atmosphere. The predications of various climatic models for probable rise in temperature, rainfall, sea level show an alarming condition in forthcoming decades. As the sugarcane is very sensitive to temperature, rainfall, solar radiations etc. therefore, a significant effect on its production and sugar yield is expected in future. It is also well known that sugarcane is one of the precious crops of the world and its end products i.e. sugar and ethanol have a continuous growing demand on global level. Hence, the studies related to good production of sugarcane in changing conditions of climate has become one among the front line area of research and is a major concern of scientist’s world over. Advance agronomic measures including development of suitable cane varieties susceptible to changed climatic conditions, land preparation, time and pattern of plantation, weed, disease and pest managements, nutrients managements, proper timing and adequate water management seems to be the affective measures for obtaining high production of crop with good quality juice in future.

  11. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2013-10-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  12. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    Science.gov (United States)

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  13. A New Economic Assessment Index for the Impact of Climate Change on Grain Yield

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The impact of climate change on agriculture has received wide attention by the scientific community.This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore,the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China,and the results show that it has an encouraging application outlook.

  14. Impact of Climate Change on Five Major Crop Fungal Diseases: Building Climatic Indicators of Infection Risk

    Science.gov (United States)

    Launay, M.; Caubel, J.; Bourgeois, G.; Huard, F.; Garcia de Cortazar-Atauri, I.

    2013-12-01

    The climate change will modify the severity and occurrence of fungal crop diseases, as the bioclimatic niches of pathogens will shift according to temperature and rainfall patterns evolution. Therefore it becomes necessary to integrate fungal disease pressure assessment into evaluation tools of crop suitability at the regional level. The aim of this study was to build two climatic indicators, the Average Infection Efficiency (AIE) and the Number of Infection Days (NID), quantifying the potential effect of climate on infection intensity and occurrence. A simple and continuous function was developed to calculate them, which is easy to parameterize from experimental measurements, usable on large spatial scales and adaptable to various pathogens. The evolution of those climatic indicators was then studied for five major fungal crop diseases in Northern France, the phoma of oilseed rape, the potato late blight, the downy mildew of grape, the leaf rust of wheat and the net blotch of barley. These indicators were applied on a multisite analysis in Northern France. They were calculated during the crop cycle when the host plant is able to be infected, over the period between 1970 and 2100 for the balanced scenario of climate change A1B. In late spring and summer, higher temperatures combined with lower humidity reduced the risk of infection of potato late blight and downy mildew of grape. In autumn and spring the balance between warmer temperatures and lower humidity determined the risk of infection on oilseed rape and cereals: increased risk in late autumn and early spring, and decreased risk in early autumn and mid-spring when low humidity becomes limiting. This statement highlighted the need for using between year scale for a relevant analysis of climate change impact on infection risk. The indicators we developed are thus useful for land management at regional scale and medium term, in particular for stakeholders who need decision support tools through which they could

  15. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Directory of Open Access Journals (Sweden)

    Sara Shields

    2015-05-01

    Full Text Available The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture.

  16. Potential climate change impacts on temperate forest ecosystem processes

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  17. Inventory of Research on the Impacts of Climate Change

    International Nuclear Information System (INIS)

    Climate change is one of the greatest threats for the global environment today. Global mean temperature has risen by about 0.6C during the 20th century, greater than during any other century in the last 1000 years. Subsequently, climate change is likely to have detrimental effects on all global natural and anthropogenic systems. Climate change will have consequences for the structure and function of ecosystems and all the major global biomes. Also agricultural production and productivity will alter, and physical effects will take place on the environment affecting those that inhabit it. For example, sea level rise and climatic variations will have implications for human health, land use and coastal infrastructure. This report aims to identify the current and proposed research and assessments being undertaken by international organizations as well as the major national research groups regarding climate change and its effects on ecosystems, on agriculture (including fisheries and forestry) and on the economy and human society. The report also identifies possible gaps in this research

  18. Impacts on Canadian Competitiveness of International Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Robin Somerville

    1998-06-01

    Full Text Available This article summarizes and provides additional perspective on a study that contributes to the growing body of analyses of the costs of limiting greenhouse gas emissions. The study estimates the economic costs to Canada of six planning scenarios. Four of these scenarios involve the use of tradable emission permits and two involved a carbon tax. In each case, the mechanism's target is to stabilize greenhouse gas emissions at some percentage of 1990 levels (100% or 90% by either 2010 or 2015. Policies that impose greater constraints on carbon dioxide emissions lead to higher economic costs in terms of foregone output. These costs, however, vary for the same objective, depending on the mechanism chosen and the economic assumptions made. In one typical scenario, in which tradable emission permits are used to achieve stabilization at 1990 levels by 2010, GDP is depressed from the "business-as-usual" scenario by about 2% for the first decade, after which it recovers to business-as-usual levels. Generally, for all scenarios, the economic impact of climate change mitigation imposes a transition cost on the economy, but the long-term productive capacity of the economy is not significantly affected.

  19. Climate Change and Expected Impacts on the Global Water Cycle

    Science.gov (United States)

    Rind, David; Hansen, James E. (Technical Monitor)

    2002-01-01

    How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.

  20. Climate change and plant health; Development of a conceptual frame-work for impact assessment

    OpenAIRE

    Breukers, M.L.H.

    2010-01-01

    This report presents a conceptual framework for systematic assessment of direct economic impacts of climate change on pest and disease management at the crop level. The framework evaluates and aggregates the effects, and subsequently impacts, of climate change on selected pests and diseases and their control in a particular crop. Application of the framework reveals opportunities and threats in crop protection resulting from climate change, and can direct future adaptation efforts.

  1. Development of key indicators to quantify the health impacts of climate change on Canadians

    OpenAIRE

    Cheng, June J; Berry, Peter

    2013-01-01

    Objectives This study aimed at developing a list of key human health indicators for quantifying the health impacts of climate change in Canada. Methods A literature review was conducted in OVID Medline to identify health morbidity and mortality indicators currently used to quantify climate change impacts. Public health frameworks and other studies of climate change indicators were reviewed to identify criteria with which to evaluate the list of proposed key indicators and a rating scale was d...

  2. Climate change and the cultural environment: Recognized impacts challenges in Finland

    OpenAIRE

    BerghÀll, Jonna; Pesu, Minna

    2008-01-01

    Climate change impacts the cultural heritage of Finland. Adaptation and mitigation measures are posing challenges along with the consequences of climate change. Cultural landscapes, the built cultural environment and the archaeological heritage all will be affected. The impacts of climate change that Finland will face and the challenges posed by them for the care of the cultural environment also apply to the Boreal Zone of Northern Europe in more general terms. This report charts the chall...

  3. Burgundy regional climate change and its potential impact on grapevines

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yiwen [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); G.C. Rieber Climate Institute at the Nansen Environment and Remote Sensing Center, Bergen (Norway); Castel, Thierry [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); AgroSup, Department of Agriculture and Environment, Dijon (France); Richard, Yves; Cuccia, Cedric [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); Bois, Benjamin [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); IUVV, University of Burgundy, Dijon (France)

    2012-10-15

    ARPEGE general circulation model simulations were dynamically downscaled by The Weather Research and Forecasting Model (WRF) for the study of climate change and its impact on grapevine growth in Burgundy region in France by the mid twenty-first century. Two time periods were selected: 1970-1979 and 2031-2040. The WRF model driven by ERA-INTERIM reanalysis data was validated against in situ surface temperature observations. The daily maximum and minimum surface temperature (T{sub max} and T{sub min}) were simulated by the WRF model at 8 x 8 km horizontal resolution. The averaged daily T{sub max} for each month during 1970-1979 have good agreement with observations, the averaged daily T{sub min} have a warm bias about 1-2 K. The daily T{sub max} and T{sub min} for each month (domain averaged) during 2031-2040 show a general increase. The largest increment ({proportional_to}3 K) was found in summer. The smallest increments (<1 K) were found in spring and fall. The spatial distribution of temperature increment shows a strong meridional gradient, high in south in summer, reversing in winter. The resulting potential warming rate in summer is equivalent to 4.7 K/century under the IPCC A2 emission scenario. The dynamically downscaled T{sub max} and T{sub min} were used to simulate the grape (Pinot noir grape variety) flowering and veraison dates. For 2031-2040, the projected dates are 8 and 12 days earlier than those during 1970-1979, respectively. The simulated hot days increase more than 50% in the two principal grapevine regions. They show strong impact on Pinot noir development. (orig.)

  4. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  5. 78 FR 66817 - Preparing the United States for the Impacts of Climate Change

    Science.gov (United States)

    2013-11-06

    ... ] Executive Order 13653 of November 1, 2013 Preparing the United States for the Impacts of Climate Change By... November 6, 2013 Part III The President Executive Order 13653--Preparing the United States for the Impacts of Climate Change #0; #0; #0; Presidential Documents #0; #0; #0;#0;Federal Register / Vol. 78,...

  6. The impact of climate change on lakes in the Netherlands: a review

    NARCIS (Netherlands)

    Mooij, W.M.; Hülsmann, S.; De Senerpont Domis, L.N.; Nolet, B.A.; Bodelier, P.L.E.; Boers, P.; Pires, L.M.D.; Gons, H.J.; Ibelings, B.W.; Noordhuis, R.; Portielje, R.; Wolfstein, K.; Wolfstein, R.; Lammens, E.H.R.R.

    2005-01-01

    Climate change will alter freshwater ecosystems but specific effects will vary among regions and the type of water body. Here, we give an integrative review of the observed and predicted impacts of climate change on shallow lakes in the Netherlands and put these impacts in an international perspecti

  7. Climate change and plant health; Development of a conceptual frame-work for impact assessment

    NARCIS (Netherlands)

    Breukers, M.L.H.

    2010-01-01

    This report presents a conceptual framework for systematic assessment of direct economic impacts of climate change on pest and disease management at the crop level. The framework evaluates and aggregates the effects, and subsequently impacts, of climate change on selected pests and diseases and thei

  8. Climate Change Impacts on Rainfall Extremes and Urban Drainage: a State-of-the-Art Review

    DEFF Research Database (Denmark)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten;

    2013-01-01

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend or impact results. The review (Willems et al., 2012) considers the following aspects: analysis of long-term historical trends...

  9. Projected impacts of climate change on hydropower potential in China

    Science.gov (United States)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Cui, Huijuan

    2016-08-01

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by -1.7 to 2 % in the near future (2020-2050) and increase by 3 to 6 % in the late 21st century (2070-2099). The annual DHP is projected to change by -2.2 to -5.4 % (0.7-1.7 % of the total installed hydropower capacity (IHC)) and -1.3 to -4 % (0.4-1.3 % of total IHC) for 2020-2050 and 2070-2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China - mostly in south central China and eastern China - where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.

  10. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    Science.gov (United States)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  11. Impacts of climate change on water resources in southern Africa: A review

    Science.gov (United States)

    Kusangaya, Samuel; Warburton, Michele L.; Archer van Garderen, Emma; Jewitt, Graham P. W.

    The Intergovernmental Panel on Climate Change concluded that there is consensus that the increase of atmospheric greenhouse gases will result in climate change which will cause the sea level to rise, increased frequency of extreme climatic events including intense storms, heavy rainfall events and droughts. This will increase the frequency of climate-related hazards, causing loss of life, social disruption and economic hardships. There is less consensus on the magnitude of change of climatic variables, but several studies have shown that climate change will impact on the availability and demand for water resources. In southern Africa, climate change is likely to affect nearly every aspect of human well-being, from agricultural productivity and energy use to flood control, municipal and industrial water supply to wildlife management, since the region is characterised by highly spatial and temporally variable rainfall and, in some cases, scarce water resources. Vulnerability is exacerbated by the region's low adaptive capacity, widespread poverty and low technology uptake. This paper reviews the potential impacts of climate change on water resources in southern Africa. The outcomes of this review include highlighting studies on detected climate changes particularly focusing on temperature and rainfall. Additionally, the impacts of climate change are highlighted, and respective studies on hydrological responses to climate change are examined. The review also discusses the challenges in climate change impact analysis, which inevitably represents existing research and knowledge gaps. Finally the paper concludes by outlining possible research areas in the realm of climate change impacts on water resources, particularly knowledge gaps in uncertainty analysis for both climate change and hydrological modelling.

  12. Climate-change impact potentials as an alternative to global warming potentials

    Science.gov (United States)

    Kirschbaum, Miko U. F.

    2014-03-01

    For policy applications, such as for the Kyoto Protocol, the climate-change contributions of different greenhouse gases are usually quantified through their global warming potentials. They are calculated based on the cumulative radiative forcing resulting from a pulse emission of a gas over a specified time period. However, these calculations are not explicitly linked to an assessment of ultimate climate-change impacts. A new metric, the climate-change impact potential (CCIP), is presented here that is based on explicitly defining the climate-change perturbations that lead to three different kinds of climate-change impacts. These kinds of impacts are: (1) those related directly to temperature increases; (2) those related to the rate of warming; and (3) those related to cumulative warming. From those definitions, a quantitative assessment of the importance of pulse emissions of each gas is developed, with each kind of impact assigned equal weight for an overall impact assessment. Total impacts are calculated under the RCP6 concentration pathway as a base case. The relevant climate-change impact potentials are then calculated as the marginal increase of those impacts over 100 years through the emission of an additional unit of each gas in 2010. These calculations are demonstrated for CO2, methane and nitrous oxide. Compared with global warming potentials, climate-change impact potentials would increase the importance of pulse emissions of long-lived nitrous oxide and reduce the importance of short-lived methane.

  13. Climate-change impact potentials as an alternative to global warming potentials

    International Nuclear Information System (INIS)

    For policy applications, such as for the Kyoto Protocol, the climate-change contributions of different greenhouse gases are usually quantified through their global warming potentials. They are calculated based on the cumulative radiative forcing resulting from a pulse emission of a gas over a specified time period. However, these calculations are not explicitly linked to an assessment of ultimate climate-change impacts. A new metric, the climate-change impact potential (CCIP), is presented here that is based on explicitly defining the climate-change perturbations that lead to three different kinds of climate-change impacts. These kinds of impacts are: (1) those related directly to temperature increases; (2) those related to the rate of warming; and (3) those related to cumulative warming. From those definitions, a quantitative assessment of the importance of pulse emissions of each gas is developed, with each kind of impact assigned equal weight for an overall impact assessment. Total impacts are calculated under the RCP6 concentration pathway as a base case. The relevant climate-change impact potentials are then calculated as the marginal increase of those impacts over 100 years through the emission of an additional unit of each gas in 2010. These calculations are demonstrated for CO2, methane and nitrous oxide. Compared with global warming potentials, climate-change impact potentials would increase the importance of pulse emissions of long-lived nitrous oxide and reduce the importance of short-lived methane. (paper)

  14. Climate-change impacts on sandy-beach biota: crossing a line in the sand.

    Science.gov (United States)

    Schoeman, David S; Schlacher, Thomas A; Defeo, Omar

    2014-08-01

    Sandy ocean beaches are iconic assets that provide irreplaceable ecosystem services to society. Despite their great socioeconomic importance, beaches as ecosystems are severely under-represented in the literature on climate-change ecology. Here, we redress this imbalance by examining whether beach biota have been observed to respond to recent climate change in ways that are consistent with expectations under climate change. We base our assessments on evidence coming from case studies on beach invertebrates in South America and on sea turtles globally. Surprisingly, we find that observational evidence for climate-change responses in beach biota is more convincing for invertebrates than for highly charismatic turtles. This asymmetry is paradoxical given the better theoretical understanding of the mechanisms by which turtles are likely to respond to changes in climate. Regardless of this disparity, knowledge of the unique attributes of beach systems can complement our detection of climate-change impacts on sandy-shore invertebrates to add rigor to studies of climate-change ecology for sandy beaches. To this end, we combine theory from beach ecology and climate-change ecology to put forward a suite of predictive hypotheses regarding climate impacts on beaches and to suggest ways that these can be tested. Addressing these hypotheses could significantly advance both beach and climate-change ecology, thereby progressing understanding of how future climate change will impact coastal ecosystems more generally.

  15. Overview of Impacts of Climate Change and Adaptation in China’s Agriculture

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-xia; HUANG Ji-kun; YANG Jun

    2014-01-01

    The purpose of this paper is to document the likely impacts of climate change on China’s agriculture and the current adaptation efforts made by government and farmers. The review of literature shows that climate change will have a signiifcant impact on agriculture, primarily through its effect on crop yields. The extent of predicted impacts highly depends on the crop, the CO2 fertilization effect assumption and adaptation abilities. Market response to the production shocks resulting from climate change will lessen the impacts on agricultural production predicted by natural scientists. On adaptation, the government’s major efforts have been in the developing new technologies, reforming extension system and enhancing institutional capacity. Farmers do adapt to climate change, but their adaptation measures cannot fully offset the negative impacts of climate change. The paper concludes and makes implications for future studies.

  16. The impact of economic recession on climate change: eight trends

    NARCIS (Netherlands)

    P.C. Obani; J. Gupta

    2015-01-01

    In the context of deadlocked climate change negotiations, and the expectation that legally binding targets may only set in as early as 2020, this paper addresses the question of whether the current economic recession in major economies in the North can help us buy time by reducing the emissions of g

  17. Climate change policy positive or negative economic impact? Why?

    NARCIS (Netherlands)

    Kupers, R.T.L.; Mangalagiu, D.

    2010-01-01

    ECF initiates and performs high-class research on climate change in close interaction with stakeholders. We provide a pluralistic communication platform in the emerging global field of researchers, governments, local authorities, businesses, and social movements. This field lies beyond the tradition

  18. A climate robust integrated modelling framework for regional impact assessment of climate change

    Science.gov (United States)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  19. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    Science.gov (United States)

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. PMID:26799810

  20. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    Science.gov (United States)

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies.

  1. Isolating the impacts of land use and climate change on streamflow

    Science.gov (United States)

    Chawla, I.; Mujumdar, P. P.

    2015-08-01

    Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this

  2. ESTIMATING THE IMPACTS OF CLIMATE CHANGE ON SOIL EROSION IN MEDITERRANEAN WATERSHEDS

    OpenAIRE

    Nunes, João Pedro; Lima, Júlio C.; Jannin, Léonard; Sampaio, Elsa; Rial-Rivas, Maria Ermitas; Moreira, Madalena; Keizer, Jan Jakob; Corte-Real, João

    2011-01-01

    Climate change could impact soil erosion in Mediterranean regions, through both higher climatic aridity - leading to less vegetation cover - and higher winter rainfall intensity. This could have the effect of increasing soil degradation and accelarating ongoing desertification processes. Project ERLAND aims to study the potential impacts of climate changes on vegetation growth, hydrology and erosion in Portuguese watersheds, and define the costs and benefits of different adaptation options. T...

  3. Biophysical and Economic Uncertainty in the Analysis of Poverty Impacts of Climate Change

    OpenAIRE

    Hertel, Thomas W.; Lobell, David; Verma, Monika

    2011-01-01

    This paper seeks to understand the main sources of uncertainty in assessing the impacts of climate change on agricultural output, international trade, and poverty. We incorporate biophysical uncertainty by sampling from a distribution of productivity shocks reflecting the impacts of climate on agricultural yields in 2030. These shocks, in turn, affect the global economy. The response of economic agents to climate change is the second source of uncertainty in our estimates. We find that, even ...

  4. Drought and climatic change impact on streamflow in small watersheds.

    Science.gov (United States)

    Tigkas, Dimitris; Vangelis, Harris; Tsakiris, George

    2012-12-01

    The paper presents a comprehensive, thought simple, methodology, for forecasting the annual hydrological drought, based on meteorological drought indications available early during the hydrological year. The meteorological drought of 3, 6 and 9 months is estimated using the reconnaissance drought index (RDI), whereas the annual hydrological drought is represented by the streamflow drought index (SDI). Regression equations are derived between RDI and SDI, forecasting the level of hydrological drought for the entire year in real time. Further, using a wide range of scenarios representing possible climatic changes and drought events of varying severity, nomographs are devised for estimating the annual streamflow change. The Medbasin rainfall-runoff model is used to link meteorological data to streamflow. The later approach can be useful for developing preparedness plans to combat the consequences of drought and climate change. As a case study, the area of N. Peloponnese (Greece) was selected, incorporating several small river basins.

  5. Drought and climatic change impact on streamflow in small watersheds.

    Science.gov (United States)

    Tigkas, Dimitris; Vangelis, Harris; Tsakiris, George

    2012-12-01

    The paper presents a comprehensive, thought simple, methodology, for forecasting the annual hydrological drought, based on meteorological drought indications available early during the hydrological year. The meteorological drought of 3, 6 and 9 months is estimated using the reconnaissance drought index (RDI), whereas the annual hydrological drought is represented by the streamflow drought index (SDI). Regression equations are derived between RDI and SDI, forecasting the level of hydrological drought for the entire year in real time. Further, using a wide range of scenarios representing possible climatic changes and drought events of varying severity, nomographs are devised for estimating the annual streamflow change. The Medbasin rainfall-runoff model is used to link meteorological data to streamflow. The later approach can be useful for developing preparedness plans to combat the consequences of drought and climate change. As a case study, the area of N. Peloponnese (Greece) was selected, incorporating several small river basins. PMID:22963988

  6. The impact of the endogenous technical change on climate policies

    International Nuclear Information System (INIS)

    This research aims at revisiting the 'autonomous vs. induced' debate on the costs of climate policies, first by broadening the framework of the technical change induction to other economical sectors, and then by attempting to go beyond the concept of technical change induction and think in terms of a structural change induction. After a review of modes of representation of the technical progress in economical prospective models for the assessment of climate policies, the author presents the IMACLIM-R model, a recursive general equilibrium model which simulates the evolution of the world economy within 12 regions and 12 sectors between 2001 and 2100. The results obtained with this model are then presented and discussed, in the case of a reference scenario which displays a significant change towards a carbon-intensive path. These results stress the risks related to a 'laissez faire' attitude. The author explores the consequences in terms of climate policies with a more or less extended taking into account of phenomena of induction of technical and structural changes

  7. Data driven approaches vs. qualitative approaches in climate change impact and vulnerability assessment.

    Science.gov (United States)

    Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello

    2015-04-01

    In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.

  8. Potential Impact of Climate Change on Ecosystems of the Barents Sea Region

    OpenAIRE

    RODERFELD Hedwig; Blyth, Eleanor; DANKERS RUTGER; Huse, Geir; Slagstad, Dag; Ellingsen, Ingrid; Wolf, Annett; Lange, Manfred A.

    2008-01-01

    The EU project BALANCE (Global Change Vulnerabilities in the Barents region: Linking Arctic Natural Resources, Climate Change and Economies) aims to assess vulnerability to climate change in the Barents Sea Region. As a prerequisite the potential impact of climate change on selected ecosystems of the study area has to be quantified, which is the subject of the present paper. A set of ecosystem models was run to generate baseline and future scenarios for 1990, 2020, 2050 and 2080. The models a...

  9. Future changes of the atmospheric composition and the impact of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Grewe, V.; Dameris, M.; Hein, R.; Sausen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany). Abt. Chemie der Atmosphaere

    1999-05-01

    The development of the future atmospheric chemical composition, with respect of NO{sub y} and O{sub 3} is investigated by means of the off-line coupled dynamic-chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NO{sub x} and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NO{sub x} and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamic parameters, like precipitation and changes in the circulation, i.e. wind speed, diabatic circulation, stratosphere-troposphere-exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate-chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major role for the composition of the future atmosphere, but they also clearly show that climate change has a significant impact and strongly reduces the NO{sub y} and ozone concentration in the lower stratosphere. (orig.)

  10. Estimation of climate change impacts on hydrology and floods in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Veijalainen, N.

    2012-07-01

    Climate scenarios project increases in air temperature and precipitation in Finland during the 21st century and these will results in changes in hydrology. In this thesis climate change impacts on hydrology and floods in Finland were estimated with hydrological modelling and several climate scenarios. One of the goals was to understand the influence of different processes and catchment characteristics on the hydrological response to climate change in boreal conditions. The tool of the climate change impact assessment was the conceptual hydrological model WSFS (Watershed Simulation and Forecasting System). The studies employed and compared two methods of transferring the climate change signal from climate models to the WSFS hydrological model (delta change approach and direct bias corrected Regional Climate Model (RCM) data). Direct RCM data was used to simulate transient hydrological scenarios for 1951- 2100 and the simulation results were analysed to detect changes in water balance components and trends in discharge series. The results revealed that seasonal changes in discharges in Finland were the clearest impacts of climate change. Air temperature increase will affect snow accumulation and melt, increase winter discharge and decrease spring snowmelt discharge. The impacts of climate change on floods in Finland by 2070-2099 varied considerably depending on the location, catchment characteristics, timing of the floods and climate scenario. Floods caused by spring snowmelt decreased or remained unchanged, whereas autumn and winter floods caused by precipitation increased especially in large lakes and their outflow rivers. Since estimation of climate change impacts includes uncertainties in every step of the long modelling process, the accumulated uncertainties by the end of the process become large. The large differences between results from different climate scenarios highlight the need to use several climate scenarios in climate change impact studies

  11. Cumulative Impacts of Energy and Climate Change Policies on Carbon Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Varma, A.; Milnes, R.; Miller, K.; Williams, E. [AEA Technology plc, London (United Kingdom); De Bruyn, S.; Brinke, L. [CE Delft, Delft (Netherlands)

    2012-02-15

    Carbon leakage occurs when climate change policy aimed at reducing carbon dioxide emissions in one country leads to an increase in carbon dioxide emissions in a country that is not bound by these policies. Given that climate change is a global issue, carbon leakage impacts upon the effectiveness of climate change policies. This independent study examines the cumulative impact of climate change policies on carbon leakage. The report brings together findings and analysis from a wide range of primary literature in this area and where possible, conclusions relevant to the UK are drawn.

  12. A new dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2012-11-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature changeTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  13. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    Science.gov (United States)

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  14. Climate Change Impact Assessment for Sustainable Water Quality Management

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2012-01-01

    Full Text Available The goal of sustainable water quality management is to keep total pollutant discharges from exceeding the assimilation capacity of a water body. Climate change may influence streamflows, and further alter assimilation capacity and degrade river sustainability. The purposes of this study are to evaluate the effect of climate change on sustainable water quality management and design an early warning indicator to issue warnings on river sustainability. A systematic assessment procedure is proposed here, including a weather generation model, the streamflow component of GWLF, QUAL2E, and an optimization model. The Touchen creek in Taiwan is selected as the study area. Future climate scenarios derived from projections of four global climate models (GCMs and two pollutant discharge scenarios, as usual and proportional to population, are considered in this study. The results indicate that streamflows may very likely increase in humid seasons and decrease in arid seasons, respectively. The reduction of streamflow in arid seasons may further degrade water quality and assimilation capacity. In order to provide warnings to trigger necessary adaptation strategies, an early warning indicator is designed and its 30-year moving average is calculated. Finally, environmental monitoring systems and methods to prioritize adaptation strategies are discussed for further studies in the future.

  15. Economic perspectives on the impact of climate variability and change: A summary report

    International Nuclear Information System (INIS)

    A summary is presented of a collection of papers on the economic methodologies applicable to studies of the impact of global climate variability and change. The research was sponsored by the Canadian Climate program and was conducted as part of a project investigating the potential impacts on various sectors of the Canadian economy of climate warming due to the greenhouse effect. Topics of the papers include microeconomic analysis, benefit/cost analysis, input-output analysis, policy options regarding water levels in the Great Lakes, the scenario approach to assessing socio-economic sensitivities to climate change in the agri-food sector, and analysis of weather impacts. Several analytical tools are seen to be readily applicable to economic analyses of the effects of climate change, and issues of future water supply and demand are seen as central to climate impact assessment, and of particular concern to Canada

  16. Impact of climate change on the stability of underground cavities. Status of knowledge. Investigation report

    International Nuclear Information System (INIS)

    After having described the impact of global warming on climate parameters (possible climate evolution, impact on temperatures and precipitations in France) and presented underground cavities in France (nature and localisation, expected instability), this report discusses the impact of climate change on underground waters: impact on water cycle, on underground water level variation, and on the power of dissolution by underground waters. Then, it more particularly addresses the impact of water on underground cavity stability: impact of water on the behaviour of underground works, examples (iron mines, water sheet rising, quarry collapsing, and so on, in France, Belgium and USA), development of natural cavities. It finally outlines the perspectives, knowledge gaps, and required researches

  17. Climate change: a review of its health impact and perceived awareness by the young citizens.

    Science.gov (United States)

    Rahman, Muhammad Sabbir; Mohamad, Osman Bin; Zarim, Zainal bin Abu

    2014-07-01

    In recent time climate change and its impact on human health and awareness constitute a set of complex and serious consequences to be tackled by an individual country. Climate change is not merely an environmental issue, but also it is a threat that goes beyond national borders. The purpose of this study is to identify the awareness and the impact of climate change, perceived by the young citizens in Malaysia by focusing on gender differences. Based on a survey of 200 respondents from different public and private University's students in Malaysia, this research used descriptive statistics and T-test to look into the research objective. The results revealed media can play an important role in the awareness of climate change. Meanwhile the male respondents have shown considerable attention on the physical impact of climate change like heat related stress. On the other hand female respondents have shown considerable attention to the psychological impact by the climate change. From a pragmatic perspective, the findings from this research will assists the policy makers to understand more about the perceived awareness on the climate change issues of the young citizens which ultimately assist them to inaugurate new initiatives to confront the challenges of climate changes. This research is among the pioneer study on the issue of the perceived awareness in regards to climate change in Malaysia by focusing on gender differences. PMID:24999143

  18. Economic impacts of climate change on tuna fisheries in Fiji Islands and Kiribati

    OpenAIRE

    2000-01-01

    This paper discusses the possible economic consequences of a change in the tuna fisheries in the Pacific Ocean resulting from climate change. On the background of Lehodey's (2000) study of potential changes in the tuna fisheries, we survey possible economic impacts in terms of quantities and values and give examples of macroeconomic impacts. The two main effects of climate change on tuna fishing are likely to be a decline in the total stock and a migration of the stock westwards. This will le...

  19. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    International Nuclear Information System (INIS)

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred

  20. Impact of climate change on electricity systems and markets

    Science.gov (United States)

    Chandramowli, Shankar N.

    Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan

  1. Assessing Impacts of Climate Change on Food Security Worldwide

    Science.gov (United States)

    Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua

    2015-01-01

    The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.

  2. Climate change has limited impact on soil-mantled landsliding

    Science.gov (United States)

    Parker, Robert; Hales, Tristram; Mudd, Simon; Grieve, Stuart

    2015-04-01

    Projected increases in future storminess, associated with anthropogenically-driven climate change, are expected to produce an increase in landslide frequency and hazards. This prediction relies on an implicit and poorly tested assumption, that landslide frequency is limited by the effectiveness of landslide triggers (pore-pressure events determined by the intensity and duration of storms). Using an unprecedented field dataset of hillslope soil depths and ages (attained through radiocarbon dating) from the Southern Appalachian Mountains (USA), we show that this assumption is not valid in this landscape. Instead, landslide frequency is limited by rates of soil production and transport processes, which prepare sites for future landsliding. By simulating the evolution of Appalachian hillslopes, we demonstrate that unless climate change can drive an increase in soil production and transport rates, an increase in future storminess will have little effect on long-term landslide frequency, while individual storms will trigger fewer and smaller landslides.

  3. Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework.

    Science.gov (United States)

    Hasegawa, Tomoko; Fujimori, Shinichiro; Shin, Yonghee; Takahashi, Kiyoshi; Masui, Toshihiko; Tanaka, Akemi

    2014-01-01

    We assessed the impacts of climate change and agricultural autonomous adaptation measures (changes in crop variety and planting dates) on food consumption and risk of hunger considering uncertainties in socioeconomic and climate conditions by using a new scenario framework. We combined a global computable general equilibrium model and a crop model (M-GAEZ), and estimated the impacts through 2050 based on future assumptions of socioeconomic and climate conditions. We used three Shared Socioeconomic Pathways as future population and gross domestic products, four Representative Concentration Pathways as a greenhouse gas emissions constraint, and eight General Circulation Models to estimate climate conditions. We found that (i) the adaptation measures are expected to significantly lower the risk of hunger resulting from climate change under various socioeconomic and climate conditions. (ii) population and economic development had a greater impact than climate conditions for risk of hunger at least throughout 2050, but climate change was projected to have notable impacts, even in the strong emission mitigation scenarios. (iii) The impact on hunger risk varied across regions because levels of calorie intake, climate change impacts and land scarcity varied by region.

  4. [The impact of climate change on leishmaniasis in Brazil].

    Science.gov (United States)

    Mendes, Chrystian Soares; Coelho, Alexandre Bragança; Féres, José Gustavo; Souza, Elvanio Costa de; Cunha, Dênis Antônio da

    2016-01-01

    This paper sought to assess how climate change will affect the proliferation of leishmaniasis in Brazil in three time frames: 2010-2039, 2040-2079 and 2080-2100, and with two climate change scenarios. The relation of temperature, precipitation and the number of hospital admissions due to leishmaniasis was estimated and projections were made using these results. Results show that precipitation has a strong relation with leishmaniasis incidence and projections show that by the end of the twenty-first century there will be a 15% growth in the annual number of hospital admissions due to leishmaniasis in Brazil, compared to the base scenario (1992-2002). In regional terms, projections indicate growth in every region, with the exception of the Mid-West. The highest relative growth will be in the South of the country, while the highest increase in absolute terms will be observed in the Northeast region. In general, the incidence of leishmaniasis will grow in Brazil due to climate change.

  5. Adapting to Health Impacts of Climate Change in the Department of Defense.

    Science.gov (United States)

    Chrétien, Jean-Paul

    2016-01-01

    The Department of Defense (DoD) recognizes climate change as a threat to its mission and recently issued policy to implement climate change adaptation measures. However, the DoD has not conducted a comprehensive assessment of health-related climate change effects. To catalyze the needed assessment--a first step toward a comprehensive DoD climate change adaptation plan for health--this article discusses the DoD relevance of 3 selected climate change impacts: heat injuries, vector-borne diseases, and extreme weather that could lead to natural disasters. The author uses these examples to propose a comprehensive approach to planning for health-related climate change impacts in the DoD. PMID:27081888

  6. The Impact of Changing Climate on Ammonia Emissions from Agriculture and the Associated Climate Forcings

    Science.gov (United States)

    Ward, D. S.; Riddick, S. N.; Hess, P. G. M.

    2015-12-01

    Agriculture is the largest anthropogenic source of ammonia (NH3) on a global scale with major contributions from the application of synthetic fertilizer and manure from livestock. While strict controls are placed on the emissions of many industrial pollutants, NH3 concentrations are expected to increase this century. In addition to future expansion of agricultural activities that could lead to greater NH3 emissions, NH3 emissions are affected by changes in temperature and precipitation. Here we use a newly developed agricultural N pathways model running in a global terrestrial model (Community Land Model v4.0) to estimate future NH3 emissions from manure and synthetic fertilizer application, and the impact of changing climate on these emissions and other N pathways (runoff, denitrification, etc.). We include future increases in the application of manure and synthetic fertilizer that are consistent with a middle-of-the-road projection of population growth and per capita caloric intake. Combined with atmospheric forcing that follows RCP8.5, NH3 emissions increase by about 50% and 90% between years 2010 and 2100 from synthetic fertilizer and manure, respectively. Roughly 25% of this increase can be attributed to the changing climate, mainly increased global temperatures over the 21st century. We show associated changes in ammonium nitrate and ammonium sulfate aerosol concentrations and radiative forcings, the results of a set of additional simulations using the Community Atmosphere Model v5.0 and an offline radiative transfer scheme. This work suggests that projections of global NH3 concentrations need to take changes in climate into account.

  7. Impacts of Climate Change on Agriculture and Adaptive Strategies in China

    Institute of Scientific and Technical Information of China (English)

    LI Rui-li; Shu Geng

    2013-01-01

    China is the world’s most populous country and a major emitter of greenhouse gases. Consequently, China’s role in climate change has received a great deal of attention, whereas the impact of climate change on China has been largely ignored. Studies on the impacts of climate change on agriculture and adaptation strategies are increasingly becoming major areas of scientific concern. However, the clear warming that has been sounded in China in recent decades has not been matched with a clear assessment of the impact of climate change on China’s water resources and agriculture. In the present study, we review observations on climate change, hydrology, and agriculture in China and relate these observations to likely future changes. We also analyse the adaptive strategies in China’s agriculture.

  8. Climate change and health in the United States of America: impacts, adaptations, and research

    International Nuclear Information System (INIS)

    After a description of the various impacts of climate change on human health, this report describes and comments the impacts of climate change on health in the USA: impacts of heat waves, of air quality degradation, of extreme climate events, of climate change on infectious diseases and allergies, regional impacts of climate change. In a second part, it describes the strategies of adaptation to the 'climate change and health' issue in the USA: mitigation and adaptation to climate change, adaptation challenges, insufficiently prepared public health system, adaptation to heat waves, adaptation to air quality degradation, adaptation to extreme climate events, adaptation to food- and water-based diseases and to vector-based diseases, examples of proactive adaptation. The last part describes the organisation of research on 'climate change and health' in the USA: nowadays and in the future, role of federal agencies, priority research axes. The 'United States Global Change Research Program' is presented in appendix, as well as the most important research centres (mostly in universities)

  9. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran;

    , climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...... to be the most critical factor for the stream ecological conditions at Sjælland, and field measurements show that water temperature is rising to damaging levels during low flow summer conditions. Using downstream longitudinal modelling of water flow and water temperature, it is found that shading by riparian...

  10. Hydrogeochemical modeling of large fluvial basins: impact of climate change

    International Nuclear Information System (INIS)

    The chemical weathering of continental surfaces represents the one of carbon sinks at the Earth's surface which regulates the climate through feedback mechanism. The weathering intensity is controlled by climate but also by lithology, vegetal cover, hydrology and presence of smectites and acids in soils. In this work, a study at global scale on grid cells highlighted that a CO2 concentration increase in the atmosphere would involve a decrease of evapotranspiration due to stomatal progressive closure, and a rise of soil acidity related to enhanced bio-spheric productivity. These changes would promote the silicates chemical weathering and as a result, would lead to CO2 consumption increase by 3% for 100 ppmv of CO2 concentration rise in the atmosphere. Then, the study on the one of the most important catchments located in arctic environment, the Mackenzie basin (Canada), showed the high sensitivity of chemical weathering to sulfuric acid production. Indeed, the Mackenzie mean CO2 consumption has decreased by 56%, taking account the pyrite presence in the catchment. In addition, the mean CO2 consumption of this basin could rise by 53% between today climate and a climatic scenario predicted for the end of century. (author)

  11. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    Directory of Open Access Journals (Sweden)

    S. P. Bindra

    2014-12-01

    Full Text Available This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achieved in most area owing to precipitation variability’s and seasonality. It demonstrates that how large increases in water demand with very little recharge from precipitation have strained Libya’s groundwater resources resulting in declines of groundwater levels and its quality, especially on Libyan coastal areas where most of the agriculture, domestic and industrial activities are concentrated. Based on several research studies it demonstrates that how policy and decision making process using best practices for monitoring, analyzing and forecasting variation of climate is a way forward to cope with the impact of sea level rise, and combat some water supplies in vulnerable areas that are becoming unusable due to the penetration of salt water into coastal aquifers (Jifara Plain, Sirt, Jebal El-Akhdar.Finally, a number of Global Climate Models (GCM are reviewed to demonstrate that how better understanding of climate and climate change forecasting helps in devising appropriate adaptation strategies due to the impact of climate change.

  12. Expected impacts of climate change on extreme climate events; Impacts du changement climatique sur les evenements climatiques extremes

    Energy Technology Data Exchange (ETDEWEB)

    Planton, S.; Deque, M.; Chauvin, F. [Meteo-France, Centre National de Recherches Meteorologiques/groupe d' Etude de l' Atmosphere Meteorologique (CNRM/GAME), 31 - Toulouse (France); Terray, L. [Centre Europeen de Recherches Avancees en Calcul Scientifique, 31 - Toulouse (France)

    2008-09-15

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  13. An Economic Analysis of Potential Impacts of Climate Change in Egypt

    OpenAIRE

    Onyeji, S.C.; Fischer, G.

    1993-01-01

    Projections of climate impacts on crop yields simulated for different GCM scenarios are used, in a recursively dynamic general equilibrium framework, to account for potential economy-wide impacts of climate change in Egypt. Comparing these impact projections to those obtained under a reference, business-as-usual, scenario assuming some moderate changes in the political, economic or technological sphere, indicates that global warming has potentially negative effects. The analysis is based on ...

  14. Systems thinking methodology in researching the impacts of climate change on livestock industry

    OpenAIRE

    Nguyen, Quan; Nguyen, Nam Cao

    2013-01-01

    The impacts of climate change on livestock production are complex problems, existing in the rela-tionship among this sector and others sectors such as environmental, social, economic and political systems. The complexity and dynamic of these impacts cannot be solved simply in isolation with the linear approach. A system thinking methodology is introduced in this paper to understand the impacts of climate change on livestock production, and identify effective interventions strategies to addres...

  15. Estimating the impact of climate change on agricultural production: accounting for technology heterogeneity across countries

    OpenAIRE

    Exenberger, Andreas; Pondorfer, Andreas; Wolters, Maik H.

    2014-01-01

    We estimate the impact of climate change on agricultural production in a panel of 127 countries from 1961 to 2002. In contrast to the existing literature we account for cross-sectional dependence and technology heterogeneity. We find no significant impact of climate change on agricultural production in high income countries, but significant adverse effects in middle and low income countries. These adverse effects include a moderate negative impact of increases in temperature on agricultural o...

  16. A structural Ricardian valuation of climate change impacts on agriculture in Pakistan

    International Nuclear Information System (INIS)

    This book presents the economic analysis of the impacts of climate change on agriculture in Pakistan. Particular emphasis is laid on the magnitude of implicit adaptations in overall climate impact assessment and the analysis of selected adaptation options. Using a hedonic pricing model and a revealed choice approach, this study identifies the impacts of climate change on agricultural incomes, depicts the spatial patterns and seasonality of the impacts, and models the future adaptation behavior of farmers in the crop sector. A high sensitivity of farming in Pakistan to climate change is confirmed. With a changing climate and income in mind, farmers in Pakistan are more likely to choose rice, vegetables and maize, whereas they move away from wheat, sugarcane, cotton and fruits.

  17. A structural Ricardian valuation of climate change impacts on agriculture in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Mirza Nomman

    2013-07-01

    This book presents the economic analysis of the impacts of climate change on agriculture in Pakistan. Particular emphasis is laid on the magnitude of implicit adaptations in overall climate impact assessment and the analysis of selected adaptation options. Using a hedonic pricing model and a revealed choice approach, this study identifies the impacts of climate change on agricultural incomes, depicts the spatial patterns and seasonality of the impacts, and models the future adaptation behavior of farmers in the crop sector. A high sensitivity of farming in Pakistan to climate change is confirmed. With a changing climate and income in mind, farmers in Pakistan are more likely to choose rice, vegetables and maize, whereas they move away from wheat, sugarcane, cotton and fruits.

  18. Building world narratives for climate change impact, adaptation and vulnerability analyses

    OpenAIRE

    Hallegatte, Stéphane; Valentin, Przyluski; Vogt-Schilb, Adrien

    2011-01-01

    International audience The impacts of climate change on human systems depend not only on the level of emissions but also on how inherently vulnerable these systems are to the changing climate. The large uncertainties over future development and structure of societies and economies mean that the assessment of climate change efects is complex. One way to deal with this complexity is by using scenario analysis that takes account of these socio-economic diferences. The challenge is to identify...

  19. The impact of climate change on tourism in Germany, the UK and Ireland: a simulation study

    OpenAIRE

    Hamilton, Jacqueline; Tol, Richard

    2007-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more holidays in the home country. In all three countries, climate change would first reduce the number of international arrivals - as Western European international tourist demand falls - but later increase ...

  20. Impact of climate change on the hydrology of High Mountain Asia

    OpenAIRE

    A. F. Lutz

    2016-01-01

    In Asia, water resources largely depend on water generated in the mountainous upstream parts of several large river basins and hundreds of millions of people depend on their waters downstream. The large-scale impacts of climate change for the water resources in High Mountain Asia are poorly understood, because the area has a complex climate, which is poorly monitored. Climate change may have large consequences for water availability, seasonal changes in runoff generation and the frequency and...

  1. Impacts of Participatory Modeling on Climate Change-related Water Management Impacts in Sonora, Mexico

    Science.gov (United States)

    Halvorsen, K. E.; Kossak, D. J.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Gamez Molina, V.; Dana, K.; Mirchi, A.

    2013-12-01

    Climate change-related impacts on water resources are expected to be particularly severe in the arid developing world. As a result, we conducted a series of participatory modeling workshops on hydrologic and water resources systems modeling in the face of climate change in Sonora, Mexico. Pre-surveys were administered to participants on Day 1 of a series of four workshops spaced out over three months in 2013. Post-surveys repeated many pre-survey questions and included questions assessing the quality of the workshops and models. We report on significant changes in participant perceptions of water resource models and problems and their assessment of the workshops. These findings will be of great value to future participatory modeling efforts, particularly within the developing world.

  2. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  3. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  4. CLIMATE CHANGE AND ITS IMPACT ON WHEAT PRODUCTION IN KANSAS

    Directory of Open Access Journals (Sweden)

    Joshua C. Howard

    2016-04-01

    Full Text Available This paper studies the effect of climate change on wheat production in Kansas using annual time series data from 1949 to 2014. For the study, an error correction model is developed in which the price of wheat, the price of oats (substitute good, average annual temperature and average annual precipitation are used as explanatory variables with total output of wheat being the dependent variable. Time series properties of the data series are diagnosed using unit root and cointegration tests. The estimated results suggest that Kansas farmers are supply responsive to both wheat as well as its substitute (oat prices in the short run as well as in the long run. Climate variables; temperature has a positive effect on wheat output in the short run but an insignificant effect in the long run. Precipitation has a positive effect in the short run but a negative effect in the long run.

  5. The Positive Feedback Loop between the Impacts of Climate Change and Agricultural Expansion and Relocation

    Directory of Open Access Journals (Sweden)

    Bojana Bajželj

    2014-07-01

    Full Text Available Climate change and agriculture influence each other. The effects of climate change on agriculture seem to be predominantly negative, although studies show a large variation in impacts between crops and regions. To compensate for these effects, agriculture can either intensify or expand in area; both of these options increase greenhouse gas emissions. It is therefore likely that such negative effects will increase agriculture’s contribution to climate change, making this feedback a positive, self-reinforcing one. We have previously used a data-driven model to examine greenhouse gas emissions in 2050 related to agricultural scenarios of increasing demand for food. Here, we extend this approach by introducing the impacts of climate change on agricultural yields. We estimate the additional losses of natural habitats and increases in greenhouse gas emissions resulting from agricultural expansion and relocation induced by the negative effects of climate change. We studied two climate change scenarios and different assumptions about trade. These additional impacts caused by climate change are found to be relatively moderate compared to demand-driven impact, but still significant. They increase greenhouse gas emissions from land use change by an additional 8%–13%. Climate change tends to aggravate the effects of demand drivers in critical regions. Current emission scenarios are underestimates in that they do not include these feedback effects.

  6. Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten;

    Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems provides a state-of-the-art overview of existing methodologies and relevant results related to the assessment of the climate change impacts on urban rainfall extremes as well as on urban hydrology and hydraulics....... This overview focuses mainly on several difficulties and limitations regarding the current methods and discusses various issues and challenges facing the research community in dealing with the climate change impact assessment and adaptation for urban drainage infrastructure design and management....

  7. The impact of climate change on the BRICS economies: The case of insurance demand.

    Science.gov (United States)

    Ranger, N.; Surminski, S.

    2012-04-01

    Session ERE5.1 Climate change impact on economical and industrial activities The impact of climate change on the BRICS economies: The case of insurance demand. Over the past decade, growth in the BRICS (Brazil, Russia, India, China and South Africa) economies has been a key driver of global economic growth. Current forecasts suggest that these markets will continue to be areas of significant growth for a large number of industries. We consider how climate change may influence these trends in the period to 2030, a time horizon that is long in terms of strategic planning in industry, but relatively short for climate change analysis, where the impacts are predicted to be most significant beyond around 2050. Based on current evidence, we expect climate change to affect the BRICS economies in four main ways: 1. The impact of physical climatic changes on the productivity of climate-sensitive economic activity, the local environment, human health and wellbeing, and damages from extreme weather. 2. Changing patterns of investment in climate risk management and adaptation 3. Changing patterns of investments in areas affected by greenhouse gas (GHG) mitigation policy, 4. The impacts of the above globally, including on international trade, growth, investment, policy, migration and commodity prices, and their impacts on the BRICS. We review the evidence on the impacts of climate change in the BRICS and then apply this to one particular industry sector: non-life insurance. We propose five potential pathways through which climate change could influence insurance demand: economic growth; willingness to pay for insurance; public policy and regulation; the insurability of natural catastrophe risks; and new opportunities associated with adaptation and greenhouse gas mitigation. We conclude that, with the exception of public policy and regulation, the influence of climate change on insurance demand to 2030 is likely to be small when compared with the expected growth due to rising

  8. Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China

    OpenAIRE

    Fei Yuan; Mingwei Ma; Liliang Ren; Hongren Shen; Yue Li; Shanhu Jiang; Xiaoli Yang; Chongxu Zhao; Hao Kong

    2016-01-01

    Quantitative evaluation of future climate change impacts on hydrological drought characteristics is one of important measures for implementing sustainable water resources management and effective disaster mitigation in drought-prone regions under the changing environment. In this study, a modeling system for projecting the potential future climate change impacts on hydrological droughts in the Weihe River basin (WRB) in North China is presented. This system consists of a large-scale hydrologi...

  9. Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects

    OpenAIRE

    Caiazzo, Fabio; Malina, Robert; Staples, Mark Douglas; Wolfe, Philip James; Yim, Hung Lam Steve; Barrett, Steven

    2014-01-01

    Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for ...

  10. Climate Change Impact On Mekong Delta of Vietnam in recent years

    Science.gov (United States)

    Le, L. T. X., III

    2015-12-01

    In recent years, the climate change signal increase globally. Abnormal changes of weather tends increasingly detrimental to human life, such as natural disasters occur with increasing level of more severe. Climate change is one the biggest challenges, and is a potential threat to humans. The impact of climate change increases the number and extent of the disaster fierce exists as typhoons, floods, droughts ... Global warming and sea level rise increases the area of flooding, saline intrusion and erosion in the delta region may cause farmers to lose the opportunity to produce, source of life their only. Impact of climate change on people in the community, but poor farmers in the developing countries like our country, women are the most severe consequences In this section, we summarize changes in climate on the territory of Vietnam, especially in Mekong Delta evaluate causes and its relationship to changes in global climate and region. Along with the analysis of characteristics of climate changes over time and through space to help the evolution of the standard deviation (average deviation from the standard of the period from 1971 to 2015) may indicate that the characteristic gas scenes took place related to global climate change ... Vietnam's territory stretches over approximately 15 latitude, the terrain is very complex, located in the interior full of tropical Southeast Asia. Vietnam climate strongly influenced by the Asian monsoon, monsoon and Northern Hemisphere especially the ENSO activity in the equatorial region and the Pacific Ocean. Climate Vietnam abundant and diversified, with strong ties to the region and globally.

  11. [Evolution of the climate change concept and its impact in the public health of Peru].

    Science.gov (United States)

    Sánchez Zavaleta, Carlos A

    2016-03-01

    The term "climate change" is not a new concept but its impact on public health is under constant review. We know that climate has already changed and will continue to change for centuries with the rise in average global temperature, and the associated rise in sea level. This fact makes mitigation efforts relevant only in the very long term and for generations of humans whose parents have not yet been born. When we talk about public health in the context of climate change, we are talking about adaptation. In the present, countries that are currently the most affected by climate change are precisely countries like Peru, without a significant carbon footprint at the global level but that are highly sensitive to the effects of climate. Without reliable climate projections, the health impact of climate change can be uncertain and complicated. Nevertheless, at the local level, every district can identify its vulnerabilities and define priorities to protect the health of its population. There are, and it can also be developed, environmental health indicators that can help monitor how well we are adapting and how prepared we are for changes in the climate. Adaptation to climate change implies improving living conditions, enhancing epidemiological surveillance systems and extending access to healthcare. The fight against the effects of climate change in public health is a fight against poverty and inequality, and that is nothing new in Peru. PMID:27384632

  12. [Evolution of the climate change concept and its impact in the public health of Peru].

    Science.gov (United States)

    Sánchez Zavaleta, Carlos A

    2016-03-01

    The term "climate change" is not a new concept but its impact on public health is under constant review. We know that climate has already changed and will continue to change for centuries with the rise in average global temperature, and the associated rise in sea level. This fact makes mitigation efforts relevant only in the very long term and for generations of humans whose parents have not yet been born. When we talk about public health in the context of climate change, we are talking about adaptation. In the present, countries that are currently the most affected by climate change are precisely countries like Peru, without a significant carbon footprint at the global level but that are highly sensitive to the effects of climate. Without reliable climate projections, the health impact of climate change can be uncertain and complicated. Nevertheless, at the local level, every district can identify its vulnerabilities and define priorities to protect the health of its population. There are, and it can also be developed, environmental health indicators that can help monitor how well we are adapting and how prepared we are for changes in the climate. Adaptation to climate change implies improving living conditions, enhancing epidemiological surveillance systems and extending access to healthcare. The fight against the effects of climate change in public health is a fight against poverty and inequality, and that is nothing new in Peru.

  13. Impacts and adaptive capacity as drivers for prioritizing agricultural adaptation to climate change in Europe

    OpenAIRE

    Schlickenrieder, Jeremy; Quiroga Gomez, Sonia; Diz, Agustin; Iglesias Picazo, Ana

    2011-01-01

    In the face of likely climate change impacts policy makers at different spatial scales need access to assessment tools that enable informed policy instruments to be designed. Recent scientific advances have facilitated the development of improved climate projections, but it remains to be seen whether these are translated into effective adaptation strategies. This paper uses existing databases on climate impacts on European agriculture and combines them with an assessment of adaptive capacity ...

  14. Determining Canadian water utility preparedness for the impacts of climate change

    Directory of Open Access Journals (Sweden)

    Brettle Meagan

    2015-01-01

    Full Text Available General warming and extreme weather events associated with climate change are expected to negatively impact water utilities. Water utilities will need to adapt to continue providing safe drinking water and wastewater services. In 2012, the Canadian Water and Wastewater Association (CWWA conducted a survey of 53 water utility officials to understand the expert perceptions of climate change risks and preparedness of Canadian utilities for current and future impacts. Results indicated that there is low awareness among water utility officials (30% of thepossible impacts of climate change on water utilities, and more than half have not conducted climate change vulnerability assessments (65% and do not have operational plans to address climate change impacts (56%. Officials from smaller utilities, which are considered to be more vulnerable to impacts, were of those less aware of these risks and reported taking fewer preparedness activities. Efforts to prepare water utilities for climate change impacts in Canada would benefit from education of utility officials about possible climate change risks, encouraging assessments of vulnerabilities, and increased training with new adaptation tools and resources.

  15. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    Science.gov (United States)

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  16. Climate Impacts on Human Health

    Science.gov (United States)

    ... Climate Change Impacts Human Health Impacts Human Health Climate Impacts on Human Health Climate Impacts on Alaska On This Page Temperature-Related ... very old) are especially vulnerable to health impacts. Climate Change Affects Human Health In 2016, the U.S. ...

  17. Climate change impact assessments on the water resources of India under extensive human interventions.

    Science.gov (United States)

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling. PMID:27170012

  18. Climate change impact assessments on the water resources of India under extensive human interventions.

    Science.gov (United States)

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.

  19. ICES and PICES strategies for coordinating research on the impacts of climate change on marine ecosystems

    DEFF Research Database (Denmark)

    Kim, S.; Hollowed, Anne B.; Barange, Manuel;

    2014-01-01

    on Climate Change Effects on Marine Ecosystems (SICCME) to synthesize and to promote innovative, credible, and objective science-based advice on the impacts of climate change on marine ecosystems in the Northern Hemisphere. SICCME takes advantage of the unique and complementary strengths of the two...

  20. Climate change and waterborne diarrhoea in Northern India: Impact and adaptation strategies

    NARCIS (Netherlands)

    Moors, E.J.; Singh, T.; Siderius, C.; Balakrishnan, S.; Mishra, A.

    2013-01-01

    Although several studies show the vulnerability of human health to climate change, a clear comprehensive quantification of the increased health risks attributable to climate change is lacking. Even more complicated are assessments of adaptation measures for this sector. We discuss the impact of clim

  1. SUSTAINABILITY OF MOUNTAIN SOURCES OF WATER FOR THE NAVAJO NATION UNDER THE IMPACT OF CLIMATE CHANGE

    Science.gov (United States)

    This model may assist Navajo communities to implement strategies that prepare the communities for impacts of climate change. Other tribes may be encouraged to develop similar hydrologic models to help understand the hydrologic responses of climate change in their area and h...

  2. Adapting to and Coping with the Threat and Impacts of Climate Change

    Science.gov (United States)

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…

  3. The impact of climate change on tourism in Germany, the UK and Ireland: a simulation study

    NARCIS (Netherlands)

    Hamilton, Jacqueline; Tol, Richard

    2007-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more holi

  4. Climate change impacts on dunes erosion in the Netherlands

    Science.gov (United States)

    de Winter, Renske; Ruessink, Gerben

    2016-04-01

    The dunes in the Netherlands are occasionally eroded as a result of storms and corresponding storm surge levels and extreme waves. We discuss the effect of climate change and the corresponding sea level rise on dune erosion. With the XBeach dune erosion model we studied two representative profiles and analysed the effect of sea-level rise ranging from 0.20 to 2.50 m on dune erosion, as well as changes in the angle of wave incidence. The eroded volume in our XBeach model under storm conditions is in the order of magnitude of previous studies. In contrast with the Bruun-rule, which suggests a relation between sea-level rise and retreat distance, we found a linear relation between SLR and the amount of eroded volume of the dunes. Changes in the wave angle from shore normal to ~40 degrees, increase the erosion volume to the same extend as 40 cm sea-level rise.

  5. Long term impact of climate change on the metropolitan coast

    International Nuclear Information System (INIS)

    In its first part, this report describes global physical phenomena: air and sea temperature rise, modification of the tempest regime, precipitations, ocean stratification. Then, it describes some more specific physical effects of climate change: average sea level rise, sea currents (global, regional and local oceanic circulation), and wave modification on the coast. It describes the effects of various media due to sea submersion, erosion and accretion, ocean acidification, salinization increase of underground coastal waters, modification of the composition of biotic communities, biological invasions, and appearance of new toxicities for mankind

  6. Climate Change Science, Impacts, Solutions - A Senior Science Course for Post-Secondary Students

    Science.gov (United States)

    Byrne, J. M.; Little, L. J.; Barnes, C. C.; Mirmasoudi, S.; Mansouri Kouhestani, F.; Reiger, C.; Rodriguez Bueno, R. A.

    2015-12-01

    The role of humanity in warming the global climate is well defined. The research community has predicted and documented many of the early impacts of climate change. The research literature has extensive assessments of future impacts on environment, cities, agriculture, human health, infrastructure, social and political changes, and the risks of military conflict. Society is facing massive infrastructure redevelopment, protection and possible abandonment due to increasing weather extremes. We have reached the point where science consensus is obvious and the population over much of the developed and developing world understands the urgency - humanity is changing the climate. The challenge is helping people help themselves. People understand there are consequences - they want to know how to minimize those consequences, and how to adapt to minimize the impacts. There is a dire need for a senior level course that addresses the key issues across disciplines. This course should cover a range of topics across many disciplinary boundaries, including: an introduction to the science, politics, health and well-being challenges of climate change; likely changes to personal and community lifestyles; consumption of energy and other resources. Population migration due to climate change impacts is a critical topic. Most important, the course must address the solutions to climate change. The population is demanding the power to address this massive challenge. This course will provide a multimedia curriculum on the impacts and solutions to our climate change dilemma.

  7. Health Impacts of Climate Change in the Solomon Islands: An Assessment and Adaptation Action Plan

    OpenAIRE

    Spickett, Jeffery T; Katscherian, Dianne

    2014-01-01

    The Pacific island countries are particularly vulnerable to the environmental changes wrought by global climate change such as sea level rise, more frequent and intense extreme weather events and increasing temperatures. The potential biophysical changes likely to affect these countries have been identified and it is important that consideration be given to the implications of these changes on the health of their citizens. The potential health impacts of climatic changes on the population of ...

  8. Impacts of climate change on mangrove ecosystems: A region by region overview

    Science.gov (United States)

    Ward, Raymond D.; Friess, Daniel A.; Day, Richard H.; MacKenzie, Richard A.

    2016-01-01

    Inter-related and spatially variable climate change factors including sea level rise, increased storminess, altered precipitation regime and increasing temperature are impacting mangroves at regional scales. This review highlights extreme regional variation in climate change threats and impacts, and how these factors impact the structure of mangrove communities, their biodiversity and geomorphological setting. All these factors interplay to determine spatially variable resiliency to climate change impacts, and because mangroves are varied in type and geographical location, these systems are good models for understanding such interactions at different scales. Sea level rise is likely to influence mangroves in all regions although local impacts are likely to be more varied. Changes in the frequency and intensity of storminess are likely to have a greater impact on N and Central America, Asia, Australia, and East Africa than West Africa and S. America. This review also highlights the numerous geographical knowledge gaps of climate change impacts, with some regions particularly understudied (e.g., Africa and the Middle East). While there has been a recent drive to address these knowledge gaps especially in South America and Asia, further research is required to allow researchers to tease apart the processes that influence both vulnerability and resilience to climate change. A more globally representative view of mangroves would allow us to better understand the importance of mangrove type and landscape setting in determining system resiliency to future climate change.

  9. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D; Field, C; Cahill, K; Bonfils, C

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiple climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.

  10. Evaluation of economic impact of climatic change on agro-forestry systems

    Directory of Open Access Journals (Sweden)

    Vittorio Gallerani

    Full Text Available Climate change has a strong influence on agro-forestry systems. Present estimations evisage that changes in climate patterns and extreme events connected to climate change will have greater impacts in the future. This paper seeks to illustrate the articulation of the problems concerning the economic evaluation of climate change, with particularly attention to open problems and future lines of research. Research on this topic, though using methods and approaches consolidated in the disciplines of resource economics and evaluation, still have several open problems, particularly in the field of multidisciplinary studies of the man-environmental relations, policy evaluation and development of decision support systems for decision makers.

  11. Measuring the economic impact of climate change on major South African field crops: a Ricardian approach

    Science.gov (United States)

    Gbetibouo, G. A.; Hassan, R. M.

    2005-07-01

    This study employed a Ricardian model to measure the impact of climate change on South Africa's field crops and analysed potential future impacts of further changes in the climate. A regression of farm net revenue on climate, soil and other socio-economic variables was conducted to capture farmer-adapted responses to climate variations. The analysis was based on agricultural data for seven field crops (maize, wheat, sorghum, sugarcane, groundnut, sunflower and soybean), climate and edaphic data across 300 districts in South Africa. Results indicate that production of field crops was sensitive to marginal changes in temperature as compared to changes in precipitation. Temperature rise positively affects net revenue whereas the effect of reduction in rainfall is negative. The study also highlights the importance of season and location in dealing with climate change showing that the spatial distribution of climate change impact and consequently needed adaptations will not be uniform across the different agro-ecological regions of South Africa. Results of simulations of climate change scenarios indicate many impacts that would induce (or require) very distinct shifts in farming practices and patterns in different regions. Those include major shifts in crop calendars and growing seasons, switching between crops to the possibility of complete disappearance of some field crops from some region.

  12. Robust features of future climate change impacts on sorghum yields in West Africa

    Science.gov (United States)

    Sultan, B.; Guan, K.; Kouressy, M.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.; Lobell, D. B.

    2014-10-01

    West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031-2060 compared to a baseline of 1961-1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16-20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential

  13. The impact of climate change on rice yield in Bangladesh: a time series analysis

    OpenAIRE

    IFTEKHAR UDDIN AHMED CHOWDHURY; MOHAMMAD ABUL EARSHAD KHAN

    2015-01-01

    Rice is the staple food of about 158 million people of Bangladesh, but the increasing climate change vulnerabilities and global warming are severely reducing the yield of various rice crops and may threaten the food security in the country. Therefore, this study is undertaken to examine the potential impact of climate change on the yield of three different rice crops (namely, Aus, Aman and Boro) in Bangladesh. A multiple regression analysis using OLS method is employed to assess the climate-c...

  14. Data base of climatic change simulations for the impact studies. Final report

    International Nuclear Information System (INIS)

    Data used for the study of the climatic change impact on the environment and the society come from climate models and are affected by uncertainties. It is necessary to quantify the resulting errors in the models. The data base provides a comparison of simulations of climatic change in France. The final report presents the project methodology. Three projects using the distributed simulations are also presented. (A.L.B.)

  15. Physical impacts of climate change on landslide occurrence and related 8 adaptation

    OpenAIRE

    Huggel, Christian; Khabarov, Nikolay; Korup, Oliver; Obersteiner, Michael

    2012-01-01

    This chapter provides a review on current understanding of different effects of climate change on landslides and debris flows in cold, temperate, and tropical mountains. We start with observed impacts of climate change on shallow landslides and debris flows, followed by discussions of rock-slope failures, and the physical processes that make climate an important cause and trigger of landslides. While an increase in extreme precipitation has been observed in many regions worldwide over the pas...

  16. Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review*

    OpenAIRE

    Feehan, Jane; Harley, Mike; Van Minnen, Jell

    2009-01-01

    International audience; Ecosystems have an essential role in providing services to humankind such as nutrient cycling, pest control, pollination, quality of life, and hydrological, atmospheric and climatic regulation. About 60% of the world's known ecosystems are currently used unsustainably. In Europe, the richness and abundance of biodiversity is undergoing significant decline, partly due to climate change. This article outlines the impacts of climate change on biodiversity by showing both ...

  17. Climate Change Impacts on Water Supply and Demand in Rheraya Watershed (Morocco), with Potential Adaptation Strategies

    OpenAIRE

    Rochdane, Saloua; Reichert, Barbara; Messouli, Mohammed; Babqiqi, Abdelaziz; Khebiza, Mohammed Yacoubi

    2012-01-01

    Rheraya watershed already suffers from the impacts of climate variability and will be further affected by climate change. Severe water shortages and extremely fragile ecological conditions necessitate careful attention to water resources management. The aim of this study is to analyze Rheraya’s future water situation under different scenarios of socio-economic development and climate change until 2100. The Water Evaluation and Planning System model (WEAP) has been applied to estimate the curr...

  18. Climate change impacts on water salinity and health.

    Science.gov (United States)

    Vineis, Paolo; Chan, Queenie; Khan, Aneire

    2011-12-01

    It is estimated that 884 million people do not have access to clean drinking water in the world. Increasing salinity of natural drinking water sources has been reported as one of the many problems that affect low-income countries, but one which has not been fully explored. This problem is exacerbated by rising sea-levels, owing to climate change, and other contributing factors, like changes in fresh water flow from rivers and increased shrimp farming along the coastal areas. In some countries, desalination plants are used to partly remove salt and other minerals from water sources, but this is unlikely to be a sustainable option for low-income countries affected by high salinity. Using the example of Bangladesh as a model country, the following research indicates that the problem of salinity can have serious implications with regard to rising rates of hypertension and other public health problems among large sectors of the worldwide population.

  19. Viewpoints on impacts of climate change on soil quality

    Science.gov (United States)

    Dilly, Oliver; Pfeiffer, Eva-Maria; Trasar-Cepeda, Carmen; Nannipieri, Paolo

    2010-05-01

    Climate projections indicate a critical increase in temperature and modification of the precipitation pattern for the next century worldwide (IPCC 2007). Higher temperature increase are expected in polar than in temperate and tropical regions. In addition, studies on the response of microbial metabolism to temperature changes showed lower sensitivity at higher temperature level as analyzed by Q10 values (Kirschbaum 1995). The temperature response as indicated by the Q10 value refers to physiological response including enzyme configuration and substrate availability. For soils from an undisturbed forest site in eastern Amazonia, Knorr et al. (2005) observed even that the apparent pool turnover times are insensitive to temperature and received evidence that non-labile soil organic carbon was more sensitive to temperature than labile soil organic carbon. Linking the climate projections and the findings related to Q10 values suggests that the microbial activity may be stimulated to a higher degree at northern latitudes than at lower latitudes. But few studies address the role of temperature changes on soil organic matter pool and microbial biomass and activities although temperature changes may be important (Dilly et al. 2003). On top, the thawing of permafrost soil (24 % of exposed land in the Northern Hemisphere) represents a further threat since erosion processes will occur and captured gases may evolve to the atmosphere. Finally, dryness and drying-rewetting cycling that are affected by climate change are regulating soil organic carbon turnover (Mamilov and Dilly 2001). The lecture will summarize basic findings and positive feedback on our climate system and also address the concept of ‘soil energ-omics' including the interaction between respiration and microbial colonization and the respective metabolic quotient (Dilly 2006). Key words: Q10, Nitrogen deposition, Permafrost, Carbon turnover, Microbial biomass, adjustment References Dilly, O., 2006. Evaluating

  20. Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    DEFF Research Database (Denmark)

    van der Fels-Klerx, H J; van Asselt, E D; Madsen, M S;

    2013-01-01

    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling...... was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from...... two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering...

  1. Projecting Poverty at the Household Scale to Assess the Impact of Climate Change on Poor People

    Science.gov (United States)

    Hallegatte, S.; Rozenberg, J.

    2015-12-01

    This paper quantifies the potential impacts of climate change on poverty in 2030 and 2050, in 92 countries covering 90% of the developing world population. It accounts for the deep uncertainties that characterize future socio-economic evolutions and the lack of data regarding the condition and livelihood of poor people. It also considers many impacts of climate change, another source of uncertainty. We use a micro-simulation model based on household surveys and explore a wide range of uncertainties on future structural change, productivity growth or demographic changes. This results, for each country, in the creation of several hundred scenarios for future income growth and income distribution. We then explore the resulting space of possible futures and use scenario discovery techniques to identify the main drivers of inequalities and poverty reduction. We find that redistribution and structural change are powerful drivers of poverty and inequality reduction, except in low-income countries. In the poorest countries in Africa, reducing poverty cannot rely on redistribution but requires low population growth and productivity growth in agriculture. Once we have explored the space of possible outcomes for poverty and inequalities, we choose two representative scenarios of the best and worst cases and model the impacts of climate change in each of these two scenarios. Climate change impacts are modeled through 4 channels. First, climate change has an impact on labor productivity growth for people who work outside because of higher temperatures. Second, climate change has an impact on human capital because of more severe stunting in some places. Third, climate change has an impact on physical capital via more frequent natural disasters. Fourth, climate change has an impact on consumption because of changes in food prices. Impacts are very heterogeneous across countries and are mostly concentrated in African and South-East Asian countries. For high radiative forcing (RCP8

  2. Climate change and forestry in Turkey: impacts and adaptation measures

    OpenAIRE

    Tüfekçioğlu, Aydın; Tüfekçioğlu, Mustafa

    2013-01-01

    Turkey has various climate types in different regions. A Mediterranean climate prevails in Turkey’s Mediterranean and Western Anatolian regions, a temperate climate with high precipitation in every season along the Black Sea coast, a continental climate in the inland regions and a semi-arid climate in Central and South-eastern Anatolia. Most precipitation occurs in the winter months. Total annual rainfall is least in the low-lying areas of eastern Anatolia (220mm), and highest along the easte...

  3. Is the impact of future climate change on hydro-climatic conditions significant? - A climate change study for an Eastern European catchment area.

    Science.gov (United States)

    Pavlik, Dirk; Söhl, Dennis; Bernhofer, Christian

    2014-05-01

    The future change of climatic conditions is, among others, closely linked to future hydrological changes. One important aspect of these issues is the question of future availability of water resources. A changed climatic water balance, as indicator for potential water availability, has far-reaching consequences for the water cycle, hydrological conditions, ecology, water management, the energy business, agriculture and forestry, and for anthropogenic use of the river. We generated regional climate projections via dynamic downscaling for the catchment area of the Western Bug river in the border area of Poland, Belarus, and Ukraine. The hydro-climatic conditions of the past and their projected future changes in the catchment were analyzed based on 2m-temperature, precipitation, potential evaporation and climatic water balance. Up to the end of the century, the used IPCC scenarios B1 and A2 lead to warming for each month in the long-term mean, with highest warming rates in winter. Instead, precipitation does not change in the long-term yearly mean. However, the intra-annual distribution of monthly precipitation sums shifts with an increase in winter and a strong decrease in summer. Combined, this leads to a changed climatic water balance with a stronger deficit in summer and a higher gain in winter. Particular in the south-eastern part of the catchment, the summer deficit cannot be compensated within the annual cycle. It raised the question: are these changes statistically significant and thus robust for use in further impact studies? Using a significance analysis, we found, that climatic changes in temperature, precipitation and potential evaporation and thus the climatic water balance change is most significant for scenario A2 from 2071 to 2100. The temperature changes are significant throughout the year. For the other variables changes are most significant in the late summer months (July, August, and September) and the winter months (December, January, and February

  4. Human Health Impacts of and Public Health Adaptation to Climate Variability and Change

    Science.gov (United States)

    Ebi, K. L.

    2007-12-01

    Weather and climate are among the factors that determine the geographic range and incidence of several major causes of ill health, including undernutrition, diarrheal diseases and other conditions due to unsafe water and lack of basic sanitation, and malaria. The Human Health chapter in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change concluded that climate change has begun to negatively affect human health, and that projected climate change will increase the risks of climate-sensitive health outcomes, particularly in lower-income populations, predominantly within tropical/subtropical countries. Those at greatest risk include the urban poor, older adults, children, traditional societies, subsistence farmers, and coastal populations, particularly in low income countries. The cause-and-effect chain from climate change to changing patterns of health determinants and outcomes is complex and includes socioeconomic, institutional, and other factors. The severity of future impacts will be determined by changes in climate as well as by concurrent changes in nonclimatic factors and by the adaptation measures implemented to reduce negative impacts. Public health has a long history of effectively intervening to reduce risks to the health of individuals and communities. Lessons learned from more than 150 years of research and intervention can provide insights to guide the design and implementation of effective and efficient interventions to reduce the current and projected impacts of climate variability and change.

  5. The importance of glacier and forest change in hydrological climate-impact studies

    Directory of Open Access Journals (Sweden)

    N. Köplin

    2012-05-01

    Full Text Available Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenarios consist of ten regional climate models from the ENSEMBLES project; their respective temperature and precipitation deltas are used to run a hydrological model. The relative importance of each of the three types of scenarios (climate, glacier, forest is assessed through an analysis of variance (ANOVA. Altogether, 15 mountainous catchments in Switzerland are analysed, exhibiting different degrees of glaciation during the control period (0–51% and different degrees of forest cover increase under scenarios of change (12–55% of the catchment area. The results show that even an extreme change in forest cover is negligible with respect to changes in runoff, but it is crucial as soon as evaporation or soil moisture is concerned. For the latter two variables, the relative impact of forest change is proportional to the magnitude of its change. For changes that concern 35% of the catchment area or more, the effect of forest change on summer evapotranspiration is equally or even more important than the climate signal. For catchment with a glaciation of 10% or more in the control period, the glacier retreat significantly determines summer and annual runoff. The most important source of uncertainty in hydrological climate impact studies is the climate scenario, though, and it is highly recommended to apply an ensemble of climate scenarios in impact studies. The results presented here are valid for the climatic region they were tested for, i.e. a humid, mid

  6. U.S. Global Climate Change Impacts Report, Overview of Sectors

    Science.gov (United States)

    Wuebbles, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts by sector, including water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The resulting findings for the climate change impacts on these sectors are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Widespread climate-related impacts are occurring now and are expected to increase. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Crop and livestock production will be increasingly challenged. Agriculture is considered one of the sectors most adaptable to changes in climate. However, increased heat, pests, water stress, diseases, and weather extremes will pose adaptation challenges for crop and livestock production. Coastal areas are at increasing risk from sea-level rise and storm surge. Sea-level rise and storm surge place many U.S. coastal areas at increasing risk. Energy and transportation infrastructure and other property in coastal areas are very likely to be adversely affected. Threats to human health will increase. Health impacts of climate change are related to heat stress, waterborne diseases, poor air quality, extreme weather events, and diseases transmitted by insects and rodents. Robust public health infrastructure can reduce the potential for negative impacts. Climate change will interact with many social and environmental stresses. Climate change will combine with pollution, population growth, overuse of resources, urbanization, and other social, economic, and environmental stresses to create larger impacts than from any of these factors alone. Thresholds will be crossed, leading to large changes in climate and ecosystems. There are a variety of thresholds in

  7. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  8. Climate Change Impacts and Adaptation Strategies in Northwest China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-Yan; LIU Cai-Hong; LI Yan-Chun; FANG Jian-Gang; LI Lin; LI Hong-Mei; ZHENG Guang-Fen; DENG Zhen-Yong; DONG An-Xiang; GUO Jun-Qin; ZHANG Cun-Jie; SUN Lan-Dong; ZHANG Xu-Dong; LIN Jing-Jing; WANG You-Heng; FANG Feng; MA Peng-Li

    2014-01-01

    Climate change resulted in changes in crop growth duration and planting structure, northward movement of planting region, and more severe plant diseases and insect pests in Northwest China. It caused earlier seeding for spring crop, later seeding for autumn crop, accelerated crop growth, and reduced mortality for winter crop. To adapt to climate change, measures such as optimization of agricultural arrangement, adjustment of planting structure, expansion of thermophilic crops, and development of water-saving agriculture have been taken. Damaging consequences of imbalance between grassland and livestock were enhanced. The deterioration trend of grassland was intensified; both grass quantity and quality declined. With overgrazing, proportions of inferior grass, weeds and poisonous weeds increased in plateau pastoral areas. Returning farmland to grazing, returning grazing to grassland, fence enclosure and artificial grassland construction have been implemented to restore the grassland vegetation, to increase the grassland coverage, to reasonably control the livestock carrying capacity, to prevent overgrazing, to keep balance between grassland and livestock, and to develop the ecological animal husbandry. In Northwest China, because the amount of regional water resources had an overall decreasing trend, there was a continuous expansion in the regional land desertification, and soil erosion was very serious. A series of measures, such as development of artificial precipitation (snow), water resources control, regional water diversion, water storage project and so on, were used effectively to respond to water deficit. It had played a certain role in controlling soil erosion by natural forest protection and returning farmland to forest and grassland. In the early 21st century, noticeable achievements had been made in prevention and control of desertification in Northwest China. The regional ecological environment has been improved obviously, and the desertification trend

  9. Perceptions on climate change and its impact on livelihoods in Hwange district, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Charles Nhemachena

    2014-03-01

    Full Text Available This study investigated perceptions of rural communities on climate change and its impacts on livelihoods. The research was conducted in the semi-arid Hwange district in Matebelel and North province of Zimbabwe. The perceptions were compared with empirical evidence from climatic studies on trends on temperature and rainfall, and impacts on livelihoods in the country and region. The findings from the current study are generally in agreement with those of other studies that indicate changes in the climate, especially in terms of rainfall. This largely applies to short-term periods; however, for long-term periods it is difficult to accurately relate rural community perceptions to changes in rainfall over time. Despite perceived changes and impacts of climate change on local livelihood activities, mainly agriculture, there are multiple stressors that the communities face which also affect their livelihoods. Further evidence-based research is required to disentangle climate change impacts on livelihoods, including livelihood impacts arising from interactions of climate and non-climatic factors.

  10. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    OpenAIRE

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-01-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact re...

  11. Health Impacts of Climate Change in Vanuatu: An Assessment and Adaptation Action Plan

    OpenAIRE

    Spickett, Jeffery T; Katscherian, Dianne; McIver, Lachlan

    2013-01-01

    Climate change is one of the greatest global challenges and Pacific island countries are particularly vulnerable due to, among other factors, their geography, demography and level of economic development. A Health Impact Assessment (HIA) framework was used as a basis for the consideration of the potential health impacts of changes in the climate on the population of Vanuatu, to assess the risks and propose a range of potential adaptive responses appropriate for Vanuatu. The HIA process involv...

  12. The economic impact of climate change on food security in Malaysia

    OpenAIRE

    Chuen Khee, Pek; Yet Mee, Lim; Chee Keong, Choong

    2011-01-01

    This study estimates the economic impact of climate change on food security in Malaysia. The contingent valuation technique is employed on 456 randomly selected households in the vicinities of Selangor Darul Ehsan. The study finds that climate change mitigation programmes to ensure food security are important. The public is willing to pay extra rice price in substitution of a rice subsidy reduction impact for the mitigation programmes. More specifically, the study ascertains that households o...

  13. Possible impact of climate change on China's food production

    International Nuclear Information System (INIS)

    In the north, the yields of wheat and corn are sensitive to the mean temperature, in particular mean temperature in summer and autumn. Low temperature in these seasons frequently causes reduction of grain yield. It is calculated that with an annual mean of temperature increase 1 C, the growth period will be extended 10 days and the earliest frost in autumn will also be postponed; the total yield of crops will increase about 10 %. According to composite results of simulations, the mean temperature in the north would increase 1.5--2.0 C; therefore the yield may increase 10--20%. However, the change of precipitation has more uncertainty by simulation. It is projected that in summer and autumn the change of rainfall ranges from -2.5 to +8.1%. On the other hand, even precipitation increases could be offset by reducing of soil moisture due to increases in temperature and evaporation. Therefore, it is hard to judge what the impact would be on yields because of change of precipitation. It might have some negative impact. In the south, the temperature, in general, is sufficient for the growth of rice, though the increase of temperature would also have some favorable impact on the increase of rice yield. However, rice production is more sensitive to the change of precipitation, particularly in the summer. Since water resources are not sufficient in China, only 47% of the land is irrigated. It is calculated that when rainfall decreases 1%, the irrigated land will be reduced 1%, which implies the reduction of rice output by 7.5 million tons a year. The land without irrigation would be reduced even more. According to composite results, a 5% decrease in precipitation is not significant. However, taking into account the increase of temperature and evaporation, the total impact on rice land will certainly be negative and significant, a 10--20% reduction of rice yield would be expected

  14. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation

    International Nuclear Information System (INIS)

    Global climate change is altering terrestrial water and energy budgets, with subsequent impacts on surface and groundwater resources; recent studies have shown that local water management practices such as groundwater pumping and irrigation similarly alter terrestrial water and energy budgets over many agricultural regions, with potential feedbacks on weather and climate. Here we use a fully-integrated hydrologic model to directly compare effects of climate change and water management on terrestrial water and energy budgets of a representative agricultural watershed in the semi-arid Southern Great Plains, USA. At local scales, we find that the impacts of pumping and irrigation on latent heat flux, potential recharge and water table depth are similar in magnitude to the impacts of changing temperature and precipitation; however, the spatial distributions of climate and management impacts are substantially different. At the basin scale, the impacts on stream discharge and groundwater storage are remarkably similar. Notably, for the watershed and scenarios studied here, the changes in groundwater storage and stream discharge in response to a 2.5 °C temperature increase are nearly equivalent to those from groundwater-fed irrigation. Our results imply that many semi-arid basins worldwide that practice groundwater pumping and irrigation may already be experiencing similar impacts on surface water and groundwater resources to a warming climate. These results demonstrate that accurate assessment of climate change impacts and development of effective adaptation and mitigation strategies must account for local water management practices. (letter)

  15. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    NARCIS (Netherlands)

    Droogers, P.; Loon, van A.F.; Immerzeel, W.W.

    2008-01-01

    Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario

  16. The evolution of climate change impact studies on hydrology and water resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Vicuna, S. [Department of Civil and Environmental Engineering, University of California, 612 Davis Hall, Mail Code 1710, Berkeley, CA 94720-1710 (United States); Dracup, J.A. [Department of Civil and Environmental Engineering, University of California, 625 Davis Hall, Mail Code 1710, Berkeley, CA 94720-1710 (United States)

    2007-06-15

    Potential global climate change impacts on hydrology pose a threat to water resources systems throughout the world. The California water system is especially vulnerable to global warming due to its dependence on mountain snow accumulation and the snowmelt process. Since 1983, more than 60 studies have investigated climate change impacts on hydrology and water resources in California. These studies can be categorized in three major fields: (1) Studies of historical trends of streamflow and snowpack in order to determine if there is any evidence of climate change in the geophysical record; (2) Studies of potential future predicted effects of climate change on streamflow and; (3) Studies that use those predicted changes in natural runoff to determine their economic, ecologic, or institutional impacts. In this paper we review these studies with an emphasis on methodological procedures. We provide for each category of studies a summary of significant conclusions and potential areas for future work.

  17. A global assessment of the impact of climate change on water scarcity

    OpenAIRE

    Simon N. Gosling; Arnell, Nigel W.

    2013-01-01

    This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are es...

  18. Climate change impact assessment of extreme precipitation on urban flash floods – case study, Aarhus, Denmark

    DEFF Research Database (Denmark)

    Madsen, Henrik; Sunyer Pinya, Maria Antonia; Rosbjerg, Dan;

    Climate change is expected to cause more intense extreme rainfall events, which will have a severe impact on the risk of flash floods in urban areas. An assessment study was performed for the city of Aarhus, Denmark, analysing different methods of statistical downscaling of climate model...... derived from the estimated intensity-duration-frequency curves....... projections for estimation of changes in extreme rainfall characteristics. Climate model projections from 20 regional climate models (RCM) from the ENSEMBLES data archive were used in the analysis. Two different estimation methods were applied, using, respectively, a direct estimation of the changes...

  19. Climate Change: A Review of Its Health Impact and Percieved Awareness by the Young Citizens

    OpenAIRE

    Rahman, Muhammad Sabbir; Mohamad, Osman Bin; Zarim, Zainal bin Abu

    2014-01-01

    In recent time climate change and its impact on human health and awareness constitute a set of complex and serious consequences to be tackled by an individual country. Climate change is not merely an environmental issue, but also it is a threat that goes beyond national borders. The purpose of this study is to identify the awareness and the impact of climate change, perceived by the young citizens in Malaysia by focusing on gender differences. Based on a survey of 200 respondents from differe...

  20. The health impacts of climate change and variability in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Menne, B. [WHO European Centre for Environment and Health, Rome (Italy). Global Change and Health; Kunzil, N. [Institute for Social and Preventive Medicine University, Los Angeles, CA (United States). Basel and Keck School of Medicine; Bertollini, R. [WHO Regional Office for Europe, Copenhagen (Denmark). Technical Support Div.

    2002-07-01

    Health is a focus reflecting the combined impacts of climate change on the physical environment, ecosystems, the economic environment and society. Long-term changes in the world's climate may affect many requisites of good health - sufficient food, safe and adequate drinking water and secure dwelling. The current large-scale social and environmental changes mean that we must assign a much higher priority to population health in the policy debate on climate change. Climate change will affect human health and wellbeing through a variety of mechanisms. Climate change can adversely impact on the availability of fresh water supply and the efficiency of local sewerage systems. It is also likely to affect food security. Cereal yields are expected to increase at high and mid latitudes but decrease at lower latitudes. Changes in food production are likely to significantly affect health in Africa. In addition, the distribution and seasonal transmission of several vector-borne infectious diseases (such as malaria and dengue) may be affected by climate change. Altered distribution of some vector species may be among the early signals of climate change. A change in the world climate could increase the frequency and severity of extreme weather events. The impacts on health of natural disasters are considerable - the number of people killed, injured or made homeless from such causes is increasingly alarming. The vulnerability of people living in risk-prone areas is an important contributor to disaster casualties and damage. An increase in heatwaves (and possibly air pollution) will be a problem in urban areas, where excess mortality and morbidity is currently observed during hot weather episodes. We can assume that climate change will affect the most vulnerable in developing countries. These might be socio-economic deprived populations, people who lack access to a health care system, technology and communication, as well as immuno compromised persons. The health community

  1. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  2. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  3. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    Science.gov (United States)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  4. Mapping climate change impact on vegetation and the associated uncertainties in the Euro-Mediterranean area

    Science.gov (United States)

    Laanaia, Nabil; Calvet, Jean-Christophe; Carrer, Dominique; Séférian, Roland

    2016-04-01

    Crops, grasslands and forests in the Euro-Mediterranean area are already affected by the climate change impacts and will be even more in the future. The knowledge of the extent of these impacts will allow the implementation of adaptation strategies of agriculture and forestry to climate change. The aim of this study is to explore the potential implications of climate change and characterize significant future vegetation trends and their uncertainties. The ISBA (Interactions between Soil, Biosphere, and Atmosphere), land surface model is developed by Meteo-France for meteorological, hydrological and climatic applications. In this study, ISBA is forced by the atmospheric variables produced by different climate models. We use an ensemble of four climate models, following the RCP8.5 scenario, to drive the ISBA model. The simulations cover 114 year from 1986 to 2099. Two time horizons 2029-2058 (near future) and 2070-2099 (distant future) are compared to the 1988-2017 period. The ISBA model is used to provide several simulations of plant growth and carbon storage. Four vegetation types (rainfed straw cereals and grasslands, broadleaf and coniferous forests) are considered. The leaf area index simulations are used to determine phenology variables (leaf onset, leaf offset). A statistical analysis is used to quantify the impact of climate change and to show whether the future trends are significant or not. The uncertainties related to these trends are characterized. A spatial classification method is used to map the spatial variability of the impact of climate change.

  5. The impacts of climate change on the Finnish economy

    Energy Technology Data Exchange (ETDEWEB)

    Kuoppamaeki, P. [Research Inst. of the Finnish Economy, Helsinki (Finland)

    1996-12-31

    The purpose of the project was to evaluate the potential influence of global warming on the Finnish economy and well-being during the next 50 to 100 years. In order to achieve this goal a cost-benefit analysis was conducted which produced a quantitative estimate of the economic and partially non-economic effects of the climate change projected to happen in Finland. The analysis utilised the natural scientific evidence produced by other SILMU projects in partial sector models. Also a broader view of the phenomena and the possibilities for restricting greenhouse gas emissions was briefly discussed and surveyed. Two of the more important side-goals were to develop the methodology for country analysis and study the possibilities for adaptation

  6. Isolating the impacts of land use and climate change on streamflow

    Directory of Open Access Journals (Sweden)

    I. Chawla

    2015-02-01

    Full Text Available Streamflow regime is sensitive to changes in land use and climate in a river basin. Quantifying the isolated and integrated impacts of land use and climate change on streamflow is challenging as well as crucial to optimally manage water resources in the river basin. This paper presents a simple hydrologic modelling based approach to segregate the impacts of land use and climate change on streamflow of a river basin. The upper Ganga basin in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modelled using a calibrated variable infiltration capacity hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs available from the Coordinated Regional Downscaling Experiment (CORDEX project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban area and moderately sensitive to change in crop land area. However, variations in streamflow generally reproduce the variations in precipitation. Combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a

  7. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation.

    Science.gov (United States)

    Wu, Xiaoxu; Lu, Yongmei; Zhou, Sen; Chen, Lifan; Xu, Bing

    2016-01-01

    Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change.

  8. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation.

    Science.gov (United States)

    Wu, Xiaoxu; Lu, Yongmei; Zhou, Sen; Chen, Lifan; Xu, Bing

    2016-01-01

    Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change. PMID:26479830

  9. Elevational dependence of climate change impacts on water resources in an Alpine catchment

    Directory of Open Access Journals (Sweden)

    S. Fatichi

    2013-03-01

    Full Text Available An increasing interest is directed toward understanding impacts of climate change on water related sectors in a particularly vulnerable area such as the Alpine region. We present a distributed hydrological analysis at scale significant for water management for pristine, present-days, and projected future climate conditions. We used the upper Rhone basin (Switzerland as a test case for understanding anthropogenic impacts on water resources and flood risk in the Alpine area. The upper Rhone basin includes reservoirs, river diversions and irrigated areas offering the opportunity to study the interaction between climate change effects and hydraulic infrastructures. We downscale climate model realizations using a methodology that partially account for the uncertainty in climate change projections explicitly simulating stochastic variability of precipitation and air temperature. We show how climate change effects on streamflow propagate from high elevation headwater catchments to the river in the major valley. Changes in the natural hydrological regime imposed by the existing hydraulic infrastructure are likely larger than climate change signals expected by the middle of the 21th century in most of the river network. Despite a strong uncertainty induced by stochastic climate variability, we identified an elevational dependence of climate change impacts on streamflow with a severe reduction due to the missing contribution of water from ice melt at high-elevation and a dampened effect downstream. The presence of reservoirs and river diversions tends to decrease the uncertainty in future streamflow predictions that are conversely very large for highly glacierized catchments. Despite uncertainty, reduced ice cover and ice melt are likely to have significant implication for aquatic biodiversity and hydropower production. The impacts can emerge without any additional climate warming. A decrease of August-September discharge and an increase of hourly

  10. Impacts of Climate Change on Water and Agricultural Production in Ten Large River Basins in China

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-xia; HUANG Ji-kun; YAN Ting-ting

    2013-01-01

    The overall goal of this paper is to examine impacts of climate change on water supply and demand balance and their consequences on agricultural production in ten river basins in China. To realize this goal, China Water Simulation Model (CWSM) is used to analyze three alternative climate scenarios (A1B, A2 and B2). The results show that the impacts of climate change on water supply and demand balance differ largely among alternative scenarios. While significant impacts of climate change on water balance will occur under the A1B scenario, the impacts of climate change under the A2 and B2 scenarios will be marginal. Under the A1B scenario, the water shortage in the river basins located in the northern China will become more serious, particularly in Liaohe and Haihe river basins, but the other river basins in the southern China will improve their water balance situations. Despite larger impacts of climate change on water balance in the northern China, its impacts on total crops’ production will be moderate if farmers would be able to reallocate water among crops and adjust irrigated and rainfed land. The paper concludes with some policy implications.

  11. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  12. Assessing the Economic Impacts of Climate Change on Agriculture in Egypt : A Ricardian Approach

    OpenAIRE

    Eid, Helmy M.; El-Marsafawy, Samia M.; Ouda, Samiha A.

    2007-01-01

    This study employed the Ricardian approach to measure the economic impacts of climate change on farm net revenue in Egypt. Farm net revenue were regressed against climate, soil, socioeconomic and hydrological variables to determine which factors influence the variability of farm net revenues. 900 households from 20 governorates were interviewed. The standard Ricardian model was applied, in...

  13. Focus on Agriculture and Forestry Benefits of Reducing Climate Change Impacts

    Science.gov (United States)

    The objective of this focus issue is to present the methods and results of modeling exercises that estimate the impacts of climate change on agriculture and forestry under a consistent set of climate projections that represent futures with and without global-scale GHG mitigation....

  14. Impact of climate change on the streamflow hydrology of the Yangtze River in China

    Science.gov (United States)

    Tuotuo River basin, the source region of the Yangtze River, is the key area, where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six global climate models (GCMs) under three Respectively ...

  15. An empirical economic assessment of impacts of climate change on agriculture in Zambia

    OpenAIRE

    Jain, Suman

    2007-01-01

    This report assesses the economic impacts of climate change on agriculture in Zambia, using the Ricardian method. A multiple linear regression model with net revenue per hectare as response variable has been fitted with climate, hydrological, soil, and socioeconomic variables as explanatory variables. There is one main cropping season in Zambia, lasting from November to April. Crop product...

  16. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios

    International Nuclear Information System (INIS)

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and input data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. This paper extends that analysis to explore a range of plausible socioeconomic scenarios and emission pathways. Results from multiple climate and economic models are combined to examine the global and regional impacts of climate change on agricultural yields, area, production, consumption, prices and trade for coarse grains, rice, wheat, oilseeds and sugar crops to 2050. We find that climate impacts on global average yields, area, production and consumption are similar across shared socioeconomic pathways (SSP 1, 2 and 3, as we implement them based on population, income and productivity drivers), except when changes in trade policies are included. Impacts on trade and prices are higher for SSP 3 than SSP 2, and higher for SSP 2 than for SSP 1. Climate impacts for all variables are similar across low to moderate emissions pathways (RCP 4.5 and RCP 6.0), but increase for a higher emissions pathway (RCP 8.5). It is important to note that these global averages may hide regional variations. Projected reductions in agricultural yields due to climate change by 2050 are larger for some crops than those estimated for the past half century, but smaller than projected increases to 2050 due to rising demand and intrinsic productivity growth. Results illustrate the sensitivity of climate change impacts to differences in socioeconomic and emissions pathways. Yield impacts increase at high emissions levels and vary with changes in population, income and technology, but are reduced in all cases by endogenous changes in prices and other variables. (paper)

  17. Preliminary study on impact assessment of climate change on building risks induced by typhoons in Japan

    DEFF Research Database (Denmark)

    Nishijima, Kazuyoshi; Maruyama, Takashi; Graf, Mathias

    The present paper investigates possible impacts of the climate change on building risks caused by typhoons. The inputs to this investigation are: (1) outcomes from the numerical simulations with a Global Climate Model (GCM) developed under the framework of the KAKUSHIN program, (2) statistics...... on building damage in the event of Typhoon Songda, and (3) numerical simulation of the wind field induced by the typhoon Songda with the JMA Non- Hydrostatic Model (JMA-NHM). The first input is utilized to develop two sets of probabilistic typhoon models; i.e. corresponding to the current climate...... and the future climate subject to the climate change, whereas the other inputs are utilized to develop a model for structural performance of buildings. Taking basis in these models, changes of building risks under the climate change are investigated. The result shows that the building risks slightly decrease...

  18. Ozone depletion and climate change: impacts on UV radiation.

    Science.gov (United States)

    Bais, A F; McKenzie, R L; Bernhard, G; Aucamp, P J; Ilyas, M; Madronich, S; Tourpali, K

    2015-01-01

    We assess the importance of factors that determine the intensity of UV radiation at the Earth's surface. Among these, atmospheric ozone, which absorbs UV radiation, is of considerable importance, but other constituents of the atmosphere, as well as certain consequences of climate change, can also be major influences. Further, we assess the variations of UV radiation observed in the past and present, and provide projections for the future. Of particular interest are methods to measure or estimate UV radiation at the Earth's surface. These are needed for scientific understanding and, when they are sufficiently sensitive, they can serve as monitors of the effectiveness of the Montreal Protocol and its amendments. Also assessed are several aspects of UV radiation related to biological effects and health. The implications for ozone and UV radiation from two types of geoengineering methods that have been proposed to combat climate change are also discussed. In addition to ozone effects, the UV changes in the last two decades, derived from measurements, have been influenced by changes in aerosols, clouds, surface reflectivity, and, possibly, by solar activity. The positive trends of UV radiation observed after the mid-1990s over northern mid-latitudes are mainly due to decreases in clouds and aerosols. Despite some indications from measurements at a few stations, no statistically significant decreases in UV-B radiation attributable to the beginning of the ozone recovery have yet been detected. Projections for erythemal irradiance (UVery) suggest the following changes by the end of the 21(st) century (2090-2100) relative to the present time (2010-2020): (1) Ozone recovery (due to decreasing ozone-depleting substances and increasing greenhouse gases) would cause decreases in UVery, which will be highest (up to 40%) over Antarctica. Decreases would be small (less than 10%) outside the southern Polar Regions. A possible decline of solar activity during the 21(st) century

  19. Climate Change Impacts on the Built Environment in the United States and Implications for Sustainability

    Science.gov (United States)

    Quattrochi, Dale A.

    2012-01-01

    As an integral part of the National Climate Assessment (NCA), technical assessment reports for 13 regions in the U.S. that describe the scientific rationale to support climate change impacts within the purview of these regions, and provide adaptation or mitigation measures in response to these impacts. These technical assessments focus on climate change impacts on sectors that are important environmental, biophysical, and social and economic aspects of sustainability within the U.S.: Climate change science, Ecosystems and biodiversity, Water resources, Human health, Energy supply and use, Water/energy/land use, Transportation, Urban/infrastructure/vulnerability, Agriculture, Impacts of climate change on tribal/indigenous and native lands and resources, Forestry, Land use/land cover change, Rural communities development, and Impacts on biogeochemical cycles, with implications for ecosystems and biodiversity. There is a critical and timely need for the development of mitigation and adaptation strategies in response to climate change by the policy and decision making communities, to insure resiliency and sustainability of the built environment in the future.

  20. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  1. The impact of climate change on the global wine industry: Challenges & solutions

    Directory of Open Access Journals (Sweden)

    Michelle Renée Mozell

    2014-12-01

    Full Text Available This paper explores the impact of climate change upon the global production of winegrapes and wine. It includes a review of the literature on the cause and effects of climate change, as well as illustrations of the specific challenges global warming may bring to the production of winegrapes and wine. More importantly, this paper provides some practical solutions that industry professionals can take to mitigate and adapt to the coming change in both vineyards and wineries.

  2. European Forests and Carbon Sequestration Services: An Economic Assessment of Climate Change Impacts

    OpenAIRE

    Ding, Helen; Nunes, Paulo A. L. D.; Sonja S. Teelucksingh

    2010-01-01

    This paper reports an original economic valuation of the impact of climate change on the provision of forest regulating services in Europe. To the authors' knowledge the current paper represents the first systematic attempt to estimate human well-being losses with respect to changes in biodiversity and forest regulating services that are directly driven by climate change. First, selected 34 European countries are grouped by their latitude intervals to capture the differentiated regional effec...

  3. Honey Production for Assessing the Impact of Climatic Changes on Vegetation

    OpenAIRE

    Schweitzer, P.; Nombré, I.; Boussim, JI.

    2013-01-01

    Burkina Faso is experiencing the effects of climate change in all sectors of its agriculture, including honey production. This study assessed the impact of climatic factors on countries' vegetation through honey production. Honey production of nine apiaries consisting of 165 rectangular movable frames beehives was monitored over a seven year period starting from 2002 to 2008. Climatic data such as rainfall, temperature and wind speed were obtained from the nearest meteorological station. Line...

  4. Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa

    Science.gov (United States)

    Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.

    2013-12-01

    Agriculture in Sub-Saharan Africa (SSA) drives the economy of many African countries and it is mainly rain-fed agriculture used for subsistence. Increasing temperatures, changed precipitation patterns and more frequent droughts may lead to a substantial decrease of crop yields. The projected impacts of future climate change on agriculture are expected to be significant and extensive in the SSA due to the shortening of the growing seasons and the increasing of water-stress risk. Differences in Agro-Ecological Zones and geographical characteristics of SSA influence the diverse impacts of climate change, which can greatly differ across the continent and within countries. The vulnerability of African Countries to climate change is aggravated by the low adaptive capacity of the continent, due to the increasing of its population, the widespread poverty, and other social factors. In this contest, the assessment of climate change impact on agricultural sector has a particular interest to stakeholder and policy makers, in order to identify specific agricultural sectors and Agro-Ecological Zones that could be more vulnerable to changes in climatic conditions and to develop the most appropriate policies to cope with these threats. For these reasons, the evaluation of climate change impacts for key crops in SSA was made exploring climate uncertainty and focusing on short period monitoring, which is particularly useful for food security and risk management analysis. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT-CSM are tools that allow to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were used, after a parameterization phase, to evaluate climate change impacts on crop phenology and production

  5. Using Copernicus earth observation services to monitor climate change impacts and adaptations

    Science.gov (United States)

    Becker, Daniel; Zebisch, Marc; Sonnenschein, Ruth; Schönthaler, Konstanze; von Andrian-Werburg, Stefan

    2016-04-01

    In the last years, earth observation made a big leap towards an operational monitoring of the state of environment. Remote sensing provides for instance information on the dynamics, trends and anomalies of snow and glaciers, vegetation, soil moisture or water temperature. In particular, the European Copernicus initiative offers new opportunities through new satellites with a higher temporal and spatial resolution, operational services for environmental monitoring and an open data access policy. With the Copernicus climate change service and the ESA climate change initiative, specific earth observation programs are in place to address the impacts of climate change. However, such products and services are until now rarely picked up in the field of policy or decision making oriented climate impact or climate risk assessments. In this talk, we will present results of a study, which focus on the question, if and how remote sensing approaches could be integrated into operational monitoring activities of climate impacts and response measures on a national and subnational scale. We assessed all existing and planned Copernicus services regarding their relevance for climate impact monitoring by comparing them against the indication fields from an indicator system for climate impact and response monitoring in Germany, which has lately been developed in the framework of the German national adaptation strategy. For several climate impact or response indicators, an immediate integration of remote sensing data could be identified and been recommended. For these cases, we will show practical examples on the benefit of remote sensing data. For other indication fields, promising approaches were found, which need further development. We argue that remote sensing is a very valuable complement to the existing indicator schemes by contributing with spatial explicit, timely information but not always easy to integrate with classical approaches, which are oriented towards consistent long

  6. Assessing climate change impacts on the Iberian power system using a coupled water-power model

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Madsen, Henrik; Arnbjerg-Nielsen, Karsten;

    2014-01-01

    , these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal......Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However...... patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes...

  7. Impacts and adaptation of European crop production systems to climate change

    DEFF Research Database (Denmark)

    Olesen, Jørgen E; Trnka, M; Kersebaum, K C;

    2011-01-01

    of climate and climate change on agriculture in Europe was distributed to agro-climatic and agronomy experts in 26 countries. Europe was divided into 13 Environmental Zones (EZ). In total, we had 50 individual responses for specific EZ. The questionnaires provided both country and EZ specific information...... in the questionnaires show a surprisingly high proportion of negative expectations concerning the impacts of climate change on crops and crop production throughout Europe, even in the cool temperate northern European countries. The expected impacts, both positive and negative, are just as large in northern Europe......The studies on anthropogenic climate change performed in the last decade over Europe show consistent projections of increases in temperature and different patterns of precipitation with widespread increases in northern Europe and decreases over parts of southern and eastern Europe. In many...

  8. A model validation framework for climate change projection and impact assessment

    DEFF Research Database (Denmark)

    Madsen, Henrik; Refsgaard, Jens C.; Andréassian, Vazken;

    2014-01-01

    using proxies of future conditions. In general, a model that has been setup for solving a specific problem at a particular site should be tested in order to document its predictive capability and credibility. In a climate change context such tests, often referred to as model validations tests, are......Models used for projection of climate change and its impacts are usually not validated for simulation of future climate conditions. This is a serious deficiency that introduces an unknown level of uncertainty in the projections. A framework and guiding principles are presented for testing models...... particularly challenging since the model is used for an unknown future with a climate that is significantly different from current conditions. Most model studies reported on projections of climate change and its impacts have not included formal model validation tests that address this issue. A model validation...

  9. Hydrological cycle and climate change over France: mechanisms, uncertainties, impacts on water resources

    International Nuclear Information System (INIS)

    Discrepancies between climate models results over France are largely due to the complexity of mechanisms involved in the continental water cycle and thus on the ensuing uncertainties in the impact of the anthropological climate changes.This article presents the feedback mechanisms involved and emphasizes the importance for climate models to properly represent the hydrological cycle of today's climate. This is particularly critical to forecast the effect of climate change in summer over France, and more broadly, over the wide transition zone between Northern and Southern Europe. For these areas, a better understanding of the changes in the atmospheric circulation over the North Atlantic is also necessary. Ending with an impact study, this paper highlights that with today's understanding, important consequences are to be expected on water supply over France. (author)

  10. Research on Climate Change and Its Impacts Needs Freedom of Research

    Directory of Open Access Journals (Sweden)

    Nicole Mölders

    2013-12-01

    Full Text Available Climate change captured my interest as a teenager when, at the dining table, my dad talked about potential anthropogenic climate changes. He brought up subjects such as “climate could change if the Siberian Rivers were to be deviated to the South for irrigation of the (semi arid areas of the former Soviet Union”. Other subjects were afforestation in the Sahel to enhance precipitation recycling, deforestation in the Tropics that could have worldwide impacts on climate, the local climate impacts of the Merowe High Dam in its vicinity and downstream, Atlantropa, a new ice age, and the increase in days with sunshine after the introduction of the high-chimney policy in the Rhein-Ruhr area, just to mention a few.

  11. Climatic projections and socio economic impacts of the climatic change in Colombia

    International Nuclear Information System (INIS)

    For the task of working out climate change projections, different methodologies have been in use, from simple extrapolations to sophisticated statistical and mathematical tools. Today, the tools most used are the models of the general circulation of the atmosphere and ocean, which include many processes of other climate components (biosphere, cryosphere, continental surface models, etc.). Different global and regional scenarios have been generated with those models. They may be of great utility in calculating projections and future scenarios for Colombia, but the representation of the country's climate in those models has to be improved in order to get projections with a higher level of certainty. The application of climate models and of the techniques of down scaling in studies of climate change is new both in Colombia and tropical America, and was introduced through the National University of Colombia's project on local and national climate change. In the first phase of the project, version 3 of the CCM (Climate Community Model) of NCAR was implemented. Parallel to that, and based on national (grid) data, maps have been prepared of the monthly temperature and precipitation of Colombia, which were used to validate the model

  12. Adaptation to Climate change Impacts on the Mediterranean islands' Agriculture (ADAPT2CLIMA)

    Science.gov (United States)

    Giannakopoulos, Christos; Karali, Anna; Lemesios, Giannis; Loizidou, Maria; Papadaskalopoulou, Christina; Moustakas, Konstantinos; Papadopoulou, Maria; Moriondo, Marco; Markou, Marinos; Hatziyanni, Eleni; Pasotti, Luigi

    2016-04-01

    Agriculture is one of the economic sectors that will likely be hit hardest by climate change, since it directly depends on climatic factors such as temperature, sunlight, and precipitation. The EU LIFE ADAPT2CLIMA (http://adapt2clima.eu/en/) project aims to facilitate the development of adaptation strategies for agriculture by deploying and demonstrating an innovative decision support tool. The ADAPT2CLIMA tool will make it possible to simulate the impacts of climate change on crop production and the effectiveness of selected adaptation options in decreasing vulnerability to climate change in three Mediterranean islands, namely Crete (Greece), Sicily (Italy), and Cyprus. The islands were selected for two reasons: firstly, they figure among the most important cultivation areas at national level. Secondly, they exhibit similarities in terms of location (climate), size, climate change threats faced (coastal agriculture, own water resources), agricultural practices, and policy relevance. In particular, the tool will provide: i) climate change projections; ii) hydrological conditions related to agriculture: iii) a vulnerability assessment of selected crops; iv) an evaluation of the adaptation options identified. The project is expected to contribute significantly to increasing climate resilience of agriculture areas in Sicily, Cyprus and Crete as well as at EU and international level by: • Developing, implementing and demonstrating an innovative and interactive decision support tool (ADAPT2CLIMA tool) for adaptation planning in agriculture that estimates future climate change impacts on local water resources, as well as the climate change vulnerability of the agricultural crop production in the project areas; • Evaluating the technical and economic viability of the implementation of the ADAPT2CLIMA tool; • Developing climate change adaptation strategies for agriculture (including a monitoring plan) for the three project areas and presenting them to the competent

  13. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    Science.gov (United States)

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  14. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models

    NARCIS (Netherlands)

    Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; Ittersum, van M.K.

    2015-01-01

    Exploring adaptation strategies for different climate change scenarios to support agricultural production and food security is a major concern to vulnerable regions, including Ethiopia. This study assesses the potential impacts of climate change on maize yield and explores specific adaptation option

  15. Climate Change Impacts on Forest Succession and Future Productivity

    Science.gov (United States)

    Mohan, J. E.; Melillo, J. M.; Clark, J. S.; Schlesinger, W. H.

    2012-12-01

    Change in ecosystem carbon (C) dynamics with forest succession is a long-studied topic in ecology, and secondary forests currently comprise a significant proportion of the global land base. Although mature forests are generally more important for conserving species and habitats, early successional trees and stands typically have higher rates of productivity, including net ecosystem productivity (NEP), which represents carbon available for sequestration. Secondary forests undergoing successional development are thus major players in the current global carbon cycle, yet how forests will function in the future under warmer conditions with higher atmospheric carbon dioxide (CO2) concentrations is unknown. Future forest C dynamics will depend, in part, on future species composition. Data from "Forests of the Future" research in a number of global change experiments provide insights into how forests may look in terms of dominant species composition, and thus function, in a future world. Studies at Free-Air Carbon Dioxide (FACE) experiments at Duke Forest and other facilities, plus climate warming experiments such as those at the Harvard Forest, suggest a common underlying principle of vegetation responses to environmental manipulation: Namely, that shade-tolerant woody species associating with arbuscular mycorrhizal (AM) fungi show greater growth stimulation than ectomycorrhizal-associating (ECM) trees which are more common in temperate and boreal forests (Fig. 1 of relative growth rates standardized by pre-treatment rates). This may be due in part to the role of AM fungi in obtaining soil phosphorus and inorganic forms of nitrogen for plant associates. In combination, these results suggest a shift in future forest composition towards less-productive tree species that generally acquire atmospheric CO2 at lower annual rates, as well as a competitive advantage extended to woody vines such as poison ivy. Due to higher atmospheric CO2 and warmer temperatures, forests of the

  16. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.;

    and marginal costs of the power producers. Two effects of climate change on the power system were studied: changes in the hydropower production caused by changes in precipitation and temperature, and changes in the electricity demand over the year caused by temperature changes. A rainfall-runoff model......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...

  17. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater

    Science.gov (United States)

    Semadeni-Davies, Annette; Hernebring, Claes; Svensson, Gilbert; Gustafsson, Lars-Göran

    2008-02-01

    SummaryAssessment of the potential impact of climate change on water systems has been an essential part of hydrological research over the last couple of decades. However, the notion that such assessments should also include other changes is relatively recent. In this study, the potential impacts of climate change and continued urbanisation on stormwater flows to a suburban stream, Helsingborg, south Sweden, have been assessed using drainage simulations for present conditions as well as two climate (medium and high gas emission) and two water management storylines for subdivision. Climate change was simulated by altering a high-resolution rainfall record according to the climate-change signal derived from a regional climate model. Subdivision and urbanisation was simulated by altering model parameters chosen to reflect current trends in demographics and water management. The simulations were run for a 15 month period. It was found that city growth and projected increases in heavy rainfalls, both together and alone, are set to raise peak flow volumes and increase flood risk. Conversely, installation of a sustainable urban drainage system (SUDS) has a positive effect on the urban environment in general and can largely allay the adverse impacts of change road. The relative impacts of changes in climate and urbanisation are assessed for the combined sewer system which serves central Helsingborg in Semadeni-Davies et al. [Semadeni-Davies A., Hernebring, C., Svensson, G., Gustafsson, L.G., 2008. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: combined sewer system. J. Hydrol. 350 (1-2), 100-113.

  18. Impact of climate Change on Groundwater Recharge in the Tiber River Basin (Central Italy) Using Regional Climate model Outputs

    Science.gov (United States)

    Muluneh, F. B.; Setegn, S. G.; Melesse, A. M.; Fiori, A.

    2011-12-01

    Quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by many internal and external drivers. Changes in climate variables can affect the quantity and quality of various components of hydrological cycle. Among others, the local effects of climate change on groundwater resources were not fully studied in different part of the world as compared to the surface water. Moreover, understanding the potential impact of climate change on groundwater is more complex than surface water. The main objective of this study is to analyze the potential impact of climate change on Groundwater recharge in the Tiber River Basin using outputs from Regional Climate model. In this study, a physically-based watershed model called Soil Water Assessment Tool (SWAT) was used to estimate recharge characteristics and its response to climate change in Tiber River Basin (central Italy). The SWAT model was successfully calibrated and validated using observed weather and flow data for the period of 1963-1970 and 1971-1978 respectively. During calibration, the model was highly sensitivity to groundwater flow parameters. Dynamically downscaled rainfall and temperature datasets from ten Regional Climate Models (RCM) archived in 'Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects (PRUDENCE)' were used to force the model to assess the climate change impact on the study area. A quantile-mapping statistical correction procedure was applied to the RCM dataset to correct the inherent systematic biases. The climate change analysis indicated that by the end of 2080s the rainfall was found to decrease nearly up to 40% in dry period and there was an increase in temperature that could reach as high as 3 to 5 oC. By the end of 2080s the ground water recharge shows a decreasing trend as a response to changes in rainfall. However as the timing of both precipitation and

  19. Impact of climate change on crop yield and role of model for achieving food security.

    Science.gov (United States)

    Kumar, Manoj

    2016-08-01

    In recent times, several studies around the globe indicate that climatic changes are likely to impact the food production and poses serious challenge to food security. In the face of climate change, agricultural systems need to adapt measures for not only increasing food supply catering to the growing population worldwide with changing dietary patterns but also to negate the negative environmental impacts on the earth. Crop simulation models are the primary tools available to assess the potential consequences of climate change on crop production and informative adaptive strategies in agriculture risk management. In consideration with the important issue, this is an attempt to provide a review on the relationship between climate change impacts and crop production. It also emphasizes the role of crop simulation models in achieving food security. Significant progress has been made in understanding the potential consequences of environment-related temperature and precipitation effect on agricultural production during the last half century. Increased CO2 fertilization has enhanced the potential impacts of climate change, but its feasibility is still in doubt and debates among researchers. To assess the potential consequences of climate change on agriculture, different crop simulation models have been developed, to provide informative strategies to avoid risks and understand the physical and biological processes. Furthermore, they can help in crop improvement programmes by identifying appropriate future crop management practises and recognizing the traits having the greatest impact on yield. Nonetheless, climate change assessment through model is subjected to a range of uncertainties. The prediction uncertainty can be reduced by using multimodel, incorporating crop modelling with plant physiology, biochemistry and gene-based modelling. For devloping new model, there is a need to generate and compile high-quality field data for model testing. Therefore, assessment of

  20. Impact of climate change on crop yield and role of model for achieving food security.

    Science.gov (United States)

    Kumar, Manoj

    2016-08-01

    In recent times, several studies around the globe indicate that climatic changes are likely to impact the food production and poses serious challenge to food security. In the face of climate change, agricultural systems need to adapt measures for not only increasing food supply catering to the growing population worldwide with changing dietary patterns but also to negate the negative environmental impacts on the earth. Crop simulation models are the primary tools available to assess the potential consequences of climate change on crop production and informative adaptive strategies in agriculture risk management. In consideration with the important issue, this is an attempt to provide a review on the relationship between climate change impacts and crop production. It also emphasizes the role of crop simulation models in achieving food security. Significant progress has been made in understanding the potential consequences of environment-related temperature and precipitation effect on agricultural production during the last half century. Increased CO2 fertilization has enhanced the potential impacts of climate change, but its feasibility is still in doubt and debates among researchers. To assess the potential consequences of climate change on agriculture, different crop simulation models have been developed, to provide informative strategies to avoid risks and understand the physical and biological processes. Furthermore, they can help in crop improvement programmes by identifying appropriate future crop management practises and recognizing the traits having the greatest impact on yield. Nonetheless, climate change assessment through model is subjected to a range of uncertainties. The prediction uncertainty can be reduced by using multimodel, incorporating crop modelling with plant physiology, biochemistry and gene-based modelling. For devloping new model, there is a need to generate and compile high-quality field data for model testing. Therefore, assessment of

  1. Air Pollution and Climate Change Health Impact Assessment. The ACHIA Project

    International Nuclear Information System (INIS)

    Climate change may affect human health via interactions with air pollutants such as ozone and PM2.5. These air pollutants are linked to climate because they can be both affected by and have effects on climate. In coming decades, substantial, cost-effective improvements in public health may be achieved with well-planned strategies to mitigate climate impacts while also reducing health effects of ozone and PM2.5. Climate mitigation actions affect greenhouse pollutant emissions, including methane and black carbon, but also may affect other key air pollution precursors such as NOx, CO, and SOx. To better understand the potential of such strategies, studies are needed that assess possible future health impacts under alternative assumptions about future emissions and climate across multiple spatial scales. The overall objective of this project is to apply state of the art climate, air quality, and health modelling tools to assess future health impacts of ozone and PM2.5 under different IPCCs scenario of climate change, focusing specifically on pollution-related health co-benefits which could be achieved under alternative climate mitigation pathways in the period 2030-2050. This question will be explored at three spatial scales: global, regional (Europe), and urban (Paris). ACHIA is comprised of an integrated set of four work packages: WP1. Global Climate and Air Pollution Impacts of Alternative Emissions Pathways; WP2. Climate and Air Quality at Regional and Urban Scales: Results for Europe and Paris; WP3. Health Impact Assessment; WP4. Dissemination, Evaluation, Management. ACHIA is designed to create an interdisciplinary approach to the impacts of climate change on health through air quality changes, and to start longer-term collaborations between communities. We expect the project to advance state of art across all WPs, with important implications for research groups around the world. A particular innovation of the project is the multi-scale aspect, i.e., the analysis

  2. Impact of Climate Change on Urban Agglomerations in China's Coastal Region

    Institute of Scientific and Technical Information of China (English)

    Dong Suocheng; Tao Shu; YangWangzhou; Li Fei; LiShuangcheng; Li Yu; Liu Hongyan

    2012-01-01

    Climate change and urbanization issues are the two key factors that make humans liable to be affected by disasters, which are overlapped in urban agglomeration. The five big urban agglom- erations of China with strong economic power are the important engines for national economic and social development. However, being in the sea-land mutual interaction belts with a vast hazard- bearing body, they are affected by sea-land compound disasters, and are liable to suffer heavy disaster losses with climate change. It is suggested that government departments concerned should fully recognize the impact of climate change on coastal urban ag- glomerations, propose strategies as soon as possible, and integrate the impact of climate change and adaptation countermeasures into the various kinds of social-economic development plans for coastal urban regions.

  3. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings

    DEFF Research Database (Denmark)

    Willems, P.; Arnbjerg-Nielsen, Karsten; Olsson, J.;

    2012-01-01

    Cities are becoming increasingly vulnerable to flooding because of rapid urbanization, installation of complex infrastructure, and changes in the precipitation patterns caused by anthropogenic climate change. The present paper provides a critical review of the current state-of-the-art methods...... for assessing the impacts of climate change on precipitation at the urban catchment scale. Downscaling of results from global circulation models or regional climate models to urban catchment scales are needed because these models are not able to describe accurately the rainfall process at suitable high temporal...... of average precipitation.In this paper, following an overview of some recent advances in the development of innovative methods for assessing the impacts of climate change on urban rainfall extremes as well as on urban hydrology and hydraulics, several existing difficulties and remaining challenges in dealing...

  4. The impact of climate change on photovoltaic power generation in Europe

    Science.gov (United States)

    Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; María López-Romero, Jose; Thais, Françoise; Bartok, Blanka; Bøssing Christensen, Ole; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin

    2016-04-01

    Ambitious climate change mitigation plans call for a significant increase in use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared to the estimations made under current climate conditions should be in the range [-14%;+2%], with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. Reference: S. Jerez, I. Tobin, R. Vautard, J.P. Montávez, J.M. López-Romero, F. Thais, B. Bartok, O.B. Christensen, A. Colette, M. Déqué, G. Nikulin, S. Kotlarski, E. van Meijgaard, C. Teichmann and M. Wild (2015). The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 6, 10014, doi: 10.1038/ncomms10014.

  5. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape.

  6. Climatic change impacts, adaptation and associated costs in France. Intermediate report. June 2008

    International Nuclear Information System (INIS)

    This report aims at promoting the awareness of sector-based and land challenges of climate change in terms of impacts. It gives a wide overview of the present knowledge on sector-based vulnerabilities, and allows the identification of some paths for the alleviation of these vulnerabilities. After a discussion of objectives and context, of methodological choices (data, modalities to take impacts and adaptation into account, impact assessment approach) thematic woks are reported. They are dealing with health (population vulnerability to climate change with the example of 2006 heat wave), agriculture, forest and water, energy, tourism, natural risks and insurance, territories. For each of these topics, the reports discusses vulnerability aspects, the present knowledge about the impact of climate change, and identifies the core problems as well as studies which remain to be performed

  7. Climate change impacts on main agricultural activities in the Oltenia Plain (Romania)

    Science.gov (United States)

    Mitrica, B.; Mateescu, E.; Dragota, C.; Busuioc, A.; Grigorescu, I.; Popovici, A.

    2012-04-01

    Understanding the key drivers of agriculture in relation to climate change as well as their interrelationship with land management decisions and policies, one may be able to project future agricultural productions under certain economic, environmental, and social scenarios in order to minimize their negative impacts. The paper is aiming to stress upon the importance of modelling the potential impact of climate change on crop production, particularly under the current conditions when natural resources and food supplies are shortening in many parts of the world. Under the given circumstances, in assessing the impact of climate change on agriculture in the Oltenia Plain, the authors used a simulation model CERES (Crop-Environment Resource Synthesis), developed as a predictive and deterministic model, used for basic and applied research on the effects of climate (thermal regime, water stress) and management (fertilization practices, irrigation) on the growth and yield of different crops. In assessing the impact of climate change on maize and autumn wheat crops two applications of CERES model were used: CERES-Wheat and CERES-Maize overlapping two regional climatic scenarios for 2021-2050 and 2071-2100 periods. These models describe, based on daily data the basic biophysical processes which take place at the soil-plant-atmosphere interface as a response to the variability of different processes such as: photosynthesis, specific phonological phases, evapotranspiration, water dynamics in soil etc. Assessing the impact of climate change on agricultural productivity under the two regional climatic scenarios (2021-2050 and 2071-2100) will reveal their potential consequences on the main agricultural crops in the Oltenia Plain (autumn wheat and maize) depending on the interaction between local climatic conditions, the effect rising CO2 on photosynthesis and the genetical type of crops. Therefore, the autumn wheat benefits from the interaction between the rise of CO2 and air

  8. The cascade of uncertainty in modeling the impacts of climate change on Europe's forests

    Science.gov (United States)

    Reyer, Christopher; Lasch-Born, Petra; Suckow, Felicitas; Gutsch, Martin

    2015-04-01

    Projecting the impacts of global change on forest ecosystems is a cornerstone for designing sustainable forest management strategies and paramount for assessing the potential of Europe's forest to contribute to the EU bioeconomy. Research on climate change impacts on forests relies to a large extent on model applications along a model chain from Integrated Assessment Models to General and Regional Circulation Models that provide important driving variables for forest models. Or to decision support systems that synthesize findings of more detailed forest models to inform forest managers. At each step in the model chain, model-specific uncertainties about, amongst others, parameter values, input data or model structure accumulate, leading to a cascade of uncertainty. For example, climate change impacts on forests strongly depend on the in- or exclusion of CO2-effects or on the use of an ensemble of climate models rather than relying on one particular climate model. In the past, these uncertainties have not or only partly been considered in studies of climate change impacts on forests. This has left managers and decision-makers in doubt of how robust the projected impacts on forest ecosystems are. We deal with this cascade of uncertainty in a structured way and the objective of this presentation is to assess how different types of uncertainties affect projections of the effects of climate change on forest ecosystems. To address this objective we synthesized a large body of scientific literature on modeled productivity changes and the effects of extreme events on plant processes. Furthermore, we apply the process-based forest growth model 4C to forest stands all over Europe and assess how different climate models, emission scenarios and assumptions about the parameters and structure of 4C affect the uncertainty of the model projections. We show that there are consistent regional changes in forest productivity such as an increase in NPP in cold and wet regions while

  9. Costing the impact of climate change on tourism in Europe: results of the PESETA project. Climatic Change

    NARCIS (Netherlands)

    Amelung, B.; Moreno, A.

    2012-01-01

    Climate change might lead to large shifts in tourist flows, with large economic implications. This article simulates the effect of future climate change by the 2080s on outdoor international tourism expenditure within Europe. The assessment is based on the statistical relationship between bed nights

  10. Climatic change

    International Nuclear Information System (INIS)

    This book proposes both a scientific and societal approach of a phenomenon which is today the object of lot of debates. Climates perception is illustrated with examples taken in various modern civilizations and in the history of mankind. The Sahara example illustrates the notion of climate evolution. The last chapters are devoted to forecasting and scenarios for the future, taking into account the share of uncertainty. The controversies generated by these forecasts and the Kyoto protocol stakes demonstrate the tight links between the scientific, economical and political aspects in climatic change debates. (J.S.)

  11. Impacts of Climate Change on Stream Flow in the Upper Mississippi River Basin: A Regional Climate Model Perspective, The

    OpenAIRE

    Manoj Jha; Zaitao Pan; Takle, Eugene S.; Roy Gu

    2003-01-01

    We evaluate the impact of climate change on stream flow in the Upper Mississippi River Basin (UMRB) by using a regional climate model (RCM) coupled with a hydrologic model, the Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated and validated against measured stream flow data using observed weather data and inputs from the Environmental Protection Agency's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) geographical information/database system. The c...

  12. Climate Change

    OpenAIRE

    The IJOEM

    2010-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathways could stabilise the global average atmospheric concentration of greenhouse gases (GHG) at 450 ppm, the level which has a 50% chance of keeping the temperature rise to 2 oC? What policies are nee...

  13. Impact of Climate Change on Groundwater Resources in the Klela Basin, Southern Mali

    OpenAIRE

    Adama Toure; Bernd Diekkrüger; Adama Mariko

    2016-01-01

    Investigations of groundwater resources in order to understand aquifer system behavior are vital to the inhabitants of the Klela Basin, Mali, because groundwater is the only permanent water resource and is used for drinking water and irrigation. Due to climate change, this vital resource is being threatened. Therefore, MODFLOW was applied in this study to simulate groundwater dynamics. The aim of this study was to evaluate the impact of climate change on groundwater resources in the Klela bas...

  14. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations

    OpenAIRE

    Rylander, Charlotta; Odland, Jon Ø; Sandanger, Torkjel M.

    2011-01-01

    Background: In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are d...

  15. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations.

    OpenAIRE

    Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2011-01-01

    In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed ...

  16. Estimation of climate change impact on dead fuel moisture at local scale by using weather generators

    Science.gov (United States)

    Pellizzaro, Grazia; Bortolu, Sara; Dubrovsky, Martin; Arca, Bachisio; Ventura, Andrea; Duce, Pierpaolo

    2015-04-01

    The moisture content of dead fuel is an important variable in fire ignition and fire propagation. Moisture exchange in dead materials is controlled by physical processes, and is clearly dependent on atmospheric changes. According to projections of future climate in Southern Europe, changes in temperature, precipitation and extreme events are expected. More prolonged drought seasons could influence fuel moisture content and, consequently, the number of days characterized by high ignition danger in Mediterranean ecosystems. The low resolution of the climate data provided by the general circulation models (GCMs) represents a limitation for evaluating climate change impacts at local scale. For this reason, the climate research community has called to develop appropriate downscaling techniques. One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking a stochastic weather generator with the climate model outputs. Weather generators linked to climate change scenarios can therefore be used to create synthetic weather series (air temperature and relative humidity, wind speed and precipitation) representing present and future climates at local scale. The main aims of this work are to identify useful tools to determine potential impacts of expected climate change on dead fuel status in Mediterranean shrubland and, in particular, to estimate the effect of climate changes on the number of days characterized by critical values of dead fuel moisture. Measurements of dead fuel moisture content (FMC) in Mediterranean shrubland were performed by using humidity sensors in North Western Sardinia (Italy) for six years. Meteorological variables were also recorded. Data were used to determine the accuracy of the Canadian Fine Fuels Moisture Code (FFM code) in modelling moisture dynamics of dead fuel in Mediterranean vegetation. Critical threshold values of FFM code for

  17. KLARA. Climate change - impacts, risks, adaptation; KLARA. Klimawandel - Auswirkungen, Risiken, Anpassung

    Energy Technology Data Exchange (ETDEWEB)

    Stock, M. (ed.)

    2005-07-15

    The regional study KLARA, an acronym for 'Climate change - impacts, risks, Adaptation', present results of investigations on different areas of potential vulnerability for the German federal state of Baden-Wuerttemberg. The areas covered are: 1. Analysis of vulnerabilities, 2. Regional climate change in Baden-Wuerttemberg, 3. Possible impacts on human health, 4. Impacts on agriculture including fruit-growing and viticulture, 5. Impacts on forestry, 6. Possible chances for tourism in the summer, 7. Impacts on nature, in particular ornithology, 8. Impacts on river navigation and use of hydropower, 9. Development of extreme events with high damage potential. An essential objective of the study is the identification of impact-reducing measures of adaptation in the areas considered. (orig.)

  18. The implication of irrigation in climate change impact assessment: a European-wide study.

    Science.gov (United States)

    Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank

    2015-11-01

    This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982-2006) and three SRES scenarios (B1, B2 and A1B, 2040-2064) under rainfed and irrigated conditions, using a process-based crop model, SIMPLACE . We found that projected climate change decreased NIR of the three winter crops in northern Europe (up to 81 mm), but increased NIR of all the six crops in the Mediterranean regions (up to 182 mm yr(-1) ). Climate change increased yields of the three winter crops and sugar beet in middle and northern regions (up to 36%), but decreased their yields in Mediterranean countries (up to 81%). Consideration of CO2 effects can alter the direction of change in NIR for irrigated crops in the south and of yields for C3 crops in central and northern Europe. Constraining the model to rainfed conditions for spring crops led to a negative bias in simulating climate change impacts on yields (up to 44%), which was proportional to the irrigation ratio of the simulation unit. Impacts on NIR and yields were generally consistent across the three SRES scenarios for the majority of regions in Europe. We conclude that due to the magnitude of irrigation and CO2 effects, they should both be considered in the simulation of climate change impacts on crop production and water availability, particularly for crops and regions with a high proportion of irrigated crop area.

  19. Improving access to data on climate change and its impacts in the Netherlands

    Science.gov (United States)

    Homan, C. D.; Bessembinder, J.; Schaap, B.; Reidsma, P.; Delsman, J.; Witte, F.; Jacobs, C.; van Bodegom, P.; Verboom, J.

    2010-09-01

    Recent research on climate change, its possible impacts and adaptation options in the Netherlands has been substantial and promising. However: Results are often not available in a format that can be used directly by stakeholders who need to develop climate adaptation strategies. For example, the information on climate change in the brochure on the KNMI'06 climate scenarios (KNMI, 2006) only indicates the percentage change in the average and extreme rainfall. However, hydrologists, ecologists and agricultural researchers need time series or statistics to simulate the impact of changes in rainfall on groundwater levels, nature and crop production. In the Netherlands several organisations work on the same discipline, for example on hydrology and ecosystems, all with their own specialisations. A cross-sectoral overview of the available data and information on climate change and its impacts is not available. Between various disciplines the results are often inconsistent. Firstly because different climate scenarios, different spatial and/or temporal scales, and different reference periods are used to compile the climate data sets. Furthermore, assumptions and simplifications made in one discipline (e.g. groundwater levels in agricultural models) may not reflect the knowledge from other disciplines (in this case hydrology). These shortcomings hamper the dissemination and proper use of data and information on climate change and its impacts. In order to overcome some of the above-mentioned shortcomings, the 'Climate Knowledge Facility - Tailoring' project was started in 2009. In this project we work on: A common web portal (pilot) to give an overview and access to data and information on climate change and its impacts for different disciplines (climate, hydrology, nature/ecology, agriculture and land use); Consultation on stakeholder requirements and feedback on the web portal; Pre- and post processing of data and information on climate, hydrology, nature

  20. Impacts of climate change on rainfall extremes and urban drainage systems: A review

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Willems, P.; Olsson, J.;

    2013-01-01

    A review is made of current methods for assessing future changes in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic-induced climate change. The review concludes that in spite of significant advances there are still many limitations in our understanding...... of how to describe precipitation patterns in a changing climate in order to design and operate urban drainage infrastructure. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified and suitable solutions implemented. Design and optimization of urban...... drainage infrastructure considering climate change impacts and co-optimizing these with other objectives will become ever more important to keep our cities habitable into the future. © IWA Publishing 2013....

  1. Predicting the impact of climate change on threatened species in UK waters.

    Directory of Open Access Journals (Sweden)

    Miranda C Jones

    Full Text Available Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis and angelshark (Squatina squatina.

  2. The last decade in ecological climate change impact research: where are we now?

    Science.gov (United States)

    Jaeschke, Anja; Bittner, Torsten; Jentsch, Anke; Beierkuhnlein, Carl

    2014-01-01

    Climate change is increasingly affecting organisms and ecosystems. The amount of research and the number of articles in this field is overwhelming. However, single studies necessarily consider limited aspects. Hence, there is an increasing need for structuring the research approaches and findings in climate change research in order to direct future action in an efficient way towards research gaps and areas of uncertainty. Here, we review the current state of knowledge accumulated over the last 10 years (2003-2012) about impacts of climate change on species and ecosystems. Almost 1,200 articles of the scientific literature listed in the ISI Web of Science are analysed. We explore the geographical distribution of knowledge gain, the studied taxonomic groups, ecosystems and environmental parameters as well as the applied methods. Several knowledge gaps arise. Most of the first authors of the analysed articles are residents of North America, Australia or Europe. A similar pattern is found for the study areas. Vascular plants and therewith forests are the most studied taxonomic group and ecosystem. The use of models to estimate potential impacts of climate change is well established in climate change impact research and is continuously developing. However, there is a lack of empirical data derived from experimental climate change simulations. In a rapidly evolving research landscape, this review aims at providing an overview of the current patterns of knowledge distribution and research demands arising from knowledge gaps and biases. Our results should help to identify future research needs and priorities.

  3. Climate change impacts on the Sundarbans mangrove ecosystem services and dependent livelihoods in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Shams Uddin

    2013-12-01

    Full Text Available The Sundarbans mangrove forest of Bangladesh provides ecosystem services having great importance for local livelihoods, national economy and global environment. Nevertheless, the Sundarbans is threatened by various natural and anthropogenic pressures including climate change. This paper presents the potential impacts of climate change on the ecosystem services of the Sundarbans and the forest dependent livelihoods. Both secondary information on climate change impacts and primary data on forest dependent livelihoods were used for the analysis. Recent study revealed that the suitable area of two dominant tree species ofthe Sundarbans - Sundri (Heritiera fomes and Gewa (Excoecaria agallocha may be decreased significantly by the year 2100 due to sea level rise (88 cm in the Sundarbans compared to the year 2001, which may be reduce the timber stock of those trees. This indicates the potential loss of economic value of the key provisioning services of Sundarbans. Similarly, the other ecosystem services (e.g. fisheries, tourism, biodiversity, carbon sequestration, etc. maybe affected by climate change. Consequently, the forest dependent livelihoods would be affected by the degraded ecosystem services of the forest. Further studies should quantify the impacts of climate change on all the ecosystem services and explore the potential loss and opportunities in future. A new paradigm of management should look forward considering climate change, ecological integrity, sustainable harvesting and ensuring continuity of the ecosystem services of the Sundarbans.

  4. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt.

    OpenAIRE

    Sušnik, J.; Vamvakeridou-Lyroudia, L. S.; Baumert, N.; Kloos, J.; Renaud, F.G.; Jeunesse, I. La; Mabrouk, B.; Savić, D.A.; Kapelan, Z.; R. Ludwig; Fischer, G.; Roson, R.; Zografos, C.

    2015-01-01

    International audience; CLImate-induced changes on WAter and SECurity (CLIWASEC) was a cluster of three complementary EC-FP7projects assessing climate-change impacts throughout the Mediterranean on: hydrological cycles (CLIMB —CLimate-Induced changes on the hydrology of Mediterranean Basins); water security (WASSERMed — WaterAvailability and Security in Southern EuRope and the Mediterranean) and human security connected with possiblehydro-climatic conflicts (CLICO — CLImate change hydro-COnfl...

  5. A modelling methodology for assessing the impact of climate variability and climatic change on hydroelectric generation

    International Nuclear Information System (INIS)

    A new methodology relating basic climatic variables to hydroelectric generation was developed. The methodology can be implemented in large or small basins with any number of hydro plants. The method was applied to the Sacramento, Eel and Russian river basins in northern California where more than 100 hydroelectric plants are located. The final model predicts the availability of hydroelectric generation for the entire basin provided present and near past climate conditions, with about 90% accuracy. The results can be used for water management purposes or for analyzing the effect of climate variability on hydrogeneration availability in the basin. A wide range of results can be obtained depending on the climate change scenario used. (Author)

  6. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    Science.gov (United States)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions

  7. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US

    Directory of Open Access Journals (Sweden)

    P. V. Caldwell

    2012-08-01

    Full Text Available Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic

  8. Cretaceous-Paleogene boundary impact winter superimposed on long-term climate changes

    Science.gov (United States)

    Vellekoop, J.; Smit, J.; Sluijs, A.; Brinkhuis, H.; Esmeray-Senlet, S.; van de Schootbrugge, B.; Browning, J. V.; Miller, K. G.; Sinninghe Damsté, , J.

    2014-12-01

    It has become widely acknowledged that the Cretaceous - Paleogene (K-Pg) boundary mass extinction (~66Ma) is related to the environmental consequences of an impact of a large extraterrestrial body. This impact likely invoked exceptionally rapid and profound global climate change, which occurred superimposed on ongoing, long-term environmental changes. The interplay between impact-related and long-term environmental changes is still poorly documented. In a recent study, we showed that a TEX86 based Sea Surface Temperature (SST) K-Pg record from Brazos River (USA) indeed shows evidence for rapid short-term cooling following the K-Pg impact. This confirmed for the first time the hypothesis of a so-called 'impact winter' invoked by dust and aerosols produced by the impact, blocking incoming solar radiation. This short-lived cold phase has so far not been confirmed by other studies. To verify the record from Brazos River and to reveal ongoing, long-term climate change, we performed a high resolution marine palynological and organic geochemical study on four stratigraphically expanded cores from the New Jersey Shelf, eastern USA, spanning the K-Pg boundary, using the TEX86 sea surface temperature (SST) proxy. Indeed, our new composite record confirms the brief cooler episode immediately following the K-Pg impact. Here we present these impact-related sea surface temperature changes in the context of the long term climate changes across the K-Pg boundary interval.

  9. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080.

    Science.gov (United States)

    Fischer, Günther; Shah, Mahendra; Tubiello, Francesco N; van Velhuizen, Harrij

    2005-11-29

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological-economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5' X 5' latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change. PMID:16433094

  10. Prerequisites for understanding climate-change impacts on northern prairie wetlands

    Science.gov (United States)

    Anteau, Michael J.; Wiltermuth, Mark T.; Post van der Burg, Max; Pearse, Aaron T.

    2016-01-01

    The Prairie Pothole Region (PPR) contains ecosystems that are typified by an extensive matrix of grasslands and depressional wetlands, which provide numerous ecosystem services. Over the past 150 years the PPR has experienced numerous landscape modifications resulting in agricultural conversion of 75–99 % of native prairie uplands and drainage of 50–90 % of wetlands. There is concern over how and where conservation dollars should be spent within the PPR to protect and restore wetland basins to support waterbird populations that will be robust to a changing climate. However, while hydrological impacts of landscape modifications appear substantial, they are still poorly understood. Previous modeling efforts addressing impacts of climate change on PPR wetlands have yet to fully incorporate interacting or potentially overshadowing impacts of landscape modification. We outlined several information needs for building more informative models to predict climate change effects on PPR wetlands. We reviewed how landscape modification influences wetland hydrology and present a conceptual model to describe how modified wetlands might respond to climate variability. We note that current climate projections do not incorporate cyclical variability in climate between wet and dry periods even though such dynamics have shaped the hydrology and ecology of PPR wetlands. We conclude that there are at least three prerequisite steps to making meaningful predictions about effects of climate change on PPR wetlands. Those evident to us are: 1) an understanding of how physical and watershed characteristics of wetland basins of similar hydroperiods vary across temperature and moisture gradients; 2) a mechanistic understanding of how wetlands respond to climate across a gradient of anthropogenic modifications; and 3) improved climate projections for the PPR that can meaningfully represent potential changes in climate variability including intensity and duration of wet and dry periods. Once

  11. Uncertainties in assessing climate change impacts on the hydrology of Mediterranean basins

    Science.gov (United States)

    Ludwig, Ralf

    2013-04-01

    There is substantial evidence in historical and recent observations that the Mediterranean and neighboring regions are especially vulnerable to the impacts of climate change. Numerous climate projections, stemming from ensembles of global and regional climate models, agree on severe changes in the climate forcing which are likely to exacerbate subsequent ecological, economic and social impacts. Many of these causal connections are closely linked to the general expectation that water availability will decline in the already water-stressed basins of Africa, the Mediterranean region and the Near East, even though considerable regional variances must be expected. Consequently, climate change impacts on water resources are raising concerns regarding their possible management and security implications. Decreasing access to water resources and other related factors could be a cause or a 'multiplier' of tensions within and between countries. Whether security threats arise from climate impacts or options for cooperation evolve does not depend only on the severity of the impacts themselves, but on social, economic, and institutional vulnerabilities or resilience as well as factors that influence local, national and international relations. However, an assessment of vulnerability and risks hinges on natural, socio-economic, and political conditions and responses, all of which are uncertain. Multidisciplinary research is needed to tackle the multi-facet complexity of climate change impacts on water resources in the Mediterranean and neighboring countries. This is particularly true in a region of overall data scarcity and poor data management and exchange structures. The current potential to develop appropriate regional adaptation measures towards climate change impacts suffers heavily from large uncertainties. These spread along a long chain of components, starting from the definition of emission scenarios to global and regional climate modeling to impact models and a

  12. Environmental and socio-economic impacts of global climate change: An overview on mitigation approaches

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2013-12-01

    Full Text Available Climate change is expected to bring about major change in freshwater availability, the productive capacity of soils, and in patterns of human settlement. Likewise, climate change is intimately linked to human health either directly or indirectly. However, considerable uncertainties exist with regard to the extent and geographical distribution of these changes. Predicting scenarios for how climate-related environmental change may influence human societies and political systems necessarily involves an even higher degree of uncertainty. Societies have a long record of adapting to climate risks and, climate changes. Household asset portfolios and livelihood choices are shaped by the need to manage climatic risks, especially in rural areas and for lowincome households. Likewise, disaggregated analysis revealed that demographic and environmental variables have a very profound effect on the risk of civil conflict and hence peace. In nutshell, we can say that there may be multifaceted impact of climate change in its totality. Further, different views, issues and mitigation measures are discussed particularly in Indian scenario. In this direction, The "National Action Plan on Climate Change" was set by Indian Prime Minister which encompasses a broad and extensive range of measures, and focuses on eight missions, which will be pursued as key components of the strategy for sustainable development. These include missions on solar energy, enhanced energy efficiency, sustainable habitat, conserving water, sustaining the Himalayan ecosystem, creating a "Green India," sustainable agriculture and, finally, establishing a strategic knowledge platform for climate change. Finally, different steps/approaches pertaining to green, eco-friendly and sustainable technology has been discussed in order to mitigate the impact of global environmental damage originating from increased industrialization and hence appropriately address this global disaster which is being the

  13. Analysis of possible impacts of climate change on the hydrological regimes of different regions in Germany

    Directory of Open Access Journals (Sweden)

    H. Bormann

    2009-08-01

    Full Text Available In this study, the impact of climate change scenarios on the hydrological regimes of five different regions in Germany is investigated. These regions (Northwest Germany, Northeast Germany and East German basins, upper and lower Rhine, pre-Alps differ with respect to present climate and projected climate change. The physically based SVAT-model SIMULAT is applied to theoretical soil columns based on combinations of land use, soil texture and groundwater depth to quantify climate change effects on the hydrological regime. Observed climate, measured at climate stations of the German Weather Service (1991–2007, is used for comparison with climate projections (2071–2100 generated by the regional scale climate model WETTREG.

    While all climate scenarios implicate an increase in precipitation in winter, a decrease in precipitation in summer and an increase in temperature, the simulated impacts on the hydrological regime are regionally different. In the Rhine region and in Northwest Germany, an increase in the annual runoff and groundwater recharge is simulated despite the increase in temperature and potential evapotranspiration. In the Eastern part of Germany and the pre-Alps, annual runoff and groundwater recharge will decrease. Due to dry conditions in summer, the soil moisture deficit will increase (in Northeast Germany and the East German basins in particular or remain constant (Rhine region. In all regions the seasonal variability in runoff and soil moisture status will increase. Despite regional warming actual evapotranspiration will decrease in most regions except in areas with shallow groundwater tables and the lower Rhine. Although the study is limited by the fact that only one climate model was used to drive one hydrologic model, the study shows that the hydrological regime will be affected by climate change. The direction of the expected changes seems to be obvious as well as the necessity of the adaptation of future water

  14. Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie; Goldman, Charles

    2008-12-01

    This paper presents an exploratory study of the possible physical impacts of climate change on the electric power system, and how these impacts could be incorporated into resource planning in the Western United States. While many aspects of climate change and energy have been discussed in the literature, there has not yet been a systematic review of the relationship between specific physical effects and the quantitative analyses that are commonly used in planning studies. The core of the problem is to understand how the electric system is vulnerable to physical weather risk, and how to make use of information from climate models to characterize the way these risks may evolve over time, including a treatment of uncertainty. In this paper, to provide the necessary technical background in climate science, we present an overview of the basic physics of climate and explain some of the methodologies used in climate modeling studies, particularly the importance of emissions scenarios. We also provide a brief survey of recent climate-related studies relevant to electric system planning in the Western US. To define the institutional context, we discuss the core elements of the resource and reliability planning processes used currently by utilities and by the Western Electricity Coordinating Council. To illustrate more precisely how climate-related risk could be incorporated into modeling exercises, we discuss three idealized examples. Overall, we argue that existing methods of analysis can and should be extended to encompass the uncertainties related to future climate. While the focus here is on risk related to physical impacts, the same principles apply to a consideration of how future climate change policy decisions might impact the design and functioning of the electric grid. We conclude with some suggestions and recommendations on how to begin developing this approach within the existing electric system planning framework for the West.

  15. Potential Impacts of Global Climate Change on Power and Energy Generation

    Directory of Open Access Journals (Sweden)

    Christian Ifeanyi ENETE

    2011-10-01

    Full Text Available Climate change and climate variability is receiving much attention recently because it has significant effects on our power and energy sector and therefore on the socio-economic activities of the society especially in a developing country such as Nigeria. Approach: The aim of the study is to examine the influence of climate change on power generation. Literatures were identified for review through a comprehensive search by using electronic and non-electronic databases. Related published literature and documents were searched in a systematic way using a range of key words relating to climate change impacts and energy. Results: The literature review indicates that climate change undermine power and energy production by increasingly depleting renewable and non-renewable sources, creating resources scarcity as well as damage to infrastructure. The review also indicate that climate change undermine environmental dimensions by increasing sea-level rise, extreme weather events and land degradation and pollution. Conclusion: In reducing climate-induced threats on power sector, efforts should be geared towards ensuring that our energy sector withstand the changes to our climate that are already underway by optimizing energy mix, developing low carbon and renewable energy, formulating relevant law and regulations and promoting technology advancement and economic engineering.

  16. Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios.

    Science.gov (United States)

    Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio

    2014-04-01

    Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction.

  17. Climate Change Impacts and Greenhouse Gas Mitigation Effects on US Water Quality

    Science.gov (United States)

    Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic...

  18. Potential impact of climate change on porous asphalt with a focus on winter damage

    NARCIS (Netherlands)

    Kwiatkowski, K.P.; Stipanovic Oslakovic, I.; Hartmann, A.; Maat, ter H.W.

    2016-01-01

    This chapter investigates the impact and adaptation options of climate change on porous asphalt
    (PA) roads, specifically for the case of winter weather (freeze–thaw cycles) and road damage in
    the Netherlands. Changes in weather patterns pose a threat to the serviceability and long-term
    p

  19. Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years

    NARCIS (Netherlands)

    Kabel, K.; Moros, M.; Porsche, C.; Neumann, T.; Adolphi, F.; Andersen, T.J.; Siegel, H.; Gerth, M.; Leipe, T.; Jansen, E.; Sinninghe Damsté, J.S.

    2012-01-01

    Climate change has a strong impact on ecosystem health, particularly in marginal seas(1) such as the Baltic, for example causing the spreading of anoxic areas (oxygen-free areas, the so-called dead zones) through strong feedbacks. Marked ecosystem changes in the Baltic Sea have been recorded in the

  20. Climate Change Impact Assessment and Adaptation Options in Vulnerable Agro-Landscapes in East-Africa

    Science.gov (United States)

    Manful, D.; Tscherning, K.; Kersebaum, K.; Dietz, J.; Dietrich, O.; Gomani, C.; Böhm, H.; Büchner, M.; Lischeid, G.,; Ojoyi, M.,

    2009-04-01

    Climate change poses a risk to the livelihoods of large populations in the developing world, especially in Africa. In East Africa, climate change is expected to affect the spatial distribution and quantity of precipitation. The proposed project will assess aspects of climate impacts and adaptation options in Tanzania. The project will attempt to quantify (1) projected impacts including: variability in temperature, rainfall, flooding and drought (2) the affect changes in 1. will have on specific sectors namely agriculture (food security), water resources and ecosystem services. The cumulative effects of diminished surface and ground water flow on agricultural production coupled with increasing demand for food due to increase in human pressure will also be evaluated. Expected outputs of the project include (1) downscaled climate change scenarios for different IPCC emission scenarios (2) model based estimations of climate change impacts on hydrological cycle and assessment of land use options (3) scenarios of sustainable livelihoods and resilient agro-landscapes under climate change (4) assessment of adaptive practices and criteria for best adaptation practices. The presentation will focus on novel approaches that focus on the use of agro-ecosystem models to predict local and regional impacts of climate variability on food with specific needs of the end-user factored into model set-up process. In other words, model configurations adapted to the information needs of a specific end-user or audience are evaluated. The perception of risk within different end-users (small scale farmer versus a regional or state level policy maker) are explicitly taken into consideration with the overarching aim of maximizing the impact of the results obtained from computer-based simulations.

  1. Assessing climate change impacts on water balance in the Mount Makiling forest, Philippines

    Indian Academy of Sciences (India)

    E A Combalicer; R V O Cruz; S Lee; S Im

    2010-06-01

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change impacts based on two scenarios (A1B and A2) from CGCM3 experiment. The annual precipitation change was estimated to be 0.1–9.3% increase for A1B scenario, and −3.3 to 3.3% decrease/increase for the A2 scenario. Difference in the mean temperature between the present and the 2080s were predicted to be 0.6–2.2°C and 0.6–3.0°C under A1B and A2 scenarios, respectively. The water balance showed that 42% of precipitation is converted into evaporation, 48% into streamflow, and 10% into deep seepage loss. The impacts of climate change on water balance reflected dramatic fluctuations in hydrologic events leading to high evaporation losses, and decrease in streamflow, while groundwater flow appeared unaffected. A study on the changes in monthly water balance provided insights into the hydrologic changes within the forest watershed system which can be used in mitigating the effects of climate change.

  2. Multi-Model Framework for Investigating Potential Climate Change Impacts on Interdependent Critical Infrastructure

    Science.gov (United States)

    Sylvester, L.; Allen, M. R.; Wilbanks, T. J.

    2015-12-01

    Built infrastructure consists of a series of interconnected networks with many coupled interdependencies. Traditionally, risk and vulnerability assessments are conducted one infrastructure at a time, considering only direct impacts on built and planned assets. However, extreme events caused by climate change affect local communities in different respects and stress vital interconnected infrastructures in complex ways that cannot be captured with traditional risk assessment methodologies. We employ a combination of high-performance computing, geographical information science, and imaging methods to examine the impacts of climate change on infrastructure for cities in two different climate regions: Chicago, Illinois in the Midwest and Portland, Maine (and Casco Bay area) in the Northeast. In Illinois, we evaluate effects of changes in regional temperature and precipitation, informed by an extreme climate change projection, population growth and migration, water supply, and technological development, on electricity generation and consumption. In Maine, we determine the aggregate effects of sea level rise, changing precipitation patterns, and population shifts on the depth of the freshwater-saltwater interface in coastal aquifers and the implications of these changes for water supply in general. The purpose of these efforts is to develop a multi-model framework for investigating potential climate change impacts on interdependent critical infrastructure assessing both vulnerabilities and alternative adaptive measures.

  3. Impacts of climate change: still an abstract threat for the French

    International Nuclear Information System (INIS)

    Amongst the different environmental issues, climate change is the main concern of the French. However, the risk is difficult to apprehend in concrete terms. When asked about the possible consequences of climate change for them, a quarter of the French had no idea of potential impacts. Furthermore, 15% thought there would be no negative effect at their level. Extreme weather events and climate-change induced health problems are the main fears spontaneously cited in the survey, followed by territorial impacts and deterioration of living conditions. Nonetheless, more than half of the responses remain impersonal, in that they focus mainly on global impacts. This distant, or even abstract, relation of some French people to the issue appears to be linked partially to respondent's educational levels and age. (authors)

  4. The impact of high-end climate change on agricultural welfare

    Science.gov (United States)

    Stevanović, Miodrag; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Müller, Christoph; Bonsch, Markus; Schmitz, Christoph; Bodirsky, Benjamin Leon; Humpenöder, Florian; Weindl, Isabelle

    2016-01-01

    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered. PMID:27574700

  5. The impact of high-end climate change on agricultural welfare.

    Science.gov (United States)

    Stevanović, Miodrag; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Müller, Christoph; Bonsch, Markus; Schmitz, Christoph; Bodirsky, Benjamin Leon; Humpenöder, Florian; Weindl, Isabelle

    2016-08-01

    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered. PMID:27574700

  6. The impact of high-end climate change on agricultural welfare.

    Science.gov (United States)

    Stevanović, Miodrag; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Müller, Christoph; Bonsch, Markus; Schmitz, Christoph; Bodirsky, Benjamin Leon; Humpenöder, Florian; Weindl, Isabelle

    2016-08-01

    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.

  7. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    Science.gov (United States)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian; Trolle, Dennis; Børgesen, Christen Duus; Olesen, Jørgen E.; Jeppesen, Erik; Jensen, Karsten H.

    2016-04-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice remained the dominant factor for mean discharge, low and high flows as well as hydraulic head at the end of the century.

  8. The impacts of climate change on energy: An aggregate expenditure model for the US

    International Nuclear Information System (INIS)

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion

  9. The impacts of climate change on energy: An aggregate expenditure model for the US

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, W. [Boston Univ., MA (United States); Mendelsohn, R. [Yale Univ., New Haven, CT (United States). School of Forestry and Environmental Studies

    1998-09-01

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion.

  10. Socio-economic scenarios for climate change impact assessment : a guide to their use in the UK Climate Impacts Programme

    OpenAIRE

    2001-01-01

    Enormous challenges are faced in devising socio-economic scenarios for the assessment of future impacts and there is very little experience to draw upon. Socio-economic scenarios have not been widely used within impacts studies, but this report will serve to encourage their use more widely within the UK Climate Impacts Programme (UKCIP). The aim has been to develop a scenarios framework through which stakeholders are able to reflect upon possible alternative futures and to make...

  11. Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios

    NARCIS (Netherlands)

    Beyene, T.; Lettenmaier, D.P.; Kabat, P.

    2010-01-01

    We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scen

  12. Bio-physical vs. Economic Uncertainty in the Analysis of Climate Change Impacts on World Agriculture

    Science.gov (United States)

    Hertel, T. W.; Lobell, D. B.

    2010-12-01

    Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. The recent paper by Hertel, Burke and Lobell (GEC, 2010) considers three scenarios of agricultural impacts of climate change, corresponding to the fifth, fiftieth, and ninety fifth percentiles of projected yield distributions for the world’s crops in 2030. They evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, their low productivity scenario reveals the potential for much larger food price changes than reported in recent studies which have hitherto focused on the most likely outcomes. The poverty impacts of price changes under the extremely adverse scenario are quite heterogeneous and very significant in some population strata. They conclude that it is critical to look beyond central case climate shocks and beyond a simple focus on yields and highly aggregated poverty impacts. In this paper, we conduct a more formal, systematic sensitivity analysis (SSA) with respect to uncertainty in the biophysical impacts of climate change on agriculture, by explicitly specifying joint distributions for global yield changes - this time focusing on 2050. This permits us to place confidence intervals on the resulting price impacts and poverty results which reflect the uncertainty inherited from the biophysical side of the analysis. We contrast this with the economic uncertainty inherited from the global general equilibrium model (GTAP), by undertaking SSA with respect to the behavioral parameters in that model. This permits us to assess which type of uncertainty is more important for regional price and poverty outcomes. Finally, we undertake a

  13. Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa

    Science.gov (United States)

    Farzan Ahmed, Kazi; Wang, Guiling; You, Liangzhi; Yu, Miao

    2016-02-01

    Agriculture is a key component of anthropogenic land use and land cover changes that influence regional climate. Meanwhile, in addition to socioeconomic drivers, climate is another important factor shaping agricultural land use. In this study, we compare the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa using a prototype land use projection (LandPro) algorithm. The algorithm is based on a balance between food supply and demand, and accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. The impact of human decision-making on land use is explicitly considered through multiple "what-if" scenarios. In the application to West Africa, future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. Without agricultural intensification, the climate-induced decrease in crop yield together with future increases in food demand is found to cause a significant increase in cropland areas at the expense of forest and grassland by the mid-century. The increase in agricultural land use is primarily climate-driven in the western part of West Africa and socioeconomically driven in the eastern part. Analysis of results from multiple scenarios of crop area allocation suggests that human adaptation characterized by science-informed decision-making can potentially minimize future land use changes in many parts of the region.

  14. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system

    Science.gov (United States)

    Semadeni-Davies, Annette; Hernebring, Claes; Svensson, Gilbert; Gustafsson, Lars-Göran

    2008-02-01

    SummaryAssessment of the potential impact of climate change on water systems has been an essential part of hydrological research over the last couple of decades. However, the notion that such assessments should also include technological, demographic and land use changes is relatively recent. In this study, the potential impacts of climate change and continued urbanisation on waste and stormwater flows in the combined sewer of central Helsingborg, South Sweden, have been assessed using a series of DHI MOUSE simulations run with present conditions as well as two climate change scenarios and three progressive urbanisation storylines. At present, overflows of untreated wastewater following heavy rainfalls are a major source of pollution to the coastal receiving waters and there is a worry that increased rainfall could exacerbate the problem. Sewer flows resulting from different urbanisation storylines were simulated for two 10-year periods corresponding to present (1994-2003) and future climates (nominally 2081-2090). In all, 12 simulations were made. Climate change was simulated by altering a high-resolution rainfall record according to the climate-change signal derived from a regional climate model. Urbanisation was simulated by altering model parameters to reflect current trends in demographics and water management. It was found that city growth and projected increases in precipitation, both together and alone, are set to worsen the current drainage problems. Conversely, system renovation and installation of sustainable urban drainage systems (SUDS) has a positive effect on the urban environment in general and can largely allay the adverse impacts of both urbanisation and climate change.

  15. Modeling climate change impact in hospitality sector, using building resources consumption signature

    Science.gov (United States)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in

  16. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments

    DEFF Research Database (Denmark)

    Jonsson, Anna Maria; Anderbrant, Olle; Holmer, Jennie;

    2015-01-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused...... a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models....... by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact...

  17. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments.

    Science.gov (United States)

    Jönsson, Anna Maria; Anderbrant, Olle; Holmér, Jennie; Johansson, Jacob; Schurgers, Guy; Svensson, Glenn P; Smith, Henrik G

    2015-04-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science-stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science-stakeholder communication. By this, we hope to stimulate a discussion among the science-stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models. PMID:25238981

  18. Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2016-01-01

    Full Text Available Quantitative evaluation of future climate change impacts on hydrological drought characteristics is one of important measures for implementing sustainable water resources management and effective disaster mitigation in drought-prone regions under the changing environment. In this study, a modeling system for projecting the potential future climate change impacts on hydrological droughts in the Weihe River basin (WRB in North China is presented. This system consists of a large-scale hydrological model driven by climate outputs from three climate models (CMs for future streamflow projections, a probabilistic model for univariate drought assessment, and a copula-based bivariate model for joint drought frequency analysis under historical and future climates. With the observed historical climate data as the inputs, the Variable Infiltration Capacity hydrological model projects an overall runoff reduction in the WRB under the Intergovernmental Panel on Climate Change A1B scenario. The univariate drought assessment found that although fewer hydrological drought events would occur under A1B scenario, drought duration and severity tend to increase remarkably. Moreover, the bivariate drought assessment reveals that future droughts in the same return period as the baseline droughts would become more serious. With these trends in the future, the hydrological drought situation in the WRB would be further deteriorated.

  19. From global framing to local action : translation of climate change impacts in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ogunseitan, O.A. [Harvard Univ., Cambridge, MA (United States)

    2000-06-01

    There is considerable controversy regarding policy and climate change mitigation in Africa. Its resolution will require integrating local knowledge and values into climate impact assessments. Africa's vulnerability to climate change can be traced to the frequency of socio-ecological devastation that comes from major climate variations on the continent. The incidence of famines, homelessness and disease epidemics that require international assistance are reflections of weak policies and institution action frames used to cope with climate and weather related emergencies. However, the valuation of climate change impacts has a subjective dimension that can be gained only through indigenous experience and an understanding of values associated with life-saving intervention programs. A recent study showed that discount rates applied to future life-saving programs by Africans are very different from the rates applied in developed countries, and that the difference should be reflected in national development programs and transnational initiatives for capacity building. The study suggests that if the boundary institutions responsible for public health security have not been too effective in resolving the policy controversy surrounding Africa's participation in climate change assessments, it is due partly to the limitations imposed by cross-scale issues in framing. It was concluded that efforts to reduce Africa's dependence on global emergency health response systems will necessitate the development of autonomous capacity to adapt to natural disasters. Appropriate frame reflection is needed at the local level. 56 refs., 3 tabs., 1 fig.

  20. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2016-08-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  1. Heat Island Mitigation Measures in Response to Climate Change Impacts

    Science.gov (United States)

    Quattrochi, Dale a.; Estes, Maurice, Jr.; Crosson, William; Al-Hamdan, Mohammad

    2010-01-01

    This slide presentation examines the effect of cities, the accompanying heat island effect, and other impacts that urbanization has had on the environment. Various satellite views of se