WorldWideScience

Sample records for climates

  1. Climatization

    DEFF Research Database (Denmark)

    Grant, Stephen; Tamason, Charlotte Crim; Jensen, Peter Kjær Mackie

    2015-01-01

    by climate change, in order to reach an intended goal or to distractthe discussion from the real problem which might have a different root course than caused bythe climate change effects. The implications of climatization are currently unclear – particularly to what extent climatizinga disaster might......In recent years, there has been a developing trend of labelling some disasters as ‘climatechange disasters’. In doing so, a discursive phenomenon can emerge that the authors havecoined ‘climatization’ which is specified as framing a disastrous event or degraded environmentalcondition as caused...... in the context of Bangladesh – a country that is expectedto be among the worst affected by climate change and a country in which some peopleclaim the effects of climate change can already be seen. A qualitative field study whichincluded key informant interviews, focus group discussions and a literature review...

  2. Climate Change

    Science.gov (United States)

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  3. Climate Informatics

    Science.gov (United States)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  4. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  5. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  6. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  7. Climate Research

    OpenAIRE

    Hamann, Ilse; Meier zu Verl, Christian; Horstmann, Wolfram

    2011-01-01

    The findings described in the following sections of this chapter are to a large extent based on an analysis of documents available to me at the institution where I work, i.e. in the Data Management department (DM) of the German Climate Computing Centre (DKRZ, Deutsches Klimarechenzentrum), or are part of websites of other institutions in the climate research community. Additional information about aspects of the research infrastructure in climate science comes from what I could glean from the...

  8. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  9. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  10. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  11. Climate Physics

    Science.gov (United States)

    Space, William

    2007-01-01

    Numerous connections exist between climate science and topics normally covered in physics and physical science courses. For instance, lessons on heat and light can be used to introduce basic climate science, and the study of electric circuits provides a context for studying the relationship between electricity consumption and carbon pollution. To…

  12. Climate Controlled?

    Science.gov (United States)

    Harney, John O.

    2014-01-01

    More than 250 higher education leaders from campuses across the U.S. met last week in Boston for the 2014 Presidential Summit on Climate Leadership. The summit was organized by Second Nature, the supporting organization for the American College & University Presidents' Climate Commitment (ACUPCC). Almost 700 colleges and universities have…

  13. Climate change and climate policy

    International Nuclear Information System (INIS)

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  14. From climate assessment to climate services

    OpenAIRE

    Visbeck, Martin

    2008-01-01

    The Intergovernmental Panel for Climate Change has convinced the public that climate change is real. To tackle it, the panel needs complementary climate services that provide continuous climate information for all regions and the globe.

  15. Climatic change

    International Nuclear Information System (INIS)

    This book proposes both a scientific and societal approach of a phenomenon which is today the object of lot of debates. Climates perception is illustrated with examples taken in various modern civilizations and in the history of mankind. The Sahara example illustrates the notion of climate evolution. The last chapters are devoted to forecasting and scenarios for the future, taking into account the share of uncertainty. The controversies generated by these forecasts and the Kyoto protocol stakes demonstrate the tight links between the scientific, economical and political aspects in climatic change debates. (J.S.)

  16. Climate catastrophes

    Science.gov (United States)

    Budyko, Mikhail

    1999-05-01

    Climate catastrophes, which many times occurred in the geological past, caused the extinction of large or small populations of animals and plants. Changes in the terrestrial and marine biota caused by the catastrophic climate changes undoubtedly resulted in considerable fluctuations in global carbon cycle and atmospheric gas composition. Primarily, carbon dioxide and other greenhouse gas contents were affected. The study of these catastrophes allows a conclusion that climate system is very sensitive to relatively small changes in climate-forcing factors (transparency of the atmosphere, changes in large glaciations, etc.). It is important to take this conclusion into account while estimating the possible consequences of now occurring anthropogenic warming caused by the increase in greenhouse gas concentration in the atmosphere.

  17. Climate Reconstructions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Paleoclimatology Program archives reconstructions of past climatic conditions derived from paleoclimate proxies, in addition to the Program's large...

  18. Climate Change

    OpenAIRE

    The IJOEM

    2010-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathways could stabilise the global average atmospheric concentration of greenhouse gases (GHG) at 450 ppm, the level which has a 50% chance of keeping the temperature rise to 2 oC? What policies are nee...

  19. Climate engineering

    OpenAIRE

    Platt, Ulrich

    2014-01-01

    Es klingt wie eine Mischung aus Größenwahn und Science Fiction: Wissenschaftler wollen das Klima mit Hightechverfahren beeinflussen. "Climate engineering" heißt der Fachbegriff. Natürlich geht es dabei nicht um den verregneten Sommer, sondern um den globalen Klimawandel. Campus-Reporter Nils Birschmann hat sich bei den Umweltforschern der Uni Heidelberg umgehört, ob was dran ist am "climate engineering". Der Beitrag erschien in der Sendereihe "Campus-Report" - einer Beitragsreihe, in ...

  20. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  1. Uncertainty in climate science and climate policy

    OpenAIRE

    Rougier, Jonathan; Crucifix, Michel

    2014-01-01

    This essay, written by a statistician and a climate scientist, describes our view of the gap that exists between current practice in mainstream climate science, and the practical needs of policymakers charged with exploring possible interventions in the context of climate change. By `mainstream' we mean the type of climate science that dominates in universities and research centres, which we will term `academic' climate science, in contrast to `policy' climate science; aspects of this distinc...

  2. Climate Change: Basic Information

    Science.gov (United States)

    ... are here: EPA Home Climate Change Basic Information Climate Change: Basic Information On This Page Climate change ... We can make a difference How is the climate changing in the U.S.? Observations across the United ...

  3. Climate and development

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, A.K.

    1984-01-01

    The authors review the existing knowledge on the inter-relationships between climate and patterns of development; the impact variables on water and agricultural development; and the effects of climate on human health. A case study is also given of the effect of climatic fluctuations on human population in Mesopotamia. Contents: Climate and Development; Climate and Agriculture; Climate and Water Management; Climate and Health; Effects of Climate Fluctation on Human Populations; Study of Mesopotamian Society.

  4. Uncertainty in climate science and climate policy

    CERN Document Server

    Rougier, Jonathan

    2014-01-01

    This essay, written by a statistician and a climate scientist, describes our view of the gap that exists between current practice in mainstream climate science, and the practical needs of policymakers charged with exploring possible interventions in the context of climate change. By `mainstream' we mean the type of climate science that dominates in universities and research centres, which we will term `academic' climate science, in contrast to `policy' climate science; aspects of this distinction will become clearer in what follows. In a nutshell, we do not think that academic climate science equips climate scientists to be as helpful as they might be, when involved in climate policy assessment. Partly, we attribute this to an over-investment in high resolution climate simulators, and partly to a culture that is uncomfortable with the inherently subjective nature of climate uncertainty.

  5. Climate sensitivity

    OpenAIRE

    Roy THOMPSON

    2015-01-01

    Earth has been habitable through most of its history, but the anthropogenically mediated greenhouse effect, if sufficiently strong, can threaten Earth's long-standing equability. This paper's main aim is to determine the strength of the anthropogenic greenhouse effect (the climate sensitivity) from observational data and basic physics alone, without recourse to the parameterisations of earth-system models and their inevitable uncertainties. A key finding is that the sensitivity can be constra...

  6. Climate oblige

    International Nuclear Information System (INIS)

    This file contains 15 articles discussing various aspects of the struggle against climatic change: 'greening' the industry in order to cope with the COP 21 expectations of a 2 deg C maximum warming at the end of this century; financing the transition energy policy in the poorest countries; the issues and stakes for the COP 21 conference to be held in Paris; towards an energy system with fossil fuels to be left in the ground, especially coal; emerging and developing countries could be in the future at the forefront to benefit from the renewable energy technologies; towards a 100 pc renewable France with wind and solar power; low carbon electric power (including nuclear power) is one of the best solutions against global warming; solar energy: the example of India and its 100 GW objective in 2022; the main struggle against climatic change lies in the cities and especially with the development of low-energy buildings and energy conservation systems; with de-polluted engine, connectivity and light structure technologies, the automotive sector can mix mobility and environment protection; some examples of the environmental policy underway in Grenoble city; green collective transportation systems in Sweden; application of simulation tools and satellite observations for climatic change forecasting and analysis; the importance of eco-design of manufactured products following the 'from well to wheel' and 'from cradle to grave' concepts

  7. Climate - Options for broadening climate policy

    OpenAIRE

    Aerts JCJH; Asselt H van; Bakker SJA; Bayangos V; Beers C van; Berk MM; Biermann F; Bouwer LM; van Bree L; Dorland K; Elzen ME den; Gupta J; Heemst J van; Jansen JC; Nabuurs GJ

    2005-01-01

    In this study ways are explored to increase the policy coherence between the climate regime and a selected number of climate relevant policy areas, by adding a non-climate policy track to national and international climate strategies. The report assesses first the potential, synergies and trade-offs of linking the climate regime to relevant other policy areas, including poverty reduction, land-use, security of energy supply, trade and finance and air quality and health. Next the possibilities...

  8. Climate Concerns

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2010-01-01

    @@ From June to August 2009, the western part of northeast China's Liaoning Province suffered from drought and extremely high temperatures, which damaged about 4.9 million hectares of farmland. Almost 827,000 hectares yielded no harvest as a result of the drought and 3 million people were impacted. The villagers might not know that a conference held in December on the other side of the globe has something to do with their hard times, but many are waking up to the reality that the disastrous effects of climate change have already begun to exert great influence on people's lives.

  9. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  10. Managing Climate Change Refugia for Climate Adaptation.

    Science.gov (United States)

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  11. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  12. Natural climate variability and future climate policy

    Science.gov (United States)

    Ricke, Katharine L.; Caldeira, Ken

    2014-05-01

    Large ensemble climate modelling experiments demonstrate the large role natural variability plays in local climate on a multi-decadal timescale. Variability in local weather and climate influences individual beliefs about climate change. To the extent that support for climate mitigation policies is determined by citizens' local experiences, natural variability will strongly influence the timescale for implementation of such policies. Under a number of illustrative threshold criteria for both national and international climate action, we show that variability-driven uncertainty about local change, even in the face of a well-constrained estimate of global change, can potentially delay the time to policy implementation by decades. Because several decades of greenhouse gas emissions can have a large impact on long-term climate outcomes, there is substantial risk associated with climate policies driven by consensus among individuals who are strongly influenced by local weather conditions.

  13. TRACKING CLIMATE MODELS

    Data.gov (United States)

    National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...

  14. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  15. Assessing climate impacts

    OpenAIRE

    Wohl, Ellen E.; Roger S. Pulwarty; Zhang, Jian Yun

    2000-01-01

    Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fu...

  16. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  17. Arctic Climate Tipping Points

    OpenAIRE

    Lenton, Timothy M.

    2012-01-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the A...

  18. Cosmic Rays and Climate

    OpenAIRE

    Kirkby, Jasper

    2008-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial - perhaps because the observations had largely involved temporary correlations between climate and the sunspot cycle. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic...

  19. Mathematics of Climate Change

    OpenAIRE

    Halstadtrø, Ida

    2013-01-01

    Mathematics in climate research is rarely mentioned in the everyday conversations or in the media when talking about climate changes. This thesis therefore focus on the central role mathematics plays in climate research, through describing the different models used in predicting future weather and climate. In Chapter 1, a general introduction to climate, its components and feedbacks, and today's status is given. Chapter 2 concentrates on the dynamical models represented by ordinary differenti...

  20. Funding climate adaptation strategies with climate derivatives

    Directory of Open Access Journals (Sweden)

    L. Richard Little

    2015-01-01

    Full Text Available Climate adaptation requires large capital investments that could be provided not only by traditional sources like governments and banks, but also by derivatives markets. Such markets would allow two parties with different tolerances and expectations about climate risks to transact for their mutual benefit and, in so doing, finance climate adaptation. Here we calculate the price of a derivative called a European put option, based on future sea surface temperature (SST in Tasmania, Australia, with an 18 °C strike threshold. This price represents a quantifiable indicator of climate risk, and forms the basis for aquaculture industries exposed to the risk of higher SST to finance adaptation strategies through the sale of derivative contracts. Such contracts provide a real incentive to parties with different climate outlooks, or risk exposure to take a market assessment of climate change.

  1. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  2. FUTURE CLIMATE ANALYSIS

    International Nuclear Information System (INIS)

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog

  3. FUTURE CLIMATE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    R.M. Forester

    2000-03-14

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog.

  4. Organizational Climates: An Essay

    Science.gov (United States)

    Schneider, Benjamin

    1975-01-01

    The purposes of this essay are to (a) present some evidence about the importance of the climate concept as an aid in understanding employee behavior in work organizations and (b) provide a framework for guiding future climate research. (Author)

  5. Climate Change and Health

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  6. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  7. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  8. NPOESS, Essential Climates Variables and Climate Change

    Science.gov (United States)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  9. Improving Climate Prediction By Climate Monitoring

    Science.gov (United States)

    Leroy, S. S.; Redaelli, G.; Grassi, B.

    2014-12-01

    Various climate agencies are pursuing concepts of space-based atmospheric monitoring based on ideas of empirically verifiable accuracy in observations. Anticipating that atmospheric monitoring systems based in observing the emitted longwave spectrum, the reflected shortwave spectrum, and radio occultation are implemented, we seek to discover how long-term records in these quantities might be used to improve our ability to predict climate change. This is a follow-up to a previous study that found that climate monitoring by remote sensing better informs climate prediction than does climate monitoring in situ. We have used the output of a CMIP5 historical scenario to hind-cast observation types being considered for space-based atmospheric monitoring to modify ensemble prediction of multi-decadal climate change produced by a CMIP5 future scenario. Specifically, we have considered spatial fingerprints of 1970­-2005 averages and trends in hind-cast observations to improve global average surface air temperature change from 2005 to 2100. Correlations between hind-cast observations at individual locations on the globe and multi-decadal change are generally consistent with a null-correlation distribution. We have found that the modes in inter-model differences in hind-casts are clearly identified with tropical clouds, but only Arctic warming as can be identified in radio occultation observations correlates with multi-decadal change, but only with 80% confidence. Understanding how long-term monitoring can be used to improve climate prediction remains an unsolved problem, but it is anticipated that improving climate prediction will depend strongly on an ability to distinguish between climate forcing and climate response in remotely sensed observables.

  10. Simulating Global Climate Summits

    Science.gov (United States)

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane

    2014-01-01

    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  11. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  12. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  13. Our Changing Climate

    Science.gov (United States)

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  14. Our changing climate

    International Nuclear Information System (INIS)

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  15. Climate Observations from Space

    Science.gov (United States)

    Briggs, Stephen

    2016-07-01

    The latest Global Climate Observing System (GCOS) Status Report on global climate observations, delivered to the UNFCCC COP21 in November 2016, showed how satellite data are critical for observations relating to climate. Of the 50 Essential Climate Variables (ECVs) identified by GCOS as necessary for understanding climate change, about half are derived only from satellite data while half of the remainder have a significant input from satellites. Hence data from Earth observing satellite systems are now a fundamental requirement for understanding the climate system and for managing the consequences of climate change. Following the Paris Agreement of COP21 this need is only greater. Not only will satellites have to continue to provide data for modelling and predicting climate change but also for a much wider range of actions relating to climate. These include better information on loss and damage, resilience, improved adaptation to change, and on mitigation including information on greenhouse gas emissions. In addition there is an emerging need for indicators of the risks associated with future climate change which need to be better quantified, allowing policy makers both to understand what decisions need to be taken, and to see the consequences of their actions. The presentation will set out some of the ways in which satellite data are important in all aspects of understanding, managing and predicting climate change and how they may be used to support future decisions by those responsible for policy related to managing climate change and its consequences.

  16. Philosophy of climate science part I: observing climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the first of three parts of an introduction to the philosophy of climate science. In this first part about observing climate change, the topics of definitions of climate and climate change, data sets and data models, detection of climate change, and attribution of climate change will be discussed.

  17. Addressing Climate Crisis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ A series of extreme global weather events,like floods in Pakistan and droughts in Russia,should serve as a call to the world to take action against climate change.But worries have been mounting since global climate talks stalled,partly due to rifts between developed and developing countries.What efforts should be made to force progress in the negotiating process? What role has China played in combating climate change? Su Wei,China's chief climate negotiator and Director-General of the Climate Change Department of the National Development and Reform Commission(NDRC),sat down with Beijing Review reporter Hu Yue to answer these questions and more.

  18. What Is Climate?

    Science.gov (United States)

    Lovejoy, S.

    2013-01-01

    Most people have an intuitive understanding of the weather as referring to the state of the atmosphere at a given time and place and of the climate as a kind of average weather. A popular expression of this dichotomy is "the climate is what you expect, the weather is what you get" (Heinlein [1973, p. 352], although often attributed to Mark Twain). Implicit in this belief is the notion of climate as a kind of constant natural state to which the weather would converge if it were averaged over a long enough period. A corollary is that climate change is a consequence of "climate forcings," which are external to the natural climate system and which tend to prevent averages from converging to their true values. In this framework, past climate change may be attributed to orbital changes, variations in solar output, volcanic eruptions, etc. For the recent period, anthropogenic forcings can be added.

  19. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  20. Cosmic Rays and Climate

    CERN Document Server

    Kirkby, Jasper

    2007-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic fiel...

  1. Future Climate Analysis

    International Nuclear Information System (INIS)

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department''. (BSC 2001b, Addendum B

  2. Climate plan 2004; Plan climat 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The Climate Plan is an action plan drawn up by the French Government to respond to the climate change challenge, first by 2010 (complying with the Kyoto Protocol target), and, secondly, beyond this date. Projections for France show that national emissions could be 10% higher than the Kyoto target in 2010 if no measures are taken. This is particularly due to increasing emissions in the sectors affecting daily life (residential-tertiary sectors, transport, etc.). For this reason, the Climate Plan contains measures affecting all sectors of the economy and the daily life of all French citizens with a view to economizing the equivalent of 54 million tonnes of CO{sub 2} each year by the year 2010, which will help to reverse the trend significantly. Beyond 2010, the Climate Plan sets out a strategy for technological research which will enable France to meet a target of reducing greenhouse gas emissions four or fivefold by 2050. (author)

  3. Climate variability and vulnerability to climate change: a review

    OpenAIRE

    Thornton, Philip K.; Polly J Ericksen; Herrero, Mario; Challinor, Andrew J.

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food syst...

  4. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  5. Climate Services at AEMET

    Science.gov (United States)

    Rodriguez, E.; Mestre, A.

    2010-09-01

    AEMET activities with regard to Climate Services are mainly focused on climate monitoring and generation of regionalized climate change scenarios. AEMET also provides all services related with observational and modelling data for different types of users. With respect to climate monitoring, the operational activities of AEMET include the issue of a monthly bulletin describing the behaviour of climatic elements from the previous month, and the release of a hydrological cycle monitoring product (with information on precipitation, evapotranspiration, soil water status and reservoirs storage) produced with ten days periodicity. Drought is also being monitored through the Standardized Precipitation Index (SPI) for different periods of time, aimed at capturing the severity, intensity, duration and geographical extent of every drought episode. Regarding climate change scenarios, AEMET is embarked on the periodical production of downscaled projections data based on a multiplicity of global models and downscaling algorithms, both statistical and dynamical, all of them based on the most recent information of IPCC global models. Special emphasis has been put on the evaluation of global climate models over the Euro-Atlantic region and on the estimation and communication of uncertainties. This periodical production of updated downscaled climate change projections is framed within the National Plan of Adaptation to Climate Change which encompasses all economical activities and sectors sensitive to climate conditions.

  6. Modelling Interglacial Climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Anker

    Past warm climate states could potentially provide information on future global warming. The past warming was driven by changed insolation rather than an increased greenhouse effect, and thus the warm climate states are expected to be different. Nonetheless, the response of the climate system...... involves some of the same mechanisms in the two climate states. This thesis aims to investigate these mechanisms through climate model experiments. This two-part study has a special focus on the Arctic region, and the main paleoclimate experiments are supplemented by idealized experiments detailing...... the impact of a changing sea ice cover. The first part focusses on the last interglacial climate (125,000 years before present) which was characterized by substantial warming at high northern latitudes due to an increased insolation during summer. The simulations reveal that the oceanic changes dominate...

  7. Does Climate Attribution Matter?

    Science.gov (United States)

    Averyt, K.; Wall, T.

    2011-12-01

    Evaluating the influence of anthropogenic greenhouse gas emissions on observed climatic phenomena (attribution) has been a publicly contested and controversial topic as it relates to the outputs of the Intergovernmental Panel on Climate Change, as well as other international and national climate assessments. Scientists engage in substantial efforts to evaluate and determine the human influence on changes in observed climate patterns, including frequency and intensity of extreme events such as floods, droughts, and storms. As demonstrated by the amount of content dedicated to attribution in these assessments, the scientific community may be inherently assuming that attribution of climatic change to anthropogenic activities is valuable and usable information for decision making. Here, we present an initial evaluation from interviews of the relative importance of attribution to decision making around climate adaptation and mitigation efforts at multiple scales (local, state, regional, national, international).

  8. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  9. Climate strategy for Africa

    OpenAIRE

    Hernes, Helga; Dalfelt, Arne; Berntsen, Terje; Holtsmark, Bjart; Næss, Lars Otto; Selrod, Rolf; Aaheim, H. Asbjørn

    1995-01-01

    1. General observations Africa south of the Sahara is probably the most vulnerable region when it comes to the impact and consequences of climate changes. Yet the African continent runs a serious risk of being marginalized in the global dialogue on climate issues. Africa contributes little to the global emissions of CO2, and other greenhouse gases. The major focus of the Framework Convention on Climate Change is on abatement and mitigation of emissions rather than adaptation to the con...

  10. Review of Climate Scenarios

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Concept and application requirements of climate scenarios were introduced briefly,meanwhile,progresses on theoretical and applied aspects of climate scenarios creation techniques were discussed systematically.Two methods on predicted regional climate changing scenarios,elevating the spatial resolution output and downscaling method,could retrieve the insufficiencies respectively.And the statistical-dynamical downscaling method will be an important developing trend in the developing of downscaling techniques.

  11. Climate and Global Change

    International Nuclear Information System (INIS)

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  12. The changing climate

    International Nuclear Information System (INIS)

    A historical outline of climate changes is followed by a discussion of the problem of predictability. The main section goes into anthropogenic changes of the local (urban) and global climate, with particular regard to the greenhouse effect and its consequences in terms of human action. The author points out that today's climate problems should be discussed in a subject-centered and objective manner. (KW)

  13. The Climate Policy Dilemma

    OpenAIRE

    Robert S. Pindyck

    2013-01-01

    Climate policy poses a dilemma for environmental economists. The economic argument for stringent greenhouse gas (GHG) abatement is far from clear. There is disagreement among both climate scientists and economists concerning the likelihood of alternative climate outcomes, the nature and extent of the uncertainty of those outcomes, and the framework that should be used to evaluate potential benefits from GHG abatement, including key policy parameters. I argue that the case for stringent abatem...

  14. Philosophy of climate science part II: modelling climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the second of three parts of an introduction to the philosophy of climate science. In this second part about modelling climate change, the topics of climate modelling, confirmation of climate models, the limits of climate projections, uncertainty and finally model ensembles will be discussed.

  15. Climate and Ancient Societies

    DEFF Research Database (Denmark)

    Climate, and human responses to it, have a strongly interconnected relationship. This when climate change occurs, the result of either natural or human causes, societies should react and adapt to these. But do they? If so, what is the nature of that change, and are the responses positive...... or negative for the long-term survival of social groups? In this volume, scholars from diverse disciplines including archaeology, geology and climate sciences explore scientific and material evidence for climate changes in the past, their causes, their effects on ancient societies and how those societies...

  16. Struggle against climate change

    International Nuclear Information System (INIS)

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  17. Future Climate Analysis

    International Nuclear Information System (INIS)

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Other alternative

  18. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  19. Defending climate science

    Science.gov (United States)

    Showstack, Randy

    2012-01-01

    The National Center for Science Education (NCSE), which has long been in the lead in defending the teaching of evolution in public schools, has expanded its core mission to include defending climate science, the organization announced in January. “We consider climate change a critical issue in our own mission to protect the integrity of science education,” said NSCE executive director Eugenie Scott. “Climate affects everyone, and the decisions we make today will affect generations to come. We need to teach kids now about the realities of global warming and climate change so that they're prepared to make informed, intelligent decisions in the future.”

  20. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. G. Cambell

    2004-09-03

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past

  1. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  2. Climate Action Tracker Update. Climate Shuffle

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, N.; Fekete, H.; Vieweg, M.; Hare, B.; Schaeffer, M.; Rocha, M.; Larkin, J.; Guetschow, J.; Jeffery, L.

    2011-11-15

    The Climate Action Tracker (CAT) compares and assesses national and global action against a range of different climate targets across all relevant time frames, starting with an ongoing analysis of countries' current emission reduction pledges. National action on climate change mitigation appears to be joining the international climate negotiations in the new and ever popular 'climate shuffle' dance. It involves maximum effort and motion while staying in the same spot, or even, in some cases, going backwards. Recent emissions trends and estimates of the effects of those policies in place and proposed lead to a new estimate that warming is likely to approach 4C by 2100, significantly above the warming that would result from full implementation of the pledges (3.3C). The continuous global fossil-fuel intensive development of the past decade suggests that high warming levels of 4C are more plausible than assuming full implementation of current pledges. Evidence is ever increasing that existing and planned policies are not sufficient for countries to meet these pledges.

  3. Climate strength: a new direction for climate research.

    Science.gov (United States)

    Schneider, Benjamin; Salvaggio, Amy Nicole; Subirats, Montse

    2002-04-01

    Climate strength was conceptualized within D. Chan's (1998) discussion of compositional models and the concept of culture strength from the organizational culture literature. Climate strength was operationalized in terms of within-group variability in climate perceptions-the less within-group variability, the stronger the climate. The authors studied climate strength in the context of research linking employee service climate perceptions to customer satisfaction. The hypothesis was tested that climate strength moderates the relationship between employee perceptions of service climate and customer satisfaction experiences. Partial support for the hypothesis was reported in both a concurrent and predictive (3-year) test across 118 branches of a bank. In the predictive study only the interaction of climate and climate strength predicted customer satisfaction. Implications for future research on climate and climate strength are discussed. PMID:12002951

  4. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  5. Climate change velocity underestimates climate change exposure in mountainous regions.

    Science.gov (United States)

    Dobrowski, Solomon Z; Parks, Sean A

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  6. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  7. Future climate. Engineering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, J.F.; Hagedorn-Rasmussen, P.; Fonnesbech, B.

    2009-09-15

    Future Climate Engineering Solutions - Joint Report is the common output and a documentation of more than 1 year's effort by 13 engineering associations - in 12 countries - to demonstrate how technologies can combat climate change. The report consists of three parts: Summaries of 10 national climate plans and technology prospects, 5 Key Common Findings, and a Climate Call from Engineers to create a new global climate treaty. The basic assumption of the project is recognition that GHG emissions, and their concentration in the atmosphere, must be reduced to a sustainable level. The project definition of a sustainable level is equivalent to the best-case stabilisation scenario which was presented in the 4th Assessment Report (AR4) by the UN Intergovernmental Panel on Climate Change (IPCC), whereby the global mean temperature is most likely to stabilise at 2.0-2.4 deg. C. The Future Climate website www.futureclimate.info holds more information about the project, including possibility to download project material, including the full national climate plans.

  8. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  9. Climate shocks and conflict

    NARCIS (Netherlands)

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation f

  10. Investment Climate in Africa

    OpenAIRE

    Bridgman, David; Adamali, Aref

    2015-01-01

    The World Bank Group has been working on investment climate reform in Sub-Saharan Africa for nearly a decade, a period characterized by dramatic economic growth on the continent. Establishing links between such reform interventions and economic growth, however, is a complex problem. Although this note finds some connection between investment climate reform and economic growth, establishing ...

  11. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  12. Clashing Over the Climate

    Institute of Scientific and Technical Information of China (English)

    HAIDER; RIZVI

    2010-01-01

    At the Copenhagen climate change summit,poor nations challenge Western domination Is the glass half empty or half full? As the year 2009 approached its end,the leaders of developing countries who attended the UN summit on climate left the Danish

  13. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  14. Climate scenarios for California

    Science.gov (United States)

    Cayan, Daniel R.; Maurer, Ed; Dettinger, Mike; Tyree, Mary; Hayhoe, Katharine; Bonfils, Celine; Duffy, Phil; Santer, Ben

    2006-01-01

    Possible future climate changes in California are investigated from a varied set of climate change model simulations. These simulations, conducted by three state-of-the-art global climate models, provide trajectories from three greenhouse gas (GHG) emission scenarios. These scenarios and the resulting climate simulations are not “predictions,” but rather are a limited sample from among the many plausible pathways that may affect California’s climate. Future GHG concentrations are uncertain because they depend on future social, political, and technological pathways, and thus the IPCC has produced four “families” of emission scenarios. To explore some of these uncertainties, emissions scenarios A2 (a medium-high emissions) and B1 (low emissions) were selected from the current IPCC Fourth climate assessment, which provides several recent model simulations driven by A2 and B1 emissions. The global climate model simulations addressed here were from PCM1, the Parallel Climate Model from the National Center for Atmospheric Research (NCAR) and U.S. Department of Energy (DOE) group, and CM2.1 from the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluids Dynamics Laboratory (GFDL).

  15. Climate as an indicator

    NARCIS (Netherlands)

    Wassink, J.

    2011-01-01

    They both have Delft roots, but their standpoints in the climate discussion are by no means similar: Professor Pier Vellinga worried publicly, whereas Professor Salle Kroonenberg qualified climate change. Strangely enough, they do agree on the solutions. “If you take a long, hard look,” Prof. Vellin

  16. Phytoplankton and Climate

    Science.gov (United States)

    Moisan, John R.

    2009-01-01

    Ocean phytoplankton supply about half of the oxygen that humans utilize to sustain life. In this lecture, we will explore how phytoplankton plays a critical role in modulating the Earth's climate. These tiny organisms are the base of the Ocean's food web. They can modulate the rate at which solar heat is absorbed by the ocean, either through direct absorption or through production of highly scattering cellular coverings. They take up and help sequester carbon dioxide, a key greenhouse gas that modulated the Earth's climate. They are the source of cloud nucleation gases that are key to cloud formation/processes. They are also able to modify the nutrient budgets of the ocean through active uptake of inert atmospheric nitrogen. Climate variations have a pronounced impact on phytoplankton dynamics. Long term variations in the climate have been studied through geological interpretations on its influence on phytoplankton populations. The presentation will focus on presenting the numerous linkages that have been observed between climate and phytoplankton and further discuss how present climate change scenarios are likely to impact phytoplankton populations as well as present findings from several studies that have tried to understand how the climate might react to the feedbacks from these numerous climate-phytop|ankton linkages.

  17. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James Houseworth

    2001-10-12

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical

  18. IPCC's Climate Communication

    DEFF Research Database (Denmark)

    Almlund, Pernille

    The work of IPCC is an important work and contribution to the global discussion and global challenge of climate change. But this work is primarily based on computer modelling, natural science, economic science and as a new perspective a stronger focus on the risk perspective than in earlier IPCC...... reports. This paper is based on a wonder of why the IPCC’s analysis and reports are not, to a higher degree, based on social science and human science. Are these scientific perspectives with many different approaches not important to this global political awareness of climate change? Especially now when...... all the IPCC’s assessment report have concluded that climate changes are human made and recently stated that 97 % of all climate researchers agree in that conclusion. Due to the theoretical work of Michel Callon, Lascoumes and Barthe (2011) and their ANT perspective, climate change can be observed...

  19. Climate for change

    International Nuclear Information System (INIS)

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  20. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  1. Cosmic rays and climate

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The current understanding of climate change in the industrial age is that it is predominantly caused by anthropogenic greenhouse gases, with relatively small natural contributions due to solar irradiance and volcanoes. However, palaeoclimatic reconstructions show that the climate has frequently varied on 100-year time scales during the Holocene (last 10 kyr) by amounts comparable to the present warming - and yet the mechanism or mechanisms are not understood. Some of these reconstructions show clear associations with solar variability, which is recorded in the light radio-isotope archives that measure past variations of cosmic ray intensity. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Estimated changes of solar irradiance on these time scales appear to be too small to account for the climate observations. This raises the question of whether cosmic rays may directly affect the climate, provi...

  2. Space for Climate

    Directory of Open Access Journals (Sweden)

    Pierre-Philippe Mathieu

    2015-09-01

    Full Text Available This paper describes how Earth Observation (EO data—in particular from satellites—can support climate science, monitoring, and services by delivering global, repetitive, consistent, and timely information on the state of the environment and its evolution. Some examples are presented of EO demonstration pilot projects performed in partnership with scientists, industry, and development practitioners to support climate science, adaptation, mitigation, and disaster risk management. In particular, the paper highlights the challenge of gathering observations and generating long-term climate data records, which provide the foundation of risk management. The paper calls for a science-based integrated approach to climate risk management supported by data and knowledge, providing decision-makers with a unique analytical lens to develop a safety net to risk and maximize opportunities related to climate change and variability.

  3. Addressing Climate Crisis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of extreme global weather events,like floods in Pakistan and droughts in Russia,should serve as a call to the world to take action against climate change.But worries have been mounting since global climate talks stalled,partly due to rifts between developed and developing countries.What efforts should be made to force progress in the negotiating process?What role has China played in combating climate change?Su Wei,China’s chief climate negotiator and Director-General of the Climate Change Department of the National Development and Reform Commission(NDRC),sat down with Beijing Review reporter Hu Yue to answer these questions and more.Edited excerpts follow

  4. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  5. Does Climate Literacy Matter?

    Science.gov (United States)

    Bedford, D. P.

    2014-12-01

    One obstacle to climate science education is the perception that climate literacy plays little or no role in the formation of opinions about the reality and seriousness of anthropogenic global warming (AGW), or that members of the non-specialist public already know enough climate science to hold an informed opinion. Why engage in climate science education if climate literacy does not matter? The idea that resistance to or dismissal of the findings and policy implications of climate science can be addressed simply by providing more and better information—the 'deficit model'—has been heavily critiqued in recent years. However, the pendulum is in danger of swinging too far in the opposite direction, with the view that information deficits either do not exist or are not relevant at all to attitude formation, and that cultural perspectives are sufficient by themselves to explain attitudes to AGW. This paper briefly reviews several recent publications that find a correlation between higher levels of climate literacy and greater acceptance of or concern about AGW, then presents results from a survey completed by 458 students at a primarily undergraduate institution in northern Utah in April-May 2013. These data indicate that attitudes to AGW are largely tribal, based on political outlook, Democrats being more concerned, Republicans less concerned. Overall levels of climate literacy demonstrated by respondents were low, but concern about AGW increased with higher levels of climate literacy among Republicans—though not among Democrats, for whom acceptance of AGW appears to be more an article of faith or badge of identity. Findings such as this suggest that, contrary to some recent critiques of the deficit model, information deficits do exist and do matter for opinion formation on AGW, although cultural factors are clearly also of great importance. Climate science education therefore can potentially help engage members of the public in issues related to AGW.

  6. Effectively Rebutting Climate Misinformation

    Science.gov (United States)

    Cook, J.

    2011-12-01

    Climate science faces one of the best funded misinformation campaigns in history. The challenge for climate communicators is that misinformation is extremely difficult to dislodge, even after people understand that it's incorrect. Understanding how the human brain processes information is crucial to successful rebuttal. To avoid the danger of reinforcing misinformation (known as the 'backfire effect'), emphasis should be on positive facts, not the myth. Another key to dislodging myths is replacing them with an alternate narrative. In order to provide a narrative about arguments that misrepresent climate science, a broader understanding of how these arguments mislead is required. Movements that deny a scientific consensus have 5 characteristics in common and these also apply to climate denial. The arguments against the scientific consensus involve conspiracy theories, fake experts, cherry picking, logical fallacies and misrepresentation or impossible expectations. Learning to identify these rhetorical techniques is an important tool in the climate communication toolbox. I discuss examples of misrepresentations of climate science and the rhetorical techniques employed. I demonstrate how to respond to these arguments by explaining the facts of climate science while in the process, providing an alternate narrative.

  7. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  8. Climate forcings and feedbacks

    Science.gov (United States)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption

  9. CECILIA Regional Climate Simulations for Future Climate: Analysis of Climate Change Signal

    OpenAIRE

    Michal Belda; Petr Skalák; Aleš Farda; Tomáš Halenka; Michel Déqué; Gabriella Csima; Judit Bartholy; Csaba Torma; Constanta Boroneant; Mihaela Caian; Valery Spiridonov

    2015-01-01

    Regional climate models (RCMs) are important tools used for downscaling climate simulations from global scale models. In project CECILIA, two RCMs were used to provide climate change information for regions of Central and Eastern Europe. Models RegCM and ALADIN-Climate were employed in downscaling global simulations from ECHAM5 and ARPEGE-CLIMAT under IPCC A1B emission scenario in periods 2021–2050 and 2071–2100. Climate change signal present in these simulations is consistent with respective...

  10. Corporate Climate Strategies

    DEFF Research Database (Denmark)

    Bjarnø, Ole-Christian; Maltha, Jonas

    2003-01-01

    strategic carbon management for medium to large companies with greenhouse gas intensive activities. The guideline framework is established on the basis of a generic strategy structure in which the factors influencing corporate climate strategies are identified. It is concluded that there is little rationale...... behind extracting of climate strategy from the Environmental Health and Safety (EHS) context - the truly innovative aspect is the construction of an operational multiple Green House Gas information system, which should 1) measure, monitor, aggregate, record, and disseminate emission data (e.g. through...... the limited empirical background, provides indications of how to approach a climate strategy....

  11. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  12. Signification politique du climat

    OpenAIRE

    Lamizet, Bernard

    2013-01-01

    Le climat fonde une approche politique particulière de l’espace et du temps, en suscitant des représentations particulières se situant dans l’histoire, la mémoire, la prévision et le domaine du développement durable. Le climat représente aussi une forme particulière de limitation des pouvoirs et de représentation de la contrainte dans le discours politique et dans les médias, jusqu’à figurer une forme de violence. Enfin, les significations du climat se situent dans l’inconscient. The notio...

  13. Climate, lies and propaganda

    International Nuclear Information System (INIS)

    There is today a strong scientific controversy between alarmist climatologists who consider that the human activities are responsible of the global warming, and climate-skeptics for whom the climate change has a natural origin. Without any passion and far away from any lobby, the author proposes a radical analysis of the situation by answering the essential questions: what is the real extent of global warming? Is this warming unprecedented? Should we alarm for? Except human activities, what other serious hypotheses could explain the actual climatic change? Beside the scientific aspects, this book reveals also the real political, economical and media-staged aspects of the global warming debate. (J.S.)

  14. Witnesses of climate change

    International Nuclear Information System (INIS)

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  15. Climate Benchmark Missions: CLARREO

    Science.gov (United States)

    Wielicki, Bruce A.; Young, David F.

    2010-01-01

    CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in

  16. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  17. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    Science.gov (United States)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  18. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  19. Climate Summit in Copenhagen

    DEFF Research Database (Denmark)

    Delman, Jørgen

      Together with the United States, China has moved to centre stage in the running up to the Climate Summit in Copenhagen 7-18 December 2009. To make the Summit a success, the two countries have started signalling positive commitment to formulation of quantitative targets and engage constructively...... in elaborating a reasonably ambitious, yet realistic framework for the implementation of a new global post-Kyoto regime that will have to take effect from 2012. China's leadership has already acknowledged that climate change may exacerbate an exceedingly unsustainable development path over the next decades...... if action is not taken to change its course dramatically. The challenges are formidable, yet the window of opportunity to take action is quite narrow. For these reasons and due to international pressure, China's position on climate change has been made gradually clearer as the climate negotiations have...

  20. Fisheries and climate

    DEFF Research Database (Denmark)

    Brander, Keith

    2009-01-01

    Fish stocks and the fisheries based on them have always experienced variability due to climate. Changes in temperature, salinity, winds, ocean currents, oxygen, and other factors affect their distribution, growth, survival, and recruitment. Examples of such effects are given for several regions...... of the oceans and the processes are described. Poleward distribution shifts have occurred since the 1960s and can be attributed to the effects of anthropogenic climate change with a high degree of confidence. In addition to climate effects, fisheries are subjected to other anthropogenic stresses, including high...... fishing mortality, loss of habitat, pollution, and introduction of alien species. These interact and may reduce the resilience of exploited stocks, although climate change may also increase productivity in some cases. Fisheries production depends on primary production, but to date we have low confidence...

  1. NASA climate data catalog

    Science.gov (United States)

    Reph, M. G.

    1984-01-01

    This document provides a summary of information available in the NASA Climate Data Catalog. The catalog provides scientific users with technical information about selected climate parameter data sets and the associated sensor measurements from which they are derived. It is an integral part of the Pilot Climate Data System (PCDS), an interactive, scientific management system for locating, obtaining, manipulating, and displaying climate research data. The catalog is maintained in a machine readable representation which can easily be accessed via the PCDS. The purposes, format and content of the catalog are discussed. Summarized information is provided about each of the data sets currently described in the catalog. Sample detailed descriptions are included for individual data sets or families of related data sets.

  2. The climate file

    International Nuclear Information System (INIS)

    A series of interviews of a member of the IPCC (Intergovernmental Panel on Climate Change) and of researchers gives an overview of scientific knowledge on climate, discusses what could be a good agreement at the Copenhagen conference, outlines what is at stake in these negotiations, and proposes an overview of the French policy for the struggle against climate change. An article comments the content of a report published by the CAS (Centre d'Analyse Strategique), and more particularly the position of Russia and of the OPEC before the Copenhagen negotiations. A last article comments the results of three opinion surveys made in France about climate change, its origins and solutions, and about the representation French people have of greenhouse effect

  3. Global Climate Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Hourly Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically...

  4. Climate variability and change

    International Nuclear Information System (INIS)

    When Australia's climate should not be definite barrier to the population reaching 30 million by 2050, it is recognised that our climate has limited the development of the nation over the past 200 years. Indeed in 1911, based on a comparison of the climate and development between the US and Australia. Griffith Taylor predicted that Australia's population would be 19 million at the end of the 20th century, which is a pretty good 90-year forecast. The climate constraint is not only due to much of the country being semi-arid with an annual rainfall below 400 millimetres, but also due to the large year-to-year variability of rainfall across the country

  5. CITYZEN climate impact studies

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, Martin (ed.)

    2011-07-01

    We have estimated the impact of climate change on the chemical composition of the troposphere due to changes in climate from current climate (2000-2010) looking 40 years ahead (2040-2050). The climate projection has been made by the ECHAM5 model and was followed by chemistry-transport modelling using a global model, Oslo CTM2 (Isaksen et al., 2005; Srvde et al., 2008), and a regional model, EMEP. In this report we focus on carbon monoxide (CO) and surface ozone (O3) which are measures of primary and secondary air pollution. In parallel we have estimated the change in the same air pollutants resulting from changes in emissions over the same time period. (orig.)

  6. Climate Forcing Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of changes in solar irradiance, volcanic aerosols, atmospheric trace gases, and other properties thought to influence climate in the past. Parameter...

  7. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  8. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn;

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  9. Architecture, energy and climate

    DEFF Research Database (Denmark)

    Lauring, Michael

    2010-01-01

    necessity almost as basic as food and water, and lack of wood has caused illness and migration - scarcity of energy is not a new topic either [Kjærgaard]. The new aspects are that human civilization is in danger of causing severe global climate changes, secondly that we can foresee using up the global non......Architecture has always had to relate to climatic conditions while providing shelter from the sun, the rain, the winds or the cold. This is a main purpose of buildings: To establish an indoor climate different from the outdoor. In the Nordic countries fuels for heating buildings has been a vital......-renewable reserves of oil, gas and uranium, both aspects capable of pulling the carpet under human civilization itself as we know it. The huge energy consumption especially in the northern hemisphere is closely linked to industrialization, and the response from those aware of energy and climate problems has in some...

  10. Climate plan 2004

    International Nuclear Information System (INIS)

    The Climate Plan is an action plan drawn up by the French Government to respond to the climate change challenge, first by 2010 (complying with the Kyoto Protocol target), and, secondly, beyond this date. Projections for France show that national emissions could be 10% higher than the Kyoto target in 2010 if no measures are taken. This is particularly due to increasing emissions in the sectors affecting daily life (residential-tertiary sectors, transport, etc.). For this reason, the Climate Plan contains measures affecting all sectors of the economy and the daily life of all French citizens with a view to economizing the equivalent of 54 million tonnes of CO2 each year by the year 2010, which will help to reverse the trend significantly. Beyond 2010, the Climate Plan sets out a strategy for technological research which will enable France to meet a target of reducing greenhouse gas emissions four or fivefold by 2050. (author)

  11. Climate change - global warming

    International Nuclear Information System (INIS)

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  12. Climate Record Books

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate Record Books contain daily, monthly, seasonal, and annual averages, extremes, or occurrences. Most data are sequential by period of record 1871-1910,...

  13. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... and to investigate the institutional dynamics new institutional theory is used with an emphasis on examining institutional mechanisms in relation to building legitimacy for action. The concept of mechanisms can help explain how and why constraints on action occur, and the concept of legitimacy is useful to clarify...... entrepreneurs create windows for action through the establishment of local networks. The thesis contributes knowledge on the constraints of the internal integration process in city governments. It provides explanations of why these constraints occur, and how officials seek to overcome them. The thesis provides...

  14. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  15. Pathfinder Climate Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/NASA Pathfinder climate data CD-ROM contains seven data sets: Advanced Very High Resolution Radiometer (AVHRR)Land and Ocean, TIROS Operational Vertical...

  16. Climate Certainties and Uncertainties

    International Nuclear Information System (INIS)

    In issue 380 of Futuribles in December 2011, Antonin Pottier analysed in detail the workings of what is today termed 'climate scepticism' - namely the propensity of certain individuals to contest the reality of climate change on the basis of pseudo-scientific arguments. He emphasized particularly that what fuels the debate on climate change is, largely, the degree of uncertainty inherent in the consequences to be anticipated from observation of the facts, not the description of the facts itself. In his view, the main aim of climate sceptics is to block the political measures for combating climate change. However, since they do not admit to this political posture, they choose instead to deny the scientific reality. This month, Futuribles complements this socio-psychological analysis of climate-sceptical discourse with an - in this case, wholly scientific - analysis of what we know (or do not know) about climate change on our planet. Pierre Morel gives a detailed account of the state of our knowledge in the climate field and what we are able to predict in the medium/long-term. After reminding us of the influence of atmospheric meteorological processes on the climate, he specifies the extent of global warming observed since 1850 and the main origin of that warming, as revealed by the current state of knowledge: the increase in the concentration of greenhouse gases. He then describes the changes in meteorological regimes (showing also the limits of climate simulation models), the modifications of hydrological regimes, and also the prospects for rises in sea levels. He also specifies the mechanisms that may potentially amplify all these phenomena and the climate disasters that might ensue. Lastly, he shows what are the scientific data that cannot be disregarded, the consequences of which are now inescapable (melting of the ice-caps, rises in sea level etc.), the only remaining uncertainty in this connection being the date at which these things will happen. 'In this

  17. The Portuguese Climate Portal

    Science.gov (United States)

    Gomes, Sandra; Deus, Ricardo; Nogueira, Miguel; Viterbo, Pedro; Miranda, Miguel; Antunes, Sílvia; Silva, Alvaro; Miranda, Pedro

    2016-04-01

    The Portuguese Local Warming Website (http://portaldoclima.pt) has been developed in order to support the society in Portugal in preparing for the adaptation to the ongoing and future effects of climate change. The climate portal provides systematic and easy access to authoritative scientific data ready to be used by a vast and diverse user community from different public and private sectors, key players and decision makers, but also to high school students, contributing to the increase in knowledge and awareness on climate change topics. A comprehensive set of regional climate variables and indicators are computed, explained and graphically presented. Variables and indicators were built in agreement with identified needs after consultation of the relevant social partners from different sectors, including agriculture, water resources, health, environment and energy and also in direct cooperation with the Portuguese National Strategy for Climate Change Adaptation (ENAAC) group. The visual interface allows the user to dynamically interact, explore, quickly analyze and compare, but also to download and import the data and graphics. The climate variables and indicators are computed from state-of-the-art regional climate model (RCM) simulations (e.g., CORDEX project), at high space-temporal detail, allowing to push the limits of the projections down to local administrative regions (NUTS3) and monthly or seasonal periods, promoting local adaptation strategies. The portal provides both historical data (observed and modelled for the 1971-2000 period) and future climate projections for different scenarios (modelled for the 2011-2100 period). A large effort was undertaken in order to quantify the impacts of the risk of extreme events, such as heavy rain and flooding, droughts, heat and cold waves, and fires. Furthermore the different climate scenarios and the ensemble of RCM models, with high temporal (daily) and spatial (~11km) detail, is taken advantage in order to

  18. The climatic change

    International Nuclear Information System (INIS)

    In order to take stock on the climatic change situation and initiatives at the beginning of 2006, the INES (National Institute on the Solar Energy) proposes this special document. It presents the Montreal conference of December 2005, realized to reinforced the actions of the international community against the greenhouse gases. The technical decisions decided at this conference are detailed. The document discusses also the causes and consequences of the climatic warming, the intervention sectors and the actions possibilities. (A.L.B.)

  19. Climate Change and Mitigation

    OpenAIRE

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speake...

  20. Climate and architecture

    DEFF Research Database (Denmark)

    Tind Kristensen, Eva; Friis Møller, Winnie; Rotne, Georg;

    2010-01-01

    Climate and Architecture analyserer klimaets rolle i arkitekturen. Intentionen med bogen er at pege på nogle af de mange muligheder for bygningers klimaregulering, som et mere detaljeret studie af de lokale klimatiske forhold og den stedlige byggeskik tilbyder.......Climate and Architecture analyserer klimaets rolle i arkitekturen. Intentionen med bogen er at pege på nogle af de mange muligheder for bygningers klimaregulering, som et mere detaljeret studie af de lokale klimatiske forhold og den stedlige byggeskik tilbyder....

  1. Climate Variability Program

    Science.gov (United States)

    Halpern, David (Editor)

    2002-01-01

    The Annual Report of the Climate Variability Program briefly describes research activities of Principal Investigators who are funded by NASA's Earth Science Enterprise Research Division. The report is focused on the year 2001. Utilization of satellite observations is a singularity of research on climate science and technology at JPL (Jet Propulsion Laboratory). Research at JPL has two foci: generate new knowledge and develop new technology.

  2. Lithuania : Investment Climate Assessment

    OpenAIRE

    World Bank, (WB)

    2005-01-01

    The World Bank undertook an investment climate assessment in Lithuania in 2004 as part of its efforts to support member countries through in-depth analysis of major microeconomic constraints in their business environments. Lithuania has made serious efforts in recent years to improve its investment climate. This report has attempted to capture as much as possible the achievements of those efforts as well as the shortcomings that remain. The general picture in 2004 was of impressively rapid pr...

  3. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  4. The climate bishop

    International Nuclear Information System (INIS)

    Climate change is not a choice between economics and the environment. It is important for the politicians of every nation to invest in saving the environment, invest in developing the technology that will prevent the climate change. We need to change, the change at the end of the day will not affect our lifestyle substantially, but it will make a huge difference to the future generation

  5. Clashing Over the Climate

    Institute of Scientific and Technical Information of China (English)

    HAIDER RIZVI

    2010-01-01

    @@ Is the glass half empty or half full? As the year 2009 approached its end, the leaders of developing countries who attended the UN summit on climate left the Danish capital of Copenhagen with this question constantly nagging in their minds. At the end of the Copenhagen climate talks that continued for about two weeks, developing nations seemed relatively satisfied with the final outcome, but not all of them.

  6. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  7. Rethinking climate communications and the “psychological climate paradox”

    OpenAIRE

    Stoknes, Per Espen

    2014-01-01

    Climate science has provided ever more reliable data and models over the last 20–30 years, thereby indicating increasingly severe impacts in the coming decades and centuries. Nonetheless, public concern for climate change and the issue's perceived importance has been declining over the past few decades, thus giving less public support for ambitious climate policies. Conventional climate communication strategies have failed to resolve this “climate paradox.” This article reviews research on th...

  8. From climate-smart agriculture to climate-smart landscapes

    OpenAIRE

    Scherr Sara J; Shames Seth; Friedman Rachel

    2012-01-01

    Abstract Background For agricultural systems to achieve climate-smart objectives, including improved food security and rural livelihoods as well as climate change adaptation and mitigation, they often need to be take a landscape approach; they must become ‘climate-smart landscapes’. Climate-smart landscapes operate on the principles of integrated landscape management, while explicitly incorporating adaptation and mitigation into their management objectives. Results An assessment of climate ch...

  9. Arts and Climate

    Science.gov (United States)

    Cegnar, T.

    2010-09-01

    Arts and climate science have more in common points than it appears at first glance. Artistic works can help us to directly or indirectly learn about climatic conditions and weather events in the past, but are also very efficient in raising awareness about climate change nowadays. Long scientific articles get very little response among general public, because most people don't want to read long articles. There is a need to communicate climate change issues more powerfully and more directly, with simple words, pictures, sculptures, installations. Artistic works can inspire people to take concrete action. A number of communication media can fit this purpose. Artists can speak to people on an emotional and intellectual level; they can help people to see things from another perspective and in new ways. Artists can motivate change; they have the freedom to weave facts, opinions, thoughts, emotion and colour all together. Paintings are witnesses of the past climatic conditions. We can learn from paintings, architectural constructions and sculptures about the vegetation, weather events, animals, and way of living. Mentioning only some few examples: old paintings in caves, also Flemish painters are often shown for their winter landscapes, and paintings are very useful to illustrate how fast glaciers are melting. At the end, we shall not forget that dilapidation of art masterpieces often depends on climatic conditions.

  10. The politics of climate

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkonen, J. [Tampere Univ. (Finland). Dept. of Regional Studies; Wilenius, M. [Helsinki Univ. (Finland). Inst. for Cooperative Studies

    1996-12-31

    One of the aims of SILMU, the Finnish Research Programme for Climate Change, was to produce information for decision-makers concerning climate change and its mitigation. One integrative project for this purpose was PAATE, an inquiry into the present state and future possibilities of interaction between researchers and decision-makers. The aims of the PAATE project can be summarised as follows: (1) to conduct a survey of the state of climate change research and climate policy in Finland, (2) to develop the interaction between climate research, policy makers and different societal organisations, (3) to acquire methodological experiences on the realisation of projects of this type, (4) to provide material for the final report of the SILMU project and for further action, and (5) to promote the rational development of climate policy. Methodologically, the PAATE project used the Delphi technique employed chiefly in futurological research. A method based on expert knowledge, the Delphi technique assesses the possibilities and conditions of future development through e.g. panel discussions between experts. Also the experiences of the similar project conducted in Netherlands were utilised

  11. Global climate convention

    International Nuclear Information System (INIS)

    The effort of negotiate a global convention on climate change is one of mankind's great endeavours - and a challenge to economists and development planners. The inherent linkages between climate and the habitability of the earth are increasingly well recognized, and a convention could help to ensure that conserving the environment and developing the economy in the future must go hand in hand. Due to growing environmental concern the United Nations General Assembly has set into motion an international negotiating process for a framework convention on climate change. One the major tasks in these negotiations is how to share the duties in reducing climate relevant gases, particularly carbon dioxide (CO2), between the industrial and the developing countries. The results and proposals could be among the most far-reaching ever for socio-economic development, indeed for global security and survival itself. While the negotiations will be about climate and protection of the atmosphere, they will be on fundamental global changes in energy policies, forestry, transport, technology, and on development pathways with low greenhouse gas emissions. Some of these aspects of a climate convention, particularly the distributional options and consequences for the North-South relations, are addressed in this chapter. (orig.)

  12. Sonification of Climate Data

    Science.gov (United States)

    Vogt, Katharina; Visda, Goudarzi

    2013-04-01

    Sonification is the acoustic analogue of data visualization and takes advantage of human perceptual and cognitive capabilities. The amount of data being processed today is steadily increasing, and both scientists and society need new ways to understand scientific data and their implications. Sonification is especially suited to the preliminary exploration of complex, dynamic, and multidimensional data sets, as can be found in climate science. In the research project SysSon (https://sysson.kug.ac.at/), we apply a systematic approach to design sonifications to climate data. In collaboration with the Wegener Center for Climate and Global Change (http://www.wegcenter.at/) we assessed the metaphors climate scientists use and their typical workflows, and chose data sets where sonification has high potential revealing new phenomena. This background will be used to develop an audio interface which is directly linked to the visualization interfaces for data analysis the scientists use today. The protoype will be evaluated according to its functionality, intuitivity for climate scientists, and aesthetic criteria. In the current stage of the project, conceptual links between climate science and sound have been elaborated and first sonification designs have been developed. The research is mainly carried out at the Institute of Electronic Music and Acoustics (http://iem.kug.ac.at/), which has extensive experience in interactive sonification with multidimensional data sets.

  13. Organizational climate and culture.

    Science.gov (United States)

    Schneider, Benjamin; Ehrhart, Mark G; Macey, William H

    2013-01-01

    Organizational climate and organizational culture theory and research are reviewed. The article is first framed with definitions of the constructs, and preliminary thoughts on their interrelationships are noted. Organizational climate is briefly defined as the meanings people attach to interrelated bundles of experiences they have at work. Organizational culture is briefly defined as the basic assumptions about the world and the values that guide life in organizations. A brief history of climate research is presented, followed by the major accomplishments in research on the topic with regard to levels issues, the foci of climate research, and studies of climate strength. A brief overview of the more recent study of organizational culture is then introduced, followed by samples of important thinking and research on the roles of leadership and national culture in understanding organizational culture and performance and culture as a moderator variable in research in organizational behavior. The final section of the article proposes an integration of climate and culture thinking and research and concludes with practical implications for the management of effective contemporary organizations. Throughout, recommendations are made for additional thinking and research.

  14. Climate Impacts on Human Health

    Science.gov (United States)

    ... Climate Change Impacts Human Health Impacts Human Health Climate Impacts on Human Health Climate Impacts on Alaska On This Page Temperature-Related ... very old) are especially vulnerable to health impacts. Climate Change Affects Human Health In 2016, the U.S. ...

  15. Do regional climate models represent regional climate?

    Science.gov (United States)

    Maraun, Douglas; Widmann, Martin

    2014-05-01

    When using climate change scenarios - either from global climate models or further downscaled - to assess localised real world impacts, one has to ensure that the local simulation indeed correctly represents the real world local climate. Representativeness has so far mainly been discussed as a scale issue: simulated meteorological variables in general represent grid box averages, whereas real weather is often expressed by means of point values. As a result, in particular simulated extreme values are not directly comparable with observed local extreme values. Here we argue that the issue of representativeness is more general. To illustrate this point, assume the following situations: first, the (GCM or RCM) simulated large scale weather, e.g., the mid-latitude storm track, might be systematically distorted compared to observed weather. If such a distortion at the synoptic scale is strong, the simulated local climate might be completely different from the observed. Second, the orography even of high resolution RCMs is only a coarse model of true orography. In particular in mountain ranges the simulated mesoscale flow might therefore considerably deviate from the observed flow, leading to systematically displaced local weather. In both cases, the simulated local climate does not represent observed local climate. Thus, representativeness also encompasses representing a particular location. We propose to measure this aspect of representativeness for RCMs driven with perfect boundary conditions as the correlation between observations and simulations at the inter-annual scale. In doing so, random variability generated by the RCMs is largely averaged out. As an example, we assess how well KNMIs RACMO2 RCM at 25km horizontal resolution represents winter precipitation in the gridded E-OBS data set over the European domain. At a chosen grid box, RCM precipitation might not be representative of observed precipitation, in particular in the rain shadow of major moutain ranges

  16. Efficacy of climate forcings

    Science.gov (United States)

    Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G. A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; Bell, N.; Cairns, B.; Canuto, V.; Chandler, M.; Cheng, Y.; Del Genio, A.; Faluvegi, G.; Fleming, E.; Friend, A.; Hall, T.; Jackman, C.; Kelley, M.; Kiang, N.; Koch, D.; Lean, J.; Lerner, J.; Lo, K.; Menon, S.; Miller, R.; Minnis, P.; Novakov, T.; Oinas, V.; Perlwitz, Ja.; Perlwitz, Ju.; Rind, D.; Romanou, A.; Shindell, D.; Stone, P.; Sun, S.; Tausnev, N.; Thresher, D.; Wielicki, B.; Wong, T.; Yao, M.; Zhang, S.

    2005-09-01

    We use a global climate model to compare the effectiveness of many climate forcing agents for producing climate change. We find a substantial range in the "efficacy" of different forcings, where the efficacy is the global temperature response per unit forcing relative to the response to CO2 forcing. Anthropogenic CH4 has efficacy ˜110%, which increases to ˜145% when its indirect effects on stratospheric H2O and tropospheric O3 are included, yielding an effective climate forcing of ˜0.8 W/m2 for the period 1750-2000 and making CH4 the largest anthropogenic climate forcing other than CO2. Black carbon (BC) aerosols from biomass burning have a calculated efficacy ˜58%, while fossil fuel BC has an efficacy ˜78%. Accounting for forcing efficacies and for indirect effects via snow albedo and cloud changes, we find that fossil fuel soot, defined as BC + OC (organic carbon), has a net positive forcing while biomass burning BC + OC has a negative forcing. We show that replacement of the traditional instantaneous and adjusted forcings, Fi and Fa, with an easily computed alternative, Fs, yields a better predictor of climate change, i.e., its efficacies are closer to unity. Fs is inferred from flux and temperature changes in a fixed-ocean model run. There is remarkable congruence in the spatial distribution of climate change, normalized to the same forcing Fs, for most climate forcing agents, suggesting that the global forcing has more relevance to regional climate change than may have been anticipated. Increasing greenhouse gases intensify the Hadley circulation in our model, increasing rainfall in the Intertropical Convergence Zone (ITCZ), Eastern United States, and East Asia, while intensifying dry conditions in the subtropics including the Southwest United States, the Mediterranean region, the Middle East, and an expanding Sahel. These features survive in model simulations that use all estimated forcings for the period 1880-2000. Responses to localized forcings, such

  17. Ancillary Benefits of Climate Policy

    OpenAIRE

    Markandya, Anil; Rübbelke, Dirk T. G.

    2003-01-01

    The benefits of climate policy normally consist exclusively of the reduced impacts of climate change, i.e., the policy’s primary aim. Our analysis of benefits of climate policy suggests, however, that researchers and policymakers should also take account of ancillary benefits, e.g., in the shape of improved air quality induced by climate protection measures. A consideration of both, primary and ancillary benefits, has a positive influence on global climate protection efforts, e.g., because th...

  18. How reliable are climate models?

    OpenAIRE

    Räisänen, Jouni

    2007-01-01

    How much can we trust model-based projections of future anthropogenic climate change? This review attempts to give an overview of this important but difficult topic by using three main lines of evidence: the skill of models in simulating present-day climate, intermodel agreement on future climate changes, and the ability of models to simulate climate changes that have already occurred. A comparison of simulated and observed present-day climates shows good agreement for many basic variables, p...

  19. Current Climate Variability & Change

    Science.gov (United States)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  20. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  1. Behind the climate cacophony

    International Nuclear Information System (INIS)

    In this book, the author aims at deconstructing all the different speeches and statements on climate made as well by pessimistic activists as by 'climate sceptics', or by political marketing. He explains why there is no climate emergency and why it is however a major problem, why it is useless to listen to 'climate sceptics', why technological innovation is necessary but not sufficient, and why the UNO Conference on Climate is also necessary but not sufficient. He notices that this approach is not simple when the prevailing model is social success and unlimited wealth. He recalls the definition of the greenhouse effect, explains the warming process and how mankind accelerated it, discusses the always announced objective of a 2 degree increase, and describes the role and operation of the IPCC and of its groups. He outlines that the issues which must be addressed are energy consumption and social inequalities, notably between North and South, and that, therefore, we must consume less energy and less raw materials

  2. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  3. Climate Extremes and Society

    Science.gov (United States)

    Mote, Philip

    2009-10-01

    In October 2005, as the United States still was reeling from Hurricane Katrina in August and as the alphabet was too short to contain all of that year's named Atlantic tropical storms (Hurricane Wilma was forming near Jamaica), a timely workshop in Bermuda focused on climate extremes and society (see Eos, 87(3), 25, 17 January 2006). This edited volume, which corresponds roughly to the presentations given at that workshop, offers a fascinating look at the critically important intersection of acute climate stress and human vulnerabilities. A changing climate affects humans and other living things not through the variable that most robustly demonstrates the role of rising greenhouse gases—globally averaged temperature—but through local changes, especially changes in extremes. The first part of this book, “Defining and modeling the nature of weather and climate extremes,” focuses on natural science. The second part, “Impacts of weather and climate extremes,” focuses on societal impacts and responses, emphasizing an insurance industry perspective because a primary sponsor of the workshop was the Risk Prediction Initiative, whose aim is to “support scientific research on topics of interest to its sponsors” (p. 320).

  4. Man and the climate

    International Nuclear Information System (INIS)

    The aim of this report is explain and balance the real dangers associated with the climate changes that may result from human activities, those which lack some scientific background, and the precaution and prudence needs which are claimed by human beings and society. The main parts of the report are: the scientific aspects of climate changes (inventory of present knowledge, assessment of uncertainties; what are greenhouse effect, which sectors of human activities are emitting greenhouse gases, what are the threats for our planet); the international negotiations on climate (their stakes and problematic since the start of the 90's, is a world consensus possible?); the room for maneuver on economical, social and technological levels in order to decrease the greenhouse gas emissions and allocate the application of solutions between States, enterprises and citizens

  5. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle;

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... during the last 10 000 years, highlighting the role of soil dynamics in past vegetation changes, and stressing the growing anthropogenic impacts on soil erosion during recent decades. Furthermore, past and present changes in atmospheric and oceanic heat advection appear to severely influence both...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  6. Embedding Climate Services

    Science.gov (United States)

    Shafer, M.; Boone, M.; Keim, B. D.

    2015-12-01

    With the rapidly-increasing number of climate services providers, the landscape for putting climate into practice is getting both easier to access and more confusing. Each provider serves a different clientele, and in so doing draws more stakeholder organizations into the sphere of those using climate information in decision-making. The challenge has been in connecting these new stakeholders with expertise that may reside within a different provider organization. To help close the gap, the Southern Climate Impacts Planning Program (SCIPP; http://www.southernclimate.org), a NOAA RISA Team, initiated a summer internship program, where students with expertise in meteorology or climatology would work for an organization more closely aligned with another climate services provider network. The format was patterned after the successful NSF-funded Research Experience for Undergraduates (REU) program at the National Weather Center, where students are selected from undergraduate programs across the nation to spend a summer conducting research under a scientific mentor. The SCIPP initiative flipped this model, instead sending students to organizations with operational needs for climate information to work under their mentorship in partnership with SCIPP scientists. Over the past two summers, SCIPP has recruited students to work at landscape-based (Gulf Coast Joint Venture and National Wetlands Research Center) and community-based (Tulsa Partners) organizations. Students worked alongside the organizations' staff on a daily basis and were supported through periodic calls with the SCIPP team to help identify appropriate datasets and work through methodological issues. This presentation will discuss how these relationships were created, the expertise of each of the organizations involved, and outcomes from the projects.

  7. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  8. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  9. Climate data management system

    Energy Technology Data Exchange (ETDEWEB)

    Drach, R

    1999-07-13

    The Climate Data Management System is an object-oriented data management system, specialized for organizing multidimensional, gridded data used in climate analysis and simulation. The building blocks of CDMS are variables, container classes, structural classes, and links. All gridded data stored in CDMS is associated with variables. The container objects group variables and structural objects. Variables are defined in terms of structural objects. Most CDMS objects can have attributes, which are scalar or one-dimensional metadata items. Attributes which are stored in the database, that is are persistent, are called external attributes. Some attributes are internal; they are associated with an object but do not appear explicitly in the database.

  10. Climate friendly dietary guidelines

    DEFF Research Database (Denmark)

    Trolle, Ellen; Mogensen, Lisbeth; Thorsen, Anne Vibeke;

    2014-01-01

    The aim of this study was to investigate how the present Danish diet could be changed in a climate friendly direction that follows the recommendations of a healthy diet. The carbon footprint (CF) of an average Danish diet was calculated and compared to CF of a recommended healthy diet by 1......%, if the healthy diet was eaten instead of the average current diet. However, if the diet was climate optimized by choosing foods with a low CF within the food groups; meat, vegetables and fruit, CF of this diet may be reduced by 23 % compared to CF of the average diet....

  11. Multifrenic Climate Discourses

    DEFF Research Database (Denmark)

    Rasmussen, Tove Arendt; Andersen, Maria Wael; Halgaard Nielsen, Marie

    On the basis of qualitative interviews on ’Energibyen Frederikshavn’ (Energy City Frederikshavn), the article reveals various rationales underlying modern consumers' often contradictory opinions and attitudes to climate change and energy consumption. It may seem hard to decide whether the interest...... in sustainable, alternative sources of energy is conditioned by the soaring price of oil or present threats of climate change. The paper will discuss the energy discourses produced by the people in the participating focus group in the light of three rather different, theoretical positions. And, finally, we...

  12. The Amazon and climate

    Science.gov (United States)

    Nobre, C. A.

    1984-01-01

    The climatologies of cloudiness and precipitation for the Amazon, are reviewed and the physical causes of some of the observed features and those which are not well known are explained. The atmospheric circulation over the Amazon is discussed on the large scale tropical circulations forced by deep diabatic heating sources. Weather deforestation which leads to a reduction in evapotranspiration into the atmosphere, and a reduction in precipitation and its implicated for the gobal climate is discussed. It is indicated that a large scale clearing of tropical rainforests there would be a reduction in rainfall which would have global effects on climate and weather both in the tropical and extratropical regions.

  13. Climates, Landscapes, and Civilizations

    Science.gov (United States)

    Schultz, Colin

    2013-10-01

    Humans are now the dominant driver of global climate change. From ocean acidification to sea level rise, changes in precipitation patterns, and rising temperatures, global warming is presenting us with an uncertain future. However, this is not the first time human civilizations have faced a changing world. In the AGU monograph Climates, Landscapes, and Civilizations, editors Liviu Giosan, Dorian Q. Fuller, Kathleen Nicoll, Rowan K. Flad, and Peter C. Clift explore how some ancient peoples weathered the shifting storms while some faded away. In this interview, Eos speaks with Liviu Giosan about the decay of civilizations, ancient adaptation, and the surprisingly long history of humanity's effect on the Earth.

  14. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...

  15. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  16. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  17. Lack of Climate Expertise Among Climate Change Educators

    Science.gov (United States)

    Doesken, N.

    2015-12-01

    It is hard to know enough about anything. Many educators fully accept the science as well as the hype associated with climate change and try very hard to be climate literate. But many of these same educators striving for greater climate literacy are surprisingly ignorant about the climate itself (typical seasonal cycles, variations, extremes, spatial patterns and the drivers that produce them). As a result, some of these educators and their students are tempted to interpret each and every hot or cold and wet or dry spell as convincing evidence of climate change even as climate change "skeptics" view those same fluctuations as normal. Educators' overreaction risks a backfire reaction resulting in loss of credibility among the very groups they are striving to educate and influence. This presentation will include reflections on climate change education and impacts based on 4 decades of climate communication in Colorado.

  18. Climatic history - answers on the variability of weather and climate?

    International Nuclear Information System (INIS)

    The paper is concerned with various aspects of climatic history. Emphasis is on the spectrum of data and methods used in historical climatology. The following section is devoted to an outline of the short- and long-range climatic changes since 1500 A.D. that show how much the climate has varied in space and time. It is pointed out that climatic extremes have been an ever-recurrent phenomenon throughout history. (orig.)

  19. Greenhouse effect and climate; Effet de serre et climat

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, J

    2008-04-15

    In the framework of the climatic change, the author aims to explain the phenomena of greenhouse effect. He details the historical aspects of the scientific knowledge in the domain, the gases produced, some characteristic of the greenhouse effect, the other actors which contribute to the climate, the climate simulation, the different factors of climate change since 1750 and the signs of the global heating. (A.L.B.)

  20. The climate: Earth and men

    International Nuclear Information System (INIS)

    In this book, the authors first present the climate system as it operates under the influence of the atmosphere and oceans: Earth heated by the Sun, temperatures and movements within the atmosphere, surface and deep circulation in the oceans, exchanges between the atmosphere and the oceans. They present the various actors of climate and their interactions: water cycle, carbon cycle, greenhouse effect, clouds, aerosols, ocean, cryosphere-climate interaction, interaction between continental biosphere and climate, interactions between climate, continents and lithosphere, feedbacks and climate sensitivity. They comment the variety of climates and their variability when considered on a large scale (role of the Sun, ocean-atmosphere oscillations in El Nino and La Nina, North Atlantic oscillation, other examples of oscillations). The next part addresses climate modelling: model fundamentals (parameters and other components, coupling between components), model adjustment (simulation types, multi-model sets, and model assessment), models of intermediate complexity, regional models. The authors discuss the warming phenomenon: history of temperature measurements, clues of global warming, how to make climate change. They propose a presentation and discussion of anthropogenic and natural factors which disturb the climate: CO2 and other greenhouse gases, changes in soil uses, other possible causes of climate disturbance (aerosol, aircraft wakes, volcanoes, and sun), combination of these disturbances, and identification of anthropogenic disturbances. They discuss past climate evolutions, and finally discuss how the climate could evolve in the future

  1. A Climate System Model, Numerical Simulation and Climate Predictability

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingcun; WANG Huijun; LIN Zhaohui; ZHOU Guangqing; YU Yongqiang

    2007-01-01

    @@ The implementation of the project has lasted for more than 20 years. As a result, the following key innovative achievements have been obtained, ranging from the basic theory of climate dynamics, numerical model development and its related computational theory to the dynamical climate prediction using the climate system models:

  2. Climate and Energy Responsive Housing in Continental Climates

    OpenAIRE

    Nasrollahi, Farshad

    2009-01-01

    zugleich in Printform erschienen im Universitätsverlag der TU Berlin: Nasrollahi, Farshad: Climate and Energy Responsive Housing in Continental Climates : the Suitability of Passive Houses for Iran’s Dry and Cold Climate. - Universitätsverlag der TU Berlin, 2009. - 279 S. : Ill. ISBN 978-3-7983-2144-1

  3. Climatic servitude: climate change, business and politics

    International Nuclear Information System (INIS)

    This book is together a contemporary history book and a global dossier about a topic of prime importance in our civilization. It treats of the history of science, of ideas and events put in the modern civilization context, of science situation and scientific controversies, of the media aspects, of carbon economy and its related business, of Al Gore's and Maurice Strong's biographies, and finally, it makes a critical geopolitical analysis and makes proposals for a renovated ecology. In the conclusion, the author shows how climate change has become the hobbyhorse of a new thinking trend, namely the New World Order, aiming at conducting people to the acceptance of constraining policies encompassing the energy security of nations, new taxes, a worldwide economic disruption, the limitation of the World's population, and a World governance supported by the United Nations and not constrained by classical democratic rules. (J.S.)

  4. An uncertain climate

    NARCIS (Netherlands)

    Groen, E.A.

    2016-01-01

    ABSTRACT Production of food contributes to climate change and other forms of environmental impact. Input data used in environmental impact assessment models, such as life cycle assessment (LCA) and nutrient balance (NB) analysis, may vary due to seasonal changes, geographical condi

  5. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  6. The climate myth

    International Nuclear Information System (INIS)

    The apparent consensus of opinion about the human responsibility in the climate crisis is crumbling down. This book presents a sceptical point of view about the link between global warming and the anthropic carbon dioxide emissions. Targeting his critics on some key-points, the author explains with simple words the weaknesses of some arguments, in particular the statistical ones, that have been considered as conclusive: historical reconstruction of global ambient temperatures, ice cores analysis, climate models reliability.. Behind these particular deficiencies emerges a deeper epistemological question involving the real nature of carbon-related theories. By comparing the present day climate hypothesis to other episodes of the sciences history, the author advances that we are again in presence of a new case of 'pathological science'. Finally, he calls our attention on the insidious trend of some scientifical talks which is to consider the Earth as a subject instead of an object. The importance of the political, economical and social stakes of the climate debate imposes that we give a particular attention to these analyses. (J.S.)

  7. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

  8. Beyond local climate

    DEFF Research Database (Denmark)

    D'haen, Sarah Ann Lise; Nielsen, Jonas Østergaard; Lambin, Eric F.

    2014-01-01

    At the household level, nonfarm activities are thought to help rural poor households buffer against agricultural risks related to local climate variability by providing them with cash to buy food in the case of harvest shortfalls. Over the recent decades, households in rural Sub-Sahara have been...

  9. Modeling Earth's Climate

    Science.gov (United States)

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  10. Climate report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars; Axelsson, Pernilla; Fegler, C. [and others

    1998-11-01

    The Swedish Environmental Protection Agency, NV, the National Board for Industrial and Technical Development, NUTEK, and the Swedish Institute for Transport and Communications Analysis, SIKA, have been commissioned by the Government to furnish background material for Sweden`s second national report on climate change. The national report is a commitment vis-a-vis the UN Framework Convention on Climate Change (FCCC). Sweden`s first national report was presented in 1994, and the second was completed and adopted by the Government on 3 April 1997. This study is a more detailed account based on NUTEK`s background material for the national report. NUTEK has been Sweden`s central authority within the energy field. The authority`s work with the background material for the national report has primarily been concentrated on projections of the future development of the energy system. However, the forecasts for energy use in the transport sector are mainly based on forecasts of transport activity prepared by SIKA. Furthermore NUTEK has been responsible for the calculations of the effects of policy instruments on the carbon dioxide emissions. The Swedish Environmental Protection Agency is responsible for the calculations of emissions of climate gases in the background material for the national report. These calculations of the energy system`s emissions of carbon dioxide and other climate gases are based on NUTEK`s energy forecasts 13 figs, 38 tabs

  11. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  12. Deliberating Climate Change

    DEFF Research Database (Denmark)

    Agger, Annika; Jelsøe, Erling; Jæger, Birgit;

    to include the voice of the citizens into complex scientific and technological issues. The purpose of WWV was to pass on the opinions of ordinary citizens to political decision-makers at The United Nations Climate Summit, COP15, in Copenhagen in December 2009. The authors made a study of the Danish WWV event...

  13. Coping with climate change

    DEFF Research Database (Denmark)

    Zheng, Yuan; Byg, Anja

    2014-01-01

    found across villages regarding the degree of perceived sensitivity and responses despite similar exposure to climate extremes. These differences are partly related to the nature of events and varied socio-economic characteristics of households, which influence their vulnerability and ability to cope...

  14. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  15. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  16. Corporate Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The American Chamber of Commerce, the People's Republic of China (AmCham-China) and the American Chamber of Commerce in Shanghai recently released "American Corporate Experience in a Changing China: Insights From AmCham Business Climate Surveys, 1999-2005." Excerpts of the report follow:

  17. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  18. Smarter greenhouse climate control

    NARCIS (Netherlands)

    Nederhoff, E.M.; Houter, G.

    2011-01-01

    Greenhouse operators strive to be as economic as possible with energy. However, investing in fancy energy-saving equipment is often not cost-effective for smaller operations and in climate zones with mild winters. It is possible, though, for many growers to save energy without buying special equipme

  19. Adaptation to climate change

    NARCIS (Netherlands)

    J. Carmin; K. Tierney; E. Chu; L.M. Hunter; J.T. Roberts; L. Shi

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  20. Challenges of climate change

    Science.gov (United States)

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  1. Indoor Climate Quality Assessment -

    DEFF Research Database (Denmark)

    Ansaldi, Roberta; Asadi, Ehsan; Costa, José Joaquim;

    This Guidebook gives building professionals useful support in the practical measurements and monitoring of the indoor climate in buildings. It is evident that energy consumption in a building is directly influenced by required and maintained indoor comfort level. Wireless technologies for measure...

  2. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  3. The Key to Climate Cooperation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Climate change talks should be based on a dual-track negotiating mechanism Delegates from nearly 190 countries gathered in the Germancity of Bonn for a newround of UN climate change talks on May 31—the first round

  4. Volcanic Eruptions and Climate

    Science.gov (United States)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  5. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...... adaptation needed. Issues that must be addressed in case a strategic approach is not developed, as the building sector is continuously investing in measures to adapt to climate change as impacts emerge are described....

  6. Active Learning about Climate Change

    OpenAIRE

    Hwang, I.C.; Tol, R.S.J.; Hofkes, M.W.

    2013-01-01

    We develop a climate-economy model with active learning. We consider three ways of active learning: improved observations, adding observations from the past and improved theory from climate research. From the model, we find that the decision maker invests a significant amount of money in climate research. Expenditures to increase the rate of learning are far greater than the current level of expenditure on climate research, as it helps in taking improved decisions. The optimal carbon tax for ...

  7. Economic impacts of climate change

    OpenAIRE

    Tol, Richard S.J.

    2015-01-01

    Climate change will probably have a limited impact on the economy and human welfare in the 21st century. The initial impacts of climate change may well be positive. In the long run, the negative impacts dominate the positive ones. Negative impacts will be substantially greater in poorer, hotter, and lower-lying countries. Poverty reduction complements greenhouse gas emissions reduction as a means to reduce climate change impacts. Climate change may affect the growth rate of the economy and ma...

  8. Mapping Vulnerability to Climate Change

    OpenAIRE

    Heltberg, Rasmus; Bonch-Osmolovskiy, Misha

    2011-01-01

    This paper develops a methodology for regional disaggregated estimation and mapping of the areas that are ex-ante the most vulnerable to the impacts of climate change and variability and applies it to Tajikistan, a mountainous country highly vulnerable to the impacts of climate change. The authors construct the vulnerability index as a function of exposure to climate variability and natura...

  9. Towards a global climate constitution

    NARCIS (Netherlands)

    Weikard, H.P.

    2011-01-01

    In this paper my concern is the study of the incentives of individual countries to sign an international climate agreement that sets the terms of a climate constitution, that is, it establishes emission rights and rules for trading these rights to combat the climate problem effectively and efficient

  10. Variability of the earth's climate

    International Nuclear Information System (INIS)

    In this paper, the global evolution of the Earth's climate since the Precambrian is described and the reconstruction of the last major oscillations generally referred to as the last climatic cycles which occurred during the Quarternary is presented: isotope geochemistry, micropaleontological transfer functions; ice volume and sea level, temperatures, deep water circulation of the last climatic cycle

  11. Climate change, agriculture and poverty

    OpenAIRE

    Hertel, Thomas W.; Rosch, Stephanie D

    2010-01-01

    Although much has been written about climate change and poverty as distinct and complex problems, the link between them has received little attention. Understanding this link is vital for the formulation of effective policy responses to climate change. This paper focuses on agriculture as a primary means by which the impacts of climate change are transmitted to the poor, and as a sector at...

  12. New climatic classification of Nepal

    Science.gov (United States)

    Karki, Ramchandra; Talchabhadel, Rocky; Aalto, Juha; Baidya, Saraju Kumar

    2016-08-01

    Although it is evident that Nepal has an extremely wide range of climates within a short latitudinal distance, there is a lack of comprehensive research in this field. The climatic zoning in a topographically complex country like Nepal has important implications for the selection of scientific station network design and climate model verification, as well as for studies examining the effects of climate change in terms of shifting climatic boundaries and vegetation in highly sensitive environments. This study presents a new high-resolution climate map of Nepal on the basis of long-term (1981-2010) monthly precipitation data for 240 stations and mean air temperature data for 74 stations, using original and modified Köppen-Geiger climate classification systems. Climatic variables used in Köppen-Geiger system were calculated (i) at each station and (ii) interpolated to 1-km spatial resolution using kriging which accounted for latitude, longitude, and elevation. The original Köppen-Geiger scheme could not identify all five types of climate (including tropical) observed in Nepal. Hence, the original scheme was slightly modified by changing the boundary of coldest month mean air temperature value from 18 °C to 14.5 °C in order to delineate the realistic climatic condition of Nepal. With this modification, all five types of climate (including tropical) were identified. The most common dominant type of climate for Nepal is temperate with dry winter and hot summer (Cwa).

  13. Thailand : Investment Climate Assessment Update

    OpenAIRE

    World Bank

    2008-01-01

    This report provides an up-to-date assessment of the investment climate of Thailand. As the socio-economic framework in which enterprises operate including infrastructure, policies and regulations improving the investment climate is helpful for productivity and economic growth. The report is based mainly on the results of the second round of the Thailand Productivity and Investment Climate...

  14. Sea level and climate variations

    NARCIS (Netherlands)

    Oerlemans, J.

    1985-01-01

    Review paper, ESA Symposium on Application of Satellite Data to Climate Modelling. Alpbach (Austria) Sea level is an essential component of the climate system, on which many human activities in the coastal zone depend. Climate variations leading to changes in relative sea level are discussed, with

  15. Climate Fundamentals for Solar Heating.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  16. Conference on climate and water. Vol. 1

    International Nuclear Information System (INIS)

    This book contains the Proceedings of the Conference on Climate and Water under the following groupings: Understanding the climate systems - its variability and potential for change; Climate and hydrological cycle - the effects of climate variability and Change

  17. Business strategies for climate

    International Nuclear Information System (INIS)

    Studies published in 2014, whether by IPCC scientists or New Climate Economy economists, showed that it is still possible to combat climate change without having to give up on economic growth and human development. This applies both to emerging countries which do not want to give up on their promised growth and to developed countries that fear having to surrender their lifestyles. Positioning ourselves on a greenhouse gas emission trajectory enabling us to limit global warming to 2 deg. C by the end of this century nonetheless requires a far-reaching and immediate response coordinated by all economic and political stakeholders. Companies know that they have a major role to play in dealing with the climate challenge. They are ready to change direction, as the United Nations Secretary-General Ban Kimoon urged them to do in September 2014. Companies of all sizes engaged in this process innovate and develop technological, organisational and financial solutions to reduce greenhouse gas emissions and adapt to the consequences of climate change. They are adjusting their strategies and economic models in response to these new challenges. It is these solutions that are presented in this publication 'Business strategies for climate'. All sectors of the economy are concerned; companies in all sectors can take a forward-looking approach to the changes caused by climate change and mobilise their resources to provide effective responses in line with the issues at stake. Global economic growth is resulting in a huge increase in the demand for mobility and transport. Companies are working on ways to improve vehicles, develop engines that are less fossil-fuel dependent, and on finding new ways for people to move around and to transport goods. The challenge is considerable: it will involve working with the growing need for transport while at the same time massively reducing the sector's greenhouse gas emissions. Cities are home to an ever-increasing number of people

  18. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  19. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  20. The climate continuum revisited

    Science.gov (United States)

    Emile-Geay, J.; Wang, J.; Partin, J. W.

    2015-12-01

    A grand challenge of climate science is to quantify the extent of natural variability on adaptation-relevant timescales (10-100y). Since the instrumental record is too short to adequately estimate the spectra of climate measures, this information must be derived from paleoclimate proxies, which may harbor a many-to-one, non-linear (e.g. thresholded) and non-stationary relationship to climate. In this talk, I will touch upon the estimation of climate scaling behavior from climate proxies. Two case studies will be presented: an investigation of scaling behavior in a reconstruction of global surface temperature using state-of- the-art data [PAGES2K Consortium, in prep] and methods [Guillot et al., 2015]. Estimating the scaling exponent β in spectra derived from this reconstruction, we find that 0 long-term memory. Overall, the reconstruction-based spectra are steeper than the ones based on an instrumental dataset [HadCRUT4.2, Morice et al., 2012], and those estimated from PMIP3/CMIP5 models, suggesting the climate system is more energetic at multidecadal to centennial timescales than can be inferred from the short instrumental record or from the models developed to reproduce it [Laepple and Huybers, 2014]. an investigation of scaling behavior in speleothems records of tropical hydroclimate. We will make use of recent advances in proxy system modeling [Dee et al., 2015] and investigate how various aspects of the speleothem system (karst dynamics, age uncertainties) may conspire to bias the estimate of scaling behavior from speleothem timeseries. The results suggest that ignoring such complications leads to erroneous inferences about hydroclimate scaling. References Dee, S. G., J. Emile-Geay, M. N. Evans, Allam, A., D. M. Thompson, and E. J. Steig (2015), J. Adv. Mod. Earth Sys., 07, doi:10.1002/2015MS000447. Guillot, D., B. Rajaratnam, and J. Emile-Geay (2015), Ann. Applied. Statist., pp. 324-352, doi:10.1214/14-AOAS794. Laepple, T., and P. Huybers (2014), PNAS, doi

  1. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  2. Competencies Framework for Climate Services.

    Science.gov (United States)

    Aguilar, Enric

    2016-04-01

    The World Climate Conference-3 (Geneva, 2009) established the Global Framework for Climate Services (GFCS) to enable better management of the risks of climate variability and change and adaptation to climate change at all levels, through development and incorporation of science-based climate information and prediction into planning, policy and practice. The GFCS defines Climate Services as the result of transforming climate data into climate information in a way that responds to user needs and assists decision-making by individuals and organizations. Capacity Development is a cross-cutting pillar of the GFCS to ensure that services are provided by institutions with professionals whom achieved the adequate set of competencies recommended by WMO, which are yet to be fully defined. The WMO-Commission for Climatology Expert Team on Education and Training, ET-ETR, has been working to define a Competencies Framework for Climate Services to help the institutions to deliver high quality climate services in compliance with WMO standards and regulations, specifically those defined by WMO's Commission for Climatology and the GFCS. This framework is based in 5 areas or competence, closely associated to the areas of work of climate services providers: create and manage climate data sets; derive products from climate data; create and/or interpret climate forecasts and model output; ensure the quality of climate information and services; communicate climatological information with users. With this contribution, we intend to introduce to a wider audience the rationale behind these 5 top-level competency statements and the performance criteria associated with them, as well as the plans of the ET-ETR for further developing them into an instrument to support education and training within the WMO members, specially the National Meteorological and Hydrological Services.

  3. ClimatePad: Enabling public exploration of climate data

    Science.gov (United States)

    Walsh, J. E.; Chapman, W. L.

    2012-12-01

    Informal learners interested in climate issues can find a wealth of information in the print and online media related to climate and climate change. Throughout these resources, the equal use of generic terms like 'global warming' and 'climate change' suggest a level of nuance in the science that is not easy to convey in this conventional media. Perhaps more than any other discipline, climate literacy has the most potential to be enhanced via the process of cognitive construction and reconstruction, rather than simple transmission of knowledge. Constructionism suggests that meaningful learning happens most effectively if the learner is actively engaged in constructing a product in the real world rather than absorbing information passively. Recent technological innovations have introduced mobile computing devices with sufficient power to do serious data analysis. The potential of these devices to augment climate literacy by turning citizens into scientists has yet to be exploited. We introduce ClimatePad, an iPad application that permits students and public to actively browse climate datasets, construct trends, plot time series, create composite differences and view animations of real-world climate data. Interactions with the ClimatePad permits varying the starting and ending dates of trends and differences. Climate analysis maps and animations can be customized with different color palettes, enticing the user to delve into and absorb the subtleties of the regional and temporal variations of the recent climate record. Finally, user-generated climate visualizations created with ClimatePad can be emailed to friends and shared via Facebook, entraining even more active learners.

  4. Climate change - a natural hazard

    Energy Technology Data Exchange (ETDEWEB)

    Kininmonth, William

    2003-07-01

    The impacts of weather and climate extremes (floods, storms, drought, etc) have historically set back development and will continue to do so into the future, especially in developing countries. It is essential to understand how future climate change will be manifest as weather and climate extremes in order to implement policies of sustainable development. The purpose of this article is to demonstrate that natural processes have caused the climate to change and it is unlikely that human influences will dominate the natural processes. Any suggestion that implementation of the Kyoto Protocol will avoid future infrastructure damage, environmental degradation and loss of life from weather and climate extremes is a grand delusion. (Author)

  5. Climate Prediction through Statistical Methods

    CERN Document Server

    Akgun, Bora; Tuter, Levent; Kurnaz, Mehmet Levent

    2008-01-01

    Climate change is a reality of today. Paleoclimatic proxies and climate predictions based on coupled atmosphere-ocean general circulation models provide us with temperature data. Using Detrended Fluctuation Analysis, we are investigating the statistical connection between the climate types of the present and these local temperatures. We are relating this issue to some well-known historic climate shifts. Our main result is that the temperature fluctuations with or without a temperature scale attached to them, can be used to classify climates in the absence of other indicators such as pan evaporation and precipitation.

  6. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith;

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  7. Energy balance climate models

    Science.gov (United States)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  8. Climatic crystal balls

    Science.gov (United States)

    What do anchovy and coffee prices have in common? They both are influenced by weather patterns. And so are a lot of other industries in the world of commodities. A new report from the National Research Council says it's time to protect these economic interests. The report outlines a new 15-year global research program that would help scientists make better seasonal and interannual climate predictions. Called the Global Ocean-Atmosphere-Land System or GOALS, the new program would be an extension of the decade-long international Tropical Ocean and Global Atmosphere (TOGA) program, which comes to an end this year. Besides studying the climatic effects of tropical phenomena such as the El Niño/Southern Oscillation, the program would expand these types of studies to Earth's higher latitudes and to additional physical processes, such as the effects of changes in upper ocean currents, soil moisture, vegetation, and land, snow, and sea-ice cover, among others.

  9. Africa and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, Camilla; Huq, Saleemul

    2006-10-15

    Remember the scenes from New Orleans of flooded streets and scavenging people? One year on and little progress is evident in achieving the step-change needed in controlling greenhouse gases. Hurricane Katrina showed only too vividly the massive power of natural forces combined with inadequate preparation. The flood waters washed away and exposed fully the lack of planning and low priority given to securing life and livelihoods, especially of the more vulnerable groups in the community. If this is what a whirlwind can bring in the southern USA, what might we reap in further storms and droughts tomorrow in poorer parts of the world? New research findings point to the likelihood of larger, faster and more substantial changes to our climate system. The African continent is particularly vulnerable to adverse changes in climate, the evidence for which is becoming more and more stark.

  10. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  11. Outchasing climate change

    Science.gov (United States)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  12. Evolution of climate

    CERN Multimedia

    Lorius,C

    1979-01-01

    Le Dr.Lorius est née en 1932, il est docteur en Physique et travaille au Centre National de la Recherche Scientifique; il a participé à 11 missions polaires en Antarctique et du Groenland. Il parlera de l'évolution du climat, de la pollution de notre atmosphère qui sont parmi les grands soucis de notre époque.

  13. Corporation as climate ambassador

    DEFF Research Database (Denmark)

    Trapp, Leila

    2012-01-01

    At a time when corporations are addressing increasingly complex, global corporate social responsibility (CSR) issues, this study examines and evaluates the strategies used in Vattenfall’s challenging and innovative CSR campaign which aimed at establishing the energy company as a credible climate ...... than in securing company-related business interests. Two ways to ensure greater credibility in similar cases are proposed: communicating explicitly about company motives for conducting CSR campaigns, and carrying out CSR campaigns in collaboration with non-profit organizations....

  14. Confronting Climate Change

    Science.gov (United States)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  15. FORMAS AND CLIMATE RESEARCH

    OpenAIRE

    Sellberg, В.

    2006-01-01

    Formas has the mandate from the Swedish Government to coordinate Swedish Climate Research. Within the framework of this mandate, Formas together with several other research funding agencies has published two reports, 2002 and 2003 [1, 2] in which the most important research areas are identified. In these reports, the Swedish activities in the field were mapped and new important research activities were suggested. In addition, an analysis of ongoing international research was performed. At the...

  16. Climate-Energy Nexus

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, Gary; Gentry, Randall; Zhuang, Jie

    2010-07-01

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit future cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology

  17. An uncertain climate

    OpenAIRE

    Groen, E.A.

    2016-01-01

    ABSTRACT Production of food contributes to climate change and other forms of environmental impact. Input data used in environmental impact assessment models, such as life cycle assessment (LCA) and nutrient balance (NB) analysis, may vary due to seasonal changes, geographical conditions or socio-economic factors (i.e. natural variability). Moreover, input data may be uncertain, due to measurement errors and observational errors that exist around modelling of emissions and technical parameter...

  18. The Climate of Titan

    Science.gov (United States)

    Mitchell, Jonathan L.; Lora, Juan M.

    2016-06-01

    Over the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (˜90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface

  19. Climate Impact of Solar Variability

    Science.gov (United States)

    Schatten, Kenneth H. (Editor); Arking, Albert (Editor)

    1990-01-01

    The conference on The Climate Impact of Solar Variability, was held at Goddard Space Flight Center from April 24 to 27, 1990. In recent years they developed a renewed interest in the potential effects of increasing greenhouse gases on climate. Carbon dioxide, methane, nitrous oxide, and the chlorofluorocarbons have been increasing at rates that could significantly change climate. There is considerable uncertainty over the magnitude of this anthropogenic change. The climate system is very complex, with feedback processes that are not fully understood. Moreover, there are two sources of natural climate variability (volcanic aerosols and solar variability) added to the anthropogenic changes which may confuse our interpretation of the observed temperature record. Thus, if we could understand the climatic impact of the natural variability, it would aid our interpretation and understanding of man-made climate changes.

  20. Conflict in a changing climate

    Science.gov (United States)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  1. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  2. Climate Projections and Uncertainty Communication.

    Science.gov (United States)

    Joslyn, Susan L; LeClerc, Jared E

    2016-01-01

    Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. PMID:26695995

  3. Can Organizational Climate be Managed?

    DEFF Research Database (Denmark)

    Håkonsson, Dorthe Døjbak; Obel, Børge; Burton, Richard

    2008-01-01

      A leader's job is often to attempt achieving organizational alignment. Many theories propose climate as an effective means to help leaders carry out this task. Nevertheless, our understanding of which exact actions are needed to manage climate remains somewhat diffuse. We present a new cognitive......- oriented view on climate, which enables us to discuss the influence of climate on managing the bal- ance between integration and adaptation. In this article, we argue that climate is not as easy to manage as previously argued. In the short run, climate may serve as an effective emotional inertia...... to maintain the system in fit, as long as it is properly perceived and supported by the leadership style. In the longer run, climate is more influential to change, making it difficult to perceive it properly. This challenge may lead to transformative changes, causing leaders to have little control....

  4. Climate Projections and Uncertainty Communication.

    Science.gov (United States)

    Joslyn, Susan L; LeClerc, Jared E

    2016-01-01

    Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections.

  5. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  6. The climate system

    Directory of Open Access Journals (Sweden)

    Brunetti M.

    2015-01-01

    Full Text Available An overview of what we know about the climate of the planet Earth up to 5.5 millions of years from now is presented first, with the air temperature in proximity to the surface as the main, and more feasible, parameter to be followed. The behavior of this parameter exhibits a distinct periodicity with more internal fluctuations. This overview prompts us to a description of the physical basis of the climate system, capable of explaining such fluctuations. The system is the star-planet, initially described as a lamp-billiard ball simple system. Astronomical causes affect the distance lamp-billiard ball (star-planet and the ball (Earth rotation axis orientation, while astronomical causes affect the intensity of radiation emitted from the lamp (Sun. The complication introduced by the atmosphere is then explained, essentially through the triatomic gas molecules, aerosol and clouds. Atmospheric composition affects incoming solar radiation and outgoing infrared one. The compartments relevant for climate definition are examined: lithosphere, hydrosphere, cryosphere, biosphere including vegetation and humans. However due to space limitations the interactions between the different compartments are not treated here and we restrict ourselves to the treatment of the atmosphere.

  7. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  8. Designing Global Climate Change

    Science.gov (United States)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  9. From climate-smart agriculture to climate-smart landscapes

    Directory of Open Access Journals (Sweden)

    Scherr Sara J

    2012-08-01

    Full Text Available Abstract Background For agricultural systems to achieve climate-smart objectives, including improved food security and rural livelihoods as well as climate change adaptation and mitigation, they often need to be take a landscape approach; they must become ‘climate-smart landscapes’. Climate-smart landscapes operate on the principles of integrated landscape management, while explicitly incorporating adaptation and mitigation into their management objectives. Results An assessment of climate change dynamics related to agriculture suggests that three key features characterize a climate-smart landscape: climate-smart practices at the field and farm scale; diversity of land use across the landscape to provide resilience; and management of land use interactions at landscape scale to achieve social, economic and ecological impacts. To implement climate-smart agricultural landscapes with these features (that is, to successfully promote and sustain them over time, in the context of dynamic economic, social, ecological and climate conditions requires several institutional mechanisms: multi-stakeholder planning, supportive landscape governance and resource tenure, spatially-targeted investment in the landscape that supports climate-smart objectives, and tracking change to determine if social and climate goals are being met at different scales. Examples of climate-smart landscape initiatives in Madagascar’s Highlands, the African Sahel and Australian Wet Tropics illustrate the application of these elements in contrasting contexts. Conclusions To achieve climate-smart landscape initiatives widely and at scale will require strengthened technical capacities, institutions and political support for multi-stakeholder planning, governance, spatial targeting of investments and multi-objective impact monitoring.

  10. Climate indices for vulnerability assessments

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Gunn; Baerring, Lars; Kjellstroem, Erik; Strandberg, Gustav; Rummuk ainen, Markku

    2007-08-15

    The demand is growing for practical information on climate projections and the impacts expected in different geographical regions and different sectors. It is a challenge to transform the vast amount of data produced in climate models into relevant information for climate change impact studies. Climate indices based on climate model data can be used as means to communicate climate change impact relations. In this report a vast amount of results is presented from a multitude of indices based on different regional climate scenarios. The regional climate scenarios described in this report show many similarities with previous scenarios in terms of general evolution and amplitude of future European climate change. The broad features are manifested in increases in warm and decreases in cold indices. Likewise are presented increases in wet indices in the north and dry indices in the south. Despite the extensive nature of the material presented, it does not cover the full range of possible climate change. We foresee a continued interactive process with stakeholders as well as continued efforts and updates of the results presented in the report.

  11. Climate system model, numerical simulation and climate predictability

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Thanks to its work of past more than 20 years,a research team led by Prof.ZENG Qingcun and Prof.WANG Huijun from the CAS Institute of Atmospheric Physics (IAP) has scored innovative achievements in their studies of basic theory of climate dynamics,numerical model development,its related computational theory,and the dynamical climate prediction using the climate system models.Their work received a second prize of the National Award for Natural Sciences in 2005.

  12. Climate variability and climate change in Mexico: A review

    OpenAIRE

    E. Jáuregui

    1997-01-01

    A review of research on climate variability, fluctuations and climate change in Mexico is presented. Earlier approaches include different time scales from paleoclimatic to historical and instrumental. The nature and causes of variability in Mexico have been attributed to large-scale southward/northward shifts of the mid-latitude major circulation and more recently to the ENSO cycle. Global greenhouse warming has become a major environmental issue and has spawned a large number of climate-chan...

  13. iClimate: a climate data and analysis portal

    Science.gov (United States)

    Goodman, P. J.; Russell, J. L.; Merchant, N.; Miller, S. J.; Juneja, A.

    2015-12-01

    We will describe a new climate data and analysis portal called iClimate that facilitates direct comparisons between available climate observations and climate simulations. Modeled after the successful iPlant Collaborative Discovery Environment (www.iplantcollaborative.org) that allows plant scientists to trade and share environmental, physiological and genetic data and analyses, iClimate provides an easy-to-use platform for large-scale climate research, including the storage, sharing, automated preprocessing, analysis and high-end visualization of large and often disparate observational and model datasets. iClimate will promote data exploration and scientific discovery by providing: efficient and high-speed transfer of data from nodes around the globe (e.g. PCMDI and NASA); standardized and customized data/model metrics; efficient subsampling of datasets based on temporal period, geographical region or variable; and collaboration tools for sharing data, workflows, analysis results, and data visualizations with collaborators or with the community at large. We will present iClimate's capabilities, and demonstrate how it will simplify and enhance the ability to do basic or cutting-edge climate research by professionals, laypeople and students.

  14. Climate Matters: Increasing Climate Literacy Through Broadcast Meteorologists

    Science.gov (United States)

    Sanford, T. J.; Placky, B. W.

    2015-12-01

    Broadcast meteorologists are among the most trusted members of the media landscape and they have a unique opportunity to reach the broad public with information about climate change. A recent survey by Maibach, et al. (2015) has shown that more than 90% of TV weathercasters think that their audience is at least somewhat interested in learning about the local impacts of climate change and 7 in 10 think that it is appropriate for them to report the science of climate change to their audience. But about half of these TV weathercasters have experienced obstacles to reporting climate change - citing lack of time to research and produce material, in addition to lack of access to appropriate visuals/graphics and access to trusted scientific information. Climate Matters is an NSF funded program that partners with broadcast meteorologists to deliver scientifically sound climate change information to the public that is local and relevant. A team of climate scientists, meteorologists, data analysts, journalists, and multimedia artists analyze and prepare content on a weekly basis so that it may be readily included in a broadcast weather segment, online or during community outreach. The program started as a pilot project with just one meteorologist in 2010 before Climate Central launched a full-time, nationwide program in 2012. Since then, Climate Matters has grown to include over 250 meteorologists strong and in more than 100 markets across the country, including Spanish language TV stations.

  15. Advancing Climate Dynamics Toward Reliable Regional Climate Projections

    Institute of Scientific and Technical Information of China (English)

    XIE Shang-Ping

    2013-01-01

    With a scientific consensus reached regarding the anthropogenic effect on global mean temperature,developing reliable regional climate projections has emerged as a new challenge for climate science.A national project was launched in China in 2012 to study ocean's role in regional climate change.This paper starts with a review of recent advances in the study of regional climate response to global warming,followed by a description of the Chinese project including the rationale,objectives,and plan for field observations.The 15 research articles that follow in the special issue are highlighted,representing some of the initial results from the project.

  16. Climate policy after Kyoto

    International Nuclear Information System (INIS)

    The Kyoto Convention recommends reductions in emissions of CO2 and other greenhouse gases, to mitigate the rate of climate change. Lively debate has taken place in many countries, not least over the political and economic implications. The basis for the Kyoto discussions was a set of studies commissioned, compiled and published by the UN's International Panel on Climate Change (IPCC). At first glance this scientific foundation plainly shows that significant climate change will occur unless emissions of greenhouse gases are sharply curtailed. On closer examination, the scientific evidence provided in the IPCC material is far from clear. Reputable scientists have expressed critical views about the interpretation of the scientific results and, even more, of the way the material is being used for policy purposes. The main purpose of this book is to voice this critique. To give the reader some context, a central section from the IPCC's basic document is presented first. There follow nine papers, by prominent natural and social scientists, in which the reasons for their sceptical attitudes are developed. A final paper by Professor Bert Bolin, chairman of the IPCC during the time when most of the material was produced, provides a response and commentary to the critique. The aim of the editor and authors, in presenting the material in this way, rather than as a polemical tract, is to leave open to the reader the question: Is global warming a consequence of man's activities, or are there other reasons; if so, is adopting policies with significant economic consequences, a reasonable response? (Author)

  17. Climate and isotopic tracers

    International Nuclear Information System (INIS)

    The applications of natural radioactivity and isotopic measurements in the sciences concerning Earth and its atmosphere, are numerous: carbon 14 dating with the Tandetron apparatus at the Cea, measurement of oxygen 18 in coral or sediment limestone for the determination of ocean temperature and salinity, carbon 14 dating of corals for the determination of sea level variations, deuterium content in polar ice-cap leads to temperature variations determination; isotopic measurements also enable the determination of present climate features such as global warming, oceanic general circulation

  18. The climatic change

    International Nuclear Information System (INIS)

    This paper has been developed to show how the future of the climate of our planet could become. The factors that takes places in this possible change are also carefully explained. The human action over the environment is probably disturbing the atmospheric system. The processes that involves this perturbations are shown: pollution, fires in hugh regions such as Amazonia Central Australia, Central and East Africa and some others. Factors like these seems are destroying the ozone shell. We also explain the problems to be sure that the expectatives for the future are reliable. Finally, we propose some solutions for this situation. Special situations like nuclear winter or the desertization are also included. (Author)

  19. Climate Assessment for 2002

    Science.gov (United States)

    Waple, A. M.; Lawrimore, J. H.

    2003-04-01

    It is the thirteenth year that the Climate Assessment has been written to summarize the state of the earth's climate, and the third year that the National Climatic Data Center has taken the lead in its production. It is a cooperative effort that includes contributions from scientists around the country and the world. Neutral ENSO conditions at the beginning of 2002 gave way to a strengthening El Niño episode during late boreal summer and continuing into early winter. Weather patterns across the world began to reflect the positive ENSO conditions during the boreal autumn. Global temperatures in 2002 were 0.56°C above the long-term (1880-2001) average, which places 2002 as the second warmest year on record. Land temperatures were 0.89°C above average and ocean temperatures were 0.42°C above the 1880-2001 mean. This ranks both land and ocean as second warmest on record. The Northern Hemisphere temperature continues to average near record levels in 2002 at 0.63°C above the long-term average. The Southern Hemisphere also reflects the globally warmer conditions, with a positive anomaly of 0.47°C. Annual anomalies in excess of 1.0°C were widespread across much of Russia, Eastern Europe, Alaska, and central South America, while significantly cooler than average conditions were confined to the eastern half of Canada, southern South America and the eastern Pacific Ocean, near the coast of the United States. Although 12 tropical storms developed in the Atlantic during the boreal summer of 2002, most of them were weak and short-lived leading to a slightly below normal season in terms of overall activity, which is consistent with the developing El Nino. However, seven tropical storms made landfall on the coast of the United States, with an eighth brushing the coast of North Carolina. Hurricane Lili was the first hurricane to impact the U.S. directly in three years. Other notable aspects of the climate in 2002 include extreme drought in parts of the U.S., Canada and

  20. Climate Dress礼服

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    1期杂志上我们为大家介绍了Galaxy Dress——一件缀满LED灯与施华洛世奇水晶的晚礼服.而这件Climate Dress亦有异曲同工之妙:礼服上满布LED灯。不过比较特别的是,这些LED灯连接着Arduino Lilypad传感器和二氧化碳检测器,

  1. Climate friendly dietary guidelines

    OpenAIRE

    Trolle, Ellen; Mogensen, Lisbeth; Thorsen, Anne Vibeke; Jørgensen, Michael Søgaard

    2014-01-01

    The aim of this study was to investigate how the present Danish diet could be changed in a climate friendly direction that follows the recommendations of a healthy diet.The carbon footprint (CF) of an average Danish diet was calculated and compared to CF of a recommended healthy diet by 1) modifying the average diet according to the Danish food based dietary guidelines, 2) and adjusting to ensure an iso-energy content and a nutrient content according to the Nordic Nutrient Recommendations. Af...

  2. [Migration, climate and health].

    Science.gov (United States)

    Tellier, Siri; Carballo, Manuel; Calballo, Manuel

    2009-10-26

    Many tentative connections have been postulated between migration and climate. This article points to rural-urban migration, particularly into low elevation urban slums prone to flooding as an issue needing urgent attention by health professionals. It also notes the no-man's land in which environmental refugees find themselves and the consequences this may have. Finally, it points to the urgent need to reform health systems in both developing and developed countries to adapt to rapidly changing disease patterns and to become more responsive to them. PMID:19857400

  3. Climate change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  4. Climate change and marine vertebrates.

    Science.gov (United States)

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. PMID:26564847

  5. The development and climate nexus

    DEFF Research Database (Denmark)

    Davidson, O.; Halsnæs, K.; Huq, S.;

    2003-01-01

    This paper explores an alternative approach to future climate policies in developing countries. Although climate change seems marginal compared to the pressing issues of poverty alleviation and economic development, it is becoming clear that the realisation of development goals may be hampered...... by climate change. However, development can be shaped in such a way as to achieve its goals and at the same time reduce vulnerability to climate change, thereby facilitating sustainable development that realises economic, social, local and global environmental goals. This approach has been coined...... in the climate negotiations. First, elements are presented for an integrated approach to development and climate; second, the approach is elaborated for food and energy security in sub-Saharan Africa; and third, possibilities are outlined for international mechanisms to support such integrated development...

  6. Satellite-based climate information within the WMO RA VI Regional Climate Centre on Climate Monitoring

    Science.gov (United States)

    Obregón, A.; Nitsche, H.; Körber, M.; Kreis, A.; Bissolli, P.; Friedrich, K.; Rösner, S.

    2014-05-01

    The World Meteorological Organization (WMO) established Regional Climate Centres (RCCs) around the world to create science-based climate information on a regional scale within the Global Framework for Climate Services (GFCS). The paper introduces the satellite component of the WMO Regional Climate Centre on Climate Monitoring (RCC-CM) for Europe and the Middle East. The RCC-CM product portfolio is based on essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS), spanning the atmospheric (radiation, clouds, water vapour) and terrestrial domains (snow cover, soil moisture). In the first part, the input data sets are briefly described, which are provided by the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Satellite Application Facilities (SAF), in particular CM SAF, and by the ESA (European Space Agency) Climate Change Initiative (CCI). In the second part, the derived RCC-CM products are presented, which are divided into two groups: (i) operational monitoring products (e.g. monthly means and anomalies) based on near-real-time environmental data records (EDRs) and (ii) climate information records (e.g. climatologies, time series, trend maps) based on long-term thematic climate data records (TCDRs) with adequate stability, accuracy and homogeneity. The products are provided as maps, statistical plots and gridded data, which are made available through the RCC-CM website (www.dwd.de/rcc-cm).

  7. The International Climate Change Regime

    Science.gov (United States)

    Yamin, Farhana; Depledge, Joanna

    2005-01-01

    Aimed at the increasing number of policy-makers, stakeholders, researchers, and other professionals working on climate change, this volume presents a detailed description and analysis of the international regime established in 1992 to combat the threat of global climate change. It provides a comprehensive accessible guide to a high-profile area of international law and politics, covering not only the obligations and rights of countries, but ongoing climate negotiations as well.

  8. Climate change, wine, and conservation

    OpenAIRE

    Hannah, L.; Roehrdanz, PR; Ikegami, M; Shepard, AV; Shaw; Tabor, G; Zhi, L; Marquet, PA; Hijmans, RJ

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticul...

  9. Urban Growth and Climate Change

    OpenAIRE

    Kahn, Matthew E.

    2008-01-01

    Between 1950 and 2030, the share of the world's population that lives in cities is predicted to grow from 30% to 60%. This urbanization has consequences for the likelihood of climate change and for the social costs that climate change will impose on the world's quality of life. This paper examines how urbanization affects greenhouse gas production, and it studies how urbanites in the developed and developing world will adapt to the challenges posed by climate change.

  10. Global warming and climate change

    International Nuclear Information System (INIS)

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  11. Ground water and climate change

    OpenAIRE

    Taylor, Richard G; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F P

    2013-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the...

  12. Climate change and catchment hydrology

    OpenAIRE

    Murphy, Conor

    2013-01-01

    Climate change is expected to alter catchment hydrology through changes in extremes of flooding and drought. River catchments are complex, dynamic systems and it is important to develop our understanding of how these systems are likely to respond to changes in climate. Work is ongoing in using EC-Earth simulations to further our understanding of how climate change will affect catchment hydrology and flood risk. In Ireland, the importance of this task is emphasised ...

  13. Investment Climate Reform in Ukraine

    OpenAIRE

    Fortune, Peter

    2003-01-01

    The Ukraine must improve its investment climate at the regional and local level in order to achieve relatively large increases in economic growth. Estimates of cost of its poor investment climate suggest that the regulatory burden on business takes 14% of a manager's time each month. Changes in the investment climate could affect both foreign direct investment and local investment similarly. Because changes in regional leadership could lead to such gains being quickly lost, it is important fo...

  14. Temperate climate - Innovative outputs nexus

    OpenAIRE

    Coccia, M.

    2014-01-01

    Technological change is a vital human activity that interacts with geographic factors and environment. The purpose of the study here is to analyse the relationship between geo-climate zones of the globe and technological outputs in order to detect favourable areas that spur higher technological change and, as a consequence, human development. The main finding is that innovative outputs are higher in geographical areas with a temperate climate (latitudes). In fact, warm temperate climates are ...

  15. Present-day climatic equivalents of European Cenozoic climates

    Science.gov (United States)

    Utescher, Torsten; Mosbrugger, Volker; Ivanov, Dimiter; Dilcher, David L.

    2009-07-01

    Recently, continental climate evolution in Central Europe over the last 45 Ma has been reconstructed from the palaeobotanical record using a Nearest Living Relative methodology (Coexistence Approach; CA). The reconstructed climate curves document in detail the transition from almost tropical conditions in the Mid-Eocene to a temperate climate at the Pliocene/Pleistocene transition. The observed climatic shifts are primarily expressed as non-proportional changes of the different variables taken into account. In the present study a published palaeoclimate data set for a total of 42 macrofloras complemented by new calculations is used as base to analyse the climatic space in which a fossil flora existed. To define these spaces CA intervals calculated for 3 temperature (mean annual temperature, cold and warm month mean) and 3 precipitation variables (mean annual precipitation, mean monthly precipitation of the driest and of the wettest month) are combined. Using a global gridded climatology (10' resolution), this climate space is then utilized to identify Recent climate analogues with respect to the variables regarded. For 18 macrofloras climatic analogue regions with respect to 6 variables are identified on the globe. For 16 macrofloras, analogues exist when three temperature parameters and mean annual precipitation are regarded. No Recent equivalents are found in 8 cases. This corroborates the assumption of the temporary existence of non-analogue climates in the Cenozoic. As shown by multivariate statistics the observed anomalies with respect to present-day conditions basically refer to high winter temperatures. Deploying a GIS, the Recent climate analogues can be presented as sets of grid cells for each flora that can be mapped on a globe. Once identified, these regions can be merged with adequate thematic layers to assess additional proxy data for the palaeofloras. To exemplify the procedure Koeppen climate type, numbers of days with ground frost, as well as

  16. The Social Impact of Climate

    Science.gov (United States)

    Hsiang, S. M.

    2013-12-01

    Managing climate change requires that we understand the social value of climate-related decisions. Rational decision-making demands that we weigh the potential benefits of climate-related investments against their costs. To date, it has been challenging to quantify the relative social benefit of living under different climatic conditions, so policy debates tend to focus on investment costs without considering their benefits. Here I will discuss challenges and advances in the measurement of climate's impact on society. By linking data and methods across physical and social sciences, we are beginning to understand when, where, and how climatic conditions have a causal impact on human wellbeing. I will present examples from this burgeoning interdisciplinary field that quantify the effect of temperature on macroeconomic performance, the effects of climate on human conflict, and the long-term health and economic impact of tropical cyclones. Each of these examples provide new insight into previously unknown benefits of various climate management strategies. I conclude by describing new efforts to systematically gather and compare findings from across the research community to support informed and rational climate management decisions.

  17. Lay representations on climate change

    OpenAIRE

    Cabecinhas, Rosa; Lázaro, Alexandra; Carvalho, Anabela

    2006-01-01

    Lay representations on climate change were mapped via the free-word association method in two pilot studies. Participants were asked to generate words associated to “the big problems faced by humankind nowadays” (1st study) and to “climate change” (2nd study). Climate change was not spontaneously evoked by the participants in the first study: pollution was among the top 10 problems, but references to other environmental issues were very low. In the second study, climate change was consid...

  18. Visualizing interconnections among climate risks

    Science.gov (United States)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  19. The fluid dynamics of climate

    CERN Document Server

    Palazzi, Elisa; Fraedrich, Klaus

    2016-01-01

    This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.

  20. Confronting climate change

    International Nuclear Information System (INIS)

    Emissions of greenhouse gases (GHGs), especially from energy production and use, and their impact on global climate emerged as a major national issue in the United States during the 1980s. As a result, Congress directed the US Department of Energy (DOE) to ask the National Academy of Sciences and the National Academy of Engineering to assess the current state of research and development (R ampersand D) in the United States in alternative energy sources, and to suggest energy R ampersand D strategies involving roles for both the public and private sectors, should the government want to give priority to stabilizing atmospheric concentrations of GHGs. The findings and recommendations of the Committee on Alternative Energy Research and Development Strategies, appointed by the National Research Council in response to Congress's directive, are provided in this report and summarized in this chapter. The energy R ampersand D strategies and actions recommended by the committee are structured to facilitate prudent and decisive responses by the United States, despite uncertainties regarding the effects of GHGs on global climate. 96 refs., 4 figs., 17 tabs

  1. Climate (R)evolution?

    CERN Multimedia

    2006-01-01

    When it comes down to it, what do we really know about climate change? Where does scientific opinion currently stand? At the 12th Wright Science Colloquium at the University of Geneva from 13 to 17 November, five leading experts in the field will shed light on the issue of climate change, which is currently the subject of extensive debate in the media. The purpose of the Wright Science Colloquia, which are held every two years in Geneva, is to bring the most recent progress in science into the public arena. XII Wright Science Colloquium from 13 to 17 November 2006 Uni Dufour, rue du Général-Dufour 24, Geneva Daily lecture at 6.30 pm, Entrance free. Lectures will be given in English or French, with simultaneous interpretation into the other language. On Wednesday, 15 November from 2pm to 4pm in the Salle Soutter of the TSR building, quai Ernest-Ansermet 20, young people aged between 14 and 20 will have the opportunity to meet the scientists of the Wright Science Colloquia and put any questions they wish...

  2. Climate literacy for secondary science teachers: Inspiring Climate Education Excellence

    Science.gov (United States)

    Buhr, Susan; Lynds, Susan; McCaffrey, Mark; van Gundy, Susan; Wise, Sarah

    2010-05-01

    The Essential Principles of Climate Sciences (http://www.climatescience.gov/Library/Literacy/) provides a coherent framework for climate education, but educators need professional development and standards-aligned curriculum to implement it. Climate literacy efforts at CIRES range from professional development for teachers, scientists and communicators to online courses and curriculum development. The NASA-funded Inspiring Climate Education Excellence (ICEE) project is a professional development project for secondary science educators, incorporating face to face workshops, an online course and self-directed learning modules for teachers. Focusing on changes in Arctic ice and sea level rise, the modules use NASA resources for professional development around key guiding questions, and build content knowledge and pedagogical skills for how to teach climate science. The resources are being developed in partnership with GLOBE, the National Science Digital Library (NSDL) and the University of Colorado, Boulder Independent Learning Program. This presentation describes ICEE and other CIRES climate literacy projects, and describes results from a recent CIRES survey of US teachers on their climate education needs, practices and knowledge of climate literacy topics. Learn more at http://cires.colorado.edu/education/k12/ .

  3. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  4. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  5. Cloud feedback on climate change and variability

    Science.gov (United States)

    Zhou, C.; Dessler, A. E.; Yang, P.

    2014-12-01

    Cloud feedback on climate change and variability follow similar mechanism in climate models, and the magnitude of cloud feedback on climate change and variability are well correlated among models. Therefore, the cloud feedback on short-term climate fluctuations correlates with the equilibrium climate sensitivity in climate models. Using this correlation and the observed short-term climate feedback, we infer a climate sensitivity of ~2.9K. The cloud response to inter-annual surface warming is generally consistent in observations and climate models, except for the tropical boundary-layer low clouds.

  6. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  7. Schneider lecture: From climate change impacts to climate change risks

    Science.gov (United States)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  8. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  9. Climate volatility and poverty vulnerability in Tanzania

    OpenAIRE

    Ahmed, Syud Amer; Diffenbaugh, Noah S.; Hertel, Thomas W.; Lobell, David B.; Ramankutty, Navin; Rios, Ana R.; Rowhani, Pedram

    2009-01-01

    Climate models generally indicate that climate volatility may rise in the future, severely affecting agricultural productivity through greater frequency of yield-diminishing climate extremes, such as droughts. For Tanzania, where agricultural production is sensitive to climate, changes in climate volatility could have significant implications for poverty. This study assesses the vulnerabil...

  10. Climate economics in progress 2011; Climate economics in progress 2011

    Energy Technology Data Exchange (ETDEWEB)

    De Perthuis, Christian [Paris-Dauphine University (France); Jouvet, Pierre-Andre [Paris-Ouest University (France); Trotignon, Raphael; Simonet, Gabriela; Boutueil, Virginie [Climate Economics Chair, Paris-Dauphine University (France)

    2011-10-01

    Climate Economics in Progress offers a global overview of the present status of action on climate change. Drawing on the most recent data, it analyzes the development of carbon markets in Europe and other parts of the world. It also examines the conditions for including major players such as China and new sectors such as agriculture, forestry and transport in the fight against global warming. The book is essential reading for anyone wishing to understand current advances in climate control, which could pave the way for a new form of economic growth. The book brings together a group of researchers whose goal is to make the link between academic research on the economics of climate change and the implementation of operational tools, thereby allowing the climate issue to be integrated into the functioning of the real economy

  11. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  12. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Blocks for Climate Smart Agriculture & Forestry USDA Resources Climate Change Program Office Agency Activities Climate Change Blogs Case Studies USDA Climate Hubs Through this ...

  13. Climate Assessment For 2001

    Science.gov (United States)

    Waple, A. M.; Lawrimore, J. H.; Lyon, B.; Halpert, M. S.; Gleason, K. L.; Menne, M. J.; Schnell, R. C.; Thiaw, W.; Wright, W. J.; Alexander, L.; Salinger, M. J.; Bell, G. D.; Higgins, R. W.; Stone, R. S.

    2002-05-01

    It is the twelfth year that the Climate Assessment has been written to summarize the state of the Earth's climate, and the second year that the National Climatic Data Center has taken the lead in its production. It is a cooperative effort that includes contributions from scientists around the country and the world. The long-running La Nina episode finally came to an end in 2001. The weak La Nina, which began in mid-1998 persisted through the first half of the year but gave way to neutral ENSO conditions for the latter half. Global temperatures in 2001 were 0.51C (0.92F) above the long-term (1880-2000) average, which places 2001 as the second warmest year on record. Land temperatures were 0.75C (1.35F) above average and ocean temperatures were 0.40C (0.72F) above the 1880-2000 mean. This ranks them as 2nd and 3rd warmest on record respectively. The Northern Hemisphere temperature continues to average near record levels in 2001 at 0.60C (1.08F) above the long-term average. The Southern Hemisphere also reflects the globally warmer conditions, with a positive anomaly of 0.43C (0.77F). Annual anomalies in excess of 1.0C (1.8F) were widespread across North America and much of Europe and the Middle East, while significantly cooler than average conditions were confined to Western Australia the Northeast and Northwest Pacific Ocean, and the far southeastern region of the Pacific, near coastal Chile. Although no hurricanes made landfall in the United States for the second consecutive year, it was nonetheless an extremely active Atlantic hurricane season, the fourth most active on record. Tropical Storm Allison became the costliest tropical storm on record when it caused around five billion US dollars worth of damage in southern and southeastern USA. The season was slow to start but quickly escalated in the last three months of the season and it was the first time in recorded history that three hurricanes have formed in the Atlantic in the month of November. Other notable

  14. Urban Climates and Human Ecology

    Science.gov (United States)

    Norwin, Jim

    1975-01-01

    The interconnections between urban climates and human ecology are discussed, strengthening the notion that man is not yet free of environmental constraints, especially climatic ones. Student learning activities are suggested to allow students to become aware of this area of geography and its relation to environmental education. (Author/JR)

  15. The regulation of climate engineering

    NARCIS (Netherlands)

    Reynolds, J.L.

    2011-01-01

    Intentional interventions in global physical, chemical, and biological systems on a massive scale are receiving increasing attention in hopes of reducing the threat of anthropogenic climate change. Known as climate engineering, or geoengineering, research is moving forward, but regulation remains in

  16. Nuclear Energy and Climate Change

    OpenAIRE

    Méritet, Sophie; Zaleski, Pierre

    2009-01-01

    The paper will discuss the possibilities of the development of nuclear energy in the world in the midterm and long term. It will correlate the prospects with the emissions of CO2 and the effects on climate change. In particular it will discuss the problems nuclear energy face to make a large contribution of climate change issue.

  17. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought o...

  18. Ground water and climate change

    Science.gov (United States)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  19. Climate change challenges for SEA

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    This paper takes a theoretical perspective on the challenges that climate changes pose for SEA. The theoretical framework used is the sociologist Ulrich Beck’s theory of risk society and the aspects that characterise this society. Climate change is viewed as a risk, and the theory is used to derive...

  20. Towards a new climate diplomacy

    Science.gov (United States)

    Hsu, Angel; Moffat, Andrew S.; Weinfurter, Amy J.; Schwartz, Jason D.

    2015-06-01

    A new kind of climate politics is emerging, as national actions prove insufficient to address the changing climate. Subnational actors -- ranging from provinces and cities, to civil sector organizations and private companies -- are acting alongside nation states, making up for lost ground and missed opportunities.

  1. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  2. Adapting agriculture to climate change

    NARCIS (Netherlands)

    Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H.B.

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of exi

  3. Climate Science: A Journalist's View

    Science.gov (United States)

    Roosevelt, M.

    2011-12-01

    U.S. public opinion polls show that concern over global warming has dropped precipitously in the wake of economic turmoil. With a dearth of climate change coverage on network news, and in large newspapers and magazines, the public largely gets its climate news--and science news generally--from local TV weathermen. At the same time, many local weathercasters have little time to educate themselves about climate change--although the National Science Foundation is funding an effort to inform them. The Heartland Institute and other climate-skeptic organizations are reaching out to TV weathermen, and some prominent weathercasters have embraced the skeptics' arguments, but websites such as Climate Central, and blogs such as DotEarth are seeking to fill the void. The innate caution of climate scientists, most of whom are reluctant to extrapolate from a narrow study on, say, carbon flux or sea ice, to talk about why the planet is in danger is another challenge. For the most part, they don't want to stick their necks out for fear of professional retribution. When scientists limit themselves to talking about narrow results, journalists' eyes glaze over and no one connects the dots. Much attention is devoted to whether or not the media is doing a good job in covering climate change, when energy might better be spent on applying pressure to decision makers? The media can't make legislators vote for progressive climate change policies--only constituents can do that.

  4. Calcium nutrition and climatic conditions

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The climatic conditions are one of the most striking differences between the growing conditions of field crops and those of protected crops, especially in the moderate climate zones. The increased temperature and the humidity in greenhouses are the dominating factors responsible for the differences.

  5. Congress Assesses Climate Change Paleodata

    Science.gov (United States)

    Bierly, Eugene W.

    2006-08-01

    The `hockey stick' graph of surfacetemperature change overthe past millennium and implicationsfor climate change assessments wasthe subject of two hearings held by the U.S.House of Representatives Energy and CommerceSubcommittee on Oversight andInvestigations, on 19 and 27 July. These hearingsmarked only the second time that thecommittee has discussed climate issuessince George W. Bush became president.

  6. Managers facing the climatic risks

    International Nuclear Information System (INIS)

    This colloquium aimed to analyze the relations between the climatic changes and extreme meteorological events and on the associated risks. It provides information and knowledge on the state of the art concerning the today scientific knowledge, the prevention measures and the adaptation facing the risks and the difficult estimation of the climatic damages costs. (A.L.B.)

  7. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.

    2014-01-01

    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  8. Climate and geo-sciences

    International Nuclear Information System (INIS)

    This book presents a series of reviews of recent progress in many climate-related disciplines. Emerging technologies, such as space observing instruments and supercomputers are discussed. Recommendations on how individual disciplines might work together to accelerate progress on important climate-related problems on the global change agenda are included

  9. Organizational Climate and Teacher Commitment

    Science.gov (United States)

    Douglas, Stephen Michael

    2010-01-01

    This study examined the relationship of school climate and teacher commitment in elementary schools in Alabama. A total of 67 elementary schools were surveyed and 1353 teachers voluntarily participated in the study. The instruments used in this study were the Organizational Climate Index (OCI) and the Organizational Commitment Questionnaire (OCQ).…

  10. Climate Change, Growth, and Poverty

    OpenAIRE

    Hull, Katy

    2008-01-01

    Equity emerged as the principal theme during the Poverty Reduction and Economic Management (PREM) week session 'climate change, growth and poverty,' where presenters addressed the distributional consequences of climate change, as well as countries' unequal capacity to cope with the twin challenges of adaptation and mitigation. They highlighted actions to strengthen the global knowledge bas...

  11. Climate Mobile: A Climate Education App For Everyone

    Science.gov (United States)

    Yunck, T. P.

    2011-12-01

    There exists a vast and energetic community of non-scientists concerned about climate change and engaged in exploring how they can contribute to our collective response. There are also many, equally energetic, who question the scientific consensus on climate change. To professionals who follow the debates it is plain that few non-scientists possess up-to-date climate information, or the means to make meaningful use of such information as can be found scattered across the internet. To remedy this GeoOptics Inc. has developed, as a spinoff of NASA's "Climate Virtual Observatory," an educational iPhone app called Climate Mobile, aka "CliMate." It allows users to call up the latest information on global surface and atmospheric temperatures and trends, Arctic ice cover, weather, atmospheric CO2 concentrations, and solar activity, along with IPCC climate forecasts and tutorials on climate change, space weather, greenhouse warming, and other subjects. Two advanced tools, the Climate Analyzer and the Sensor Data Comparator, allow the citizen-scientist to explore climate data in greater depth. The Analyzer offers access to the 130-year global surface temperature data from NOAA/NCDC and NASA/GISS, and the 32-year atmospheric temperature record from the MSU and AMSU instruments on NOAA satellites. Users can examine data for the full globe, or partitioned by N/S hemisphere or land and ocean and can filter, plot and compare the data over any desired interval, using smoothing windows ranging from 1 month to 15 years. The Comparator allows users to compare atmospheric temperature data from AIRS, GPS radio occultation, and ECMWF global analyses both regionally and globally, and compute instrumental biases and sigmas under different filtering strategies to better understand the inherent properties of each. With these tools users can generate and view plots, tailor the plot characteristics, save the results, or send them to a URL or email address. To illustrate the utility of the

  12. Applied climate-change analysis: the climate wizard tool.

    Directory of Open Access Journals (Sweden)

    Evan H Girvetz

    Full Text Available BACKGROUND: Although the message of "global climate change" is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. METHODOLOGY/PRINCIPAL FINDINGS: To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951-2002 occurred in northern hemisphere countries (especially during January-April, but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50 degrees N during February-March to 10 degrees N during August-September. Precipitation decreases occurred most commonly in countries between 0-20 degrees N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs for 2070-2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. CONCLUSIONS/SIGNIFICANCE: The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally

  13. Mississippi Climate & Hydrology Conference

    Energy Technology Data Exchange (ETDEWEB)

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  14. Pliocene climate lessons

    Science.gov (United States)

    Robinson, M.

    2011-01-01

    Scientists have started attributing the climate change to the rapid increase in greenhouse gases primarily from fossil- fuel combustion, accumulating in the atmosphere. The most powerful proxy tool available to help scientists identify past warm periods is the marine oxygen isotope record, which is based on the ratio of two oxygen isotopes, mainly oxygen-16 and oxygen-18, preserved in the shells of microfossils. The middle portion of the Pliocene Epoch is the most recent period when global temperatures were sustained at levels we may see at the end of this century. Many of the plants and animals that populate our world had already evolved, which makes direct comparisons of living species to their fossil counterparts easy. A fundamental tenet in geology is uniformitarianism, meaning that the same natural laws and physical processes that operate today were active in the past.

  15. Fuel burning and climate

    International Nuclear Information System (INIS)

    Emission of soot particles and other air pollution indoors constitutes a considerable health hazard for a major part of the population in many developing countries, one of them being China. In these countries problems relating to poverty are the most important risk factors, undernourishment being the dominating reason. Number four on the list of the most serious health hazards is indoor air pollution caused by burning of coal and biomass in the households. Very high levels of soot particles occur indoors because of incomplete combustion in old-fashioned stoves and by use of low quality fuel such as sticks and twigs and straw and other waste from agriculture. This leads to an increase in a series of acute and chronic respiratory diseases, including lung cancer. It has been pointed out in recent years that emissions due to incomplete combustion of coal and biomass can contribute considerably to climate changes

  16. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  17. Scenarios of climate change

    International Nuclear Information System (INIS)

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8 C deg., and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10 000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere's greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2 C deg. is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun's supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action. (author)

  18. Last interglacial climates

    Science.gov (United States)

    Kukla, G.J.; Bender, M.L.; de Beaulieu, J. -L.; Bond, G.; Broecker, W.S.; Cleveringa, P.; Gavin, J.E.; Herbert, T.D.; Imbrie, J.; Jouzel, J.; Keigwin, L.D.; Knudsen, K.-L.; McManus, J.F.; Merkt, J.; Muhs, D.R.; Muller, H.; Poore, R.Z.; Porter, S.C.; Seret, G.; Shackleton, N.J.; Turner, C.; Tzedakis, P.C.; Winograd, I.J.

    2002-01-01

    The last interglacial, commonly understood as an interval with climate as warm or warmer than today, is represented by marine isotope stage (MIS) 5e, which is a proxy record of low global ice volume and high sea level. It is arbitrarily dated to begin at approximately 130,000 yr B.P. and end at 116,000 yr B.P. with the onset of the early glacial unit MIS 5d. The age of the stage is determined by correlation to uranium-thorium dates of raised coral reefs. The most detailed proxy record of interglacial climate is found in the Vostok ice core where the temperature reached current levels 132,000 yr ago and continued rising for another two millennia. Approximately 127,000 yr ago the Eemian mixed forests were established in Europe. They developed through a characteristic succession of tree species, probably surviving well into the early glacial stage in southern parts of Europe. After ca. 115,000 yr ago, open vegetation replaced forests in northwestern Europe and the proportion of conifers increased significantly farther south. Air temperature at Vostok dropped sharply. Pulses of cold water affected the northern North Atlantic already in late MIS 5e, but the central North Atlantic remained warm throughout most of MIS 5d. Model results show that the sea surface in the eastern tropical Pacific warmed when the ice grew and sea level dropped. The essentially interglacial conditions in southwestern Europe remained unaffected by ice buildup until late MIS 5d when the forests disappeared abruptly and cold water invaded the central North Atlantic ca. 107,000 yr ago. ?? 2002 University of Washington.

  19. Climate change policy position

    International Nuclear Information System (INIS)

    The Canadian Association of Petroleum Producers (CAPP) is a firm believer in the need to take action to mitigate the risks associated with climate change, and that clear government policy is called for. The principles of sustainable development must guide this policy development effort. The initiatives required to address greenhouse gas emissions over both the short and long term must be carefully considered, and it is up to industries to ensure their production efficiency and emission intensity. Promoting improved performance of industries in Canada and developing technology that can be deployed internationally for larger global effects represents Canada's best contribution to progress on greenhouse gas emissions. The increase in energy demand along with increases in population and economic growth have contributed to an increase in greenhouse gas emissions despite improved energy efficiency in industry. Significant damage to the economy will result if Canada is to meet its commitment under the Kyoto Protocol, forcing the country to buy large quantities of foreign credits instead of using those funds for increased research and development. CAPP indicated that an effective plan must be: balanced, equitable, responsible, competitive, focused on technology and innovation, and based on agreements on sectoral plans. Each of these principles were discussed, followed by the fundamentals of approach for upstream oil and gas. The framework for climate change policy was described as well as the elements of a sector plan. CAPP wants to work with all levels of government on an appropriate plan for Canada, that considers our unique circumstances. Canada can play a significant role on the international stage by properly implementing the policy position proposed by the CAPP without unnecessary risks to the economy. refs

  20. Stochastic Climate Theory and Modelling

    CERN Document Server

    Franzke, Christian L E; Berner, Judith; Williams, Paul D; Lucarini, Valerio

    2014-01-01

    Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations as well as for model error representation, uncertainty quantification, data assimilation and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochast...

  1. (De)-Localising the Climate

    DEFF Research Database (Denmark)

    Papazu, Irina; Scheele, Christian Elling

    2014-01-01

    This article introduces a device-centred approach to the concept of climate engagement through a qualitative analysis of two websites: www.klimabevidst.dk and www.mapmyclimate.dk. While www.klimabevidst.dk represents a down-to-earth take on individual engagement with the climate, providing users...... with hands-on guides to green home improvements, www.mapmyclimate.dk seeks to increase the user’s awareness of the phenomenon of global climate change by demonstrating how the user’s actions impact the earth’s future. Through conversations with six individuals centred on these green technologies, we...... investigate how the scaling techniques employed by the websites impact the user’s sense of agency vis-à-vis the climate. The analysis suggests that scales can indeed be changed or redefined in a way conducive to climate engagement....

  2. Astronomy and the Climate Crisis

    CERN Document Server

    Cooke, Antony

    2012-01-01

    Climate change is one of the most hotly debated issues of today. Increasing global temperatures will impact all of us. There are more questions than answers, however, and sweeping statements on the subject made by public figures, often with little scientific understanding, only further confuses public opinion. Astronomical factors, apart from passing references to the Sun, are given short shrift in relation to climate change. However, they might be amongst the major determinants of it.  A presentation of those that have been studied that some scientists suspect might be involved are featured in this book. Included is an in-depth look at the physics of climate itself, the potential effects of the Sun, solar storms, sunspots, solar variability, the magnetosphere, solar cycles, influences of nearby planets, orbital factors, cosmic rays, possible galactic influences, monitoring from space, even climate change elsewhere in the solar system, and much more. The greatest challenge climate change scientists face is d...

  3. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  4. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  5. Climate News Across Media Platforms

    DEFF Research Database (Denmark)

    Eskjær, Mikkel Fugl

    2015-01-01

    In a changing media landscape marked by technological, institutional and cultural convergence, comparative and cross-media content analysis represents a valuable analytical tool in mapping the diverse channels of climate change communication. This paper presents a comparative study of climate...... change news on five different media platforms: newspapers, television, radio, web-news and mobile news. It investigates the themes and actors represented in public climate change communication as well as the diverse possibilities of participating in public debates and information sharing. By combining...... quantitative and qualitative content analysis the paper documents and explores the extent and character of climate change news across different media platforms. The study aims at contributing to the on-going assessment of how news media are addressing climate change at a time when old and new media...

  6. Psychology: Fear and hope in climate messages

    Science.gov (United States)

    Stern, Paul C.

    2012-08-01

    Scientists often expect fear of climate change and its impacts to motivate public support of climate policies. A study suggests that climate change deniers don't respond to this, but that positive appeals can change their views.

  7. State of the Climate Monthly Overview - Drought

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  8. Climate Change Facts: Answers to Common Questions

    Science.gov (United States)

    ... Basics Climate Change Facts: Answers to Common Questions Climate Change Facts: Answers to Common Questions This page ... All Responses Is there a scientific consensus on climate change? The major scientific agencies of the United ...

  9. State of the Climate - Global Hazards

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  10. State of the Climate - Global Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  11. Eucalypts face increasing climate stress.

    Science.gov (United States)

    Butt, Nathalie; Pollock, Laura J; McAlpine, Clive A

    2013-12-01

    Global climate change is already impacting species and ecosystems across the planet. Trees, although long-lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east-west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental interior

  12. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  13. Norwegian climate research. An evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    [English] In early 2011, the Norwegian Research Council (RCN) appointed a committee to review Norwegian climate research. The aim of the evaluation was to provide a critical review of Norwegian climate research in an international perspective and to recommend measures to enhance the quality, efficiency and relevance of future climate research. The Evaluation Committee met three times: in August and December 2011, and March 2012. RCN sent an invitation to 140 research organisations to participate by delivering background information on their climate research. Based on the initial response, 48 research units were invited to submit self-assessments and 37 research units responded. These were invited to hearings during the second meeting of the Evaluation Committee in December. In our judgement, a great majority of the most active research units are covered by this evaluation report. It should be emphasised that the evaluation concerned the Norwegian landscape of climate research rather than individual scientists or research units. Bibliometric analyses and social network analyses provided additional information. We are aware of problems in making comparisons across disciplinary publishing traditions, especially with regard to the differences between the natural and social sciences and the humanities. The Evaluation Committee also reviewed a number of governmental and RCN policy documents and conducted interviews with the chairs of the NORKLIMA Programme Steering Board and the Norwegian IPY Committee, as well as with staff members of RCN. Additional information was received from hearings organised by RCN with the science communities and various stakeholders in January 2012. For the purpose of this evaluation, climate research was divided into three broad thematic areas: 1. The climate system and climate change: research on climate variability and change in order to improve our capability of understanding climate and of projecting climate change for different time

  14. Incorporating Fundamentals of Climate Monitoring into Climate Indicators at the National Climatic Data Center

    Science.gov (United States)

    Arndt, D. S.

    2014-12-01

    In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.

  15. "Climate Matters Documoments": Enabling Regionally-Specific Climate Awareness

    Science.gov (United States)

    Keener, V. W.; Finucane, M.

    2012-12-01

    The Pacific Regional Integrated Sciences & Assessments (RISA) is a multidisciplinary program that enhances the ability of Pacific Island communities to understand, plan for, and adapt to climate-induced change. Using both social and physical science research methods, the Pacific RISA engages a network of regional decision-makers and stakeholders to help solve climate-related issues. Pacific RISA has a broad audience of local and regional decision-makers (i.e. natural resource managers, community planners, state and federal government agencies) and stakeholders (i.e. farmers and ranchers, fishermen, community and native islander groups). The RISA program engages with this audience through a mixed-method approach of two-way communication, including one-on-one interviews, workshops, consensus discussions and public presentations that allow us to tailor our efforts to the needs of specific stakeholders. A recent Pacific RISA project was the creation and production of four short, educational "documoment" videos that explore the different ways in which climate change in Hawaii affects stakeholders from different sectors. The documoments, generally titled "Climate Matters", start with a quote about why climate matters to each stakeholder: a rancher, a coastal hotel owner, the manager of a landfill, and the local branch of the National Weather Service. The narratives then have each stakeholder discussing how climate impacts their professional and personal lives, and describing the types of climate change they have experienced in the islands. Each video ends with a technical fact about how different climate variables in Hawaii (sea level, precipitation, ENSO) have actually changed within the last century of observational data. Freely available on www.PacificRISA.org, the Documoments have been viewed over 350 times, and have inspired similar video projects and received positive attention from different audiences of stakeholders and scientists. In other assessment work the

  16. Climate - Understanding climate change in order to act

    International Nuclear Information System (INIS)

    In a first part, the author proposes an overview of considerations about climate change and global warming. He discusses greenhouse gas emissions and their perspectives of evolution (IPCC scenarios, recent assessments, unreachable objectives). He comments and discusses the consequences and effects of climate change and global warming (impact on the biosphere and predictable consequences, the largely unknown issue of oceans). He comments the relationship between warming and meteorological evolutions (what is sure and what is not, what is due to climate change and what is not), and the associated risks and hazards

  17. Can Climate Change Negotiations Succeed?

    Directory of Open Access Journals (Sweden)

    Jon Hovi

    2013-09-01

    Full Text Available More than two decades of climate change negotiations have produced a series of global climate agreements, such as the Kyoto Protocol and the Copenhagen Accords, but have nevertheless made very limited progress in curbing global emissions of greenhouse gases. This paper considers whether negotiations can succeed in reaching an agreement that effectively addresses the climate change problem. To be effective, a climate agreement must cause substantial emissions reductions either directly (in the agreement's own lifetime or indirectly (by paving the way for a future agreement that causes substantial emissions reductions directly. To reduce global emissions substantially, an agreement must satisfy three conditions. Firstly, participation must be both comprehensive and stable. Secondly, participating countries must accept deep commitments. Finally, the agreement must obtain high compliance rates. We argue that three types of enforcement will be crucial to fulfilling these three conditions: (1 incentives for countries to ratify with deep commitments, (2 incentives for countries that have ratified with deep commitments to abstain from withdrawal, and (3 incentives for countries having ratified with deep commitments to comply with them. Based on assessing the constraints that characterize the climate change negotiations, we contend that adopting such three-fold potent enforcement will likely be politically infeasible, not only within the United Nations Framework Convention on Climate Change, but also in the framework of a more gradual approach. Therefore, one should not expect climate change negotiations to succeed in producing an effective future agreement—either directly or indirectly.

  18. Mixed Messages on Climate Science

    Science.gov (United States)

    Grifo, F.; Gutman, B. L.; Veysey, D.; El Gamal, A.

    2011-12-01

    While the private sector has a strong interest in climate science, and much at stake as the world comes to terms with the impacts of climate change, their legacy of climate denial has left the public confused. A few companies openly reject the basic science that ties emissions of greenhouse gases from human activities to warming temperatures and other consequences. Many companies play into the confusion by boasting of their green strategies while lobbying against climate bills. Still others joined pro-climate coalitions while donating heavily to politicians who openly reject the science of climate change. Many companies stand to see their business greatly affected by regulations to control greenhouse gas emissions or directly by changing weather patterns, rising sea levels, and varying water availability. Public statements, political activity, and corporate affiliations reveal inconsistent corporate postures. Congress, individuals, and the private sector can all play critical roles in holding corporate America to a higher standard bringing more clarity to science based climate policy discussions.

  19. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  20. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  1. Reservoir Systems in Changing Climate

    Science.gov (United States)

    Lien, W.; Tung, C.; Tai, C.

    2007-12-01

    Climate change may cause more climate variability and further results in more frequent extreme hydrological events which may greatly influence reservoir¡¦s abilities to provide service, such as water supply and flood mitigation, and even danger reservoir¡¦s safety. Some local studies have identified that climate change may cause more flood in wet period and less flow in dry period in Taiwan. To mitigate climate change impacts, more reservoir space, i.e. less storage, may be required to store higher flood in wet periods, while more reservoir storage may be required to supply water for dry periods. The goals to strengthen adaptive capacity of water supply and flood mitigation are conflict under climate change. This study will focus on evaluating the impacts of climate change on reservoir systems. The evaluation procedure includes hydrological models, a reservoir water balance model, and a water supply system dynamics model. The hydrological models are used to simulate reservoir inflows under different climate conditions. Future climate scenarios are derived from several GCMs. Then, the reservoir water balance model is developed to calculate reservoir¡¦s storage and outflows according to the simulated inflows and operational rules. The ability of flood mitigation is also evaluated. At last, those outflows are further input to the system dynamics model to assess whether the goal of water supply can still be met. To mitigate climate change impacts, the implementing adaptation strategies will be suggested with the principles of risk management. Besides, uncertainties of this study will also be analyzed. The Feitsui reservoir system in northern Taiwan is chosen as a case study.

  2. The Northeast Climate Science Center

    Science.gov (United States)

    Ratnaswamy, M. J.; Palmer, R. N.; Morelli, T.; Staudinger, M.; Holland, A. R.

    2013-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. Recognizing the critical threats, unique climate challenges, and expansive and diverse nature of the northeast region, the University of Massachusetts Amherst, College of Menominee Nation, Columbia University, Marine Biological Laboratory, University of Minnesota, University of Missouri Columbia, and University of Wisconsin-Madison have formed a consortium to host the NE CSC. This partnership with the U.S. Geological Survey climate science center network provides wide-reaching expertise, resources, and established professional collaborations in both climate science and natural and cultural resources management. This interdisciplinary approach is needed for successfully meeting the regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach throughout the northeast region. Thus, the NE CSC conducts research, both through its general funds and its annual competitive award process, that responds to the needs of natural resource management partners that exist, in part or whole, within the NE CSC bounds. This domain includes the North Atlantic, Upper Midwest and Great Lakes, Eastern Tallgrass and Big Rivers, and Appalachian Landscape Conservation Cooperatives (LCCs), among other management stakeholders. For example, researchers are developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; conducting a Designing Sustainable Landscapes project to assess the capability of current and potential future landscapes in the Northeast to provide integral ecosystems and suitable habitat for a suite of

  3. Ringberg15: Earth's Climate Sensitivities

    Science.gov (United States)

    Stevens, Bjorn; Abe-Ouchi, Ayako; Bony, Sandrine; Hegerl, Gabi; Schmidt, Gavin; Sherwood, Steven; Webb, Mark

    2015-01-01

    To assess gaps in understanding of Earth's climate sensitivities a workshop was organised under the auspices of the WCRP (World Climate Research Programme) Grand Science Challenge on Clouds, Circulation and Climate Sensitivity (Ringberg15). The workshop took place in March 2015 and gathered together over thirty experts from around the world for one week. Attendees each gave short presentations and participated in moderated discussions of specific questions related to understanding Earth's climate sensitivities. Most of the time was focused on understanding of the equilibrium climate sensitivity, defined as the equilibrium near-surface warming associated with a doubling of atmospheric carbon dioxide. The workshop produced nine recommendations, many of them focusing on specific research avenues that could be exploited to advance understanding of climate sensitivity. Many of these dealt, in one fashion or another, with the need to more sharply focus research on identifying and testing story lines for a high (larger than 4 degrees Kelvin) or low (less than 2 degrees Kelvin) equilibrium climate sensitivity. Additionally, a subset of model intercomparison projects (CFMIP (Cloud Feedback Model Intercomparison Project), PMIP (Palaeoclimate Modelling Intercomparison Project), PDRMIP (Precipitation Driver and Response Model Intercomparison Project), RFMIP (Radiative Forcing Model Intercomparison Project) and VolMIP (Volcanic Forcings Model Intercomparison Project)) that have been proposed for inclusion within CMIP were identified as being central to resolving important issues raised at the workshop; for this reason modelling groups were strongly encouraged to participate in these projects. Finally the workshop participants encouraged the WCRP to initiate and support an assessment process lead by the Grand Science Challenge on Clouds, Circulation and Climate Sensitivity on the topic of Earth's Climate Sensitivities, culminating in a report that will be published in 2019

  4. Air climate health

    International Nuclear Information System (INIS)

    'France Nature Environnement Ile de France' publishes, on occasion of the COP 21, a special paper about the air pollution in the Paris region, greenhouse gases and their influence on the environment. This document has been written in close cooperation with professionals and civil associations. Elected representatives from local and regional authorities also speak about their experiences. The first part emphasizes the urgency to accelerate preventive and corrective measures since the air pollution, after slightly decreasing in the 2000's, remains stable. Our work is a science based analysis of essential parameters and details the impact of local pollution and greenhouse gases on the climate. It is based on the GIEC 2013 and 2015 reports, as well as the work of National meteorology in association with the Climate agency of Paris. The threshold of not exceeding an average temperature of +2 deg. C in 2100 is almost reached. If consumption of fossil energies does not heavily decline in the next 10 years, the earth's thermal machine will enter, for several centuries, into an uncontrollable cycle which could endanger life on earth with average temperatures exceeding 4 to 6 deg. C above the current level. The second part reveals the impact of air pollution on the health of the Paris region's population, especially on women who are the most affected by respiratory diseases: obstructive pulmonary bronchitis and asthma. Four departments are particularly affected: Paris, Seine-et-Marne, Seine-Saint-Denis and Val-d'Oise. Even though we do not have the formal causal proof between gas concentration and disease, analysis of similar situations worldwide eliminate any doubts about the reality of the relationship. The third part proposes solutions which can be implemented by local government, companies, but also civil associations and citizens in order to quickly decrease greenhouse gas production. Solutions range from energy sobriety to change in travel

  5. Research on climate effects. Effects of climate changes. Proceedings

    International Nuclear Information System (INIS)

    Global changes affecting the earth are at the forefront of public interest, possibly caused by climate alterations amongst other things. The public expects appropriate measures from politics to successfully adapt to unavoidable climate changes. As well as an investigation into the causes of climatic changes and the corollaries between the different scientific phenomena, the effects on the economy and society must also be examined. The Federal Minister for Research and Technology aims to make a valuable German contribution to international Global Change Research with the focal point ''Effects of Climate Changes on the Ecological and Civil System''. The aim of the workshop was to give an outline of current scientific knowledge, sketch out research requirements and give recommendations on the focal point with regard to the BMFT. (orig.)

  6. AMS Climate Studies: Improving climate literacy through undergraduate education

    Science.gov (United States)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P., Jr.; Ruwe, E. E.

    2009-12-01

    In working to promote scientific literacy among the public, the American Meteorological Society (AMS) has produced a suite of introductory college-level courses that engage students by investigating relevant topics in Earth science, and utilizing the most current, real-world environmental data. The newest of these courses, AMS Climate Studies, is a turnkey package which will be licensed by individual colleges for local offering in online, blended, or traditional lecture/lab settings. The course will place students in a dynamic learning environment where they will investigate Earth’s climate system using real-world data. This will allow the course to keep a strong focus on the science, while still addressing many of the societal impacts that draw the attention of today’s students. In this way, the course will serve as a great primer in preparing students to become responsible, scientifically-literate participants in discussions of climate science and climate change. Developed with major support from NASA, AMS Climate Studies will encourage students to investigate the atmosphere and world ocean as components of a larger Earth system. More than 500 colleges and universities throughout the United States have already offered AMS Weather Studies and AMS Ocean Studies, after which AMS Climate Studies will be modeled. The learning system will consist of a fully-integrated set of printed and online learning materials focused around a brand new, hardcover 15-chapter textbook, Climate Studies: Introduction to Climate Science and an Investigations Manual with 30 lab-style activities that will emphasize the use of authentic science data. The package will also include a course website providing weekly Current Climate Studies activities along with access to environmental data streams, including an impressive suite of NASA and NOAA images and products. The development and testing of AMS Climate Studies is currently nearing completion. A number of college and university

  7. Climate Sensitivity in the Anthropocene

    Science.gov (United States)

    Previdi, M.; Liepert, B. G.; Peteet, Dorothy M.; Hansen, J.; Beerling, D. J.; Broccoli, A. J.; Frolking, S.; Galloway, J. N.; Heimann, M.; LeQuere, C.; Levitus, S.; Ramaswamy, V.

    2014-01-01

    Climate sensitivity in its most basic form is defined as the equilibrium change in global surface temperature that occurs in response to a climate forcing, or externally imposed perturbation of the planetary energy balance. Within this general definition, several specific forms of climate sensitivity exist that differ in terms of the types of climate feedbacks they include. Based on evidence from Earth's history, we suggest here that the relevant form of climate sensitivity in the Anthropocene (e.g. from which to base future greenhouse gas (GHG) stabilization targets) is the Earth system sensitivity including fast feedbacks from changes in water vapour, natural aerosols, clouds and sea ice, slower surface albedo feedbacks from changes in continental ice sheets and vegetation, and climate-GHG feedbacks from changes in natural (land and ocean) carbon sinks. Traditionally, only fast feedbacks have been considered (with the other feedbacks either ignored or treated as forcing), which has led to estimates of the climate sensitivity for doubled CO2 concentrations of about 3 C. The 2×CO2 Earth system sensitivity is higher than this, being approx. 4-6 C if the ice sheet/vegetation albedo feedback is included in addition to the fast feedbacks, and higher still if climate-GHG feedbacks are also included. The inclusion of climate-GHG feedbacks due to changes in the natural carbon sinks has the advantage of more directly linking anthropogenic GHG emissions with the ensuing global temperature increase, thus providing a truer indication of the climate sensitivity to human perturbations. The Earth system climate sensitivity is difficult to quantify due to the lack of palaeo-analogues for the present-day anthropogenic forcing, and the fact that ice sheet and climate-GHG feedbacks have yet to become globally significant in the Anthropocene. Furthermore, current models are unable to adequately simulate the physics of ice sheet decay and certain aspects of the natural carbon and

  8. Toward a safer moral climate.

    Science.gov (United States)

    Rodney, Patricia; Doane, Gweneth Hartrick; Storch, Janet; Varcoe, Colleen

    2006-10-01

    The authors define moral climate in the context of health care as the implicit and explicit values that drive health-care delivery and shape the workplaces in which care is delivered. Over the past six years, their research has focused on describing the moral climates of nurses' workplaces and improving them. In this article, the authors argue that nurses in direct care delivery roles have the insights, expertise and interpersonal skills required to create a much safer moral climate for practice. To make this happen, nurses require opportunities for self-reflection and for true collaboration with their colleagues in management and administration and other health-care disciplines. PMID:17094365

  9. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  10. Atmospheric chemistry-climate feedbacks

    OpenAIRE

    Raes, Frank; Liao, Hong; Chen, Wei-Ting; Seinfeld, John H.

    2010-01-01

    We extend the theory of climate feedbacks to include atmospheric chemistry. A change in temperature caused by a radiative forcing will include, in general, a contribution from the chemical change that is fed back into the climate system; likewise, the change in atmospheric burdens caused by a chemical forcing will include a contribution from the associated climate change that is fed back into the chemical system. The theory includes two feedback gains, G_(che) and G_(cli). G_(che) is defined ...

  11. Norwegian climate research. An evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    From the executive summary; Based on our evaluation, we make six major recommendations and provide suggestions for how these might be implemented. 1. Establish a clear and coherent national strategy for climate research and its funding. 2. The Research Council of Norway should develop a new integrated long-term climate research programme. 3. Build on strengths and develop capacities in areas where Norway currently lacks sufficient scientific expertise. 4. Ensure societal relevance as well as inter- and transdisciplinarity in research. 5. Emphasise collaboration and cooperation as a basis for successful climate research. 6. Prioritise outreach and stakeholder interaction.(Author)

  12. Global Air Quality and Climate

    Science.gov (United States)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; Sudo, Kengo; Szopa, Sophie; Horowitz, Larry W.; Takemura, Toshihiko; Zeng, Guang; Cameron-Smith, Philip J.; Cionni, Irene; Collins, William J.; Dalsoren, Stig; Eyring, Veronika; Folberth, Gerd A.; Ginoux, Paul; Josse, Batrice; Lamarque, Jean-Francois; OConnor, Fiona M.; Mackenzie, Ian A.; Nagashima, Tatsuya; Shindell, Drew Todd; Spracklen, Dominick V.

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  13. The generation of climate protection

    International Nuclear Information System (INIS)

    The energy sector is part of the EU objectives of the Energy and Climate package, derived from country-specific legislation and a steadily increasing demand for energy. This presentation outlines how Kelag as one of the Country's energy suppliers and international energy group reacts to these challenges. It is based on a brief review of the conditions, the strategies of Kelag and their development. An essential component for implementing these strategies is the campaign 'Generation climate'. With this campaign Kelag attempts to raise awareness among customers of climate protection and energy efficiency to fulfill their great responsibility.

  14. Inhalation anaesthetics and climate change

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Sander, S P; Nielsen, O J;

    2010-01-01

    Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane......, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric...

  15. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  16. Climate change and fuel poverty

    OpenAIRE

    Simon Dresner; Paul Ekins

    2005-01-01

    The research examined the possible effects of rapid climate change on fuel poverty (needing to spend more than 10% of income to maintain a satisfactory level of warmth and other energy services in the home). One particular concern was the prospect that there might be a shutting off of the Gulf Stream, which warms Britain and the rest of north-western Europe. Computer simulations of the climate indicate that shutting down the Gulf Stream would cool England by about 3°C. Climate is not the only...

  17. Efficient climate policies under technology and climate uncertainty

    International Nuclear Information System (INIS)

    This article explores efficient climate policies in terms of investment streams into fossil and renewable energy technologies. The investment decisions maximise social welfare while observing a probabilistic guardrail for global mean temperature rise under uncertain technology and climate parameters. Such a guardrail constitutes a chance constraint, and the resulting optimisation problem is an instance of chance constrained programming, not stochastic programming as often employed. Our analysis of a model of economic growth and endogenous technological change, MIND, suggests that stringent mitigation strategies cannot guarantee a very high probability of limiting warming to 2 oC since preindustrial time under current uncertainty about climate sensitivity and climate response time scale. Achieving the 2 oC temperature target with a probability P* of 75% requires drastic carbon dioxide emission cuts. This holds true even though we have assumed an aggressive mitigation policy on other greenhouse gases from, e.g., the agricultural sector. The emission cuts are deeper than estimated from a deterministic calculation with climate sensitivity fixed at the P* quantile of its marginal probability distribution (3.6 oC). We show that earlier and cumulatively larger investments into the renewable sector are triggered by including uncertainty in the technology and climate response time scale parameters. This comes at an additional GWP loss of 0.3%, resulting in a total loss of 0.8% GWP for observing the chance constraint. We obtained those results with a new numerical scheme to implement constrained welfare optimisation under uncertainty as a chance constrained programming problem in standard optimisation software such as GAMS. The scheme is able to incorporate multivariate non-factorial probability measures such as given by the joint distribution of climate sensitivity and response time. We demonstrate the scheme for the case of a four-dimensional parameter space capturing

  18. ON THE PRESENT CLIMATE WARMING AND THE FUTURE EXPECTED CLIMATE

    OpenAIRE

    Sverdlova, L.

    2009-01-01

    The Earth climate change regularities analysis has been has been given in the paper. The authors paleoclimatic reconstruction mathematical model of the atmospheric air temperature oscillations for the period of 100 thousand years ago has been presented, and the possible changeability forecast for the period of 100 thousand years for the moderate latitudes (e.g. 45-50 degrees of the northern latitude) has been given. The biggest climate fall of temperature was 23-18 thousand years ago, but the...

  19. Climate changes and biodiversity

    International Nuclear Information System (INIS)

    As some people forecast an average temperature increase between 1 and 3.5 degrees by the end of the century, with higher increases under high latitudes (it could reach 8 degrees in some regions of Canada), other changes will occur: precipitations, sea level rise, reductions in polar ice, extreme climatic events, glacier melting, and so on. The author discusses how these changes will impact biodiversity as they will threat habitat and living conditions of many species. Some studies assess a loss of 15 to 37 per cent of biodiversity by 2050. Moreover, physiology is influenced by temperature: for some species, higher temperatures favour the development of female embryos, or the increase of their population, or may result in an evolution of their reproduction strategy. Life rhythm will also change, for plants as well as for animals. Species will keep on changing their distribution area, but some others will not be able to and are therefore threatened. Finally, as the evolutions concern their vectors, some diseases will spread in new regions

  20. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  1. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  2. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  3. A climate for development. Climate change policy options for Africa

    International Nuclear Information System (INIS)

    The seriousness of the potential impacts of climate change on development in Africa is now well recognized within, and increasingly outside, scientific circles. The United Nations Framework Convention on Climate Change is a landmark in international environmental governance, providing a mechanism for exchange, negotiation and institution-building to re-direct development towards more efficient use of resources, especially energy. The message of 'A climate for Development' is that unless policy-makers fully understand both the international commitments made under the Convention and the essential national development priorities of their own countries, effective action on climate change is unlikely to be realized. The action needed, however, can at the same time stimulate capacity-building, planning and policy change which would strengthen the economic and ecological base of African countries. The climate change issue has hence brought us face to face with the urgency of the basic issues of sustainable development in Africa. The book discusses key issues that cut across all African countries, such as emissions and their impacts, financial resources and technology transfer for emissions abatement strategies. It then provides a sectoral analysis of greenhouse gas emissions and abatement options focusing on energy, industry, agriculture, forestry and transportation. The book concludes with guidelines for options which may be considered by African countries to ensure that climate change concerns are effectively dealt with in the context of their development priorities. 113 refs

  4. Climate Change and Nuclear Power

    International Nuclear Information System (INIS)

    The 1992 United Nations Framework Convention on Climate Change is one of a series of recent agreements through which countries around the world are banding together to meet the challenge of altering the global climate. In 1997, in respond to the growing public pressure and questions on climate change governments adopted the Kyoto Protocol. The 5th Conference of the Parties to the UN Framework Convention on Climate Change (COP5 UNFCCC) was a rather technical and complex conference which focused in particular on the development of a detailed framework for the application of ''flexible mechanisms'' as laid down in the Kyoto Protocol. Young Generation Network as a part of the International Nuclear Forum at COP5 took part in the debate saying that nuclear is the part of the solution. (author)

  5. Historic Climate Diaries and Journals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Diaries and Journals containing weather information in a non-tabular format. Records date from 1735 through the early 20th century. Much of the weather and climate...

  6. Projection of future climate changes

    International Nuclear Information System (INIS)

    Climate models provide the opportunity to anticipate how the climate system may change due to anthropogenic activities during the 21. century. Studies are based on numerical simulations that explore the evolution of the mean climate and its variability according to different socio-economic scenarios. We present a selection of results from phase 5 of the Climate model intercomparison project (CMIP5) with an illustrative focus on the two French models that participated to this exercise. We describe the effects of human perturbations upon surface temperature, precipitation, the cryo-sphere, but also extreme weather events and the carbon cycle. Results show a number of robust features, on the amplitude and geographical patterns of the expected changes and on the processes at play in these changes. They also show the limitations of such a prospective exercise and persistent uncertainties on some key aspects. (authors)

  7. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  8. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  9. Mirador - Climate Variability and Change

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. NASA's role in climate variability study is centered around providing the global scale observational data sets on oceans and...

  10. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  11. Climate change and preventive medicine

    DEFF Research Database (Denmark)

    Faergeman, Ole

    2007-01-01

    disease do not result from climate change, but they do share causes with climate change. Burning fossil fuels, for example, is the major source of greenhouse gases, but it also makes pervasive physical inactivity possible. Similarly, modern agriculture's enormous production of livestock contributes...... substantially to greenhouse gas emissions, and it is the source of many of our most energy-rich foods. Physicians and societies of medical professionals have a particular responsibility, therefore, to contribute to the public discourse about climate change and what to do about it. Udgivelsesdato: 2007-Dec......Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery...

  12. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    , the inseparability of the development and climate agendas, and the rate of assimilation of climate and development information in key institutions. They are drawn from the Development Under Climate Change (DUCC) project carried out by UNU-WIDER of which the countries of the Greater Zambeze Valley formed a part......In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate...... change and the ongoing internalization thereof by key institutions in developing countries. The articles in this special issue set forth a set of technical contributions to this improved understanding. We also summarize five major lessons related to uncertainty, extreme events, timing of impacts...

  13. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  14. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  15. Climate change and group dynamics

    NARCIS (Netherlands)

    Postmes, Tom

    2015-01-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers

  16. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  17. Possible climates on terrestrial exoplanets

    CERN Document Server

    Forget, Francois

    2013-01-01

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance to optimize future telescopic observations, or to assess the probability of habitable worlds. To first order, climate primarily depends on 1) The atmospheric composition and the volatile inventory; 2) The incident stellar flux; 3) The tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes which are difficult to model: origins of volatile, atmospheric escape, geochemistry, photochemistry. We discuss physical constraints which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using Global Climate Models analogous to the ones developed to sim...

  18. USGS Dynamical Downscaled Regional Climate

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — We have completed an array of high-resolution simulations of present and future climate over Western North America (WNA) and Eastern North America (ENA) by...

  19. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  20. Food security under climate change

    Science.gov (United States)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  1. Organizational Climate for Successful Aging.

    Science.gov (United States)

    Zacher, Hannes; Yang, Jie

    2016-01-01

    Research on successful aging at work has neglected contextual resources such as organizational climate, which refers to employees' shared perceptions of their work environment. We introduce the construct of organizational climate for successful aging (OCSA) and examine it as a buffer of the negative relationship between employee age and focus on opportunities (i.e., beliefs about future goals and possibilities at work). Moreover, we expected that focus on opportunities, in turn, positively predicts job satisfaction, organizational commitment, and motivation to continue working after official retirement age. Data came from 649 employees working in 120 companies (M age = 44 years, SD = 13). We controlled for organizational tenure, psychological climate for successful aging (i.e., individuals' perceptions), and psychological and organizational age discrimination climate. Results of multilevel analyses supported our hypotheses. Overall, our findings suggest that OCSA is an important contextual resource for successful aging at work. PMID:27458405

  2. Deep Space Climate Observatory (DSCOVR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Space Climate ObserVatoRy (DSCOVR) satellite is a NOAA operated asset located at the first Lagrange point (L1). This places it approximately 1% of the...

  3. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  4. Organizational Climate for Successful Aging.

    Science.gov (United States)

    Zacher, Hannes; Yang, Jie

    2016-01-01

    Research on successful aging at work has neglected contextual resources such as organizational climate, which refers to employees' shared perceptions of their work environment. We introduce the construct of organizational climate for successful aging (OCSA) and examine it as a buffer of the negative relationship between employee age and focus on opportunities (i.e., beliefs about future goals and possibilities at work). Moreover, we expected that focus on opportunities, in turn, positively predicts job satisfaction, organizational commitment, and motivation to continue working after official retirement age. Data came from 649 employees working in 120 companies (M age = 44 years, SD = 13). We controlled for organizational tenure, psychological climate for successful aging (i.e., individuals' perceptions), and psychological and organizational age discrimination climate. Results of multilevel analyses supported our hypotheses. Overall, our findings suggest that OCSA is an important contextual resource for successful aging at work.

  5. Climate change and water resources

    International Nuclear Information System (INIS)

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  6. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  7. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K.; Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  8. Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations

    Energy Technology Data Exchange (ETDEWEB)

    Forster, P M A F; Taylor, K E

    2006-07-25

    A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled Atmosphere Ocean General Circulation Models (AOGCMs). This 'climate forcing' differs from the conventionally defined radiative forcing as it includes semi-direct effects that account for certain short timescale responses in the troposphere. Firstly, we calculate a climate feedback term from reported values of 2 x CO{sub 2} radiative forcing and surface temperature time series from 70-year simulations by twenty AOGCMs. In these simulations carbon dioxide is increased by 1%/year. The derived climate feedback agrees well with values that we diagnose from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. We find partial compensation between longwave and shortwave feedback terms that lessens the inter-model differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in 20th and 21st Century simulations in the AOGCMs. We validate the technique using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings we diagnose agree with the conventional forcing time series within {approx}10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of two differences in the longwave climate forcing time series, which may indicate

  9. Climate change and avian influenza

    OpenAIRE

    Gilbert, Marius; Slingenbergh, Jan; Xiao, Xiangming

    2008-01-01

    This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in ...

  10. Policy brief on climate engineering

    OpenAIRE

    Wibeck, Victoria; Hansson, Anders; Himmelsbach, Raffael; Fridahl, Mathias; Linnér, Björn-Ola; Anshelm, Jonas

    2016-01-01

    Climate engineering (geoengineering) has been widely discussed as a potential instrument for curbing global warming if politics fails to deliver green house gas emission reductions. This debate has lost momentum over the last couple of years, but is now being renewed in the wake of the December 2015 Paris climate change agreement. Resurgent interest primarily stems from two elements of the Paris agreement. First, by defining the long term goal as “achiev[ing] a balance between anthropogenic e...

  11. A Pedagogical "Toy" Climate Model

    CERN Document Server

    Katz, J I

    2010-01-01

    A "toy" model, simple and elementary enough for an undergraduate class, of the temperature dependence of the greenhouse (mid-IR) absorption by atmospheric water vapor implies a bistable climate system. The stable states are glaciation and warm interglacials, while intermediate states are unstable. This is in qualitative accord with the paleoclimatic data. The present climate may be unstable, with or without anthropogenic interventions such as CO$_2$ emission, unless there is additional stabilizing feedback such as "geoengineering".

  12. Glossary: Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This Glossary contains definitions of selected CO{sub 2}-related terms as well as tables containing information related to CO{sub 2} and climate. Each term is defined with an emphasis on its relationship to CO{sub 2} and climate. Many of the definitions are then followed by a more detailed description of the term and its use. References to the literature from which the definitions were taken are listed at the end of the Glossary.

  13. Crop responses to climatic variation

    OpenAIRE

    Porter, John R; Semenov, Mikhail A.

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, develo...

  14. Reporting the climate change crisis

    OpenAIRE

    Carvalho, Anabela

    2010-01-01

    Climate change is one of the most serious threats that humankind will have to deal with in the coming decades. There is every indication that it will engender a significant upheaval in the climate patterns of the world regions, with corresponding impacts on agriculture, ecosystems and human health. This main entail unpredictable weather events, like storms and tornados, while posing significant risks for human security, destruction of housing and economic structures, and floodi...

  15. Responsible Reaction To Climate Change

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China calls for turning UNFCCC provisions into concrete actions Never before has climate change been as prominent on the public agenda as it is today.Its rele- vance was highlighted once again when more than 10,000 delegates from over 180 countries flocked to Bali early this month to discuss the topic.Environment officials as well as representatives from intergovernmental and nongovernmental organizations gath- ered on the Indonesian island on December 3-14 for the UN Climate Change Conference.

  16. A Pedagogical "Toy" Climate Model

    OpenAIRE

    Katz, J. I.

    2010-01-01

    A "toy" model, simple and elementary enough for an undergraduate class, of the temperature dependence of the greenhouse (mid-IR) absorption by atmospheric water vapor implies a bistable climate system. The stable states are glaciation and warm interglacials, while intermediate states are unstable. This is in qualitative accord with the paleoclimatic data. The present climate may be unstable, with or without anthropogenic interventions such as CO$_2$ emission, unless there is additional stabil...

  17. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines......, they suggest the PSNP may not be helping smallholders diversify income sources in a positive manner for climate adaptation. The article concludes by arguing for further investigation of the PSNP’s influence on smallholders’ adaptation strategies....

  18. Ultrascale Visualization of Climate Data

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bremer, Peer-Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doutriaux, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patchett, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shipman, Galen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Ross G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pugmire, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brian E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Steed, Chad A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Childs, Hank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Krishnan, Harinarayan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Silva, Claudio T. [New York University, New York, NY (United States). Center for Urban Sciences; Santos, Emanuele [Universidade Federal do Ceara, Ceara (Brazil); Koop, David [New York University, New York, NY (United States); Ellqvist, Tommy [New York University, New York, NY (United States); Poco, Jorge [Polytechnic Institute of New York University, New York, NY (United States); Geveci, Berk [Kitware Inc., Clifton Park, NY (United States); Chaudhary, Aashish [Kitware Inc., Clifton Park, NY (United States); Bauer, Andy [Kitware Inc., Clifton Park, NY (United States); Pletzer, Alexander [Tech-X Corporation, Boulder, CO (United States); Kindig, Dave [Tech-X Corporation, Boulder, CO (United States); Potter, Gerald [National Aeronautics and Space Administration (NASA), Washington, DC (United States); Maxwell, Thomas P. [National Aeronautics and Space Administration (NASA), Washington, DC (United States)

    2013-09-01

    To support interactive visualization and analysis of complex, large-scale climate data sets, UV-CDAT integrates a powerful set of scientific computing libraries and applications to foster more efficient knowledge discovery. Connected through a provenance framework, the UV-CDAT components can be loosely coupled for fast integration or tightly coupled for greater functionality and communication with other components. This framework addresses many challenges in the interactive visual analysis of distributed large-scale data for the climate community.

  19. LGBT Workplace Climate in Astronomy

    Science.gov (United States)

    Gaudi, B. S.; Danner, R.; Dixon, W. V.; Henderson, C. B.; Kay, L. E.

    2013-01-01

    The AAS Working Group on LGBTIQ Equality (WGLE) held a town hall meeting at the 220th AAS meeting in Anchorage to explore the workplace climate for LGBTIQ individuals working in Astronomy and related fields. Topics of discussion included anti-discrimination practices, general workplace climate, and pay and benefit policies. Four employment sectors were represented: industry, the federal government, private colleges, and public universities. We will summarize and expand on the town hall discussions and findings of the panel members.

  20. Short-Lived Climate Pollution

    Science.gov (United States)

    Pierrehumbert, R. T.

    2014-05-01

    Although carbon dioxide emissions are by far the most important mediator of anthropogenic climate disruption, a number of shorter-lived substances with atmospheric lifetimes of under a few decades also contribute significantly to the radiative forcing that drives climate change. In recent years, the argument that early and aggressive mitigation of the emission of these substances or their precursors forms an essential part of any climate protection strategy has gained a considerable following. There is often an implication that such control can in some way make up for the current inaction on carbon dioxide emissions. The prime targets for mitigation, known collectively as short-lived climate pollution (SLCP), are methane, hydrofluo-rocarbons, black carbon, and ozone. A re-examination of the issues shows that the benefits of early SLCP mitigation have been greatly exaggerated, largely because of inadequacies in the methodologies used to compare the climate effects of short-lived substances with those of CO2, which causes nearly irreversible climate change persisting millennia after emissions cease. Eventual mitigation of SLCP can make a useful contribution to climate protection, but there is little to be gained by implementing SLCP mitigation before stringent carbon dioxide controls are in place and have caused annual emissions to approach zero. Any earlier implementation of SLCP mitigation that substitutes to any significant extent for carbon dioxide mitigation will lead to a climate irreversibly warmer than will a strategy with delayed SLCP mitigation. SLCP mitigation does not buy time for implementation of stringent controls on CO2 emissions.

  1. Classifying climate change adaptation frameworks

    Science.gov (United States)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  2. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip;

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  3. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  4. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  5. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    OpenAIRE

    Kanchan Joshi; Preeti Chaturvedi

    2013-01-01

    Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  6. Shaping the Planetary Climate? The Prospects for Climate Engineering

    International Nuclear Information System (INIS)

    For several years now, global warming has occupied a leading place in the list of major challenges humanity has to confront and is, therefore, very logically the focus of regular international negotiations aimed at contributing to a solution. For the moment, however, the only international political responses envisaged for curbing climate change attack the identified cause of the problem - greenhouse gas emissions - with the intention of reducing the volume of those emissions in the shortest possible time-frame. However, as Baptiste Marsollat shows here, other, more technological responses exist which consist not in working on greenhouse gas emissions, but either in capturing/imprisoning these gases or, more ambitiously, in modifying solar radiation to reduce ongoing climate warming. This would mean applying the techniques of climate engineering or geo-engineering. Such a prospect has generated great controversy, but it cannot, for all that, be ignored indefinitely in the thinking on combating global warming. This article reviews the subject of climate engineering (what is it and to what extent can we do it?) and the role it might play in the battle against climate change. It shows how this - long-tabooed - option is now finding a place within the most official circles in the Anglo-Saxon world. Without concealing the concerns to which it may, more or less justifiably, give rise, Marsollat shows that, faced with a dramatic choice, we might opt in the end for climate engineering as a way to fight global warming. And from a more proactive perspective, he also suggests we should reflect on how appropriate it might be to use it for shaping the planet's climate and, in that way, for meeting a number of other major challenges. (author)

  7. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-08-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  8. Research Advances of Impacts of Climate Changes on Crop Climatic Adaptability

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Agriculture received most direct influences from climate changes. Because of climate changes, agricultural climate resources changed and thus influenced climate adaptability of agricultural products. The growth and output of crops were finally affected. The calculation method and application of agricultural products in recent years were summarized. Several questions about the response of agricultural crops to climate elements were proposed for attention.

  9. Regional Collaborations to Combat Climate Change: The Climate Science Centers as Strategies for Climate Adaptation

    Science.gov (United States)

    Morelli, T. L.; Palmer, R. N.

    2014-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. The consortium approach taken by the CSCs allows the academic side of the Centers to gather expertise across departments, disciplines, and even institutions. This interdisciplinary approach is needed for successfully meeting regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach. Partnership with the federal government facilitates interactions with the key on-the-ground stakeholders who are able to operationalize the results and conclusions of that research, monitor the progress of management actions, and provide feedback to refine future methodology and decisions as new information on climate impacts is discovered. For example, NE CSC researchers are analyzing the effect of climate change on the timing and volume of seasonal and annual streamflows and the concomitant effects on ecological and cultural resources; developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling. Project methods are being developed in collaboration with stakeholders and results are being shared broadly with federal, state, and other partners to implement and refine effective and adaptive management actions.

  10. Potential climate effects on Japanese rice productivity

    OpenAIRE

    TANAKA, KENTA; Managi, Shunsuke; Kondo, Katsunobu; Masuda, Kiyotaka; Yamamoto, Yasutaka

    2012-01-01

    Adaptation to climate change has become an important policy question in recent years. Agriculture is the economic activity most sensitive to climate change. We evaluate the dynamic effects of productivity change and individual efforts to adapt to climate change. Adaptation actions in agriculture are evaluated to determine how the climate affects production efficiency. In this paper, we use the bi-directional distance function method to measure Japanese rice production loss due to climate. We ...

  11. Climate modification directed by control theory

    CERN Document Server

    Liang, Wang

    2008-01-01

    Climate modification measures to counteract global warming receive some more new attentions in these years. Most current researches only discuss the impact of these measures to climate, but how to design such a climate regulator is still unknown. This paper shows the control theory could give the systematic direction for climate modification. But the control analyzing also reveals that climate modifications should only be regarded as a last-ditch measure.

  12. The ACPI Climate Change Simulations

    International Nuclear Information System (INIS)

    The Parallel Climate Model (PCM) has been used in the Accelerated Climate Prediction Initiative (ACPI) Program to simulate the global climate response to projected CO2, sulfate, and other greenhouse gas forcing under a business-as-usual emissions scenario during the 21st century. In these runs, the oceans were initialized to 1995 conditions by a group from the Scripps Institution of Oceanography and other institutions. An ensemble of three model runs was then carried out to the year 2099 using the projected forcing. Atmospheric data from these runs were saved at 6-hourly intervals (hourly for certain critical fields) to support the ACPI objective of accurately modeling hydrological cycles over the western U.S. It is shown that the initialization to 1995 conditions partly removes the un-forced oceanic temperature and salinity drifts that occurred in the standard 20th century integration. The ACPI runs show a global surface temperature increase of 3-8C over northern high-latitudes by the end of the 21st century, and 1-2C over the oceans. This is generally within ±0.1C of model runs without the 1995 ocean initialization. The exception is in the Antarctic circumpolar ocean where surface air temperature is cooler in the ACPI run; however the ensemble scatter is large in this region. Although the difference in climate at the end of the 21st century is minimal between the ACPI runs and traditionally spun up runs, it might be larger for CGCMs with higher climate sensitivity or larger ocean drifts. Our results suggest that the effect of small errors in the oceans (such as those associated with climate drifts) on CGCM-simulated climate changes for the next 50-100 years may be negligible

  13. Climate predictions: the chaos and complexity in climate models

    CERN Document Server

    Mihailović, Dragutin T; Arsenić, Ilija

    2013-01-01

    Some issues which are relevant for the recent state in climate modeling have been considered. A detailed overview of literature related to this subject is given. The concept in modeling of climate, as a complex system, seen through Godel's Theorem and Rosen's definition of complexity and predictability is discussed. It is pointed out to occurrence of chaos in computing the environmental interface temperature from the energy balance equation given in a difference form. A coupled system of equations, often used in climate models is analyzed. It is shown that the Lyapunov exponent mostly has positive values allowing presence of chaos in this systems. The horizontal energy exchange between environmental interfaces, which is described by the dynamics of driven coupled oscillators, is analyzed. Their behavior and synchronization, when a perturbation is introduced in the system, as a function of the coupling parameters, the logistic parameter and the parameter of exchange, was studied calculating the Lyapunov expone...

  14. Understanding the school 'climate': secondary school children and climate change

    International Nuclear Information System (INIS)

    This interdisciplinary study analyzes the production, circulation and reception of messages on climate change in secondary schools in France. The objective is to understand how political and educational policy initiatives influence the ways in which schools contribute to creating youngsters' perceptions and opinions about climate change. In order to study the conditions of production and reception of information about climate change, a survey was conducted in four French secondary schools, in the 'Bas Rhin' and 'Nord' departments, and local political actors in each department were interviewed. The cross disciplinary analytical and methodological approach uses the tools of sociological inquiry, information science, and political science: questionnaires and interviews were conducted with members of the educational and governmental communities of each school and department, semiotic and discursive analyses of corpuses of documents were carried out, in order to characterize documents used by students and teachers at school or in more informal contexts; the nature and extent of the relations between the political contexts and school directives and programs were also discussed. This interdisciplinary approach, combining sociological, communicational, and political methods, was chosen in response to the hypothesis that three types of variables (social, communicational and political) contribute to the structuring and production of messages about climate change in schools. This report offers a contextualized overview of activities developed within the four secondary schools to help sensitize children to the risks associated with climate change. A study of the networks of individuals (teachers, staff, members of associations, etc.) created in and around the school environment is presented. The degree of involvement of these actors in climate change programs is analyzed, as it is related to their motives and objectives, to the school discipline taught, and to the position

  15. Climate@Home: Utilizing Citizen Science for Climate Studies

    Science.gov (United States)

    Liu, K.; Yang, C.; Li, Z.; Sun, M.; Li, J.; Xu, C.

    2013-12-01

    Climate change has become a serious and urgent issue in the past decades (Stern N. 2007). It will influence many domains such as agriculture, economy, ecosystem, and others. To help scientists to simulate the climate change, NASA conducted a project, Climate@Home, to develop a cyberinfrastructure for running the modelE climate model. ModelE contains over 500 variables and needs many days to finish a 10 year analysis task. If scientists need to run 300 tasks, it may need about 3 years to complete the task using a single machine. As an exploratory study, an infrastructure was constructed to recruit citizen volunteers for harvesting computing resources from citizens based on the citizen science mechanism. However, there are challenges in order to build the infrastructure: 1) modelE is a Linux based model but volunteers may have different operating system platforms such as Windows, Apple OSX etc (Anderson et al. 2006); 2) modelE has big downloading file and generates big results file, how to download and upload files efficiently? 3) currently the task schedule uses first-come-fist-get mechanism, how to schedule task efficiently? We address these challenges with several designs: 1) virtual machines are used to package the modelE, an operating system and configured running environments; 2) Building FTPS based on users' spatiotemporal information for data downloading and uploading; 3) crafting the schedule system to grant tasks based on the volunteers spatiotemporal information and computing conditions such as CPU, memory and bandwidth. Key words: Volunteer Computing, Climate Change, Spatiotemporal, References: 1. Anderson, D. P., Christensen, C., & Allen, B. (2006, November). Designing a runtime system for volunteer computing. In SC 2006 Conference, Proceedings of the ACM/IEEE (pp. 33-33). IEEE. 2. Stern, N. N. H. (Ed.). (2007). The economics of climate change: the Stern review. Cambridge University Press.

  16. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  17. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  18. Assessing urban climate change resilience

    Science.gov (United States)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  19. The Weather and Climate Toolkit

    Science.gov (United States)

    Ansari, S.; Del Greco, S.; Hankins, B.

    2010-12-01

    The Weather and Climate Toolkit (WCT) is free, platform independent software distributed from NOAA’s National Climatic Data Center (NCDC). The WCT allows the visualization and data export of weather and climate data, including Radar, Satellite and Model data. By leveraging the NetCDF for Java library and Common Data Model, the WCT is extremely scalable and capable of supporting many new datasets in the future. Gridded NetCDF files (regular and irregularly spaced, using Climate-Forecast (CF) conventions) are supported, along with many other formats including GRIB. The WCT provides tools for custom data overlays, Web Map Service (WMS) background maps, animations and basic filtering. The export of images and movies is provided in multiple formats. The WCT Data Export Wizard allows for data export in both vector polygon/point (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, Gridded NetCDF) formats. These data export features promote the interoperability of weather and climate information with various scientific communities and common software packages such as ArcGIS, Google Earth, MatLAB, GrADS and R. The WCT also supports an embedded, integrated Google Earth instance. The Google Earth Browser Plugin allows seamless visualization of data on a native 3-D Google Earth instance linked to the standard 2-D map. Level-II NEXRAD data for Hurricane Katrina GPCP (Global Precipitation Product), visualized in 2-D and internal Google Earth view.

  20. The adaptation to climate change

    International Nuclear Information System (INIS)

    The authors address the issue of adaptation to climate change. They first address the physical aspects related to this issue: scenarios of temperature evolution, main possible impacts. Then, they address the social impacts related to climate risks, and the adaptation strategies which aim at reducing the exposure and vulnerability of human societies, or at increasing their resilience. Some examples of losses of human lives and of economic damages due to recent catastrophes related to climate change are evoked. The authors address the international framework, the emergence of an international regime on climate, the quite recent emergence of adaptation within international negotiations in 2001, the emergence of the idea of a support to developing countries. National and local policies are presented in the next chapter (in the European Union, the Netherlands which are faced with the issue of sea level rise, programs in developing countries) and their limitations are also outlined. The next chapter addresses the adaptation actions performed by private actors (enterprises, households, associations, civil society, and so on) with example of vulnerability, and adaptation opportunities and possibilities in some specific sectors. The last chapter presents a typology of actions of adaptation, indicators of adaptation to climate change, and examples of mistaken adaptation

  1. Market Strategies for Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J. [Business School, University of Amsterdam, Amsterdam (Netherlands)

    2004-06-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still reflect the political, non-market components. Using empirical information from the largest multinational companies worldwide, this article examines current market responses, focusing on the drivers (threats and opportunities) and the actions being taken by companies to address climate change. It also develops a typology of climate strategies that addresses the market dimensions, covering both the aim (strategic intent) and the degree of cooperation (form of organisation). The aim turns out to be either innovation or compensation, while the organisational arrangements to reach this objective can be oriented at the company level (internal), at companies' own supply chain (vertical) or at cooperation with other companies (competitors or companies in other sectors - horizontal). The typology can assist managers in deciding about the strategic option(s) they want to choose regarding climate change, also based on the insights offered by the paper about the current state of activities of other companies worldwide.

  2. Economics, ethics and climate policy

    International Nuclear Information System (INIS)

    Are the costs of greenhouse gas emissions abatement justified by the perceived benefits of sustained climate stability? Do people of the present generation have a moral right to impose climate risks on their descendants in generations to come? This report examines these questions in light of the emergent facts of climate science and their socioeconomic implications. We consider alternative normative criteria for social decision-making with particular emphasis on cost-benefit analysis and the principle of sustainable development. While each framework yields important insights, we argue that the gross uncertainties associated with climate change and the distribution of impacts between present and future generations constrain the usefulness of cost-benefit criteria in evaluating climate policy. If one accepts the ethical proposition that it is morally wrong to impose catastrophic risks on unborn generations when reducing those risks would not noticeably diminish the quality of life of existing persons, a case can be made for concerted policy action to reduce greenhouse gas emissions. (118 refs., 3 figs., 4 tabs.)

  3. Great Lakes' regional climate regimes

    Science.gov (United States)

    Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul

    2016-04-01

    We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.

  4. Three eras of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul; Toulmin, Camilla

    2006-10-15

    Climate change as a global challenge has evolved through a series of stages in the last few decades. We are now on the brink of a new era which will see the terms of the debate shift once again. The different eras are characterised by the scientific evidence, public perceptions, responses and engagement of different groups to address the problem. In the first era, from the late 1980s to 2000, climate change was seen as an “environmental” problem to do with prevention of future impacts on the planet's climate systems over the next fifty to hundred years, through reductions in emissions of greenhouse gases, known as “mitigation”. The second era can be said to have started around the turn of the millennium, with the recognition that there will be some unavoidable impacts from climate change in the near term (over the next decade or two). These impacts must be coped with through “adaptation”, as well as mitigation, to prevent much more severe and possibly catastrophic impacts in the longer term. It has become clear that many of the impacts of climate change in the near term are likely to fall on the poorest countries and communities. The third era, which we are just about to enter, will see the issue change from tackling an environmental or development problem to a question of “global justice”. It will engage with a much wider array of citizens from around the world than previous eras.

  5. Climate sensitivity in the Anthropocene

    Directory of Open Access Journals (Sweden)

    M. Previdi

    2011-09-01

    Full Text Available Understanding the sensitivity of Earth's climate to an imposed external forcing is one of the great challenges in science and a critical component of efforts to avoid dangerous anthropogenic interference with the climate system. Climate sensitivity (or equilibrium global surface warming to a doubling of atmospheric CO2 has long been estimated to be about 3 °C, considering only fast climate feedbacks associated with increases in water vapor, decreases in sea ice, and changes in clouds. However, evidence from Earth's history suggests that slower surface albedo feedbacks due to vegetation change and melting of Greenland and Antarctica can come into play on the timescales of interest to humans, which could increase the sensitivity to significantly higher values, as much as 6 °C. Even higher sensitivity may result as present-day land and ocean carbon sinks begin to lose their ability to sequester anthropogenic CO2 in the coming decades. The evolving view of climate sensitivity in the Anthropocene is therefore one in which a wider array of Earth system feedbacks are recognized as important. Since these feedbacks are overwhelmingly positive, the sensitivity is likely to be higher than has traditionally been assumed.

  6. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  7. Dislocated interests and climate change

    Science.gov (United States)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  8. Climate Analytics as a Service

    Science.gov (United States)

    Schnase, John L.; Duffy, Daniel Q.; McInerney, Mark A.; Webster, W. Phillip; Lee, Tsengdar J.

    2014-01-01

    Climate science is a big data domain that is experiencing unprecedented growth. In our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). CAaaS combines high-performance computing and data-proximal analytics with scalable data management, cloud computing virtualization, the notion of adaptive analytics, and a domain-harmonized API to improve the accessibility and usability of large collections of climate data. MERRA Analytic Services (MERRA/AS) provides an example of CAaaS. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of key climate variables. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, CAaaS is providing the agility required to meet our customers' increasing and changing data management and data analysis needs.

  9. Economics, ethics, and climate policy

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, R.B.; Monahan, P.A.

    1992-11-01

    Are the costs of greenhouse gas emissions abatement justified by the perceived benefits of sustained climate stability? Do people of the present generation have a moral right to impose climate risks on their descendants in generations to come? This report examines these questions in light of the emergent facts of climate science and their socioeconomic implications. We consider alternative normative criteria for social decision-making with particular emphasis on cost-benefit analysis and the principle of sustainable development. While each framework yields important insights, we argue that the gross uncertainties associated with climate change and the distribution of impacts between present and future generations constrain the usefulness of cost-benefit criteria in evaluating climate policy. If one accepts the ethical proposition that it is morally wrong to impose catastrophic risks on unborn generations when reducing those risks would not noticeably diminish the quality of life of existing persons, a case can be made for concerted policy action to reduce greenhouse gas emissions.

  10. Economics, ethics, and climate policy

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, R.B.; Monahan, P.A.

    1992-11-01

    Are the costs of greenhouse gas emissions abatement justified by the perceived benefits of sustained climate stability Do people of the present generation have a moral right to impose climate risks on their descendants in generations to come This report examines these questions in light of the emergent facts of climate science and their socioeconomic implications. We consider alternative normative criteria for social decision-making with particular emphasis on cost-benefit analysis and the principle of sustainable development. While each framework yields important insights, we argue that the gross uncertainties associated with climate change and the distribution of impacts between present and future generations constrain the usefulness of cost-benefit criteria in evaluating climate policy. If one accepts the ethical proposition that it is morally wrong to impose catastrophic risks on unborn generations when reducing those risks would not noticeably diminish the quality of life of existing persons, a case can be made for concerted policy action to reduce greenhouse gas emissions.

  11. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses

    NARCIS (Netherlands)

    Reidsma, P.; Ewert, F.; Oude Lansink, A.G.J.M.; Leemans, R.

    2010-01-01

    Climatic conditions and hence climate change influence agriculture. Most studies that addressed the vulnerability of agriculture to climate change have focused on potential impacts without considering adaptation. When adaptation strategies are considered, socio-economic conditions and farm managemen

  12. Opening the climate envelope reveals no macroscale associations with climate in European birds

    OpenAIRE

    Beale, Colin M.; Lennon, Jack J.; Gimona, Alessandro

    2008-01-01

    Predicting how species distributions might shift as global climate changes is fundamental to the successful adaptation of conservation policy. An increasing number of studies have responded to this challenge by using climate envelopes, modeling the association between climate variables and species distributions. However, it is difficult to quantify how well species actually match climate. Here, we use null models to show that species–climate associations found by climate envelope methods are ...

  13. The Monash University Interactive Simple Climate Model

    Science.gov (United States)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  14. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  15. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  16. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  17. Word diffusion and climate science.

    Directory of Open Access Journals (Sweden)

    R Alexander Bentley

    Full Text Available As public and political debates often demonstrate, a substantial disjoint can exist between the findings of science and the impact it has on the public. Using climate-change science as a case example, we reconsider the role of scientists in the information-dissemination process, our hypothesis being that important keywords used in climate science follow "boom and bust" fashion cycles in public usage. Representing this public usage through extraordinary new data on word frequencies in books published up to the year 2008, we show that a classic two-parameter social-diffusion model closely fits the comings and goings of many keywords over generational or longer time scales. We suggest that the fashions of word usage contributes an empirical, possibly regular, correlate to the impact of climate science on society.

  18. Integrated assessment of climate change

    International Nuclear Information System (INIS)

    Many researchers are working on all the separate parts of the climate problem. The objective of integrated assessment is to put the results from this work together in order to look carefully at the big picture so as to: (1) keep a proper sense of perspective about the problem, since climate change will occur in the presence of many other natural and human changes; (2) develop the understanding necessary to support informed decision making by many different key public and private actors around the world; and (3) assure that the type and mix of climate-related research that is undertaken will be as useful as possible to decisions makers in both the near and long term. This paper outlines a set of design guidelines for formulating integrated assessment programs and projects and then outlines some of the current problems and opportunities. Selected points are illustrated by drawing on results from the integrated assessment research now in progress at Carnegie Mellon University

  19. Sustain : the climate change challenge

    International Nuclear Information System (INIS)

    This special report on climate change and greenhouse gas emissions focused on widely held current opinions which indicate that average global surface temperatures are increasing. The potential consequences of climate change can include rising sea levels, drought storms, disease, and mass migration of people. While the global climate change theory is widely accepted, the report warns that there are still many uncertainties about how climate change occurs and what processes can offset human-caused emissions. Canada produces about 2 per cent of global greenhouse gas emissions. Carbon dioxide comprises 80 per cent of Canada's total emissions. It is well known that Canadians place a heavy demand on energy to heat and light their homes because of the northern climate, and on transportation fuels to move people, goods and services across vast distances. With the Kyoto Protocol of December 1997, developed countries agreed to legally binding greenhouse gas emission reductions of at least five per cent by 2008 to 2012. Canada agreed to a six per cent reduction below 1990 levels by 2010. Although Canada signed the Kyoto Protocol, it does not intend to ratify it until an implementation strategy has been developed with broad support. The goal is to develop a strategy by 1999. The oil and gas industry has in general improved its efficiency and reduced emissions on a per unit of production basis by installing new equipment and new operating practices that reduce greenhouse gas emissions to the atmosphere, and improve energy efficiency. The industry is conscious of its responsibility, and while not fully in agreement with the environmental doomsayers, it is prepared to take proactive actions now, albeit on a voluntary basis. What the industry wants is a balance between environmental and economic responsibility. Emissions trading' and 'joint implementation' are seen as two important tools to tackle climate change on a global basis. 4 figs

  20. Climate Networks and Extreme Events

    Science.gov (United States)

    Kurths, J.

    2014-12-01

    We analyse some climate dynamics from a complex network approach. This leads to an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This approach enables us to uncover relations to global circulation patterns in oceans and atmosphere. The global scale view on climate networks offers promising new perspectives for detecting dynamical structures based on nonlinear physical processes in the climate system. Moreover, we evaluate different regional climate models from this aspect. This concept is also applied to Monsoon data in order to characterize the regional occurrence of extreme rain events and its impact on predictability. Changing climatic conditions have led to a significant increase in magnitude and frequency of spatially extensive extreme rainfall events in the eastern Central Andes of South America. These events impose substantial natural hazards for population, economy, and ecology by floods and landslides. For example, heavy floods in Bolivia in early 2007 affected more than 133.000 households and produced estimated costs of 443 Mio. USD. Here, we develop a general framework to predict extreme events by combining a non-linear synchronization technique with complex networks. We apply our method to real-time satellite-derived rainfall data and are able to predict a large amount of extreme rainfall events. Our study reveals a linkage between polar and subtropical regimes as responsible mechanism: Extreme rainfall in the eastern Central Andes is caused by the interplay of northward migrating frontal systems and a low-level wind channel from the western Amazon to the subtropics, providing additional moisture. Frontal systems from the Antarctic thus play a key role for sub-seasonal variability of the South American Monsoon System.

  1. Climatic Impact of Volcanic Eruptions

    Directory of Open Access Journals (Sweden)

    Gregory A. Zielinski

    2002-01-01

    Full Text Available Volcanic eruptions have the potential to force global climate, provided they are explosive enough to emit at least 1–5 megaton of sulfur gases into the stratosphere. The sulfuric acid produced during oxidation of these gases will both absorb and reflect incoming solar radiation, thus warming the stratosphere and cooling the Earth’s surface. Maximum global cooling on the order of 0.2–0.3°C, using instrumental temperature records, occurs in the first 2 years after the eruption, with lesser cooling possibly up to the 4th year. Equatorial eruptions are able to affect global climate, whereas mid- to high-latitude events will impact the hemisphere of origin. However, regional responses may differ, including the possibility of winter warming following certain eruptions. Also, El Niño warming may override the cooling induced by volcanic activity. Evaluation of different style eruptions as well as of multiple eruptions closely spaced in time beyond the instrumental record is attained through the analysis of ice-core, tree-ring, and geologic records. Using these data in conjunction with climate proxy data indicates that multiple eruptions may force climate on decadal time scales, as appears to have occurred during the Little Ice Age (i.e., roughly AD 1400s–1800s. The Toba mega-eruption of ~75,000 years ago may have injected extremely large amounts of material into the stratosphere that remained aloft for up to about 7 years. This scenario could lead to the initiation of feedback mechanisms within the climate system, such as cooling of sea-surface temperatures. These interacting mechanisms following a mega-eruption may cool climate on centennial time scales.

  2. Climate Catastrophe - The Giant Swindle

    International Nuclear Information System (INIS)

    Energy is the life-blood of civilization. More than 80% of global energy is supplied by fossil fuels. And this will continue for the foreseeable future - if an implementation of the Kyoto Protocol does not lead to a dramatic decrease of these fuels causing worldwide turmoil of unprecedented dimensions. However, the scaremongering with a 'climate catastrophe' allegedly caused by 'greenhouse gas' emissions from the burning of fossil fuels is a huge hoax. Its only 'scientific' base is the IPCC management's enigmatic assessment: 'The balance of evidence suggests a discernable human influence on climate'. But even IPCC had to admit at the World Energy Conference in Tokyo in 1996: 'We have no evidence'. And all the scaremongering assertions of the protagonists of 'global warming' have been convincingly refuted by the world elite of scientists. This paper will: - show how the whole anti-CO2 campaign has been manipulated from the very beginning till today; - give great many scientific and logical reason why the arguments of the scaremongers are incorrect; - outline the catastrophic economic and social consequences of the proposed anti-CO2 measures - without any benefit for the environment of climate; - name the driving forces behind this campaign and their interests. The witchhunt against CO2 is an incredible scientific and political scandal, CO2 does not damage the environment at all, and labelling it a 'climate killer' is absurd. On the contrary, this gas is vital for the life on our plant, and a stronger concentration of CO2 will be beneficial by doubling plant growth and with this combatting global famine. And to pretend that we could influence - with a CO2 tax - the climate, is insane arrogance. Man is absolutely helpless when confronted with the forces of nature. The squandering of multimillions USD of taxpayer's money for the travelling circus of 'Climate summits' and the stultification of the population must stop. The 'global warming' lie is the biggest

  3. Responsible investors acting on climate change. Investors acting on climate change. Climate: Investors take action

    International Nuclear Information System (INIS)

    Some investors are willing to lower the carbon emission financed by their investment, recognizing that climate change has financial impacts. At first they measure the carbon footprint of their portfolio, than initiate shareholder engagement actions at oil and gas companies, publish list of exclusion composed of the most carbon-intensive companies and ask for ex fossil fuels indices. In June 2015, Novethic launches the first actualisation of its study released on February 2015 on the mobilisation of investors on climate change over the whole 2015 year. The trend is gaining momentum since more than 200 additional investors publicly disclosed commitments to integrate climate risk into their investment and management practices. In September 2015, for its second update of the report on how investors are taking action on climate change, more than 800 entities were screened. As a key result, investor's actions gain momentum: approaches are growing in number and becoming more expert, divestments are widespread in Europe, and green investments promises are more ambitious. The last edition of November 2015 highlights and scans an exclusive panel of 960 investors worth Euro 30 trillion of assets who have made steps forward to tackle climate change. During the last 8 months, their number has almost increased twofold. This document brings together the first edition of Novethic's study and its three updates

  4. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  5. Climate, Carbon, Conservation and Communities

    Energy Technology Data Exchange (ETDEWEB)

    Vaugn, Kit; Brickell, Emily [WWF-UK (United Kingdom); Roe, Dilys; Reid, Hannah; Elliot, Jo

    2007-07-01

    The growing market for carbon offers great opportunities for linking greenhouse gas mitigation with conservation of forests and biodiversity, and the generation of local livelihoods. For these combined objectives to be achieved, strong governance is needed along with institutions that ensure poor people win, rather than lose out, from the new challenges posed by climate change. This briefing paper explores the opportunities from and limitations to carbon-based funds for conservation and development. It highlights mechanisms that may help secure benefits for climate, conservation and communities.

  6. INCCA: Integrated Climate and Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, S L

    2001-03-13

    The INCCA (Integrated Climate and Carbon) initiative will develop and apply the ability to simulate the fate and climate impact of fossil fuel-derived carbon dioxide (CO{sub 2}) and aerosols on a global scale. Coupled climate and carbon cycle modeling like that proposed for INCCA is required to understand and predict the future environmental impacts of fossil fuel burning. At present, atmospheric CO{sub 2} concentrations are prescribed, not simulated, in large climate models. Credible simulations of the entire climate system, however, need to predict time-evolving atmospheric greenhouse forcing using anthropogenic emissions as the fundamental input. Predicting atmospheric COS concentrations represents a substantial scientific advance because there are large natural sources and sinks of carbon that are likely to change as a result of climate change. Both terrestrial (e.g., vegetation on land) and oceanic components of the carbon cycle are known to be sensitive to climate change. Estimates of the amount of man-made CO{sub 2} that will accumulate in the atmosphere depend on understanding the carbon cycle. For this reason, models that use CO{sub 2} emissions, not prescribed atmospheric concentrations, as fundamental inputs are required to directly address greenhouse-related questions of interest to policymakers. INCCA is uniquely positioned to make rapid progress in this high-priority area of global change modeling and prediction because we can leverage previous and ongoing LLNL developments, and use existing component models that are well-developed and published. The need for a vastly improved carbon dioxide prediction capability is appreciated by the DOE. As the US Accelerated Climate Prediction Initiative (ACPI) progresses, we expect the DOE will emphasize the carbon cycle as the next major department-level earth science focus. INCCA will position LLNL for substantial additional funding as this new focus is realized. In the limited time since our LDRD funding was

  7. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  8. Glacial climate in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, W. [Columbia Univ., Palisades, NY (United States)

    1996-06-28

    New findings have caused ideas about the Earth`s climate during the Pleistocene glaciation to change. A consensus seems to be forming that during times of glaciation, climatic conditions in the tropics were quite different from those today. However still to be explained is why strontium-calcium measurements on corals and moble gas measurements of ground water suggest a tropical cooling of 4-6 C while foraminiferal speciation, oxygen isotope, and alkenone results suggest a cooling of no more than 3 C. This article discusses different aspects of the debate. 9 refs., 1 fig.

  9. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people.

  10. Climate protection laws in Taiwan

    International Nuclear Information System (INIS)

    The contribution on climate protection laws in Taiwan is first describing the international position and cooperation with UNFCCC, The national climate protection policy covers energy and industry, trading and economy, forestry and agriculture, traffic and local affairs, society and education. The description of the actual legislation includes the constitutional framework, environmental legislation, air pollution legislation, environmental compatibility regulations, renewable energy development legislation, energy management laws, legal drafts concerning reduction of greenhouse gas emission and energy taxes. Finally the competences and responsibilities of authorities are summarized.

  11. Sustainomics, sustainable development and climate

    International Nuclear Information System (INIS)

    This paper examines key issues in the nexus of sustainable development and climate change. It describes sustainomics as 'a transdisciplinary, integrative, balanced, heuristic and practical meta-framework for making development more sustainable'. The paper seeks to integrate these concepts through two broad approaches involving optimality and durability, and applies these ideas to climate change analysis. Operationally, it plays this bridging role by helping to map the results of environmental and social impact assessments (EIA and SIA) onto the framework of conventional economic analysis of projects. In addition the approach may help to formulate effective sustainable development policies, by linking and articulating these activities explicitly trough the Action Impact Matrix framework. (author)

  12. Cosmic rays, clouds and climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2015-01-01

    The most profound questions with the most surprising answers are often the simplest to ask. One is: Why is the climate always changing? Historical and archaeological evidence of global warming and cooling that occurred long before the Industrial Revolution, require natural explanations.......The most profound questions with the most surprising answers are often the simplest to ask. One is: Why is the climate always changing? Historical and archaeological evidence of global warming and cooling that occurred long before the Industrial Revolution, require natural explanations....

  13. Climate Ambassador Programmes in Municipalities

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Pedersen, Stine Rahbek

    2016-01-01

    Some Danish municipalities have developed ambassador programmes which generate environmental and climate change mitigation efforts in local public administrations and institutions. This chapter analyses the characteristics and experiences of four ambassador programmes now operating...... in the municipalities of Furesø, Lyngby-Taarbæk, Frederiksberg and Hvidovre. Two of the ambassador programmes presented here focus primarily on climate change mitigation initiatives, and two have a broader focus on sustainable development. Important elements for the impact of these programmes are the networking among...

  14. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people. PMID:26920851

  15. Simulation of climate variability and anthropogenic climate change

    International Nuclear Information System (INIS)

    The climatic changes in the last century were discussed and focus was on the questions: 1) What are the causes of the rapid climate fluctuations and 2) Is the global warming, which is observed during the last century, caused by natural or anthropogenic effects. It is concluded that an understanding of climate based on the interpretation of observational data only is not feasible, unless supported by an adequate theoretical interpretation. The capabilities of climatic models were discussed and the importance of incorporating 1) calculations of the internal variability of the atmosphere when forced from an ocean with prescribed sea surface temperature as well as for a system consisting of an atmosphere and a mixed ocean of limited depth, 2) a fully coupled atmospheric and ocean model and finally, 3) a fully coupled system including transiently changing greenhouse gases and aerosols. A short summation of the results is presented. The pronounced warming during the last century is not reproduced under the assumption of constant forcing and pollution emissions have to be incorporated into the models in order to bring the simulated data in agreement with observations

  16. A Harassing Climate? Sexual Harassment and Campus Racial Climate Research

    Science.gov (United States)

    Lundy-Wagner, Valerie; Winkle-Wagner, Rachelle

    2013-01-01

    In this conceptual paper, the authors discuss how research about sexual harassment and campus racial climates for undergraduate students is relegated to separate silos. Drawing on intersectionality and critical race feminist frameworks, the authors juxtapose these strands of research with attention to ethnicity/race and gender, highlighting how…

  17. Climate targets and cost-effective climate stabilization pathways

    Science.gov (United States)

    Held, H.

    2015-08-01

    Climate economics has developed two main tools to derive an economically adequate response to the climate problem. Cost benefit analysis weighs in any available information on mitigation costs and benefits and thereby derives an "optimal" global mean temperature. Quite the contrary, cost effectiveness analysis allows deriving costs of potential policy targets and the corresponding cost- minimizing investment paths. The article highlights pros and cons of both approaches and then focusses on the implications of a policy that strives at limiting global warming to 2 °C compared to pre-industrial values. The related mitigation costs and changes in the energy sector are summarized according to the IPCC report of 2014. The article then points to conceptual difficulties when internalizing uncertainty in these types of analyses and suggests pragmatic solutions. Key statements on mitigation economics remain valid under uncertainty when being given the adequate interpretation. Furthermore, the expected economic value of perfect climate information is found to be on the order of hundreds of billions of Euro per year if a 2°-policy were requested. Finally, the prospects of climate policy are sketched.

  18. Climate data initiative: A geocuration effort to support climate resilience

    Science.gov (United States)

    Ramachandran, Rahul; Bugbee, Kaylin; Tilmes, Curt; Privette, Ana Pinheiro

    2016-03-01

    Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. In this paper, we introduce the concept of geocuration and define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful collection. We present the Climate Data Initiative (CDI) project as a prototypical example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. We describe the geocuration process used in the CDI project, lessons learned, and suggestions to improve similar geocuration efforts in the future.

  19. Parameter sensitivity of climate models and climate driven ecological systems

    NARCIS (Netherlands)

    Moolenaar, H.E.

    2006-01-01

    Uncertainty in the outcome of numerical models of physical and biological processes, such as the climate and ecological systems, is widely recognized. One contributing factor is uncertainty in model parameters. Because of this uncertainty, a range of model outcomes is usually given. This might obstr

  20. Extreme climatic events in a changing climate: a review

    Science.gov (United States)

    Beniston, M.

    2003-04-01

    While changes in the long-term mean state of climate will have many important consequences on numerous environmental, social, and economic sectors, the most significant impacts of climatic change are likely to come about from shifts in the intensity and frequency of extreme weather events. Indeed, insurance costs resulting from extreme weather events have been steadily increasing over the last two decades, in response to both population pressures in regions that are at risk, but also because of the frequency and severity of certain forms of extremes. Regions now safe from catastrophic wind storms, heat waves, and floods could suddenly become vulnerable. The associated damage costs would consequently be extremely high. It seems appropriate, therefore, considering the environmental, human and economic costs exerted by extreme climatic events, to address the problem of whether there may be significant shifts in extremes of wind, precipitation or temperature in a changing global climate. In order to achieve these goals, the level of current scientific understanding and the availability of computational resources now enable numerical modeling techniques to be applied to this problem area. Examples will be given of particular numerical simulations of extreme events that have affected Western Europe and the alpine region in recent years. These simulations and impacts studies will be compared to observed events and trends during the 20th century, where adequate data is available to assess the manner in which certain forms of extreme events have changed, in part as a response to the global warming observed over the last 100 years.

  1. Appointment with Climate 2005; Rendez-vous climat 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document takes stock on the situation one year after the Climate Plan decided by the government in July 2004. It provides the allocutions of politicians occurred during the 14 and 15 November 2005 and a synthesis of the main questions and problems discussed during these two days. (A.L.B.)

  2. Klimanavigator - Climate Navigator - Gateway to climate knowledge in Germany

    Science.gov (United States)

    Schuck-Zöller, Susanne

    2013-04-01

    Objective More than 50 German research institutions and networks are represented on www.klimanavigator.de, a common platform, where information about their work, and the latest findings from climate research and adaptation can be found. Thus Klimanavigator as a gateway to climate knowledge provides a information portal for those who have to respond to climate change. The internet portal gives an overview of the present state of research and is estimated as a decision support tool for appropriate mitigation and adaptation measures. Target Groups The portal collects the German climate research institutions to publish their scientific knowledge in a non-scientific language. Economists, policymakers, administration and the media are bound to find the names of scientific experts and institutions by an elaborated research tool. Methodology The chapter "Dossiers" is edited by the Klimanavigator-Coordinator CSC. It gathers information to a special issue looked upon from various points of view. Publications of outstanding German scientists are presented side by side, current knowledge is being synthesized, scientifically reviewed and disseminated. The latest news from climate and adaptation research is presented in an own chapter, dedicated to the press releases of the portal members. Via RSS-feed the press releases are collected from the different partner institutions. Thirdly, portraits of the member institutions, that are individually edited by themselves, draw a map of science in Germany and help to find appropriate cooperation partners. For the future further development is being planned. Common Management Klimanavigator is being managed by the partners in common. The main decisions concerning the concept and shape of the portal are made by the partners' assembly. An elected editorial committee decides about the content between the assemblies. The Climate Service Center (part of the Helmholtz-Zentrum Geesthacht) concentrates on facilitating the cooperation, and

  3. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Blocks for Climate Smart Agriculture & Forestry USDA Resources Climate Change Program Office Agency Activities Climate Change Blogs Case Studies Through this initiative, USDA will ...

  4. Tracking of climatic niche boundaries under recent climate change.

    Science.gov (United States)

    La Sorte, Frank A; Jetz, Walter

    2012-07-01

    1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation

  5. Tracking of climatic niche boundaries under recent climate change.

    Science.gov (United States)

    La Sorte, Frank A; Jetz, Walter

    2012-07-01

    1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation

  6. The climate crisis: An introductory guide to climate change

    Science.gov (United States)

    Trenberth, Kevin E.

    2011-06-01

    Human-induced climate change, sometimes called “global warming,” has, unfortunately, become a “hot” topic, embroiled in controversy, misinformation, and claims and counterclaims. It should not be this way, because there are many scientific facts that provide solid information on which to base policy. There is a very strong observational, theoretical, and modeling base in physical science that underpins current understanding of what has happened to Earth's climate and why and what the prospects are for the future under certain assumptions. Moreover, these changes have impacts, which are apt to grow, on the environment and human society. To avoid or reduce these impacts and the economic and human effects of undesirable future climate change requires actions that are strongly opposed by those with vested interests in the status quo, some of whom have funded misinformation campaigns that have successfully confused the public and some politicians, leading to paralysis in political action. Without mitigation of climate change, one would suppose that at least society would plan sensibly for the changes already happening and projected, but such future adaptation plans are also largely in limbo. The implication is that we will suffer the consequences. All of these aspects are addressed in this informative and attractive book, which is written for a fairly general but technically informed audience. The book is strongly based upon the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and therefore has a solid scientific basis. Many figures, graphs, and maps come from the three IPCC working group reports, although the captions often do not explain the detail shown. Given that the IPCC reports totaled nearly 3000 pages, to distill the complex material down to 249 pages is no mean task, and the authors have succeeded quite well.

  7. Is journalism failing on climate?

    Science.gov (United States)

    Rahmstorf, Stefan

    2012-12-01

    How can we build a reliable and affordable energy supply based on renewables? How rapidly do we need to cut greenhouse gas emissions to keep climate change within manageable bounds? What does it take to maintain a stable common currency of different nations? These are just a few examples of questions that are critical for our future and that require an understanding of complex systems—the energy system, the climate system, the financial system. Finding sound answers to these questions requires sophisticated scientific analysis and expert knowledge; a lay person's intuition will clearly not suffice. Yet, decisions in a democracy are (and should be!) taken by politicians and the voting public who are not usually scientific experts. Hence the well-being of our societies—and even more so the living conditions of future generations, which are defined by the decisions we take today—depends on the wider public being well informed about the state of scientific knowledge and discourse. The media are the most important means by which lay people obtain their information about science. Good science journalism is therefore a decisive factor for the long-term success of modern society. Good science journalism clearly must be critical journalism, and it requires journalists who know what is what, who can put things into a perspective, and who are able to make well-informed judgements. After all, the role of science journalism is not simply to act as a 'translator' who conveys the findings of scientists in a language understandable to lay people. Rather, good science journalism will provide the public with a realistic impression of what is well established in science and what are current 'hot topics', uncertainties and controversies. It will also discuss the methods and social context of the scientific endeavour. There is ample evidence that in the area of climate science, journalism too often is failing to deliver this realistic picture to its audience, despite many good

  8. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  9. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  10. Temperate climate - Innovative outputs nexus

    NARCIS (Netherlands)

    Coccia, M.

    2014-01-01

    Technological change is a vital human activity that interacts with geographic factors and environment. The purpose of the study here is to analyse the relationship between geo-climate zones of the globe and technological outputs in order to detect favourable areas that spur higher technological chan

  11. Students' evaluations about climate change

    Science.gov (United States)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  12. Detecting failure of climate predictions

    Science.gov (United States)

    Runge, Michael C.; Stroeve, Julienne C.; Barrett, Andrew P.; McDonald-Madden, Eve

    2016-01-01

    The practical consequences of climate change challenge society to formulate responses that are more suited to achieving long-term objectives, even if those responses have to be made in the face of uncertainty1, 2. Such a decision-analytic focus uses the products of climate science as probabilistic predictions about the effects of management policies3. Here we present methods to detect when climate predictions are failing to capture the system dynamics. For a single model, we measure goodness of fit based on the empirical distribution function, and define failure when the distribution of observed values significantly diverges from the modelled distribution. For a set of models, the same statistic can be used to provide relative weights for the individual models, and we define failure when there is no linear weighting of the ensemble models that produces a satisfactory match to the observations. Early detection of failure of a set of predictions is important for improving model predictions and the decisions based on them. We show that these methods would have detected a range shift in northern pintail 20 years before it was actually discovered, and are increasingly giving more weight to those climate models that forecast a September ice-free Arctic by 2055.

  13. The Key to Climate Cooperation

    Institute of Scientific and Technical Information of China (English)

    WANG RUIBIN

    2010-01-01

    @@ Delegates from neady 190 countries gathered in the German city of Bonn for a new round of UN climate change talks on May 31-the first round since the Copenhagen summit last December. Negotiating parties with different opinions once more confronted each other, with tensions high during the whole process.

  14. A Record of Climate Change

    Science.gov (United States)

    Smith, Zach

    2007-01-01

    The hydrologic cycle is a very basic scientific principle. In this article, background information is presented on how the hydrologic cycle provides scientists with clues to understanding the history of Earth's climate. Also detailed is a web-based activity that allows students to learn about how scientists are able to piece together a record of…

  15. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO2 emissions. (Author)

  16. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future. PMID:27300144

  17. Kyoto protocol on climate change

    International Nuclear Information System (INIS)

    This article reports a short overview of main points of Kyoto protocol to United Nations Framework Convention on climate Change and of some options still to be defined, evolutions of Italian emissions with respect to other European countries, check of decree by inter ministerial committee on economic planning on national plan to reduce emissions

  18. Solar variability, weather, and climate

    Science.gov (United States)

    1982-01-01

    Advances in the understanding of possible effects of solar variations on weather and climate are most likely to emerge by addressing the subject in terms of fundamental physical principles of atmospheric sciences and solar-terrestrial physis. The limits of variability of solar inputs to the atmosphere and the depth in the atmosphere to which these variations have significant effects are determined.

  19. Health Effects of Climate Change

    Science.gov (United States)

    ... or insects can increase. Disease vectors such as mosquitoes, ticks, and flies may occur in greater numbers over longer periods during the year, and expand the locations in which they thrive. Climate change also affects air movement and quality by increasing ...

  20. Solar Influence on Future Climate

    Science.gov (United States)

    Arsenovic, Pavle; Stenke, Andrea; Rozanov, Eugene; Peter, Thomas

    2015-04-01

    Global warming is one of the main threats to mankind. There is growing evidence that anthropogenic greenhouse gases have become the dominant factor, however natural factors such as solar variability cannot be neglected. Sun is a variable star; its activity varies in regular 11-years solar cycles. Longer periods of decreased solar activity are called Grand Solar Minima, which have stronger impact on terrestrial climate. Another natural factor related with solar activity are energetic particles. They can ionize neutral molecules in upper atmosphere and produce NOx and HOx which deplete ozone. We investigate the effect of proposed Grand Solar Minimum in 21st and 22nd century on terrestrial climate and ozone layer. The simulations are performed with different solar forcing scenarios for period of 200 years (2000-2200) using global chemistry-climate model coupled with ocean model (SOCOL-MPIOM). We also deal with problem of representation of middle range energy electrons (30-300 keV) in the model and investigation of their influence on climate.

  1. Climate benefits of changing diet

    NARCIS (Netherlands)

    Stehfest, E.; Bouwman, A.F.; Vuuren, van D.P.; Elzen, M.; Kabat, P.

    2009-01-01

    Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land use. From a dietary perspective, new insights in

  2. Invasive species and climate change

    Science.gov (United States)

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  3. Symposium on Global Climate Change

    OpenAIRE

    Richard Schmalensee

    1993-01-01

    Global climate change, and policies to slow it or adapt to it, may be among the primary forces shaping the world's economy throughout the next century and beyond. Nonetheless, popular treatments of this issue commonly ignore economics. This introductory essay sketches some of the uncertainties and research questions.

  4. Climate Change: Meeting the Challenge

    Science.gov (United States)

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  5. Investment Climate and International Integration

    OpenAIRE

    Dollar, David; Hallward-Driemeier, Mary; Mengistae, Taye

    2004-01-01

    Drawing on recently completed firm-level surveys in Bangladesh, Brazil, China, Honduras, India, Nicaragua, Pakistan, and Peru, this paper investigates the relationship between investment climate and international integration. These standardized surveys of large, random samples of firms in common sectors reveal how firms experience bottlenecks and delays in hard infrastructure such as power...

  6. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  7. The Whiteness of Climate Change

    DEFF Research Database (Denmark)

    Jensen, Lars

    2011-01-01

    This article examines two major debates in contemporary Australian discourses on the nation: climate change and whiteness studies. It is primarily concerned with establishing a framework for connecting the two discourses, and in that process it raises pivotal questions about how narratives about...

  8. Climate Change, Conflict, and Children

    Science.gov (United States)

    Akresh, Richard

    2016-01-01

    We have good reason to predict that a warming climate will produce more conflict and violence. A growing contingent of researchers has been examining the relationship in recent years, and they've found that hotter temperatures and reduced rainfall are linked to increases in conflict at all scales, from interpersonal violence to war. Children are…

  9. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  10. Climate change and related activities

    International Nuclear Information System (INIS)

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change

  11. Emergency Managers Confront Climate Change

    Directory of Open Access Journals (Sweden)

    John R. Labadie

    2011-08-01

    Full Text Available Emergency managers will have to deal with the impending, uncertain, and possibly extreme effects of climate change. Yet, many emergency managers are not aware of the full range of possible effects, and they are unsure of their place in the effort to plan for, adapt to, and cope with those effects. This may partly reflect emergency mangers’ reluctance to get caught up in the rancorous—and politically-charged—debate about climate change, but it mostly is due to the worldview shared by most emergency managers. We focus on: extreme events; acute vs. chronic hazards (floods vs. droughts; a shorter event horizon (5 years vs. 75–100 years; and a shorter planning and operational cycle. This paper explores the important intersection of emergency management, environmental management, and climate change mitigation and adaptation. It examines the different definitions of terms common to all three fields, the overlapping strategies used in all three fields, and the best means of collaboration and mutual re-enforcement among the three to confront and solve the many possible futures that we may face in the climate change world.

  12. Detecting failure of climate predictions

    Science.gov (United States)

    Runge, Michael C.; Stroeve, Julienne C.; Barrett, Andrew P.; McDonald-Madden, Eve

    2016-09-01

    The practical consequences of climate change challenge society to formulate responses that are more suited to achieving long-term objectives, even if those responses have to be made in the face of uncertainty. Such a decision-analytic focus uses the products of climate science as probabilistic predictions about the effects of management policies. Here we present methods to detect when climate predictions are failing to capture the system dynamics. For a single model, we measure goodness of fit based on the empirical distribution function, and define failure when the distribution of observed values significantly diverges from the modelled distribution. For a set of models, the same statistic can be used to provide relative weights for the individual models, and we define failure when there is no linear weighting of the ensemble models that produces a satisfactory match to the observations. Early detection of failure of a set of predictions is important for improving model predictions and the decisions based on them. We show that these methods would have detected a range shift in northern pintail 20 years before it was actually discovered, and are increasingly giving more weight to those climate models that forecast a September ice-free Arctic by 2055.

  13. Shaped by uneven Pleistocene climate

    DEFF Research Database (Denmark)

    Li, Xinlei; Dong, Feng; Lei, Fumin;

    2016-01-01

    We studied the phylogeography and population history of the white wagtail Motacilla alba, which has a vast breeding range, covering areas with different Pleistocene climatic histories. The mitochondrial NADH dehydrogenase subunit II gene (ND2) and Control Region (CR) were analyzed for 273 individ...

  14. The Climate Catastrophe as Blockbuster

    DEFF Research Database (Denmark)

    Eskjær, Mikkel Fugl

    2013-01-01

    Modern disaster films constitute a specific cultural form that speaks to the anxieties of the “risk society.” This essay looks at how risks like climate change is presented and constructed in popular culture. It regards blockbuster representations as part of a wider discourse of “catastrophism...

  15. Experiments in Creative Climate Journalism

    Science.gov (United States)

    Kintisch, E. S.

    2011-12-01

    Creative experiments in climate journalism are my aim during a one year fellowship at a university. The goal is to engage the audience's senses, mind, and hopefully, imagination in work about Earth's climate. The work is done in collaboration with students, artists, scientists, musicians and actors, all marshalled to explain how the warming planet works through engaging and innovative means. This session will feature video examples of using design or music to visualize climate data. A video using improvisational actors drinking Red Bull to bring the concept of climate sensitivity to life will be shown. A glossy card designed to spoof an airline safety instruction card will be displayed; its design explains geoengineering techniques and their risks. In doing this work I have benefitted from a fellowship at Massachusetts Institute for Technology, which has provided the precious gift of time and creative atmosphere. I am on leave from Science magazine. I will report on what has and hadn't worked in fostering new means of communicating science in an academic setting. The session will also explore the shifting role of the journalist in this new space. The challenges take me beyond simply using words as a medium between science and the public. I find myself as a convener or producer in engendering partnerships between scientists and great communicators like actors, sculptors or filmmakers.

  16. Cosmic rays, clouds and climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2015-01-01

    The most profound questions with the most surprising answers are often the simplest to ask. One is: Why is the climate always changing? Historical and archaeological evidence of global warming and cooling that occurred long before the Industrial Revolution, require natural explanations....

  17. Climate determinism or Geomagnetic determinism?

    Science.gov (United States)

    Gallet, Y.; Genevey, A.; Le Goff, M.; Fluteau, F.; Courtillot, V.

    2006-12-01

    A number of episodes of sharp geomagnetic field variations (in both intensity and direction), lasting on the order of a century, have been identified in archeomagnetic records from Western Eurasia and have been called "archeomagnetic jerks". These seem to correlate well with multi-decadal cooling episodes detected in the North Atlantic Ocean and Western Europe, suggesting a causal link between both phenomena. A possible mechanism could be a geomagnetic modulation of the cosmic ray flux that would control the nucleation rate of clouds. We wish to underline the remarkable coincidence between archeomagnetic jerks, cooling events in Western Europe and drought periods in tropical and sub-tropical regions of the northern hemisphere. The latter two can be interpreted in terms of global teleconnections among regional climates. It has been suggested that these climatic variations had caused major changes in the history of ancient civilizations, such as in Mesopotamia, which were critically dependent on water supply and particularly vulnerable to lower rainfall amounts. This is one of the foundations of "climate determinism". Our studies, which suggest a geomagnetic origin for at least some of the inferred climatic events, lead us to propose the idea of a "geomagnetic determinism" in the history of humanity.

  18. Sunnyvale Marine Climate Deep Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Siddiqui, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing mechanical ventilation.

  19. Sunnyvale Marine Climate Deep Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America (BA) program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing.

  20. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review.