WorldWideScience

Sample records for climate-driven ecosystem shifts

  1. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic

    DEFF Research Database (Denmark)

    Beaugrand, G.; Edwards, M.; Brander, Keith

    2008-01-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt...... ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity...... and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod...

  2. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.

    Science.gov (United States)

    Ling, S D; Johnson, C R; Frusher, S D; Ridgway, K R

    2009-12-29

    A key consideration in assessing impacts of climate change is the possibility of synergistic effects with other human-induced stressors. In the ocean realm, climate change and overfishing pose two of the greatest challenges to the structure and functioning of marine ecosystems. In eastern Tasmania, temperate coastal waters are warming at approximately four times the global ocean warming average, representing the fastest rate of warming in the Southern Hemisphere. This has driven range extension of the ecologically important long-spined sea urchin (Centrostephanus rodgersii), which has now commenced catastrophic overgrazing of productive Tasmanian kelp beds leading to loss of biodiversity and important rocky reef ecosystem services. Coincident with the overgrazing is heavy fishing of reef-based predators including the spiny lobster Jasus edwardsii. By conducting experiments inside and outside Marine Protected Areas we show that fishing, by removing large predatory lobsters, has reduced the resilience of kelp beds against the climate-driven threat of the sea urchin and thus increased risk of catastrophic shift to widespread sea urchin barrens. This shows that interactions between multiple human-induced stressors can exacerbate nonlinear responses of ecosystems to climate change and limit the adaptive capacity of these systems. Management actions focused on reducing the risk of catastrophic phase shift in ecosystems are particularly urgent in the face of ongoing warming and unprecedented levels of predator removal from the world's oceans.

  3. Climate-driven range shifts of the king penguin in a fragmented ecosystem

    Science.gov (United States)

    Cristofari, Robin; Liu, Xiaoming; Bonadonna, Francesco; Cherel, Yves; Pistorius, Pierre; Le Maho, Yvon; Raybaud, Virginie; Stenseth, Nils Christian; Le Bohec, Céline; Trucchi, Emiliano

    2018-03-01

    Range shift is the primary short-term species response to rapid climate change, but it is often hampered by natural or anthropogenic habitat fragmentation. Different critical areas of a species' niche may be exposed to heterogeneous environmental changes and modelling species response under such complex spatial and ecological scenarios presents well-known challenges. Here, we use a biophysical ecological niche model validated through population genomics and palaeodemography to reconstruct past range shifts and identify future vulnerable areas and potential refugia of the king penguin in the Southern Ocean. Integrating genomic and demographic data at the whole-species level with specific biophysical constraints, we present a refined framework for predicting the effect of climate change on species relying on spatially and ecologically distinct areas to complete their life cycle (for example, migratory animals, marine pelagic organisms and central-place foragers) and, in general, on species living in fragmented ecosystems.

  4. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management

    NARCIS (Netherlands)

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G.; Hoshino, Eriko; Jennings, Sarah; Putten, Van Ingrid E.; Pecl, Gretta T.

    2016-01-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of

  5. A multi-model analysis of risk of ecosystem shifts under climate change

    International Nuclear Information System (INIS)

    Warszawski, Lila; Ostberg, Sebastian; Frieler, Katja; Lucht, Wolfgang; Schaphoff, Sibyll; Buechner, Matthias; Piontek, Franziska; Friend, Andrew; Keribin, Rozenn; Rademacher, Tim Tito; Beerling, David; Lomas, Mark; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Kahana, Ron; Ito, Akihiko; Nishina, Kazuya; Kleidon, Axel; Pavlick, Ryan

    2013-01-01

    Climate change may pose a high risk of change to Earth’s ecosystems: shifting climatic boundaries may induce changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state as a proxy for the risk of these shifts at different levels of global warming. Estimates are based on simulations from seven global vegetation models (GVMs) driven by future climate scenarios, allowing for a quantification of the related uncertainties. 5–19% of the naturally vegetated land surface is projected to be at risk of severe ecosystem change at 2 ° C of global warming (ΔGMT) above 1980–2010 levels. However, there is limited agreement across the models about which geographical regions face the highest risk of change. The extent of regions at risk of severe ecosystem change is projected to rise with ΔGMT, approximately doubling between ΔGMT = 2 and 3 ° C, and reaching a median value of 35% of the naturally vegetated land surface for ΔGMT = 4 °C. The regions projected to face the highest risk of severe ecosystem changes above ΔGMT = 4 °C or earlier include the tundra and shrublands of the Tibetan Plateau, grasslands of eastern India, the boreal forests of northern Canada and Russia, the savanna region in the Horn of Africa, and the Amazon rainforest. (letter)

  6. Are fish outside their usual ranges early indicators of climate-driven range shifts?

    Science.gov (United States)

    Fogarty, Hannah E; Burrows, Michael T; Pecl, Gretta T; Robinson, Lucy M; Poloczanska, Elvira S

    2017-05-01

    Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether 'first sightings' of marine species outside their normal ranges could provide an early warning of impending climate-driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50-year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate 'source' regions (areas lacking connections to warmer areas), 'corridor' regions (areas where moving isotherms converge), and 'sink' regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species' thermal affiliations. We found that first sightings are more likely to occur in climate sink and 'divergent' regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer-term climatic processes, and therefore have potential use to indicate likely climate-driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range-shifting

  7. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    Science.gov (United States)

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-05

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  8. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change

    Science.gov (United States)

    Patrick Gonzalez; Ronald P. Neilson; James M. Lenihan; Raymond J. Drapek

    2010-01-01

    Climate change threatens to shift vegetation, disrupting ecosystems and damaging human well-being. Field observations in boreal, temperate and tropical ecosystems have detected biome changes in the 20th century, yet a lack of spatial data on vulnerability hinders organizations that manage natural resources from identifying priority areas for adaptation measures. We...

  9. Climate-driven changes in functional biogeography of Arctic marine fish communities.

    Science.gov (United States)

    Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M

    2017-11-14

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.

  10. Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): evidence of a recent regime shift?

    DEFF Research Database (Denmark)

    Tomczak, Maciej Tomasz; Dinesen, Grete E.; Hoffmann, Erik

    2012-01-01

    An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is an eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west and...... further showed the regime shift to be driven by a combination of anthropogenic pressures and possible interplay with climatic disturbance......An integrated ecosystem assessment was carried out for the Limfjord over the period from 1984 to 2008 to describe changes in ecosystem structure and potentially important drivers. The Limfjord is an eutrophic transitional Danish fjord system with the main inflow from the North Sea in the west......), jellyfish, common shore crab, starfish and blue mussels. We interpret this change as a regime shift that showed a similar temporal pattern to regime shifts identified in adjacent seas. The observed changes in trophic interactions and food web reorganisation suggested a non-linear regime shift. The analyses...

  11. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China.

    Science.gov (United States)

    Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai

    2016-02-12

    Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21(st) century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change.

  12. Soil ecosystem functioning under climate change: plant species and community effects

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  13. A Data-Driven Assessment of the Sensitivity of Global Ecosystems to Climate Anomalies

    Science.gov (United States)

    Miralles, D. G.; Papagiannopoulou, C.; Demuzere, M.; Decubber, S.; Waegeman, W.; Verhoest, N.; Dorigo, W.

    2017-12-01

    Vegetation is a central player in the climate system, constraining atmospheric conditions through a series of feedbacks. This fundamental role highlights the importance of understanding regional drivers of ecological sensitivity and the response of vegetation to climatic changes. While nutrient availability and short-term disturbances can be crucial for vegetation at various spatiotemporal scales, natural vegetation dynamics are overall driven by climate. At monthly scales, the interactions between vegetation and climate become complex: some vegetation types react preferentially to specific climatic changes, with different levels of intensity, resilience and lagged response. For our current Earth System Models (ESMs) being able to capture this complexity is crucial but extremely challenging. This adds uncertainty to our projections of future climate and the fate of global ecosystems. Here, following a Granger causality framework based on a non-linear random forest predictive model, we exploit the current wealth of satellite data records to uncover the main climatic drivers of monthly vegetation variability globally. Results based on three decades of satellite data indicate that water availability is the most dominant factor driving vegetation in over 60% of the vegetated land. This overall dependency of ecosystems on water availability is larger than previously reported, partly owed to the ability of our machine-learning framework to disentangle the co-linearites between climatic drivers, and to quantify non-linear impacts of climate on vegetation. Our observation-based results are then used to benchmark ESMs on their representation of vegetation sensitivity to climate and climatic extremes. Our findings indicate that the sensitivity of vegetation to climatic anomalies is ill-reproduced by some widely-used ESMs.

  14. The pace of shifting climate in marine and terrestrial ecosystems

    DEFF Research Database (Denmark)

    Burrows, Michael T.; Schoeman, David S.; Buckley, Lauren B.

    2011-01-01

    Climate change challenges organisms to adapt or move to track changes in environments in space and time. We used two measures of thermal shifts from analyses of global temperatures over the past 50 years to describe the pace of climate change that species should track: the velocity of climate...... change (geographic shifts of isotherms over time) and the shift in seasonal timing of temperatures. Both measures are higher in the ocean than on land at some latitudes, despite slower ocean warming. These indices give a complex mosaic of predicted range shifts and phenology changes that deviate from...... simple poleward migration and earlier springs or later falls. They also emphasize potential conservation concerns, because areas of high marine biodiversity often have greater velocities of climate change and seasonal shifts....

  15. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.

    Science.gov (United States)

    Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë

    2015-01-01

    The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. © 2014 John Wiley & Sons Ltd.

  16. Evidence for a climate-induced ecohydrological state shift in wetland ecosystems of the southern Prairie Pothole Region

    Science.gov (United States)

    McKenna, Owen; Mushet, David M.; Rosenberry, Donald O.; LaBaugh, James W.

    2017-01-01

    Changing magnitude, frequency, and timing of precipitation can influence aquatic-system hydrological, geochemical, and biological processes, in some cases resulting in system-wide shifts to an alternate state. Since the early 1990s, the southern Prairie Pothole Region has been subjected to an extended period of increased wetness resulting in marked changes to aquatic systems defining this region. We explored numerous lines of evidence to identify: (1) how the recent wet period compared to historical variability, (2) hydrological, geochemical, and biological responses, and (3) how these responses might represent a state shift in the region’s wetland ecosystems. We analyzed long-term climate records and compared how different hydrological variables responded in this wet period compared to decades before the observed shift. Additionally, we used multi-decadal records of waterfowl population and subsurface tile drain records to explore wildlife and human responses to a shifting climate. Since 1993, a novel precipitation regime corresponded with increased pond numbers, ponded-water depths, lake levels, stream flows, groundwater heights, soil-moisture, waterfowl populations, and installation of subsurface tile drains in agricultural fields. These observed changes reflect an alteration in water storage and movement across the landscape that in turn has altered solute sources and concentrations of prairie-pothole wetlands and has increased pond permanence. Combined, these changes represent significant evidence for a state shift in the ecohydrological functioning of the region’s wetland ecosystems, a shift that may require a significant refinement of the previously developed “wetland continuum” concept.

  17. Ecosystem regime shifts disrupt trophic structure.

    Science.gov (United States)

    Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K

    2018-01-01

    Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological

  18. Trophic signatures of seabirds suggest shifts in oceanic ecosystems

    Science.gov (United States)

    Gagne, Tyler O.; Hyrenbach, K. David; Hagemann, Molly E.; Van Houtan, Kyle S.

    2018-01-01

    Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level–based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher–trophic level to lower–trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems. PMID:29457134

  19. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  20. Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia

    International Nuclear Information System (INIS)

    Kicklighter, D W; Melillo, J M; Lu, X; Cai, Y; Paltsev, S; Sokolov, A P; Reilly, J M; Zhuang, Q; Parfenova, E I; Tchebakova, N M

    2014-01-01

    Climate change will alter ecosystem metabolism and may lead to a redistribution of vegetation and changes in fire regimes in Northern Eurasia over the 21st century. Land management decisions will interact with these climate-driven changes to reshape the region’s landscape. Here we present an assessment of the potential consequences of climate change on land use and associated land carbon sink activity for Northern Eurasia in the context of climate-induced vegetation shifts. Under a ‘business-as-usual’ scenario, climate-induced vegetation shifts allow expansion of areas devoted to food crop production (15%) and pastures (39%) over the 21st century. Under a climate stabilization scenario, climate-induced vegetation shifts permit expansion of areas devoted to cellulosic biofuel production (25%) and pastures (21%), but reduce the expansion of areas devoted to food crop production by 10%. In both climate scenarios, vegetation shifts further reduce the areas devoted to timber production by 6–8% over this same time period. Fire associated with climate-induced vegetation shifts causes the region to become more of a carbon source than if no vegetation shifts occur. Consideration of the interactions between climate-induced vegetation shifts and human activities through a modeling framework has provided clues to how humans may be able to adapt to a changing world and identified the trade-offs, including unintended consequences, associated with proposed climate/energy policies. (paper)

  1. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems

    NARCIS (Netherlands)

    van de Waal, D.B.; Verschoor, A.M.; Verspagen, J.M.H.; van Donk, E.; Huisman, J.

    2010-01-01

    Advances in ecological stoichiometry, a rapidly expanding research field investigating the elemental composition of organisms and their environment, have shed new light on the impacts of climate change on freshwater and marine ecosystems. Current changes in the Earth's climate alter the availability

  2. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change

    Science.gov (United States)

    Midgley, Guy F.; Bond, William J.

    2015-09-01

    Projections of ecosystem and biodiversity change for Africa under climate change diverge widely. More than other continents, Africa has disturbance-driven ecosystems that diversified under low Neogene CO2 levels, in which flammable fire-dependent C4 grasses suppress trees, and mega-herbivore action alters vegetation significantly. An important consequence is metastability of vegetation state, with rapid vegetation switches occurring, some driven by anthropogenic CO2-stimulated release of trees from disturbance control. These have conflicting implications for biodiversity and carbon sequestration relevant for policymakers and land managers. Biodiversity and ecosystem change projections need to account for both disturbance control and direct climate control of vegetation structure and function.

  3. Land Use, Climate Change and Ecosystem Services

    OpenAIRE

    Attavanich, Witsanu; Rashford, Benjamin S.; Adams, Richard M.; McCarl, Bruce A.

    2011-01-01

    The combination of shifts in crop production and a reduction in wetland ecosystems associated with climate change are forecast to reduce native grasslands and associated obligate species. Most estimates of climate change impacts to wildlife, however, do not account for how humans are likely to alter land use in response to climate changes. We examine the joint effect of climate change and the resulting land use response of farmers on waterfowl production in the Prairie Pothole Region of Nor...

  4. CLIMOOR. Climate driven changes in the functioning of heath and moorland ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Beier, C. [ed.; Tietema, A.; Riis Nielsen, T.; Emmett, B.; Estiarte, M.; Penuelas, J.; Llorens Guash, L.; Williams, D.; Gordon, C.; Pugh, B.; Roda, F.; Gundersen, P.; Gorissen, A.

    2000-01-01

    Emission of green house gases, partly generated from human activities, reduces the loss of heat from the earth thereby potentially causing climate change. This change in climate has been predicted to result in a 1-3 deg. C increase in temperature with more vigorous rainstorms and prolonged drought periods in the coming 100 years. The consequence of such climatic changes for the terrestrial ecosystems are largely unknown. In order to improve our understanding of the ecosystem response to climate change and thereby to improve the basis for the international negotiations and political decisions to avoid or minimise climate change and its effects, a European research project CLIMOOR has been initiated. The project is a cross European research project involving 6 research groups from Denmark, the Netherlands, UK and Spain and is funded by EU and the participating institutions. The project investigates the potential effects of warming and drought on heath and moorland ecosystems at four European sites. The ecosystems are manipulated at field scale by reducing the heat loss at night by IR-reflective curtains and by removing the precipitation during a 2 month period in the summer. The effects of these manipulations on the plants and the soil are studied. This report describes the technique used to apply the climate change at field scale and presents some preliminary results after the first growing season. EU and the participating institutions fund CLIMOOR. (au)

  5. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    Science.gov (United States)

    Bateman, Ian; Agarwala, Matthew; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Lovett, Andrew; Posen, Paulette

    2016-10-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems showing that these will be spatially heterogeneous. Moreover, we consider further knock-on effects upon the recreational benefits derived from water environments, which we assess using revealed preference methods. This analysis permits a multi-layered examination of the economic consequences of climate change, assessing the sequence of impacts from climate change through farm gross margins, land use, water quality and recreation, both at the individual and catchment scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fire Regime and Ecosystem Effects of Climate-driven Changes in Rocky Mountains Hydrology

    Science.gov (United States)

    Westerling, A. L.; Das, T.; Lubetkin, K.; Romme, W.; Ryan, M. G.; Smithwick, E. A.; Turner, M.

    2009-12-01

    Western US Forest managers face more wildfires than ever before, and it is increasingly imperative to anticipate the consequences of this trend. Large fires in the northern Rocky Mountains have increased in association with warmer temperatures, earlier snowmelt, and longer fire seasons (1), and this trend is likely to continue with global warming (2). Increased wildfire occurrence is already a concern shared by managers from many federal land-management agencies (3). However, new analyses for the western US suggest that future climate could diverge even more rapidly from past climate than previously suggested. Current model projections suggest end-of-century hydroclimatic conditions like those of 1988 (the year of the well-known Yellowstone Fires) may represent close to the average year rather than an extreme year. The consequences of a shift of this magnitude for the fire regime, post-fire succession and carbon (C) balance of western forest ecosystems are well beyond what scientists have explored to date, and may fundamentally change the potential of western forests to sequester atmospheric C. We link hydroclimatic extremes (spring and summer temperature and cumulative water-year moisture deficit) to extreme fire years in northern Rockies forests, using large forest fire histories and 1/8-degree gridded historical hydrologic simulations (1950 - 2005) (4) forced with historical gridded temperature and precipitation (5). The frequency of extremes in hydroclimate associated with historic severe fire years in the northern Rocky Mountains is compared to those projected under a range of climate change projections, using global climate model runs for the A2 and B1 emissions pathways for three global climate models (NCAR PCM1, GFDL CM2.1, CNRM CM3). Coarse-scale climatic variables are downscaled to a 1/8 degree grid and used to force hydrologic simulations (6, 7). We will present preliminary results using these hydrologic simulations to model spatially explicit annual

  7. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    Science.gov (United States)

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  8. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage

    Science.gov (United States)

    Magrach, Ainhoa; Ghazoul, Jaboury

    2015-01-01

    Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes. PMID:26177201

  9. Climate-mediated changes in marine ecosystem regulation during El Niño

    DEFF Research Database (Denmark)

    Lindegren, Martin; Checkley, David M.; Koslow, J. Anthony

    2017-01-01

    concentrations and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases......, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down and physical forcing during changing climate conditions on ecosystem regulation in the Southern California...

  10. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems.

    Science.gov (United States)

    Guiot, Joel; Cramer, Wolfgang

    2016-10-28

    The United Nations Framework Convention on Climate Change Paris Agreement of December 2015 aims to maintain the global average warming well below 2°C above the preindustrial level. In the Mediterranean basin, recent pollen-based reconstructions of climate and ecosystem variability over the past 10,000 years provide insights regarding the implications of warming thresholds for biodiversity and land-use potential. We compare scenarios of climate-driven future change in land ecosystems with reconstructed ecosystem dynamics during the past 10,000 years. Only a 1.5°C warming scenario permits ecosystems to remain within the Holocene variability. At or above 2°C of warming, climatic change will generate Mediterranean land ecosystem changes that are unmatched in the Holocene, a period characterized by recurring precipitation deficits rather than temperature anomalies. Copyright © 2016, American Association for the Advancement of Science.

  11. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    Science.gov (United States)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  12. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    Science.gov (United States)

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  13. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    Science.gov (United States)

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  14. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    Science.gov (United States)

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.

    2016-01-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  15. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.

    Science.gov (United States)

    Barton, Andrew D; Irwin, Andrew J; Finkel, Zoe V; Stock, Charles A

    2016-03-15

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.

  16. Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea

    Directory of Open Access Journals (Sweden)

    Stuart E. Bunn

    2013-06-01

    Full Text Available Managing receiving-water quality, ecosystem health and ecosystem service delivery is challenging in regions where extreme rainfall and runoff events occur episodically, confounding and often intensifying land-degradation impacts. We synthesize the approaches used in river, reservoir and coastal water management in the event-driven subtropics of Australia, and the scientific research underpinning them. Land-use change has placed the receiving waters of Moreton Bay, an internationally-significant coastal wetland, at risk of ecological degradation through increased nutrient and sediment loads. The event-driven climate exacerbates this issue, as the waterways and ultimately Moreton Bay receive large inputs of nutrients and sediment during events, well above those received throughout stable climatic periods. Research on the water quality and ecology of the region’s rivers and coastal waters has underpinned the development of a world-renowned monitoring program and, in combination with catchment-source tracing methods and modeling, has revealed the key mechanisms and management strategies by which receiving-water quality, ecosystem health and ecosystem services can be maintained and improved. These approaches provide a useful framework for management of water bodies in other regions driven by episodic events, or where novel stressors are involved (e.g., climate change, urbanization, to support sustained ecosystem service delivery and restoration of aquatic ecosystems.

  17. Ocean currents modify the coupling between climate change and biogeographical shifts.

    Science.gov (United States)

    García Molinos, J; Burrows, M T; Poloczanska, E S

    2017-05-02

    Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.

  18. Climate Regulation Services of Natural and Managed Ecosystems of the Americas

    Science.gov (United States)

    Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.; Costa, M. H.; Cuadra, S.; DeLucia, E. H.

    2011-12-01

    Terrestrial ecosystems regulate climate through both biogeochemical mechanisms (greenhouse gas regulation) and biophysical mechanisms (regulation of water and energy). Land management therefore provides some of the most effective strategies for climate change mitigation. However, most policies aimed at climate protection through land management, including UNFCCC mechanisms and bioenergy sustainability standards, account only for biogeochemical climate services. By ignoring biophysical climate regulation services that in some cases offset the biogeochemical regulation services, these policies run the risk of failing to advance the best climate solutions. Quantifying the combined value of biogeochemical and biophysical climate regulation services remains an important challenge. Here, we use a combination of data synthesis and modeling to quantify how biogeochemical and biophysical effects combine to shape the climate regulation value (CRV) of 18 natural and managed ecosystem types across the Western Hemisphere. Natural ecosystems generally had higher CRVs than agroecosystems, largely driven by differences in biogeochemical services. Biophysical contributions ranged from minimal to dominant. They were highly variable in space and across ecosystem types, and their relative importance varied strongly with the spatio-temporal scale of analysis. Our findings pertain to current efforts to protect climate through land management. Specifically, they reinforce the importance of protecting tropical forests and recent findings that the climatic effects of bioenergy production may be somewhat more positive than previously estimated. Given that biophysical effects in some cases dominate, ensuring effective climate protection through land management requires consideration of combined biogeochemical and biophysical climate regulation services. While quantification of ecosystem climate services is necessarily complex, our CRV index serves as one potential approach to measure the

  19. Shifts in tree functional composition amplify the response of forest biomass to climate.

    Science.gov (United States)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W

    2018-04-05

    Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  20. Shifts in tree functional composition amplify the response of forest biomass to climate

    Science.gov (United States)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.

    2018-04-01

    Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  1. Modelling Regional Climate Change Effects On Potential Natural Ecosystems in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Koca, D.; Smith, B.; Sykes, M.T. [Centre for GeoBiosphere Science, Department of Physical Geography and Ecosystems Analysis, Lund University, Soelvegatan 12, S-223 62 Lund (Sweden)

    2006-10-15

    This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) - HadAM3H and ECHAM4/OPYC3 - were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st

  2. Modelling Regional Climate Change Effects On Potential Natural Ecosystems in Sweden

    International Nuclear Information System (INIS)

    Koca, D.; Smith, B.; Sykes, M.T.

    2006-01-01

    This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) - HadAM3H and ECHAM4/OPYC3 - were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st

  3. The impacts of past climate change on terrestrial and aquatic ecosystems

    International Nuclear Information System (INIS)

    Bradshaw, R.H.W.; Anderson, N.J.

    2001-01-01

    The last two million years of global history have been dominated by the impacts of rapid climate change. This influence is not immediately obvious to most biologists whose observations rarely extend beyond a period of a few years, but becomes apparent when interpreting long-term data sets whether they be population studies or palaeoecological data. It is appropriate therefore to consider how terrestrial and aquatic ecosystems have responded to climate change during the Quaternary when speculating about response to future climatic developments. In this chapter we discuss and illustrate the complex interactions between climate and anthropogenic influence on terrestrial and aquatic ecosystems during the Holocene. Climate influences ecosystems both directly (e.g. physiological responses or lake thermal stratification) and indirectly (e.g. via fire frequency or catchment hydrology). Lake sediments can be used to study both past climatic change directly and the effects of past climatic variability. In this chapter we present summary examples of the influence of past climate change on terrestrial and aquatic ecosystems as well showing how lake sediment records can provide proxy records of past climate change. The geological record from the last 18 000 years documents large changes in terrestrial and aquatic ecosystems that are primarily driven by climatic change, but are modified by internal ecosystem processes. These changes are comparable in magnitude and rapidity to those predicted for the near future. Species at their distributional limits are particularly sensitive to climate change and contractions of range can be sudden in response to extreme climatic events such as the storm of December 1999 that damaged Picea trees far more than tree species that lay within their natural range limits. Palaeoecological records provide compelling evidence for direct climate forcing of aquatic and terrestrial ecosystems but importantly also permit comparative analyses of impacts

  4. Regime shifts and resilience in China's coastal ecosystems.

    Science.gov (United States)

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.

  5. Nutrient reduction and climate change cause a potential shift from pelagic to benthic pathways in a eutrophic marine ecosystem

    DEFF Research Database (Denmark)

    Lindegren, Martin; Blenckner, T.; Stenseth, N.C.

    2012-01-01

    The degree to which marine ecosystems may support the pelagic or benthic food chain has been shown to vary across natural and anthropogenic gradients for e.g., in temperature and nutrient availability. Moreover, such external forcing may not only affect the flux of organic matter but could trigger...... variables across all trophic levels, we here propose a potential regime shift from pelagic to benthic regulatory pathways; a possible first sign of recovery from eutrophication likely triggered by drastic nutrient reductions (involving both nitrogen and phosphorus), in combination with climate...

  6. Nonlinear ecosystem services response to groundwater availability under climate extremes

    Science.gov (United States)

    Qiu, J.; Zipper, S. C.; Motew, M.; Booth, E.; Kucharik, C. J.; Steven, L. I.

    2017-12-01

    Depletion of groundwater has been accelerating at regional to global scales. Besides serving domestic, industrial and agricultural needs, in situ groundwater is also a key control on biological, physical and chemical processes across the critical zone, all of which underpin supply of ecosystem services essential for humanity. While there is a rich history of research on groundwater effects on subsurface and surface processes, understanding interactions, nonlinearity and feedbacks between groundwater and ecosystem services remain limited, and almost absent in the ecosystem service literature. Moreover, how climate extremes may alter groundwater effects on services is underexplored. In this research, we used a process-based ecosystem model (Agro-IBIS) to quantify groundwater effects on eight ecosystem services related to food, water and biogeochemical processes in an urbanizing agricultural watershed in the Midwest, USA. We asked: (1) Which ecosystem services are more susceptible to shallow groundwater influences? (2) Do effects of groundwater on ecosystem services vary under contrasting climate conditions (i.e., dry, wet and average)? (3) Where on the landscape are groundwater effects on ecosystem services most pronounced? (4) How do groundwater effects depend on water table depth? Overall, groundwater significantly impacted all services studied, with the largest effects on food production, water quality and quantity, and flood regulation services. Climate also mediated groundwater effects with the strongest effects occurring under dry climatic conditions. There was substantial spatial heterogeneity in groundwater effects across the landscape that is driven in part by spatial variations in water table depth. Most ecosystem services responded nonlinearly to groundwater availability, with most apparent groundwater effects occurring when the water table is shallower than a critical depth of 2.5-m. Our findings provide compelling evidence that groundwater plays a vital

  7. Predicting Chronic Climate-Driven Disturbances and Their Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Nate G.; Michaletz, Sean T.; Bennett, Katrina E.; Solander, Kurt C.; Xu, Chonggang; Maxwell, Reed M.; Middleton, Richard S.

    2018-01-01

    Society increasingly demands the stable provision of ecosystem resources to support our population. Resource risks from climate-driven disturbances--including drought, heat, insect outbreaks, and wildfire--are rising as a chronic state of disequilibrium results from increasing temperatures and a greater frequency of extreme events. This confluence of increased demand and risk may soon reach critical thresholds. We explain here why extreme chronic disequilibrium of ecosystem function is likely to increase dramatically across the globe, creating no-analog conditions that challenge adaptation. We also present novel mechanistic theory that combines models for disturbance mortality and metabolic scaling to link size-dependent plant mortality to changes in ecosystem stocks and fluxes. Efforts must anticipate and model chronic ecosystem disequilibrium to properly prepare for resilience planning.

  8. Ecosystem vulnerability assessment and synthesis: a report from the Climate Change Response Framework Project in northern Wisconsin

    Science.gov (United States)

    Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery Dorland

    2011-01-01

    The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...

  9. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems

    International Nuclear Information System (INIS)

    Jentsch, A.; Jentsch, A.; Beierkuhnlein, C.

    2008-01-01

    Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that modifications in extreme weather events pose stronger threats to ecosystem functioning than global trends and shifts in average conditions. As ecosystem functioning is connected with ecological services, this has far-reaching effects on societies in the 21. century. Here, we: (i) present the rationale for the increasing frequency and magnitude of extreme weather events in the near future; (ii) discuss recent findings on meteorological extremes and summarize their effects on ecosystems and (iii) identify gaps in current ecological climate change research. (authors)

  10. Past climate-driven range shifts and population genetic diversity in arctic plants

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Eidesen, Pernille Bronken; Ehrich, Dorothee

    2016-01-01

    High intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since ...... the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses...

  11. Adaptation approaches for conserving ecosystems services and biodiversity in dynamic landscapes caused by climate change

    Science.gov (United States)

    Oswald J. Schmitz; Anne M. Trainor

    2014-01-01

    Climate change stands to cause animal species to shift their geographic ranges. This will cause ecosystems to become reorganized across landscapes as species migrate into and out of specific locations with attendant impacts on values and services that ecosystems provide to humans. Conservation in an era of climate change needs to ensure that landscapes are resilient by...

  12. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    Science.gov (United States)

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Ecosystem and Food Security in a Changing Climate

    Science.gov (United States)

    Field, C. B.

    2011-12-01

    Observed and projected impacts of climate change for ecosystem and food security tend to appear as changes in the risk of both desirable and undesirable outcomes. As a consequence, it is useful to frame the challenge of adaptation to a changing climate as a problem in risk management. For some kinds of impacts, the risks are relatively well characterized. For others, they are poorly known. Especially for the cases where the risks are poorly known, effective adaptation will need to consider approaches that build dynamic portfolios of options, based on learning from experience. Effective adaptation approaches also need to consider the risks of threshold-type responses, where opportunities for gradual adaptation based on learning may be limited. Finally, effective adaptation should build on the understanding that negative impacts on ecosystems and food security often result from extreme events, where a link to climate change may be unclear now and far into the future. Ecosystem and food security impacts that potentially require adaptation to a changing climate vary from region to region and interact strongly with actions not related to climate. In many ecosystems, climate change shifts the risk profile to increase risks of wildfire and biological invasions. Higher order risks from factors like pests and pathogens remain difficult to quantify. For food security, observational evidence highlights threshold-like behavior to high temperature in yields of a number of crops. But the risks to food security may be much broader, encompassing risks to availability of irrigation, degradation of topsoil, and challenges of storage and distribution. A risk management approach facilitates consideration of all these challenges with a unified framework.

  14. Northern Peatland Shifts Under Changing Climate and Their Impact on Permafrost

    Science.gov (United States)

    Shur, Y.; Jorgenson, T.; Kanevskiy, M. Z.

    2014-12-01

    Formation of peatlands depends primarily on climate and its interactions with hydrology, soil thermal regimes, plant composition, and nutrients. A water balance with precipitation exceeding evaporation is necessary for their formation. The rate of peat accumulation also greatly depends on thermal resources. The prominent impact of the water balance and temperature on peatland formation is evident in the West Siberia Lowland. The rate of peat accumulation steadily increases from arctic tundra to moss tundra, to forest tundra, to northern taiga, and to southern taiga. This increase is a result in increase in air temperature and length of the growing season because all of these zones have water balance favorable for peat formation. Further to south, evaporation prevails over precipitation and peat formation occurs only in isolated areas. Climate change will redefine geographical distribution of climatic and vegetation zones. It is predicted that in arctic and subarctic regions the difference between precipitation and evaporation will increase and as a result these regions will remain favorable to peat accumulation. With increase of thermal resources, the rate of peat accumulation will also increase. The Alaska Arctic Coastal Plain is of a special interest because it has thousands of shallow lakes, which due to warming climate would shift from open waterbodies to peatlands through shoreline paludification and infilling. The accumulation of organic matter will likely turn open water into shore fens and bogs, and eventually to peat plateaus, as is occurring in many boreal landscapes. Expected impact on permafrost in arctic and subarctic regions will include rise of the permafrost table, thickening of the ice-rich intermediate layer with ataxitic (suspended) cryostructure, and replacement of frost boils with earth hummocks. In the contemporary continuous permafrost zone, permafrost formed as climate-driven will be transformed into climate-driven ecosystem protected

  15. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    Science.gov (United States)

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  16. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems.

    NARCIS (Netherlands)

    Dirnböck, Thomas; Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G W

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the

  17. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems

    NARCIS (Netherlands)

    Dirnböck, Thomas; Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol, Janet; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G.W.

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the

  18. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake.

    Science.gov (United States)

    Kong, Xiangzhen; He, Qishuang; Yang, Bin; He, Wei; Xu, Fuliu; Janssen, Annette B G; Kuiper, Jan J; van Gerven, Luuk P A; Qin, Ning; Jiang, Yujiao; Liu, Wenxiu; Yang, Chen; Bai, Zelin; Zhang, Min; Kong, Fanxiang; Janse, Jan H; Mooij, Wolf M

    2017-02-01

    Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when

  19. Shifting Pacific storm tracks as stressors to ecosystems of western North America.

    Science.gov (United States)

    Dannenberg, Matthew P; Wise, Erika K

    2017-11-01

    Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool-season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool-season standardized precipitation-evapotranspiration index, April snow water equivalent, and water year streamflow from a network of USGS stream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree-ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool-season storm tracks entered western North America between approximately 41°N and 53°N. Cool-season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south-shifted storm tracks, while Canadian ecosystems were greener in years when the cool-season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north-shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool-season storm tracks.

  20. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    Science.gov (United States)

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  1. Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts

    Science.gov (United States)

    Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.

    2017-05-01

    In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.

  2. Balancing trade-offs between ecosystem services in Germany’s forests under climate change

    Science.gov (United States)

    Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.

    2018-04-01

    Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining

  3. Invertebrates, ecosystem services and climate change.

    Science.gov (United States)

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  4. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    Science.gov (United States)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data

  5. Simulating changes in ecosystem structure and composition in response to climate change: a case study focused on tropical nitrogen-fixing trees (Invited)

    Science.gov (United States)

    Medvigy, D.; Levy, J.; Xu, X.; Batterman, S. A.; Hedin, L.

    2013-12-01

    Ecosystems, by definition, involve a community of organisms. These communities generally exhibit heterogeneity in their structure and composition as a result of local variations in climate, soil, topography, disturbance history, and other factors. Climate-driven shifts in ecosystems will likely include an internal re-organization of community structure and composition and as well as the introduction of novel species. In terms of vegetation, this ecosystem heterogeneity can occur at relatively small scales, sometimes of the order of tens of meters or even less. Because this heterogeneous landscape generally has a variable and nonlinear response to environmental perturbations, it is necessary to carefully aggregate the local competitive dynamics between individual plants to the large scales of tens or hundreds of kilometers represented in climate models. Accomplishing this aggregation in a computationally efficient way has proven to be an extremely challenging task. To meet this challenge, the Ecosystem Demography 2 (ED2) model statistically characterizes a distribution of local resource environments, and then simulates the competition between individuals of different sizes and species (or functional groupings). Within this framework, it is possible to explicitly simulate the impacts of climate change on ecosystem structure and composition, including both internal re-organization and the introduction of novel species or functional groups. This presentation will include several illustrative applications of the evolution of ecosystem structure and composition under climate change. One application pertains to the role of nitrogen-fixing species in tropical forests. Will increasing CO2 concentrations increase the demand for nutrients and perhaps give a competitive edge to nitrogen-fixing species? Will potentially warmer and drier conditions make some tropical forests more water-limited, reducing the demand for nitrogen, thereby giving a competitive advantage to non

  6. Privacy driven internet ecosystem

    OpenAIRE

    Trinh, Tuan Anh; Gyarmati, Laszlo

    2012-01-01

    The dominant business model of today's Internet is built upon advertisements; users can access Internet services while the providers show ads to them. Although significant efforts have been made to model and analyze the economic aspects of this ecosystem, the heart of the current status quo, namely privacy, has not received the attention of the research community yet. Accordingly, we propose an economic model of the privacy driven Internet ecosystem where privacy is handled as an asset that c...

  7. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    Science.gov (United States)

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  8. Signatures of global warming and regional climate shift in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Roshin, R.P.; Narvekar, J.; DineshKumar, P.K.; Vivekanandan, E.

    phytoplankton biomass during fall and winter is attributed to the iron-fertilization driven by enhanced dust-delivery under this regional climate shift. Finally, it is shown that the increased fish (oil-sardine) catch in the eastern and western Arabian Sea after...

  9. Plant responses, climate pivot points, and trade-offs in water-limited ecosystems

    Science.gov (United States)

    Munson, S. M.; Bunting, E.

    2017-12-01

    Ecosystem transitions and thresholds are conceptually well-defined and have become a framework to address vegetation response to climate change and land-use intensification, yet there are few approaches to define the environmental conditions which can lead to them. We demonstrate a novel climate pivot point approach using long-term monitoring data from a broad network of permanent plots, satellite imagery, and experimental treatments across the southwestern U.S. The climate pivot point identifies conditions that lead to decreased plant performance and serves as an early warning sign of increased vulnerability of crossing a threshold into an altered ecosystem state. Plant responses and climate pivot points aligned with the lifespan and structural characteristics of species, were modified by soil and landscape attributes of a site, and had non-linear dynamics in some cases. Species with strong increases in abundance when water was available were most susceptible to losses during water shortages, reinforcing plant energetic and physiological tradeoffs. Future research to uncover the heterogeneity of plant responses and climate pivot points at multiple scales can lead to greater understanding of shifts in ecosystem productivity and vulnerability to climate change.

  10. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    Directory of Open Access Journals (Sweden)

    Adam E Vorsino

    Full Text Available Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75 as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1. This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  11. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates

    Science.gov (United States)

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  12. Climate change and watershed mercury export in a Coastal Plain watershed

    Science.gov (United States)

    Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley

    2016-01-01

    Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.

  13. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    Science.gov (United States)

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  14. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink

    Science.gov (United States)

    Buermann, Wolfgang; Beaulieu, Claudie; Parida, Bikash; Medvigy, David; Collatz, George J.; Sheffield, Justin; Sarmiento, Jorge L.

    2016-03-01

    The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ˜ 1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ˜ 30 % larger than observed (or ˜ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.

  15. Early detection of ecosystem regime shifts

    DEFF Research Database (Denmark)

    Lindegren, Martin; Dakos, Vasilis; Groeger, Joachim P.

    2012-01-01

    methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face...

  16. Developing and implementing climate change adaptation options in forest ecosystems: a case study in southwestern Oregon, USA

    Science.gov (United States)

    Jessica E. Halofsky; David L. Peterson; Kerry L. Metlen; Gwyneth M. Myer; Alaric V. Sample

    2016-01-01

    Climate change will likely have significant effects on forest ecosystems worldwide. In Mediterranean regions, such as that in southwestern Oregon, USA, changes will likely be driven mainly by wildfire and drought. To minimize the negative effects of climate change, resource managers require tools and information to assess climate change vulnerabilities and to develop...

  17. A Business Ecosystem Driven Market Analysis

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Jørgensen, Bo Nørregaard

    2017-01-01

    Due to the huge globally emerging market of the bright green buildings, this paper aims to develop a business-ecosystem driven market analysis approach for the investigation of the bright green building market. This paper develops a five-steps business-ecosystem driven market analysis (definition...... of the business domain, stakeholder listing, integration of the value chain, relationship mapping, and ego innovation ecosystem mapping.). This paper finds the global-local matters influence the market structure, which the technologies for building energy technology are developed and employed globally......, and the market demand is comparatively localized. The market players can be both local and international stakeholders who involve and collaborate for the building projects. This paper also finds that the building extensibility should be considered into the building design due to the gap between current market...

  18. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts.

    Science.gov (United States)

    Socolar, Jacob B; Epanchin, Peter N; Beissinger, Steven R; Tingley, Morgan W

    2017-12-05

    Species respond to climate change in two dominant ways: range shifts in latitude or elevation and phenological shifts of life-history events. Range shifts are widely viewed as the principal mechanism for thermal niche tracking, and phenological shifts in birds and other consumers are widely understood as the principal mechanism for tracking temporal peaks in biotic resources. However, phenological and range shifts each present simultaneous opportunities for temperature and resource tracking, although the possible role for phenological shifts in thermal niche tracking has been widely overlooked. Using a canonical dataset of Californian bird surveys and a detectability-based approach for quantifying phenological signal, we show that Californian bird communities advanced their breeding phenology by 5-12 d over the last century. This phenological shift might track shifting resource peaks, but it also reduces average temperatures during nesting by over 1 °C, approximately the same magnitude that average temperatures have warmed over the same period. We further show that early-summer temperature anomalies are correlated with nest success in a continental-scale database of bird nests, suggesting avian thermal niches might be broadly limited by temperatures during nesting. These findings outline an adaptation surface where geographic range and breeding phenology respond jointly to constraints imposed by temperature and resource phenology. By stabilizing temperatures during nesting, phenological shifts might mitigate the need for range shifts. Global change ecology will benefit from further exploring phenological adjustment as a potential mechanism for thermal niche tracking and vice versa.

  19. Is Climate Change Shifting the Poleward Limit of Mangroves?

    KAUST Repository

    Hickey, Sharyn M.

    2017-02-01

    Ecological (poleward) regime shifts are a predicted response to climate change and have been well documented in terrestrial and more recently ocean species. Coastal zones are amongst the most susceptible ecosystems to the impacts of climate change, yet studies particularly focused on mangroves are lacking. Recent studies have highlighted the critical ecosystem services mangroves provide, yet there is a lack of data on temporal global population response. This study tests the notion that mangroves are migrating poleward at their biogeographical limits across the globe in line with climate change. A coupled systematic approach utilising literature and land surface and air temperature data was used to determine and validate the global poleward extent of the mangrove population. Our findings indicate that whilst temperature (land and air) have both increased across the analysed time periods, the data we located showed that mangroves were not consistently extending their latitudinal range across the globe. Mangroves, unlike other marine and terrestrial taxa, do not appear to be experiencing a poleward range expansion despite warming occurring at the present distributional limits. Understanding failure for mangroves to realise the global expansion facilitated by climate warming may require a focus on local constraints, including local anthropogenic pressures and impacts, oceanographic, hydrological, and topographical conditions.

  20. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    Science.gov (United States)

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-07

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. © 2015 The Authors.

  1. Greenness and Carbon Stocks of Mangroves: A climate-driven Effect

    Science.gov (United States)

    Lule, A. V.; Colditz, R. R.; Herrera-Silveira, J.; Guevara, M.; Rodriguez-Zuniga, M. T.; Cruz, I.; Ressl, R.; Vargas, R.

    2017-12-01

    Mangroves cover less than 1% of the earth's surface and are one o­­­f the most productive ecosystems of the world. They are highly vulnerable to climate variability due to their sensitivity to environmental changes; therefore, there are scientific and societal needs to designed frameworks to assess mangrove's vulnerability. We study the relationship between climate drivers, canopy greenness and carbon stocks to quantify a potential climate-driven effect on mangrove carbon dynamics. We identify greenness trends and their relationships with climate drivers and carbon stocks throughout 15 years (2001-2015) across mangrove forests of Mexico. We defined several categories for mangroves: a) Arid mangroves with superficial water input (ARsw); b) Humid mangroves with interior or underground water input (HUiw); and c) Humid mangroves with superficial water input (HUsw). We found a positive significant trend of greenness for ARsw and HUsw categories (pmangrove's categories (pmangrove categories showed higher greenness values during winter; which is likely driven by temperature with a lag of -3 to -5 months (r2 > 0.69). Precipitation and temperature drive canopy greenness only across HUsw. Regarding carbon stocks, the HUiw shows the lower amount of aboveground carbon (AGC; 12.7 Mg C ha-1) and the higher belowground carbon (BGC; 219 Mg C ha-1). The HUsw shows the higher amount of AGC (169.5 Mg C ha-1) and the ARsw the lower of BGC (92.4 Mg C ha-1). Climate drivers are better related with canopy greenness and AGC for both humid mangrove categories (r2 > 0.48), while the relationship of BGC and canopy greenness is lower for all categories (r2 mangrove's ecosystem function and environmental services, as well as their potential vulnerability to climate variability.

  2. Macroclimatic change expected to transform coastal wetland ecosystems this century

    Science.gov (United States)

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew S.; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  3. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America

    Science.gov (United States)

    Covich, A.P.; Fritz, S.C.; Lamb, P.J.; Marzolf, R.D.; Matthews, W.J.; Poiani, K.A.; Prepas, E.E.; Richman, M.B.; Winter, T.C.

    1997-01-01

    The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. ?? 1997 by John Wiley & Sons, Ltd.

  4. Mangrove ecosystems under climate change

    Science.gov (United States)

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  5. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation.

    Science.gov (United States)

    Beale, Colin M; Baker, Neil E; Brewer, Mark J; Lennon, Jack J

    2013-08-01

    The extent to which climate change might diminish the efficacy of protected areas is one of the most pressing conservation questions. Many projections suggest that climate-driven species distribution shifts will leave protected areas impoverished and species inadequately protected while other evidence suggests that intact ecosystems within protected areas will be resilient to change. Here, we tackle this problem empirically. We show how recent changes in distribution of 139 Tanzanian savannah bird species are linked to climate change, protected area status and land degradation. We provide the first evidence of climate-driven range shifts for an African bird community. Our results suggest that the continued maintenance of existing protected areas is an appropriate conservation response to the challenge of climate and environmental change. © 2013 John Wiley & Sons Ltd/CNRS.

  6. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.

    Science.gov (United States)

    Atkinson, Carla L; Capps, Krista A; Rugenski, Amanda T; Vanni, Michael J

    2017-11-01

    The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic

  7. Interannual abundance changes of gelatinous carnivore zooplankton unveil climate-driven hydrographic variations in the Iberian Peninsula, Portugal.

    Science.gov (United States)

    D'Ambrosio, Mariaelena; Molinero, Juan C; Azeiteiro, Ulisses M; Pardal, Miguel A; Primo, Ana L; Nyitrai, Daniel; Marques, Sónia C

    2016-09-01

    The persistent massive blooms of gelatinous zooplankton recorded during recent decades may be indicative of marine ecosystem changes. In this study, we investigated the potential influence of the North Atlantic climate (NAO) variability on decadal abundance changes of gelatinous carnivore zooplankton in the Mondego estuary, Portugal, over the period 2003-2013. During the 11-year study, the community of gelatinous carnivores encompassed a larger diversity of hydromedusae than siphonophores; the former dominated by Obelia spp., Lizzia blondina, Clythia hemisphaerica, Liriope tetraphylla and Solmaris corona, while the latter dominated by Muggiaea atlantica. Gelatinous carnivore zooplankton displayed marked interannual variability and mounting species richness over the period examined. Their pattern of abundance shifted towards larger abundances ca. 2007 and significant phenological changes. The latter included a shift in the mean annual pattern (from unimodal to bimodal peak, prior and after 2007 respectively) and an earlier timing of the first annual peak concurrent with enhanced temperatures. These changes were concurrent with the climate-driven environmental variability mainly controlled by the NAO, which displayed larger variance after 2007 along with an enhanced upwelling activity. Structural equation modelling allowed depicting cascading effects derived from the NAO influence on regional climate and upwelling variability further shaping water temperature. Such cascading effect percolated the structure and dynamics of the community of gelatinous carnivore zooplankton in the Mondego estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Opportunistic Market-Driven Regional Shifts of Cropping Practices Reduce Food Production Capacity of China

    Science.gov (United States)

    Yuan, Wenping; Liu, Shuguang; Liu, Wei; Zhao, Shuqing; Dong, Wenjie; Tao, Fulu; Chen, Min; Lin, Hui

    2018-04-01

    China is facing the challenge of feeding a growing population with the declining cropland and increasing shortage of water resources under the changing climate. This study identified that the opportunistic profit-driven shifts of planting areas and crop species composition have strongly reduced the food production capacity of China. First, the regional cultivation patterns of major crops in China have substantially shifted during the past five decades. Southeast and South China, the regions with abundant water resources and fewer natural disasters, have lost large planting areas of cropland in order to pursue industry and commerce. Meanwhile, Northeast and Northwest China, the regions with low water resources and frequent natural disasters, have witnessed increases in planting areas. These macroshifts have reduced the national food production by 1.02% per year. The lost grain production would have been enough to feed 13 million people. Second, the spatial shifts have been accompanied by major changes in crop species composition, with substantial increases in planting area and production of maize, due to its low water consumption and high economic returns. Consequently, the stockpile of maize in China has accounted for more than half of global stockpile, and the stock to use ratio of maize in China has exceeded the reliable level. Market-driven regional shifts of cropping practices have resulted in larger irrigation requirements and aggravated environmental stresses. Our results highlighted the need for Chinese food policies to consider the spatial shifts in cultivation, and the planting crop compositions limited by regional water resources and climate change.

  9. Variance as a Leading Indicator of Regime Shift in Ecosystem Services

    Directory of Open Access Journals (Sweden)

    William A. Brock

    2006-12-01

    Full Text Available Many environmental conflicts involve pollutants such as greenhouse gas emissions that are dispersed through space and cause losses of ecosystem services. As pollutant emissions rise in one place, a spatial cascade of declining ecosystem services can spread across a larger landscape because of the dispersion of the pollutant. This paper considers the problem of anticipating such spatial regime shifts by monitoring time series of the pollutant or associated ecosystem services. Using such data, it is possible to construct indicators that rise sharply in advance of regime shifts. Specifically, the maximum eigenvalue of the variance-covariance matrix of the multivariate time series of pollutants and ecosystem services rises prior to the regime shift. No specific knowledge of the mechanisms underlying the regime shift is needed to construct the indicator. Such leading indicators of regime shifts could provide useful signals to management agencies or to investors in ecosystem service markets.

  10. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    OpenAIRE

    Bateman, Ian; Agarwala, M.; Binner, A.; Coombes, E.; Day, B.; Ferrini, Silvia; Fezzi, C.; Hutchins, M.; Lovett, A.; Posen, P.

    2016-01-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact...

  11. Potential climate change impacts on temperate forest ecosystem processes

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  12. Climate change impacts on U.S. coastal and marine ecosystems

    Science.gov (United States)

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  13. Changing Arctic ecosystems: resilience of caribou to climatic shifts in the Arctic

    Science.gov (United States)

    Gustine, David D.; Adams, Layne G.; Whalen, Mary E.; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative strives to inform key resource management decisions for Arctic Alaska by providing scientific information and forecasts for current and future ecosystem response to a warming climate. Over the past 5 years, a focal area for the USGS CAE initiative has been the North Slope of Alaska. This region has experienced a warming trend over the past 60 years, yet the rate of change has been varied across the North Slope, leading scientists to question the future response and resilience of wildlife populations, such as caribou (Rangifer tarandus), that rely on tundra habitats for forage. Future changes in temperature and precipitation to coastal wet sedge and upland low shrub tundra are expected, with unknown consequences for caribou that rely on these plant communities for food. Understanding how future environmental change may affect caribou migration, nutrition, and reproduction is a focal question being addressed by the USGS CAE research. Results will inform management agencies in Alaska and people that rely on caribou for food.

  14. Mid- to late Holocene climate-driven regime shifts inferred from diatom, ostracod and stable isotope records from Lake Son Kol (Central Tian Shan, Kyrgyzstan)

    Science.gov (United States)

    Schwarz, Anja; Turner, Falko; Lauterbach, Stefan; Plessen, Birgit; Krahn, Kim J.; Glodniok, Sven; Mischke, Steffen; Stebich, Martina; Witt, Roman; Mingram, Jens; Schwalb, Antje

    2017-12-01

    -mode. Thus, this study identifies climate fluctuations as the main driver for hydrological regime shifts in Son Kol controlling physicochemical conditions and consequently causing abrupt species assemblage changes. This emphasizes the importance of multi-proxy approaches to identify triggers, thresholds and cascades of aquatic ecosystem transformations.

  15. Functional Resilience against Climate-Driven Extinctions - Comparing the Functional Diversity of European and North American Tree Floras.

    Directory of Open Access Journals (Sweden)

    Mario Liebergesell

    Full Text Available Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar sub-regions using the functional dispersion-index (FDis and the functional richness index (FRic. Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning.

  16. Drivers and uncertainties of forecasted range shifts for warm-water fishes under climate and land cover change

    Science.gov (United States)

    Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin

    2018-01-01

    Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.

  17. Climate change alters seedling emergence and establishment in an old-field ecosystem.

    Directory of Open Access Journals (Sweden)

    Aimée T Classen

    2010-10-01

    Full Text Available Ecological succession drives large-scale changes in ecosystem composition over time, but the mechanisms whereby climatic change might alter succession remain unresolved. Here, we asked if the effects of atmospheric and climatic change would alter tree seedling emergence and establishment in an old-field ecosystem, recognizing that small shifts in rates of seedling emergence and establishment of different species may have long-term repercussions on the transition of fields to forests in the future.We introduced seeds from three early successional tree species into constructed old-field plant communities that had been subjected for 4 years to altered temperature, precipitation, and atmospheric CO(2 regimes in an experimental facility. Our experiment revealed that different combinations of atmospheric CO(2 concentration, air temperature, and soil moisture altered seedling emergence and establishment. Treatments directly and indirectly affected soil moisture, which was the best predictor of seedling establishment, though treatment effects differed among species.The observed impacts, coupled with variations in the timing of seed arrival, are demonstrated as predictors of seedling emergence and establishment in ecosystems under global change.

  18. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts.

    Science.gov (United States)

    Daskalov, Georgi M; Grishin, Alexander N; Rodionov, Sergei; Mihneva, Vesselina

    2007-06-19

    Large-scale transitions between alternative states in ecosystems are known as regime shifts. Once described as healthy and dominated by various marine predators, the Black Sea ecosystem by the late 20th century had experienced anthropogenic impacts such as heavy fishing, cultural eutrophication, and invasions by alien species. We studied changes related to these "natural experiments" to reveal the mechanisms of regime shifts. Two major shifts were detected, the first related to a depletion of marine predators and the second to an outburst of the alien comb jelly Mnemiopsis leidyi; both shifts were triggered by intense fishing resulting in system-wide trophic cascades. The complex nature of ecosystem responses to human activities calls for more elaborate approaches than currently provided by traditional environmental and fisheries management. This implies challenging existing practices and implementing explanatory models of ecosystem interactions that can better reconcile conservation and ecosystem management ideals.

  19. Animal culture impacts species' capacity to realise climate-driven range shifts

    DEFF Research Database (Denmark)

    Keith, Sally A.; Bull, Joseph William

    2017-01-01

    Ecological predictions of how species will shift their geographical distributions under climate change generally consider individuals as machines that respond optimally to changing environmental conditions. However, animals frequently make active behavioural decisions based on imperfect information...... about their external environment, potentially mediated by information transmitted through social learning (i.e. culture). Vertical transmission of culture (between generations) might encourage conservative behaviour, constraining the ability of a species to respond, whilst horizontal transmission...... (within generations) can encourage innovation and so facilitate dynamic responses to a changing environment. We believe that the time is right to unite recent advances in ecological modelling and behavioural understanding to explicitly incorporate the influence of animal culture into future predictions...

  20. Diagnosis and Quantification of Climatic Sensitivity of Carbon Fluxes in Ensemble Global Ecosystem Models

    Science.gov (United States)

    Wang, W.; Hashimoto, H.; Milesi, C.; Nemani, R. R.; Myneni, R.

    2011-12-01

    Terrestrial ecosystem models are primary scientific tools to extrapolate our understanding of ecosystem functioning from point observations to global scales as well as from the past climatic conditions into the future. However, no model is nearly perfect and there are often considerable structural uncertainties existing between different models. Ensemble model experiments thus become a mainstream approach in evaluating the current status of global carbon cycle and predicting its future changes. A key task in such applications is to quantify the sensitivity of the simulated carbon fluxes to climate variations and changes. Here we develop a systematic framework to address this question solely by analyzing the inputs and the outputs from the models. The principle of our approach is to assume the long-term (~30 years) average of the inputs/outputs as a quasi-equlibrium of the climate-vegetation system while treat the anomalies of carbon fluxes as responses to climatic disturbances. In this way, the corresponding relationships can be largely linearized and analyzed using conventional time-series techniques. This method is used to characterize three major aspects of the vegetation models that are mostly important to global carbon cycle, namely the primary production, the biomass dynamics, and the ecosystem respiration. We apply this analytical framework to quantify the climatic sensitivity of an ensemble of models including CASA, Biome-BGC, LPJ as well as several other DGVMs from previous studies, all driven by the CRU-NCEP climate dataset. The detailed analysis results are reported in this study.

  1. Future climate and wildfire: ecosystem projections of area burned in the western US

    Science.gov (United States)

    Littell, J. S.; Duffy, P.; Battisti, D. S.; McKenzie, D.; Peterson, D. L.

    2010-12-01

    The area burned by fire in ecosystems of the western United States has been closely linked to climate in the paleoecological record and in the modern record. Statistical models of area burned show that the climatic controls on area burned vary with vegetation type (Littell et al. 2009). In more arid or systems (grasslands, shrublands, woodlands), antecedent climatic controls on fire were associated first with the production of fuels and secondarily with drought in the year of fire. These relationships typically manifested as wetter and sometimes cooler conditions in the seasons prior to the fire season. Area burned in forest ecosystems and some woodlands was primarily associated with drought conditions, specifically increased temperature and decreased precipitation in the year of fire and the seasons leading up to the fire season. These climatic controls indicate the role of climate in drying existing fuels. Statistical fire models trained on the late 20th century for ecoprovinces in the West would be useful for projecting area burned, at least until vegetation type conversion driven by climate and disturbance occurs. To that end, we used ~ 2.5 degree gridded future climate fields derived for a multi-GCM ensemble of 1C and 2C temperature increase forcing to develop future ecoprovince monthly and seasonal average temperature and associated precipitation and used these as predictors in statistical fire models of future projected area burned. We also conducted modeling scenarios with the ensemble temperature increase paired with historical precipitation. Most ecoprovinces had increases in area burned, with a range of ~ 67% to over 600% . Ecoprovinces that are primarily sensitive to precipitation changes exhibit smaller increases than those most sensitive to temperature (forest systems). We also developed exceedance probabilities. Some ecoprovinces show large increases in area burned but low exceedance probabilities, suggest that the area burned is concentrated more

  2. Climate and fishing steer ecosystem regeneration to uncertain economic futures

    Science.gov (United States)

    Blenckner, Thorsten; Llope, Marcos; Möllmann, Christian; Voss, Rudi; Quaas, Martin F.; Casini, Michele; Lindegren, Martin; Folke, Carl; Chr. Stenseth, Nils

    2015-01-01

    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million € per year, which equals half of today's maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change. PMID:25694626

  3. Climate Extremes and Land-Use Change: Effects on Ecosystem Processes and Services

    Science.gov (United States)

    Bahn, Michael; Erb, Karlheinz; Hasibeder, Roland; Mayr, Stefan; Niedertscheider, Maria; Oberhuber, Walter; Tappeiner, Ulrike; Tasser, Erich; Viovy, Nicolas; Wieser, Gerhard

    2016-04-01

    Extreme climatic events, in particular droughts and heatwaves, have significant impacts on ecosystem carbon and water cycles and a range of related ecosystem services. It is expected that in the coming decades the return intervals and severities of extreme droughts will increase substantially and may result in the passing of thresholds of ecosystem functioning, potentially causing legacy effects, which are so far poorly understood. Observational evidence suggests that different land cover types (forest, grassland) are differently influenced by extreme drought, but there is a lack of knowledge whether and how future, increasingly severe climate extremes will affect their concurrent and lagged responses, as well as land-use decisions determining future shifts in land cover. The ClimLUC project aims to understand how extreme summer drought affects carbon and water dynamics of mountain ecosystems under different land uses, and to analyse implications for ecosystem service provisioning. Overall, we hypothesize that land-use change alters the effects of extreme summer drought on ecosystem processes and the related services, grassland responding more rapidly and strongly but being more resilient to extreme drought than forest. To address the aims and hypotheses, we will 1) test experimentally how (a) a managed, (b) an abandoned mountain grassland and (c) an adjacent subalpine forest respond to a progressive extreme drought and will analyse threshold responses of carbon and water dynamics and their implications for ecosystem services (timber and fodder production, carbon sequestration, water provisioning); 2) quantify carry-over effects of the extreme event on ecosystem processes and services; 3) project and attribute future carbon and water cycle responses to extreme drought and related socio-economic changes, based on a process-based dynamic general vegetation model; 4) analyse the interrelation between land-use changes and the occurrence and severity of past and future

  4. Assessing climate-sensitive ecosystems in the southeastern United States

    Science.gov (United States)

    Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew J.; White, Rickie; Collazo, Jaime

    2016-08-11

    Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing

  5. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    Science.gov (United States)

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  6. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems.

    Science.gov (United States)

    Dirnböck, Thomas; Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G W

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered.

  7. A probabilistic model of ecosystem response to climate change

    International Nuclear Information System (INIS)

    Shevliakova, E.; Dowlatabadi, H.

    1994-01-01

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold

  8. Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins

    Science.gov (United States)

    Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.

    2016-02-01

    Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.

  9. Exploring eco-hydrological consequences of the Amazonian ecosystems under climate and land-use changes in the 21st century

    Science.gov (United States)

    Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.

    2012-12-01

    Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.

  10. Development and application of an interactive climate-ecosystem model system

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; D. Pollard

    2003-01-01

    A regional climate-ecosystem model system is developed in this study. It overcomes the weakness in traditional one-way coupling models and enables detailed description of interactive process between climate and natural ecosystem. It is applied to interaction study between monsoon climate and ecosystem in East Asia, with emphasis on future climate and ecosystem change scenario forced by doubled CO2. The climate tends to be warmer and wetter under doubled CO2 in Jianghuai and the Yangzi River valley, but it becomes warmer and drier in inland areas of northern and northwestern China. The largest changes and feedbacks between vegetation and climate occur in northern China. Northern inland ecosystems experience considerable degradation and desertification, indicating a marked sensitivity and vulnerability to climatic change. The strongest vegetation response to climate change occurs in northern China and the weakest in southern China. Vegetation feedbacks intensify warming and reduce drying due to increased CO2 during summer in northern China. Generally, vegetation-climate interactions are much stronger in northern China than in southern China.

  11. Resilience, Regime Shifts, and Guided Transition under Climate Change: Examining the Practical Difficulties of Managing Continually Changing Systems

    Directory of Open Access Journals (Sweden)

    Brenda B. Lin

    2013-03-01

    Full Text Available Managing terrestrial systems has become increasingly difficult under climate change as unidirectional shifts in climate conditions challenge the resilience of ecosystems to maintain their compositional structure and function. Despite the increased attention of resilience management to guide transformational change, questions remain as to how to apply resilience to manage transitions. Rather than pushing systems across thresholds into alternative states, climate change may create a stepwise progression of unknown transitional states that track changing climate conditions. Because of this uncertainty, we must find ways to guide transitioning systems across climate boundaries towards states that are socially and environmentally desirable. We propose to ease the uncertainty of managing shifting systems by providing an approach to adaptive management that we call guided transition, where socially and environmentally important ecosystem functions are preserved through transitions by considering and maintaining the species and structures needed for the desired functions. Scientifically, it will require a better understanding of the relationships between structure, species composition, and function for specific systems. Managers will also need to identify important functions at the local, regional, and national scale, and to determine how best to transition systems to a desired state based on existing scientific knowledge. Guided transition, therefore, helps guide the process of adaptive management by specifying a function-based management pathway that guides transitions through climatic changes.

  12. Forests, fire, floods and fish: nonlinear biophysical responses to changing climate

    Science.gov (United States)

    Pierce, J. L.; Baxter, C.; Yager, E. M.; Fremier, A. K.; Crosby, B. T.; Smith, A. M.; Kennedy, B.; Hicke, J. A.; Feris, K.

    2009-12-01

    One goal of interdisciplinarity is to develop a more holistic understanding of a set of interlinked, complex system processes. Studies rarely couple both a mechanistic understanding of individual processes with their coupled influence on the entire system structure, yet the prospects for climate driven changes in western river systems provide justification for such an effort. We apply such a mechanistic and systems approach to understanding the effects of climate on fire frequency, plant-soil infiltration, sediment transport and stream community and ecosystem dynamics in a large wilderness setting that is likely to experience shifts in the timing or intensity of physical forces if projected climate change scenarios are realized. The Middle Fork Salmon River in central Idaho runs through the Frank Church Wilderness area and is the largest roadless area in the conterminous United States. The relatively southern continental position, complex mountain terrain and wealth of long-term landscape and ecological data in this region make it a tractable system to study the multifaceted and potentially non-linear processes of system change. This presents a unique opportunity to study the effects of climate change in the absence of substantial management effects in a system on the cusp of change. This collection of studies investigates the effects of climate-driven changes in hillslope processes on stream geomorphic and ecologic processes. We investigate 1) how wildfire alters the magnitude, timing and size of sediment delivered to stream channels, 2) how climate-driven changes in the proportion of rain vs. snow dominated basins alter stream hydrology, 3) how wildfire and insect disturbances modify aquatic ecosystems through inputs of nutrients and changes to habitat, 4) how paleo-records of drought, fire, and fire-related debris flows compare with recent data, 5) how fire-related inputs of sediment and wood influence the structure and dynamics of aquatic habitats, and their

  13. Vulnerability of the global terrestrial ecosystems to climate change.

    Science.gov (United States)

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Climate driven range divergence among host species affects range-wide patterns of parasitism

    Directory of Open Access Journals (Sweden)

    Richard E. Feldman

    2017-01-01

    Full Text Available Species interactions like parasitism influence the outcome of climate-driven shifts in species ranges. For some host species, parasitism can only occur in that part of its range that overlaps with a second host species. Thus, predicting future parasitism may depend on how the ranges of the two hosts change in relation to each other. In this study, we tested whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer accounts for predicted changes in parasitism of two other species from the family Cervidae, Alces alces (moose and Rangifer tarandus (caribou, in North America. We used MaxEnt models to predict the recent (2000 and future (2050 ranges (probabilities of occurrence of the cervids and a parasite Parelaphostrongylus tenuis (brainworm taking into account range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range overlap between A. alces/R. tarandus and P. tenuis will decrease between 2000 and 2050, an outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and not the parasites, themselves. Geographically, our models predicted increasing potential occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate climate-mediated southern contraction of A. alces and R. tarandus ranges but will have limited influence on northward range expansion. Our results suggest that the spatial dynamics of one host species may be the driving force behind future rates of parasitism for another host species.

  15. How did climate drying reduce ecosystem carbon storage in the forest-steppe ecotone? A case study in Inner Mongolia, China.

    Science.gov (United States)

    Zhang, Yuke; Liu, Hongyan

    2010-07-01

    The projected recession of forests in the forest-steppe ecotone under projected climate drying would restrict the carbon sink function of terrestrial ecosystems. Previous studies have shown that the forest-steppe ecotone in the southeastern Inner Mongolia Plateau originally resulted from climate drying and vegetation shifts during the mid- to late-Holocene, but the interrelated processes of changing soil carbon storage and vegetation and soil shifts remain unclear. A total of 44 forest soil profiles and 40 steppe soil profiles were excavated to determine soil carbon storage in deciduous broadleaf forests (DBF), coniferous forests (CF) and steppe (ST) in this area. Carbon density was estimated to be 106.51 t/hm(2) (DBF), 73.20 t/hm(2) (CF), and 28.14 t/hm(2) (ST) for these ecosystems. Soil organic carbon (SOC) content was negatively correlated with sand content (R = -0.879, P ecotone. Changes in carbon storage caused by climate drying can be divided into two stages: (1) carbon storage of the ecosystem was reduced to 68.7%, mostly by soil coarsening when DBF were replaced by CF at approximately 5,900 (14)C years before present (BP); and (2) carbon storage was reduced to 26.4%, mostly by vegetation shifts when CF were replaced by ST at approximately 2,900 (14)C years BP.

  16. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems

    Science.gov (United States)

    Djukic, Ika; Kitzler, Barbara; Kobler, Johannes; Mol-Dijkstra, Janet P.; Posch, Max; Reinds, Gert Jan; Schlutow, Angela; Starlinger, Franz; Wamelink, Wieger G. W.

    2017-01-01

    Climate change and excess deposition of airborne nitrogen (N) are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses) in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+) together with a novel niche-based plant response model (PROPS) to 5 forest habitat types (18 forest sites) protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered. PMID:28898262

  17. Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems.

    Directory of Open Access Journals (Sweden)

    Thomas Dirnböck

    Full Text Available Climate change and excess deposition of airborne nitrogen (N are among the main stressors to floristic biodiversity. One particular concern is the deterioration of valuable habitats such as those protected under the European Habitat Directive. In future, climate-driven shifts (and losses in the species potential distribution, but also N driven nutrient enrichment may threaten these habitats. We applied a dynamic geochemical soil model (VSD+ together with a novel niche-based plant response model (PROPS to 5 forest habitat types (18 forest sites protected under the EU Directive in Austria. We assessed how future climate change and N deposition might affect habitat suitability, defined as the capacity of a site to host its typical plant species. Our evaluation indicates that climate change will be the main driver of a decrease in habitat suitability in the future in Austria. The expected climate change will increase the occurrence of thermophilic plant species while decreasing cold-tolerant species. In addition to these direct impacts, climate change scenarios caused an increase of the occurrence probability of oligotrophic species due to a higher N immobilisation in woody biomass leading to soil N depletion. As a consequence, climate change did offset eutrophication from N deposition, even when no further reduction in N emissions was assumed. Our results show that climate change may have positive side-effects in forest habitats when multiple drivers of change are considered.

  18. Shifting Restoration Policy to Address Landscape Change, Novel Ecosystems, and Monitoring

    Directory of Open Access Journals (Sweden)

    Joy B. Zedler

    2012-12-01

    Full Text Available Policy to guide ecological restoration needs to aim toward minimizing the causes of ecosystem degradation; where causes cannot be eliminated or minimized, policy needs to shift toward accommodating irreversible landscape alterations brought about by climate change, nitrogen deposition, altered hydrology, degraded soil, and declining biodiversity. The degree to which lost diversity and ecosystem services can be recovered depends on the extent and nature of landscape change. For wetlands that occur at the base of watersheds that have been developed for agriculture or urban centers, the inflows of excess water, sediment, and nutrients can be permanent and can severely challenge efforts to restore historical services, including biodiversity support. In such cases, the historical state of downstream wetlands will not be completely restorable. Wetland restoration policy should promote watershed planning, wherein wetland and upland restoration is prioritized to achieve multiple, specific ecosystem services. For downstream wetlands, it is realistic to aim to enhance nitrogen removal and to establish native plants that are matrix dominants, namely, those that facilitate rather than displace other natives. More ambitious objectives such as maximizing diversity would be suitable for less-altered, upstream wetlands. Policy should also call for adaptive restoration and long-term assessments. For large sites and multiple sites of a given wetland type within a region, experimental tests can determine a wetland's ability to support high levels of ecosystem services. Once projects are underway, long-term monitoring of structural and functional indicators can characterize progress toward each objective. Managers can then learn which targets are unachievable based on data, not just opinion. Where an experimental treatment shows limited progress, practitioners would shift to more promising treatments and targets, thereby adapting restoration efforts to changing

  19. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Logan, Jesse A; MacFarlane, William W; Willcox, Louisa

    2010-06-01

    Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine.

  20. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.

    Science.gov (United States)

    Pellegrini, Adam F A; Franco, Augusto C; Hoffmann, William A

    2016-03-01

    Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought-fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire-driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2-million km(2) Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait-based differences in fire tolerance is critical for determining the climate-carbon-fire feedback in tropical savanna and forest biomes. © 2015 John Wiley & Sons Ltd.

  1. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    Science.gov (United States)

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  2. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change.

    Directory of Open Access Journals (Sweden)

    Tereza C Giannini

    Full Text Available Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata, a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC. We then used this information, the bee's flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use

  3. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change

    Science.gov (United States)

    Giannini, Tereza C.; Tambosi, Leandro R.; Acosta, André L.; Jaffé, Rodolfo; Saraiva, Antonio M.; Imperatriz-Fonseca, Vera L.; Metzger, Jean Paul

    2015-01-01

    Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee’s flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes

  4. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change.

    Science.gov (United States)

    Giannini, Tereza C; Tambosi, Leandro R; Acosta, André L; Jaffé, Rodolfo; Saraiva, Antonio M; Imperatriz-Fonseca, Vera L; Metzger, Jean Paul

    2015-01-01

    Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee's flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall

  5. Cities as Novel Biomes;Recognizing Urban Ecosystem Services as Anthropogenic

    Directory of Open Access Journals (Sweden)

    Stephanie ePincetl

    2015-12-01

    Full Text Available Urban Ecosystem Science is now an established science, arising along side the historic shift of humans to becoming in majority urban dwellers. In this Perspective I suggest there is a need to develop a new framework for UES as embedded in distinct urban biomes that can be classified by city-type and typologized. UES are largely the artifact of human decision making from what to plant where, to determining the urban infrastructure type in which UES will be placed. Developing urban typologies by climate zone, level of development, size and history will better enable the understanding of UES. I attempt to show the rise of the importance of nature, and of urban nature following the development of industrial city, and the importance of human intent in creating these urban ecosystems over time. If humans choose to manage cities through increasing UES, this will require coupled shifts, the shift in rules and regulations, goals and processes and shifts in urban form, infrastructure and function – socio-technical-ecological changes – driven by human decision-making. Such efforts will vary widely by city -- by urban biome.

  6. Geospatial Analysis of Climate-Related Changes in North American Arctic Ecosystems and Implications for Terrestrial Flora and Fauna

    Science.gov (United States)

    Amirazodi, S.; Griffin, R.

    2016-12-01

    Climate change induces range shifts among many terrestrial species in Arctic regions. At best, warming often forces poleward migration if a stable environment is to be maintained. At worst, marginal ecosystems may disappear entirely without a contiguous shift allowing migratory escape to similar environs. These changing migration patterns and poleward range expansion push species into higher latitudes where ecosystems are less stable and more sensitive to change. This project focuses on ecosystem geography and interspecies relationships and interactions by analyzing seasonality and changes over time in variables including the following: temperature, precipitation, vegetation, physical boundaries, population demographics, permafrost, sea ice, and food and water availability. Publicly available data from remote sensing platforms are used throughout, and processed with both commercially available and open sourced GIS tools. This analysis describes observed range changes for selected North American species, and attempts to provide insight into the causes and effects of these phenomena. As the responses to climate change are complex and varied, the goal is to produce the aforementioned results in an easily understood set of geospatial representations to better support decision making regarding conservation prioritization and enable adaptive responses and mitigation strategies.

  7. Arctic ecosystem responses to a warming climate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.

    sheet, loss of multiannual sea-ice and significant advances in snowmelt days. The biotic components of the arctic ecosystem have also been affected by the rapid changes in climate, for instance resulting in the collapse of the collared lemming cycle, advances in spring flowering and changes in the intra...... biotic interactions. Hence, through the use of up-to-date multivariate statistical tools, this Ph.D. study has been concerned with analyzing how the observed rapid climate changes are affecting the arctic ecosystems. The primary tool has been the implementation of structural equation modeling (SEM) which....... Additionally, the study demonstrated that climate effects had distinct direct and indirect effects on different trophic levels, indicating cascading effects of climate through the trophic system. Results suggest that the Arctic is being significantly affected by the observed climate changes and depending...

  8. Adapting California’s ecosystems to a changing climate

    Science.gov (United States)

    Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart

    2017-01-01

    Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.

  9. Climate, fishery and society interactions: Observations from the North Atlantic

    Science.gov (United States)

    Hamilton, Lawrence C.

    2007-11-01

    Interdisciplinary studies comparing fisheries-dependent regions across the North Atlantic find a number of broad patterns. Large ecological shifts, disastrous to historical fisheries, have resulted when unfavorable climatic events occur atop overfishing. The "teleconnections" linking fisheries crises across long distances include human technology and markets, as well as climate or migratory fish species. Overfishing and climate-driven changes have led to a shift downwards in trophic levels of fisheries takes in some ecosystems, from dominance by bony fish to crustaceans. Fishing societies adapt to new ecological conditions through social reorganization that have benefited some people and places, while leaving others behind. Characteristic patterns of demographic change are among the symptoms of such reorganization. These general observations emerge from a review of recent case studies of individual fishing communities, such as those conducted for the North Atlantic Arc research project.

  10. A Evaluation of Effects on a Ecosystem and Countermeasures in accordance with Climate Change I- Forest Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Ha; Jeon, Seong Woo; Choi, Jae Yong; Jeong Hwi Chol; Kim, Jeong Won [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Climate change requests a lot of changes in the existing life style and economic developing system, which form the foundation of modern culture and economic/social development. Especially, in Korea, whose economic basis is mainly dependent on fossil energy, it is expected that the change of policies on climate change have a bigger effect on many-sided fields including ecosystem than other nations. Therefore, even though all of the Government, academic organizations, and private organizations have made efforts to estimate effects of climate change and to prepare countermeasures, the focus has been on forecast and evaluation of the mutual effect between industrial/economic activities and climate change. Forecast of ecosystem change and preservation of ecosystem according to climate change is another political field to promote. However, such a field has not been promoted systematically in Korea. The Institute recognizing such a current state, as part of the policy on ecosystem preservation according to climate change, forecasted the effect on forest ecosystem, analyzed the economic effects according to the effect of forest ecosystem, and started this study to prepare the countermeasures of the Government-level. This study collected and analyzed international trend and necessary data to develop the model, which would be executed in future, and then suggested the selection and development of the model fitted to Korea. There could be differences between Institute's view and the Government/other institutes. However, such differences are caused by the different methods in capturing the effects of various ecosystems. Such various approaching methods will be of great help to estimate the correct effects and to establish the Government's policies as base data. I hope that this study cannot only be applied to analyze the effects of forest ecosystem according to climate change but contribute to enlarging the understanding of various problems according to climate

  11. Interacting Regional-Scale Regime Shifts for Biodiversity and Ecosystem Services

    NARCIS (Netherlands)

    Leadley, P.; Proenca, V.; Fernandez-Manjarres, J.; Pereira, H.M.; Alkemade, J.R.M.; Biggs, R.; Bruley, E.; Cheung, W.; Cooper, D.; Figueiredo, J.; Gilman, E.; Guenette, S.; Hurtt, G.; Mbow, C.; Oberdorff, T.; Revenga, C.; Scharlemann, J.P.W.; Scholes, R.; Smith, M.S.; Sumaila, U.R.; Walpole, M.

    2014-01-01

    Current trajectories of global change may lead to regime shifts at regional scales, driving coupled human-environment systems to highly degraded states in terms of biodiversity, ecosystem services, and human well-being. For business-as-usual socioeconomic development pathways, regime shifts are

  12. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    Science.gov (United States)

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

  13. Taking the pulse of mountains: Ecosystem responses to climatic variability

    Science.gov (United States)

    Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.

    2003-01-01

    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change

  14. Community and ecosystem responses to elevational gradients

    DEFF Research Database (Denmark)

    Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.

    2013-01-01

    Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients...... elevational gradients for understanding community and ecosystem responses to global climate change at much larger spatial and temporal scales than is possible through conventional ecological experiments. However, future studies that integrate elevational gradient approaches with experimental manipulations...... will provide powerful information that can improve predictions of climate change impacts within and across ecosystems....

  15. Shrubline but not treeline advance matches climate velocity in montane ecosystems of south-central Alaska.

    Science.gov (United States)

    Dial, Roman J; Smeltz, T Scott; Sullivan, Patrick F; Rinas, Christina L; Timm, Katriina; Geck, Jason E; Tobin, S Carl; Golden, Trevor S; Berg, Edward C

    2016-05-01

    Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska, we apply a Bayesian, error-propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges, the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains, mean tall shrub and climate velocities were both 2.8 m y(-1). In the better sampled Chugach Mountains, mean tundra retreat was 1.2 m y(-1) and climate velocity 1.3 m y(-1). In each mountain range, the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1-1.1 m y(-1), indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south-central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance. © 2015

  16. Shift of biome patterns due to simulated climate variability and climate change

    International Nuclear Information System (INIS)

    Claussen, M.

    1993-01-01

    The variability of simulated equilibrium-response patterns of biomes caused by simulated climate variability and climate shift is analysed. This investigation is based on various realisations of simulated present-day climate and climate shift. It has been found that the difference between biomes computed from three 10-year climatologies and from the corresponding 30-year climatology, simulated by the Hamburg climate model at T21 resolution, amounts to approximately 6% of the total land area, Antarctica excluded. This difference is mainly due to differences in annual moisture availability and winter temperatures. When intercomparing biomes from the 10-year climatologies a 10% difference is seen, but there is no unique difference pattern. In contrast to the interdecadal variability, the shift of conditions favorable for biomes due to a shift in climate in the next 100 years, caused by an increase in sea-surface temperatures and atmospheric CO 2 , reveals a unique trend pattern. It turns out that the strongest and most significant signal is the north-east shift of conditions for boreal biomes. This signal is caused by an increase of annual temperature sums as well as mean temperatures of the coldest and warmest months. Trends in annual moisture availability are of secondary importance globally. Regionally, a decrease in water availability affects biomes in Central and East Europe and an increase of water availability leads to a potential increase in tropical rain forest. In total, all differences amount to roughly 30% of the total land surface, Antarctica excluded. (orig./KW)

  17. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    Science.gov (United States)

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  18. Mammoth ecosystem: Climatic areal, animal's density and cause of extinctions

    Science.gov (United States)

    Zimov, S.; Zimov, N.; Zimova, G.; Chapin, S. F.

    2008-12-01

    During the last glaciations Mammoth Ecosystem (ME) occupied territory from present-day France to Canada and from the Arctic islands to China. This ecosystem played major role in global carbon cycle and human settling around the planet. Causes of extinction of this ecosystem are debatable. Analyses of hundreds of radiocarbon dates of ME animal fossil remains showed that warming and moistening of climate wasn't accompanied by animal extinction. On the opposite, on the north right after the warming rise of herbivore population was observed. Reconstruction of ME climatic areal showed that its climatic optimum lies within range of annual precipitation of 200-350 mm and average summer temperatures of +8-+12oC which corresponds with modern climate of Northern Siberia. Analyses of bones and skeletons concentrations in permafrost of Northern Siberia showed that animal density in ME was similar to African savannah. That was a high productive ecosystem that could sustain in wide variety of climates because numerous herbivores maintained there pastures themselves.

  19. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Science.gov (United States)

    Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt

    2015-01-01

    Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  20. Role of Atmospheric Cloud Radiative Effects in the Intermodal Spread in the Shift of Southern Hemispheric Eddy-driven Jet in Responses to Global Warming

    Science.gov (United States)

    Li, Y.; Thompson, D. W. J.; Bony, S.

    2017-12-01

    Observations and most climate models suggest storm track and extratropical eddy driven jet shifts poleward in a warmer climate, particularly in the Southern Hemisphere. However, the magnitude of such shifts remains uncertain. Even for a prescribed uniform SST changes, models produce large inter-model spread in the magnitude of jet shift, suggesting that a substantial part of these uncertainties are caused by the impact of cloud radiative effects on the atmospheric heating rate per se. In this study we will investigate 1) how much do clouds contribute to the spread of the circulation response in the absence of SST coupling? 2) how much do clouds contribute to the spread of the direct CO2 and SST-only response?

  1. Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure

    Science.gov (United States)

    Göckede, Mathias; Kittler, Fanny; Kwon, Min Jung; Burjack, Ina; Heimann, Martin; Kolle, Olaf; Zimov, Nikita; Zimov, Sergey

    2017-12-01

    Hydrologic conditions are a key factor in Arctic ecosystems, with strong influences on ecosystem structure and related effects on biogeophysical and biogeochemical processes. With systematic changes in water availability expected for large parts of the northern high-latitude region in the coming centuries, knowledge on shifts in ecosystem functionality triggered by altered water levels is crucial for reducing uncertainties in climate change predictions. Here, we present findings from paired ecosystem observations in northeast Siberia comprising a drained and a control site. At the drainage site, the water table has been artificially lowered by up to 30 cm in summer for more than a decade. This sustained primary disturbance in hydrologic conditions has triggered a suite of secondary shifts in ecosystem properties, including vegetation community structure, snow cover dynamics, and radiation budget, all of which influence the net effects of drainage. Reduced thermal conductivity in dry organic soils was identified as the dominating drainage effect on energy budget and soil thermal regime. Through this effect, reduced heat transfer into deeper soil layers leads to shallower thaw depths, initially leading to a stabilization of organic permafrost soils, while the long-term effects on permafrost temperature trends still need to be assessed. At the same time, more energy is transferred back into the atmosphere as sensible heat in the drained area, which may trigger a warming of the lower atmospheric surface layer.

  2. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  3. Understanding Climate Change and Manifestation of its Driven ...

    African Journals Online (AJOL)

    This article examines the nature and manifestation of climate change driven impacts on the agrarian districts of Kongwa and Bahi in the semi arid areas of Dodoma region in Tanzania. A Survey of 398 households in the study area was undertaken to elicit information on the nature and manifestation of climate change driven ...

  4. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    Science.gov (United States)

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  5. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Directory of Open Access Journals (Sweden)

    David D Gustine

    Full Text Available Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs, and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21% than the Central Arctic herd that wintered primarily in the arctic tundra (-11%. Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  6. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Science.gov (United States)

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  7. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania

    Science.gov (United States)

    Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Quenol, Hervé; Sfîcă, Lucian; Foss, Chris

    2018-02-01

    Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area's historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area's climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.

  8. Paleoecological studies on variability in marine fish populations: A long-term perspective on the impacts of climatic change on marine ecosystems

    Science.gov (United States)

    Finney, Bruce P.; Alheit, Jürgen; Emeis, Kay-Christian; Field, David B.; Gutiérrez, Dimitri; Struck, Ulrich

    2010-02-01

    The use of historical fishing records to understand relationships between climatic change and fish abundance is limited by the relatively short duration of these records, and complications due to the strong influence of human activity in addition to climatic change. Sedimentary records containing scales, bones or geochemical proxies of variability in fish populations provide unique insights on long-term ecosystem dynamics and relationships with climatic change. Available records from Holocene sediments are summarized and synthesized. The records are from several widespread locations near or along the continental margins of the South Atlantic and Pacific oceans, including Alaska, USA (Pacific salmon), Saanich and Effingham Inlets, British Columbia, Canada (pelagic fish), Santa Barbara Basin, California, USA (Northern anchovies and Pacific sardines), Gulf of California, Mexico (Pacific sardines, Northern anchovies and Pacific hake), Peru upwelling system (sardines, anchovies and hake), and Benguela Current System, South Africa (sardines, anchovies and hake). These records demonstrate that fish population sizes are not constant, and varied significantly over a range of time scales prior to the advent of large-scale commercial fishing. In addition to the decadal-scale variability commonly observed in historical records, the long-term records reveal substantial variability over centennial and millennial time scales. Shifts in abundance are often, but not always, correlated with regional and/or global climatic changes. The long-term perspective reveals different patterns of variability in fish populations, as well as fish-climate relationships, than suggested by analysis of historical records. Many records suggest prominent changes in fish abundance at ca. 1000-1200 AD, during the Little Ice Age, and during the transition at the end of the Little Ice Age in the 19th century that may be correlative, and that were likely driven by major hemispheric or global

  9. Permafrost collapse after shrub removal shifts tundra ecosystem into methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; van Huissteden, J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming. In recent decades, Arctic tundra ecosystems have changed rapidly,

  10. Assessing confidence in management adaptation approaches for climate-sensitive ecosystems

    International Nuclear Information System (INIS)

    West, J M; Julius, S H; Weaver, C P

    2012-01-01

    A number of options are available for adapting ecosystem management to improve resilience in the face of climatic changes. However, uncertainty exists as to the effectiveness of these options. A report prepared for the US Climate Change Science Program reviewed adaptation options for a range of federally managed systems in the United States. The report included a qualitative uncertainty analysis of conceptual approaches to adaptation derived from the review. The approaches included reducing anthropogenic stressors, protecting key ecosystem features, maintaining representation, replicating, restoring, identifying refugia and relocating organisms. The results showed that the expert teams had the greatest scientific confidence in adaptation options that reduce anthropogenic stresses. Confidence in other approaches was lower because of gaps in understanding of ecosystem function, climate change impacts on ecosystems, and management effectiveness. This letter discusses insights gained from the confidence exercise and proposes strategies for improving future assessments of confidence for management adaptations to climate change. (letter)

  11. Uncertainties in carbon residence time and NPP-driven carbon uptake in terrestrial ecosystems of the conterminous USA: a Bayesian approach

    Directory of Open Access Journals (Sweden)

    Xuhui Zhou

    2012-10-01

    Full Text Available Carbon (C residence time is one of the key factors that determine the capacity of ecosystem C storage. However, its uncertainties have not been well quantified, especially at regional scales. Assessing uncertainties of C residence time is thus crucial for an improved understanding of terrestrial C sequestration. In this study, the Bayesian inversion and Markov Chain Monte Carlo (MCMC technique were applied to a regional terrestrial ecosystem (TECO-R model to quantify C residence times and net primary productivity (NPP-driven ecosystem C uptake and assess their uncertainties in the conterminous USA. The uncertainty was represented by coefficient of variation (CV. The 13 spatially distributed data sets of C pools and fluxes have been used to constrain TECO-R model for each biome (totally eight biomes. Our results showed that estimated ecosystem C residence times ranged from 16.6±1.8 (cropland to 85.9±15.3 yr (evergreen needleleaf forest with an average of 56.8±8.8 yr in the conterminous USA. The ecosystem C residence times and their CV were spatially heterogeneous and varied with vegetation types and climate conditions. Large uncertainties appeared in the southern and eastern USA. Driven by NPP changes from 1982 to 1998, terrestrial ecosystems in the conterminous USA would absorb 0.20±0.06 Pg C yr−1. Their spatial pattern was closely related to the greenness map in the summer with larger uptake in central and southeast regions. The lack of data or timescale mismatching between the available data and the estimated parameters lead to uncertainties in the estimated C residence times, which together with initial NPP resulted in the uncertainties in the estimated NPP-driven C uptake. The Bayesian approach with MCMC inversion provides an effective tool to estimate spatially distributed C residence time and assess their uncertainties in the conterminous USA.

  12. Eucalypts face increasing climate stress.

    Science.gov (United States)

    Butt, Nathalie; Pollock, Laura J; McAlpine, Clive A

    2013-12-01

    Global climate change is already impacting species and ecosystems across the planet. Trees, although long-lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east-west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental interior

  13. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  14. Climate Change Impacts for the Conterminous USA. An Integrated Assessment. Part 6. Distribution and Productivity of Unmanaged Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R.C.; Thomson, A.M.; Rosenberg, N.J. [The Joint Global Change Research Institute, 8400 Baltimore Avenue, Suite 201, College Park, Maryland, 20740-2496 (United States); Brown, R.A. [Independent Project Analysis, 11150 Sunset Hills Rd., Suite 3, Reston, Virginia, 20190 (United States)

    2005-03-01

    Human activities have altered the distribution and quality of terrestrial ecosystems. Future demands for goods and services from terrestrial ecosystems will occur in a world experiencing human-induced climate change. In this study, we characterize the range in response of unmanaged ecosystems in the conterminous U.S. to 12 climate change scenarios. We obtained this response by simulating the climatically induced shifts in net primary productivity and geographical distribution of major biomes in the conterminous U.S. with the BIOME 3 model. BIOME 3 captured well the potential distribution of major biomes across the U.S. under baseline (current) climate. BIOME 3 also reproduced the general trends of observed net primary production (NPP) acceptably. The NPP projections were reasonable for forests, but not for grasslands where the simulated values were always greater than those observed. Changes in NPP would be most severe under the BMRC climate change scenario in which severe changes in regional temperatures are projected. Under the UIUC and UIUC + Sulfate scenarios, NPP generally increases, especially in the West where increases in precipitation are projected to be greatest. A CO2-fertilization effect either amplified increases or alleviated losses in modeled NPP. Changes in NPP were also associated with changes in the geographic distribution of major biomes. Temperate/boreal mixed forests would cover less land in the U.S. under most of the climate change scenarios examined. Conversely, the temperate conifer and temperate deciduous forests would increase in areal extent under the UIUC and UIUC + Sulfate scenarios. The Arid Shrubland/Steppe would spread significantly across the southwest U.S. under the BMRC scenario. A map overlay of the simulated regions that would lose or gain capacity to produce corn and wheat on top of the projected distribution of natural ecosystems under the BMRC and UIUC scenarios (Global mean temperature increase of +2.5C, no CO2 effect

  15. Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure

    Directory of Open Access Journals (Sweden)

    M. Göckede

    2017-12-01

    Full Text Available Hydrologic conditions are a key factor in Arctic ecosystems, with strong influences on ecosystem structure and related effects on biogeophysical and biogeochemical processes. With systematic changes in water availability expected for large parts of the northern high-latitude region in the coming centuries, knowledge on shifts in ecosystem functionality triggered by altered water levels is crucial for reducing uncertainties in climate change predictions. Here, we present findings from paired ecosystem observations in northeast Siberia comprising a drained and a control site. At the drainage site, the water table has been artificially lowered by up to 30 cm in summer for more than a decade. This sustained primary disturbance in hydrologic conditions has triggered a suite of secondary shifts in ecosystem properties, including vegetation community structure, snow cover dynamics, and radiation budget, all of which influence the net effects of drainage. Reduced thermal conductivity in dry organic soils was identified as the dominating drainage effect on energy budget and soil thermal regime. Through this effect, reduced heat transfer into deeper soil layers leads to shallower thaw depths, initially leading to a stabilization of organic permafrost soils, while the long-term effects on permafrost temperature trends still need to be assessed. At the same time, more energy is transferred back into the atmosphere as sensible heat in the drained area, which may trigger a warming of the lower atmospheric surface layer.

  16. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands.

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K; Hall, Sonia A; Duniway, Michael C; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M; Pyke, David A; Wilson, Scott D

    2017-07-01

    Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  17. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R.; Bradford, John B.; Laurenroth, William K.; Hall, Sonia A.; Duniway, Michael C.; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M.; Pyke, David A.; Wilson, Scott D.

    2017-01-01

    Drylands occur world-wide and are particularly vulnerable to climate change since dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability, and also change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding.We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation.Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, i.e. leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  18. Ecosystems and climate interactions in the boreal zone of northern Eurasia

    International Nuclear Information System (INIS)

    Vygodskaya, N N; Groisman, P Ya; Tchebakova, N M; Kurbatova, J A; Panfyorov, O; Parfenova, E I; Sogachev, A F

    2007-01-01

    The climate system and terrestrial ecosystems interact as they change. In northern Eurasia these interactions are especially strong, span all spatial and timescales, and thus have become the subject of an international program: the Northern Eurasia Earth Science Partnership Initiative (NEESPI). Without trying to cover all areas of these interactions, this paper introduces three examples of the principal micrometeorological, mesometeorological and subcontinental feedbacks that control climate-terrestrial ecosystem interactions in the boreal zone of northern Eurasia. Positive and negative feedbacks of forest paludification, of windthrow, and of climate-forced displacement of vegetation zones are presented. Moreover the interplay of different scale feedbacks, the multi-faceted nature of ecosystems-climate interactions and their potential to affect the global Earth system are shown. It is concluded that, without a synergetic modeling approach that integrates all major feedbacks and relationships between terrestrial ecosystems and climate, reliable projections of environmental change in northern Eurasia are impossible, which will also bring into question the accuracy of global change projections

  19. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    Science.gov (United States)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.

    2017-01-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  20. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    Science.gov (United States)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.

    2017-03-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  1. Under pressure: Climate change, upwelling and eastern boundary upwelling ecosystems

    Directory of Open Access Journals (Sweden)

    Marisol eGarcía-Reyes

    2015-12-01

    Full Text Available The IPCC AR5 provided an overview of the likely effects of climate change on Eastern Boundary Upwelling Systems (EBUS, stimulating increased interest in research examining the issue. We use these recent studies to develop a new synthesis describing climate change impacts on EBUS. We find that model and observational data suggest coastal upwelling-favorable winds in poleward portions of EBUS have intensified and will continue to do so in the future. Although evidence is weak in data that are presently available, future projections show that this pattern might be driven by changes in the positioning of the oceanic high-pressure systems rather than by deepening of the continental low-pressure systems, as previously proposed. There is low confidence regarding the future effects of climate change on coastal temperatures and biogeochemistry due to uncertainty in the countervailing responses to increasing upwelling and coastal warming, the latter of which could increase thermal stratification and render upwelling less effective in lifting nutrient-rich deep waters into the photic zone. Although predictions of ecosystem responses are uncertain, EBUS experience considerable natural variability and may be inherently resilient. However, multi-trophic level, end-to-end (i.e., winds to whales studies are needed to resolve the resilience of EBUS to climate change, especially their response to long-term trends or extremes that exceed pre-industrial ranges.

  2. Climate change and body size shift in Mediterranean bivalve assemblages: unexpected role of biological invasions.

    Science.gov (United States)

    Nawrot, Rafał; Albano, Paolo G; Chattopadhyay, Devapriya; Zuschin, Martin

    2017-08-16

    Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature-size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems. © 2017 The Author(s).

  3. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Hao Yang

    Full Text Available Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET and water yield (WY of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  4. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes

    Directory of Open Access Journals (Sweden)

    Jon Mark Scriber

    2013-12-01

    Full Text Available Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae with their long-term historical data base (phylogeographical diversity changes and recent (3-decade climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations of species composition, genotypes

  5. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes.

    Science.gov (United States)

    Scriber, Jon Mark

    2013-12-24

    Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become

  6. Modeling and Predicting Carbon and Water Fluxes Using Data-Driven Techniques in a Forest Ecosystem

    Directory of Open Access Journals (Sweden)

    Xianming Dou

    2017-12-01

    Full Text Available Accurate estimation of carbon and water fluxes of forest ecosystems is of particular importance for addressing the problems originating from global environmental change, and providing helpful information about carbon and water content for analyzing and diagnosing past and future climate change. The main focus of the current work was to investigate the feasibility of four comparatively new methods, including generalized regression neural network, group method of data handling (GMDH, extreme learning machine and adaptive neuro-fuzzy inference system (ANFIS, for elucidating the carbon and water fluxes in a forest ecosystem. A comparison was made between these models and two widely used data-driven models, artificial neural network (ANN and support vector machine (SVM. All the models were evaluated based on the following statistical indices: coefficient of determination, Nash-Sutcliffe efficiency, root mean square error and mean absolute error. Results indicated that the data-driven models are capable of accounting for most variance in each flux with the limited meteorological variables. The ANN model provided the best estimates for gross primary productivity (GPP and net ecosystem exchange (NEE, while the ANFIS model achieved the best for ecosystem respiration (R, indicating that no single model was consistently superior to others for the carbon flux prediction. In addition, the GMDH model consistently produced somewhat worse results for all the carbon flux and evapotranspiration (ET estimations. On the whole, among the carbon and water fluxes, all the models produced similar highly satisfactory accuracy for GPP, R and ET fluxes, and did a reasonable job of reproducing the eddy covariance NEE. Based on these findings, it was concluded that these advanced models are promising alternatives to ANN and SVM for estimating the terrestrial carbon and water fluxes.

  7. Willingness to pay for ecosystem benefits of Agroforestry driven ...

    African Journals Online (AJOL)

    This paper investigates the Willingness To Pay (WTP) for ecosystem benefits derivable from Agroforestry (AF) driven green growth practice in Ogun state, Nigeria. The environmental service functions of AF were valued. Multi-stage sampling procedure involving purposive and simple random sampling was adopted in ...

  8. Climate Change Vulnerability of Agro-Ecosystems: Does socio-economic factors matters?

    Science.gov (United States)

    Surendran Nair, S.; Preston, B. L.; King, A. W.; Mei, R.; Post, W. M.

    2013-12-01

    Climate variability and change has direct impacts on agriculture. Despite continual adaptation to climate as well as gains in technology innovation and adoption, agriculture is still vulnerable to changes in temperature and precipitation expected in coming decades. Generally, researchers use two major methodologies to understand the vulnerability of agro-ecosystems to climate change: process-based crop models and empirical models. However, these models are not yet designed to capture the influence of socioeconomic systems on agro-ecosystem processes and outcomes.. However, socioeconomic processes are an important factor driving agro-ecological responses to biophysical processes (climate, topography and soil), because of the role of human agency in mediating the response of agro-ecosystems to climate. We have developed a framework that integrates socioeconomic and biophysical characteristics of agro-ecosystems using cluster analysis and GIS tools. This framework has been applied to the U.S. Southeast to define unique socio-ecological domains for agriculture. The results demonstrate that socioeconomic characteristics are an important factor influencing agriculture production. These results suggest that the lack of attention to socioeconomic conditions and human agency in agro-ecological modeling creates a potential bias with respect to the representation of climate change impacts.

  9. Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems

    Science.gov (United States)

    Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise

    2015-01-01

    In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.

  10. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    Science.gov (United States)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  11. Climate change, cranes, and temperate floodplain ecosystems

    Science.gov (United States)

    King, Sammy L.

    2010-01-01

    Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.

  12. Projecting supply and demand of hydrologic ecosystem services under future climate conditions

    Science.gov (United States)

    Chiang, Li-Chi; Huang, Tao; Lee, Tsung-Yu

    2014-05-01

    Ecosystems provide essential goods and services, such as food, clean water, water purification, soil conservation and cultural services for human being. In a watershed, these water-related ecosystem goods and services can directly or indirectly benefit both local people and downstream beneficiaries through a reservoir. Water quality and quantity in a reservoir are of importance for agricultural, industrial and domestic uses. Under the impacts of climate and land use changes, both ecosystem service supply and demand will be affected by changes in precipitation patterns, temperature, urbanization and agricultural activities. However, the linkage between ecosystem service provisioning (ESP) and ecosystem service beneficiary (ESB), and scales of supply and demand of ecosystem services are not clear yet. Therefore, to investigate water-related ecosystem service supply under climate and land use change, we took the Xindian river watershed (303 km2) as a case study, where the Feitsui Reservoir provides hydro-power and daily domestic water use of 3,450,000 m3 for 3.46 million people in Taipei, Taiwan. We integrated a hydrological model (Soil and Water Assessment Tool, SWAT) and a land use change model (Conversion of Land Use and its Effects, CLUE-s) with future climate change scenarios derived from General Circulation Models (GCMs), to assess the changes in ecosystem service supply and demand at different hydrologic scales. The results will provide useful information for decision-making on future land use management and climate change adaptation strategies in the watersheds. Keywords: climate change, land use change, ecosystem service, watershed, scale

  13. Ecosystem vulnerability to climate change in the southeastern United States

    Science.gov (United States)

    Cartwright, Jennifer M.; Costanza, Jennifer

    2016-08-11

    Two recent investigations of climate-change vulnerability for 19 terrestrial, aquatic, riparian, and coastal ecosystems of the southeastern United States have identified a number of important considerations, including potential for changes in hydrology, disturbance regimes, and interspecies interactions. Complementary approaches using geospatial analysis and literature synthesis integrated information on ecosystem biogeography and biodiversity, climate projections, vegetation dynamics, soil and water characteristics, anthropogenic threats, conservation status, sea-level rise, and coastal flooding impacts. Across a diverse set of ecosystems—ranging in size from dozens of square meters to thousands of square kilometers—quantitative and qualitative assessments identified types of climate-change exposure, evaluated sensitivity, and explored potential adaptive capacity. These analyses highlighted key gaps in scientific understanding and suggested priorities for future research. Together, these studies help create a foundation for ecosystem-level analysis of climate-change vulnerability to support effective biodiversity conservation in the southeastern United States.

  14. Ocean heat content and Earth's radiation imbalance. II. Relation to climate shifts

    International Nuclear Information System (INIS)

    Douglass, D.H.; Knox, R.S.

    2012-01-01

    In an earlier study of ocean heat content (OHC) we showed that Earth's empirically implied radiation imbalance has undergone abrupt changes. Other studies have identified additional such climate shifts since 1950. The shifts can be correlated with features in recently updated OHC data. The implied radiation imbalance may possibly alternate in sign at dates close to the climate shifts. The most recent shifts occurred during 2001–2002 and 2008–2009. The implied radiation imbalance between these dates, in the direction of ocean heat loss, was −0.03±0.06 W/m 2 , with a possible systematic error of [−0.00,+0.09] W/m 2 . -- Highlights: ► Ocean heat content (OHC) slope discontinuities match similar Earth climate features. ► OHC slopes between climate shifts give most of the implied radiation balance (IRI). ► IRI often alternates in sign at dates close to the climate shifts. ► IRI between climate shifts of 2001–2002 and 2008–2009 was −0.03±0.06 W/m 2 . ► Geothermal flux is relevant to analyses of radiation imbalance.

  15. Temporal changes in potential regulating ecosystem services driven by urbanization

    Science.gov (United States)

    Ferreira, Carla; Amorim, Inês; Pires, Evanilton; Kalantari, Zahra; Walsh, Rory; Ferreira, António

    2017-04-01

    Ecosystem services (ES) are understood to be the capacity of the landscape of a particular area to provide goods and services to society. In terms of human benefits, four categories of ES are usually considered: provisioning (e.g. seafood), regulating (e.g. climate regulation, air quality, water purification and natural hazard protection), supporting (e.g. maintenance of biodiversity), and cultural (e.g. recreation). The potential supply of ecosystem services has receive increasing interest as a tool for natural resource management. Nevertheless, the capacity to supply ES depends on biophysical conditions, as well as climate and land-use changes, induced by human activities. This study aims to investigate the potential for regulating ecosystem service supply of a Portuguese peri-urban catchment, and attempts to understand the temporal changes in ES over the last decades driven by urbanization. The study was developed in Ribeira dos Covões catchment (6.2 km2), in Portugal. Due to its proximity to Coimbra, a major city in the central region of Portugal, the catchment has undergone major land-use changes over the last half-century. Since 1958, the agricultural area, comprising mainly olives and arable land, has declined from 48% to 4%, due to increases in urban land (from 8% to 40%) and forest (from 44% to 53%), as well as a temporary creation of open spaces (from 0% to 3%). The nature of forest cover also changed, from native species, such as oaks (Quercus sp.), to commercial timber plantations, mostly of Pinus pinaster L. and Eucaliptus globulus L.. Urbanization became more pronounced after 1973, exhibiting a discontinuous pattern until 1995, and then later more continuous urban areas through the infilling of areas between the earlier urban cores. Quantification of regulating ES in the study catchment was achieved using GIS techniques, in order to gain a spatial dimension of ES distribution (Burkhard et al., 2009). Mapping ecosystem service capacities at a 5×5m

  16. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; Huissteden, van J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2, 3. In recent decades, Arctic tundra ecosystems have changed

  17. Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xiaoming; Wang, Jinzhi; Rui, Yichao; Niu, Haishan [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Hao, Yanbin; Cui, Xiaoyong; Wang, Yanfen [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Life Sciences; Li, Changsheng [New Hampshire Univ., Durham, NH (United States). Inst. for the Study of Earth, Ocean and Space

    2011-06-15

    Purpose: In this study, a process-oriented biogeochemistry model, denitrification-decomposition (DNDC), was employed and adapted to interpret and integrate the field observations that the tested ecosystem was a weak sink of atmospheric carbon dioxide (CO{sub 2}) in 2004 but a strong source in 2005 during the growing seasons. Then we applied the model to predict long-term impacts of climate change on carbon (C) dynamics in the semiarid grassland. Materials and methods: To adapt DNDC for the targeted grassland, we modified the default values of several grass parameters such as maximum biomass production, biomass partitions, plant tissue C/N ratio, and accumulative thermal degree days based on local observations. Daily weather data for 2004 and 2005 in conjunction with soil properties and management practices for the location were utilized as inputs to simulate the grass growth and soil C dynamics. The modeled C fluxes were compared with the eddy tower data. Sensitivity tests were conducted with a baseline and twelve alternative climate scenarios of 100 years for the target grassland. Results and discussion: The observed and modeled CO{sub 2} fluxes data were well in agreement (P < 0.0001), both showing that the grassland shifted from a sink to a source of atmospheric CO{sub 2} from a wet year (2004) to a dry year (2005) over growing season. Simulations of 100 years found that, under the fenced conditions, (1) the tested ecosystem would gain C with the baseline climate conditions at a rate of 200 kg C/ha/year; (2) the warmer and drier climate scenario made the worst case having the lowest grass production with 72 kg C/ha/year lost from the soil carbon pool; and (3) the cooler and wetter climate scenario made the best case having the highest biomass production with 790 kg C/ha/year sequestered in the soil during the simulated 100 years. Conclusions: DNDC model could be used for the prediction of C dynamics in this semiarid grassland ecosystem. Since the ecosystem

  18. Climate change, ecosystem impacts, and management for Pacific salmon

    Science.gov (United States)

    D.E. Schindler; X. Augerot; E. Fleishman; N.J. Mantua; B. Riddell; M. Ruckelshaus; J. Seeb; M. Webster

    2008-01-01

    As climate change intensifies, there is increasing interest in developing models that reduce uncertainties in projections of global climate and refine these projections to finer spatial scales. Forecasts of climate impacts on ecosystems are far more challenging and their uncertainties even larger because of a limited understanding of physical controls on biological...

  19. Regime shifts, resilience and recovery of a cod stock

    DEFF Research Database (Denmark)

    Lindegren, Martin; Diekmann, Rabea; Möllmann, Christian

    2010-01-01

    In the North and Baltic seas Atlantic cod Gadus morhua stocks collapsed as part or one of the major factors inducing large-scale ecosystem regime shifts. Determining the relative contribution of overfishing and climate variability in causing these shifts has proven difficult. While facing similar...

  20. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Heide-Joergensen, H S; Johnsen, I [Koebenhavns Univ., Botanisk Inst., Oekologisk afd. (Denmark)

    1998-12-31

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  1. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    International Nuclear Information System (INIS)

    Heide-Joergensen, H.S.; Johnsen, I.

    1997-01-01

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  2. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Heide-Joergensen, H.S.; Johnsen, I. [Koebenhavns Univ., Botanisk Inst., Oekologisk afd. (Denmark)

    1997-12-31

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  3. Increased sensitivity to climate change in disturbed ecosystems

    DEFF Research Database (Denmark)

    Kroël-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel

    2015-01-01

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relatio......Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports...... this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem...

  4. Managing uncertainty in climate-driven ecological models to inform adaptation to climate change

    Science.gov (United States)

    Jeremy S. Littell; Donald McKenzie; Becky K. Kerns; Samuel Cushman; Charles G. Shaw

    2011-01-01

    The impacts of climate change on forest ecosystems are likely to require changes in forest planning and natural resource management. Changes in tree growth, disturbance extent and intensity, and eventually species distributions are expected. In natural resource management and planning, ecosystem models are typically used to provide a "best estimate" about how...

  5. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    Science.gov (United States)

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  6. Directionality of recent bird distribution shifts and climate change in Great Britain.

    Science.gov (United States)

    Gillings, Simon; Balmer, Dawn E; Fuller, Robert J

    2015-06-01

    There is good evidence that species' distributions are shifting poleward in response to climate change and wide interest in the magnitude of such responses for scientific and conservation purposes. It has been suggested from the directions of climatic changes that species' distribution shifts may not be simply poleward, but this has been rarely tested with observed data. Here, we apply a novel approach to measuring range shifts on axes ranging through 360°, to recent data on the distributions of 122 species of British breeding birds during 1988-1991 and 2008-2011. Although previously documented poleward range shifts have continued, with an average 13.5 km shift northward, our analysis indicates this is an underestimate because it ignores common and larger shifts that occurred along axes oriented to the north-west and north-east. Trailing edges contracted from a broad range of southerly directions. Importantly, these results are derived from systematically collected data so confounding observer-effort biases can be discounted. Analyses of climate for the same period show that whilst temperature trends should drive species along a north-north-westerly trajectory, directional responses to precipitation will depend on both the time of year that is important for determining a species' distribution, and the location of the range margin. Directions of species' range centroid shift were not correlated with spatial trends in any single climate variable. We conclude that range shifts of British birds are multidirectional, individualistic and probably determined by species-specific interactions of multiple climate factors. Climate change is predicted to lead to changes in community composition through variation in the rates that species' ranges shift; our results suggest communities could change further owing to constituent species shifting along different trajectories. We recommend more studies consider directionality in climate and range dynamics to produce more

  7. Northward shift of the agricultural climate zone under 21st-century global climate change.

    Science.gov (United States)

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  8. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Frieling, Joost; Reichart, Gert-Jan; Middelburg, Jack J.; Röhl, Ursula; Westerhold, Thomas; Bohaty, Steven M.; Sluijs, Appy

    2018-01-01

    The Paleocene-Eocene Thermal Maximum (PETM, 56 Ma) was a phase of rapid global warming associated with massive carbon input into the ocean-atmosphere system from a 13C-depleted reservoir. Many midlatitude and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning, and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP) Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst) assemblage analysis. The PETM at Site 959 was previously found to be marked by a ˜ 3.8 ‰ negative carbon isotope excursion (CIE) and a ˜ 4 °C surface ocean warming from the uppermost Paleocene to peak PETM, of which ˜ 1 °C occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extratropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close-by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth in the eastern equatorial Atlantic, most likely caused by heat stress. We hypothesize, based on a literature survey, that heat stress might have reduced calcification in more tropical regions, potentially contributing to reduced deep sea carbonate accumulation rates, and, by buffering acidification, also to biological carbonate compensation of the injected carbon during the PETM. Crucially, abundant organic benthic foraminiferal linings imply sustained export production, likely driven by prokaryotes. In

  9. On the Vulnerability of Water Limited Ecosystems to Climate Change

    Directory of Open Access Journals (Sweden)

    Kelly K. Caylor

    2013-06-01

    Full Text Available Society is facing growing environmental problems that require new research efforts to understand the way ecosystems operate and survive, and their mutual relationships with the hydrologic cycle. In this respect, ecohydrology suggests a renewed interdisciplinary approach that aims to provide a better comprehension of the effects of climatic changes on terrestrial ecosystems. With this aim, a coupled hydrological/ecological model is adopted to describe simultaneously vegetation pattern evolution and hydrological water budget at the basin scale using as test site the Upper Rio Salado basin (Sevilleta, NM, USA. The hydrological analyses have been carried out using a recently formulated framework for the water balance at the daily level linked with a spatial model for the description of the spatial organization of vegetation. This enables quantitatively assessing the effects on soil water availability on future climatic scenarios. Results highlighted that the relationship between climatic forcing (water availability and vegetation patterns is strongly non-linear. This implies, under some specific conditions which depend on the ecosystem characteristics, small changes in climatic conditions may produce significant transformation of the vegetation patterns.

  10. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    Science.gov (United States)

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-10-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  11. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    Science.gov (United States)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  12. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    International Nuclear Information System (INIS)

    Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Mauder, M; Schmid, H-P; Eugster, W; Montagnani, L; Gianelle, D

    2016-01-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies. (letter)

  13. Phenological Shifts in Animals Under Contemporary Climate Change

    NARCIS (Netherlands)

    Visser, M.E.; Roitberg, Bernard D.

    2017-01-01

    One of the best documented impacts of climate change has been on the seasonal timing, or phenology, of species. There are clear shifts in all taxonomic groups in terrestrial, aquatic, and marine environments. There is, however, ample variation in the rate at which species shift in response to warmer

  14. Biodiversity, Ecosystem Services, and Climate Change : The Economic Problem

    OpenAIRE

    World Bank

    2010-01-01

    Climate change is both a cause and an effect of biodiversity change. Along with anthropogenic dispersion, climate change is the main driver of change in the geographical distribution of both beneficial and harmful species, crops, livestock, harvested wild species, pests, predators and pathogens. And the capacity of ecosystems to adapt to climate change depends on the diversity of species t...

  15. How climate affects ecosystems: A Canadian perspective on what we know

    International Nuclear Information System (INIS)

    Rowe, S.; Rizzo, B.

    1990-01-01

    The effects of climate change on ecosystems is discussed from the Canadian perspective. After a brief definition of terms, the implications of ecosystem theory are elaborated on. Impact models generated from altered climatic regimes can be categorized into two methodological streams: correlation modelling and dynamic modelling. Correlation modelling characterizes change on the basis of transfer functions linking climatic parameters and indices to specific ecological units. Correlation models can be applied at the species level or at the broader ecosystem level. Dynamic models are based on life history characteristics from birth to death, tracking such details as plant abundance, height and leaf area. Such models are most useful at the local rather than global scale. In Canada a number of broad scale correlation models have been attempted. These include the potential impacts of climatic change in the Praire provinces and Northwest Territories, a study relating the growing degree day isolines to ecological boundaries established in the ecoclimatic regions of Canada map, and the incorporation of nine climatic parameters in a correlation exercise, again using the ecoclimatic regions map. 14 refs

  16. Climate and fishing steer ecosystem regeneration to uncertain economic futures

    DEFF Research Database (Denmark)

    Blenckner, Thorsten; Llope, Marcos; Möllmann, Christian

    2015-01-01

    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree...... lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change....

  17. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  18. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.

    Science.gov (United States)

    Bright, Ryan M; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Strømman, Anders H

    2014-02-01

    Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a

  19. Climate-driven polar motion

    Science.gov (United States)

    Celaya, Michael A.; Wahr, John M.; Bryan, Frank O.

    1999-06-01

    The output of a coupled climate system model provides a synthetic climate record with temporal and spatial coverage not attainable with observational data, allowing evaluation of climatic excitation of polar motion on timescales of months to decades. Analysis of the geodetically inferred Chandler excitation power shows that it has fluctuated by up to 90% since 1900 and that it has characteristics representative of a stationary Gaussian process. Our model-predicted climate excitation of the Chandler wobble also exhibits variable power comparable to the observed. Ocean currents and bottom pressure shifts acting together can alone drive the 14-month wobble. The same is true of the excitation generated by the combined effects of barometric pressure and winds. The oceanic and atmospheric contributions are this large because of a relatively high degree of constructive interference between seafloor pressure and currents and between atmospheric pressure and winds. In contrast, excitation by the redistribution of water on land appears largely insignificant. Not surprisingly, the full climate effect is even more capable of driving the wobble than the effects of the oceans or atmosphere alone are. Our match to the observed annual excitation is also improved, by about 17%, over previous estimates made with historical climate data. Efforts to explain the 30-year Markowitz wobble meet with less success. Even so, at periods ranging from months to decades, excitation generated by a model of a coupled climate system makes a close approximation to the amplitude of what is geodetically observed.

  20. Shifts in alpine lakes' ecosystems in Japan driven by increasing Asian dusts

    Science.gov (United States)

    Tsugeki, N. K.; Tani, Y.; Ueda, S.; Agusa, T.; Toyoda, K.; Kuwae, M.; Oda, H.; Tanabe, S.; Urabe, J.

    2011-12-01

    Recently in East Asia the amount of fossil fuel combustion have increased with economic growth. It has caused a problem of trans-boundary air pollution in the whole of eastern Asia. Furthermore, Asian dust storms contribute episodically to the global aerosol load. However, the effects of increased Asian dusts on aquatic ecosystems are not well understood. If biologically important nutrients such as nitrogen (N) and phosphorus (P) are transported via air dust, the atmospheric deposition of the dust may have serious impacts on recipient aquatic ecosystems because the biological production is limited by these nutrient elements. A previous report using sedimentary records has evaluated that atmospheric P inputs to the alpine lakes in the United States increased fivefold following the increased western settlement to this country during the nineteenth century. Since P is the most deficient nutrient for production in many lakes increase in P loading through atmospheric deposition of anthropogenically-derived dust might greatly affect the lake ecosystems. We examined fossil pigments and zooplankton remains from Pb-dated sediments taken from a high mountain lake of Hourai-Numa, located in the Towada-Hachimantai National Park of Japan, to uncover historical changes in the phyto- and zooplankton community over the past 100 years. Simultaneously, we measured the biogeochemical variables of TOC, TN, TP, δ13C, δ15N, and 206Pb/207Pb, 208Pb/207Pb in the sediments to identify environmental factors causing such changes. As a result, despite little anthropogenic activities in the watersheds, alpine lakes in Japan Islands increased algal and herbivore plankton biomasses by 3-6 folds for recent years depending on terrestrial the surrounded vegetations and landscape conditions. Biological and biogeochemical proxies recorded in the lake sediments indicate that this eutrophication occurred after the 1990s when P deposition increased due to atmospheric loading transported from Asian

  1. Terrestrial ecosystems in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [CSIRO Marine and Atmospheric Research, Canberra, ACT (Australia). Global Carbon Project; Pataki, D.E. [California Univ., Irvine, CA (United States). Dept. of Earth System Science]|[California Univ., Irvine, CA (United States). Dept. of Ecology and Evolutionary Biology; Pitelka, L.F. (eds.) [Maryland Univ., Frostburg, MD (United States). Appalachian Lab.

    2007-07-01

    Over 100 authors present 25 contributions on the impacts of global change on terrestrial ecosystems including: * key processes of the earth system such as the CO2 fertilization effect, shifts in disturbances and biome distribution, the saturation of the terrestrial carbon sink, and changes in functional biodiversity, * ecosystem services such the production of wheat, pest control, and carbon storage in croplands, and * sensitive regions in the world threaten by rapid changes in climate and land use such as high latitudes ecosystems, tropical forest in Southeast Asia, and ecosystems dominated by Monsoon climate. The book also explores new research developments on spatial thresholds and nonlinearities, the key role of urban development in global biogeochemical processes, and the integration of natural and social sciences to address complex problems of the human-environment system. (orig.)

  2. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous

  3. The impact of shift work and organizational work climate on health outcomes in nurses.

    Science.gov (United States)

    von Treuer, Kathryn; Fuller-Tyszkiewicz, Matthew; Little, Glenn

    2014-10-01

    Shift workers have a higher rate of negative health outcomes than day shift workers. Few studies however, have examined the role of difference in workplace environment between shifts itself on such health measures. This study investigated variation in organizational climate across different types of shift work and health outcomes in nurses. Participants (n = 142) were nursing staff from a metropolitan Melbourne hospital. Demographic items elicited the type of shift worked, while the Work Environment Scale and the General Health Questionnaire measured organizational climate and health respectively. Analysis supported the hypotheses that different organizational climates occurred across different shifts, and that different organizational climate factors predicted poor health outcomes. Shift work alone was not found to predict health outcomes. Specifically, permanent night shift workers had significantly lower coworker cohesion scores compared with rotating day and evening shift workers and significantly higher managerial control scores compared with day shift workers. Further, coworker cohesion and involvement were found to be significant predictors of somatic problems. These findings suggest that differences in organizational climate between shifts accounts for the variation in health outcomes associated with shift work. Therefore, increased workplace cohesion and involvement, and decreased work pressure, may mitigate the negative health outcomes of shift workers. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  4. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene Thermal Maximum.

    Science.gov (United States)

    Secord, Ross; Bloch, Jonathan I; Chester, Stephen G B; Boyer, Doug M; Wood, Aaron R; Wing, Scott L; Kraus, Mary J; McInerney, Francesca A; Krigbaum, John

    2012-02-24

    Body size plays a critical role in mammalian ecology and physiology. Previous research has shown that many mammals became smaller during the Paleocene-Eocene Thermal Maximum (PETM), but the timing and magnitude of that change relative to climate change have been unclear. A high-resolution record of continental climate and equid body size change shows a directional size decrease of ~30% over the first ~130,000 years of the PETM, followed by a ~76% increase in the recovery phase of the PETM. These size changes are negatively correlated with temperature inferred from oxygen isotopes in mammal teeth and were probably driven by shifts in temperature and possibly high atmospheric CO(2) concentrations. These findings could be important for understanding mammalian evolutionary responses to future global warming.

  5. Ecosystem service provision in a changing Europe: adapting to the impacts of combined climate and socio-economic change.

    Science.gov (United States)

    Dunford, Robert W; Smith, Alison C; Harrison, Paula A; Hanganu, Diana

    Future patterns of European ecosystem services provision are likely to vary significantly as a result of climatic and socio-economic change and the implementation of adaptation strategies. However, there is little research in mapping future ecosystem services and no integrated assessment approach to map the combined impacts of these drivers. Map changing patterns in ecosystem services for different European futures and (a) identify the role of driving forces; (b) explore the potential influence of different adaptation options. The CLIMSAVE integrated assessment platform is used to map spatial patterns in services (food, water and timber provision, atmospheric regulation, biodiversity existence/bequest, landscape experience and land use diversity) for a number of combined climatic and socio-economic scenarios. Eight adaptation strategies are explored within each scenario. Future service provision (particularly water provision) will be significantly impacted by climate change. Socio-economic changes shift patterns of service provision: more dystopian societies focus on food provision at the expense of other services. Adaptation options offer significant opportunities, but may necessitate trade-offs between services, particularly between agriculture- and forestry-related services. Unavoidable trade-offs between regions (particularly South-North) are also identified in some scenarios. Coordinating adaptation across regions and sectors will be essential to ensure that all needs are met: a factor that will become increasingly pressing under dystopian futures where inter-regional cooperation breaks down. Integrated assessment enables exploration of interactions and trade-offs between ecosystem services, highlighting the importance of taking account of complex cross-sectoral interactions under different future scenarios of planning adaptation responses.

  6. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems

    NARCIS (Netherlands)

    Hicks Pries, C.E.; van Logtestijn, R.S.P; Schuur, E.A.G.; Natali, S.M.; Cornelissen, J.H.C.; Aerts, R.; Dorrepaal, E.

    2015-01-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change

  7. Climate Change Impacts on High-Altitude Ecosystems

    OpenAIRE

    Harald Pauli

    2016-01-01

    Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  8. Climate change impacts on biodiversity and ecosystems in Sri Lanka: a review

    Directory of Open Access Journals (Sweden)

    Jeevan Dananjaya Kottawa-Arachchi

    2017-10-01

    Full Text Available The climate change impacts are felt by all facets and sectors of ecosystems, covering flora, fauna and environment. Sri Lanka is considered as a vulnerable, small island country that is under serious threat from climate change impacts. The most profound impacts of climate change in Sri Lanka will be on agriculture and food security, water and coastal resources, biodiversity changes, and human health. Sri Lanka's biodiversity is significantly important both on a regional and global scale as it has the highest species density for flowering plants, amphibians, reptiles, and mammals. Sri Lanka's varied ecosystems provide many services that are of significant economic value and play a crucial role in providing goods and ecosystem services. The subsequent sections featuring specific aspects of biodiversity in forests, freshwater wetlands, coastal and marine systems and agricultural systems, provide greater detail on the ecosystem services and bio-resources. Habitat loss and fragmentation, invasive alien species, deforestation and forest degradation, development projects, environmental pollutions and climate change (global warming are the major threats to the biodiversity of the country. Climate change impacts on environment lead to a reduction in the distribution and abundance of species, especially endemics, which may even result in their global extinction. The introduction of various policies and guidelines in relation to environment is a good sign for conservation of ecosystems and biodiversity. The government of Sri Lanka has been implementing various environmental projects aiming at reducing deforestation and degradation of ecosystems. Policies and measures already developed under such initiatives will no doubt preserve natural habitats for plant and animal species. However, being a developing country with many economic challenges, the funds and expertise available for monitoring climate change impacts and biodiversity conservation are not

  9. Ecological regime shifts and changes of lake ecosystem service in a shallow Yangtze lake (Taibai Lake, China) over the past 150 years

    Science.gov (United States)

    Dong, X.; Xu, M.; Yang, X.

    2017-12-01

    Shallow lakes provide a range of ecosystem services such as water supply, biodiversity, aquaculture, tourism, shipping and flood regulation. Over recent decades, many lakes have become severely deteriorated due to a coupled natural and human disturbance. Given the limited monitoring records, however, we still have little knowledge on how, when and why those lake experienced ecological status shifts, and how the lake ecosystem service changed. Paleolimnological techniques were widely used in understanding the historical environmental and ecological changes. Here, we chose a typical eutrophic shallow lake, Taibai Lake, and acquired geochemistry proxies, grain size, diatom, cladocera and chironomid from a 210Pb and 137Cs dated sediment core. Document records and monitoring data are also included as important marks of social and environmental change. A T-test based algorithm of STARS reveal at least two ecological shifts, respectively in the 1960s and the 1990s. The sudden shift in the 1960s is supposed to be influenced by a dam and sluice construction in the 1950s and another shift in the 1990s should be a critical transition due to the alternation of ecosystem structure for higher fishery production. Correspondingly, lake ecosystem service (LES) also experienced significant changes. Prior to 1930s, different types of LES kept relatively stable with low values. With the dam construction in the 1960s, the changed hydrological condition led to gradual increases in both regulation and provision service. However, with much effort on fishery and reclamation, the regulation service of the lake decreased, exhibiting a tradeoff among LES. After 1990s, with intense aquaculture, most types of LSE suffered a further decrease. The long-term records exhibited that ecosystem services in primary productivity and biodiversity maintenance increased (synergies) whereas services in water-purification and climate regulating decreased significantly (tradeoffs) since 1950s, when local

  10. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems.

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M; Ooi, Ying W

    2018-05-01

    Climate change is lengthening the growing season of the Northern Hemisphere extratropical terrestrial ecosystems, but little is known regarding the timing and dynamics of the peak season of plant activity. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations and atmospheric CO 2 concentration and δ 13 C isotope measurements at Point Barrow (Alaska, USA, 71°N) to study the dynamics of the peak of season (POS) of plant activity. Averaged across extratropical (>23°N) non-evergreen-dominated pixels, NDVI data show that the POS has advanced by 1.2 ± 0.6 days per decade in response to the spring-ward shifts of the start (1.0 ± 0.8 days per decade) and end (1.5 ± 1.0 days per decade) of peak activity, and the earlier onset of the start of growing season (1.4 ± 0.8 days per decade), while POS maximum NDVI value increased by 7.8 ± 1.8% for 1982-2015. Similarly, the peak day of carbon uptake, based on calculations from atmospheric CO 2 concentration and δ 13 C data, is advancing by 2.5 ± 2.6 and 4.3 ± 2.9 days per decade, respectively. POS maximum NDVI value shows strong negative relationships (p POS days. Given that the maximum solar irradiance and day length occur before the average POS day, the earlier occurrence of peak plant activity results in increased plant productivity. Both the advancing POS day and increasing POS vegetation greenness are consistent with the shifting peak productivity towards spring and the increasing annual maximum values of gross and net ecosystem productivity simulated by coupled Earth system models. Our results further indicate that the decline in autumn NDVI is contributing the most to the overall browning of the northern high latitudes (>50°N) since 2011. The spring-ward shift of peak season plant activity is expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget. © 2017

  11. The adaptation rate of terrestrial ecosystems as a critical factor in global climate dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fuessler, J S; Gassmann, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A conceptual climate model describing regional two-way atmosphere-vegetation interaction has been extended by a simple qualitative scheme of ecosystem adaptation to drought stress. The results of this explorative study indicate that the role of terrestrial vegetation under different forcing scenarios depends crucially on the rate of the ecosystems adaptation to drought stress. The faster the adaptation of important ecosystems such as forests the better global climate is protected from abrupt climate changes. (author) 1 fig., 3 refs.

  12. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010.

    Science.gov (United States)

    Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei

    2015-02-01

    Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.

  13. Climate Change Impacts on High-Altitude Ecosystems

    Directory of Open Access Journals (Sweden)

    Harald Pauli

    2016-02-01

    Full Text Available Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  14. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.

    Science.gov (United States)

    Levine, Naomi M; Zhang, Ke; Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L; Lewis, Simon L; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J W; Erwin, Terry L; Feldpausch, Ted R; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R

    2016-01-19

    Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.

  15. Climate-change-driven deterioration of water quality in a mineralized watershed.

    Science.gov (United States)

    Todd, Andrew S; Manning, Andrew H; Verplanck, Philip L; Crouch, Caitlin; McKnight, Diane M; Dunham, Ryan

    2012-09-04

    A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100-400% (400-2000 μg/L) during low-flow months, when metal concentrations are highest. SO(4) and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2-1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.

  16. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    Science.gov (United States)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the

  17. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum

    Directory of Open Access Journals (Sweden)

    J. Frieling

    2018-01-01

    sustained export production, likely driven by prokaryotes. In sharp contrast, the recovery of the CIE yields rapid (≪ 10 kyr fluctuations in the abundance of several dinocyst groups, suggesting extreme ecosystem and environmental variability.

  18. Climate change impacts utilizing regional models for agriculture, hydrology and natural ecosystems

    Science.gov (United States)

    Kafatos, M.; Asrar, G. R.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Medvigy, D.; Prasad, A. K.; Smith, E.; Stack, D. H.; Tremback, C.; Walko, R. L.

    2012-12-01

    Climate change impacts the entire Earth but with crucial and often catastrophic impacts at local and regional levels. Extreme phenomena such as fires, dust storms, droughts and other natural hazards present immediate risks and challenges. Such phenomena will become more extreme as climate change and anthropogenic activities accelerate in the future. We describe a major project funded by NIFA (Grant # 2011-67004-30224), under the joint NSF-DOE-USDA Earth System Models (EaSM) program, to investigate the impacts of climate variability and change on the agricultural and natural (i.e. rangeland) ecosystems in the Southwest USA using a combination of historical and present observations together with climate, and ecosystem models, both in hind-cast and forecast modes. The applicability of the methodology to other regions is relevant (for similar geographic regions as well as other parts of the world with different agriculture and ecosystems) and should advance the state of knowledge for regional impacts of climate change. A combination of multi-model global climate projections from the decadal predictability simulations, to downscale dynamically these projections using three regional climate models, combined with remote sensing MODIS and other data, in order to obtain high-resolution climate data that can be used with hydrological and ecosystem models for impacts analysis, is described in this presentation. Such analysis is needed to assess the future risks and potential impacts of projected changes on these natural and managed ecosystems. The results from our analysis can be used by scientists to assist extended communities to determine agricultural coping strategies, and is, therefore, of interest to wide communities of stakeholders. In future work we will be including surface hydrologic modeling and water resources, extend modeling to higher resolutions and include significantly more crops and geographical regions with different weather and climate conditions

  19. Spatially Explicit Assessment of Ecosystem Resilience: An Approach to Adapt to Climate Changes

    Directory of Open Access Journals (Sweden)

    Haiming Yan

    2014-01-01

    Full Text Available The ecosystem resilience plays a key role in maintaining a steady flow of ecosystem services and enables quick and flexible responses to climate changes, and maintaining or restoring the ecosystem resilience of forests is a necessary societal adaptation to climate change; however, there is a great lack of spatially explicit ecosystem resilience assessments. Drawing on principles of the ecosystem resilience highlighted in the literature, we built on the theory of dissipative structures to develop a conceptual model of the ecosystem resilience of forests. A hierarchical indicator system was designed with the influencing factors of the forest ecosystem resilience, including the stand conditions and the ecological memory, which were further disaggregated into specific indicators. Furthermore, indicator weights were determined with the analytic hierarchy process (AHP and the coefficient of variation method. Based on the remote sensing data and forest inventory data and so forth, the resilience index of forests was calculated. The result suggests that there is significant spatial heterogeneity of the ecosystem resilience of forests, indicating it is feasible to generate large-scale ecosystem resilience maps with this assessment model, and the results can provide a scientific basis for the conservation of forests, which is of great significance to the climate change mitigation.

  20. Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China

    Directory of Open Access Journals (Sweden)

    Nian-Zhi Jiao

    2015-06-01

    Full Text Available The ecosystems of China seas and coasts are undergoing rapid changes under the strong influences of both global climate change and anthropogenic activities. To understand the scope of these changes and the mechanisms behind them is of paramount importance for the sustainable development of China, and for the establishment of national policies on environment protection and climate change mitigation. Here we provide a brief review of the impacts of global climate change and human activities on the oceans in general, and on the ecosystems of China seas and coasts in particular. More importantly, we discuss the challenges we are facing and propose several research foci for China seas/coasts ecosystem studies, including long-term time series observations on multiple scales, facilities for simulation study, blue carbon, coastal ecological security, prediction of ecosystem evolution and ecosystem-based management. We also establish a link to the Future Earth program from the perspectives of two newly formed national alliances, the China Future Ocean Alliance and the Pan-China Ocean Carbon Alliance.

  1. The Swedish Research Infrastructure for Ecosystem Science - SITES

    Science.gov (United States)

    Lindroth, A.; Ahlström, M.; Augner, M.; Erefur, C.; Jansson, G.; Steen Jensen, E.; Klemedtsson, L.; Langenheder, S.; Rosqvist, G. N.; Viklund, J.

    2017-12-01

    The vision of SITES is to promote long-term field-based ecosystem research at a world class level by offering an infrastructure with excellent technical and scientific support and services attracting both national and international researchers. In addition, SITES will make data freely and easily available through an advanced data portal which will add value to the research. During the first funding period, three innovative joint integrating facilities were established through a researcher-driven procedure: SITES Water, SITES Spectral, and SITES AquaNet. These new facilities make it possible to study terrestrial and limnic ecosystem processes across a range of ecosystem types and climatic gradients, with common protocols and similar equipment. In addition, user-driven development at the nine individual stations has resulted in e.g. design of a long-term agricultural systems experiment, and installation of weather stations, flux systems, etc. at various stations. SITES, with its integrative approach and broad coverage of climate and ecosystem types across Sweden, constitutes an excellent platform for state-of-the-art research projects. SITES' support the development of: A better understanding of the way in which key ecosystems function and interact with each other at the landscape level and with the climate system in terms of mass and energy exchanges. A better understanding of the role of different organisms in controlling different processes and ultimately the functioning of ecosystems. New strategies for forest management to better meet the many and varied requirements from nature conservation, climate and wood, fibre, and energy supply points of view. Agricultural systems that better utilize resources and minimize adverse impacts on the environment. Collaboration with other similar infrastructures and networks is a high priority for SITES. This will enable us to make use of each others' experiences, harmonize metadata for easier exchange of data, and support each

  2. Potential ecological and economic consequences of climate-driven agricultural and silvicultural transformations in central Siberia

    Science.gov (United States)

    Tchebakova, Nadezhda M.; Zander, Evgeniya V.; Pyzhev, Anton I.; Parfenova, Elena I.; Soja, Amber J.

    2014-05-01

    Increased warming predicted from general circulation models (GCMs) by the end of the century is expected to dramatically impact Siberian forests. Both natural climate-change-caused disturbance (weather, wildfire, infestation) and anthropogenic disturbance (legal/illegal logging) has increased, and their impact on Siberian boreal forest has been mounting over the last three decades. The Siberian BioClimatic Model (SiBCliM) was used to simulate Siberian forests, and the resultant maps show a severely decreased forest that has shifted northwards and a changed composition. Predicted dryer climates would enhance the risks of high fire danger and thawing permafrost, both of which challenge contemporary ecosystems. Our current goal is to evaluate the ecological and economic consequences of climate warming, to optimise economic loss/gain effects in forestry versus agriculture, to question the relative economic value of supporting forestry, agriculture or a mixed agro-forestry at the southern forest border in central Siberia predicted to undergo the most noticeable landcover and landuse changes. We developed and used forest and agricultural bioclimatic models to predict forest shifts; novel tree species and their climatypes are introduced in a warmer climate and/or potential novel agriculture are introduced with a potential variety of crops by the end of the century. We applied two strategies to estimate climate change effects, motivated by forest disturbance. One is a genetic means of assisting trees and forests to be harmonized with a changing climate by developing management strategies for seed transfer to locations that are best ecologically suited to the genotypes in future climates. The second strategy is the establishment of agricultural lands in new forest-steppe and steppe habitats, because the forests would retreat northwards. Currently, food, forage, and biofuel crops primarily reside in the steppe and forest-steppe zones which are known to have favorable

  3. A paradigm shift toward a consistent modeling framework to assess climate impacts

    Science.gov (United States)

    Monier, E.; Paltsev, S.; Sokolov, A. P.; Fant, C.; Chen, H.; Gao, X.; Schlosser, C. A.; Scott, J. R.; Dutkiewicz, S.; Ejaz, Q.; Couzo, E. A.; Prinn, R. G.; Haigh, M.

    2017-12-01

    Estimates of physical and economic impacts of future climate change are subject to substantial challenges. To enrich the currently popular approaches of assessing climate impacts by evaluating a damage function or by multi-model comparisons based on the Representative Concentration Pathways (RCPs), we focus here on integrating impacts into a self-consistent coupled human and Earth system modeling framework that includes modules that represent multiple physical impacts. In a sample application we show that this framework is capable of investigating the physical impacts of climate change and socio-economic stressors. The projected climate impacts vary dramatically across the globe in a set of scenarios with global mean warming ranging between 2.4°C and 3.6°C above pre-industrial by 2100. Unabated emissions lead to substantial sea level rise, acidification that impacts the base of the oceanic food chain, air pollution that exceeds health standards by tenfold, water stress that impacts an additional 1 to 2 billion people globally and agricultural productivity that decreases substantially in many parts of the world. We compare the outcomes from these forward-looking scenarios against the common goal described by the target-driven scenario of 2°C, which results in much smaller impacts. It is challenging for large internationally coordinated exercises to respond quickly to new policy targets. We propose that a paradigm shift toward a self-consistent modeling framework to assess climate impacts is needed to produce information relevant to evolving global climate policy and mitigation strategies in a timely way.

  4. Ecosystem based approaches to climate adaptation

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Jensen, Anne; Termansen, Mette

    This report analyses the prospects and barriers of applying ecosystem based approaches systematically to climate adaptation in urban areas, taking the case of green roofs in Copenhagen Municipality. It looks at planning aspects of green roofs in Copenhagen as well as citizen views and preferences...... regarding green roofs using policy document analysis, interviews with city planners and deliberative valuation methods....

  5. Biological response to climate change in the Arctic Ocean: The view from the past

    Science.gov (United States)

    Cronin, Thomas M.; Cronin, Matthew A.

    2017-01-01

    The Arctic Ocean is undergoing rapid climatic changes including higher ocean temperatures, reduced sea ice, glacier and Greenland Ice Sheet melting, greater marine productivity, and altered carbon cycling. Until recently, the relationship between climate and Arctic biological systems was poorly known, but this has changed substantially as advances in paleoclimatology, micropaleontology, vertebrate paleontology, and molecular genetics show that Arctic ecosystem history reflects global and regional climatic changes over all timescales and climate states (103–107 years). Arctic climatic extremes include 25°C hyperthermal periods during the Paleocene-Eocene (56–46 million years ago, Ma), Quaternary glacial periods when thick ice shelves and sea ice cover rendered the Arctic Ocean nearly uninhabitable, seasonally sea-ice-free interglacials and abrupt climate reversals. Climate-driven biological impacts included large changes in species diversity, primary productivity, species’ geographic range shifts into and out of the Arctic, community restructuring, and possible hybridization, but evidence is not sufficient to determine whether or when major episodes of extinction occurred.

  6. Abrupt climate-independent fire regime changes

    Science.gov (United States)

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  7. A Review of the Detection Methods for Climate Regime Shifts

    Directory of Open Access Journals (Sweden)

    Qunqun Liu

    2016-01-01

    Full Text Available An abrupt climate change means that the climate system shifts from a steady state to another steady state. Study on the phenomenon and theory of the abrupt climate change is a new research field of modern climatology, and it is of great significance for the prediction of future climate change. The climate regime shift is one of the most common forms of abrupt climate change, which mainly refers to the statistical significant changes on the variable of climate system at one time scale. These detection methods can be roughly divided into five categories based on different types of abrupt changes, namely, abrupt mean value change, abrupt variance change, abrupt frequency change, abrupt probability density change, and the multivariable analysis. The main research progress of abrupt climate change detection methods is reviewed. What is more, some actual applications of those methods in observational data are provided. With the development of nonlinear science, many new methods have been presented for detecting an abrupt dynamic change in recent years, which is useful supplement for the abrupt change detection methods.

  8. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    Science.gov (United States)

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  9. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    Directory of Open Access Journals (Sweden)

    Dongsheng Zhao

    Full Text Available The impact of regional climate change on net primary productivity (NPP is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN, a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  10. Diversification of the phaseoloid legumes: effects of climate change, range expansion and habit shift.

    Science.gov (United States)

    Li, Honglei; Wang, Wei; Lin, Li; Zhu, Xiangyun; Li, Jianhua; Zhu, Xinyu; Chen, Zhiduan

    2013-01-01

    Understanding which factors have driven the evolutionary success of a group is a fundamental question in biology. Angiosperms are the most successful group in plants and have radiated and adapted to various habitats. Among angiosperms, legumes are a good example for such successful radiation and adaptation. We here investigated how the interplay of past climate changes, geographical expansion and habit shifts has promoted diversification of the phaseoloid legumes, one of the largest clades in the Leguminosae. Using a comprehensive genus-level phylogeny from three plastid markers, we estimate divergence times, infer habit shifts, test the phylogenetic and temporal diversification heterogeneity, and reconstruct ancestral biogeographical ranges. We found that the phaseoloid lineages underwent twice dramatic accumulation. During the Late Oligocene, at least six woody clades rapidly diverged, perhaps in response to the Late Oligocene warming and aridity, and a result of rapidly exploiting new ecological opportunities in Asia, Africa and Australia. The most speciose lineage is herbaceous and began to rapidly diversify since the Early Miocene, which was likely ascribed to arid climates, along with the expansion of seasonally dry tropical forests in Africa, Asia, and America. The phaseoloid group provides an excellent case supporting the idea that the interplay of ecological opportunities and key innovations drives the evolutionary success.

  11. Diversification of the phaseoloid legumes: Effects of climate change, range expansion and habit shift

    Directory of Open Access Journals (Sweden)

    Honglei eLi

    2013-10-01

    Full Text Available Understanding which factors have driven the evolutionary success of a group is a fundamental question in biology. Angiosperms are the most successful group in plants and have radiated and adapted to various habitats. Among angiosperms, legumes are a good example for such successful radiation and adaptation. We here investigated how the interplay of past climate changes, geographical expansion and habit shifts have promoted diversification of the phaseoloid legumes, one of the largest clades in the Leguminosae. Using a comprehensive genus-level phylogeny from three plastid markers, we estimate divergence times, infer habit shifts, test the phylogenetic and temporal diversification heterogeneity, and reconstruct ancestral biogeographical ranges. We found that the phaseoloid lineages underwent twice dramatic accumulation. During the Late Oligocene, at least six woody clades rapidly diverged, perhaps in response to the Late Oligocene warming and aridity, and a result of rapidly exploiting new ecological opportunities in Asia, Africa and Australia. The most speciose lineage is herbaceous and began to rapidly diversify since the Early Miocene, which was likely ascribed to arid climates, along with the expansion of seasonally dry tropical forests in Africa, Asia and America. The phaseoloid group provides an excellent case supporting the idea that the interplay of ecological opportunities and key innovations drive the evolutionary success.

  12. Systemic range shift lags among a pollinator species assemblage following rapid climate change

    DEFF Research Database (Denmark)

    Bedford, Felicity E.; Whittaker, Robert J.; Kerr, Jeremy T.

    2012-01-01

    Contemporary climate change is driving widespread geographical range shifts among many species. If species are tracking changing climate successfully, then leading populations should experience similar climatic conditions through time as new populations establish beyond historical range margins....... Here, we investigate geographical range shifts relative to changing climatic conditions among a particularly well-sampled assemblage of butterflies in Canada. We assembled observations of 81 species and measured their latitudinal displacement between two periods: 1960–1975 (a period of little climate...... change) and 1990–2005 (a period with large climate change). We find an unexpected trend for species’ northern borders to shift progressively less relative to increasing minimum winter temperatures in northern Canada. This study demonstrates a novel, systemic latitudinal gradient in lags among a large...

  13. Nitrogen cycling in heathland ecosystems and effects of climate change

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen

    Terrestrial ecosystems are currently exposed to climatic and air quality changes with increased atmospheric CO2, increased temperature and periodical droughts. At a temperate heath site this was investigated in a unique full factorial in situ experiment (CLIMAITE). The climate change treatments...

  14. Interannual Variations in Ecosystem Oxidative Ratio in Croplands, Deciduous Forest, Coniferous Forest, and Early Successional Forest Ecosystems

    Science.gov (United States)

    Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.

  15. Climate change, animal species, and habitats: Adaptation and issues (Chapter 5)

    Science.gov (United States)

    Deborah M. Finch; D. Max Smith; Olivia LeDee; Jean-Luc E. Cartron; Mark A. Rumble

    2012-01-01

    Because the rate of anthropogenic climate change exceeds the adaptive capacity of many animal and plant species, the scientific community anticipates negative consequences for ecosystems. Changes in climate have expanded, contracted, or shifted the climate niches of many species, often resulting in shifting geographic ranges. In the Great Basin, for example, projected...

  16. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate.

    Science.gov (United States)

    Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V; Cohen, Erika C; McNulty, Steven G; Aldridge, Heather D; Zhang, Yang

    2016-04-21

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m(-2) yr(-1) (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr(-1) (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr(-1)). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.

  17. Cumulative effects of planned industrial development and climate change on marine ecosystems

    Directory of Open Access Journals (Sweden)

    Cathryn Clarke Murray

    2015-07-01

    Full Text Available With increasing human population, large scale climate changes, and the interaction of multiple stressors, understanding cumulative effects on marine ecosystems is increasingly important. Two major drivers of change in coastal and marine ecosystems are industrial developments with acute impacts on local ecosystems, and global climate change stressors with widespread impacts. We conducted a cumulative effects mapping analysis of the marine waters of British Columbia, Canada, under different scenarios: climate change and planned developments. At the coast-wide scale, climate change drove the largest change in cumulative effects with both widespread impacts and high vulnerability scores. Where the impacts of planned developments occur, planned industrial and pipeline activities had high cumulative effects, but the footprint of these effects was comparatively localized. Nearshore habitats were at greatest risk from planned industrial and pipeline activities; in particular, the impacts of planned pipelines on rocky intertidal habitats were predicted to cause the highest change in cumulative effects. This method of incorporating planned industrial development in cumulative effects mapping allows explicit comparison of different scenarios with the potential to be used in environmental impact assessments at various scales. Its use allows resource managers to consider cumulative effect hotspots when making decisions regarding industrial developments and avoid unacceptable cumulative effects. Management needs to consider both global and local stressors in managing marine ecosystems for the protection of biodiversity and the provisioning of ecosystem services.

  18. Global climate change and California's natural ecosystems

    International Nuclear Information System (INIS)

    Botkin, D.B.; Nisbet, R.A.; Woodhouse, C.; Ferren, W.; Bicknell, S.; Bentley, B.

    1991-01-01

    If projections of global climate models are correct, the natural ecosystems of California might undergo major changes during the next century. Such changes might include large economic losses in timber, fisheries, and recreation; major changes in our national and state parks and forests and in our nature preserves and conservation areas; increase in extinction of endangered species; loss of large areas of existing habitats; and development of new habitats whose location and areal extent can only be surmised. Many areas currently set aside for the conservation of specific ecosystems might no longer be suitable to them. Yet, in spite of the potential seriousness of these problems, which could dwarf all other environmental changes, California is at present in a poor situation to project what the effects of global change on its natural ecosystems might be

  19. Interactions of changing climate and shifts in forest composition on stand carbon balance

    Science.gov (United States)

    Chiang Jyh-Min; Louis Iverson; Anantha Prasad; Kim Brown

    2006-01-01

    Given that climate influences forest biogeographic distribution, many researchers have created models predicting shifts in tree species range with future climate change scenarios. The objective of this study is to investigate the forest carbon consequences of shifts in stand species composition with current and future climate scenarios using such a model.

  20. Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan's Marine Protected Areas.

    Science.gov (United States)

    García Molinos, Jorge; Takao, Shintaro; Kumagai, Naoki H; Poloczanska, Elvira S; Burrows, Michael T; Fujii, Masahiko; Yamano, Hiroya

    2017-10-01

    Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA

  1. Interactive effects of climate change and biodiversity loss on ecosystem functioning.

    Science.gov (United States)

    Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F

    2018-05-01

    Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.

  2. Advances in Estimating Current and Future Effects of Climate and Management on Forest Ecosystem Carbon and Water Dynamics at Multiple Scales

    Science.gov (United States)

    Law, B. E.; Still, C. J.; Hudiburg, T. W.; Buotte, P.; Hanson, C. V.

    2017-12-01

    As we examine the integrated effects of climate variability, atmospheric CO2, and land management actions on terrestrial carbon and water processes within regions, and evaluate mitigation and adaptation options, we want our analysis to be as accurate as possible to reduce the risk of negative impacts from management decisions. The use of global land models at regional scales requires modifications for realistic projections. Model evaluation reveals knowledge and data gaps in species sensitivities to climate extremes and responses to land use change and management actions such as restoration. For example, a combination of sapflux and AmeriFlux tower measurements identifies seasonal shifts in the proportion of water vapor exchange that is due to tree transpiration, as well as changes in tree water-use efficiency associated with climate variation. Thermal measurements from an unmanned aerial system quantify canopy temperatures reached during extreme heat events, as well as tree-to-tree thermal variations, which can be related to transpiration dynamics. Diagnosis of land model performance across climate/vegetation gradients includes the combination of atmospheric CO2/CO/H2O observations from aircraft, a tall tower network, and a mobile platform, combined with inverse modeling. This approach identified an ecoregion where the Community Land Model (CLM4.5) underestimated net ecosystem production by 28%, suggesting model challenges in high productivity forests with high soil nitrogen and deep organic soils. We use land-model output of net ecosystem production, harvest and fire emissions to estimate net ecosystem carbon balance, which is input to a Life-Cycle Assessment of wood product use to estimate net carbon emissions to the atmosphere for harvest scenarios and bioenergy production. Such robust and interdisciplinary approaches are needed to more accurately quantify impacts on ecosystems and "what the atmosphere sees" in terms of greenhouse gas sources and impacts on

  3. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea.

    Science.gov (United States)

    Assis, Jorge; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, Ester Álvares

    2016-02-01

    Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L

  4. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  5. Natural resilience: healthy ecosystems as climate shock insurance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Joanna [Royal Society for the Protection of the Birds (United Kingdom); Heath, Melanie [Birdlife International (United Kingdom); Reid, Hannah

    2009-12-15

    Resilience to climate change has many roots. A healthy, biodiverse environment is increasingly recognised as key to resilience, particularly in poor communities directly dependent on natural resources. Knowledge about ways of coping with climate variability is also essential - and for many of the poor who live in climate-vulnerable regions, already an area of expertise. A look at the National Adaptation Programmes of Action of the Least Developed Countries shows that many of these nations recognize and prioritise the role that biodiversity, ecosystems and natural habitats play in adaptation. It is now up to policymakers to follow suit.

  6. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  7. Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review

    Directory of Open Access Journals (Sweden)

    Ignacio Palomo

    2017-05-01

    Full Text Available High mountain areas are experiencing some of the earliest and greatest impacts of climate change. However, knowledge on how climate change impacts multiple ecosystem services that benefit different stakeholder groups remains scattered in the literature. This article presents a review of the literature on climate change impacts on ecosystem services benefiting local communities and tourists in high mountain areas. Results show a lack of studies focused on the global South, especially where there are tropical glaciers, which are likely to be the first to disappear. Climate change impacts can be classified as impacts on food and feed, water availability, natural hazards regulation, spirituality and cultural identity, aesthetics, and recreation. In turn, climate change impacts on infrastructure and accessibility also affect ecosystem services. Several of these impacts are a direct threat to the lives of mountain peoples, their livelihoods and their culture. Mountain tourism is experiencing abrupt changes too. The magnitude of impacts make it necessary to strengthen measures to adapt to climate change in high mountain areas.

  8. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record.

    Science.gov (United States)

    Hannisdal, Bjarte; Haaga, Kristian Agasøster; Reitan, Trond; Diego, David; Liow, Lee Hsiang

    2017-07-12

    Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans. © 2017 The Authors.

  9. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: a comparative assessment

    DEFF Research Database (Denmark)

    Kirkman, Stephen P.; Yemane, Dawit; Atkinson, Lara J.

    2015-01-01

    Using long‐term survey data, changes in demersal faunal communities in the Benguela Current Large Marine Ecosystem were analysed at community and population levels to provide a comparative overview of the occurrence and timing of regime shifts. For South Africa, the timing of a community‐level sh......Using long‐term survey data, changes in demersal faunal communities in the Benguela Current Large Marine Ecosystem were analysed at community and population levels to provide a comparative overview of the occurrence and timing of regime shifts. For South Africa, the timing of a community...

  10. Data-driven diagnostics of terrestrial carbon dynamics over North America

    Science.gov (United States)

    Jingfeng Xiao; Scott V. Ollinger; Steve Frolking; George C. Hurtt; David Y. Hollinger; Kenneth J. Davis; Yude Pan; Xiaoyang Zhang; Feng Deng; Jiquan Chen; Dennis D. Baldocchi; Bevery E. Law; M. Altaf Arain; Ankur R. Desai; Andrew D. Richardson; Ge Sun; Brian Amiro; Hank Margolis; Lianhong Gu; Russell L. Scott; Peter D. Blanken; Andrew E. Suyker

    2014-01-01

    The exchange of carbon dioxide is a key measure of ecosystem metabolism and a critical intersection between the terrestrial biosphere and the Earth's climate. Despite the general agreement that the terrestrial ecosystems in North America provide a sizeable carbon sink, the size and distribution of the sink remain uncertain. We use a data-driven approach to upscale...

  11. Ecosystem Management: Tomorrow’s Approach to Enhancing Food Security under a Changing Climate

    Directory of Open Access Journals (Sweden)

    Mike Rivington

    2011-06-01

    Full Text Available This paper argues that a sustainable ecosystem management approach is vital to ensure the delivery of essential ‘life support’ ecosystem services and must be mainstreamed into societal conscience, political thinking and economic processes. Feeding the world at a time of climate change, environmental degradation, increasing human population and demand for finite resources requires sustainable ecosystem management and equitable governance. Ecosystem degradation undermines food production and the availability of clean water, hence threatening human health, livelihoods and ultimately societal stability. Degradation also increases the vulnerability of populations to the consequences of natural disasters and climate change impacts. With 10 million people dying from hunger each year, the linkages between ecosystems and food security are important to recognize. Though we all depend on ecosystems for our food and water, about seventy per cent of the estimated 1.1 billion people in poverty around the world live in rural areas and depend directly on the productivity of ecosystems for their livelihoods. Healthy ecosystems provide a diverse range of food sources and support entire agricultural systems, but their value to food security and sustainable livelihoods are often undervalued or ignored. There is an urgent need for increased financial investment for integrating ecosystem management with food security and poverty alleviation priorities. As the world’s leaders worked towards a new international climate change agenda in Cancun, Mexico, 29 November–10 December 2010 (UNFCCC COP16, it was clear that without a deep and decisive post-2012 agreement and major concerted effort to reduce the food crisis, the Millennium Development Goals will not be attained. Political commitment at the highest level will be needed to raise the profile of ecosystems on the global food agenda. It is recommended that full recognition and promotion be given of the linkages

  12. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...... that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped...

  13. Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems

    Directory of Open Access Journals (Sweden)

    Junjiong Shao

    2016-08-01

    Full Text Available Climatic variables not only directly affect the interannual variability (IAV in net ecosystem exchange of CO2 (NEE but also indirectly drive it by changing the physiological parameters. Identifying these direct and indirect paths can reveal the underlying mechanisms of carbon (C dynamics. In this study, we applied a path analysis using flux data from 65 sites to quantify the direct and indirect climatic effects on IAV in NEE and to evaluate the potential relationships among the climatic variables and physiological parameters that represent physiology and phenology of ecosystems. We found that the maximum photosynthetic rate was the most important factor for the IAV in gross primary productivity (GPP, which was mainly induced by the variation in vapour pressure deficit. For ecosystem respiration (RE, the most important drivers were GPP and the reference respiratory rate. The biome type regulated the direct and indirect paths, with distinctive differences between forests and non-forests, evergreen needleleaf forests and deciduous broadleaf forests, and between grasslands and croplands. Different paths were also found among wet, moist and dry ecosystems. However, the climatic variables can only partly explain the IAV in physiological parameters, suggesting that the latter may also result from other biotic and disturbance factors. In addition, the climatic variables related to NEE were not necessarily the same as those related to GPP and RE, indicating the emerging difficulty encountered when studying the IAV in NEE. Overall, our results highlight the contribution of certain physiological parameters to the IAV in C fluxes and the importance of biome type and multi-year water conditions, which should receive more attention in future experimental and modelling research.

  14. Drivers of treeline shift in different European mountains

    Czech Academy of Sciences Publication Activity Database

    Cudlín, Pavel; Klopčič, M.; Tognetti, R.; Máliš, F.; Alados, C. L.; Bebi, P.; Grunewald, K.; Zhiyanski, M.; Andonowski, V.; La Porta, N.; Bratanova-Doncheva, S.; Kachaunová, E.; Edwards-Jonášová, Magda; Ninot, J. M.; Rigling, A.; Hofgaard, A.; Hlásný, T.; Skalák, Petr; Wielgolaski, F. E.

    2017-01-01

    Roč. 73, 1-2 (2017), s. 135-150 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD14039 Institutional support: RVO:67179843 Keywords : Vegetation zone shift * Climate change * Climate models * Treeline ecotone * European mountains * Ecosystem services Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.578, year: 2016

  15. The Inter-Annual Variability Analysis of Carbon Exchange in Low Artic Fen Uncovers The Climate Sensitivity And The Uncertainties Around Net Ecosystem Exchange Partitioning

    Science.gov (United States)

    Blanco, E. L.; Lund, M.; Williams, M. D.; Christensen, T. R.; Tamstorf, M. P.

    2015-12-01

    An improvement in our process-based understanding of CO2 exchanges in the Arctic, and their climate sensitivity, is critical for examining the role of tundra ecosystems in changing climates. Arctic organic carbon storage has seen increased attention in recent years due to large potential for carbon releases following thaw. Our knowledge about the exact scale and sensitivity for a phase-change of these C stocks are, however, limited. Minor variations in Gross Primary Production (GPP) and Ecosystem Respiration (Reco) driven by changes in the climate can lead to either C sink or C source states, which likely will impact the overall C cycle of the ecosystem. Eddy covariance data is usually used to partition Net Ecosystem Exchange (NEE) into GPP and Reco achieved by flux separation algorithms. However, different partitioning approaches lead to different estimates. as well as undefined uncertainties. The main objectives of this study are to use model-data fusion approaches to (1) determine the inter-annual variability in C source/sink strength for an Arctic fen, and attribute such variations to GPP vs Reco, (2) investigate the climate sensitivity of these processes and (3) explore the uncertainties in NEE partitioning. The intention is to elaborate on the information gathered in an existing catchment area under an extensive cross-disciplinary ecological monitoring program in low Arctic West Greenland, established under the auspices of the Greenland Ecosystem Monitoring (GEM) program. The use of such a thorough long-term (7 years) dataset applied to the exploration in inter-annual variability of carbon exchange, related driving factors and NEE partition uncertainties provides a novel input into our understanding about land-atmosphere CO2 exchange.

  16. Impact of climate change on carbon cycle in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kankaala, P; Ojala, A; Tulonen, T; Haapamaeki, J; Arvola, L [Helsinki Univ., Lammi (Finland). Lammi Biological Station

    1997-12-31

    The impacts of the expected climate change on Finnish lake ecosystems were studied with the biota of the mesohumic Lake Paeaejaervi, southern Finland. Experimental conditions, from small-scale experiments on single species level to a large-scale ecosystem manipulation, were established to simulate directly the future climate and/or loading of nutrients and dissolved organic matter (DOM) from the drainage area. The experimental studies were accomplished by modelling the carbon flow in the pelagic food web as well as the growth of littoral macrophytes. The main hypothese tested were as follows: As a consequence of the climate change (rising temperature and increasing precipitation) the loading of nutrients and dissolved organic matter (DOM) from the drainage area to the lake will increase. In the pelagic zone this will be first reflected i higher productivity of primary producers and bacteria, but will later affect the entire food chain. Increase in atmospheric CO{sub 2} concentration and ambient temperature as well as longer growing season will enhance the overall productivity of littoral macrophytes. The higher productivity of the littoral zone will be reflected in the pelagic zone an thus may change the whole ecosystem of the lake

  17. Impact of climate change on carbon cycle in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kankaala, P.; Ojala, A.; Tulonen, T.; Haapamaeki, J.; Arvola, L. [Helsinki Univ., Lammi (Finland). Lammi Biological Station

    1996-12-31

    The impacts of the expected climate change on Finnish lake ecosystems were studied with the biota of the mesohumic Lake Paeaejaervi, southern Finland. Experimental conditions, from small-scale experiments on single species level to a large-scale ecosystem manipulation, were established to simulate directly the future climate and/or loading of nutrients and dissolved organic matter (DOM) from the drainage area. The experimental studies were accomplished by modelling the carbon flow in the pelagic food web as well as the growth of littoral macrophytes. The main hypothese tested were as follows: As a consequence of the climate change (rising temperature and increasing precipitation) the loading of nutrients and dissolved organic matter (DOM) from the drainage area to the lake will increase. In the pelagic zone this will be first reflected i higher productivity of primary producers and bacteria, but will later affect the entire food chain. Increase in atmospheric CO{sub 2} concentration and ambient temperature as well as longer growing season will enhance the overall productivity of littoral macrophytes. The higher productivity of the littoral zone will be reflected in the pelagic zone an thus may change the whole ecosystem of the lake

  18. Managing Climate Change Refugia for Biodiversity Conservation

    Science.gov (United States)

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  19. Integrating Climate and Ecosystem-Response Sciences in Temperate Western North American Mountains: The CIRMOUNT Initiative

    Science.gov (United States)

    Millar, C. I.; Fagre, D. B.

    2004-12-01

    Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate

  20. Modeling the response of plants and ecosystems to elevated CO sub 2 and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth's surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society's ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  1. Modeling the response of plants and ecosystems to elevated CO{sub 2} and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth`s surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society`s ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  2. Climate Change Transforms Fire Regimes but Does not Eliminate Forest Carbon Sequestration in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Henne, P. D.; Hawbaker, T. J.; Berryman, E.

    2017-12-01

    suggest that the GYE can maintain a C sink through 2100. However, C stocks will likely shift to higher elevations, and forests will be less resilient to disturbance, in a warmer future. Our landscape-level approach identifies regions likely to maintain high conservation value and ecosystem services under multiple climate scenarios.

  3. Climatic drivers for multidecadal shifts in solute transport and methane production zones within a large peat basin

    Science.gov (United States)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases, but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43 year time series of the pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multidecadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 to 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  4. Structural and functional loss in restored wetland ecosystems.

    Directory of Open Access Journals (Sweden)

    David Moreno-Mateos

    2012-01-01

    Full Text Available Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages, and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils, remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha and wetlands restored in warm (temperate and tropical climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.

  5. Impact of global climate change and fire on the occurrence and function of understorey legumes in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Reverchon, Frederique; Xu, Zhihong; Blumfield, Timothy J.; Chen, Chengrong; Abdullah, Kadum M. [Griffith Univ., Nathan, QLD (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2012-02-15

    The objective of this review was to provide a better understanding of how global climate change and fire influence the occurrence of understorey legumes and thereby biological nitrogen (N) fixation rates in forest ecosystems. Legumes are interesting models since they represent an interface between the soil, plant, and microbial compartments, and are directly linked to nutrient cycles through their ability to fix N. As such, they are likely to be affected by environmental changes. Biological N fixation has been shown to increase under enriched CO{sub 2} conditions, but is constrained by the availability of phosphorus and water. Climate change can also influence the species composition of legumes and their symbionts through warming, altered rainfall patterns, or changes in soil physicochemistry, which could modify the effectiveness of the symbiosis. Additionally, global climate change may increase the occurrence and intensity of forest wildfires thereby further influencing the distribution of legumes. The establishment of leguminous species is generally favored by fire, as is N{sub 2} fixation. This fixed N could therefore replenish the N lost through volatilization during the fire. However, fire may also generate shifts in the associated microbial community which could affect the outcome of the symbiosis. Understorey legumes are important functional species, and even when they cannot reasonably be expected to reestablish the nutrient balance in forest soils, they may be used as indicators to monitor nutrient fluxes and the response of forest ecosystems to changing environmental conditions. This would be helpful to accurately model ecosystem N budgets, and since N is often a limiting factor to plant growth and a major constraint on C storage in ecosystems, would allow us to assess more precisely the potential of these forests for C sequestration. (orig.)

  6. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    Science.gov (United States)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  7. Challenges for Ecosystem Services Provided by Coral Reefs In the Face of Climate Change

    Science.gov (United States)

    Kikuchi, R. K.; Elliff, C. I.

    2014-12-01

    Coral reefs provide many ecosystem services of which coastal populations are especially dependent upon, both in cases of extreme events and in daily life. However, adaptation to climate change is still relatively unknown territory regarding the ecosystem services provided by coastal environments, such as coral reefs. Management strategies usually consider climate change as a distant issue and rarely include ecosystem services in decision-making. Coral reefs are among the most vulnerable environments to climate change, considering the impact that increased ocean temperature and acidity have on the organisms that compose this ecosystem. If no actions are taken, the most likely scenario to occur will be of extreme decline in the ecosystem services provided by coral reefs. Loss of biodiversity due to the pressures of ocean warming and acidification will lead to increased price of seafood products, negative impact on food security, and ecological imbalances. Also, sea-level rise and fragile structures due to carbonate dissolution will increase vulnerability to storms, which can lead to shoreline erosion and ultimately threaten coastal communities. Both these conditions will undoubtedly affect recreation and tourism, which are often the most important use values in the case of coral reef systems. Adaptation strategies to climate change must take on an ecosystem-based approach with continuous monitoring programs, so that multiple ecosystem services are considered and not only retrospective trends are analyzed. Brazilian coral reefs have been monitored on a regular basis since 2000 and, considering that these marginal coral reefs of the eastern Atlantic are naturally under stressful conditions (e.g. high sedimentation rates), inshore reefs of Brazil, such as those in Tinharé-Boipeba, have shown lower vitality rates due to greater impacts from the proximity to the coastal area (e.g. pollution, overfishing, sediment run-off). This chronic negative impact must be addressed

  8. Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes

    Science.gov (United States)

    Song, Bing; Sun, Jian; Zhou, Qingping; Zong, Ning; Li, Linghao; Niu, Shuli

    2017-09-01

    Increases in nitrogen (N) deposition can greatly stimulate ecosystem net carbon (C) sequestration through positive N-induced effects on plant productivity. However, how net ecosystem CO2 exchange (NEE) and its components respond to different N addition rates remains unclear. Using an N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32 gN m-2 yr-1) in an alpine meadow on the Qinghai-Tibetan Plateau, we explored the responses of different ecosystem C fluxes to an N addition gradient and revealed mechanisms underlying the dynamic responses. Results showed that NEE, ecosystem respiration (ER), and gross ecosystem production (GEP) all increased linearly with N addition rates in the first year of treatment but shifted to N saturation responses in the second year with the highest NEE (-7.77 ± 0.48 µmol m-2 s-1) occurring under an N addition rate of 8 gN m-2 yr-1. The saturation responses of NEE and GEP were caused by N-induced accumulation of standing litter, which limited light availability for plant growth under high N addition. The saturation response of ER was mainly due to an N-induced saturation response of aboveground plant respiration and decreasing soil microbial respiration along the N addition gradient, while decreases in soil microbial respiration under high N addition were caused by N-induced reductions in soil pH. We also found that various components of ER, including aboveground plant respiration, soil respiration, root respiration, and microbial respiration, responded differentially to the N addition gradient. These results reveal temporal dynamics of N impacts and the rapid shift in ecosystem C fluxes from N limitation to N saturation. Our findings bring evidence of short-term initial shifts in responses of ecosystem C fluxes to increases in N deposition, which should be considered when predicting long-term changes in ecosystem net C sequestration.

  9. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models.

    Science.gov (United States)

    Bonan, Gordon B; Doney, Scott C

    2018-02-02

    Many global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields. To achieve this, the science of climate prediction must be extended to a more multifaceted Earth system prediction that includes the biosphere and its resources. Copyright © 2018, American Association for the Advancement of Science.

  10. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    Science.gov (United States)

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (permafrost ecosystems. © 2015 John Wiley & Sons Ltd.

  11. Migrating Seals on Shifting Sands: Testing Alternate Hypotheses for Holocene Ecological and Cultural Change on the California Coast

    Science.gov (United States)

    Koch, P. L.; Newsome, S. D.; Gifford-Gonzalez, D.

    2001-12-01

    The coast of California presented Holocene humans with a diverse set of ecosystems and geomorphic features, from large islands off a semi-desert mainland in the south, to a mix of sandy and rocky beaches abutting grassland and oak forest in central California, to a rocky coast hugged by dense coniferous forest in the north. Theories explaining trends in human resource use, settlement patterns, and demography are equally diverse, but can be categorized as 1) driven by diffusion of technological innovations from outside the region, 2) driven by population growth leading to more intensive extraction of resources, or 3) driven by climatic factors that affect the resource base. With respect to climatic shifts, attention has focused on a possible regime shift ca. 5500 BP, following peak Holocene warming, and on evidence for massive droughts and a drop in marine productivity ca. 1000 BP. While evidence for a coincidence between climatic, cultural, and ecological change is present, albeit complex, in southern California, similar data are largely lacking from central and northern California. We are using isotopic and archaeofaunal analysis to test ideas for ecological and cultural change in central California. Three features of the archaeological record are relevant. First, overall use of marine resources by coastal communities declined after 1000 BP. Second, northern fur seals, which are common in earlier sites, drop in abundance relative to remaining marine animals. We have previously established that Holocene humans in central California were hunting gregariously-breeding northern fur seals from mainland rookeries. These seals breed exclusively on offshore islands today, typically at high latitudes. Their restriction to these isolated sites today may be a response to human overexploitation of their mainland rookeries prehistorically. Finally, collection of oxygen and carbon isotope data from mussels at the archaeological sites, while still in a preliminary phase, has

  12. Tipping elements in the Arctic marine ecosystem.

    Science.gov (United States)

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  13. Noise-induced stability in dryland plant ecosystems.

    Science.gov (United States)

    D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2005-08-02

    Dryland plant ecosystems tend to exhibit bistable dynamics with two preferential configurations of bare and vegetated soils. Climate fluctuations are usually believed to act as a source of disturbance on these ecosystems and to reduce their stability and resilience. In contrast, this work shows that random interannual fluctuations of precipitation may lead to the emergence of an intermediate statistically stable condition between the two stable states of the deterministic dynamics of vegetation. As a result, there is an enhancement of ecosystem resilience and a decrease in the likelihood of catastrophic shifts to the desert state.

  14. Climate Shifts and the Role of Nano Structured Particles in the Atmosphere

    NARCIS (Netherlands)

    Ursem, W.N.J.

    2015-01-01

    A global net sum equilibrium in heat exchange is a fact and thus a global climate change doesn’t exist, but climate shifts in climate cells, especially in the northern temperate cell, do. The global climate has been ever since homeostatic, and has recuperated far huger climate impacts in the past.

  15. North by north-west: climate change and directions of density shifts in birds.

    Science.gov (United States)

    Lehikoinen, Aleksi; Virkkala, Raimo

    2016-03-01

    There is increasing evidence that climate change shifts species distributions towards poles and mountain tops. However, most studies are based on presence-absence data, and either abundance or the observation effort has rarely been measured. In addition, hardly any studies have investigated the direction of shifts and factors affecting them. Here, we show using count data on a 1000 km south-north gradient in Finland, that between 1970-1989 and 2000-2012, 128 bird species shifted their densities, on average, 37 km towards the north north-east. The species-specific directions of the shifts in density were significantly explained by migration behaviour and habitat type. Although the temperatures have also moved on average towards the north north-east (186 km), the species-specific directions of the shifts in density and temperature did not correlate due to high variation in density shifts. Findings highlight that climate change is unlikely the only driver of the direction of species density shifts, but species-specific characteristics and human land-use practices are also influencing the direction. Furthermore, the alarming results show that former climatic conditions in the north-west corner of Finland have already moved out of the country. This highlights the need for an international approach in research and conservation actions to mitigate the impacts of climate change. © 2015 John Wiley & Sons Ltd.

  16. Ecosystem services and livelihoods - Vulnerability and adaption to a changing climate. VACCIA Synthesis Report

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, I.; Mattson, T.; Niemelae, E.; Vuorenmaa, J.; Forsius, M. (eds.)

    2011-12-15

    This report is a summary of results from the project Vulnerability Assessment of Ecosystem Services for Climate Change Impacts and Adaptation (VACCIA), funded by the European Union's LIFE+ programme. Partners in the extensive three-year (2009-2011) project, coordinated by the Finnish Environment Institute (SYKE), included the Finnish Meteorological Institute, the University of Helsinki, the University of Jyvaeskylae and the University of Oulu. Key results from the 13 VACCIA Actions are compiled in the summary. The Actions assessed the threats and challenges posed by climate change to ecosystem services and livelihoods, and suggested methods for adapting to changing conditions. The report also highlights further research needs. The publication's introduction describes the ecosystem service concept and provides an insight into policy processes for handling ecosystem services and their adaptation to a changing climate. Results of the Actions are assembled in the following three chapters, the first presenting key methods used in the project for monitoring changes and predicting future changes, the second describing the change in ecosystem services, and the third reviewing vulnerability and adaptation. An extensive summary section is also included. Annexed tables present the project's key results and conclusions compactly, alongside the resulting adaptation challenges and needs for further research. Monitoring and prediction of changes is based, e.g. on climate and air quality scenarios produced by the project, and remote sensing and geographic information materials. Of ecosystem services, those produced by catchments and water bodies are examined, alongside changes in the biodiversity of coastal, water and forest environments, studied with the help of sample species. Ecosystem services needed by urban areas are examined from the viewpoint of climate change and changes in land use. Among livelihoods, agriculture, forestry, fisheries and tourism are

  17. Climate change and the marine ecosystem of the western Antarctic Peninsula

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K.A; Smith, Raymond C

    2006-01-01

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading. PMID:17405211

  18. Climate change and the marine ecosystem of the western Antarctic Peninsula.

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K A; Smith, Raymond C

    2007-01-29

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading.

  19. Vegetation coupling to global climate: Trajectories of vegetation change and phenology modeling from satellite observations

    Science.gov (United States)

    Fisher, Jeremy Isaac

    Important systematic shifts in ecosystem function are often masked by natural variability. The rich legacy of over two decades of continuous satellite observations provides an important database for distinguishing climatological and anthropogenic ecosystem changes. Examples from semi-arid Sudanian West Africa and New England (USA) illustrate the response of vegetation to climate and land-use. In Burkina Faso, West Africa, pastoral and agricultural practices compete for land area, while degradation may follow intensification. The Nouhao Valley is a natural experiment in which pastoral and agricultural land uses were allocated separate, coherent reserves. Trajectories of annual net primary productivity were derived from 18 years of coarse-grain (AVHRR) satellite data. Trends suggested that pastoral lands had responded rigorously to increasing rainfall after the 1980's droughts. A detailed analysis at Landsat resolution (30m) indicated that the increased vegetative cover was concentrated in the river basins of the pastoral region, implying a riparian wood expansion. In comparison, riparian cover was reduced in agricultural regions. We suggest that broad-scale patterns of increasing semi-arid West African greenness may be indicative of climate variability, whereas local losses may be anthropogenic in nature. The contiguous deciduous forests, ocean proximity, topography, and dense urban developments of New England provide an ideal landscape to examine influences of climate variability and the impact of urban development vegetation response. Spatial and temporal patterns of interannual climate variability were examined via green leaf phenology. Phenology, or seasonal growth and senescence, is driven by deficits of light, temperature, and water. In temperate environments, phenology variability is driven by interannual temperature and precipitation shifts. Average and interannual phenology analyses across southern New England were conducted at resolutions of 30m (Landsat

  20. Impact intensities of climatic changes on grassland ecosystems in ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... Construction of the impact intensity model of climatic changes on grassland ecosystem ... the temperature and rainfall (Sun and Mu, 2011). Thus, the study ... of the equation, the study transformed the measurement unit Mu of.

  1. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science.

    Science.gov (United States)

    Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T

    2018-02-01

    Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.

  2. Predicting shifting sustainability tradeoffs in marine finfish aquaculture under climate change.

    Science.gov (United States)

    Sarà, Gianluca; Gouhier, Tarik C; Brigolin, Daniele; Porporato, Erika M D; Mangano, M Cristina; Mirto, Simone; Mazzola, Antonio; Pastres, Roberto

    2018-05-03

    Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio-temporal shifts in critical trade-offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 gC m -2 d -1 ) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade-offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems

    Science.gov (United States)

    Linares, C.; Vidal, M.; Canals, M.; Kersting, D. K.; Amblas, D.; Aspillaga, E.; Cebrián, E.; Delgado-Huertas, A.; Díaz, D.; Garrabou, J.; Hereu, B.; Navarro, L.; Teixidó, N.; Ballesteros, E.

    2015-01-01

    Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications. PMID:26511045

  4. Spatiotemporal analysis of the effect of climate change on vegetation health in the Drakensberg Mountain Region of South Africa.

    Science.gov (United States)

    Mukwada, Geoffrey; Manatsa, Desmond

    2018-05-24

    The impact of climate change on mountain ecosystems has been in the spotlight for the past three decades. Climate change is generally considered to be a threat to ecosystem health in mountain regions. Vegetation indices can be used to detect shifts in ecosystem phenology and climate change in mountain regions while satellite imagery can play an important role in this process. However, what has remained problematic is determining the extent to which ecosystem phenology is affected by climate change under increasingly warming conditions. In this paper, we use climate and vegetation indices that were derived from satellite data to investigate the link between ecosystem phenology and climate change in the Namahadi Catchment Area of the Drakensberg Mountain Region of South Africa. The time series for climate indices as well as those for gridded precipitation and temperature data were analyzed in order to determine climate shifts, and concomitant changes in vegetation health were assessed in the resultant epochs using vegetation indices. The results indicate that vegetation indices should only be used to assess trends in climate change under relatively pristine conditions, where human influence is limited. This knowledge is important for designing climate change monitoring strategies that are based on ecosystem phenology and vegetation health.

  5. Climate Change Altered Disturbance Regimes in High Elevation Pine Ecosystems

    Science.gov (United States)

    Logan, J. A.

    2004-12-01

    Insects in aggregate are the greatest cause of forest disturbance. Outbreaks of both native and exotic insects can be spectacular events in both their intensity and spatial extent. In the case of native species, forest ecosystems have co-evolved (or at least co-adapted) in ways that incorporate these disturbances into the normal cycle of forest maturation and renewal. The time frame of response to changing climate, however, is much shorter for insects (typically one year) than for their host forests (decades or longer). As a result, outbreaks of forest insects, particularly bark beetles, are occurring at unprecedented levels throughout western North America, resulting in the loss of biodiversity and potentially entire ecosystems. In this talk, I will describe one such ecosystem, the whitebark pine association at high elevations in the north-central Rocky Mountains of the United States. White bark pines are keystone species, which in consort with Clark's nutcracker, build entire ecosystems at high elevations. These ecosystems provide valuable ecological services, including the distribution and abundance of water resources. I will briefly describe the keystone nature of whitebark pine and the historic role of mountain pine beetle disturbance in these ecosystems. The mountain pine beetle is the most important outbreak insect in forests of the western United States. Although capable of spectacular outbreak events, in historic climate regimes, outbreak populations were largely restricted to lower elevation pines; for example, lodgepole and ponderosa pines. The recent series of unusually warm years, however, has allowed this insect to expand its range into high elevation, whitebark pine ecosystems with devastating consequences. The aspects of mountain pine beetle thermal ecology that has allowed it to capitalize so effectively on a warming climate will be discussed. A model that incorporates critical thermal attributes of the mountain pine beetle's life cycle was

  6. The influence of climate variability and change on the science and practice of restoration ecology

    Science.gov (United States)

    Donald A. Falk; Connie Millar

    2016-01-01

    Variation in Earth’s climate system has always been a primary driver of ecosystem processes and biological evolution. In recent decades, however, the prospect of anthropogenically driven change to the climate system has become an increasingly dominant concern for scientists and conservation biologists. Understanding how ecosystems may...

  7. Identifying Shifts in Leaf-Litter Ant Assemblages (Hymenoptera: Formicidae across Ecosystem Boundaries Using Multiple Sampling Methods.

    Directory of Open Access Journals (Sweden)

    Michal Wiezik

    Full Text Available Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting and open habitats (pitfall trapping, and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24 than litter sifting (16. Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated

  8. Identifying Shifts in Leaf-Litter Ant Assemblages (Hymenoptera: Formicidae) across Ecosystem Boundaries Using Multiple Sampling Methods.

    Science.gov (United States)

    Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin

    2015-01-01

    Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling

  9. Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain.

    Science.gov (United States)

    Fang, Jiannong; Peringer, Alexander; Stupariu, Mihai-Sorin; Pǎtru-Stupariu, Ileana; Buttler, Alexandre; Golay, Francois; Porté-Agel, Fernando

    2018-10-15

    Many mountainous regions with high wind energy potential are characterized by multi-scale variabilities of vegetation in both spatial and time dimensions, which strongly affect the spatial distribution of wind resource and its time evolution. To this end, we developed a coupled interdisciplinary modeling framework capable of assessing the shifts in wind energy potential following land-use driven vegetation dynamics in complex mountain terrain. It was applied to a case study area in the Romanian Carpathians. The results show that the overall shifts in wind energy potential following the changes of vegetation pattern due to different land-use policies can be dramatic. This suggests that the planning of wind energy project should be integrated with the land-use planning at a specific site to ensure that the expected energy production of the planned wind farm can be reached over its entire lifetime. Moreover, the changes in the spatial distribution of wind and turbulence under different scenarios of land-use are complex, and they must be taken into account in the micro-siting of wind turbines to maximize wind energy production and minimize fatigue loads (and associated maintenance costs). The proposed new modeling framework offers, for the first time, a powerful tool for assessing long-term variability in local wind energy potential that emerges from land-use change driven vegetation dynamics over complex terrain. Following a previously unexplored pathway of cause-effect relationships, it demonstrates a new linkage of agro- and forest policies in landscape development with an ultimate trade-off between renewable energy production and biodiversity targets. Moreover, it can be extended to study the potential effects of micro-climatic changes associated with wind farms on vegetation development (growth and patterning), which could in turn have a long-term feedback effect on wind resource distribution in mountainous regions. Copyright © 2018 Elsevier B.V. All rights

  10. Climatic Drivers for Multi-Decadal Shifts in Solute Transport and Methane Production Zones within a Large Peat Basin

    Science.gov (United States)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Delta C-14 with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  11. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations

    Science.gov (United States)

    Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.

    2013-09-01

    Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our

  12. The potential of Norwegian ecosystems for climate mitigation and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, Graciela M.

    2012-07-01

    The concept of ecosystem services encompasses the many benefits that society receives from nature and that are often taken for granted. The conceptual framework highlights the connection between ecosystems and its components, and human well-being, and aims to complement current conservation measures and practices which have turned to be insufficient to achieve the 2010 targets of controlling the drivers of biodiversity loss. Ecosystem services are the aspects of nature that society uses, consumes, or enjoys. In some cases, i.e. when individuals or the society make choices that imply the allocation of resources, the benefits from nature have an economic dimension and can potentially be attached an economic value. At the same time many other aspects of nature are valuable but cannot be valued in an economic sense because they are not associated with social or individual economic choices. This report is about some of the benefits that society receives form nature and that are linked with the challenges that society faces regarding climate change. Two areas in which nature brings benefits to society are highlighted and supported with examples which show the ecological and biological characteristics and processes that underpin the level of service supply. The first one is associated with the capacity of nature to counteract or mitigate the increase in global greenhouse gas emissions. This benefit is ultimately delivered by the growth of plants and the processes that accumulate carbon in biomass and in the soil. In addition, natural vegetation and undisturbed soil in terrestrial ecosystems form large reservoirs of carbon that are released as carbon dioxide when the vegetation cover and the soil are transformed through burning, tillage and draining, or through soil erosion. A second group of benefits is related to the capacity of nature to buffer against hazards produced by climatic extremes, for example, events with high rainfall which are often the cause of floods and

  13. Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors.

    Science.gov (United States)

    Huang, Qiongyu; Sauer, John R; Dubayah, Ralph O

    2017-09-01

    Shifts in species distributions are major fingerprint of climate change. Examining changes in species abundance structures at a continental scale enables robust evaluation of climate change influences, but few studies have conducted these evaluations due to limited data and methodological constraints. In this study, we estimate temporal changes in abundance from North American Breeding Bird Survey data at the scale of physiographic strata to examine the relative influence of different components of climatic factors and evaluate the hypothesis that shifting species distributions are multidirectional in resident bird species in North America. We quantify the direction and velocity of the abundance shifts of 57 permanent resident birds over 44 years using a centroid analysis. For species with significant abundance shifts in the centroid analysis, we conduct a more intensive correlative analysis to identify climate components most strongly associated with composite change of abundance within strata. Our analysis focus on two contrasts: the relative importance of climate extremes vs. averages, and of temperature vs. precipitation in strength of association with abundance change. Our study shows that 36 species had significant abundance shifts over the study period. The average velocity of the centroid is 5.89 km·yr -1 . The shifted distance on average covers 259 km, 9% of range extent. Our results strongly suggest that the climate change fingerprint in studied avian distributions is multidirectional. Among 6 directions with significant abundance shifts, the northwestward shift was observed in the largest number of species (n = 13). The temperature/average climate model consistently has greater predictive ability than the precipitation/extreme climate model in explaining strata-level abundance change. Our study shows heterogeneous avian responses to recent environmental changes. It highlights needs for more species-specific approaches to examine contributing

  14. The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins.

    Directory of Open Access Journals (Sweden)

    Alessandra Conversi

    Full Text Available BACKGROUND: Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. PRINCIPAL FINDINGS: In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient. We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. CONCLUSIONS: Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts

  15. The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins.

    Science.gov (United States)

    Conversi, Alessandra; Fonda Umani, Serena; Peluso, Tiziana; Molinero, Juan Carlos; Santojanni, Alberto; Edwards, Martin

    2010-05-19

    Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin

  16. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate*

    Energy Technology Data Exchange (ETDEWEB)

    Bonfils, Céline J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-12-01

    The El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. Most climate models project an increase in the frequency of extreme El Niño events under increased greenhouse-gas (GHG) forcing. However, it is unclear how other aspects of ENSO and ENSO-driven teleconnections will evolve in the future. Here, we identify in 20th century sea-surface temperature (SST) observations a time-invariant ENSO-like (ENSOL) pattern that is largely uncontaminated by GHG forcing. We use this pattern to investigate the future precipitation (P) response to ENSO-like SST anomalies. Models that better capture observed ENSOL characteristics produce P teleconnection patterns that are in better accord with observations and more stationary in the 21st century. We decompose the future P response to ENSOL into the sum of three terms: (1) the change in P mean state, (2) the historical P response to ENSOL, and (3) a future enhancement in the P response to ENSOL. In many regions, this last term can aggravate the P extremes associated with ENSO variability. This simple decomposition allows us to identify regions likely to experience ENSOL-induced P changes that are without precedent in the current climate.

  17. Ecohydrology of adjacent sagebrush and lodgepole pine ecosystems: the consequences of climate change and disturbance

    Science.gov (United States)

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.

    2014-01-01

    Sagebrush steppe and lodgepole pine forests are two of the most widespread vegetation types in the western United States and they play crucial roles in the hydrologic cycle of these water-limited regions. We used a process-based ecosystem water model to characterize the potential impact of climate change and disturbance (wildfire and beetle mortality) on water cycling in adjacent sagebrush and lodgepole pine ecosystems. Despite similar climatic and topographic conditions between these ecosystems at the sites examined, lodgepole pine, and sagebrush exhibited consistent differences in water balance, notably more evaporation and drier summer soils in the sagebrush and greater transpiration and less water yield in lodgepole pine. Canopy disturbances (either fire or beetle) have dramatic impacts on water balance and availability: reducing transpiration while increasing evaporation and water yield. Results suggest that climate change may reduce snowpack, increase evaporation and transpiration, and lengthen the duration of dry soil conditions in the summer, but may have uncertain effects on drainage. Changes in the distribution of sagebrush and lodgepole pine ecosystems as a consequence of climate change and/or altered disturbance regimes will likely alter ecosystem water balance.

  18. Climate change damage functions in LCA

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Beier, Claus; Bagger Jørgensen, Rikke

    , their properties, goods and services. In: Climate change 2007. Cambridge, Cambridge University Press, p. 211-272. [2] Mikkelsen TN, Beier C, et al. (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought – the CLIMAITE project. Functional Ecology, 22, 185-195. [3...... will be variable (2). Modeling exercises suggest large-scale range shifts of the major biomes of the world (1). The unknown magnitude of future GHG emissions and the complexity of the climate-carbon system induce large uncertainties in the projected changes. A changed climate may result in new interactions and new...... directions of ecosystem change due to differing adaptive capacities and new species assemblages. Within the framework ‘ecosystem services’ both marketed and non-marketed utilities of the natural environment are formulated (3). Provisioning, cultural, supporting, and regulating ecosystem services have been...

  19. Climate change, fire management, and ecological services in the southwestern US

    Science.gov (United States)

    Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.

    2014-01-01

    The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem

  20. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    Directory of Open Access Journals (Sweden)

    Johanna E. Johnson

    2014-01-01

    Full Text Available The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temperatures, ocean chemistry, ocean circulation, sea level, rainfall, and storm patterns continue to change this century. In particular, keystone species that form the foundation of marine habitats, such as coral reefs, kelp beds, and temperate rocky reefs, are projected to pass thresholds with subsequent implications for communities and ecosystems. This review synthesises recent science in this field: the observed impacts and responses of marine ecosystems to climate change, ecological thresholds of change, and strategies for marine conservation to promote adaptation. Increasing observations of climate-related impacts on Australia’s marine ecosystems—both temperate and tropical—are making adaptive management more important than ever before. Our increased understanding of the impacts and responses of marine ecosystems to climate change provides a focus for “no-regrets” adaptations that can be implemented now and refined as knowledge improves.

  1. Assessing climate change effects on mountain ecosystems using integrated models: A case study

    Science.gov (United States)

    Fagre, Daniel B.; Running, Steven W.; Keane, Robert E.; Peterson, David L.

    2005-01-01

    Mountain systems are characterized by strong environmental gradients, rugged topography and extreme spatial heterogeneity in ecosystem structure and composition. Consequently, most mountainous areas have relatively high rates of endemism and biodiversity, and function as species refugia in many areas of the world. Mountains have long been recognized as critical entities in regional climatic and hydrological dynamics but their importance as terrestrial carbon stores has only been recently underscored (Schimel et al. 2002; this volume). Mountain ecosystems, therefore, are globally important as well as unusually complex. These ecosystems challenge our ability to understand their dynamics and predict their response to climatic variability and global-scale environmental change.

  2. A decade of sea level rise slowed by climate-driven hydrology.

    Science.gov (United States)

    Reager, J T; Gardner, A S; Famiglietti, J S; Wiese, D N; Eicker, A; Lo, M-H

    2016-02-12

    Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of continental land mass changes and a quantification of this term. We found that between 2002 and 2014, climate variability resulted in an additional 3200 ± 900 gigatons of water being stored on land. This gain partially offset water losses from ice sheets, glaciers, and groundwater pumping, slowing the rate of sea level rise by 0.71 ± 0.20 millimeters per year. These findings highlight the importance of climate-driven changes in hydrology when assigning attribution to decadal changes in sea level. Copyright © 2016, American Association for the Advancement of Science.

  3. Climate change on arctic environment, ecosystem services and society (CLICHE)

    Science.gov (United States)

    Weckström, J.; Korhola, A.; Väliranta, M.; Seppä, H.; Luoto, M.; Tuittila, E.-S.; Leppäranta, M.; Kahilainen, K.; Saarinen, J.; Heikkinen, H.

    2012-04-01

    The predicted climate warming has raised many questions and concerns about its impacts on the environment and society. As a respond to the need of holistic studies comprising both of these areas, The Academy of Finland launched The Finnish Research Programme on Climate Change (FICCA 2011-2014) in spring 2010 with the main aim to focus on the interaction between the environment and society. Ultimately 11 national consortium projects were funded (total budget 12 million EUR). Here we shortly present the main objectives of the largest consortium project "Climate change on arctic environment, ecosystem services and society" (CLICHE). The CLICHE consortium comprises eight interrelated work packages (treeline, diversity, peatlands, snow, lakes, fish, tourism, and traditional livelihoods), each led by a prominent research group and a team leader. The research consortium has three main overall objectives: 1) Investigate, map and model the past, present and future climate change-induced changes in central ecosystems of the European Arctic with unprecedented precision 2) Deepen our understanding of the basic principles of ecosystem and social resilience and dynamics; identify key taxa, structures or processes that clearly indicate impending or realised global change through their loss, occurrence or behaviour, using analogues from the past (e.g. Holocene Thermal Maximum, Medieval Warm Period), experiments, observations and models 3) Develop adaptation and mitigation strategies to minimize the adverse effects of climate change on local communities, traditional livelihoods, fisheries, and tourism industry, and promote sustainable development of local community structures and enhance the quality of life of local human populations. As the project has started only recently no final results are available yet. However, the fieldwork as well as the co-operation between the research teams has thus far been very successful. Thus, the expectations for the final outcome of the project

  4. Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes

    Directory of Open Access Journals (Sweden)

    B. Song

    2017-09-01

    Full Text Available Increases in nitrogen (N deposition can greatly stimulate ecosystem net carbon (C sequestration through positive N-induced effects on plant productivity. However, how net ecosystem CO2 exchange (NEE and its components respond to different N addition rates remains unclear. Using an N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32 gN m−2 yr−1 in an alpine meadow on the Qinghai–Tibetan Plateau, we explored the responses of different ecosystem C fluxes to an N addition gradient and revealed mechanisms underlying the dynamic responses. Results showed that NEE, ecosystem respiration (ER, and gross ecosystem production (GEP all increased linearly with N addition rates in the first year of treatment but shifted to N saturation responses in the second year with the highest NEE (−7.77 ± 0.48 µmol m−2 s−1 occurring under an N addition rate of 8 gN m−2 yr−1. The saturation responses of NEE and GEP were caused by N-induced accumulation of standing litter, which limited light availability for plant growth under high N addition. The saturation response of ER was mainly due to an N-induced saturation response of aboveground plant respiration and decreasing soil microbial respiration along the N addition gradient, while decreases in soil microbial respiration under high N addition were caused by N-induced reductions in soil pH. We also found that various components of ER, including aboveground plant respiration, soil respiration, root respiration, and microbial respiration, responded differentially to the N addition gradient. These results reveal temporal dynamics of N impacts and the rapid shift in ecosystem C fluxes from N limitation to N saturation. Our findings bring evidence of short-term initial shifts in responses of ecosystem C fluxes to increases in N deposition, which should be considered when predicting long-term changes in ecosystem net C sequestration.

  5. Climatic impacts on managed forests: projecting the future from the past

    OpenAIRE

    Martel, Simon; Picart, Delphine; Bosc, Alexandre; Moisy, Christophe; Lafont, Sebastien; Loustau, Denis; Picard, Olivier; Breda, Nathalie

    2015-01-01

    Forests are one of the most vulnerable ecosystem under the coming climate changeand a growing concern arise about their capacity to maintain ecosystem services suchas production of timber, fiber and energy, climate and hydrological regulations, or soil and biodiversity protection. Climate effects are significant not only at a short timescale, but also on the temporal horizon of a forest life cycle, e.g. through continuous shifts in atmospheric CO2 concentration, air temperature and precipitat...

  6. The importance of geomorphic and hydrologic factors in shaping the sensitivity of alpine/subalpine lake volumes to shifts in climate

    Science.gov (United States)

    Mercer, J.; Liefert, D. T.; Shuman, B. N.; Befus, K. M.; Williams, D. G.; Kraushaar, B.

    2017-12-01

    Alpine and subalpine lakes are important components of the hydrologic cycle in mountain ecosystems. These lakes are also highly sensitive to small shifts in temperature and precipitation. Mountain lake volumes and their contributions to mountain hydrology may change in response to even minor declines in snowpack or increases in temperature. However, it is still not clear to what degree non-climatic factors, such as geomorphic setting and lake geometry, play in shaping the sensitivity of high elevation lakes to climate change. We investigated the importance of lake geometry and groundwater connectivity to mountain lakes in the Snowy Range, Wyoming using a combination of hydrophysical and hydrochemical methods, including stable water isotopes, to better understand the role these factors play in controlling lake volume. Water isotope values in open lakes were less sensitive to evaporation compared to those in closed basin lakes. Lake geometry played an important role, with wider, shallower lakes being more sensitive to evaporation over time. Groundwater contributions appear to play only a minor role in buffering volumetric changes to lakes over the growing season. These results confirm that mountain lakes are sensitive to climate factors, but also highlight a significant amount of variability in that sensitivity. This research has implications for water resource managers concerned with downstream water quantity and quality from mountain ecosystems, biologists interested in maintaining aquatic biodiversity, and paleoclimatologists interested in using lake sedimentary information to infer past climate regimes.

  7. Impacts Of Climate Change On Ecosystems Management In Africa: An Assessment Of Disaster Risk Management And Adaptation

    Science.gov (United States)

    Ndebele-Murisa, M. R.

    2015-12-01

    This paper is a synthesis of eight studies which demonstrate the interface between disaster risk management (DRM) and adaptation. The studies; conducted from November 2011 to July 2012 included diverse ecosystems from forests, coastlines, rural areas to a lake region and showed that climate change/variability are major factors among other factors such as deforestation and land degradation, unsustainable land use practices, overharvesting of natural products and invasive species encroachment that are causing changes in ecosystems. The most common extreme events reported included shifts in and shorter rainfall seasons, extended droughts, increased temperatures, extreme heat, heavy rainfall, flooding, inundation, strong winds and sea level rises. As a result of these climate phenomena, adverse impacts on ecosystems and communities were reported as biodiversity loss, reduced fish catch, reduced water for forests/agriculture/consumption, increased rough waves, coastal erosion/sediment deposition and lastly land/mud slides in order of commonality. In response to these impacts communities are practicing coping and adaptation strategies but there is a huge gap between proper DRM and adaptation. This is mainly because the adaptation is practiced as an aftermath with very little effort propelled towards proactive DRM or preparedness. In addition, national level policies are archaic and do not address the current environmental changes. This was demonstrated in Togo where wood energy potential is deteriorating at an unprecedented rate but is projected to increase between 6.4% and 101% in the near and far future if the national forest action plans are implemented; preventing an energy crisis in the country. This shows that appropriate legal and policy frameworks and well planned responses to projected extreme events and climate changes are crucial in order to prevent disasters and to achieve sustainable utilisation of resources in the continent.

  8. Climatic and pollution influences on ecosystem processes in northern hardwood forests

    Science.gov (United States)

    Kurt S. Pregitzer; David D. Reed; Glenn D. Mroz; Andrew J. Burton; John A. Witter; Donald A. Zak

    1996-01-01

    The Michigan gradient study was established in 1987 to examine the effects of climate and atmospheric deposition on forest productivity and ecosystem processes in the Great Lakes region. Four intensively-monitored northern hardwood study sites are located along a climatic and pollutant gradient extending from southern lower Michigan to northwestern upper Michigan. The...

  9. Regionalizing indicators for marine ecosystems: Bering Sea–Aleutian Island seabirds, climate, and competitors

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Piatt, John F.; García-Reyes, Marisol; Zador, Stephani; Williams, Jeffrey C.; Romano, Marc; Renner, Heather

    2017-01-01

    Seabirds are thought to be reliable, real-time indicators of forage fish availability and the climatic and biotic factors affecting pelagic food webs in marine ecosystems. In this study, we tested the hypothesis that temporal trends and interannual variability in seabird indicators reflect simultaneously occurring bottom-up (climatic) and competitor (pink salmon) forcing of food webs. To test this hypothesis, we derived multivariate seabird indicators for the Bering Sea–Aleutian Island (BSAI) ecosystem and related them to physical and biological conditions known to affect pelagic food webs in the ecosystem. We examined covariance in the breeding biology of congeneric pelagic gulls (kittiwakes Rissa tridactyla and R. brevirostris) andauks (murres Uria aalge and U. lomvia), all of whichare abundant and well-studiedinthe BSAI. At the large ecosystem scale, kittiwake and murre breeding success and phenology (hatch dates) covaried among congeners, so data could be combined using multivariate techniques, but patterns of responsedifferedsubstantially betweenthe genera.Whiledata fromall sites (n = 5)inthe ecosystemcould be combined, the south eastern Bering Sea shelf colonies (St. George, St. Paul, and Cape Peirce) provided the strongest loadings on indicators, and hence had the strongest influence on modes of variability. The kittiwake breeding success mode of variability, dominated by biennial variation, was significantly related to both climatic factors and potential competitor interactions. The murre indicator mode was interannual and only weakly related to the climatic factors measured. The kittiwake phenology indicator mode of variability showed multi-year periods (“stanzas”) of late or early breeding, while the murre phenology indicator showed a trend towards earlier timing. Ocean climate relationships with the kittiwake breeding success indicator suggestthat early-season (winter–spring) environmental conditions and the abundance of pink salmon affect the

  10. CLIMATE CHANGE AND ORIENTAL SPRUCE (PICEA ORIENTALIS ECOSYSTEMS IN EASTERN BLACKSEA REGION OF TURKEY

    Directory of Open Access Journals (Sweden)

    Aydın Tüfekçioğlu

    2008-04-01

    Full Text Available Climate change has been getting more attention from scientific community recently. Eastern Black Sea Region of Turkey will get significant influences from the climate change according to regional climate model (RegCM3. Oriental spruce (Picea orientalis L. is an important tree species of Turkey and it only grows in the Eastern Black Sea Region of Turkey. With the increase in global warming, spruce forests started to have serious bark beetle problems. More than 200 000 trees died in the region recently due to bark beetle attack. We used existing literature related to oriental spruce and future climate of the region and field observations done in the different times to assess current status of the spruce stands. Future climate of the region has been predicted using RegCM3 regional climate model. Climate change could significantly influence distribution, diversity, structure and stability of the oriental spruce ecosystems. According to RegCM3 regional climate model, the temperatures will increase 2-4 °C in the region in the next century. Future climate scenarios predict 200-300 mm increases in precipitation in the eastern part of the region while the western part won't have any increase in precipitation in the next century. Temperature increases in the western part of the region can cause more stress on spruce trees and would probably increase bark beetle attacks. Also, fire could become an important threat in the western part of the region. It is possible to observe 400-800 m upward shift in the spruce belt in the western part. Treeline of spruce stands would probably move upward both in western and eastern part of the North-eastern Blacksea Region.

  11. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.

    2012-01-01

    The Arctic Ocean is undergoing major changes in many of its fundamental physical constituents, from a shift from multi- to first-year ice, shorter ice-covered periods, increasing freshwater runoff and surface stratification, to warming and alteration in the distribution of water masses....... These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses...

  12. Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems

    Science.gov (United States)

    Langerwisch, Fanny; Václavík, Tomáš; von Bloh, Werner; Vetter, Tobias; Thonicke, Kirsten

    2018-01-01

    Irrigated rice croplands are among the world’s most important agro-ecosystems. They provide food for more than 3.5 billion people and a range of other ecosystem services (ESS). However, the sustainability of rice agro-ecosystems is threatened by continuing climate and land-use changes. To estimate their combined effects on a bundle of ESS, we applied the vegetation and hydrology model LPJmL to seven study areas in the Philippines and Vietnam. We quantified future changes in the provision of four essential ESS (carbon storage, carbon sequestration, provision of irrigation water and rice production) under two climate scenarios (until 2100) and three site-specific land-use scenarios (until 2030), and examined the synergies and trade-offs in ESS responses to these drivers. Our results show that not all services can be provided in the same amounts in the future. In the Philippines and Vietnam the projections estimated a decrease in rice yields (by approximately 30%) and in carbon storage (by 15%) and sequestration (by 12%) towards the end of the century under the current land-use pattern. In contrast, the amount of available irrigation water was projected to increase in all scenarios by 10%-20%. However, the results also indicate that land-use change may partially offset the negative climate impacts in regions where cropland expansion is possible, although only at the expense of natural vegetation. When analysing the interactions between ESS, we found consistent synergies between rice production and carbon storage and trade-offs between carbon storage and provision of irrigation water under most scenarios. Our results show that not only the effects of climate and land-use change alone but also the interaction between ESS have to be considered to allow sustainable management of rice agro-ecosystems under global change.

  13. Predicting climate-induced range shifts: model differences and model reliability.

    Science.gov (United States)

    Joshua J. Lawler; Denis White; Ronald P. Neilson; Andrew R. Blaustein

    2006-01-01

    Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common data set, we investigated the potential implications of alternative modeling approaches for...

  14. Influence of benthic macrofauna community shifts on ecosystem functioning in shallow estuaries

    Directory of Open Access Journals (Sweden)

    Erik eKristensen

    2014-09-01

    Full Text Available We identify how ecosystem functioning in shallow estuaries is affected by shifts in benthic fauna communities. We use the shallow estuary, Odense Fjord, Denmark, as a case study to test our hypotheses that (1 shifts in benthic fauna composition and species functional traits affect biogeochemical cycling with cascading effects on ecological functioning, which may (2 modulate pelagic primary productivity with feedbacks to the benthic system. Odense Fjord is suitable because it experienced dramatic shifts in benthic fauna community structure from 1998 to 2008. We focused on infaunal species with emphasis on three dominating burrow-dwelling polychaetes: the native Nereis (Hediste diversicolor and Arenicola marina, and the invasive Marenzelleria viridis. The impact of functional traits in the form of particle reworking and ventilation on biogeochemical cycles, i.e. sediment metabolism and nutrient dynamics, was determined from literature data. Historical records of summer nutrient levels in the water column of the inner Odense Fjord show elevated concentrations of NH4+ and NO3- (DIN during the years 2004-2006, exactly when the N. diversicolor population declined and A. marina and M. viridis populations expanded dramatically. In support of our first hypothesis, we show that excess NH4+ delivery from the benthic system during the A. marina and M. viridis expansion period enriched the overlying water in DIN and stimulated phytoplankton concentration. The altered benthic-pelagic coupling and stimulated pelagic production may, in support of our second hypothesis, have feedback to the benthic system by changing the deposition of organic material. We therefore advice to identify the exact functional traits of the species involved in a community shift before studying its impact on ecosystem functioning. We also suggest studying benthic community shifts in shallow environments to obtain knowledge about the drivers and controls before exploring deep

  15. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    Science.gov (United States)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of

  16. Climate change impact on a groundwater-influenced hillslope ecosystem

    NARCIS (Netherlands)

    Brolsma, R.J.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2010-01-01

    This study investigates the effect of climate change on a groundwater‐influenced ecosystem on a hill slope consisting of two vegetation types, one adapted to wet and one adapted to dry soil conditions. The individual effects of changes in precipitation, temperature, and atmospheric CO2

  17. Effects of land cover and regional climate variations on long-term spatiotemporal changes in sagebrush ecosystems

    Science.gov (United States)

    Xian, George Z.; Homer, Collin G.; Aldridge, Cameron L.

    2012-01-01

    This research investigated the effects of climate and land cover change on variation in sagebrush ecosystems. We combined information of multi-year sagebrush distribution derived from multitemporal remote sensing imagery and climate data to study the variation patterns of sagebrush ecosystems under different potential disturbances. We found that less than 40% of sagebrush ecosystem changes involved abrupt changes directly caused by landscape transformations and over 60% of the variations involved gradual changes directly related to climatic perturbations. The primary increases in bare ground and declines in sagebrush vegetation abundance were significantly correlated with the 1996-2006 decreasing trend in annual precipitation.

  18. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    Science.gov (United States)

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  19. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability.

    Science.gov (United States)

    Lu, Yonglong; Yuan, Jingjing; Lu, Xiaotian; Su, Chao; Zhang, Yueqing; Wang, Chenchen; Cao, Xianghui; Li, Qifeng; Su, Jilan; Ittekkot, Venugopalan; Garbutt, Richard Angus; Bush, Simon; Fletcher, Stephen; Wagey, Tonny; Kachur, Anatolii; Sweijd, Neville

    2018-08-01

    Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Disparity in elevational shifts of European trees in response to recent climate warming.

    Science.gov (United States)

    Rabasa, Sonia G; Granda, Elena; Benavides, Raquel; Kunstler, Georges; Espelta, Josep M; Ogaya, Romá; Peñuelas, Josep; Scherer-Lorenzen, Michael; Gil, Wojciech; Grodzki, Wojciech; Ambrozy, Slawomir; Bergh, Johan; Hódar, José A; Zamora, Regino; Valladares, Fernando

    2013-08-01

    Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography. © 2013 John Wiley & Sons Ltd.

  1. Bridging the Divide: Linking Genomics to Ecosystem Responses to Climate Change: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Melinda D.

    2014-03-15

    Over the project period, we have addressed the following objectives: 1) assess the effects of altered precipitation patterns (i.e., increased variability in growing season precipitation) on genetic diversity of the dominant C4 grass species, Andropogon gerardii, and 2) experimentally assess the impacts of extreme climatic events (heat wave, drought) on responses of the dominant C4 grasses, A. gerardii and Sorghastrum nutans, and the consequences of these response for community and ecosystem structure and function. Below is a summary of how we have addressed these objectives. Objective 1 After ten years of altered precipitation, we found the number of genotypes of A. gerardii was significantly reduced compared to the ambient precipitation treatments (Avolio et al., 2013a). Although genotype number was reduced, the remaining genotypes were less related to one another indicating that the altered precipitation treatment was selecting for increasingly dissimilar genomes (based on mean pairwise Dice distance among individuals). For the four key genotypes that displayed differential abundances depending on the precipitation treatment (G1, G4, and G11 in the altered plots and G2 in the ambient plots), we identified phenotypic differences in the field that could account for ecological sorting (Avolio & Smith, 2013a). The three altered rainfall genotypes also have very different phenotypic traits in the greenhouse in response to different soil moisture availabilities (Avolio and Smith, 2013c). Two of the genotypes that increased in abundance in the altered precipitation plots had greater allocation to root biomass (G4 and G11), while G1 allocated more biomass aboveground. These phenotypic differences among genotypes suggests that changes in genotypic structure between the altered and the ambient treatments has likely occurred via niche differentiation, driven by changes in soil moisture dynamics (reduced mean, increased variability and changes in the depth distribution of

  2. Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change

    Science.gov (United States)

    Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston

    2017-01-01

    We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...

  3. Putting Climate Adaptation on the Map: Developing Spatial Management Strategies for Whitebark Pine in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Ireland, Kathryn B.; Hansen, Andrew J.; Keane, Robert E.; Legg, Kristin; Gump, Robert L.

    2018-06-01

    Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.

  4. Soil microbial responses to climate warming in Northern Andean alpine ecosystems

    Science.gov (United States)

    Gallery, R. E.; Lasso, E.

    2017-12-01

    The historically cooler temperatures and waterlogged soils of tropical alpine grasslands (páramo) have resulted in low decomposition rates and a large buildup of organic matter, making páramo one of the most important carbon sinks in tropical biomes. The climatic factors that favored the carbon accumulation are changing, and as a result páramo could play a disproportionate role in driving climate feedbacks through increased carbon released from these large soil carbon stores. Open top chamber warming experiments were established in the Colombian Andes in 2016 to quantify the magnitude of climate change on carbon balance and identify microbial and plant traits that regulate these impacts. Two focal sites differ in mean annual temperature, precipitation, and plant community richness. Heterotrophic respiration (RH,) was measured from soil cores incubated at temperatures representing current and projected warming. The warming effect on RH was sensitive to soil moisture, which could reflect shifts in microbial community composition and/or extracellular enzyme production or efficiency as soils dry. Bacterial, archaeal, and fungal communities in ambient and warmed plots were measured through high-throughput amplicon sequencing of the 16S rRNA and ITS1 rRNA gene regions. Communities showed strong spatial structuring both within and among páramo, reflecting the topographic heterogeneity of these ecosystems. Significant differences in relative abundance of dominant microbial taxa between páramo could be largely explained by soil bulk density, water holding capacity, and non-vascular plant cover. Phototrophs common to anoxic soils (e.g., Rhodospirillaceae, Hyphomicrobiaceae) were abundant. Taxa within Euryarchaeota were recovered, suggesting methanogenesis potential. Exploration of the magnitude and temperature sensitivity of methane flux is needed in these seasonally anoxic soils whose dynamics could have significant implications for the global climate system.

  5. Response of the mean global vegetation distribution to interannual climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Notaro, Michael [University of Wisconsin-Madison, Center for Climatic Research, Madison, WI (United States)

    2008-06-15

    The impact of interannual variability in temperature and precipitation on global terrestrial ecosystems is investigated using a dynamic global vegetation model driven by gridded climate observations for the twentieth century. Contrasting simulations are driven either by repeated mean climatology or raw climate data with interannual variability included. Interannual climate variability reduces net global vegetation cover, particularly over semi-arid regions, and favors the expansion of grass cover at the expense of tree cover, due to differences in growth rates, fire impacts, and interception. The area burnt by global fires is substantially enhanced by interannual precipitation variability. The current position of the central United States' ecotone, with forests to the east and grasslands to the west, is largely attributed to climate variability. Among woody vegetation, climate variability supports expanded deciduous forest growth and diminished evergreen forest growth, due to difference in bioclimatic limits, leaf longevity, interception rates, and rooting depth. These results offer insight into future ecosystem distributions since climate models generally predict an increase in climate variability and extremes. (orig.)

  6. Climate change impact on a groundwater-influenced hillslope ecosystem

    NARCIS (Netherlands)

    Brolsma, R.J.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2010-01-01

    This study investigates the effect of climate change on a groundwater-influenced ecosystem on a hill slope consisting of two vegetation types, one adapted to wet and one adapted to dry soil conditions. The individual effects of changes in precipitation, temperature, and atmospheric CO2 concentration

  7. Forest ecosystems and the global climatic change. Background and need to act

    International Nuclear Information System (INIS)

    Bellmann, K.; Grassl, H.; Kaiser, M.; Kuerzinger, J.; Lindner, M.; Mueller-Kraenner, S.; Schmidt, R.; Schuett, P.; Sperber, G.

    1994-01-01

    The consequences of the climatic change and of the depletion of the stratospheric ozone layer are of global significance and can only be controlled through worldwide measures. Mainly fossil fuels which cover most of our energy demand, industrial production, traffic, industrial intensive agriculture, and deforestation are responsible for trace gases which cause the greenhouse effect. The possible effects of the expected climatic change are discussed, and suitable political, social and silvicultural approaches to the maintenance of stable forest ecosystems are pointed out. Emphasis is placed on forestry and on ecosystems research in Central Europe. (MG) [de

  8. Assessment of vulnerability of forest ecosystems to climate change and adaptation planning in Nepal

    Science.gov (United States)

    Matin, M. A.; Chitale, V. S.

    2016-12-01

    Understanding ecosystem level vulnerability of forests and dependence of local communities on these ecosystems is a first step towards developing effective adaptation strategies. As forests are important components of livelihoods system for a large percentage of the population in the Himalayan region, they offer an important basis for creating and safeguarding more climate-resilient communities. Increased frequency, duration, and/or severity of drought and heat stress, changes in winter ecology, and pest and fire outbreaksunder climate change scenarios could fundamentally alter the composition, productivity and biogeography of forests affecting the potential ecosystem services offered and forest-based livelihoods. Hence, forest ecosystem vulnerability assessment to climate change and the development of a knowledgebase to identify and support relevant adaptation strategies is identified as an urgent need. Climate change vulnerability is measured as a function of exposure, sensitivity and the adaptive capacity of the system towards climate variability and extreme events. Effective adaptation to climate change depends on the availability of two important prerequisites: a) information on what, where, and how to adapt, and b) availability of resources to implement the adaptation measures. In the present study, we introduce the concept of two way multitier approach, which can support effective identification and implementation of adaptation measures in Nepal and the framework can be replicated in other countries in the HKH region. The assessment of overall vulnerability of forests comprises of two components: 1) understanding the relationship between exposure and sensitivity and positive feedback from adaptive capacity of forests; 2) quantifying the dependence of local communities on these ecosystems. We use climate datasets from Bioclim and biophysical products from MODIS, alongwith field datasets. We report that most of the forests along the high altitude areas and few

  9. Ecosystem biophysical memory in the southwestern North America climate system

    International Nuclear Information System (INIS)

    Forzieri, G; Feyen, L; Vivoni, E R

    2013-01-01

    To elucidate the potential role of vegetation to act as a memory source in the southwestern North America climate system, we explore correlation structures of remotely sensed vegetation dynamics with precipitation, temperature and teleconnection indices over 1982–2006 for six ecoregions. We found that lagged correlations between vegetation dynamics and climate variables are modulated by the dominance of monsoonal or Mediterranean regimes and ecosystem-specific physiological processes. Subtropical and tropical ecosystems exhibit a one month lag positive correlation with precipitation, a zero- to one-month lag negative correlation with temperature, and modest negative effects of sea surface temperature (SST). Mountain forests have a zero month lag negative correlation with precipitation, a zero–one month lag negative correlation with temperature, and no significant correlation with SSTs. Deserts show a strong one–four month lag positive correlation with precipitation, a low zero–two month lag negative correlation with temperature, and a high four–eight month lag positive correlation with SSTs. The ecoregion-specific biophysical memories identified offer an opportunity to improve the predictability of land–atmosphere interactions and vegetation feedbacks onto climate. (letter)

  10. Climate-driven changes in water level

    DEFF Research Database (Denmark)

    Hansen, Rikke Bjerring; Olsen, Jesper; Jeppesen, Erik

    2013-01-01

    level rose. Moreover, Nymphaeaceae trichosclereids were abundant during the period of algal enrichment. Cladoceran taxa associated with floating leaved plants or benthic habitats responded in a complex way to changes in water level, but the cladoceran assemblages generally reflected deep lake conditions...... hydrology driven by precipitation. The isotopic, sedimentary and plant macrofossil records suggested that the lake level started to decrease around 8400 cal. yr BP, the decrease accelerating during 8350-8260 before an abrupt increase during 8260-8210. This pattern shows that the climate anomaly started...... rates of cladoceran subfossils and algal pigments, possibly due to increased turbidity and reduced nutrient input during this drier period. Pigment analysis also showed added importance of diatoms and cryptophytes during this climate anomaly, while cyanobacteria became more important when the water...

  11. Projected future climate change and Baltic Sea ecosystem management.

    Science.gov (United States)

    Andersson, Agneta; Meier, H E Markus; Ripszam, Matyas; Rowe, Owen; Wikner, Johan; Haglund, Peter; Eilola, Kari; Legrand, Catherine; Figueroa, Daniela; Paczkowska, Joanna; Lindehoff, Elin; Tysklind, Mats; Elmgren, Ragnar

    2015-06-01

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.

  12. Solutions for ecosystem-level protection of ocean systems under climate change.

    Science.gov (United States)

    Queirós, Ana M; Huebert, Klaus B; Keyl, Friedemann; Fernandes, Jose A; Stolte, Willem; Maar, Marie; Kay, Susan; Jones, Miranda C; Hamon, Katell G; Hendriksen, Gerrit; Vermard, Youen; Marchal, Paul; Teal, Lorna R; Somerfield, Paul J; Austen, Melanie C; Barange, Manuel; Sell, Anne F; Allen, Icarus; Peck, Myron A

    2016-12-01

    The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta-analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co-mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem-level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long-term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate-ready and ecosystem-level policy options for conservation, suitable for changing oceans. © 2016 John Wiley & Sons Ltd.

  13. Global comparison reveals biogenic weathering as driven by nutrient limitation at ecosystem scale

    Science.gov (United States)

    Boy, Jens; Godoy, Roberto; Dechene, Annika; Shibistova, Olga; Amir, Hamid; Iskandar, Issi; Fogliano, Bruno; Boy, Diana; McCulloch, Robert; Andrino, Alberto; Gschwendtner, Silvia; Marin, Cesar; Sauheitl, Leopold; Dultz, Stefan; Mikutta, Robert; Guggenberger, Georg

    2017-04-01

    A substantial contribution of biogenic weathering in ecosystem nutrition, especially by symbiotic microorganisms, has often been proposed, but large-scale in vivo studies are still missing. Here we compare a set of ecosystems spanning from the Antarctic to tropical forests for their potential biogenic weathering and its drivers. To address biogenic weathering rates, we installed mineral mesocosms only accessible for bacteria and fungi for up to 4 years, which contained freshly broken and defined nutrient-baring minerals in soil A horizons of ecosystems along a gradient of soil development differing in climate and plant species communities. Alterations of the buried minerals were analyzed by grid-intersection, confocal lascer scanning microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy on the surface and on thin sections. On selected sites, carbon fluxes were tracked by 13C labeling, and microbial community was identified by DNA sequencing. In young ecosystems (protosoils) biogenic weathering is almost absent and starts after first carbon accumulation by aeolian (later litter) inputs and is mainly performed by bacteria. With ongoing soil development and appearance of symbiotic (mycorrhized) plants, nutrient availability in soil increasingly drove biogenic weathering, and fungi became the far more important players than bacteria. We found a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. We conclude that nutrient limitations at ecosystem scale are generally counteracted by adapted fungal biogenic weathering. The close relation between fungal weathering and plant-available nutrients over a large range of severely contrasting ecosystems points towards a direct energetic support of these weathering processes by the photoautotrophic community, making biogenic weathering a

  14. Challenges in the participatory assessment of sustainable management practices in dryland ecosystems under regime shifts

    Science.gov (United States)

    Jucker Riva, Matteo; Schwilch, Gudrun; Liniger, Hanspeter

    2015-04-01

    Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users' knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio

  15. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.

    Science.gov (United States)

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-09-23

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.

  16. Assessment of long-term effects of climate change on biodiversity and vulnerability of terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Oene, H.; Berendse, F.; De Kovel, C.G.F. [Nature Consevation and Plant Ecology Group, Wageningen University, Wageningen (Netherlands); Alkemade, J.R.M.; Bakkenes, M.; Ihle, F. [National Institute of Public Health and the Environment RIVM, Bilthoven (Netherlands)

    1999-07-01

    The aim of this project was to analyze the effects of climatic change on plant species diversity and ecosystem functioning. The direct effects of climatic change on plant species diversity are analyzed using a species based probabilistic Model (EUROMOVE) that relates the probability of occurrence of ca 1400 European plant species to climatic variables as the mean temperature of the coldest month, the effective temperature sum, the annual precipitation, the annual potential and actual evapotranspiration, the length of the growing season, and the mean growing season temperature. The indirect effects of raised C0{sub 2} levels and increased temperatures on ecosystem functioning and the consequences of these indirect effects for plant diversity are analyzed by combining a mechanistic simulation model (NUCOM) with regression models. NUCOM predicts the effects of environmental changes on dominant plant species composition and ecosystem variables. The predicted ecosystem variables are linked to plant species diversity of subordinate species by regression models, using Ellenberg indices for N availability, soil acidity, soil moisture, and light intensity. With these two approaches, the consequences of climatic change scenarios (IPCC Baseline A, IPCC Stabilization 450) and N deposition scenarios (reduced, constant) are analyzed for Europe (EUROMOVE) and part of the Netherlands (NUCOM). The results showed that the direct effects of climatic change may have large impact on plant species diversity and distribution. The indirect effects of climatic change on plant diversity appeared minor but effects of changes in soil moisture are not included. Other environmental changes like eutrofication and human impact have large effect on ecosystem variables and plant species diversity. Reductions in nitrogen emission have a positive effect but take time to become apparent. 49 refs.

  17. Climate-driven disparities among ecological interactions threaten kelp forest persistence.

    Science.gov (United States)

    Provost, Euan J; Kelaher, Brendan P; Dworjanyn, Symon A; Russell, Bayden D; Connell, Sean D; Ghedini, Giulia; Gillanders, Bronwyn M; Figueira, WillIAM; Coleman, Melinda A

    2017-01-01

    The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs. © 2016 John Wiley & Sons Ltd.

  18. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    Science.gov (United States)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  19. A Framework to Quantify the Strength of the Ecological Links Between an Environmental Stressor and Final Ecosystem Services

    Science.gov (United States)

    Anthropogenic stressors such as climate change, fire, and pollution are driving shifts in ecosystem function and resilience. Scientists generally rely on biological indicators of these stressors to signal that ecosystem conditions have been altered beyond an acceptable amount. Ho...

  20. Impact of climatic change on alpine ecosystems: inference and prediction

    Directory of Open Access Journals (Sweden)

    Nigel G. Yoccoz

    2011-01-01

    Full Text Available Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal, and therefore species distribution. Finally it can effect interactions among species – snow cover for example can affect the success of some predators. One characteristic of alpine ecosystems is the presence of snow cover, but surprisingly the role played by snow is relatively poorly known, mainly for logistical reasons. Even if we have made important progress regarding the development of predictive models, particularly so for distribution of alpine plants, we still need to set up observational and experimental networks which properly take into account the variability of alpine ecosystems and of their interactions with climate.Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir, mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles. Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes ou la date d’éclosion des insectes. Il peut ensuite affecter directement la démographie des espèces (survie, reproduction, dispersion et donc à terme leur répartition. Il peut enfin agir sur les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains prédateurs. Une caractéristique des

  1. Climate-change-driven accelerated sea-level rise detected in the altimeter era.

    Science.gov (United States)

    Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T

    2018-02-27

    Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.

  2. Catastrophic regime shifts in model ecological communities are true phase transitions

    International Nuclear Information System (INIS)

    Capitán, J A; Cuesta, J A

    2010-01-01

    Ecosystems often undergo abrupt regime shifts in response to gradual external changes. These shifts are theoretically understood as a regime switch between alternative stable states of the ecosystem dynamical response to smooth changes in external conditions. Usual models introduce nonlinearities in the macroscopic dynamics of the ecosystem that lead to different stable attractors among which the shift takes place. Here we propose an alternative explanation of catastrophic regime shifts based on a recent model that pictures ecological communities as systems in continuous fluctuation, according to certain transition probabilities, between different micro-states in the phase space of viable communities. We introduce a spontaneous extinction rate that accounts for gradual changes in external conditions, and upon variations on this control parameter the system undergoes a regime shift with similar features to those previously reported. Under our microscopic viewpoint we recover the main results obtained in previous theoretical and empirical work (anomalous variance, hysteresis cycles, trophic cascades). The model predicts a gradual loss of species in trophic levels from bottom to top near the transition. But more importantly, the spectral analysis of the transition probability matrix allows us to rigorously establish that we are observing the fingerprints, in a finite size system, of a true phase transition driven by background extinctions

  3. Net exchanges of CO2, CH4 and N2O between the terrestrial ecosystems and the atmosphere in boreal and arctic region: Towards a full greenhouse gas budget

    Science.gov (United States)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Kamaljit, K.; Pan, S.

    2014-12-01

    Boreal and arctic terrestrial ecosystem is a unique ecological region due to large portion of wetland and permafrost distribution. Increasing disturbances, like permafrost-thaw, fire event, climate extreme, would greatly change the patterns and variations of greenhouse gas emission and further affect the feedback between terrestrial ecosystem and climate change. Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) accounted for more than 85% of the radioactive forcing (RF) due to long-lived greenhouse gases. However, few studies have considered the full budget of three gases together in this region. In this study, we used a process-based model (Dynamic Land Ecosystem Model), driven by multiple global change factors, to quantify the magnitude, spatial and temporal variation of CO2, CH4 and N2O across the boreal and arctic regions. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of factorial simulations, we further quantify the relative contribution of climate, atmospheric composition, fire to the CO2, CH4 and N2O fluxes. Continued warming climate potentially could shift the inter-annual and intra-annual variation of greenhouse gases fluxes. The understanding of full budget in this region could provide insights for reasonable future projection, which is also crucial for developing effective mitigation strategies.

  4. Combining satellite derived phenology with climate data for climate change impact assessment

    Science.gov (United States)

    Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F.

    2012-05-01

    The projected influence of climate change on the timing and volume of phytomass production is expected to affect a number of ecosystem services. In order to develop coherent and locally effective adaptation and mitigation strategies, spatially explicit information on the observed changes is needed. Long-term variations of the vegetative growing season in different environmental zones of Europe for 1982-2006 have been derived by analysing time series of GIMMS NDVI data. The associations of phenologically homogenous spatial clusters to time series of temperature and precipitation data were evaluated. North-east Europe showed a trend to an earlier and longer growing season, particularly in the northern Baltic areas. Despite the earlier greening up large areas of Europe exhibited rather stable season length indicating the shift of the entire growing season to an earlier period. The northern Mediterranean displayed a growing season shift towards later dates while some agglomerations of earlier and shorter growing season were also seen. The correlation of phenological time series with climate data shows a cause-and-effect relationship over the semi natural areas consistent with results in literature. Managed ecosystems however appear to have heterogeneous change pattern with less or no correlation to climatic trends. Over these areas climatic trends seemed to overlap in a complex manner with more pronounced effects of local biophysical conditions and/or land management practices. Our results underline the importance of satellite derived phenological observations to explain local nonconformities to climatic trends for climate change impact assessment.

  5. Past Changes in Arctic Terrestrial Ecosystems, Climate and UV Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Chernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 deg C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the 'Little Ice Age' spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic

  6. Molecular proxies for climate maladaptation in a long-lived tree (Pinus pinaster Aiton, Pinaceae).

    Science.gov (United States)

    Jaramillo-Correa, Juan-Pablo; Rodríguez-Quilón, Isabel; Grivet, Delphine; Lepoittevin, Camille; Sebastiani, Federico; Heuertz, Myriam; Garnier-Géré, Pauline H; Alía, Ricardo; Plomion, Christophe; Vendramin, Giovanni G; González-Martínez, Santiago C

    2015-03-01

    Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change. Copyright © 2015 by the Genetics Society of America.

  7. Big sagebrush (Artemisia tridentata) in a shifting climate context: Assessment of seedling responses to climate

    Science.gov (United States)

    Martha A. Brabec

    2014-01-01

    The loss of big sagebrush (Artemisia tridentata) throughout the Great Basin Desert has motivated efforts to restore it because of fire and other disturbance effects on sagebrush-dependent wildlife and ecosystem function. Initial establishment is the first challenge to restoration, and appropriateness of seeds, climate, and weather variability are factors that may...

  8. Long-Term Changes in the Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem.

    Directory of Open Access Journals (Sweden)

    Harvey J Walsh

    Full Text Available Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf. Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf

  9. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.

    Science.gov (United States)

    Glover, A G; Gooday, A J; Bailey, D M; Billett, D S M; Chevaldonné, P; Colaço, A; Copley, J; Cuvelier, D; Desbruyères, D; Kalogeropoulou, V; Klages, M; Lampadariou, N; Lejeusne, C; Mestre, N C; Paterson, G L J; Perez, T; Ruhl, H; Sarrazin, J; Soltwedel, T; Soto, E H; Thatje, S; Tselepides, A; Van Gaever, S; Vanreusel, A

    2010-01-01

    Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales

  10. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S; Haenninen, H; Karjalainen, T [Joensuu Univ. (Finland). Faculty of Forestry; and others

    1997-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  11. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S.; Haenninen, H.; Karjalainen, T. [Joensuu Univ. (Finland). Faculty of Forestry] [and others

    1996-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  12. Shifts in ecosystem services in deprived urban areas: understanding people's responses and consequences for well-being

    Directory of Open Access Journals (Sweden)

    Marthe L. Derkzen

    2017-03-01

    Full Text Available Urban commons are under pressure. City development has led to the encroachment and ecological degradation of urban open space. Although there is growing insight that urban ecosystems need to be protected, there is hardly any attention for the consequences (of both pressures and protection efforts for vulnerable human population groups. We aim to understand how urban development affects the well-being of the urban poor, through shifts in ecosystem services (ES and people's responses to these shifts. We performed household interviews and group mapping sessions in seven urban lake communities in Bangalore, India. Changes at Bangalore's lakes can be summarized by three trends: privatization followed by conversion, pollution followed by degradation, and restoration followed by gentrification. Over time, this resulted in a shift in the types of ES supplied and demanded, the nature of use, and de facto governance: from provisioning, communal and public; to cultural, individual, and private. Lake dwellers responded by finding (other sources of income, accepting lower quality or less accessible ES, and/or completely stopping the use of certain ES. The consequences of ecosystem change for people's well-being differ depending on a household's ability to adapt and on individual circumstances, land tenure and financial capital in particular. To guarantee a future for Bangalore's lakes, restoration seems the only viable option. Although beautiful lake parks may be a solution for the well-off and not-too-poor, leaving the very poor without options to adapt to the new circumstances puts them at risk of becoming even more marginalized. We show that ecosystem degradation and restoration alike can impact the well-being of the urban poor. People's experiences allowed us to couple ecosystem change to well-being through ES and adaptation strategies. Hence, we revealed multiple cause-effect relations. Understanding these relations contributes to sustainable urban

  13. Climate change science applications and needs in forest ecosystem management: a workshop organized as part of the northern Wisconsin Climate Change Response Framework Project

    Science.gov (United States)

    Leslie Brandt; Chris Swanston; Linda Parker; Maria Janowiak; Richard Birdsey; Louis Iverson; David Mladenoff; Patricia. Butler

    2012-01-01

    Climate change is leading to direct and indirect impacts on forest tree species and ecosystems in northern Wisconsin. Land managers will need to prepare for and respond to these impacts, so we designed a workshop to identify forest management approaches that can enhance the ability of ecosystems in northern Wisconsin to cope with climate change and address how National...

  14. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    Science.gov (United States)

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  15. Rising climate variability and synchrony in North Pacific ecosystems

    Science.gov (United States)

    Black, Bryan

    2017-04-01

    Rising climate variability and synchrony in North Pacific ecosystems Evidence is growing that climate variability of the northeast Pacific Ocean has increased over the last century, culminating in such events as the record-breaking El Niño years 1983, 1998, and 2016 and the unusually persistent 2014/15 North Pacific Ocean heat wave known as "The Blob." Of particular concern is that rising variability could increase synchrony within and among North Pacific ecosystems, which could reduce the diversity of biological responses to climate (i.e. the "portfolio effect"), diminish resilience, and leave populations more prone to extirpation. To test this phenomenon, we use a network of multidecadal fish otolith growth-increment chronologies that were strongly correlated to records of winter (Jan-Mar) sea level. These biological and physical datasets spanned the California Current through the Gulf of Alaska. Synchrony was quantified as directional changes in running (31-year window) mean pairwise correlation within sea level and then within otolith time series. Synchrony in winter sea level at the nine stations with the longest records has increased by more than 40% over the 1950-2015 interval. Likewise, synchrony among the eight longest otolith chronologies has increased more than 100% over a comparable time period. These directional changes in synchrony are highly unlikely due to chance alone, as confirmed by comparing trends in observed data to those in simulated data (n = 10,000 iterations) with time series of identical number, length, and autocorrelation. Ultimately, this trend in rising synchrony may be linked to increased impacts of the El Niño Southern Oscillation (ENSO) on mid-latitude ecosystems of North America, and may therefore reflect a much broader, global-scale signature.

  16. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host-microbiome interactions on understanding ecosystem function.

    Science.gov (United States)

    Weston, David J; Timm, Collin M; Walker, Anthony P; Gu, Lianhong; Muchero, Wellington; Schmutz, Jeremy; Shaw, A Jonathan; Tuskan, Gerald A; Warren, Jeffrey M; Wullschleger, Stan D

    2015-09-01

    Peatlands harbour more than one-third of terrestrial carbon leading to the argument that the bryophytes, as major components of peatland ecosystems, store more organic carbon in soils than any other collective plant taxa. Plants of the genus Sphagnum are important components of peatland ecosystems and are potentially vulnerable to changing climatic conditions. However, the response of Sphagnum to rising temperatures, elevated CO2 and shifts in local hydrology have yet to be fully characterized. In this review, we examine Sphagnum biology and ecology and explore the role of this group of keystone species and its associated microbiome in carbon and nitrogen cycling using literature review and model simulations. Several issues are highlighted including the consequences of a variable environment on plant-microbiome interactions, uncertainty associated with CO2 diffusion resistances and the relationship between fixed N and that partitioned to the photosynthetic apparatus. We note that the Sphagnum fallax genome is currently being sequenced and outline potential applications of population-level genomics and corresponding plant photosynthesis and microbial metabolic modelling techniques. We highlight Sphagnum as a model organism to explore ecosystem response to a changing climate and to define the role that Sphagnum can play at the intersection of physiology, genetics and functional genomics. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  17. Climate change on the Shoshone National Forest, Wyoming: a synthesis of past climate, climate projections, and ecosystem implications

    Science.gov (United States)

    Janine Rice; Andrew Tredennick; Linda A. Joyce

    2012-01-01

    The Shoshone National Forest (Shoshone) covers 2.4 million acres of mountainous topography in northwest Wyoming and is a vital ecosystem that provides clean water, wildlife habitat, timber, grazing, recreational opportunities, and aesthetic value. The Shoshone has experienced and adapted to changes in climate for many millennia, and is currently experiencing a warming...

  18. Legacies from extreme drought increase ecosystem sensitivity to future extremes

    Science.gov (United States)

    Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Wilcox, K. R.

    2016-12-01

    Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Although there is still much to be learned about how ecosystems will respond to an intensification of drought, even less is known about the factors that determine post-drought recovery of ecosystem function. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on the extent to which key plant populations, community structure and biogeochemical processes are affected. These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. We experimentally imposed two extreme growing season droughts in a central US grassland to assess the impacts of repeated droughts on ecosystem resistance (response) and resilience (recovery). We found that this grassland was not resistant to the first extreme drought due to reduced productivity and differential sensitivity of the co-dominant C4 grass (Andropogon gerardii) and C3 forb (Solidago canadensis) species. This differential sensitivity led to a reordering of species abundances within the plant community. Yet, despite this large shift in plant community composition, which persisted post-drought, the grassland was highly resilient post-drought, due to increased abundance of the dominant C4 grass. Because of this shift to increased C4 grass dominance, we expected that previously-droughted grassland would be more resistant to a second extreme drought. However, contrary to these expectations, previously droughted grassland was more sensitive to drought than grassland that had not experienced drought. Thus, our result suggest that legacies of drought (shift in community composition) may increase ecosystem sensitivity to future extreme events.

  19. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.

    2000-01-01

    1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate

  20. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1

    Directory of Open Access Journals (Sweden)

    M. Forkel

    2017-12-01

    Full Text Available Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1. SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with

  1. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    Science.gov (United States)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data-driven

  2. Pre-"peak water" time in the southwest Yukon: when cryospheric changes trigger hydrological regime shifts

    Science.gov (United States)

    Baraer, M.; Chesnokova, A.; Huh, K. I.; Laperriere-Robillard, T.

    2017-12-01

    Saint-Elias Mountains host numerous cryospheric systems such as glaciers, seasonal and perennial snow cover, permafrost, aufeis, and different forms of buried ice. Those systems are very sensitive to climate changes and exhibit ongoing reduction in extent and/or changes in formation/ablation times. Because they highly influence the hydrological regimes of rivers, cryospheric changes raise concerns about consequences for regional water resources and ecosystems. The present study combines historical data analysis and hydrological modeling in order to estimate how cryospheric changes impact hydrological regimes at eight watersheds of different glacier cover (0- 30%) in the southwest Yukon. Methods combine traditional hydrograph analysis techniques and more advance techniques such as Fast Fourier Transform filters used to isolate significant trends in discharge properties from noise or climatic oscillations. Measured trends in discharge variables are connected to cryospheric changes by using a water balance / peak water model (Baraer et al., 2012), here adapted to the main cryospheric systems that characterize the southwest Yukon.Results show three distinct hydrological regimes for (1) non glacierized, (2) glacierized, and (3) major lakes hosting catchments. The studied glacierized catchments have not passed the "peak water" yet and still exhibit increases in yearly and late summer discharges and a decrease in runoff variability. All watersheds show an increase in winter discharge and a snowmelt-driven shift of yearly peak discharge toward earlier in the season. The study suggests that, in a couple of decades, water resources and dependent ecosystems will face the combined effects of (A) a shift in the contribution trend from declining perennial cryospheric systems and (B) continuing alteration of the contribution from the seasonal cryospheric systems.

  3. Impacts of climate change on fisheries

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    Evidence of the impacts of anthropogenic climate change on marine ecosystems is accumulating, but must be evaluated in the context of the "normal" climate cycles and variability which have caused fluctuations in fisheries throughout human history. The impacts on fisheries are due to a variety...... experimentally and in controlled conditions. Indirect effects act via ecosystem processes and changes in the production of food or abundance of competitors, predators and pathogens. Recent studies of the effects of climate on primary production are reviewed and the consequences for fisheries production...... are evaluated through regional examples. Regional examples are also used to show changes in distribution and phenology of plankton and fish, which are attributed to climate. The role of discontinuous and extreme events (regime shifts, exceptional warm periods) is discussed. Changes in fish population processes...

  4. Ecosystem-based management of coastal zones in face of climate change impacts: Challenges and inequalities.

    Science.gov (United States)

    Fernandino, Gerson; Elliff, Carla I; Silva, Iracema R

    2018-06-01

    Climate change effects have the potential of affecting both ocean and atmospheric processes. These changes pose serious threats to the millions of people that live by the coast. Thus, the objective of the present review is to discuss how climate change is altering (and will continue to alter) atmospheric and oceanic processes, what are the main implications of these alterations along the coastline, and which are the ecosystem-based management (EBM) strategies that have been proposed and applied to address these issues. While ocean warming, ocean acidification and increasing sea level have been more extensively studied, investigations on the effects of climate change to wind and wave climates are less frequent. Coastal ecosystems and their respective natural resources will respond differently according to location, environmental drivers and coastal processes. EBM strategies have mostly concentrated on improving ecosystem services, which can be used to assist in mitigating climate change effects. The main challenge for developing nations regards gaps in information and scarcity of resources. Thus, for effective management and adaptive EBM strategies to be developed worldwide, information at a local level is greatly needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Expansion Under Climate Change: The Genetic Consequences.

    Science.gov (United States)

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  6. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    NARCIS (Netherlands)

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, Rik; Mooij, W.M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly

  7. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate

    NARCIS (Netherlands)

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, R.; Mooij, W.M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly

  8. A dynamic, climate-driven model of Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Joseph Leedale

    2016-03-01

    Full Text Available Outbreaks of Rift Valley fever (RVF in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  9. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  10. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Science.gov (United States)

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  11. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    Science.gov (United States)

    Weijerman, Mariska; Fulton, Elizabeth A; Kaplan, Isaac C; Gorton, Rebecca; Leemans, Rik; Mooij, Wolf M; Brainard, Russell E

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers

  12. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    Directory of Open Access Journals (Sweden)

    Mariska Weijerman

    Full Text Available Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1 ratio of calcifying to non-calcifying benthic groups, 2 trophic level of the community, 3 biomass of apex predators, 4 biomass of herbivorous fishes, 5 total biomass of living groups and 6 the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations, climate change impacts have a slight positive interaction with

  13. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica.

    Science.gov (United States)

    Gooseff, Michael N; Barrett, John E; Adams, Byron J; Doran, Peter T; Fountain, Andrew G; Lyons, W Berry; McKnight, Diane M; Priscu, John C; Sokol, Eric R; Takacs-Vesbach, Cristina; Vandegehuchte, Martijn L; Virginia, Ross A; Wall, Diana H

    2017-09-01

    Amplified climate change in polar regions is significantly altering regional ecosystems, yet there are few long-term records documenting these responses. The McMurdo Dry Valleys (MDV) cold desert ecosystem is the largest ice-free area of Antarctica, comprising soils, glaciers, meltwater streams and permanently ice-covered lakes. Multi-decadal records indicate that the MDV exhibited a distinct ecosystem response to an uncharacteristic austral summer and ensuing climatic shift. A decadal summer cooling phase ended in 2002 with intense glacial melt ('flood year')-a step-change in water availability triggering distinct changes in the ecosystem. Before 2002, the ecosystem exhibited synchronous behaviour: declining stream flow, decreasing lake levels, thickening lake ice cover, decreasing primary production in lakes and streams, and diminishing soil secondary production. Since 2002, summer air temperatures and solar flux have been relatively consistent, leading to lake level rise, lake ice thinning and elevated stream flow. Biological responses varied; one stream cyanobacterial mat type immediately increased production, but another stream mat type, soil invertebrates and lake primary productivity responded asynchronously a few years after 2002. This ecosystem response to a climatic anomaly demonstrates differential biological community responses to substantial perturbations, and the mediation of biological responses to climate change by changes in physical ecosystem properties.

  14. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    Directory of Open Access Journals (Sweden)

    Erin Coulter Riordan

    Full Text Available Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st century land use and climate change on California sage scrub (CSS, a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century in two ecoregions in California (Central Coast and South Coast. Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change

  15. Preliminary review of adaptation options for climate-sensitive ecosystems and resources. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research

    Science.gov (United States)

    Baron, Jill S.; Griffith, Brad; Joyce, Linda A.; Kareiva, Peter; Keller, Brian D.; Palmer, Margaret A.; Peterson, Charles H.; Scott, J. Michael; Julius, Susan Herrod; West, Jordan M.

    2008-01-01

    Climate variables are key determinants of geographic distributions and biophysical characteristics of ecosystems, communities, and species. Climate change is therefore affecting many species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue into the future regardless of emissions mitigation, strategies for protecting climate-sensitive ecosystems through management will be increasingly important. While there will always be uncertainties associated with the future path of climate change, the response of ecosystems to climate impacts, and the effects of management, it is both possible and essential for adaptation to proceed using the best available science. This report provides a preliminary review of adaptation options for climate-sensitive ecosystems and resources in the United States. The term “adaptation” in this document refers to adjustments in human social systems (e.g., management) in response to climate stimuli and their effects. Since management always occurs in the context of desired ecosystem conditions or natural resource management goals, it is instructive to examine particular goals and processes used by different organizations to fulfill their objectives. Such an examination allows for discussion of specific adaptation options as well as potential barriers and opportunities for implementation. Using this approach, this report presents a series of chapters on the following selected management systems: National Forests, National Parks, National Wildlife Refuges, Wild and Scenic Rivers, National Estuaries, and Marine Protected Areas. For these chapters, the authors draw on the literature, their own expert opinion, and expert workshops composed of resource management scientists and representatives of managing agencies. The information drawn from across these chapters is then analyzed to develop the key synthetic messages presented below.

  16. GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program

    Science.gov (United States)

    1991-01-01

    The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.

  17. Climate Stability: Pathway to understand abrupt glacial climate shifts

    Science.gov (United States)

    Zhang, X.; Knorr, G.; Barker, S.; Lohmann, G.

    2017-12-01

    Glacial climate is marked by abrupt, millennial-scale climate changes known as Dansgaard-Oeschger (DO) cycles that have been linked to variations in the Atlantic meridional overturning circulation (AMOC). The most pronounced stadial coolings, Heinrich Stadials (HSs), are associated with massive iceberg discharges to the North Atlantic. This motivates scientists to consider that the North Atlantic freshwater perturbations is a common trigger of the associated abrupt transitions between weak and strong AMOC states. However, recent studies suggest that the Heinrich ice-surging events are triggered by ocean subsurface warming associated with an AMOC slow-down. Furthermore, the duration of ice-rafting events does not systematically coincide with the beginning and end of the pronounced cold conditions during HSs. In this context, we show that both, changes in atmospheric CO2 and ice sheet configuration can provide important control on the stability of the AMOC, using a coupled atmosphere-ocean model. Our simulations reveal that gradual changes in Northern Hemisphere ice sheet height and atmospheric CO2 can act as a trigger of abrupt glacial/deglacial climate changes. The simulated global climate responses—including abrupt warming in the North Atlantic, a northward shift of the tropical rain belts, and Southern Hemisphere cooling related to the bipolar seesaw—are generally consistent with empirical evidence. We further find that under a delicate configuration of atmospheric CO2 and ice sheet height the AMOC can be characterized by a self-oscillation (resonance) feature (Hopf Bifucation) with a 1000-year cycle that is comparable with observed small DO events during the MIS 3. This provides an alternative explanation for millennial-scale DO variability during glacial periods.

  18. Modeling Impacts of Climate and Land Use Change on Ecosystem Processes to Quantify Exposure to Climate Change in Two Landscape Conservation Cooperatives

    Science.gov (United States)

    Quackenbush, A.

    2015-12-01

    Urban land cover and associated impervious surface area is expected to increase by as much as 50% over the next few decades across substantial portions of the United States. In combination with urban expansion, increases in temperature and changes in precipitation are expected to impact ecosystems through changes in productivity, disturbance and hydrological properties. In this study, we use the NASA Terrestrial Observation and Prediction System Biogeochemical Cycle (TOPS-BGC) model to explore the combined impacts of urbanization and climate change on hydrologic dynamics (snowmelt, runoff, and evapotranspiration) and vegetation carbon uptake (gross productivity). The model is driven using land cover predictions from the Spatially Explicit Regional Growth Model (SERGoM) to quantify projected changes in impervious surface area, and climate projections from the 30 arc-second NASA Earth Exchange Downscaled Climate Projection (NEX-DCP30) dataset derived from the CMIP5 climate scenarios. We present the modeling approach and an analysis of the ecosystem impacts projected to occur in the US, with an emphasis on protected areas in the Great Northern and Appalachian Landscape Conservation Cooperatives (LCC). Under the ensemble average of the CMIP5 models and land cover change scenarios for both representative concentration pathways (RCPs) 4.5 and 8.5, both LCCs are predicted to experience increases in maximum and minimum temperatures as well as annual average precipitation. In the Great Northern LCC, this is projected to lead to increased annual runoff, especially under RCP 8.5. Earlier melt of the winter snow pack and increased evapotranspiration, however, reduces summer streamflow and soil water content, leading to a net reduction in vegetation productivity across much of the Great Northern LCC, with stronger trends occurring under RCP 8.5. Increased runoff is also projected to occur in the Appalachian LCC under both RCP 4.5 and 8.5. However, under RCP 4.5, the model

  19. Project Summary (2012-2015) – Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Ross [University of Central Florida; Benscoter, Brian [Florida Atlantic University; Comas, Xavier [Florida Atlantic University; Sumner, David [USGS; DeAngelis, Donald [USGS

    2015-04-07

    Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regional carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.

  20. Climate risks to agriculture in Amazon arc-of-deforestation create incentives to conserve local forests

    Science.gov (United States)

    Costa, M. H.; Fleck, L. C.; Cohn, A.; Abrahão, G. M.; Brando, P. M.; Coe, M. T.; Fu, R.; Lawrence, D.; Pires, G. F.; Pousa, R.; Soares, B. Filh

    2017-12-01

    Intensification of agriculture is a necessary condition for sustainably meeting global food demands without increasing deforestation. In southern Amazonia, a region that produces 7% of the world's soybeans, double cropping has become the preferred system for the intensification of agriculture, which is essentially rainfed. Rainy season is shortening in the region, due to climate change, and is predicted to become shorter in the future. The climate risks are worsened by the region's land use change. This increases the climate risk and even threat the intensive double-cropping agriculture that is currently practiced in that region, with potential perverse consequences to everyone. Repeated or widespread climate-driven crop failure could prompt a return to the single cropping system or even cropland abandonment. A shift to single cropping could decrease the agriculture output in this critical region, push up global food prices and heighten incentives to convert regional ecosystems to agricultural land. Further agricultural expansion into ecosystems would increase climate change. The more forest lost, the higher the climate risk will be, due to climate feedbacks from deforestation itself, triggering a spiraling decline of the rainforests and rainfall over southern Amazonia and other critical agricultural regions known to depend on the forests of Amazonia for rainfall. We show that there are economic and social reasons to preserve the forests, and it is in the best interest of the agribusiness, local governments and people, to conserve the remaining forests. The adaptation and mitigation needs, and policies to reconcile production and protection while mitigating supply chains risks are also discussed.

  1. The economics of ecosystems and biodiversity, REDD+ and climate change in mangrove ecosystems of Southeast Asia

    Directory of Open Access Journals (Sweden)

    Filiberto Pollisco

    2013-07-01

    Full Text Available Mangroves are trees and shrubs that grow in saline coastal habitats. They occupy large stretches of the sub-tropical and tropical coastlines around the world. They not only provide valuable goods such as timber, fish and medicinal plants but also vital ecological services, such as prevention of coastal erosion. They also help buffer coastal communities from storms and floods. During the ASEAN Conference on Biodiversity held in Singapore in 2009, Ellison reported that mangrove forests in South East Asia are among the highest biodiversity resources in the world, occupying an area of 60.9 x 102 km2. Unfortunately, the region also has the highest rates of mangrove loss in the world, losing 628 km2 per year in two decades. In many parts of the world, where mangrove forests have been cleared, there are now problems of erosion and siltation, and loss of life and property have occurred due to destructive hurricanes, storms and tsunamis. The complex relationship between climate change and mangrove ecosystems can be seen from two different angles. On the one hand, mangrove ecosystems have a critical function in combating climate change; on the other hand, they are affected by climate change. The values of ecosystems vary according to local biophysical and ecological circumstances and the social, economic and cultural context. Intangible values, which may be reflected in society’s willingness to pay to conserve particular species or landscapes, or to protect common resources, must be considered alongside more tangible values such as food or timber to provide a complete economic picture. This has important implications for mangrove conservation strategies and suggests that the preservation of contiguous areas is preferable to patches that are spatially dispersed.

  2. Effects of Climatic Factors and Ecosystem Responses on the Inter-Annual Variability of Evapotranspiration in a Coniferous Plantation in Subtropical China

    Science.gov (United States)

    Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui

    2014-01-01

    Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003–2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003–2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May–June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation. PMID:24465610

  3. Covariance among North Sea nutrient and climate drivers: consequences for plankton dynamics.

    NARCIS (Netherlands)

    McQuatters-Gollop, A.; Vermaat, J.E.

    2011-01-01

    Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958-2003,

  4. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future

    Science.gov (United States)

    Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.

    2015-01-01

    Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus

  5. Can Payments for Ecosystem Services Contribute to Adaptation to Climate Change? Insights from a Watershed in Kenya

    Directory of Open Access Journals (Sweden)

    Isabel van de Sand

    2014-03-01

    Full Text Available Climate change presents new challenges for the management of social-ecological systems and the ecosystem services they provide. Although the instrument of payments for ecosystem services (PES has emerged as a promising tool to safeguard or enhance the provision of ecosystem services (ES, little attention has been paid to the potential role of PES in climate change adaptation. As an external stressor climate change has an impact on the social-ecological system in which PES takes place, including the various actors taking part in the PES scheme. Following a short description of the conceptual link between PES and adaptation to climate change, we provide practical insights into the relationship between PES and adaptation to climate change by presenting results from a case study of a rural watershed in Kenya. Drawing upon the results of a participatory vulnerability assessment among potential ecosystem service providers in Sasumua watershed north of Nairobi, we show that PES can play a role in enhancing adaptation to climate change by influencing certain elements of adaptive capacity and incentivizing adaptation measures. In addition, trade-offs and synergies between proposed measures under PES and adaptation to climate change are identified. Results show that although it may not be possible to establish PES schemes based on water utilities as the sole source of financing, embedding PES in a wider adaptation framework creates an opportunity for the development of watershed PES schemes in Africa and ensures their sustainability. We conclude that there is a need to embed PES in a wider institutional framework and that extra financial resources are needed to foster greater integration between PES and adaptation to climate change. This can be achieved through scaling up PES by bringing in other buyers and additional ecosystem services. PES can achieve important coadaptation benefits, but for more effective adaptation outcomes it needs to be combined

  6. Community ecology, climate change and ecohydrology in desert grassland and shrubland

    Science.gov (United States)

    Mathew Daniel Petrie

    2014-01-01

    This dissertation explores the climate, ecology and hydrology of Chihuahuan Desert ecosystems in the context of global climate change. In coming decades, the southwestern United States is projected to experience greater temperature-driven aridity, possible small decreases in annual precipitation, and a later onset of summer monsoon rainfall. These changes may have...

  7. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    Science.gov (United States)

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. © 2015 John Wiley & Sons Ltd.

  8. Contemporary white-band disease in Caribbean corals driven by climate change

    Science.gov (United States)

    Randall, C. J.; van Woesik, R.

    2015-04-01

    Over the past 40 years, two of the dominant reef-building corals in the Caribbean, Acropora palmata and Acropora cervicornis, have experienced unprecedented declines. That loss has been largely attributed to a syndrome commonly referred to as white-band disease. Climate change-driven increases in sea surface temperature (SST) have been linked to several coral diseases, yet, despite decades of research, the attribution of white-band disease to climate change remains unknown. Here we hindcasted the potential relationship between recent ocean warming and outbreaks of white-band disease on acroporid corals. We quantified eight SST metrics, including rates of change in SST and contemporary thermal anomalies, and compared them with records of white-band disease on A. palmata and A. cervicornis from 473 sites across the Caribbean, surveyed from 1997 to 2004. The results of our models suggest that decades-long climate-driven changes in SST, increases in thermal minima, and the breach of thermal maxima have all played significant roles in the spread of white-band disease. We conclude that white-band disease has been strongly coupled with thermal stresses associated with climate change, which has contributed to the regional decline of these once-dominant reef-building corals.

  9. Climate-induced warming imposes a threat to north European spring ecosystems.

    Science.gov (United States)

    Jyväsjärvi, Jussi; Marttila, Hannu; Rossi, Pekka M; Ala-Aho, Pertti; Olofsson, Bo; Nisell, Jakob; Backman, Birgitta; Ilmonen, Jari; Virtanen, Risto; Paasivirta, Lauri; Britschgi, Ritva; Kløve, Bjørn; Muotka, Timo

    2015-12-01

    Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate-related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater-dependent ecosystems (GDEs) remains poorly known. Here we report long-term water temperature trends in 66 northern European cold-water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968-2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high-emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst-case scenario, water temperature of these originally cold-water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring-fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold-stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring-fed streams. Climate change-induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems. © 2015 John Wiley & Sons Ltd.

  10. Comparative analysis of the influence of climate change and nitrogen deposition on carbon sequestration in forest ecosystems in European Russia: simulation modelling approach

    Directory of Open Access Journals (Sweden)

    A. S. Komarov

    2012-11-01

    Full Text Available An individual-based simulation model, EFIMOD, was used to simulate the response of forest ecosystems to climate change and additional nitrogen deposition. The general scheme of the model includes forest growth depending on nitrogen uptake by plants and mineralization of soil organic matter. The mineralization rate is dependent on nitrogen content in litter and forest floor horizons. Three large forest areas in European Central Russia with a total area of about 17 000 km2 in distinct environmental conditions were chosen. Simulations were carried out with two climatic scenarios (ambient climate and climate change and different levels of nitrogen deposition (ambient value and increase by 6 and 12 kg N ha−1 yr−1. The simulations showed that increased nitrogen deposition leads to increased productivity of trees, increased organic matter content in organic soil horizons, and an increased portion of deciduous tree species. For the climate change scenario, the same effects on forest productivity and similar shifts in species composition were predicted but the accumulation of organic matter in soil was decreased.

  11. Understanding and Managing the Effects of Climate Change on Ecosystem Services in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2017-08-01

    Full Text Available Public lands in the US Rocky Mountains provide critical ecosystem services, especially to rural communities that rely on these lands for fuel, food, water, and recreation. Climate change will likely affect the ability of these lands to provide ecosystem services. We describe 2 efforts to assess climate change vulnerabilities and develop adaptation options on federal lands in the Rocky Mountains. We specifically focus on aspects that affect community economic security and livelihood security, including water quality and quantity, timber, livestock grazing, and recreation. Headwaters of the Rocky Mountains serve as the primary source of water for large populations, and these headwaters are located primarily on public land. Thus, federal agencies will play a key role in helping to protect water quantity and quality by promoting watershed function and water conservation. Although increased temperatures and atmospheric concentration of CO2 have the potential to increase timber and forage production in the Rocky Mountains, those gains may be offset by wildfires, droughts, insect outbreaks, non-native species, and altered species composition. Our assessment identified ways in which federal land managers can help sustain forest and range productivity, primarily by increasing ecosystem resilience and minimizing current stressors, such as invasive species. Climate change will likely increase recreation participation. However, recreation managers will need more flexibility to adjust practices, provide recreation opportunities, and sustain economic benefits to communities. Federal agencies are now transitioning from the planning phase of climate change adaptation to implementation to ensure that ecosystem services will continue to be provided from federal lands in a changing climate.

  12. Potential Carbon Stock Changes in Arizona's Ecosystems Due to Projected Climate Change

    Science.gov (United States)

    Finley, B. K.; Ironside, K.; Hungate, B. A.; Hurteau, M.; Koch, G. W.

    2011-12-01

    Climate change can alter the role of plants and soils as sources or sinks of atmospheric carbon dioxide and result in changes in long-term carbon storage. To understand the sensitivity of Arizona's ecosystems to climate change, we quantified the present carbon stocks in Arizona's major ecosystem types using the NASA-CASA (Carnegie Ames Stanford Approach) model. Carbon stocks for each vegetation type included surface mineral soil, dead wood litter, standing wood and live leaf biomass. The total Arizona ecosystem carbon stock is presently 1775 MMtC, 545 MMtC of which is in Pinus ponderosa and Pinus edulis forests and woodlands. Evergreen forest vegetation, predominately Pinus ponderosa, has the largest current C density at 11.3 kgC/m2, while Pinus edulis woodlands have a C density of 6.0 kgC/m2. A change in climate will impact the suitable range for each tree species, and consequentially the amount of C stored. Present habitat ranges for these tree species are projected to have widespread mortality and likely will be replaced by herbaceous species, resulting in a loss of C stored. We evaluated the C storage implications over the 2010 to 2099 period of climate change based on output from GCMs with contrasting projections for the southwestern US: MPI-ECHAM5, which projects warming and reduced precipitation, and UKMO-HadGEM, which projects warming and increased precipitation. These projected changes are end points of a spectrum of possible future climate scenarios. The vegetation distribution models used describe potential suitable habitat, and we assumed that the growth rate for each vegetation type would be one-third of the way to full C density for each 30 year period up to 2099. With increasing temperature and decreasing precipitation predictions under the MPI-ECHAM5 model, P. ponderosa and P. edulis vegetation show a decrease in carbon stored from 545 MMtC presently to 116 MMtC. With the combined increase in temperature and precipitation, C storage in these

  13. Trophic niche shifts driven by phytoplankton in sandy beach ecosystems

    Science.gov (United States)

    Bergamino, Leandro; Martínez, Ana; Han, Eunah; Lercari, Diego; Defeo, Omar

    2016-10-01

    Stable isotopes (δ13C and δ15N) together with chlorophyll a and densities of surf diatoms were used to analyze changes in trophic niches of species in two sandy beaches of Uruguay with contrasting morphodynamics (i.e. dissipative vs. reflective). Consumers and food sources were collected over four seasons, including sediment organic matter (SOM), suspended particulate organic matter (POM) and the surf zone diatom Asterionellopsis guyunusae. Circular statistics and a Bayesian isotope mixing model were used to quantify food web differences between beaches. Consumers changed their trophic niche between beaches in the same direction of the food web space towards higher reliance on surf diatoms in the dissipative beach. Mixing models indicated that A. guyunusae was the primary nutrition source for suspension feeders in the dissipative beach, explaining their change in dietary niche compared to the reflective beach where the proportional contribution of surf diatoms was low. The high C/N ratios in A. guyunusae indicated its high nutritional value and N content, and may help to explain the high assimilation by suspension feeders at the dissipative beach. Furthermore, density of A. guyunusae was higher in the dissipative than in the reflective beach, and cell density was positively correlated with chlorophyll a only in the dissipative beach. Therefore, surf diatoms are important drivers in the dynamics of sandy beach food webs, determining the trophic niche space and productivity. Our study provides valuable insights on shifting foraging behavior by beach fauna in response to changes in resource availability.

  14. A framework for examining climate-driven changes to the seasonality and geographical range of coastal pathogens and harmful algae

    Directory of Open Access Journals (Sweden)

    John Jacobs

    2015-01-01

    Full Text Available Climate change is expected to alter coastal ecosystems in ways which may have predictable consequences for the seasonality and geographical distribution of human pathogens and harmful algae. Here we demonstrate relatively simple approaches for evaluating the risk of occurrence of pathogenic bacteria in the genus Vibrio and outbreaks of toxin-producing harmful algae in the genus Alexandrium, with estimates of uncertainty, in U.S. coastal waters under future climate change scenarios through the end of the 21st century. One approach forces empirical models of growth, abundance and the probability of occurrence of the pathogens and algae at specific locations in the Chesapeake Bay and Puget Sound with ensembles of statistically downscaled climate model projections to produce first order assessments of changes in seasonality. In all of the case studies examined, the seasonal window of occurrence for Vibrio and Alexandrium broadened, indicating longer annual periods of time when there is increased risk for outbreaks. A second approach uses climate model projections coupled with GIS to identify the potential for geographic range shifts for Vibrio spp. in the coastal waters of Alaska. These two approaches could be applied to other coastal pathogens that have climate sensitive drivers to investigate potential changes to the risk of outbreaks in both time (seasonality and space (geographical distribution under future climate change scenarios.

  15. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone.

    Science.gov (United States)

    Sjögersten, Sofie; Wookey, Philip A

    2009-02-01

    Changes in temperature and moisture resulting from climate change are likely to strongly modify the ecosystem carbon sequestration capacity in high-latitude areas, both through vegetation shifts and via direct warming effects on photosynthesis and decomposition. This paper offers a synthesis of research addressing the potential impacts of climate warming on soil processes and carbon fluxes at the forest-tundra ecotone in Scandinavia. Our results demonstrated higher rates of organic matter decomposition in mountain birch forest than in tundra heath soils, with markedly shallower organic matter horizons in the forest. Field and laboratory experiments suggest that increased temperatures are likely to increase CO2 efflux from both tundra and forest soil providing moisture availability does not become limiting for the decomposition process. Furthermore, colonization of tundra heath by mountain birch forest would increase rates of decomposition, and thus CO2 emissions, from the tundra heath soils, which currently store substantial amounts of potentially labile carbon. Mesic soils underlying both forest and tundra heath are currently weak sinks of atmospheric methane, but the strength of this sink could be increased with climate warming and/or drying.

  16. Climate-mediated nitrogen and carbon dynamics in a tropical watershed

    Science.gov (United States)

    Ballantyne, A. P.; Baker, P. A.; Fritz, S. C.; Poulter, B.

    2011-06-01

    Climate variability affects the capacity of the biosphere to assimilate and store important elements, such as nitrogen and carbon. Here we present biogeochemical evidence from the sediments of tropical Lake Titicaca indicating that large hydrologic changes in response to global glacial cycles during the Quaternary were accompanied by major shifts in ecosystem state. During prolonged glacial intervals, lake level was high and the lake was in a stable nitrogen-limited state. In contrast, during warm dry interglacials lake level fell and rates of nitrogen concentrations increased by a factor of 4-12, resulting in a fivefold to 24-fold increase in organic carbon concentrations in the sediments due to increased primary productivity. Observed periods of increased primary productivity were also associated with an apparent increase in denitrification. However, the net accumulation of nitrogen during interglacial intervals indicates that increased nitrogen supply exceeded nitrogen losses due to denitrification, thereby causing increases in primary productivity. Although primary productivity in tropical ecosystems, especially freshwater ecosystems, tends to be nitrogen limited, our results indicate that climate variability may lead to changes in nitrogen availability and thus changes in primary productivity. Therefore some tropical ecosystems may shift between a stable state of nitrogen limitation and a stable state of nitrogen saturation in response to varying climatic conditions.

  17. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems.

    Science.gov (United States)

    Syphard, Alexandra D; Radeloff, Volker C; Hawbaker, Todd J; Stewart, Susan I

    2009-06-01

    Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial

  18. The 'Blue-Shift' in midlatitude dynamics in a Changing Climate

    Science.gov (United States)

    Carvalho, L. V.

    2013-12-01

    Global surface temperature variations and changes result from intricate interplay of phenomena varying on scales ranging from fraction of seconds (turbulence) to thousands of years (e.g. glaciations). To complicate these issues further, the contribution of the anthropogenic forcing on the observed changes in surface temperatures varies over time and is spatially non-uniform. While evaluating all individual bands of this broad spectrum is virtually impossible, the availability of global daily datasets in the last few decades from reanalyses and Global Climate Models (GCMs) simulations allows estimating the contribution of phenomena varying on synoptic-to-interannual timescales. Previous studies using GCM simulations for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (IPCC AR4) have documented a consistent poleward shift in the storm tracks related to changes in baroclinicity resulting from global warming. However, our recent research (Cannon et al. 2013) indicated that the pattern of changes in the storm tracks observed in the last few decades is much more complex in both space and time. Complex terrain and the relative distribution of continents, oceans and icecaps play a significant role for changes in synoptic activity. Coupled modes such as the Northern and Southern annular modes, the El Nino-Southern Oscillation (ENSO) and respective teleconnections with changes in baroclinicity have been identified as relevant dynamical forcings for variations of the midlatitude storm tracks, increasing the uncertainties in future projections. Moreover, global warming has modified the amplitude of the annual cycles of temperature, moisture and circulation throughout the planet and there is strong indication that these changes have mostly affected the tropics and Polar Regions. The present study advances these findings by investigating the 'blue-shift' in the underlying dynamics causing surface temperature anomalies and investigates relationships with

  19. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management.

    Science.gov (United States)

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-04-27

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  20. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    Science.gov (United States)

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  1. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    Science.gov (United States)

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Evaluating the Collaborative Ecosystem for an Innovation-Driven Economy: A Systems Analysis and Case Study of Science Parks

    Directory of Open Access Journals (Sweden)

    Min-Ren Yan

    2018-03-01

    Full Text Available National policies for science parks and innovation have been identified as one of the major driving forces for the innovation-driven economy, especially for publicly funded science parks. To investigate this collaborative ecosystem (government-academia-industry for growth and sustainable development, this paper proposes a nation-wide economic impact analysis of science parks and innovation policy based on historical data drawn from one of the globally recognized high-technology industrial clusters in Taiwan. Systems thinking with causal loop analysis are adopted to improve our understanding of the collaborative ecosystem with science park policies. First, from a holistic viewpoint, the role of government in a science parks and innovation ecosystem is reviewed. A systems analysis of an innovation-driven economy with a science park policy is presented as a strategy map for policy implementers. Second, the added economic value and employment of the benchmarked science parks is evaluated from a long range perspective. Third, the concepts of government-academia-industry collaboration and policies to innovation ecosystem are introduced while addressing the measures and performance of innovation and applied R&D in the science parks. We conclude with a discussion of lessons learned and the policy implications of science park development and an innovation ecosystem.

  3. Ecosystem services and opportunity costs shift spatial priorities for conserving forest biodiversity.

    Directory of Open Access Journals (Sweden)

    Matthias Schröter

    Full Text Available Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone or partially restricted (partial use zone. Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2% and the non-use zone (+3.2%. Furthermore, opportunity costs increased (+6.6%, which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1% of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.

  4. Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity

    Science.gov (United States)

    Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn

    2014-01-01

    Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951

  5. Contributions of climate change to the boundary shifts in the farming-pastoral ecotone in northern China since 1970

    Science.gov (United States)

    Shi, W.; Liu, Y.; Shi, X.

    2017-12-01

    Critical transitions of farming-pastoral ecotone (FPE) boundaries can be affected by climate change and human activities, yet current studies have not adequately analyzed the spatially explicit contributions of climate change to FPE boundary shifts, particularly those in different regions and periods. In this study, we present a series of analyses at the point (gravity center analysis), line (boundary shifts detected using two methods) and area (spatial analysis) levels to quantify climate contributions at the 1 km scale in each ecological functional region during three study periods from the 1970s to the 2000s using climate and land use data. Both gravity center analysis and boundary shift detection reveal similar spatial patterns, with more extensive boundary shifts in the northeastern and southeastern parts of the FPE in northern China, especially during the 1970s-1980s and 1990s-2000s. Climate contributions in the X- and Y-coordinate directions and in the directions of transects along boundaries show that significant differences in climate contributions to FPE boundary shifts exist in different ecological regions during the three periods. Additionally, the results in different directions exhibit good agreement in most of the ecological functional regions during most of the periods. However, the contribution values in the directions of transects along the boundaries (with 1-17%) were always smaller than those in the X-and Y-coordinate directions (4-56%), which suggests that the analysis in the transect directions is more stable and reasonable. Thus, this approach provides an alternative method for detecting the climate contributions to boundary shifts associated with land use changes. Spatial analysis of the relationship between climate change and land use change in the context of FPE boundary shifts in northern China provides further evidence and explanation of the driving forces of climate change. Our findings suggest that an improved understanding of the

  6. Acclimation of methane production weakens ecosystem response to climate warming in a northern peatland

    Science.gov (United States)

    MA, S.; Huang, Y.; Jiang, J.; Ricciuto, D. M.; Hanson, P. J.; Luo, Y.

    2017-12-01

    Warming-induced increases in greenhouse gases from terrestrial ecosystems represent a positive feedback to twenty-first-century climate warming, but the magnitude of this stimulatory effect remains uncertain. Acclimation of soil respiration and photosynthesis have been found to slow down the feedback due to the substrate limitation and thermal adaptation. However, acclimation of ecosystem methane emission to climate warming has not been well illustrated, despite that methane is directly responsible for approximately 20% of global warming since pre-industrial time. In this study, we used the data-model fusion approach to explore the potential acclimation of methane emission to climate warming. We assimilated CH4 static chamber flux data at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experimental site into the ecosystem model, TECO_SPRUCE. The SPRUCE project has been conducted to study the responses of northern peatland to climate warming (+0, +2.25, +4.5, +6.75, +9 °C) and elevated atmospheric CO2 concentration (+0 and +500 ppm). The warming treatments were initiated from June 2014. We estimated parameter values using environmental and flux data in those five warming treatment levels from 2014 to 2016 for the acclimation study. The key parameters that were estimated for methane emissions are the potential ratio of CO2 converted to CH4 (r_me), Q10 for CH4 production (Q10_pro), maximum oxidation rate (Omax) and the factor of transport ability at plant community level (Tveg). Among them, r_me and Q10_pro were well constrained in each treatment plot. Q10 decreased from 3.33 (control) to 1.22 (+9˚C treatment) and r_me decreased from 0.675 (control) to 0.505 (+9˚C treatment). The acclimation will dampen the warming effect on methane production and emission. Current ecosystem models assumed constant Q10 for CH4 production and CH4/CO2 conversion ratio in the future warmed climate. The assumption is likely to overestimate the methane

  7. A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly.

    Science.gov (United States)

    Smirnov, D A; Breitenbach, S F M; Feulner, G; Lechleitner, F A; Prufer, K M; Baldini, J U L; Marwan, N; Kurths, J

    2017-09-11

    Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.

  8. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition.

    Science.gov (United States)

    Mills, Benjamin J W; Batterman, Sarah A; Field, Katie J

    2018-02-05

    Fossil evidence from the Rhynie chert indicates that early land plants, which evolved in a high-CO 2 atmosphere during the Palaeozoic Era, hosted diverse fungal symbionts. It is hypothesized that the rise of early non-vascular land plants, and the later evolution of roots and vasculature, drove the long-term shift towards a high-oxygen, low CO 2 climate that eventually permitted the evolution of mammals and, ultimately, humans. However, very little is known about the productivity of the early terrestrial biosphere, which depended on the acquisition of the limiting nutrient phosphorus via fungal symbiosis. Recent laboratory experiments have shown that plant-fungal symbiotic function is specific to fungal identity, with carbon-for-phosphorus exchange being either enhanced or suppressed under superambient CO 2 By incorporating these experimental findings into a biogeochemical model, we show that the differences in these symbiotic nutrient acquisition strategies could greatly alter the plant-driven changes to climate, allowing drawdown of CO 2 to glacial levels, and altering the nature of the rise of oxygen. We conclude that an accurate depiction of plant-fungal symbiotic systems, informed by high-CO 2 experiments, is key to resolving the question of how the first terrestrial ecosystems altered our planet.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  9. Global peatland initiation driven by regionally asynchronous warming.

    Science.gov (United States)

    Morris, Paul J; Swindles, Graeme T; Valdes, Paul J; Ivanovic, Ruza F; Gregoire, Lauren J; Smith, Mark W; Tarasov, Lev; Haywood, Alan M; Bacon, Karen L

    2018-05-08

    Widespread establishment of peatlands since the Last Glacial Maximum represents the activation of a globally important carbon sink, but the drivers of peat initiation are unclear. The role of climate in peat initiation is particularly poorly understood. We used a general circulation model to simulate local changes in climate during the initiation of 1,097 peatlands around the world. We find that peat initiation in deglaciated landscapes in both hemispheres was driven primarily by warming growing seasons, likely through enhanced plant productivity, rather than by any increase in effective precipitation. In Western Siberia, which remained ice-free throughout the last glacial period, the initiation of the world's largest peatland complex was globally unique in that it was triggered by an increase in effective precipitation that inhibited soil respiration and allowed wetland plant communities to establish. Peat initiation in the tropics was only weakly related to climate change, and appears to have been driven primarily by nonclimatic mechanisms such as waterlogging due to tectonic subsidence. Our findings shed light on the genesis and Holocene climate space of one of the world's most carbon-dense ecosystem types, with implications for understanding trajectories of ecological change under changing future climates.

  10. Assessing Effects of Climate Change on Access to Ecosystem Services in Rural Alaska: Enhancing the Science through Community Engagement

    Science.gov (United States)

    Brinkman, T. J.; Cold, H.; Brown, D. N.; Brown, C.; Hollingsworth, T. N.; Verbyla, D.

    2017-12-01

    In Arctic-Boreal regions, studies quantifying the characteristics and prevalence of environmental disruptions to access to ecosystem services are lacking. Empirical investigations are needed to assess the vulnerability of rural communities to climate change. We integrated community-based local observation (9 Interior Alaska Communities), field-based ground measurements, and remote sensing data to: 1) identify and prioritize the relative importance of different environmental changes affecting access, 2) characterize the biophysical causes and mechanisms related to access, and 3) evaluate long-term (30 year) trends in the environment that are challenging access. Dynamic winter ice and snow conditions (e.g., dangerous ice travel; n =147) were the most commonly reported cause of disturbance to access, followed by changes in summer hydrology (e.g., river navigability; n = 77) and seasonal shifts in freeze/thaw cycles (n = 31). Supporting local observations, our remote-sensing analysis indicated a trend toward environmental conditions that hinder or disrupt traditional uses of ecosystem services. For example, we found that the window of safe travel on ice has narrowed by approximately 2 weeks since the 1980s. Shifts in travel have implications on the effectiveness of subsistence activities, such as winter trapping and spring waterfowl hunting. From a methods perspective, we implemented a study design that generated novel science while also addressing locally relevant issues. Our approach and findings highlight opportunities for connecting biophysical science with societal concerns.

  11. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    Science.gov (United States)

    Guyette, Richard; Stambaugh, Michael C; Dey, Daniel; Muzika, Rose Marie

    2017-01-01

    The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  12. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    Directory of Open Access Journals (Sweden)

    Richard Guyette

    Full Text Available The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI. The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1 the water needed by plants to produce carbon bonds (fuel and 2 the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture. These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1 precipitation insensitive, 2 precipitation unstable, and 3 precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  13. Conservation in the face of climate change: recent developments [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Joshua Lawler

    2015-10-01

    Full Text Available An increased understanding of the current and potential future impacts of climate change has significantly influenced conservation in practice in recent years. Climate change has necessitated a shift toward longer planning time horizons, moving baselines, and evolving conservation goals and targets. This shift has resulted in new perspectives on, and changes in, the basic approaches practitioners use to conserve biodiversity. Restoration, spatial planning and reserve selection, connectivity modelling, extinction risk assessment, and species translocations have all been reimagined in the face of climate change. Restoration is being conducted with a new acceptance of uncertainty and an understanding that goals will need to shift through time. New conservation targets, such as geophysical settings and climatic refugia, are being incorporated into conservation plans. Risk assessments have begun to consider the potentially synergistic impacts of climate change and other threats. Assisted colonization has gained acceptance in recent years as a viable and necessary conservation tool. This evolution has paralleled a larger trend in conservation—a shift toward conservation actions that benefit both people and nature. As we look forward, it is clear that more change is on the horizon. To protect biodiversity and essential ecosystem services, conservation will need to anticipate the human response to climate change and to focus not only on resistance and resilience but on transitions to new states and new ecosystems.

  14. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    DEFF Research Database (Denmark)

    Selsted, Merete Bang

    on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO2 concentrations will increase...... carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO2. The methodology of static chamber CO2 flux measurements and applying the technology in a FACE (free air CO2 enrichment) facility is a challenge...... on the atmospheric CO2 concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO2 concentration and the CO2 soil-atmosphere gradient....

  15. Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes

    International Nuclear Information System (INIS)

    Shi, Hao; Li, Longhui; Eamus, Derek; Cleverly, James; Huete, Alfredo; Yu, Qiang; Beringer, Jason; Van Gorsel, Eva; Hutley, Lindsay

    2014-01-01

    The sensitivity of ecosystem gross primary production (GPP) to availability of water and photosynthetically active radiation (PAR) differs among biomes. Here we investigated variations of ecosystem light-use-efficiency (eLUE: GPP/PAR) and water-use-efficiency (eWUE: GPP/evapotranspiration) among seven Australian eddy covariance sites with differing annual precipitation, species composition and temperature. Changes to both eLUE and eWUE were primarily correlated with atmospheric vapor pressure deficit (VPD) at multiple temporal scales across biomes, with minor additional correlations observed with soil moisture and temperature. The effects of leaf area index on eLUE and eWUE were also relatively weak compared to VPD, indicating an intrinsic dependency of eLUE and eWUE on climate. Additionally, eLUE and eWUE were statistically different for biomes between summer and winter, except eWUE for savannas and the grassland. These findings will improve our understanding of how light- and water-use traits in Australian ecosystems may respond to climate change. (letter)

  16. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments.

    Science.gov (United States)

    Jönsson, Anna Maria; Anderbrant, Olle; Holmér, Jennie; Johansson, Jacob; Schurgers, Guy; Svensson, Glenn P; Smith, Henrik G

    2015-04-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science-stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science-stakeholder communication. By this, we hope to stimulate a discussion among the science-stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models.

  17. Ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bang Selsted, M

    2010-07-15

    Global change is a reality. Atmospheric CO{sub 2} levels are rising as well as mean global temperature and precipitation patterns are changing. These three environmental factors have separately and in combination effect on ecosystem processes. Terrestrial ecosystems hold large amounts of carbon, why understanding plant and soil responses to such changes are necessary, as ecosystems potentially can ameliorate or accelerate global change. To predict the feedback of ecosystems to the atmospheric CO{sub 2} concentrations experiments imitating global change effects are therefore an important tool. This work on ecosystem-atmosphere exchange of carbon in a heathland under future climatic conditions, shows that extended summer drought in combination with elevated temperature will ensure permanent dryer soil conditions, which decreases carbon turnover, while elevated atmospheric CO{sub 2} concentrations will increase carbon turnover. In the full future climate scenario, carbon turnover is over all expected to increase and the heathland to become a source of atmospheric CO{sub 2}. The methodology of static chamber CO{sub 2} flux measurements and applying the technology in a FACE (free air CO{sub 2} enrichment) facility is a challenge. Fluxes of CO{sub 2} from soil to atmosphere depend on a physical equilibrium between those two medias, why it is important to keep the CO{sub 2} gradient between soil and atmosphere unchanged during measurement. Uptake to plants via photosynthesis depends on a physiological process, which depends strongly on the atmospheric CO{sub 2} concentration. Photosynthesis and respiration run in parallel during measurements of net ecosystem exchange, and these measurements should therefore be performed with care to both the atmospheric CO{sub 2} concentration and the CO{sub 2} soil-atmosphere gradient. (author)

  18. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    Science.gov (United States)

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-11-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change. © 2016 John Wiley & Sons Ltd.

  19. The response of terrestrial ecosystems to global climate change: Towards an integrated approach

    International Nuclear Information System (INIS)

    Rustad, Lindsey E.

    2008-01-01

    Accumulating evidence points to an anthropogenic 'fingerprint' on the global climate change that has occurred in the last century. Climate change has, and will continue to have, profound effects on the structure and function of terrestrial ecosystems. As such, there is a critical need to continue to develop a sound scientific basis for national and international policies regulating carbon sequestration and greenhouse gas emissions. This paper reflects on the nature of current global change experiments, and provides recommendations for a unified multidisciplinary approach to future research in this dynamic field. These recommendations include: (1) better integration between experiments and models, and amongst experimental, monitoring, and space-for-time studies; (2) stable and increased support for long-term studies and multi-factor experiments; (3) explicit inclusion of biodiversity, disturbance, and extreme events in experiments and models; (4) consideration of timing vs intensity of global change factors in experiments and models; (5) evaluation of potential thresholds or ecosystem 'tipping points'; and (6) increased support for model-model and model-experiment comparisons. These recommendations, which reflect discussions within the TERACC international network of global change scientists, will facilitate the unraveling of the complex direct and indirect effects of global climate change on terrestrial ecosystems and their components

  20. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors

    International Nuclear Information System (INIS)

    Marek, Michal V.; Janous, Dalibor; Taufarova, Klara; Havrankova, Katerina; Pavelka, Marian; Kaplan, Veroslav; Markova, Irena

    2011-01-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. - Highlights: → Highest carbon sequestration potential in evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). → The final carbon gain of the grassland was negative (massive ecosystem respiration). → Climate is important factor of net primary productivity. → Carbon uptake is strongly affected by the ontogeny and a production strategy of ecosystem. - Identification of the apparent differences in the carbon storage by different ecosystem types.

  1. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities

    Science.gov (United States)

    Sahoo, G. B; Forrest, A. L; Schladow, S. G ;; Reuter, J. E; Coats, R.; Dettinger, Michael

    2016-01-01

    Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m2/decade although the summer (May–October) average SI increased at a higher rate (25.42 kg/m2/decade) during the period 1968–2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21st Century, and the B1 in which emissions slow and then level off by the late 21st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m2/decade and 8.66 kg/m2/decade, respectively for GFDLA2 and GFDLB1, respectively during 2014–2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

  2. Biodiversity, climate change and poverty: exploring the links

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Swiderska, Krystyna

    2008-02-15

    Biodiversity — the variety of all life, from genes and species to ecosystems — is intimately linked to Earth's climate and, inevitably, to climate change. Biodiversity and poverty are also inextricably connected. For instance, changes to natural ecosystems influence both climate change and people's ability to cope with some of its damaging impacts. And in their turn climate change, as well as people's responses to it, affect biodiversity. Unpicking all these strands clearly shows that conserving and managing biodiversity can help natural systems and vulnerable people cope with a shifting global climate. Yet compared to activities such as forest conservation and afforestation — widely noted as a way of sequestering carbon and cutting greenhouse gas emissions — biodiversity conservation is a neglected area. That must change: urgent support is needed for local solutions to biodiversity loss that provide benefits on all counts.

  3. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    Science.gov (United States)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  4. Coral Reef Ecosystems under Climate Change and Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Ove Hoegh-Guldberg

    2017-05-01

    Full Text Available Coral reefs are found in a wide range of environments, where they provide food and habitat to a large range of organisms as well as providing many other ecological goods and services. Warm-water coral reefs, for example, occupy shallow sunlit, warm, and alkaline waters in order to grow and calcify at the high rates necessary to build and maintain their calcium carbonate structures. At deeper locations (40–150 m, “mesophotic” (low light coral reefs accumulate calcium carbonate at much lower rates (if at all in some cases yet remain important as habitat for a wide range of organisms, including those important for fisheries. Finally, even deeper, down to 2,000 m or more, the so-called “cold-water” coral reefs are found in the dark depths. Despite their importance, coral reefs are facing significant challenges from human activities including pollution, over-harvesting, physical destruction, and climate change. In the latter case, even lower greenhouse gas emission scenarios (such as Representative Concentration Pathway RCP 4.5 are likely drive the elimination of most warm-water coral reefs by 2040–2050. Cold-water corals are also threatened by warming temperatures and ocean acidification although evidence of the direct effect of climate change is less clear. Evidence that coral reefs can adapt at rates which are sufficient for them to keep up with rapid ocean warming and acidification is minimal, especially given that corals are long-lived and hence have slow rates of evolution. Conclusions that coral reefs will migrate to higher latitudes as they warm are equally unfounded, with the observations of tropical species appearing at high latitudes “necessary but not sufficient” evidence that entire coral reef ecosystems are shifting. On the contrary, coral reefs are likely to degrade rapidly over the next 20 years, presenting fundamental challenges for the 500 million people who derive food, income, coastal protection, and a range of

  5. Ecosystem-Based Adaptation to Climate Change in Caribbean Small Island Developing States: Integrating Local and External Knowledge

    Directory of Open Access Journals (Sweden)

    Tiina Kurvits

    2012-08-01

    Full Text Available Caribbean Small Island Developing States (SIDS are vulnerable to climate change impacts including sea level rise, invasive species, ocean acidification, changes in rainfall patterns, increased temperatures, and changing hazard regimes including hurricanes, floods and drought. Given high dependencies in Caribbean SIDS on natural resources for livelihoods, a focus on ecosystems and their interaction with people is essential for climate change adaptation. Increasingly, ecosystem-based adaptation (EbA approaches are being highlighted as an approach to address climate change impacts. Specifically, EbA encourages the use of local and external knowledge about ecosystems to identify climate change adaptation approaches. This paper critically reviews EbA in Caribbean SIDS, focusing on the need to integrate local and external knowledge. An analysis of current EbA in the Caribbean is undertaken alongside a review of methodologies used to integrate local and external expertise for EbA. Finally key gaps, lessons learnt and suggested ways forward for EbA in Caribbean SIDS and potentially further afield are identified.

  6. Water quality and ecosystem management: Data-driven reality check of effects in streams and lakes

    Science.gov (United States)

    Destouni, Georgia; Fischer, Ida; Prieto, Carmen

    2017-08-01

    This study investigates nutrient-related water quality conditions and change trends in the first management periods of the EU Water Framework Directive (WFD; since 2009) and Baltic Sea Action Plan (BASP; since 2007). With mitigation of nutrients in inland waters and their discharges to the Baltic Sea being a common WFD and BSAP target, we use Sweden as a case study of observable effects, by compiling and analyzing all openly available water and nutrient monitoring data across Sweden since 2003. The data compilation reveals that nutrient monitoring covers only around 1% (down to 0.2% for nutrient loads) of the total number of WFD-classified stream and lake water bodies in Sweden. The data analysis further shows that the hydro-climatically driven water discharge dominates the determination of waterborne loads of both total phosphorus and total nitrogen across Sweden. Both water discharge and the related nutrient loads are in turn well correlated with the ecosystem status classification of Swedish water bodies. Nutrient concentrations do not exhibit such correlation and their changes over the study period are on average small, but concentration increases are found for moderate-to-bad status waters, for which both the WFD and the BSAP have instead targeted concentration decreases. In general, these results indicate insufficient distinction and mitigation of human-driven nutrient components in inland waters and their discharges to the sea by the internationally harmonized applications of the WFD and the BSAP. The results call for further comparative investigations of observable large-scale effects of such regulatory/management frameworks in different parts of the world.

  7. Seagrass sediments reveal the long-term deterioration of an estuarine ecosystem

    KAUST Repository

    Serrano, Oscar

    2016-01-28

    © 2016 John Wiley & Sons Ltd. The study of a Posidonia australis sediment archive has provided a record of ecosystem dynamics and processes over the last 600 years in Oyster Harbour (SW Australia). Ecosystem shifts are a widespread phenomenon in coastal areas, and this study identifies baseline conditions and the time-course of ecological change (cycles, trends, resilience and thresholds of ecosystem change) under environmental stress in seagrass-dominated ecosystem. The shifts in the concentrations of chemical elements, carbonates, sediments <0.125 mm and stable carbon isotope signatures (δ13C) of the organic matter were detected between 1850s and 1920s, whereas the shift detected in P concentration occurred several decades later (1960s). The first degradation phase (1850s-1950s) follows the onset of European settlement in Australia and was characterized by a strong increase in sediment accumulation rates and fine-grained particles, driven primarily by enhanced run-off due to land clearance and agriculture in the catchment. About 80% of total seagrass area at Oyster Harbour was lost during the second phase of environmental degradation (1960s until present). The sharp increase in P concentration and the increasing contribution of algae and terrestrial inputs into the sedimentary organic matter pool around 1960s provides compelling evidence of the documented eutrophication of the estuary and the subsequent loss of seagrass meadows. The results presented demonstrate the power of seagrass sedimentary archives to reconstruct the trajectories of anthropogenic pressures on estuarine ecosystem and the associated regime shifts, which can be used to improve the capacity of scientists and environmental managers to understand, predict and better manage ecological change in these ecosystems.

  8. Seagrass sediments reveal the long-term deterioration of an estuarine ecosystem

    KAUST Repository

    Serrano, Oscar; Lavery, Paul; Masque, Pere; Inostroza, Karina; Bongiovanni, James; Duarte, Carlos M.

    2016-01-01

    © 2016 John Wiley & Sons Ltd. The study of a Posidonia australis sediment archive has provided a record of ecosystem dynamics and processes over the last 600 years in Oyster Harbour (SW Australia). Ecosystem shifts are a widespread phenomenon in coastal areas, and this study identifies baseline conditions and the time-course of ecological change (cycles, trends, resilience and thresholds of ecosystem change) under environmental stress in seagrass-dominated ecosystem. The shifts in the concentrations of chemical elements, carbonates, sediments <0.125 mm and stable carbon isotope signatures (δ13C) of the organic matter were detected between 1850s and 1920s, whereas the shift detected in P concentration occurred several decades later (1960s). The first degradation phase (1850s-1950s) follows the onset of European settlement in Australia and was characterized by a strong increase in sediment accumulation rates and fine-grained particles, driven primarily by enhanced run-off due to land clearance and agriculture in the catchment. About 80% of total seagrass area at Oyster Harbour was lost during the second phase of environmental degradation (1960s until present). The sharp increase in P concentration and the increasing contribution of algae and terrestrial inputs into the sedimentary organic matter pool around 1960s provides compelling evidence of the documented eutrophication of the estuary and the subsequent loss of seagrass meadows. The results presented demonstrate the power of seagrass sedimentary archives to reconstruct the trajectories of anthropogenic pressures on estuarine ecosystem and the associated regime shifts, which can be used to improve the capacity of scientists and environmental managers to understand, predict and better manage ecological change in these ecosystems.

  9. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Tecchio, Samuele; Coll, Marta; Sardà, Francisco

    2015-06-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate-driven

  10. Reconnecting Social and Ecological Resilience in Salmon Ecosystems

    Directory of Open Access Journals (Sweden)

    Daniel L. Bottom

    2009-06-01

    Full Text Available Fishery management programs designed to control Pacific salmon (Oncorhynchus spp. for optimum production have failed to prevent widespread fish population decline and have caused greater uncertainty for salmon, their ecosystems, and the people who depend upon them. In this special feature introduction, we explore several key attributes of ecosystem resilience that have been overlooked by traditional salmon management approaches. The dynamics of salmon ecosystems involve social-ecological interactions across multiple scales that create difficult mismatches with the many jurisdictions that manage fisheries and other natural resources. Of particular importance to ecosystem resilience are large-scale shifts in oceanic and climatic regimes or in global economic conditions that unpredictably alter social and ecological systems. Past management actions that did not account for such changes have undermined salmon population resilience and increased the risk of irreversible regime shifts in salmon ecosystems. Because salmon convey important provisioning, cultural, and supporting services to their local watersheds, widespread population decline has undermined both human well-being and ecosystem resilience. Strengthening resilience will require expanding habitat opportunities for salmon populations to express their maximum life-history variation. Such actions also may benefit the "response diversity" of local communities by expanding the opportunities for people to express diverse social and economic values. Reestablishing social-ecological connections in salmon ecosystems will provide important ecosystem services, including those that depend on clean water, ample stream flows, functional wetlands and floodplains, intact riparian systems, and abundant fish populations.

  11. Hydroclimatic shifts recorded in peat archive from Rąbień mire (Central Poland) - better understanding of past climate changes using multidisciplinary approach

    Science.gov (United States)

    Słowiński, Michał; Marcisz, Katarzyna; Płóciennik, Mateusz; Obremska, Milena; Pawłowski, Dominik; Okupny, Daniel; Słowińska, Sandra; Borówka, Ryszard; Kittel, Piotr; Forysiak, Jacek; Michczyńska, Danuta J.; Lamentowicz, Mariusz

    2016-04-01

    Hydrological changes are main drivers of the processes occurring in the peatland ecosystem, e.g. organic matter accumulation and decomposition. Hydroclimatic changes in mires are caused by various non-climatic factors, such as hydroseral succession or land use changes. Central Europe, namely Poland, is characterized by a transitional climate with influence o both continental and Atlantic air masses, which makes a this region a very sensitive to climate change. Here we explore a potential of multidisciplinary approach in reconstruction of past climate change and particularly hydroclimatic conditions which control in Sphagnum peatland ecosystem. We reconstructed 3300 years (between 3,500 BC and 200 BC) history of development of Rąbień mire using several biotic proxies (pollen, plant macrofossils, testate amoebae, Cladocera, Chironomidae) and geochemistry. Study site - Rąbień mire (area 42 ha) is located in central Poland and it is protected nature reserve. The origin of the mire depression is connected with the development of the thermokarst basin isolated by dunes. Rąbień mire is limnogenic, i.e. formed by the process of terrestrialisation of a water body and thickness of biogenic deposits is 6.2 m (440 cm of lacustrine sediment and 180 cm of peat). Our results demonstrate the high potential of Rąbień peat record for reconstructing the palaeohydrological dynamics. The studied time interval is characterized by two pronounced dry periods: ~2,500 to ~1,700 cal. BC and ~800 to ~600 cal. BC, and two periods of significant increases in water table: ~1,100 to ~800 cal. BC and ~600 to ~250 cal. BC. The timing of the wet shift at 600 cal. BC corresponds to wet periods in different sites from Central and Eastern Europe. Our investigation reveals a complex pattern of proxies, what might be linked to the past atmospheric circulation patterns. Extreme hydroclimatic conditions most possibly had a direct impact on the functioning of peatland ecosystems. What has been

  12. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  13. Effects of Climate and Ecosystem Disturbances on Biogeochemical Cycling in a Semi-Natural Terrestrial Ecosystem

    International Nuclear Information System (INIS)

    Beier, Claus; Schmidt, Inger Kappel; Kristensen, Hanne Lakkenborg

    2004-01-01

    The effects of increased temperature and potential ecosystem disturbances on biogeochemical cycling were investigated by manipulation of temperature in a mixed Calluna/grass heathland in Denmark. A reflective curtain covered the vegetation during the night to reduce the heat loss of IR radiation from the ecosystem to the atmosphere. This 'night time warming' was done for 3 years and warmed the air and soil by 1.1 deg. C. Warming was combined with ecosystem disturbances, including infestation by Calluna heather beetles (Lochmaea suturalis Thompson) causing complete defoliation of Calluna leaves during the summer 2000, and subsequent harvesting of all aboveground biomass during the autumn. Small increases in mineralisation rates were induced by warming and resulted in increased leaching of nitrogen from the organic soil layer. The increased nitrogen leaching from the organic soil layer was re-immobilised in the mineral soil layer as warming stimulated plant growth and thereby increased nitrogen immobilisation. Contradictory to the generally moderate effects of warming, the heather beetle infestation had very strong effects on mineralisation rates and the plant community. The grasses completely out-competed the Calluna plants which had not re-established two years after the infestation, probably due to combined effects of increased nutrient availability and the defoliation of Calluna. On the short term, ecosystem disturbances may have very strong effects on internal ecosystem processes and plant community structure compared to the more long-term effects of climate change

  14. Climate induced changes in biome distribution, NPP and hydrology for potential vegetation of the Upper Midwest U.S

    Science.gov (United States)

    Motew, M.; Kucharik, C. J.

    2011-12-01

    While much attention is focused on future impacts of climate change on ecosystems, much can be learned about the previous interactions of ecosystems with recent climate change. In this study, we investigated the impacts of climate change on potential vegetation distributions (i.e. grasses, trees, and shrubs) and carbon and water cycling across the Upper Midwest USA from 1948-2007 using the Agro-IBIS dynamic vegetation model. We drove the model using a historical, gridded daily climate data set (temperature, precipitation, humidity, solar radiation, and wind speed) at a spatial resolution of 5 min x 5 min. While trends in climate variables exhibited heterogeneous spatial patterns over the study period, the overall impact of climate change on vegetation productivity was positive. We observed total increases in net primary productivity (NPP) ranging from 20-150 g C m-2, based on linear regression analysis. We determined that increased summer relative humidity, increased annual precipitation and decreased mean maximum summer temperatures were key variables contributing to these positive trends, likely through a reduction in soil moisture stress (e.g., increased available water) and heat stress. Model simulations also illustrated an increase in annual drainage throughout the region of 20-140 mm yr-1, driven by substantial increases in annual precipitation. Evapotranspiration had a highly variable spatial trend over the 60-year period, with total change over the study period ranging between -100 and +100 mm yr-1. We also analyzed potential changes in plant functional type (PFT) distributions at the biome level, but hypothesize that the model may be unable to adequately capture competitive interactions among PFTs as well as the dynamics between upper and lower canopies consisting of trees, grasses and shrubs. An analysis of the bioclimatic envelopes for PFTs common to the region revealed no significant change to the boreal conifer tree climatic domain over the study

  15. Change in terrestrial ecosystem water-use efficiency over the last three decades.

    Science.gov (United States)

    Huang, Mengtian; Piao, Shilong; Sun, Yan; Ciais, Philippe; Cheng, Lei; Mao, Jiafu; Poulter, Ben; Shi, Xiaoying; Zeng, Zhenzhong; Wang, Yingping

    2015-06-01

    Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem-scale water-use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data-driven models derived from satellite observations and process-oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m(-2)  mm(-1)  yr(-1) under the single effect of rising CO2 ('CO2 '), climate change ('CLIM') and nitrogen deposition ('NDEP'), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE-CO2 shows global increases, (ii) EWUE-CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE-NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data-driven MTE model, however, shows a slight decline of EWUE during the same period (-0.0005 g C m(-2)  mm(-1)  yr(-1) ), which differs from process-model (0.0064 g C m(-2)  mm(-1)  yr(-1) ) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO2 reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data-driven model and the process-oriented models across different ecosystems. Change in water-use efficiency defined from transpiration-based WUEt (GPP/TR) and inherent water-use efficiency (IWUEt , GPP×VPD/TR) in response to rising CO2 , climate change, and nitrogen deposition are also discussed. Our analyses will

  16. Partitioning inter annual variability in net ecosystem exchange between climatic variability and functional change

    International Nuclear Information System (INIS)

    Hui, D.; Luo, Y.; Katul, G.

    2003-01-01

    Inter annual variability in net ecosystem exchange of carbon is investigated using a homogeneity-of-slopes model to identify the function change contributing to inter annual variability, net ecosystem carbon exchange, and night-time ecosystem respiration. Results of employing this statistical approach to a data set collected at the Duke Forest AmeriFlux site from August 1997 to December 2001 are discussed. The results demonstrate that it is feasible to partition the variation in ecosystem carbon fluxes into direct effects of seasonal and inter annual climatic variability and functional change. 51 refs., 4 tabs., 5 figs

  17. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    Energy Technology Data Exchange (ETDEWEB)

    Dercon, Gerd [Soil and Water Management and Crop Nutrition Subprogramme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Seibersdorf (Austria); Gerardo-Abaya, Jane [Division for Asia and the Pacific Section 2, Department of Technical Cooperation, IAEA, Vienna (Austria); Mavlyudov, Bulat [Institute of Geography, Russian Academy of Sciences, Moscow (Russian Federation); others, and

    2014-07-15

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas.

  18. Assessing the Impact of Climate Change on Land-Water-Ecosystem Quality in Polar and Mountainous Regions: A New Interregional Project (INT5153)

    International Nuclear Information System (INIS)

    Dercon, Gerd; Gerardo-Abaya, Jane; Mavlyudov, Bulat

    2014-01-01

    The INT5153 project aims to improve the understanding of the impact of climate change on fragile polar and mountainous ecosystems on both a local and global scale for their better management and conservation. Seven core and five related benchmark sites have been selected from different global regions for specific assessments of the impact of climate change with the following expected outcomes and outputs: Outcomes: • Improved understanding of the impact of climate change on the cryosphere in polar and mountainous ecosystems and its effects on landwater- ecosystem quality at both local and global scales. • Recommendations for improvement of regional policies for soil and agricultural water management, conservation, and environmental protection in polar and mountainous regions. Outputs: • Specific strategies to minimize the adverse effects of, and adapt to, reduced seasonal snow and glacier covered areas on land-water-ecosystem quality in polar and mountain regions across the world. • Enhanced interregional network of laboratories and institutions competent in the assessment of climate change impacts on the cryosphere and land-water-ecosystem quality, using isotopic and nuclear techniques. • Increased number of young scientists trained in the use of isotope and nuclear techniques to assess the impact of climate change on the cryosphere and land-water-ecosystem quality in polar and mountainous ecosystems. • Platform/database with global access for continuing work and monitoring of impact of climate change on fragile polar and mountainous ecosystems at local and global scales, as well as for communicating findings to policy makers and communities. • Improved understanding of the effects of climate change disseminated through appropriate publications, policy briefs, and through a dedicated internet platform. • Methodologies and protocols for investigations in specific ecosystems and conservation/adaptation measures for agriculture areas

  19. Rapid ecosystem shifts in peatlands: linking plant physiology and succession.

    Science.gov (United States)

    Granath, Gustaf; Strengbom, Joachim; Rydin, Håkan

    2010-10-01

    Stratigraphic records from peatlands suggest that the shift from a rich fen (calcareous fen) to an ombrotrophic bog can occur rapidly. This shift constitutes a switch from a species-rich ecosystem to a species-poor one with greater carbon storage. In this process, the invasion and expansion of acidifying bog species of Sphagnum (peat mosses) play a key role. To test under what conditions an acidifying bog species could invade a rich fen, we conducted three experiments, contrasting the bog species S. fucsum with the rich-fen species S. warnstorfii and S. teres. We first tested the effect of calcareous water by growing the three species at different constant height above the water table (HWT; 2, 7, and 14 cm) in a rich-fen pool and measured maximum photosynthetic rate and production and difference in length growth as an indicator of competition. In none of the species was the photosynthetic capacity negatively affected when placed at low HWT, but S. fuscum was a weaker competitor at low HWT. In our second experiment we transplanted the three species into microhabitats with different and naturally varying HWT in a rich fen. Here, S. fuscum nearly ceased to photosynthesize when transplanted to low HWT (brown moss carpet), while it performed similarly to the two rich-fen species at the intermediate level (S. warnstorfii hummock level). In contrast to S. fuscum, the rich-fen sphagna performed equally well in both habitats. The brown moss carpet was seasonally flooded, and in our third experiment we found that S. fuscum, but not S. teres, was severely damaged when submerged in rich-fen water. Our results suggest two thresholds in HWT affecting the ecosystem switch: one level that reduces the risk of submergence and a higher one that makes bog sphagna competitive against the rich-fen species.

  20. Progressive changes in the Western English Channel foster a reorganization in the plankton food web

    DEFF Research Database (Denmark)

    Reygondeau, Gabriel; Molinero, J.C.; Coombs, S.

    2015-01-01

    . (2013) drive a profound restructuration of the plankton community modifying the phenology and the dominance of key planktonic groups including fish larvae. Consequently, the slow but deep modifications detected in the plankton community highlight a climate driven ecosystem shift in the Western English...

  1. Impact of environmental pollution and climate change on forest ecosystems: the activity of the IUFRO Research Group 7.01

    Directory of Open Access Journals (Sweden)

    Paoletti E

    2007-12-01

    Full Text Available Impact of environmental pollution and climate change on forest ecosystems: the activity of the IUFRO Research Group 7.01. The IUFRO RG 7.01 deals with "Impacts of Air Pollution and Climate Change on Forest Ecosystems". Climate change and air pollution are closely linked, although in applied scientific research and even more in political negotiations they have been largely separated. Many of the traditional air pollutants and greenhouse gases have not only common sources, but may also interact physically and chemically in the atmosphere causing a variety of environmental impacts on the local, regional and global scales. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects of numerous climate change and air pollution factors may significantly differ from a sum of separate effects due to an array of various synergistic or antagonistic interactions. The net effect varies for different ecosystem types and geographic regions, and depends on magnitude of climate or air pollution drivers, and types of interactions between them. This paper reviews the links between air pollution and climate change and their interactive effects on forests. A simultaneous addressing of the air pollution and climate change effects on forests is an opportunity for capturing synergies and avoiding overlaps between two lines of traditional research. This could result in more effective research, monitoring and management as well as better integration of environmental policies.

  2. Wildland fire emissions, carbon, and climate: Science overview and knowledge needs

    Science.gov (United States)

    William T. Sommers; Rachel A. Loehman; Colin C. Hardy

    2014-01-01

    Wildland fires have influenced the global carbon cycle for 420 million years of Earth history, interacting with climate to define vegetation characteristics and distributions, trigger abrupt ecosystem shifts, and move carbon among terrestrial and atmospheric pools. Carbon dioxide (CO2) is the dominant driver of ongoing climate change and the principal emissions...

  3. North Sea ecosystem change from swimming crabs to seagulls.

    Science.gov (United States)

    Luczak, C; Beaugrand, G; Lindley, J A; Dewarumez, J-M; Dubois, P J; Kirby, R R

    2012-10-23

    A recent increase in sea temperature has established a new ecosystem dynamic regime in the North Sea. Climate-induced changes in decapods have played an important role. Here, we reveal a coincident increase in the abundance of swimming crabs and lesser black-backed gull colonies in the North Sea, both in time and in space. Swimming crabs are an important food source for lesser black-backed gulls during the breeding season. Inhabiting the land, but feeding mainly at sea, lesser black-backed gulls provide a link between marine and terrestrial ecosystems, since the bottom-up influence of allochthonous nutrient input from seabirds to coastal soils can structure the terrestrial food web. We, therefore, suggest that climate-driven changes in trophic interactions in the marine food web may also have ensuing ramifications for the coastal ecology of the North Sea.

  4. Potential effects of climate change on freshwater ecosystems of the New England/Mid-Atlantic Region

    Science.gov (United States)

    Moore, M.V.; Pace, M.L.; Mather, J.R.; Murdoch, Peter S.; Howarth, R.W.; Folt, C.L.; Chen, C.-Y.; Hemond, Harold F.; Flebbe, P.A.; Driscoll, C.T.

    1997-01-01

    Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 ??CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3-5??C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity. The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be

  5. A long-term multi-proxy record of varved sediments highlights climate-induced mixing-regime shift in a large hard-water lake ~5000 years ago

    Directory of Open Access Journals (Sweden)

    Walter Finsinger

    2014-06-01

    Full Text Available The long-term terrestrial and aquatic ecosystem dynamics spanning between approximately 6200 and 4800 cal BP were investigated using pollen, diatoms, pigments, charcoal, and geochemistry from varved sediments collected in a large stratified perialpine lake, Lago Grande di Avigliana, in the Italian Alps. Marked changes were detected in diatom and pigment assemblages and in sediment composition at ~4900 cal BP. Organic matter rapidly increased and diatom assemblages shifted from oligotrophic to oligo-mesotrophic planktonic assemblages suggesting that nutrients increased at that time. Because land cover, erosion, and fire frequency did not change significantly, external nutrient sources were possibly not essential in controlling the lake-ecosystem dynamics. This is also supported by redundancy analysis, which showed that variables explaining significant amounts of variance in the diatom data were not the ones related to changes in the catchment. Instead, the broad coincidence between the phytoplankton dynamics and rising lake-levels, cooler temperatures, and stronger spring winds in the northern Mediterranean borderlands possibly points to the effects of climate change on the nutrient recycling in the lake by means of the control that climate can exert on mixing depth. We hypothesize that the increased P-release rates and higher organic-matter accumulation rates, proceeded by enhanced precipitation of iron sulphides, were possibly caused by deeper and stronger mixing leading to enhanced input of nutrients from the anoxic hypolimnion into the epilimnion. Although we cannot completely rule out the influence of minor land-cover changes due to human activities, it may be hypothesized that climate-induced cumulative effects related to mixing regime and P-recycling from sediments influenced the aquatic-ecosystem dynamics.

  6. Ecological forecasting under climate change: the case of Baltic cod

    DEFF Research Database (Denmark)

    Lindegren, Martin; Möllmann, Christian; Nielsen, Anders

    2010-01-01

    Good decision making for fisheries and marine ecosystems requires a capacity to anticipate the consequences of management under different scenarios of climate change. The necessary ecological forecasting calls for ecosystem-based models capable of integrating multiple drivers across trophic levels...... and properly including uncertainty. The methodology presented here assesses the combined impacts of climate and fishing on marine food-web dynamics and provides estimates of the confidence envelope of the forecasts. It is applied to cod (Gadus morhua) in the Baltic Sea, which is vulnerable to climate......-related decline in salinity owing to both direct and indirect effects (i.e. through species interactions) on early-life survival. A stochastic food web-model driven by regional climate scenarios is used to produce quantitative forecasts of cod dynamics in the twenty-first century. The forecasts show how...

  7. Predicting Plant-Accessible Water in the Critical Zone: Mountain Ecosystems in a Mediterranean Climate

    Science.gov (United States)

    Klos, P. Z.; Goulden, M.; Riebe, C. S.; Tague, C.; O'Geen, A. T.; Flinchum, B. A.; Safeeq, M.; Conklin, M. H.; Hart, S. C.; Asefaw Berhe, A.; Hartsough, P. C.; Holbrook, S.; Bales, R. C.

    2017-12-01

    Enhanced understanding of subsurface water storage, and the below-ground architecture and processes that create it, will advance our ability to predict how the impacts of climate change - including drought, forest mortality, wildland fire, and strained water security - will take form in the decades to come. Previous research has examined the importance of plant-accessible water in soil, but in upland landscapes within Mediterranean climates the soil is often only the upper extent of subsurface water storage. We draw insights from both this previous research and a case study of the Southern Sierra Critical Zone Observatory to: define attributes of subsurface storage, review observed patterns in its distribution, highlight nested methods for its estimation across scales, and showcase the fundamental processes controlling its formation. We observe that forest ecosystems at our sites subsist on lasting plant-accessible stores of subsurface water during the summer dry period and during multi-year droughts. This indicates that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite, which reaches up to 10-20 m beneath the surface. This confirms the importance of large volumes of subsurface water in supporting ecosystem resistance to climate and landscape change across a range of spatiotemporal scales. This research enhances the ability to predict the extent of deep subsurface storage across landscapes; aiding in the advancement of both critical zone science and the management of natural resources emanating from similar mountain ecosystems worldwide.

  8. The nexus between climate change, ecosystem services and human health: Towards a conceptual framework.

    Science.gov (United States)

    Chiabai, Aline; Quiroga, Sonia; Martinez-Juarez, Pablo; Higgins, Sahran; Taylor, Tim

    2018-09-01

    This paper addresses the impact that changes in natural ecosystems can have on health and wellbeing focusing on the potential co-benefits that green spaces could provide when introduced as climate change adaptation measures. Ignoring such benefits could lead to sub-optimal planning and decision-making. A conceptual framework, building on the ecosystem-enriched Driver, Pressure, State, Exposure, Effect, Action model (eDPSEEA), is presented to aid in clarifying the relational structure between green spaces and human health, taking climate change as the key driver. The study has the double intention of (i) summarising the literature with a special emphasis on the ecosystem and health perspectives, as well as the main theories behind these impacts, and (ii) modelling these findings into a framework that allows for multidisciplinary approaches to the underlying relations between human health and green spaces. The paper shows that while the literature based on the ecosystem perspective presents a well-documented association between climate, health and green spaces, the literature using a health-based perspective presents mixed evidence in some cases. The role of contextual factors and the exposure mechanism are rarely addressed. The proposed framework could serve as a multidisciplinary knowledge platform for multi-perspecitve analysis and discussion among experts and stakeholders, as well as to support the operationalization of quantitative assessment and modelling exercises. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought

    Science.gov (United States)

    Scott, Russell L.; Biederman, Joel A.; Hamerlynck, Erik P.; Barron-Gafford, Greg A.

    2015-12-01

    Global-scale studies indicate that semiarid regions strongly regulate the terrestrial carbon sink. However, we lack understanding of how climatic shifts, such as decadal drought, impact carbon sequestration across the wide range of structural diversity in semiarid ecosystems. Therefore, we used eddy covariance measurements to quantify how net ecosystem production of carbon dioxide (NEP) differed with relative grass and woody plant abundance over the last decade of drought in four Southwest U.S. ecosystems. We identified a precipitation "pivot point" in the carbon balance for each ecosystem where annual NEP switched from negative to positive. Ecosystems with grass had pivot points closer to the drought period precipitation than the predrought average, making them more likely to be carbon sinks (and a grass-free shrubland, a carbon source) during the current drought. One reason for this is that the grassland located closest to the shrubland supported higher leaf area and photosynthesis at the same water availability. Higher leaf area was associated with a greater proportion of evapotranspiration being transpiration (T/ET), and therefore with higher ecosystem water use efficiency (gross ecosystem photosynthesis/ET). Our findings strongly show that water availability is a primary driver of both gross and net semiarid productivity and illustrate that structural differences may contribute to the speed at which ecosystem carbon cycling adjusts to climatic shifts.

  10. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms

    DEFF Research Database (Denmark)

    Niu, Shuli; Luo, Yiqi; Fei, Shenfeng

    2012-01-01

    distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem‐level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. We found that the temperature response of NEE followed a peak curve......, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum...... ecosystem–climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models....

  11. Biodiversity, climate change and poverty: exploring the links

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Swiderska, Krystyna

    2008-02-15

    Biodiversity — the variety of all life, from genes and species to ecosystems — is intimately linked to Earth's climate and, inevitably, to climate change. Biodiversity and poverty are also inextricably connected. For instance, changes to natural ecosystems influence both climate change and people's ability to cope with some of its damaging impacts. And in their turn climate change, as well as people's responses to it, affect biodiversity. Unpicking all these strands clearly shows that conserving and managing biodiversity can help natural systems and vulnerable people cope with a shifting global climate. Yet compared to activities such as forest conservation and afforestation — widely noted as a way of sequestering carbon and cutting greenhouse gas emissions — biodiversity conservation is a neglected area. That must change: urgent support is needed for local solutions to biodiversity loss that provide benefits on all counts.

  12. Decadal and long-term boreal soil carbon and nitrogen sequestration rates across a variety of ecosystems

    Science.gov (United States)

    Manies, Kristen L.; Harden, Jennifer W.; Fuller, Christopher C.; Turetsky, Merritt

    2016-01-01

    Boreal soils play a critical role in the global carbon (C) cycle; therefore, it is important to understand the mechanisms that control soil C accumulation and loss for this region. Examining C & nitrogen (N) accumulation rates over decades to centuries may provide additional understanding of the dominant mechanisms for their storage, which can be masked by seasonal and interannual variability when investigated over the short term. We examined longer-term accumulation rates, using 210Pb and 14C to date soil layers, for a wide variety of boreal ecosystems: a black spruce forest, a shrub ecosystem, a tussock grass ecosystem, a sedge-dominated ecosystem, and a rich fen. All ecosystems had similar decadal C accumulation rates, averaging 84 ± 42 gC m−2 yr−1. Long-term (century) C accumulation rates were slower than decadal rates, averaging 14 ± 5 gC m−2 yr−1 for all ecosystems except the rich fen, for which the long-term C accumulation rates was more similar to decadal rates (44 ± 5 and 76 ± 9 gC m−2 yr−1, respectively). The rich fen also had the highest long-term N accumulation rates (2.7 gN m−2 yr−1). The lowest N accumulation rate, on both a decadal and long-term basis, was found in the black spruce forest (0.2 and 1.4 gN m−2 yr−1, respectively). Our results suggest that the controls on long-term C and N cycling at the rich fen is fundamentally different from the other ecosystems, likely due to differences in the predominant drivers of nutrient cycling (oxygen availability, for C) and reduced amounts of disturbance by fire (for C and N). This result implies that most shifts in ecosystem vegetation across the boreal region, driven by either climate or succession, will not significantly impact regional C or N dynamics over years to decades. However, ecosystem transitions to or from a rich fen will promote significant shifts in soil C and N storage.

  13. Michigan forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Ines Ibáñez; Don Kuhr; Stephen Matthews; Jennifer Muladore; Knute Nadelhoffer; David Neumann; Matthew Peters; Anantha Prasad; Matt Sands; Randy Swaty; Leiloni Wonch; Jad Daley; Mae Davenport; Marla R. Emery; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigan's eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate...

  14. Indigenous Food Systems and Climate Change: Impacts of Climatic Shifts on the Production and Processing of Native and Traditional Crops in the Bolivian Andes.

    Science.gov (United States)

    Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L

    2016-01-01

    Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, "indigenous food systems." Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat

  15. Indigenous Food Systems and Climate Change: Impacts of climatic shifts on the production and processing of native and traditional crops in the Bolivian Andes

    Directory of Open Access Journals (Sweden)

    Alder eKeleman Saxena

    2016-03-01

    Full Text Available Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data was collected between 2012 and 2014 via mixed-methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes a the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia; and b the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp., oca (Oxalis tuberosa, tarwi (Lupinus mutabilis, papalisa (Ullucus tuberosus, and charkay (llama or sheep jerky. Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, the use and spatial distribution of particular crop varieties. Further, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. While these findings are drawn from a single case-study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, indigenous food systems. Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture, and may be under different, more direct, and more immediate threat

  16. Property rights, institutional regime shifts and the provision of freshwater ecosystem services on the Pongola River floodplain, South Africa

    Directory of Open Access Journals (Sweden)

    Bimo Abraham Nkhata

    2017-03-01

    Full Text Available This paper proposes a property rights perspective to interpret institutional regime shifts in the provision of freshwater ecosystem services. Institutional regime shifts are conceived as persistent changes in the structure and function of a system. Property rights are viewed as an important component of institutional regimes. The paper draws on a case study of flow regulation on the Pongolo Floodplain in South Africa to illustrate the central role of property rights in mediating institutional regime shifts. The case study illustrates that there are many combinations of property rights that underpin institutional regime shifts in the provision of freshwater ecosystem services. It provides useful insights into the consequences of failing to recognize, establish and enforce bundles of rights. A major thrust of the case study is that the nature and context of property rights are important in determining the long-term provision of these services. By examining the configurations of property rights that have governed the Pongola River floodplain over the years, the paper demonstrates the importance of explicitly defining and categorizing the range of rights.

  17. Prehistoric Human-environment Interactions and Their Impact on Aquatic Ecosystems

    Science.gov (United States)

    Mackay, H.; Henderson, A. C. G.; van Hardenbroek, M.; Cavers, G.; Crone, A.; Davies, K. L.; Fonville, T. R.; Head, K.; Langdon, P. G.; Matton, R.; McCormick, F.; Murray, E.; Whitehouse, N. J.; Brown, A. G.

    2017-12-01

    One of the first widespread human-environment interactions in Scotland and Ireland occurred 3000 years ago when communities first inhabited wetlands, building artificial islands in lakes called crannogs. The reason behind the development and intermittent occupation of crannogs is unclear. We don't know if they were a response to changes in environment or if they were driven by societal influences. Furthermore, the impact of the construction, settlement and human activities on lake ecosystems is unknown, but is a key example of early anthropogenic signatures on the environment. Our research characterises the prehistoric human-environment interactions associated with crannogs by analysing geochemical and biological signals preserved within the crannog and wetland sediments. Records of anthropogenic activities and environmental change have been produced using lipid biomarkers of faecal matter, sedimentary DNA, and the remains of beetles, aquatic invertebrates (chironomids), siliceous algae (diatoms) and pollen. Results of these analyses reveal settlement occupations occurred in phases from the Iron Age to the Medieval Period. The main effects of occupation on the wetland ecosystems are nutrient-driven increases in productivity and shifts in aquatic species from clear water taxa to those associated with more eutrophic conditions. Crannog abandonment reduces nutrient inputs and therefore levels of aquatic productivity, as evidenced by decreases in the abundance of siliceous algae. Despite returns to pre-settlement nutrient and productivity levels, the lake ecosystems do not recover to their previous ecological state: dominant aquatic invertebrate and siliceous algae taxa shift in response to elevated levels of macrophytes within the lakes. Whilst these phase changes in lake ecosystems highlight their adaptive capacity to environmental change, the temporary human interactions associated with crannogs had persisting environmental impacts that shaped the long

  18. Namibia specific climate smart agricultural land use practices: Challenges and opportunities for enhancing ecosystem services

    Science.gov (United States)

    Kuhn, Nikolaus J.; Talamondjila Naanda, Martha; Bloemertz, Lena

    2015-04-01

    Agriculture is a backbone for many African economies, with an estimated 70% of Africans active in agricultural production. The sector often does not only directly contribute to, but sustains food security and poverty reduction efforts. Sustaining this productivity poses many challenges, particularly to small scale subsistence farmers (SSF) in dry land areas and semi-arid countries like Namibia. SSF in northern central Namibia mix crop and livestock production on degraded semi-arid lands and nutrient-poor sandy soils. They are fully dependent on agricultural production with limited alternative sources of income. Mostly, their agricultural harvests and outputs are low, not meeting their livelihood needs. At the same time, the land use is often not sustainable, leading to degradation. The Namibia case reveals that addressing underlying economic, social and environmental challenges requires a combination of farm level-soil management practices with a shift towards integrated landscape management. This forms the basis for SSF to adopt sustainable land management practices while building institutional foundations, like establishing SSF cooperatives. One way in which this has been tested is through the concept of incentive-based motivation, i.e. payment for ecosystem services (PES), in which some of the beneficiaries pay, for instance for farmers or land users, who provide the services. The farmers provide these services by substituting their unsustainable land and soil management and adopting new (climate smart agricultural) land use practices. Climate Smart Agricultural land use practices (CSA-LUP) are one way of providing ecosystem services, which could be fundamental to long-term sustainable soil and land management solutions in Africa. There are few PES cases which have been systematically studied from an institutional development structure perspective. This study presents lessons evolving from the notion that direct participation and involvement of local people

  19. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate

    Science.gov (United States)

    Barbara J. Bentz; Jacob P. Duncan; James A. Powell

    2016-01-01

    Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...

  20. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    Science.gov (United States)

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing

  1. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    International Nuclear Information System (INIS)

    Bagley, Justin E.; Davis, Sarah C.; Georgescu, Matei; Hussain, Mir Zaman; Miller, Jesse; Nesbitt, Stephen W.; VanLoocke, Andy; Bernacchi, Carl J.

    2014-01-01

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes influencing terrestrial energy fluxes can result in impacts on climate and water across a spectrum of spatial and temporal scales. Here, we review the current state of knowledge about biophysical feedbacks between vegetation, water, and climate that would be affected by bioenergy-related land use change. The physical mechanisms involved in biophysical feedbacks are detailed, and interactions at leaf, field, regional, and global spatial scales are described. Locally, impacts on climate of biophysical changes associated with land use change for bioenergy crops can meet or exceed the biogeochemical changes in climate associated with rising GHG's, but these impacts have received far less attention. Realization of the importance of ecosystems in providing services that extend beyond biogeochemical GHG regulation and harvestable yields has led to significant debate regarding the viability of various feedstocks in many locations. The lack of data, and in some cases gaps in knowledge associated with biophysical and biochemical influences on land–atmosphere interactions, can lead to premature policy decisions. - Highlights: • The physical basis for biophysical impacts of expanding bioenergy agroecosystems on climate and water is described. • We

  2. Insular ecosystems of the southeastern United States—A regional synthesis to support biodiversity conservation in a changing climate

    Science.gov (United States)

    Cartwright, Jennifer M.; Wolfe, William J.

    2016-08-11

    In the southeastern United States, insular ecosystems—such as rock outcrops, depression wetlands, high-elevation balds, flood-scoured riparian corridors, and insular prairies and barrens—occupy a small fraction of land area but constitute an important source of regional and global biodiversity, including concentrations of rare and endemic plant taxa. Maintenance of this biodiversity depends upon regimes of abiotic stress and disturbance, incorporating factors such as soil surface temperature, widely fluctuating hydrologic conditions, fires, flood scouring, and episodic droughts that may be subject to alteration by climate change. Over several decades, numerous localized, site-level investigations have yielded important information about the floristics, physical environments, and ecological dynamics of these insular ecosystems; however, the literature from these investigations has generally remained fragmented. This report consists of literature syntheses for eight categories of insular ecosystems of the southeastern United States, concerning (1) physical geography, (2) ecological determinants of community structures including vegetation dynamics and regimes of abiotic stress and disturbance, (3) contributions to regional and global biodiversity, (4) historical and current anthropogenic threats and conservation approaches, and (5) key knowledge gaps relevant to conservation, particularly in terms of climate-change effects on biodiversity. This regional synthesis was undertaken to discern patterns across ecosystems, identify knowledge gaps, and lay the groundwork for future analyses of climate-change vulnerability. Findings from this synthesis indicate that, despite their importance to regional and global biodiversity, insular ecosystems of the southeastern United States have been subjected to a variety of direct and indirect human alterations. In many cases, important questions remain concerning key determinants of ecosystem function. In particular, few

  3. Shifting the Arctic Carbon Balance: Effects of a Long-Term Fertilization Experiment and Anomalously Warm Temperatures on Net Ecosystem Exchange in the Alaskan Tundra

    Science.gov (United States)

    Ludwig, S.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Graham, L. M.; Jastrow, J. D.

    2017-12-01

    The arctic is warming at an accelerated rate relative to the globe. Among the predicted consequences of warming temperatures in the arctic are increased gross primary productivity (GPP), ecosystem respiration (ER), and nutrient availability. The net effect of these changes on the carbon (C) cycle and resulting C balance and feedback to climate change remain unclear. Historically the Arctic has been a C sink, but evidence from recent years suggests some regions in the Arctic are becoming C sources. To predict the role of the Arctic in global C cycling, the mechanisms affecting arctic C balances need to be better resolved. We measured net ecosystem exchange (NEE) in a long-term, multi-level, fertilization experiment at Toolik Lake, AK during an anomalously warm summer. We modeled NEE, ER, and GPP using a Bayesian network model. The best-fit model included Q10 temperature functions and linear fertilization functions for both ER and GPP. ER was more strongly affected by temperature and GPP was driven more by fertilization level. As a result, fertilization increased the C sink capacity, but only at moderate and low temperatures. At high temperatures (>28 °C) the NEE modeled for the highest level of fertilization was not significantly different from zero. In contrast, at ambient nutrient levels modeled NEE was significantly below zero (net uptake) until 35 °C, when it becomes neutral. Regardless of the level of fertilization, NEE never decreased with warming. Temperature in low ranges (5-15°C) had no net effect on NEE, whereas NEE began to increase exponentially with temperature after a threshold of 15°C until becoming a net source to the atmosphere at 37°C. Our results indicate that the C sink strength of tundra ecosystems can be increased with small increases in nutrient availability, but that large increase in nutrient availability can switch tundra ecosystems into C sources under warm conditions. Warming temperatures in tundra ecosystems will only decrease C

  4. The Uncontrolled Economic Engine of the Developing Economies, Speeding up the Climate Shift

    Science.gov (United States)

    Khan, K. M.; Khan, M. A.

    2014-12-01

    As we progress into the 21st century, the world faces challenges of truly global nature bearing implications on the whole world in one way or another. The global economic engine has shifted from the western world (Developed Economies) to the eastern world (Developing Economies) which has brought about tremendous change in the climate related variables in this part of the world. As uncontrolled carbon emissions grow in the developing economies, the phenomenon of global warming and climate shifts become more and more prevalent. While this economic activity provides income for millions of households, it is contributing generously to the rapid degradation of the environment. Developing economies as it has been seen do not employ or abide by stringent regulations regarding emissions which result in uncontrolled emissions. In this particular scenario, it is a tedious task to convince governments in the developing economies to implement regulations regarding emissions because businesses in these economies deem such regulations to be economically unviable. The other side of the problem is that these uncontrolled emission are causing evident climate shifts which has had adverse impacts on the agricultural societies where shifting climates are leading to reduced agricultural output and productivity. Consequently the lives of millions associated directly or indirectly with agriculture are affected and on a more global level, the agricultural produce is decreasing which increases the chances of famine in parts of the world. The situation could have devastating impacts on the global economy and environmental standards and therefore needs to be addressed on emergency basis. The first step towards betterment could be the introduction of the carbon trading economy in the developing economies which would incentivize emission reduction and become more attractive and in the process sustaining minimum possible damage to the environment. Though carbon trading is a formidable first step

  5. Evidence That Marine Reserves Enhance Resilience to Climatic Impacts

    Science.gov (United States)

    Micheli, Fiorenza; Saenz-Arroyo, Andrea; Greenley, Ashley; Vazquez, Leonardo; Espinoza Montes, Jose Antonio; Rossetto, Marisa; De Leo, Giulio A.

    2012-01-01

    Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection. PMID:22855690

  6. Evidence that marine reserves enhance resilience to climatic impacts.

    Directory of Open Access Journals (Sweden)

    Fiorenza Micheli

    Full Text Available Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection.

  7. Exploring Pacific Northwest ecosystem resilience: packaging climate change science for federal managers

    Science.gov (United States)

    Bachelet, D. M.

    2014-12-01

    Climate change is projected to jeopardize ecosystems in the Pacific Northwest. Managing ecosystems for future resilience requires collaboration, innovation and communication. The abundance of data and documents describing the uncertainty around both climate change projections and impacts has become challenging to managers who have little funding and limited time to digest and incorporate these materials into planning and implementation documents. We worked with US Forest Service and BLM managers to help them develop vulnerability assessments and identify on-the-ground strategies to address climate change challenges on the federal lands in northwest Oregon (Siuslaw, Willamette and Mt. Hood National Forests; Eugene and Salem BLM Districts). We held workshops to promote dialogue about climate change, which were particularly effective in fostering discussions between the managers who often do not have the time to share their knowledge and compare experiences across administrative boundaries. We used the Adaptation for Conservation Targets (ACT) framework to identify measurable management objectives and rapidly assess local vulnerabilities. We used databasin.org to centralize usable information, including state-of-the-art CMIP5 climate projections, for the mandated assessments of vulnerability and resilience. We introduced participants to a decision support framework providing opportunities to develop more effective adaptation strategies. We built a special web page to hold the information gathered at the workshops and provide easy access to climate change information. We are now working with several Landscape Conservation Cooperatives (LCCs) to design gateways - conservation atlases - to their relevant data repositories on databasin.org and working with them to develop web tools that can provide usable information for their own vulnerability assessments.

  8. Local Stressors, Resilience, and Shifting Baselines on Coral Reefs.

    Science.gov (United States)

    McLean, Matthew; Cuetos-Bueno, Javier; Nedlic, Osamu; Luckymiss, Marston; Houk, Peter

    2016-01-01

    Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.

  9. Local Stressors, Resilience, and Shifting Baselines on Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Matthew McLean

    Full Text Available Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.

  10. Understanding and Improving Ocean Mixing Parameterizations for modeling Climate Change

    Science.gov (United States)

    Howard, A. M.; Fells, J.; Clarke, J.; Cheng, Y.; Canuto, V.; Dubovikov, M. S.

    2017-12-01

    Climate is vital. Earth is only habitable due to the atmosphere&oceans' distribution of energy. Our Greenhouse Gas emissions shift overall the balance between absorbed and emitted radiation causing Global Warming. How much of these emissions are stored in the ocean vs. entering the atmosphere to cause warming and how the extra heat is distributed depends on atmosphere&ocean dynamics, which we must understand to know risks of both progressive Climate Change and Climate Variability which affect us all in many ways including extreme weather, floods, droughts, sea-level rise and ecosystem disruption. Citizens must be informed to make decisions such as "business as usual" vs. mitigating emissions to avert catastrophe. Simulations of Climate Change provide needed knowledge but in turn need reliable parameterizations of key physical processes, including ocean mixing, which greatly impacts transport&storage of heat and dissolved CO2. The turbulence group at NASA-GISS seeks to use physical theory to improve parameterizations of ocean mixing, including smallscale convective, shear driven, double diffusive, internal wave and tidal driven vertical mixing, as well as mixing by submesoscale eddies, and lateral mixing along isopycnals by mesoscale eddies. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. We write our own programs in MATLAB and FORTRAN to visualize and process output of ocean simulations including producing statistics to help judge impacts of different parameterizations on fidelity in reproducing realistic temperatures&salinities, diffusivities and turbulent power. The results can help upgrade the parameterizations. Students are introduced to complex system modeling and gain deeper appreciation of climate science and programming skills, while furthering climate science. We are incorporating climate projects into the Medgar Evers college curriculum. The PI is both a member of the turbulence group at

  11. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.

    2016-01-01

    with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability......Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated...... and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization...

  12. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  13. Understanding of Grassland Ecosystems under Climate Change and Economic Development Pressures in the Mongolia Plateau

    Science.gov (United States)

    Qi, J.; Chen, J.; Shan, P.; Pan, X.; Wei, Y.; Wang, M.; Xin, X.

    2011-12-01

    The land use and land cover change, especially in the form of grassland degradation, in the Mongolian Plateau, exhibited a unique spatio-temporal pattern that is a characteristic of a mixed stress from economic development and climate change of the region. The social dimension of the region played a key role in shaping the landscape and land use change, including the cultural clashes with economic development, conflicts between indigenous people and business ventures, and exogenous international influences. Various research projects have been conducted in the region to focus on physical degradation of grasslands and/or on economic development but there is a lack of understanding how the social and economic dimensions interact with grassland ecosystems and changes. In this talk, a synthesis report was made based on the most recent workshop held in Hohhot, Inner Mongolia, of China, that specifically focused on climate change and grassland ecosystems. The report analyzed the degree of grassland degradation, its climate and social drivers, and coupling nature of economic development and conservation of traditional grassland values. The goal is to fully understand the socio-ecological-economic interactions that together shape the trajectory of the grassland ecosystems in the Mongolia Plateau.

  14. On the relationship between Indian summer monsoon withdrawal and Indo-Pacific SST anomalies before and after 1976/1977 climate shift

    Energy Technology Data Exchange (ETDEWEB)

    Sabeerali, C.T.; Rao, Suryachandra A. [Indian Institute of Tropical Meteorology, Pune (India); Ajayamohan, R.S. [University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); Murtugudde, Raghu [University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD (United States)

    2012-08-15

    A clear shift in the withdrawal dates of the Indian Summer Monsoon is observed in the long term time series of rainfall data. Prior (posterior) to the 1976/1977 climate shift most of the withdrawal dates are associated with a late (an early) withdrawal. As a result, the length of the rainy season (LRS) over the Indian land mass has also undergone similar changes (i.e., longer (shorter) LRS prior (posterior) to the climate shift). In this study, probable reasons for this significant shift in withdrawal dates and the LRS are investigated using reanalysis/observed datasets and also with the help of an atmospheric general circulation model. Reanalysis/observational datasets indicate that prior to the climate shift the sea surface temperature (SST) anomalies in the eastern equatorial Pacific Ocean and the Arabian Sea exerted a strong influence on both the withdrawal and the LRS. After the climate shift, the influence of the eastern equatorial Pacific Ocean SST has decreased and surprisingly, the influence of the Arabian Sea SST is almost non-existent. On the other hand, the influence of the southeastern equatorial Indian Ocean has increased significantly. It is observed that the upper tropospheric temperature gradient over the dominant monsoon region has decreased and the relative influence of the Indian Ocean SST variability on the withdrawal of the Indian Summer Monsoon has increased in the post climate shift period. Sensitivity experiments with the contrasting SST patterns on withdrawal dates and the LRS in the pre- and post- climate shift scenarios, confirm the observational evidences presented above. (orig.)

  15. Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.

    2017-01-01

    Climate warming is expected to increase stream temperatures in mountainous regions of western North America, yet the degree to which future climate change may influence seasonal patterns of stream temperature is uncertain. In this study, a spatially explicit statistical model framework was integrated with empirical stream temperature data (approximately four million bi-hourly recordings) and high-resolution climate and land surface data to estimate monthly stream temperatures and potential change under future climate scenarios in the Crown of the Continent Ecosystem, USA and Canada (72,000 km2). Moderate and extreme warming scenarios forecast increasing stream temperatures during spring, summer, and fall, with the largest increases predicted during summer (July, August, and September). Additionally, thermal regimes characteristic of current August temperatures, the warmest month of the year, may be exceeded during July and September, suggesting an earlier and extended duration of warm summer stream temperatures. Models estimate that the largest magnitude of temperature warming relative to current conditions may be observed during the shoulder months of winter (April and November). Summer stream temperature warming is likely to be most pronounced in glacial-fed streams where models predict the largest magnitude (> 50%) of change due to the loss of alpine glaciers. We provide the first broad-scale analysis of seasonal climate effects on spatiotemporal patterns of stream temperature in the Crown of the Continent Ecosystem for better understanding climate change impacts on freshwater habitats and guiding conservation and climate adaptation strategies.

  16. Managing burned landscapes: Evaluating future management strategies for resilient forests under a warming climate

    Science.gov (United States)

    K. L. Shive; P. Z. Fule; C. H. Sieg; B. A. Strom; M. E. Hunter

    2014-01-01

    Climate change effects on forested ecosystems worldwide include increases in drought-related mortality, changes to disturbance regimes and shifts in species distributions. Such climate-induced changes will alter the outcomes of current management strategies, complicating the selection of appropriate strategies to promote forest resilience. We modelled forest growth in...

  17. Climatic sensitivity of hydrology and carbon exchanges in boreal peatland ecosystems, with implications on sustainable management of reed canary grass (Phalaris arundinacea, L.) on cutaway peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Gong Jinnan

    2013-11-01

    The aim of the study was to investigate the effects of climate change on soil hydrology and carbon (C) fluxes in boreal peatland ecosystems, with implications for the feasibility of cultivating reed canary grass (Phalaris arundinacea, L; RCG) as a way to restore the C sink in cutaway peatlands under Finnish conditions. First, hydrological models were developed for pristine peatland ecosystems and the cutaway peatlands under RCG cultivation. Concurrently, the hydrological responses to varying climatic forcing and mire types were investigated for these ecosystems. Thereafter, process-based models for estimating the seasonal and annual C exchanges were developed for the pristine mires and cutaway peatlands. The C models incorporated the hydrological models for corresponding ecosystems. Model simulations based on the climate scenarios (ACCLIM, developed by the Finnish Meteorological Institute, FMI) were further carried out to study the impacts of climate change on the C exchanges in the peatland ecosystems during the 21st century. The simulation showed that the water table (WT) in the pristine Finnish mires would draw down slightly during the 21st century. Such a chance in WT would be related to a decrease in the CO{sub 2} sink but an increase in the CH{sub 4} source at the country scale, as driven mainly by the rising temperature (Ta) and increasing precipitation (P). These changes in CO{sub 2}/ CH{sub 4} fluxes would decrease the total C-greenhouse gas (GHG) sink (CO{sub 2} equilibrium) by 68% at the country scale, and the changes would be more pronounced toward the end of the century. The majority of pristine fens in southern and western Finland and the pristine bogs near the coastal areas would become centurial CO{sub 2} sources under the changing climate. On the other hand, the major distribution of fens in northern Finland would act to increase the CH{sub 4} source at the country scale, whereas the CH{sub 4} emission would tend to decrease with WT in the southern

  18. Adaptation of Australia’s Marine Ecosystems to Climate Change: Using Science to Inform Conservation Management

    OpenAIRE

    Johnson, Johanna E.; Holbrook, Neil J.

    2014-01-01

    The challenges that climate change poses for marine ecosystems are already manifesting in impacts at the species, population, and community levels in Australia, particularly in Tasmania and tropical northern Australia. Many species and habitats are already under threat as a result of human activities, and the additional pressure from climate change significantly increases the challenge for marine conservation and management. Climate change impacts are expected to magnify as sea surface temper...

  19. Disturbance and net ecosystem production across three climatically distinct forest landscapes

    Science.gov (United States)

    John L. Campbell; O.J. Sun; B.E. Law

    2004-01-01

    Biometric techniques were used to measure net ecosystem production (NEP) across three climatically distinct forest chronosequences in Oregon. NEP was highly negative immediately following stand-replacing disturbance in all forests and recovered to positive values by 10, 20, and 30 years of age for the mild mesic Coast Range, mesic West Cascades, and semi-arid East...

  20. Changes in Trace Gas Nitrogen Emissions as a Response to Ecosystem Type Conversion in a Semi-Arid Climate.

    Science.gov (United States)

    Andrews, H.; Eberwein, J. R.; Jenerette, D.

    2016-12-01

    As humans continue to introduce exotic plants and to alter climate and fire regimes in semi-arid ecosystems, many plant communities have begun to shift from perennial forbs and shrubs to annual grasses with different functional traits. Shifts in plant types are also associated with shifts in microclimate, microbial activity, and litter inputs, all of which contribute to the efficiency of nitrogen processing and the magnitude of trace gas emissions (NOx and N2O), which are increasingly important fluxes in water-limited systems. Here, we explored how changes in plant litter impact trace gas emissions, asking the question: How does conversion from a native shrubland to exotic grassland ecosystem alter NOx and N2O fluxes in a semi-arid climate? We posed two hypotheses to explain the impacts of different types of litter on soils disturbed by exotic grasses and those that were still considered shrublands: 1.) Soils that have undergone conversion by exotic grasses release higher amounts of NOx and N2O than do those of unconverted shrublands, due to disruptions of native plant and soil processes by exotic grasses, and 2.) Because litter of exotic grasses has lower C:N than that of shrubs, litter inputs from exotic grasses will increase NOx and N2O emissions from soils more than will litter inputs from shrubs. As a preliminary study, we experimentally wetted mesocosms in a laboratory incubation containing converted and unconverted soils that had been mixed with no litter or either exotic grass or coastal sage scrub (CSS) litter. We measured N2O fluxes from mesocosms over a 48-hour period. 24 hours after wetting, samples with grass litter produced higher amounts of N2O than those with CSS litter; similarly, converted soils produced higher amounts of N2O than unconverted soils. These two effects combined resulted in exotic grassland conditions (converted soils with exotic grass litter) producing 10 times the amount of N2O as those containing native shrubland conditions

  1. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    Directory of Open Access Journals (Sweden)

    Brian Huntley

    Full Text Available Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM we explored the implications of the differing climatic conditions generated by a general circulation model (GCM in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  2. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    Science.gov (United States)

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  3. Runoff scenarios of the Ötz catchment (Tyrol, Austria) considering climate change driven changes of the cryosphere

    Science.gov (United States)

    Helfricht, Kay; Schneeberger, Klaus; Welebil, Irene; Schöber, Johannes; Huss, Matthias; Formayer, Herbert; Huttenlau, Matthias; Schneider, Katrin

    2014-05-01

    The seasonal distribution of runoff in alpine catchments is markedly influenced by the cryospheric contribution (snow and ice). Long-term climate change will alter these reservoirs and consequently have an impact on the water balance. Glacierized catchments like the Ötztal (Tyrol, Austria) are particularly sensitive to changes in the cryosphere and the hydrological changes related to them. The Ötztal possesses an outstanding role in Austrian and international cryospheric research and reacts sensitive to changes in hydrology due to its socio-economic structure (e.g. importance of tourism, hydro-power). In this study future glacier scenarios for the runoff calculations in the Ötztal catchment are developed. In addition to climatological scenario data, glacier scenarios were established for the hydrological simulation of future runoff. Glacier outlines and glacier surface elevation changes of the Austrian Glacier Inventory were used to derive present ice thickness distribution and scenarios of glacier area distribution. Direct effects of climate change (i.e. temperature and precipitation change) and indirect effects in terms of variations in the cryosphere were considered for the analysis of the mean runoff and particularly flood frequencies. Runoff was modelled with the hydrological model HQSim, which was calibrated for the runoff gauges at Brunau, Obergurgl and Vent. For a sensitivity study, the model was driven by separate glacier scenarios. Keeping glacier area constant, variable climate input was used to separate the effect of climate sensitivity. Results of the combination of changed glacier areas and changed climate input were subsequently analysed. Glacier scenarios show first a decrease in volume, before glacier area shrinks. The applied method indicates a 50% ice volume loss by 2050 relative to today. Further, model results show a reduction in glacier volume and area to less than 20% of the current ice cover towards the end of the 21st century. The effect

  4. An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems

    Science.gov (United States)

    Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia

    2016-01-01

    We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…

  5. Shifting the Climate Finance Paradigm: Nine Key Challenges for Developed Countries

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Joseph

    2013-03-13

    In 2009, developed countries committed to part-funding the cost of adapting to the impacts of climate change and of low carbon development in developing countries. From 2010 to 2012, fast start finance began to flow from developed country exchequers. However, the climate finance paradigm is now shifting. A transition from loans and grants provided from scarce exchequer resources to innovative instruments for leveraging private capital and mitigating investment risk is required in the coming period. But what are the implications for developed countries? This policy brief explores the policy context defining the current climate finance debate; examines the extent to which commitments have been met; and identifies nine key challenges for developed countries as they enter the new climate finance paradigm, drawing on the lessons of the fast start finance period. This is the second in a series of Environment Nexus policy briefs by leading experts in the fields of agriculture, energy, climate change and water.

  6. Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China

    Science.gov (United States)

    Zhu, Q.; Jiang, H.; Peng, C.; Liu, J.; Wei, X.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.

    2011-01-01

    Water use efficiency (WUE) is an important variable used in climate change and hydrological studies in relation to how it links ecosystem carbon cycles and hydrological cycles together. However, obtaining reliable WUE results based on site-level flux data remains a great challenge when scaling up to larger regional zones. Biophysical, process-based ecosystem models are powerful tools to study WUE at large spatial and temporal scales. The Integrated BIosphere Simulator (IBIS) was used to evaluate the effects of climate change and elevated CO2 concentrations on ecosystem-level WUE (defined as the ratio of gross primary production (GPP) to evapotranspiration (ET)) in relation to terrestrial ecosystems in China for 2009–2099. Climate scenario data (IPCC SRES A2 and SRES B1) generated from the Third Generation Coupled Global Climate Model (CGCM3) was used in the simulations. Seven simulations were implemented according to the assemblage of different elevated CO2 concentrations scenarios and different climate change scenarios. Analysis suggests that (1) further elevated CO2concentrations will significantly enhance the WUE over China by the end of the twenty-first century, especially in forest areas; (2) effects of climate change on WUE will vary for different geographical regions in China with negative effects occurring primarily in southern regions and positive effects occurring primarily in high latitude and altitude regions (Tibetan Plateau); (3) WUE will maintain the current levels for 2009–2099 under the constant climate scenario (i.e. using mean climate condition of 1951–2006 and CO2concentrations of the 2008 level); and (4) WUE will decrease with the increase of water resource restriction (expressed as evaporation ratio) among different ecosystems.

  7. The Role of Environmental Driving Factors in Historical and Projected Carbon Dynamics of Wetland Ecosystems in Alaska.

    Science.gov (United States)

    Lyu, Zhou; Genet, Hélène; He, Yujie; Zhuang, Qianlai; McGuire, A David; Bennett, Alec; Breen, Amy; Clein, Joy; Euskirchen, Eugénie S; Johnson, Kristofer; Kurkowski, Tom; Pastick, Neal J; Rupp, T Scott; Wylie, Bruce K; Zhu, Zhiliang

    2018-05-29

    Wetlands are critical terrestrial ecosystems in Alaska, covering ~177,000 km 2 , an area greater than all the wetlands in the remainder of the United States. To assess the relative influence of changing climate, atmospheric carbon dioxide (CO 2 ) concentration, and fire regime on carbon balance in wetland ecosystems of Alaska, a modeling framework that incorporates a fire disturbance model and two biogeochemical models was used. Spatially explicit simulations were conducted at 1 km-resolution for the historical period (1950-2009) and future projection period (2010-2099). Simulations estimated that wetland ecosystems of Alaska lost 175 Tg carbon (C) in the historical period. Ecosystem C storage in 2009 was 5556 Tg, with 89% of the C stored in soils. The estimated loss of C as CO 2 and biogenic methane (CH 4 ) emissions resulted in wetlands of Alaska increasing the greenhouse gas forcing of climate warming. Simulations for the projection period were conducted for six climate change scenarios constructed from two climate models forced under three CO 2 emission scenarios. Ecosystem C storage averaged among climate scenarios increased 3.94 TgC/yr by 2099, with variability among the simulations ranging from 2.02 to 4.42 TgC/yr. These increases were driven primarily by increases in net primary production (NPP) that were greater than losses from increased decomposition and fire. The NPP increase was driven by CO 2 fertilization (~5% per 100 ppmv increase) and by increases in air temperature (~1% per °C increase). Increases in air temperature were estimated to be the primary cause for a projected 47.7% mean increase in biogenic CH 4 emissions among the simulations (~15% per °C increase). Ecosystem CO 2 sequestration offset the increase in CH 4 emissions during the 21 st century to decrease the greenhouse gas forcing of climate warming. However, beyond 2100, we expect that this forcing will ultimately increase as wetland ecosystems transition from being a sink to a source

  8. Future Climate Impacts on Harmful Algal Blooms in an Agriculturally Dominated Ecosystem

    Science.gov (United States)

    Aloysius, N. R.; Martin, J.; Ludsin, S.; Stumpf, R. P.

    2015-12-01

    Cyanobacteria blooms have become a major problem worldwide in aquatic ecosystems that receive excessive runoff of limiting nutrients from terrestrial drainage. Such blooms often are considered harmful because they degrade ecosystem services, threaten public health, and burden local economies. Owing to changing agricultural land-use practices, Lake Erie, the most biologically productive of the North American Great Lakes, has begun to undergo a re-eutrophication in which the frequency and extent of harmful algal blooms (HABs) has increased. Continued climate change has been hypothesized to magnify the HAB problem in Lake Erie in the absence of new agricultural management practices, although this hypothesis has yet to be formally tested empirically. Herein, we tested this hypothesis by predicting how the frequency and extent of potentially harmful cyanobacteria blooms will change in Lake Erie during the 21st century under the Intergovernmental Panel on Climate Change Fifth Assessment climate projections in the region. To do so, we used 80 ensembles of climate projections from 20 Global Climate Models (GCMs) and two greenhouse gas emission scenarios (moderate reduction, RCP4.5; business-as-usual, RCP8.5) to drive a spatiotemporally explicit watershed-hydrology model that was linked to several statistical predictive models of annual cyanobacteria blooms in Lake Erie. Owing to anticipated increases in precipitation during spring and warmer temperatures during summer, our ensemble of predictions revealed that, if current land-management practices continue, the frequency of severe HABs in Lake Erie will increase during the 21st century. These findings identify a real need to consider future climate projections when developing nutrient reduction strategies in the short term, with adaptation also needing to be encouraged under both greenhouse gas emissions scenarios in the absence of effective nutrient mitigation strategies.

  9. Accounting for Human Health and Ecosystems Quality in Developing Sustainable Energy Products: The Implications of Wood Biomass-based Electricity Strategies to Climate Change Mitigation

    Science.gov (United States)

    Weldu, Yemane W.

    The prospect for transitions and transformations in the energy sector to mitigate climate change raises concerns that actions should not shift the impacts from one impact category to another, or from one sustainability domain to another. Although the development of renewables mostly results in low environmental impacts, energy strategies are complex and may result in the shifting of impacts. Strategies to climate change mitigation could have potentially large effects on human health and ecosystems. Exposure to air pollution claimed the lives of about seven million people worldwide in 2010, largely from the combustion of solid fuels. The degradation of ecosystem services is a significant barrier to achieving millennium development goals. This thesis quantifies the biomass resources potential for Alberta; presents a user-friendly and sector-specific framework for sustainability assessment; unlocks the information and policy barriers to biomass integration in energy strategy; introduces new perspectives to improve understanding of the life cycle human health and ecotoxicological effects of energy strategies; provides insight regarding the guiding measures that are required to ensure sustainable bioenergy production; validates the utility of the Environmental Life Cycle Cost framework for economic sustainability assessment; and provides policy-relevant societal cost estimates to demonstrate the importance of accounting for human health and ecosystem externalities in energy planning. Alberta is endowed with a wealth of forest and agricultural biomass resources, estimated at 458 PJ of energy. Biomass has the potential to avoid 11-15% of GHG emissions and substitute 14-17% of final energy demand by 2030. The drivers for integrating bioenergy sources into Alberta's energy strategy are economic diversification, technological innovation, and resource conservation policy objectives. Bioenergy pathways significantly improved both human health and ecosystem quality from coal

  10. Modeling European ruminant production systems: facing the challenges of climate change

    DEFF Research Database (Denmark)

    Kipling, Richard Philip; Bannink, Andre; Bellocchi, Gianni

    2016-01-01

    Ruminant production systems are important producers of food, support rural communities and culture, and help to maintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these systems also contribute significantly to climate change through greenhouse...... gas (GHG) emissions, while intensification of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the relationships between climate change, management and policy choices, food production, and the maintenance...... of ecosystem services. This paper 1) provides an overview of how ruminant systems modeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to climate change and 2) provides ideas for enhancing modeling to fulfil this role. Many grassland models can predict plant growth...

  11. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Moellmann, C; Diekmann, Rabea; Muller-Karulis, B

    2009-01-01

    the Baltic Sea, the largest brackish water body in the world ocean, and its ecosystems are strongly affected by atmospheric and anthropogenic drivers. Here, we present results of an analysis of the state and development of the Central Baltic Sea ecosystem integrating hydroclimatic, nutrient, phyto......Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure...

  12. The Role of Driving Factors in Historical and Projected Carbon Dynamics in Wetland Ecosystems of Alaska

    Science.gov (United States)

    Lyu, Z.; Helene, G.; He, Y.; Zhuang, Q.; McGuire, A. D.; Bennett, A.; Breen, A. L.; Clein, J.; Euskirchen, E. S.; Johnson, K. D.; Kurkowski, T. A.; Pastick, N. J.; Rupp, S. T.; Wylie, B. K.; Zhu, Z.

    2017-12-01

    Wetlands are important terrestrial ecosystems in Alaska. It is important to understand and assess their role in the regional carbon dynamics in response to historical and projected environmental conditions. A coupled modeling framework that incorporates a fire disturbance model and two biogeochemical models was used to assess the relative influence of changing climate, atmospheric carbon dioxide (CO2) concentration, and fire regime on the historical and future carbon balance in wetland ecosystems of the four main Landscape Conservation Cooperatives (LCCs) of Alaska. Simulations were conducted for the historical period (1950-2009) and future projection period (2010-2099). These simulations estimate that the total carbon (C) storage in wetland ecosystems of Alaska is 5556 Tg C in 2009, with 89% of the C stored in soils. An estimated 175 Tg C was lost during the historical period, which is attributed to greater C lost from the Northwest Boreal LCC than C gained from the other three LCCs. The simulations for the projection period were conducted for six different scenarios driven by climate forcings from two different climate models for each of three CO2 emission scenarios. The mean total carbon storage increased 3.94 Tg C/yr by 2099, with variability among the simulations ranging from 2.02 Tg C/yr to 4.42 Tg C/yr. Across the four LCCs, the largest relative C storage increase occurred in the Arctic and North Pacific LCCs. These increases were primarily driven by increases in net primary production (NPP) that were greater than increases in heterotrophic respiration and fire emissions. Our analysis further indicates that NPP increase was primarily driven by CO2 fertilization ( 5% per 100 ppmv increase) as well as by increases in air temperature ( 1% per ° increase). Increases air temperature were estimated to be the primary cause for a projected 47.7% mean increase in wetlands biogenic CH4 emissions among the simulations ( 15% per ° increase). The combined effects of

  13. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    Science.gov (United States)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  14. ICES and PICES strategies for coordinating research on the impacts of climate change on marine ecosystems

    DEFF Research Database (Denmark)

    Kim, S.; Hollowed, Anne B.; Barange, Manuel

    2014-01-01

    organizations to develop a research initiative that focuses on their shared interests. A phased implementation will ensure that SICCME will be responsive to a rapidly evolving research area while delivering ongoing syntheses of existing knowledge, thereby advancing new science and methodologies......The social, economic, and ecological consequences of projected climate change on fish and fisheries are issues of global concern. In 2012, the International Council for the Exploration of the Sea (ICES) and the North Pacific Marine Science Organization (PICES) established a Strategic Initiative...... on Climate Change Effects on Marine Ecosystems (SICCME) to synthesize and to promote innovative, credible, and objective science-based advice on the impacts of climate change on marine ecosystems in the Northern Hemisphere. SICCME takes advantage of the unique and complementary strengths of the two...

  15. Climate change, elevational range shifts, and bird extinctions.

    Science.gov (United States)

    Sekercioglu, Cagan H; Schneider, Stephen H; Fay, John P; Loarie, Scott R

    2008-02-01

    Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8 degrees C, projected a best guess of 400-550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1 degrees C warming) to 30.0% (6.4 degrees C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100-500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.

  16. Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms

    Science.gov (United States)

    Daniel J. Isaak; Bruce E. Rieman

    2013-01-01

    Stream ecosystems are especially vulnerable to climate warming because most aquatic organisms are ectothermic and live in dendritic networks that are easily fragmented. Many bioclimatic models predict significant range contractions in stream biotas, but subsequent biological assessments have rarely been done to determine the accuracy of these predictions. Assessments...

  17. Climate change and wildfire effects in aridland riparian ecosystems: An examination of current and future conditions

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch

    2017-01-01

    Aridland riparian ecosystems are limited, the climate is changing, and further hydrological change is likely in the American Southwest. To protect riparian ecosystems and organisms, we need to understand how they are affected by disturbance processes and stressors such as fire, drought, and non-native plant invasions. Riparian vegetation is critically important as...

  18. Forest ecosystem vulnerability assessment and synthesis for northern Wisconsin and western Upper Michigan: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Maria K. Janowiak; Louis R. Iverson; David J. Mladenoff; Emily Peters; Kirk R. Wythers; Weimin Xi; Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; P. Danielle Shannon; Chris Swanston; Linda R. Parker; Amy J. Amman; Brian Bogaczyk; Christine Handler; Ellen Lesch; Peter B. Reich; Stephen Matthews; Matthew Peters; Anantha Prasad; Sami Khanal; Feng Liu; Tara Bal; Dustin Bronson; Andrew Burton; Jim Ferris; Jon Fosgitt; Shawn Hagan; Erin Johnston; Evan Kane; Colleen Matula; Ryan O' Connor; Dale Higgins; Matt St. Pierre; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; David Neitzel; Michael Notaro; Adena Rissman; Chadwick Rittenhouse; Robert Ziel

    2014-01-01

    Forest ecosystems across the Northwoods will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Laurentian Mixed Forest Province of northern Wisconsin and western Upper Michigan under a range of future climates. Information on current forest conditions, observed climate...

  19. Enabling Data-Driven Methodologies Across the Data Lifecycle and Ecosystem

    Science.gov (United States)

    Doyle, R. J.; Crichton, D.

    2017-12-01

    NASA has unlocked unprecedented scientific knowledge through exploration of the Earth, our solar system, and the larger universe. NASA is generating enormous amounts of data that are challenging traditional approaches to capturing, managing, analyzing and ultimately gaining scientific understanding from science data. New architectures, capabilities and methodologies are needed to span the entire observing system, from spacecraft to archive, while integrating data-driven discovery and analytic capabilities. NASA data have a definable lifecycle, from remote collection point to validated accessibility in multiple archives. Data challenges must be addressed across this lifecycle, to capture opportunities and avoid decisions that may limit or compromise what is achievable once data arrives at the archive. Data triage may be necessary when the collection capacity of the sensor or instrument overwhelms data transport or storage capacity. By migrating computational and analytic capability to the point of data collection, informed decisions can be made about which data to keep; in some cases, to close observational decision loops onboard, to enable attending to unexpected or transient phenomena. Along a different dimension than the data lifecycle, scientists and other end-users must work across an increasingly complex data ecosystem, where the range of relevant data is rarely owned by a single institution. To operate effectively, scalable data architectures and community-owned information models become essential. NASA's Planetary Data System is having success with this approach. Finally, there is the difficult challenge of reproducibility and trust. While data provenance techniques will be part of the solution, future interactive analytics environments must support an ability to provide a basis for a result: relevant data source and algorithms, uncertainty tracking, etc., to assure scientific integrity and to enable confident decision making. Advances in data science offer

  20. Adapt to more wildfire in western North American forests as climate changes.

    Science.gov (United States)

    Schoennagel, Tania; Balch, Jennifer K; Brenkert-Smith, Hannah; Dennison, Philip E; Harvey, Brian J; Krawchuk, Meg A; Mietkiewicz, Nathan; Morgan, Penelope; Moritz, Max A; Rasker, Ray; Turner, Monica G; Whitlock, Cathy

    2017-05-02

    Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland-urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are ( i ) recognizing that fuels reduction cannot alter regional wildfire trends; ( ii ) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; ( iii ) actively managing more wild and prescribed fires with a range of severities; and ( iv ) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland-urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.