WorldWideScience

Sample records for climate system study

  1. An Overview of BCC Climate System Model Development and Application for Climate Change Studies

    Institute of Scientific and Technical Information of China (English)

    WU Tongwen; WU Fanghua; LIU Yiming; ZHANG Fang; SHI Xueli; CHU Min; ZHANG Jie; FANG Yongjie; WANG Fang; LU Yixiong; LIU Xiangwen; SONG Lianchun; WEI Min; LIU Qianxia; ZHOU Wenyan; DONG Min; ZHAO Qigeng; JI Jinjun; Laurent LI; ZHOU Mingyu; LI Weiping; WANG Zaizhi; ZHANG Hua; XIN Xiaoge; ZHANG Yanwu; ZHANG Li; LI Jianglong

    2014-01-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC-CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC-CSM1.1 with coarse resolution (approximately 2.8125◦×2.8125◦) and BCC-CSM1.1(m) with moderate resolution (approximately 1.125◦×1.125◦). Both versions are fully cou-pled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase fi ve (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate pro jections. Simulations of the 20th century climate using BCC-CSM1.1 and BCC-CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and pro jections of climate change during the next century are also presented and discussed. Both BCC-CSM1.1 and BCC-CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses in-dicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSM1.1, particularly on regional scales.

  2. Modelling the effects of climate change on the energy system-A case study of Norway

    Energy Technology Data Exchange (ETDEWEB)

    Seljom, Pernille, E-mail: Pernille.Seljom@ife.no [Department of Energy Systems, Institute of Energy Technology (IFE), PO Box 40, NO-2027 Kjeller (Norway); Rosenberg, Eva; Fidje, Audun [Department of Energy Systems, Institute of Energy Technology (IFE), PO Box 40, NO-2027 Kjeller (Norway); Haugen, Jan Erik [Norwegian Meteorological Institute, PO Box 43 Blindern, NO-0313 Oslo (Norway); Meir, Michaela; Rekstad, John [Department of Physics, University of Oslo (UiO), PO Box 1072 Blindern, NO-0316 Oslo (Norway); Jarlset, Thore [Norwegian Water Resources and Energy Directorate (NVE), PO Box 5091 Majorstua, NO-0301 Oslo (Norway)

    2011-11-15

    The overall objective of this work is to identify the effects of climate change on the Norwegian energy system towards 2050. Changes in the future wind- and hydro-power resource potential, and changes in the heating and cooling demand are analysed to map the effects of climate change. The impact of climate change is evaluated with an energy system model, the MARKAL Norway model, to analyse the future cost optimal energy system. Ten climate experiments, based on five different global models and six emission scenarios, are used to cover the range of possible future climate scenarios and of these three experiments are used for detailed analyses. This study indicate that in Norway, climate change will reduce the heating demand, increase the cooling demand, have a limited impact on the wind power potential, and increase the hydro-power potential. The reduction of heating demand will be significantly higher than the increase of cooling demand, and thus the possible total direct consequence of climate change will be reduced energy system costs and lower electricity production costs. The investments in offshore wind and tidal power will be reduced and electric based vehicles will be profitable earlier. - Highlights: > Climate change will make an impact on the Norwegian energy system towards 2050. > An impact is lower Norwegian electricity production costs and increased electricity export. > Climate change gives earlier profitable investments in electric based vehicles. > Climate change reduces investments in offshore wind and tidal power.

  3. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    Science.gov (United States)

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies.

  4. Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie; Goldman, Charles

    2008-12-01

    This paper presents an exploratory study of the possible physical impacts of climate change on the electric power system, and how these impacts could be incorporated into resource planning in the Western United States. While many aspects of climate change and energy have been discussed in the literature, there has not yet been a systematic review of the relationship between specific physical effects and the quantitative analyses that are commonly used in planning studies. The core of the problem is to understand how the electric system is vulnerable to physical weather risk, and how to make use of information from climate models to characterize the way these risks may evolve over time, including a treatment of uncertainty. In this paper, to provide the necessary technical background in climate science, we present an overview of the basic physics of climate and explain some of the methodologies used in climate modeling studies, particularly the importance of emissions scenarios. We also provide a brief survey of recent climate-related studies relevant to electric system planning in the Western US. To define the institutional context, we discuss the core elements of the resource and reliability planning processes used currently by utilities and by the Western Electricity Coordinating Council. To illustrate more precisely how climate-related risk could be incorporated into modeling exercises, we discuss three idealized examples. Overall, we argue that existing methods of analysis can and should be extended to encompass the uncertainties related to future climate. While the focus here is on risk related to physical impacts, the same principles apply to a consideration of how future climate change policy decisions might impact the design and functioning of the electric grid. We conclude with some suggestions and recommendations on how to begin developing this approach within the existing electric system planning framework for the West.

  5. HVAC systems in a field laboratory for indoor climate study

    DEFF Research Database (Denmark)

    Fang, Lei; Melikov, Arsen Krikor; Olesen, Bjarne W.

    2012-01-01

    This paper presents the design of a HVAC system for a field lab. The design integrated mixing ventilation, displacement ventilation, low impulse vertical ventilation, personalized ventilation, natural ventilation, hybrid ventilation, active chilled beams, radiant ceiling and floor, and heat...

  6. High Performance Work System, HRD Climate and Organisational Performance: An Empirical Study

    Science.gov (United States)

    Muduli, Ashutosh

    2015-01-01

    Purpose: This paper aims to study the relationship between high-performance work system (HPWS) and organizational performance and to examine the role of human resource development (HRD) Climate in mediating the relationship between HPWS and the organizational performance in the context of the power sector of India. Design/methodology/approach: The…

  7. Framework for studying the hydrological impact of climate change in an alley cropping system

    Science.gov (United States)

    Hallema, Dennis W.; Rousseau, Alain N.; Gumiere, Silvio J.; Périard, Yann; Hiemstra, Paul H.; Bouttier, Léa; Fossey, Maxime; Paquette, Alain; Cogliastro, Alain; Olivier, Alain

    2014-09-01

    Alley cropping is an agroforestry practice whereby crops are grown between hedgerows of trees planted at wide spacings. The local climate and the physiological adaptation mechanisms of the trees are key factors in the growth and survival of the trees and intercrops, because they directly affect the soil moisture distribution. In order to evaluate the long-term hydrological impact of climate change in an alley cropping system in eastern Canada, we developed a framework that combines local soil moisture data with local projections of climate change and a model of soil water movement, root uptake and evapotranspiration. Forty-five frequency domain reflectometers (FDR) along a transect perpendicular to the tree rows generated a two-year dataset that we used for the parameterization and evaluation of the model. An impact study with simulations based on local projections of three global and one regional climate simulation suggest that the soil becomes drier overall in the period between 2041 and 2070, while the number of critically wet periods with a length of one day increases slightly with respect to the reference period between 1967 and 1996. Hydrological simulations based on a fourth climate scenario however point toward wetter conditions. In all cases the changes are minor. Although our simulations indicate that the experimental alley cropping system will possibly suffer drier conditions in response to higher temperatures and increased evaporative demand, these conditions are not necessarily critical for vegetation during the snow-free season.

  8. Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System

    Science.gov (United States)

    Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven

    2008-01-01

    With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,

  9. Climate change in the Iberian Upwelling System: a numerical study using GCM downscaling

    Science.gov (United States)

    Cordeiro Pires, Ana; Nolasco, Rita; Rocha, Alfredo; Ramos, Alexandre M.; Dubert, Jesus

    2016-07-01

    The present work aims at evaluating the impacts of a climate change scenario on the hydrography and dynamics of the Iberian Upwelling System. Using regional ocean model configurations, the study domain is forced with three different sets of surface fields: a climatological dataset to provide the control run; a dataset obtained from averaging several global climate models (GCM) that integrate the Intergovernmental Panel for Climate Change (IPCC) models used in climate scenarios, for the same period as the climatological dataset; and this same dataset but for a future period, retrieved from the IPCC A2 climate scenario. After ascertaining that the ocean run forced with the GCM dataset for the present compared reasonably well with the climatologically forced run, the results for the future run (relative to the respective present run) show a general temperature increase (from +0.5 to +3 °C) and salinity decrease (from -0.1 to -0.3), particularly in the upper 100-200 m, although these differences depend strongly on season and distance to the coast. There is also strengthening of the SST cross-shore gradient associated to upwelling, which causes narrowing and shallowing of the upwelling jet. This effect is contrary to the meridional wind stress intensification that is also observed, which would tend to strengthen the upwelling jet.

  10. A cross-region study: climate change adaptation in Malawi's agro-based systems

    OpenAIRE

    Assa, Maganga Mulagha; Gebremariam, Gebrelibanos G.; Mapemba, Lawrence D.

    2013-01-01

    Agriculture in Malawi is vulnerable to the impacts of changing climate. Adaptation is identified as one of the options to abate the negative impacts of the changing climate. This study analyzed the factors influencing different climate change adaptation choices by smallholder farmers in Malawi. We sampled 900 farmers from all three regions of Malawi, using the multistage sampling procedure, study piloted in 2012. We analyzed smallholder farmers’ climate change adaptation choices with Multinom...

  11. Oscar: a portable prototype system for the study of climate variability

    Science.gov (United States)

    Madonna, Fabio; Rosoldi, Marco; Amato, Francesco

    2015-04-01

    The study of the techniques for the exploitation of solar energy implies the knowledge of nature, ecosystem, biological factors and local climate. Clouds, fog, water vapor, and the presence of large concentrations of dust can significantly affect the way to exploit the solar energy. Therefore, a quantitative characterization of the impact of climate variability at the regional scale is needed to increase the efficiency and sustainability of the energy system. OSCAR (Observation System for Climate Application at Regional scale) project, funded in the frame of the PO FESR 2007-2013, aims at the design of a portable prototype system for the study of correlations among the trends of several Essential Climate Variables (ECVs) and the change in the amount of solar irradiance at the ground level. The final goal of this project is to provide a user-friendly low cost solution for the quantification of the impact of regional climate variability on the efficiency of solar cell and concentrators to improve the exploitation of natural sources. The prototype has been designed on the basis of historical measurements performed at CNR-IMAA Atmospheric Observatory (CIAO). Measurements from satellite and data from models have been also considered as ancillary to the study, above all, to fill in the gaps of existing datasets. In this work, the results outcome from the project activities will be presented. The results include: the design and implementation of the prototype system; the development of a methodology for the estimation of the impact of climate variability, mainly due to aerosol, cloud and water vapor, on the solar irradiance using the integration of the observations potentially provided by prototype; the study of correlation between the surface radiation, precipitation and aerosols transport. In particular, a statistical study will be presented to assess the impact of the atmosphere on the solar irradiance at the ground, quantifying the contribution due to aerosol and

  12. STUDY OF CLIMATE EVOLUTION OF THE TITU-OGREZENI IRRIGATION SYSTEM PERIMETER BY ANALYSIS OF CLIMATIC DEFICIT

    Directory of Open Access Journals (Sweden)

    Marin Zamfir

    2010-01-01

    Full Text Available Our country's climate shows great changes both in time and space. These changes are also reflected on agriculturalproductions that also sometime presents substantial differences from one year to another and from one area to another.Based on statistical analyses on large arrays of years, it results that in Romania, the dry years are in very highproportion going up to 70%.For getting to knowing requirements from water of major agricultural crops, by the study achieved mainly thenecessary dimensioning of water for irrigations using the climate deficit method has been considered.From the chronological sequence analysis of years, under the climatic deficit, the change of this in a positive way thatleads to the need for irrigations is come out. Given the set of climatic parameters, the model that approximates the bestthe evolution tendency as some parametrical equations has been studied. Since 2009, for the next 57 years the trendline of the evolution of climatic deficit is clearly increasing in the months May-August.

  13. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  14. Testing a theory of organizational culture, climate and youth outcomes in child welfare systems: a United States national study.

    Science.gov (United States)

    Williams, Nathaniel J; Glisson, Charles

    2014-04-01

    Theories of organizational culture and climate (OCC) applied to child welfare systems hypothesize that strategic dimensions of organizational culture influence organizational climate and that OCC explains system variance in youth outcomes. This study provides the first structural test of the direct and indirect effects of culture and climate on youth outcomes in a national sample of child welfare systems and isolates specific culture and climate dimensions most associated with youth outcomes. The study applies multilevel path analysis (ML-PA) to a U.S. nationwide sample of 2,380 youth in 73 child welfare systems participating in the second National Survey of Child and Adolescent Well-being. Youths were selected in a national, two-stage, stratified random sample design. Youths' psychosocial functioning was assessed by caregivers' responses to the Child Behavior Checklist at intake and at 18-month follow-up. OCC was assessed by front-line caseworkers' (N=1,740) aggregated responses to the Organizational Social Context measure. Comparison of the a priori and subsequent trimmed models confirmed a reduced model that excluded rigid organizational culture and explained 70% of the system variance in youth outcomes. Controlling for youth- and system-level covariates, systems with more proficient and less resistant organizational cultures exhibited more functional, more engaged, and less stressful climates. Systems with more proficient cultures and more engaged, more functional, and more stressful climates exhibited superior youth outcomes. Findings suggest child welfare administrators can support service effectiveness with interventions that improve specific dimensions of culture and climate.

  15. Assessing indigenous knowledge systems and climate change adaptation strategies in agriculture: A case study of Chagaka Village, Chikhwawa, Southern Malawi

    Science.gov (United States)

    Nkomwa, Emmanuel Charles; Joshua, Miriam Kalanda; Ngongondo, Cosmo; Monjerezi, Maurice; Chipungu, Felistus

    In Malawi, production from subsistence rain fed agriculture is highly vulnerable to climate change and variability. In response to the adverse effects of climate change and variability, a National Adaptation Programme of Action is used as framework for implementing adaptation programmes. However, this framework puts limited significance on indigenous knowledge systems (IKS). In many parts of the world, IKS have shown potential in the development of locally relevant and therefore sustainable adaptation strategies. This study was aimed at assessing the role of IKS in adaptation to climate change and variability in the agricultural sector in a rural district of Chikhwawa, southern Malawi. The study used both qualitative data from focus group and key informant interviews and quantitative data from household interviews and secondary data to address the research objectives. The study established that the local communities are able to recognise the changes in their climate and local environment. Commonly mentioned indicators of changing climatic patterns included delayed and unpredictable onset of rainfall, declining rainfall trends, warming temperatures and increased frequency of prolonged dry spells. An analysis of empirical data corroborates the people's perception. In addition, the community is able to use their IKS to adapt their agricultural systems to partially offset the effects of climate change. Like vulnerability to climate change, IKS varies over a short spatial scale, providing locally relevant adaptation to impacts of climate change. This paper therefore advocates for the integration of IKS in programmes addressing adaptation to climate change and vulnerability. This will serve to ensure sustainable and relevant adaptation strategies.

  16. Accounting for global-mean warming and scaling uncertainties in climate change impact studies: application to a regulated lake system

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A probabilistic assessment of climate change and related impacts should consider a large range of potential future climate scenarios. State-of-the-art climate models, especially coupled atmosphere-ocean general circulation models and Regional Climate Models (RCMs cannot, however, be used to simulate such a large number of scenarios. This paper presents a methodology for obtaining future climate scenarios through a simple scaling methodology. The projections of several key meteorological variables obtained from a few regional climate model runs are scaled, based on different global-mean warming projections drawn in a probability distribution of future global-mean warming. The resulting climate change scenarios are used to drive a hydrological and a water management model to analyse the potential climate change impacts on a water resources system. This methodology enables a joint quantification of the climate change impact uncertainty induced by the global-mean warming scenarios and the regional climate response. It is applied to a case study in Switzerland, a water resources system formed by three interconnected lakes located in the Jura Mountains. The system behaviour is simulated for a control period (1961–1990 and a future period (2070–2099. The potential climate change impacts are assessed through a set of impact indices related to different fields of interest (hydrology, agriculture and ecology. The results obtained show that future climate conditions will have a significant influence on the performance of the system and that the uncertainty induced by the inter-RCM variability will contribute to much of the uncertainty of the prediction of the total impact. These CSRs cover the area considered in the 2001–2004 EU funded project SWURVE.

  17. Climate system model, numerical simulation and climate predictability

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Thanks to its work of past more than 20 years,a research team led by Prof.ZENG Qingcun and Prof.WANG Huijun from the CAS Institute of Atmospheric Physics (IAP) has scored innovative achievements in their studies of basic theory of climate dynamics,numerical model development,its related computational theory,and the dynamical climate prediction using the climate system models.Their work received a second prize of the National Award for Natural Sciences in 2005.

  18. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands

    Science.gov (United States)

    Reidsma, Pytrik; Wolf, Joost; Kanellopoulos, Argyris; Schaap, Ben F.; Mandryk, Maryia; Verhagen, Jan; van Ittersum, Martin K.

    2015-04-01

    Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.

  19. Drought risk assessments of water resources systems under climate change: a case study in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    T. C. Yang

    2012-11-01

    Full Text Available This study aims at assessing the impact of climate change on drought risk in a water resources system in Southern Taiwan by integrating the weather generator, hydrological model and simulation model of reservoir operation. Three composite indices with multi-aspect measurements of reservoir performance (i.e. reliability, resilience and vulnerability were compared by their monotonic behaviors to find a suitable one for the study area. The suitable performance index was then validated by the historical drought events and proven to have the capability of being a drought risk index in the study area. The downscaling results under A1B emission scenario from seven general circulation models were used in this work. The projected results show that the average monthly mean inflows during the dry season tend to decrease from the baseline period (1980–1999 to the future period (2020–2039; the average monthly mean inflows during the wet season may increase/decrease in the future. Based on the drought risk index, the analysis results for public and agricultural water uses show that the occurrence frequency of drought may increase and the severity of drought may be more serious during the future period than during the baseline period, which makes a big challenge on water supply and allocation for the authorities of reservoir in Southern Taiwan.

  20. Sewer Systems and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the impact of climate change on the overflows of sewer systems is assessed. The emphasis is on the overflows of combined sewer systems. The purpose is twofold: first, to obtain a first-order estimate of the impact of climate change on overflows of sewer systems; and second, to obtain

  1. Sewer Systems and Climate Change

    OpenAIRE

    Brandsma, T.

    1993-01-01

    In this article the impact of climate change on the overflows of sewer systems is assessed. The emphasis is on the overflows of combined sewer systems. The purpose is twofold: first, to obtain a first-order estimate of the impact of climate change on overflows of sewer systems; and second, to obtain insight into the relevant meteorological variables that are important with respect to climate change. A reservoir model is used to assess the impact of climate change on several combinations of st...

  2. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  3. A Drought Early Warning System Using System Dynamics Model and Seasonal Climate Forecasts: a case study in Hsinchu, Taiwan.

    Science.gov (United States)

    Tien, Yu-Chuan; Tung, Ching-Ping; Liu, Tzu-Ming; Lin, Chia-Yu

    2016-04-01

    In the last twenty years, Hsinchu, a county of Taiwan, has experienced a tremendous growth in water demand due to the development of Hsinchu Science Park. In order to fulfill the water demand, the government has built the new reservoir, Baoshan second reservoir. However, short term droughts still happen. One of the reasons is that the water level of the reservoirs in Hsinchu cannot be reasonably forecasted, which sometimes even underestimates the severity of drought. The purpose of this study is to build a drought early warning system that projects the water levels of two important reservoirs, Baoshan and Baoshan second reservoir, and also the spatial distribution of water shortagewith the lead time of three months. Furthermore, this study also attempts to assist the government to improve water resources management. Hence, a system dynamics model of Touchien River, which is the most important river for public water supply in Hsinchu, is developed. The model consists of several important subsystems, including two reservoirs, water treatment plants and agricultural irrigation districts. Using the upstream flow generated by seasonal weather forecasting data, the model is able to simulate the storage of the two reservoirs and the distribution of water shortage. Moreover, the model can also provide the information under certain emergency scenarios, such as the accident or failure of a water treatment plant. At last, the performance of the proposed method and the original water resource management method that the government used were also compared. Keyword: Water Resource Management, Hydrology, Seasonal Climate Forecast, Reservoir, Early Warning, Drought

  4. Multi crop model climate risk country-level management design: case study on the Tanzanian maize production system

    Science.gov (United States)

    Chavez, E.

    2015-12-01

    Future climate projections indicate that a very serious consequence of post-industrial anthropogenic global warming is the likelihood of the greater frequency and intensity of extreme hydrometeorological events such as heat waves, droughts, storms, and floods. The design of national and international policies targeted at building more resilient and environmentally sustainable food systems needs to rely on access to robust and reliable data which is largely absent. In this context, the improvement of the modelling of current and future agricultural production losses using the unifying language of risk is paramount. In this study, we use a methodology that allows the integration of the current understanding of the various interacting systems of climate, agro-environment, crops, and the economy to determine short to long-term risk estimates of crop production loss, in different environmental, climate, and adaptation scenarios. This methodology is applied to Tanzania to assess optimum risk reduction and maize production increase paths in different climate scenarios. The simulations carried out use inputs from three different crop models (DSSAT, APSIM, WRSI) run in different technological scenarios and thus allowing to estimate crop model-driven risk exposure estimation bias. The results obtained also allow distinguishing different region-specific optimum climate risk reduction policies subject to historical as well as RCP2.5 and RCP8.5 climate scenarios. The region-specific risk profiles obtained provide a simple framework to determine cost-effective risk management policies for Tanzania and allow to optimally combine investments in risk reduction and risk transfer.

  5. Climate system studies: final report to the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S.; Diaz, Henry F.

    2000-03-01

    In this final report, we summarize research on climate variability and forcing mechanisms responsible for these changes. We report on research related to high elevation climate change, changes in the hydrological cycle and the seasonality of precipitation and on changes in climatic extremes. A comprehensive bibliography of research articles and books arising from this grant is included as an appendix.

  6. The expedition ARCTIC `96 of RV `Polarstern` (ARK XII) with the Arctic Climate System Study (ACSYS). Cruise report; Die Expedition ARCTIC `96 des FS `Polarstern` (ARK XII) mit der Arctic Climate System Study (ACSYS). Fahrtbericht

    Energy Technology Data Exchange (ETDEWEB)

    Augstein, E.

    1997-11-01

    The multinational expedition ARCTIC `96 was carried out jointly by two ships, the German RV POLARSTERN and the Swedish RV ODEN. The research programme was developed by scientists from British, Canadian, Finish, German, Irish, Norwegian, Russian, Swedish and US American research institutions and universities. The physical programme on POLARSTERN was primarily designed to foster the Arctic Climte System Study (ACSYS) in the framework of the World Climate Research Programme (WCRP). Investigations during the recent years have provided substantial evidence that the Arctic Ocean and the adjacent shelf seas play a significant role in the thermohaline oceanic circulation and may therefore have a distinct influence on global climate. Consequently the main ACSYS goals are concerned with studies of the governing oceanic, atmospheric and hydrological processes in the entire Arctic region. (orig.) [Deutsch] Die Expedition ARCTIC `96 wurde von zwei Forschungsschiffen, der deutschen POLARSTERN und der schwedischen ODEN unter Beteiligung von Wissenschaftlern und Technikern aus Deutschland, Finnland, Grossbritannien, Irland, Kanada, Norwegen, Russland, Schweden und den Vereinigten Staaten von Amerika durchgefuehrt. Die physikalischen Projekte auf der POLARSTERN dienten ueberwiegend der Unterstuetzung der Arctic Climate System Study (ACSYS) des Weltklimaforschungsprogramms, die auf die Erforschung der vorherrschenden ozeanischen, atmosphaerischen, kryosphaerischen und hydrologischen Prozesse der Arktisregion ausgerichtet ist. (orig.)

  7. The impact on climate of groundwater induced soil moisture memory : a study with a fully coupled WRF-LEAFHYDRO system

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Gómez, Breogán; Martínez-de la Torre, Alberto

    2014-05-01

    Groundwater dynamics and its interactions with the land-atmosphere system are increasingly being taking into consideration in climate and ecosystem modeling studies. A shallow water table slows down drainage and affects soil moisture and potentially evapotranspiration (ET) and climate, particularly in water-limited environments. Our area of interest, the Iberian Peninsula, with a typical Mediterranean climate of dry growing season, is one of such regions where ET is largely constrained by water availability. We investigate how the induced memory on soil moisture by groundwater affects spring precipitation and summer temperatures there using a fully coupled WRF-LEAFHYDRO system. The LEAFHYDRO Land Surface Model includes groundwater dynamics with a realistic water table validated with hundreds of observations over Spain and Portugal. We perform two sets of long-term offline simulations, with and without groundwater forced by ERA-Interim and detailed precipitation analyses for the Iberian Peninsula. The corresponding fully coupled simulations with the Weather Research and Forecasting model (WRF), using exactly the same grid, take initial conditions from the off-line simulations at the end of the winter and are run for spring and summer, when we expect the impact of ET on climate to be largest. After a dry winter, in the run with groundwater soils are considerably wetter in regions with shallow water table and WRF results indicate that during spring the impact on precipitation can be sizeable when synoptic conditions are favorable for convection. Increased ET in the summer due also to more moisture availability in the run with groundwater leads in general to cooler temperatures. These preliminary results highlight the important role of groundwater on climate and the advantages of a fully coupled hydrology-atmospheric modeling system.

  8. Recent Progresses in studies of variations and Anomalies of EAM Climate System and Formation Mechanism of Severe Climate Disasters in China

    Institute of Scientific and Technical Information of China (English)

    Huang Ronghui

    2009-01-01

    @@ The East Asian monsoon (EAM) system is an important circulation system in the global climate system, which features strong southwesterlies with wet air over East Asia in summer and northwesterlies with dry air over North China, Northeast China, Korea and Japan and northeasterlies along the coast of Southeast China (e.g., Tao and Chen). Influenced by the variations and anomalies of the EAM system, therefore, the climate in China is characterized with the most frequent drought and flood disasters in summer and cold surges in winter (e.g., Huang and Zhou 2002).

  9. A Study on Electric Vehicle Heat Pump Systems in Cold Climates

    Directory of Open Access Journals (Sweden)

    Ziqi Zhang

    2016-10-01

    Full Text Available Electric vehicle heat pumps are drawing more and more attention due to their energy-saving and high efficiency designs. Some problems remain, however, in the usage of the heat pumps in electric vehicles, such as a drainage problem regarding the external heat exchangers while in heat pump mode, and the decrease in heating performance when operated in a cold climate. In this article, an R134a economized vapor injection (EVI heat pump system was built and tested. The drainage problem common amongst external heat exchangers was solved by an optimized 5 mm diameter tube-and-fin heat exchanger, which can meet both the needs of a condenser and evaporator based on simulation and test results. The EVI system was also tested under several ambient temperatures. It was found that the EVI was a benefit to the system heating capacity. Under a −20 °C ambient temperature, an average improvement of 57.7% in heating capacity was achieved with EVI and the maximum capacity was 2097 W, with a coefficient of performance (COP of 1.25. The influences of injection pressure and economizer capacity are also discussed in this article.

  10. Analyzing and modeling CRE in a changing climate and energy system - a case study from Mid-Norway

    Science.gov (United States)

    Tøfte, Lena S.; Sauterleute, Julian F.; Kolberg, Sjur A.; Warland, Geir

    2014-05-01

    Climate related energy (CRE) is influenced by both weather, the system for energy transport and market mechanisms. In the COMPLEX-project, Mid-Norway is a case study where we analyze co-fluctuations between wind and hydropower resources; how co-fluctuations may change in the long-term; which effects this has on the power generation; and how the hydropower system can be operated optimally in this context. In the region Mid-Norway, nearly all power demand is generated by hydro-electric facilities, and the region experiences a deficit of electricity. This is both due to energy deficiency and limitations in the power grid system. In periods of low inflow and situations with high electricity demand (i.e. winter), power must be imported from neighboring regions. In future, this situation might change with the development of renewable energy sources. The region is likely to experience considerable investments in wind power and small-scale hydropower. In relation to the deployment of wind power and small-scale hydropower and security of supply, the transmission grid within and out of the region is extended. With increasing production of intermittent energy sources as wind and small-scale hydro, dependencies and co-fluctuations between rain and wind are to be analyzed due to spatial and temporal scale, in the present and a future climate. Climate change scenarios agree on higher temperatures, more precipitation in total and a larger portion of the precipitation coming as rain in this region, and the average wind speed as well as the frequency of storms along the coast is expected to increase slightly during the winter. Changing temperatures will also change the electricity needs, as electricity is the main source for heating in Norway. It's important to study if and to which extent today's hydropower system and reservoirs are able to balance new intermittent energy sources in the region, in both today's and tomorrow's climate. The case study includes down-scaling of climate

  11. Case study of climatic changes in Martian fluvial systems at Xanthe Terra

    Science.gov (United States)

    Kereszturi, Akos

    2014-06-01

    An unnamed valley system was analyzed in Xanthe Terra south of Havel Vallis on Mars where three separate episodes of fluvial activity could be identified with different morphology, water source and erosional processes, inferring formation under different climatic conditions. The oldest scattered valleys (1. group) form interconnecting network and suggest areally distributed water source. Later two valley types formed from confined water source partly supported by possible subsurface water. The smaller upper reaches (2. group) with three separate segments and also a similar aged but areal washed terrain suggest contribution from shallow subsurface inflow. These valleys fed the main channel (3. group), which morphology (wide, theater shaped source, few tributaries, steep walls) is the most compatible with the subsurface sapping origin. While the first valley group formed in the Noachian, the other two, more confined groups are younger. Their crater density based age value is uncertain, and could be only 1200 million years. After these three fluvial episodes etch pitted, heavily eroded terrain formed possibly by ice sublimation driven collapse. More recently (60-200 million years ago) dunes covered the bottom of the valleys, and finally the youngest event took place when mass movements produced debris covered the valleys' slopes with sediments along their wall around 5-15 million years ago, suggesting wind activity finished earlier than the mass movements in the region. This small area represents the sequence of events probably appeared on global scale: the general cooling and drying environment of Mars. Comparing the longitudinal profiles here to other valleys in Xanthe Terra, convex shaped valley profiles are usually connected to steep terrains. The location of erosional base might play an important role in their formation that can be produced convex shapes where the erosional base descended topographically (by deep impact crater or deep outflow channel formation

  12. Design and Development of System Platform of "Study on Relationship between Natural Phenology and Climate Change" Based on WEB and GIS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study design and development of system platform of "study on relationship between natural phenology and climate change" based on WEB and GIS. [Method] Relied on the technologies of WEB and GIS, a set of system platform of "study on relationship between natural phenology and climate change" was developed based on the hybrid architecture of C/S (Client/Server) and B/S (Browser/Server). Moreover, its establishing process and functional module were detailedly introduced. [Resul...

  13. CITYZEN climate impact studies

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, Martin (ed.)

    2011-07-01

    We have estimated the impact of climate change on the chemical composition of the troposphere due to changes in climate from current climate (2000-2010) looking 40 years ahead (2040-2050). The climate projection has been made by the ECHAM5 model and was followed by chemistry-transport modelling using a global model, Oslo CTM2 (Isaksen et al., 2005; Srvde et al., 2008), and a regional model, EMEP. In this report we focus on carbon monoxide (CO) and surface ozone (O3) which are measures of primary and secondary air pollution. In parallel we have estimated the change in the same air pollutants resulting from changes in emissions over the same time period. (orig.)

  14. A Climate System Model, Numerical Simulation and Climate Predictability

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingcun; WANG Huijun; LIN Zhaohui; ZHOU Guangqing; YU Yongqiang

    2007-01-01

    @@ The implementation of the project has lasted for more than 20 years. As a result, the following key innovative achievements have been obtained, ranging from the basic theory of climate dynamics, numerical model development and its related computational theory to the dynamical climate prediction using the climate system models:

  15. An observing system simulation experiment for climate monitoring with GNSS radio occultation data: Setup and test bed study

    OpenAIRE

    U. Foelsche; Kirchengast, G.; A. Steiner; Kornblueh, L.; Manzini, E.; L. Bengtsson

    2008-01-01

    The long-term stability, high accuracy, all-weather capability, high vertical resolution, and global coverage of Global Navigation Satellite System ( GNSS) radio occultation ( RO) suggests it as a promising tool for global monitoring of atmospheric temperature change. With the aim to investigate and quantify how well a GNSS RO observing system is able to detect climate trends, we are currently performing an ( climate) observing system simulation experiment over the 25-year period 2001 to 2025...

  16. A study on the effect of organizational climate on organizational commitment: A case study of educational system

    Directory of Open Access Journals (Sweden)

    Bahman Saeidipou

    2013-01-01

    Full Text Available Building strong commitment among organizational employees plays an important role in reducing delays and displacement. It can also increase employee efficiency, employees' mental freshness and manifesting both organizational admirable targets and personal goals. The purpose of this study is to detect and to forecast the impact of organizational climate on level of organizational commitment among staff education in city of Kermanshah located in west part Iran. The survey designs questionnaires and collects necessary information using a descriptive survey. The statistical population includes all 921 employees who were either enrolled in administration level or work as teacher in all areas of city of Kermanshah. The study selects 300 individuals from the statistical population randomly. The proposed model of this paper uses factor analysis to determine the most important factors influencing organizational commitment and Cronbach alpha is used to validate the results. The results show that there is a significant relationship between the components of role and paying enough attention to goals, the variable organizational climate, and the whole variable dimensions of organizational commitment. The other observation is that there was a weak relationship with some components of social commitment, and there was not any significant relationship with other aspects. Results of multivariate regression analysis shows that there was a high correlation between organizational climate and social commitment (t-student=6.208.

  17. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  18. Study on climate change in Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongxing

    2015-03-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  19. Climate@Home: Utilizing Citizen Science for Climate Studies

    Science.gov (United States)

    Liu, K.; Yang, C.; Li, Z.; Sun, M.; Li, J.; Xu, C.

    2013-12-01

    Climate change has become a serious and urgent issue in the past decades (Stern N. 2007). It will influence many domains such as agriculture, economy, ecosystem, and others. To help scientists to simulate the climate change, NASA conducted a project, Climate@Home, to develop a cyberinfrastructure for running the modelE climate model. ModelE contains over 500 variables and needs many days to finish a 10 year analysis task. If scientists need to run 300 tasks, it may need about 3 years to complete the task using a single machine. As an exploratory study, an infrastructure was constructed to recruit citizen volunteers for harvesting computing resources from citizens based on the citizen science mechanism. However, there are challenges in order to build the infrastructure: 1) modelE is a Linux based model but volunteers may have different operating system platforms such as Windows, Apple OSX etc (Anderson et al. 2006); 2) modelE has big downloading file and generates big results file, how to download and upload files efficiently? 3) currently the task schedule uses first-come-fist-get mechanism, how to schedule task efficiently? We address these challenges with several designs: 1) virtual machines are used to package the modelE, an operating system and configured running environments; 2) Building FTPS based on users' spatiotemporal information for data downloading and uploading; 3) crafting the schedule system to grant tasks based on the volunteers spatiotemporal information and computing conditions such as CPU, memory and bandwidth. Key words: Volunteer Computing, Climate Change, Spatiotemporal, References: 1. Anderson, D. P., Christensen, C., & Allen, B. (2006, November). Designing a runtime system for volunteer computing. In SC 2006 Conference, Proceedings of the ACM/IEEE (pp. 33-33). IEEE. 2. Stern, N. N. H. (Ed.). (2007). The economics of climate change: the Stern review. Cambridge University Press.

  20. The Community Climate System Model: CCSM3

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W D; Blackmon, M; Bitz, C; Bonan, G; Bretherton, C S; Carton, J A; Chang, P; Doney, S; Hack, J J; Kiehl, J T; Henderson, T; Large, W G; McKenna, D; Santer, B D; Smith, R D

    2004-12-27

    A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates several significant improvements in the scientific formulation. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice thickness, polar radiation budgets, equatorial sea-surface temperatures, ocean currents, cloud radiative effects, and ENSO teleconnections. CCSM3 can produce stable climate simulations of millenial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean-atmosphere fluxes in western coastal regions, the spectrum of ENSO variability, the spatial distribution of precipitation in the Pacific and Indian Oceans, and the continental precipitation and surface air temperatures. We conclude with the prospects for extending CCSM to a more comprehensive model of the Earth's climate system.

  1. System Identification for Indoor Climate Control

    CERN Document Server

    M., A W; H., P W M; Steskens,

    2012-01-01

    The study focuses on the applicability of system identification to identify building and system dynamics for climate control design. The main problem regarding the simulation of the dynamic response of a building using building simulation software is that (1) the simulation of a large complex building is time consuming, and (2) simulation results often lack information regarding fast dynamic behaviour (in the order of seconds), since most software uses a discrete time step, usually fixed to one hour. The first objective is to study the applicability of system identification to reduce computing time for the simulation of large complex buildings. The second objective is to research the applicability of system identification to identify building dynamics based on discrete time data (one hour) for climate control design. The study illustrates that system identification is applicable for the identification of building dynamics with a frequency that is smaller as the maximum sample frequency as used for identificat...

  2. Estimating the efficiency of P/V systems under a changing climate - the case study of Greece.

    Science.gov (United States)

    Grillakis, Manolis; Panagea, Ioanna; Koutroulis, Aristeidis; Tsanis, Ioannis

    2014-05-01

    The effect of climate change on P/V output is studied for the region of Greece. Solar radiation and temperature data from 9 RCMs of ENSEMBLES EU FP6 project are used to estimate the effect of these two parameters on the future P/V systems output over Greece. Examining the relative contributions of temperature and irradiance, a significant reduction due to the temperature increase is projected which is however outweighed by the irradiance increase, resulting an overall output increase in photovoltaic systems. Nonetheless, in some cases the temperature increase is too large to be compensated by the increase irradiance resulting reduction of PV output up to 3. This is projected after 2050s for the eastern parts of the Greek mainland, Aegean islands and some areas in Crete. Results show that the PV output is projected to have an increasing trend in all regions of Greece until 2050, and a steeper increase trend further until 2100. Moreover, high resolution topographic information was combined to the PV output results, producing high resolution of favorability for future PV systems installation.

  3. Our Changing Climate: A Brand New Way to Study Climate Science

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  4. Simulation study on bi-stability of cloud-rain system and cosmic ray influence on climate

    Science.gov (United States)

    Kusano, Kanya; Hasegawa, Koichi; Shima, Shin-ichiro

    2012-07-01

    Although it has been pointed out many times that there is the correlation between solar activity, such as the Schwabe (11 year) cycle and the Maunder-type minima, and climate variability, the mechanism whereby the sun may affect climate is not yet well understood. Svensmark and Friis-Christensen (1997) proposed that galactic cosmic ray may control cloud through the ionization of atmosphere and the ion-induced nucleation. Recently, Kirkby et al. (2011) indicated in basis of experiments with artificial cosmic ray that the ion-induced nucleation is possible in the atmosphere if some conditions for chemical compounds and temperature are satisfied. However, although the experimental data show that the ion-induced nucleation rate for 1.7 nm diameter cluster J _{1.7}=10 ^{-2} to 10 ^{1}cm ^{-3}s ^{-1}, it is not yet clear how this rate affects cloud and climate. In this study, aiming at clarifying how the cloud-rain system depends on the change in the formation rate of cloud condensation nuclear, we have performed a systematic simulation study using super-droplet cloud model. The super-droplet cloud model is a novel computational technique to calculate the macro- and micro-physics of clouds (Shima, Kusano et al. 2009). We have implemented the super-droplet method on the cloud resolving model CReSS (Tsuboki & Sakakibara 2006), and developed an add-on function to create aerosols dynamically. Using it, we have surveyed the quasi-equilibrium state of cloud-rain system for different formation rate of 30 nm diameter aerosol J _{30}. The initial and boundary conditions are given by the data-set of RICO (Rain In Cumulus over the Ocean) project. As the results of simulations for J _{30} from 10 ^{-6} to 10 ^{0} cm ^{-3}s ^{-1}, we find that the cloud water path remains about 5 gm ^{-2} when J _{30} is smaller than 10 ^{-3}cm ^{-3}s ^{-1}, but it quickly increases to 20 gm ^{-2} for J _{30}=10 ^{-2}cm ^{-3}s ^{-1} and it keeps the value for higher J _{30}. On the other hand, the

  5. Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems:A case study using an integrated approach

    Institute of Scientific and Technical Information of China (English)

    Achilleas GSAMARAS; Christopher GKOUTITAS

    2014-01-01

    Climate change is an issue of major concern nowadays. Its impact on the natural and human environment is studied intensively, as the expected shift in climate will be significant in the next few decades. Recent experience shows that the effects will be critical in coastal areas, resulting in erosion and inundation phenomena worldwide. In addition to that, coastal areas are subject to"pressures"from upstream watersheds in terms of water quality and sediment transport. The present paper studies the impact of climate change on sediment transport and morphology in the aforementioned coupled system. The study regards a sandy coast and its upstream watershed in Chalkidiki, North Greece; it is based on: (a) an integrated approach for the quantitative correlation of the two through numerical modeling, developed by the authors, and (b) a calibrated application of the relevant models Soil and Water Assessment Tool (SWAT) and PELNCON-M, applied to the watershed and the coastal zone, respectively. The examined climate change scenarios focus on a shift of the rainfall distribution towards fewer and more extreme rainfall events, and an increased frequency of occurrence of extreme wave events. Results indicate the significance of climatic pressures in wide-scale sediment dynamics, and are deemed to provide a useful perspective for researchers and policy planners involved in the study of coastal morphology evolution in a changing climate.

  6. Case-study of thermo active building systems in Japanese climate

    DEFF Research Database (Denmark)

    Li, Rongling; Yoshidomi, Togo; Ooka, Ryozo

    2015-01-01

    Thermo active building systems (TABS) have been applied in office buildings as a promising energy efficient solution in many European countries. The utilization of building thermal mass helps to provide high quality thermal environments with less energy consumption. However, the concept of TABS...... is entirely new in Japan. This paper introduces and evaluates TABS under Tokyo weather conditions to clarify the potential of use TABS in Japan. Cooling capacity of thermo active building systems used in an office building was evaluated by means of dynamic simulations. Two central rooms of the office were...

  7. Fine-Resolution Modeling of the Santa Cruz and San Pedro River Basins for Climate Change and Riparian System Studies

    Science.gov (United States)

    Robles-Morua, A.; Vivoni, E. R.; Volo, T. J.; Rivera, E. R.; Dominguez, F.; Meixner, T.

    2011-12-01

    This project is part of a multidisciplinary effort aimed at understanding the impacts of climate variability and change on the ecological services provided by riparian ecosystems in semiarid watersheds of the southwestern United States. Valuing the environmental and recreational services provided by these ecosystems in the future requires a numerical simulation approach to estimate streamflow in ungauged tributaries as well as diffuse and direct recharge to groundwater basins. In this work, we utilize a distributed hydrologic model known as the TIN-based Real-time Integrated Basin Simulator (tRIBS) in the upper Santa Cruz and San Pedro basins with the goal of generating simulated hydrological fields that will be coupled to a riparian groundwater model. With the distributed model, we will evaluate a set of climate change and population scenarios to quantify future conditions in these two river systems and their impacts on flood peaks, recharge events and low flows. Here, we present a model confidence building exercise based on high performance computing (HPC) runs of the tRIBS model in both basins during the period of 1990-2000. Distributed model simulations utilize best-available data across the US-Mexico border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. Meteorological forcing over the historical period is obtained from a combination of sparse ground networks and weather radar rainfall estimates. We then focus on a comparison between simulation runs using ground-based forcing to cases where the Weather Research Forecast (WRF) model is used to specify the historical conditions. Two spatial resolutions are considered from the WRF model fields - a coarse (35-km) and a downscaled (10- km) forcing. Comparisons will focus on the distribution of precipitation, soil moisture, runoff generation and recharge and assess the value of the WRF coarse and downscaled products. These results provide confidence in

  8. Utility of AIRS Retrievals for Climate Studies

    Science.gov (United States)

    Molnar, Guyla I.; Susskind, Joel

    2007-01-01

    Satellites provide an ideal platform to study the Earth-atmosphere system on practically all spatial and temporal scales. Thus, one may expect that their rapidly growing datasets could provide crucial insights not only for short-term weather processes/predictions but into ongoing and future climate change processes as well. Though Earth-observing satellites have been around for decades, extracting climatically reliable information from their widely varying datasets faces rather formidable challenges. AIRS/AMSU is a state of the art infrared/microwave sounding system that was launched on the EOS Aqua platform on May 4, 2002, and has been providing operational quality measurements since September 2002. In addition to temperature and atmospheric constituent profiles, outgoing longwave radiation and basic cloud parameters are also derived from the AIRS/AMSU observations. However, so far the AIRS products have not been rigorously evaluated and/or validated on a large scale. Here we present preliminary assessments of monthly and 8-day mean AIRS "Version 4.0" retrieved products (available to the public through the DAAC at NASA/GSFC) to assess their utility for climate studies. First we present "consistency checks" by evaluating the time series of means, and "anomalies" (relative to the first 4 full years' worth of AIRS "climate statistics") of several climatically important retrieved parameters. Finally, we also present preliminary results regarding interrelationships of some of these geophysical variables, to assess to what extent they are consistent with the known physics of climate variability/change. In particular, we find at least one observed relationship which contradicts current general circulation climate (GCM) model results: the global water vapor climate feedback which is expected to be strongly positive is deduced to be slightly negative (shades of the "Lindzen effect"?). Though the current AIRS climatology covers only -4.5 years, it will hopefully extend much

  9. Assessing transition trajectories towards a sustainable energy system: A case study on the Dutch transition to climate-neutral transport fuel chains

    NARCIS (Netherlands)

    Suurs, R.A.A.; Hekkert, M.P.; Meeus, M.T.H.; Nieuwlaar, E.

    2004-01-01

    This paper proposes a method for the ex ante evaluation of technological trajectories. As a case we study the Dutch transport energy system and its transition to climate neutrality. Two technological trajectories are proposed: (i) a sequence of transition steps based on radical infrastructural chang

  10. The Impact of Climate Change on the European Energy System

    OpenAIRE

    DOWLING PAUL

    2012-01-01

    Climate change can affect the economy via many different channels in many different sectors. Most studies investigating the impact of climate change on the energy system have concentrated on the impact of changes in heating and cooling demand, but there are many energy sector impacts that remain unanalysed. The POLES global energy model has been modified to widen the coverage of climate change impacts on the European energy system. The impacts considered are changes in heating and cooling...

  11. Solar-climatic statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Bray, R.E.

    1979-02-01

    The Solar-Climatic Statistical Study was performed to provide statistical information on the expected future availability of solar and wind power at various nationwide sites. Historic data (SOLMET), at 26 National Weather Service stations reporting hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Information of this nature are intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems. Presented in this volume are probability estimates of solar insolation and wind power, alone and in combination, occurring and persisting at or above specified thresholds, for up to one week, for each of the 26 SOLMET stations. Diurnal variations of wind power were also considered. Selected probability data for each station are presented graphically, and comprehensive plots for all stations are provided on a set of microfiche included in a folder in the back of this volume.

  12. Influence of upper ocean on Indian summer monsoon rainfall: studies by observation and NCEP climate forecast system (CFSv2)

    Science.gov (United States)

    Chaudhari, Hemantkumar S.; Pokhrel, Samir; Rahman, H.; Dhakate, A.; Saha, Subodh K.; Pentakota, S.; Gairola, R. M.

    2016-08-01

    This study explores the role played by ocean processes in influencing Indian summer monsoon rainfall (ISMR) and compares the observed findings with National Centers for Environmental Prediction (NCEP)-coupled model Climate Forecast System, version 2 (CFSv2). The excess and deficit ISMR clearly brings out the distinct signatures in sea surface height (SSH) anomaly, thermocline and mixed layer depth over north Indian Ocean. CFSv2 is successful in simulating SSH anomalies, especially over Arabian Sea and Bay of Bengal region. CFSv2 captures observed findings of SSH anomalies during flood and drought (e.g., Rossby wave propagation which reaches western Bay of Bengal (BoB) during flood years, Rossby wave propagation which did not reach western BoB during drought). It highlights the ability of CFSv2 to simulate the basic ocean processes which governs the SSH variability. These differences are basically generated by upwelling and downwelling caused by the equatorial and coastal Kelvin and Rossby waves, thereby causing difference in SSH anomaly and thermocline, and subsequently modifying the convection centers, which dictates precipitation over the Indian subcontinent region. Since the observed SSH anomaly and thermal structure show distinct characteristic features with respect to strong and weak ISMR variability, the assimilation of real ocean data in terms of satellite products (like SSHA from AVISO/SARAL) bestow great promise for the future improvement.

  13. The importance of terrestrial weathering for climate system modelling on extended timescales: a study with the UVic ESCM

    Science.gov (United States)

    Brault, Marc-Olivier; Matthews, Damon; Mysak, Lawrence

    2016-04-01

    The chemical erosion of carbonate and silicate rocks is a key process in the global carbon cycle and, through its coupling with calcium carbonate deposition in the ocean, is the primary sink of carbon on geologic timescales. The dynamic interdependence of terrestrial weathering rates with atmospheric temperature and carbon dioxide concentrations is crucial to the regulation of Earth's climate over multi-millennial timescales. However any attempts to develop a modeling context for terrestrial weathering as part of a dynamic climate system are limited, mostly because of the difficulty in adapting the multi-millennial timescales of the implied negative feedback mechanism with those of the atmosphere and ocean. Much of the earlier work on this topic is therefore based on box-model approaches, abandoning spatial variability for the sake of computational efficiency and the possibility to investigate the impact of weathering on climate change over time frames much longer than those allowed by traditional climate system models. As a result we still have but a rudimentary understanding of the chemical weathering feedback mechanism and its effects on ocean biogeochemistry and atmospheric CO2. Here, we introduce a spatially-explicit, rock weathering model into the University of Victoria Earth System Climate Model (UVic ESCM). We use a land map which takes into account a number of different rock lithologies, changes in sea level, as well as an empirical model of the temperature and NPP dependency of weathering rates for the different rock types. We apply this new model to the last deglacial period (c. 21000BP to 13000BP) as well as a future climate change scenario (c. 1800AD to 6000AD+), comparing the results of our 2-D version of the weathering feedback mechanism to simulations using only the box-model parameterizations of Meissner et al. [2012]. These simulations reveal the importance of two-dimensional factors (i.e., changes in sea level and rock type distribution) in the

  14. Organizational Climate Assessment: a Systemic Perspective

    Science.gov (United States)

    Argentero, Piergiorgio; Setti, Ilaria

    A number of studies showed how the set up of an involving and motivating work environment represents a source for organizational competitive advantage: in this view organizational climate (OC) research occupies a preferred position in current I/O psychology. The present study is a review carried out to establish the breadth of the literature on the characteristics of OC assessment considered in a systemic perspective. An organization with a strong climate is a work environment whose members have similar understanding of the norms and practices and share the same expectations. OC should be considered as a sort of emergent entity and, as such, it can be studied only within a systemic perspective because it is linked with some organizational variables, in terms of antecedents (such as the organization's internal structure and its environmental features) and consequences (such as job performance, psychological well-being and withdrawal) of the climate itself. In particular, when employees have a positive view of their organizational environment, consistently with their values and interests, they are more likely to identify their personal goals with those of the organization and, in turn, to invest a greater effort to pursue them: the employees' perception of the organizational environment is positively related to the key outcomes such as job involvement, effort and performance. OC analysis could also be considered as an effective Organizational Development (OD) tool: in particular, the Survey Feedback, that is the return of the OC survey results, could be an effective instrument to assess the efficacy of specific OD programs, such as Team Building, TQM and Gainsharing. The present study is focused on the interest to investigate all possible variables which are potential moderators of the climate - outcome relationship: therefore future researches in the OC field should consider a great variety of organizational variables, considered in terms of antecedents and effects

  15. Organizational Climate, Services, and Outcomes in Child Welfare Systems

    Science.gov (United States)

    Glisson, Charles; Green, Philip

    2011-01-01

    Objective: This study examines the association of organizational climate, casework services, and youth outcomes in child welfare systems. Building on preliminary findings linking organizational climate to youth outcomes over a 3-year follow-up period, the current study extends the follow-up period to 7 years and tests main, moderating and…

  16. Arctic melt ponds and bifurcations in the climate system

    CERN Document Server

    Sudakov, Ivan; Golden, Kenneth M

    2014-01-01

    Understanding how sea ice melts is critical to climate projections. In the Arctic, melt ponds that develop on the surface of sea ice floes during the late spring and summer largely determine their albedo $-$ a key parameter in climate modeling. Here we explore the possibility of a simple sea ice climate model passing through a bifurcation point $-$ an irreversible critical threshold as the system warms, by incorporating geometric information about melt pond evolution. This study is based on a nonlinear phase transition model for melt ponds, and bifurcation analysis of a simple climate model with ice - albedo feedback as the key mechanism driving the system to a potential bifurcation point.

  17. Selecting global climate models for regional climate change studies

    OpenAIRE

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simula...

  18. Beyond Interdisciplinarity: Integrated Climate System Sciences at University of Hamburg

    Science.gov (United States)

    Beckmann, Aike; Eden, Carsten; Hachfeld, Berit; Harms, Ingo; Held, Hermann; Hort, Matthias

    2013-04-01

    We present the philosophy and implementation of a combined MSc and PhD study program in climate system sciences (SICCS) that bring together environmental physics, geoscience, biogeochemistry and climate related economic and social sciences. The philosophy of SICCS includes the perspective for both students and lectures to work on, to develop and to communicate an integrative "world map" of climate and earth science. We report about first results, difficulties and experiences after successful implementation of the program.

  19. An expressed sequence tag (EST library for Drosophila serrata, a model system for sexual selection and climatic adaptation studies

    Directory of Open Access Journals (Sweden)

    McGraw Elizabeth A

    2009-01-01

    Full Text Available Abstract Background The native Australian fly Drosophila serrata belongs to the highly speciose montium subgroup of the melanogaster species group. It has recently emerged as an excellent model system with which to address a number of important questions, including the evolution of traits under sexual selection and traits involved in climatic adaptation along latitudinal gradients. Understanding the molecular genetic basis of such traits has been limited by a lack of genomic resources for this species. Here, we present the first expressed sequence tag (EST collection for D. serrata that will enable the identification of genes underlying sexually-selected phenotypes and physiological responses to environmental change and may help resolve controversial phylogenetic relationships within the montium subgroup. Results A normalized cDNA library was constructed from whole fly bodies at several developmental stages, including larvae and adults. Assembly of 11,616 clones sequenced from the 3' end allowed us to identify 6,607 unique contigs, of which at least 90% encoded peptides. Partial transcripts were discovered from a variety of genes of evolutionary interest by BLASTing contigs against the 12 Drosophila genomes currently sequenced. By incorporating into the cDNA library multiple individuals from populations spanning a large portion of the geographical range of D. serrata, we were able to identify 11,057 putative single nucleotide polymorphisms (SNPs, with 278 different contigs having at least one "double hit" SNP that is highly likely to be a real polymorphism. At least 394 EST-associated microsatellite markers, representing 355 different contigs, were also found, providing an additional set of genetic markers. The assembled EST library is available online at http://www.chenowethlab.org/serrata/index.cgi. Conclusion We have provided the first gene collection and largest set of polymorphic genetic markers, to date, for the fly D. serrata. The EST

  20. Management system, organizational climate and performance relationships

    Science.gov (United States)

    Davis, B. D.

    1979-01-01

    Seven aerospace firms were investigated to determine if a relationship existed among management systems, organizational climate, and organization performance. Positive relationships were found between each of these variables, but a statistically significant relationship existed only between the management system and organizational climate. The direction and amount of communication and the degree of decentralized decision-making, elements of the management system, also had a statistically significant realtionship with organization performance.

  1. Precambrian evolution of the climate system.

    Science.gov (United States)

    Walker, J C

    1990-01-01

    Climate is an important environmental parameter of the early Earth, likely to have affected the origin and evolution of life, the composition and mineralogy of sedimentary rocks, and stable isotope ratios in sedimentary minerals. There is little observational evidence constraining Precambrian climates. Most of our knowledge is at present theoretical. Factors that must have affected the climate include reduced solar luminosity, enhanced rotation rate of the Earth, an area of land that probably increased with time, and biological evolution, particularly as it affected the composition of the atmosphere and the greenhouse effect. Cloud cover is a major uncertainty about the early Earth. Carbon dioxide and its greenhouse effect are the factors that have been most extensively studied. This paper presents a new examination of the biogeochemical cycles of carbon as they may have changed between an Archean Earth deficient in land, sedimentary rocks, and biological activity, and a Proterozoic Earth much like the modern Earth, but lacking terrestrial life and carbonate-secreting plankton. Results of a numerical simulation of this transition show how increasing biological activity could have drawn down atmospheric carbon dioxide by extracting sedimentary organic carbon from the system. Increasing area of continents could further have drawn down carbon dioxide by encouraging the accumulation of carbonate sediments. An attempt to develop a numerical simulation of the carbon cycles of the Precambrian raises questions about sources and sinks of marine carbon and alkalinity on a world without continents. More information is needed about sea-floor weathering processes.

  2. A Computing Infrastructure for Supporting Climate Studies

    Science.gov (United States)

    Yang, C.; Bambacus, M.; Freeman, S. M.; Huang, Q.; Li, J.; Sun, M.; Xu, C.; Wojcik, G. S.; Cahalan, R. F.; NASA Climate @ Home Project Team

    2011-12-01

    Climate change is one of the major challenges facing us on the Earth planet in the 21st century. Scientists build many models to simulate the past and predict the climate change for the next decades or century. Most of the models are at a low resolution with some targeting high resolution in linkage to practical climate change preparedness. To calibrate and validate the models, millions of model runs are needed to find the best simulation and configuration. This paper introduces the NASA effort on Climate@Home project to build a supercomputer based-on advanced computing technologies, such as cloud computing, grid computing, and others. Climate@Home computing infrastructure includes several aspects: 1) a cloud computing platform is utilized to manage the potential spike access to the centralized components, such as grid computing server for dispatching and collecting models runs results; 2) a grid computing engine is developed based on MapReduce to dispatch models, model configuration, and collect simulation results and contributing statistics; 3) a portal serves as the entry point for the project to provide the management, sharing, and data exploration for end users; 4) scientists can access customized tools to configure model runs and visualize model results; 5) the public can access twitter and facebook to get the latest about the project. This paper will introduce the latest progress of the project and demonstrate the operational system during the AGU fall meeting. It will also discuss how this technology can become a trailblazer for other climate studies and relevant sciences. It will share how the challenges in computation and software integration were solved.

  3. Urban Drainage System Improvement for Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Narae Kang

    2016-06-01

    Full Text Available Recently, urban areas have experienced frequent, large-scale flooding, a situation that has been aggravated by climate change. This study aims to improve the urban drainage system to facilitate climate change adaptation. A methodology and a series of mitigation strategies are presented to efficiently improve the urban drainage system in light of climate change. In addition, we assess the impact of climate change and predict the scale of potential future flood damage by applying the methodology and mitigation strategies to urban areas. Based on the methodology presented, urban flood prevention measures for Gyeyang-gu (Province, Incheon, Korea, was established. The validity of the proposed alternatives is verified by assessing the economic feasibility of the projects to reduce flood damage. We expect that the methodology presented will aid the decision-making process and assist in the development of reasonable strategies to improve the urban drainage system for adaptation to climate change.

  4. 7th International Seminar on Climate System and Climate Change(ISCS) through the Eyes of a Trainee

    Institute of Scientific and Technical Information of China (English)

    Karen K.Y.Shum

    2010-01-01

    @@ At the invitation of Dr.Dahe Qin,the president of ISCS and the Co-Chair of IPCC WGI,the Hong Kong Observatory has been obliged to participate and benefit from the International Seminar in Beijing,China on 19-30 July 2010.Seminar topics included atmospheric chemistry and climate effects of aerosol biogeochemical cycles,cryosphere and its role in the climate system and climate change,climate models and its application in climate change research,climate change adaptation and mitigation.Data is a common ground for these multi-disciplinary studies around the globe.

  5. Two-Way Interpretation about Climate Change: Preliminary Results from a Study in Select Units of the United States National Park System

    Science.gov (United States)

    Forist, B. E.; Knapp, D.

    2014-12-01

    Much interpretation in units of the National Park System, conducted by National Park Service (NPS) rangers and partners today is done in a didactic, lecture style. This "one-way" communication runs counter to research suggesting that long-term impacts of park interpretive experiences must be established through direct connections with the visitor. Previous research in interpretation has suggested that interpretive experiences utilizing a "two-way" dialogue approach are more successful at facilitating long-term memories than "one-way" approaches where visitors have few, if any, opportunities to ask questions, offer opinions, or share interests and experiences. Long-term memories are indicators of connections to places and resources. Global anthropogenic change poses critical threats to NPS sites, resources, and visitor experiences. As climate change plays an ever-expanding role in public, political, social, economic, and environmental discourse it stands to reason that park visitors may also be interested in engaging in this discourse. Indeed, NPS Director Jonathan Jarvis stated in the agency's Climate Change Action Plan 2012 - 2014 that, "We now know through social science conducted in parks that our visitors are looking to NPS staff for honest dialogue about this critical issue." Researchers from Indiana University will present preliminary findings from a multiple park study that assessed basic visitor knowledge and the impact of two-way interpretation related to climate change. Observations from park interpretive program addressing climate change will be presented. Basic visitor knowledge of climate change impacts in the select parks as well as immediate and long-term visitor recollections will be presented. Select units of the National Park System in this research included Cape Cod National Seashore, Cape Hatteras National Seashore, North Cascades National Park, Shenandoah National Park, and Zion National Park.

  6. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  7. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    Science.gov (United States)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2015-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  8. Cloud attenuation studies of the six major climatic zones of Africa for Ka and V satellite system design

    Directory of Open Access Journals (Sweden)

    Temidayo Victor Omotosho

    2014-01-01

    Full Text Available Normal 0 false false false EN-GB X-NONE X-NONE Cloud cover statistics, cloud base and top height, cloud temperature, frequency of precipitation, freezing height, total cloud liquid water content (TCLWC and cloud attenuation data have been obtained for the six major climatic zones of Africa. The present results reveal a strong positive correlation between the monthly distribution of low cloud cover, cloud top height, cloud temperature, and frequency of precipitation in the six zones. The cumulative distribution of the TCLWC derived from radiosonde measurement in each climatic zone shows a departure from the TCLWC recommended by the ITU Study Group 3 data, with an exceedance percentage difference of 32% to 90% occurring 0.01% to 10% of the time. The underestimation of the TCLWC is greatest in the tropical rain forest. A comparison of the cloud attenuation cumulative distribution in the Ka and V bands reveals that the International Telecommunication Union – Region (ITU-R is an intergovernmental organization that develops rain model based on collected data around the world. This model underestimates the cloud attenuation in all of the six climatic zones by 2.0 dB and 4.7 dB for the arid Sahara desert, 1.3 dB and 3.0 dB in semi-arid North Africa, 1.3 dB and 1.5 dB in savannah North Africa, 2.0 dB and 3.6 dB in the tropical rain forest, 1.3 dB and 2.9 dB in savannah South Africa and 0.9 dB and 2.6 dB in semi-arid South Africa, respectively, at 30 and 50 GHz. Overall, the cloud attenuation in the tropical rain-forest zone is very high because of the high annual total cloud cover (98%, high annual frequency of precipitation (4.5, low annual clear sky amount (8%, high cloud depth (10,937 m, high 0°C isotherm height (4.7 km, high TCLWC (4.0 kg/m2 at 0.01% and low seasonal cloud base height (356 m.

  9. Selecting global climate models for regional climate change studies

    Science.gov (United States)

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  10. Urban Climate Map System for Dutch spatial planning

    Science.gov (United States)

    Ren, Chao; Spit, Tejo; Lenzholzer, Sanda; Yim, Hung Lam Steve; Heusinkveld, Bert; van Hove, Bert; Chen, Liang; Kupski, Sebastian; Burghardt, René; Katzschner, Lutz

    2012-08-01

    Facing climate change and global warming, outdoor climatic environment is an important consideration factor for planners and policy makers because improving it can greatly contribute to achieve citizen's thermal comfort and create a better urban living quality for adaptation. Thus, the climatic information must be assessed systematically and applied strategically into the planning process. This paper presents a tool named Urban Climate Map System (UCMS) that has proven capable of helping compact cities to incorporate climate effects in planning processes in a systematic way. UCMS is developed and presented in a Geographic Information System (GIS) platform in which the lessons learned and experience gained from interdisciplinary studies can be included. The methodology of UCMS of compact cities, the construction procedure, and the basic input factors - including the natural climate resources and planning data - are described. Some literatures that shed light on the applicability of UMCS are reported. The Municipality of Arnhem is one of Dutch compact urban areas and still under fast urban development and urban renewal. There is an urgent need for local planners and policy makers to protect local climate and open landscape resources and make climate change adaptation in urban construction. Thus, Arnhem is chosen to carry out a case study of UCMS. Although it is the first work of Urban Climatic Mapping in The Netherlands, it serves as a useful climatic information platform to local planners and policy makers for their daily on-going works. We attempt to use a quick method to collect available climatic and planning data and create an information platform for planning use. It relies mostly on literature and theoretical understanding that has been well practiced elsewhere. The effort here is to synergize the established understanding for a case at hand and demonstrate how useful guidance can still be made for planners and policy makers.

  11. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    Science.gov (United States)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  12. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  13. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  14. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  15. Study of Climate effect on evapotranspiration change procedure

    Science.gov (United States)

    Asady, A.; Sharifan, H.

    2009-04-01

    Evapotranspiration (ET) is one of the most important of parameters in water cycle. This parameter changes in climate different conditions. In this manner the probability of ET is important for design of irrigation systems. This study investigated climate effect on evapotranspiration changes procedure. Thus ET was estimated by Hargreaves-Samani (H-S) method in the some of regions: Gorgan(semi wet,), Gonbad (semi dry) , Maraveh-Tappeh (semi dry to dry). Then diagrams of ET were drawn for different probabilities. Investigation shown that if climate was drier, irrigation periods increased and difference of ET averages decreased. Keyword : Evapotranspiration, Probability, Hargreave-Samani method, Climate, water use.

  16. Observing the carbon-climate system

    CERN Document Server

    Schimel, David; Moore, Berrien; Chatterjee, Abhishek; Baker, David; Berry, Joe; Bowman, Kevin; Crisp, Phillipe Ciais David; Crowell, Sean; Denning, Scott; Duren, Riley; Friedlingstein, Pierre; Gierach, Michelle; Gurney, Kevin; Hibbard, Kathy; Houghton, Richard A; Huntzinger, Deborah; Hurtt, George; Jucks, Ken; Kawa, Randy; Koster, Randy; Koven, Charles; Luo, Yiqi; Masek, Jeff; McKinley, Galen; Miller, Charles; Miller, John; Moorcroft, Paul; Nassar, Ray; ODell, Chris; Ott, Leslie; Pawson, Steven; Puma, Michael; Quaife, Tristan; Riris, Haris; Romanou, Anastasia; Rousseaux, Cecile; Schuh, Andrew; Shevliakova, Elena; Tucker, Compton; Wang, Ying Ping; Williams, Christopher; Xiao, Xiangming; Yokota, Tatsuya

    2016-01-01

    Increases in atmospheric CO2 and CH4 result from a combination of forcing from anthropogenic emissions and Earth System feedbacks that reduce or amplify the effects of those emissions on atmospheric concentrations. Despite decades of research carbon-climate feedbacks remain poorly quantified. The impact of these uncertainties on future climate are of increasing concern, especially in the wake of recent climate negotiations. Emissions, long concentrated in the developed world, are now shifting to developing countries, where the emissions inventories have larger uncertainties. The fraction of anthropogenic CO2 remaining in the atmosphere has remained remarkably constant over the last 50 years. Will this change in the future as the climate evolves? Concentrations of CH4, the 2nd most important greenhouse gas, which had apparently stabilized, have recently resumed their increase, but the exact cause for this is unknown. While greenhouse gases affect the global atmosphere, their sources and sinks are remarkably he...

  17. Climate change adaptability of cropping and farming systems for Europe

    DEFF Research Database (Denmark)

    Justes, Eric; Rossing, Walter; Vermue, Anthony

    Introduction: Prospective studies showed that the European agriculture will be impacted by climate change (CC) with different effects depending on the geographic region. The ERA-Net+ project Climate-CAFE (call of FACCE-JPI) aims to improve the “adaptive capacity” of arable and forage based farming...... systems to CC through a gradient of adaptation strategies. Methods: The adaptation strategies are evaluated at cropping and farming systems as well as regional levels for nine “Adaptation Pilots” along a North-South climate gradient in the EU. Three categories of strategies are evaluated: i) Resistance...... strategies that seek to maintain the status quo through management actions that reduce perturbations due to CC; ii) Resilience strategies requiring systemic adaptation at field and farm level for increasing the adaptive capacity after a climate disturbance; iii) Transformative strategies addressing needs...

  18. Quantifying the increasing sensitivity of power systems to climate variability

    Science.gov (United States)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  19. DataStreme Earth's Climate System: Building a Climate Literate Society through Effective Partnerships

    Science.gov (United States)

    Brey, J. A.; Geer, I. W.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    Effective partnerships are key to increasing climate and overall environmental literacy. Financial support from NSF, NASA, and NOAA has allowed the American Meteorological Society (AMS) to offer DataStreme courses for almost 20 years. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. A long-standing partnership with State University of New York's The College at Brockport gives teachers the opportunity to receive 3 tuition-free graduate credits upon successful completion of each DataStreme course and construction of a Plan of Action for educational peer-training. DataStreme ECS investigates the fundamental science of Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. The course provides participants with the knowledge to make informed climate decisions. In fact, according to a recent three-year study conducted by AMS, 98% of DataStreme ECS participants reported an increase in environmental literacy as a result of the course. DataStreme Atmosphere, Ocean, and ECS content has been improved because of AMS partnerships with NOAA and NASA. Specifically, hundreds of NASA and NOAA scientists and faculty from numerous institutions both domestic and abroad have contributed and reviewed DataStreme ECS content. Additional collaborations with Consortium for Ocean Leadership and the U.S. Ice Drilling Program greatly improved the course's paleoclimate content. Looking ahead, the Climate Resilience Toolkit from NOAA's Climate Program Office will further bolster the course this fall. These partnerships have resulted in a powerful, content-rich climate science course for K-12 teachers, building the foundation to a climate literate society.

  20. Running climate model on a commercial cloud computing environment: A case study using Community Earth System Model (CESM) on Amazon AWS

    Science.gov (United States)

    Chen, Xiuhong; Huang, Xianglei; Jiao, Chaoyi; Flanner, Mark G.; Raeker, Todd; Palen, Brock

    2017-01-01

    The suites of numerical models used for simulating climate of our planet are usually run on dedicated high-performance computing (HPC) resources. This study investigates an alternative to the usual approach, i.e. carrying out climate model simulations on commercially available cloud computing environment. We test the performance and reliability of running the CESM (Community Earth System Model), a flagship climate model in the United States developed by the National Center for Atmospheric Research (NCAR), on Amazon Web Service (AWS) EC2, the cloud computing environment by Amazon.com, Inc. StarCluster is used to create virtual computing cluster on the AWS EC2 for the CESM simulations. The wall-clock time for one year of CESM simulation on the AWS EC2 virtual cluster is comparable to the time spent for the same simulation on a local dedicated high-performance computing cluster with InfiniBand connections. The CESM simulation can be efficiently scaled with the number of CPU cores on the AWS EC2 virtual cluster environment up to 64 cores. For the standard configuration of the CESM at a spatial resolution of 1.9° latitude by 2.5° longitude, increasing the number of cores from 16 to 64 reduces the wall-clock running time by more than 50% and the scaling is nearly linear. Beyond 64 cores, the communication latency starts to outweigh the benefit of distributed computing and the parallel speedup becomes nearly unchanged.

  1. Adapting to climate change in a forest-based land use system. A case study of Himachal Pradesh, India

    Energy Technology Data Exchange (ETDEWEB)

    Deshingkar, P.; Bradley, P.N.; Chadwick, M.J.; Leach, G. [Stockholm Environment Inst. (Sweden); Kaul, O.N.; Banerjee, S.P.; Singh, B.; Kanetkar, R. [Tata Energy Research Inst., New Delhi (India)

    1997-12-31

    Current climate models show an increase of 3 deg C by year 2100 for the state of Himachal Pradesh. The change in rainfall is difficult to predict, a range of -20% to +20% is suggested from different models. Dynamic vegetation modelling shows that under moderate climatic change there could be an 11% increase in the total area under tree cover in Himachal Pradesh. There will be a north-eastwards migration of forest types as cold habitat biomes are replaced by warm weather species. Current anthropogenic pressure from livestock management activities, unsustainable forest product exploitation and habitat fragmentation will probably outweigh any direct impacts of climate change on vegetation. Consequently, the change in the area under different forest types and the species composition within these forest types will differ from model predictions. It is likely that more competitive and robust species such as Chir Pine and Blue Pine will survive and those species which are already overexploited such as the oaks and Deodar will become more endangered. Sustainable adaption strategies should aim at reducing the pressures from subsistence and commercial activities on forests: ongoing efforts in participatory forest management should be strengthened to reflect the interests of various stakeholders. The resilience of forest ecosystems to climate change can also be increased by identifying and planting tree species which can tolerate a wider range of climatic conditions. This will require government and donor commitment to invest in building the necessary institutional and research capacity 147 refs, 42 figs, 12 tabs

  2. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    Science.gov (United States)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  3. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  4. Climate wise case study compendium: Report 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This case study compendium is one of several Climate Wise tools available to help interested companies identify cost-effective options. Climate Wise, a private-public partnership program, is a key Federal initiative to return greenhouse gas emissions to 1990 levels by 2000.

  5. Vulnerability and adaptation to climate variability and change in smallholder farming systems in Zimbabwe

    OpenAIRE

    Rurinda, J.

    2014-01-01

        Keywords: Climate change; Increased climate variability; Vulnerability; Smallholder farmers; Adaptation   Climate change and increased climate variability are currently seen as the major constraints to the already stressed smallholder farming livelihood system in southern Africa. The main objectives of this study were first to understand the nature and sources of vulnerability of smallholder farmers to climate variability and change, and second to use this knowledge to eva...

  6. Development of a coupled Thermo-Hydro model and study of the evolution of a river-valley-talik system in the context of climate change

    Science.gov (United States)

    Regnier, Damien; Grenier, Christophe; Davy, Philippe; Benabderrahmane, Hakim

    2010-05-01

    Boreal regions have been subject to recent and intensive studies within the field of the impact of climate change. A vast number of the modeling approaches correspond to large scale modeling firstly oriented to thermal field and permafrost evolution. We consider the evolution of smaller scale units of the landscape, in particular here the river-valley unit. In cold environments, we know that some rivers have at their bottoms a talik or a non frozen zone. Such systems have been poorly studied until now should it be as such or in relation with their surroundings, as major thermal conductors potentially impacting a larger portion of a region. The present work is part of a more global study implying the Lena river (Siberia) evolution under climate change in collaboration with the IDES laboratory (Interaction et Dynamique des Environnements de Surface at Orsay University, see e.g. Costard and Gautier, 2007) where the study of the system involves a threefold approach including in situ field work (near Yakutsk), experimental modeling (in a cold room at Orsay University) and numerical modeling. The river-valley system is a case where thermal evolution is coupled with water flow (hydrology and hydrogeology in the talik). The thermal field is impacted by and modifies the water flow conditions when freezing. We first present the development of our numerical simulation procedure. A novel 2D-3D simulation approach was developed in the Cast3M code (www-cast3m.cea.fr/cast3m) with a mixed hybrid finite element approach. It couples Darcy equations for flow (permeability depending on temperature) with heat transfer equations (conductive, advective and phase change process) with a Picard iterations algorithm for coupling. Then we present the validation of the code against 1D analytical solutions (Stefan problem) and 2D cases issued from the literature (McKenzie et al. 2007, Bense et al. 2009). We finally study by means of numeric simulations the installation of permafrost in an

  7. Modeling lakes and reservoirs in the climate system

    Science.gov (United States)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  8. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    Science.gov (United States)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  9. Implications of Climate Change on the Heat Budget of Lentic Systems Used for Power Station Cooling: Case Study Clinton Lake, Illinois.

    Science.gov (United States)

    Quijano, Juan C; Jackson, P Ryan; Santacruz, Santiago; Morales, Viviana M; García, Marcelo H

    2016-01-05

    We use a numerical model to analyze the impact of climate change-in particular higher air temperatures-on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  10. Implications of climate change on the heat budget of lentic systems used for power station cooling: Case study Clinton Lake, Illinois

    Science.gov (United States)

    Quijano, Juan C; Jackson, P. Ryan; Santacruz, Santiago; Morales, Viviana M; Garcia, Marcelo H.

    2016-01-01

    We use a numerical model to analyze the impact of climate change--in particular higher air temperatures--on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  11. The soil-water system as basis for a climate proof and healthy urban environment: opportunities identified in a Dutch case-study.

    Science.gov (United States)

    Claessens, Jacqueline; Schram-Bijkerk, Dieneke; Dirven-van Breemen, Liesbet; Otte, Piet; van Wijnen, Harm

    2014-07-01

    One of the effects of climate change expected to take place in urban areas in the Netherlands is an increase in periods of extreme heat and drought. How the soil can contribute to making cities more climate proof is often neglected. Unsealed soil and green spaces increase water storage capacity and can consequently prevent flooding. The planning of public or private green spaces can have a cooling effect and, in general, have a positive effect on how people perceive their health. This paper reviews existing guidelines from Dutch policy documents regarding unsealed soil and green spaces in the Netherlands; do they support climate adaptation policies? Scientific literature was used to quantify the positive effects of green spaces on water storage capacity, cooling and public health. Finally we present a case study of a model town where different policy areas are linked together. Maps were made to provide insight into the ratio of unsealed soil and the number of green spaces in relation to existing guidelines using Geographical Information Systems (GIS). Maps marking the age and social-economic status of the population were also made. The benefits of green spaces are difficult to express in averages because they depend on many different factors such as soil properties, type of green spaces, population characteristics and spatial planning. Moreover, it is not possible to provide quantifications of the benefits of green spaces because of a lack of scientific evidence at the moment. Based on the maps, however, policy assessments can be made, for example, in which site a neighborhood will most benefit from investment in parks and public gardens. Neighborhoods where people have a low social-economic status have for example fewer green spaces than others. This offers opportunities for efficient adaptation policies linking goals of several policy fields.

  12. A Variable-Resolution Stretched-Grid General Circulation Model and Data Assimilation System with Multiple Areas of Interest: Studying the Anomalous Regional Climate Events of 1998

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence; Govindaraju, Ravi C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The new stretched-grid design with multiple (four) areas of interest, one at each global quadrant, is implemented into both a stretched-grid GCM (general circulation model) and a stretched-grid data assimilation system (DAS). The four areas of interest include: the U.S./Northern Mexico, the El Nino area/Central South America, India/China, and the Eastern Indian Ocean/Australia. Both the stretched-grid GCM and DAS annual (November 1997 through December 1998) integrations are performed with 50 km regional resolution. The efficient regional down-scaling to mesoscales is obtained for each of the four areas of interest while the consistent interactions between regional and global scales and the high quality of global circulation, are preserved. This is the advantage of the stretched-grid approach. The global variable resolution DAS incorporating the stretched-grid GCM has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The anomalous regional climate events of 1998 that occurred over the U.S., Mexico, South America, China, India, African Sahel, and Australia are investigated in both simulation and data assimilation modes. Tree assimilated products are also used, along with gauge precipitation data, for validating the simulation results. The obtained results show that the stretched-grid GCM and DAS are capable of producing realistic high quality simulated and assimilated products at mesoscale resolution for regional climate studies and applications.

  13. Network of Networks and the Climate System

    Science.gov (United States)

    Kurths, Jürgen; Boers, Niklas; Bookhagen, Bodo; Donges, Jonathan; Donner, Reik; Malik, Nishant; Marwan, Norbert; Stolbova, Veronika

    2013-04-01

    Network of networks is a new direction in complex systems science. One can find such networks in various fields, such as infrastructure (power grids etc.), human brain or Earth system. Basic properties and new characteristics, such as cross-degree, or cross-betweenness will be discussed. This allows us to quantify the structural role of single vertices or whole sub-networks with respect to the interaction of a pair of subnetworks on local, mesoscopic, and global topological scales. Next, we consider an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This technique is then applied to 3-dimensional data of the climate system. We interpret different heights in the atmosphere as different networks and the whole as a network of networks. This approach enables us to uncover relations to global circulation patterns in oceans and atmosphere. The global scale view on climate networks offers promising new perspectives for detecting dynamical structures based on nonlinear physical processes in the climate system. This concept is applied to Indian Monsoon data in order to characterize the regional occurrence of strong rain events and its impact on predictability. References: Arenas, A., A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Reports 2008, 469, 93. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 2009, 87, 48007. Donner, R., Y. Zou, J. Donges, N. Marwan, and J. Kurths, Phys. Rev. E 2010, 81, 015101(R ). Mokhov, I. I., D. A. Smirnov, P. I. Nakonechny, S. S. Kozlenko, E. P. Seleznev, and J. Kurths, Geophys. Res. Lett. 2011, 38, L00F04. Malik, N., B. Bookhagen, N. Marwan, and J. Kurths, Climate Dynamics, 2012, 39, 971. Donges, J., H. Schultz, N. Marwan, Y. Zou, J. Kurths, Eur. J. Phys. B 2011, 84, 635-651. Donges, J., R. Donner, M. Trauth, N. Marwan, H.J. Schellnhuber, and J. Kurths

  14. Is there a Climate Network - A Backbone of the Climate System? (Invited)

    Science.gov (United States)

    Kurths, J.

    2010-12-01

    We consider an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This technique is then applied to reanalysis and model surface air temperature data. Parameters of this network, as betweenness centrality, uncover relations to global circulation patterns in oceans and atmosphere. We especially study the role of hubs and of long range connections, called teleconnections, in the flows of energy and matter in the climate system. The global scale view on climate networks offers promising new perspectives for detecting dynamical structures based on nonlinear physical processes in the climate system. References Arenas, A., A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Reports 2008, 469, 93. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europ. Phys. J. ST 2009, 174, 157-179. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 2009, 87, 48007. Nawrath, J. et al., Phys. Rev. Lett. 2010, 104, 038701. Donner, R., Y. Zou, J. Donges, N. Marwan, and J. Kurths, Phys. Rev. E 2010, 81, 015101(R ).

  15. Analysis of the relationships between esophageal cancer cases and climatic factors using a Geographic Information System (GIS): a case study of Ardabil province in Iran.

    Science.gov (United States)

    Ahari, Saeid Sadeghieh; Agdam, Fridoon Babaei; Amani, Firouz; Yazdanbod, Abbas; Akhghari, Leyla

    2013-01-01

    Esophageal cancer is a mjaor health problems in many parts of the world. A geographical information system (GIS) allows investigation of the geographical distribution of diseases. The purpose of the present study was to explore the relationship between esophageal cancer and effective climatic factors using GIS. The dispersion distribution and the relationship between environmental factors effective on cancer were measured using Arc GIS. The highest degree of spread was in Germi town and the least was in Ardabil city. There was a significant relationship between effective environmental factors and esophageal cancer in Ardabil province. The results indicated that environmental factors probably are influential in determining the incidence of esophageal cancer. Also, these results can be considered as a window to future comprehensive research on esophageal cancer and related risk factors.

  16. Variable temperature seat climate control system

    Science.gov (United States)

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  17. New Whole-House Solutions Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-10

    A zero energy ready home was recently completed that features an innovative wall system. This highly insulated (high-R) light-frame wall system, called the extended plate and beam, is for use above grade in residential buildings. The Building America research team Home Innovation Research Labs featured this system in a new construction test house.

  18. Climate change adaptation options in rainfed upland cropping systems in the wet tropics: A case study of smallholder farms in North-West Cambodia.

    Science.gov (United States)

    Touch, Van; Martin, Robert John; Scott, Jeannette Fiona; Cowie, Annette; Liu, De Li

    2016-11-01

    While climate change is confirmed to have serious impacts on agricultural production in many regions worldwide, researchers have proposed various measures that farmers can apply to cope with and adapt to those changes. However, it is often the case that not every adaptation measure would be practical and adoptable in a specific region. Farmers may have their own ways of managing and adapting to climate change that need to be taken into account when considering interventions. This study aimed to engage with farmers to: (1) better understand small-holder knowledge, attitudes and practices in relation to perceived or expected climate change; and (2) document cropping practices, climate change perceptions, constraints to crop production, and coping and adaptation options with existing climate variability and expected climate change. This study was conducted in 2015 in Sala Krau village near Pailin (12°52'N, 102°45'E) and Samlout (12°39'N, 102°36'E) of North-West Cambodia. The methods used were a combination of focus group discussions and one-on-one interviews where 132 farming households were randomly selected. We found that farmers were conscious of changes in climate over recent years, and had a good understanding of likely future changes. While farmers are aware of some practices that can be modified to minimize risk and cope with anticipated changes, they are reluctant to apply them. Furthermore; there are no government agricultural extension services provided at the village level and farmers have relied on each other and other actors in the value chain network for information to support their decision-making. There is a lack of knowledge of the principles of conservation agriculture that urgently require agricultural extension services in the region to build farmer ability to better cope and adapt to climate change.

  19. Couplings between changes in the climate system and biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M.; Dickinson, Robert E.; Hauglustaine, Didier; Heinze, Christoph; Holland, Elisabeth; Jacob , Daniel; Lohmann, Ulrike; Ramachandran, Srikanthan; Leite da Silva Dias, Pedro; Wofsy, Steven C.; Zhang, Xiaoye

    2007-10-01

    The Earth's climate is determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The radiative properties of the atmosphere, a major controlling factor of the Earth's climate, are strongly affected by the biophysical state of the Earth's surface and by the atmospheric abundance of a variety of trace constituents. These constituents include long-lived greenhouse gases (LLGHGs) such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), as well as other radiatively active constituents such as ozone and different types of aerosol particles. The composition of the atmosphere is determined by processes such as natural and anthropogenic emissions of gases and aerosols, transport at a variety of scales, chemical and microphysical transformations, wet scavenging and surface uptake by the land and terrestrial ecosystems, and by the ocean and its ecosystems. These processes and, more generally the rates of biogeochemical cycling, are affected by climate change, and involve interactions between and within the different components of the Earth system. These interactions are generally nonlinear and may produce negative or positive feedbacks to the climate system. An important aspect of climate research is to identify potential feedbacks and assess if such feedbacks could produce large and undesired responses to perturbations resulting from human activities. Studies of past climate evolution on different time scales can elucidate mechanisms that could trigger nonlinear responses to external forcing. The purpose of this chapter is to identify the major biogeochemical feedbacks of significance to the climate system, and to assess current knowledge of their magnitudes and trends. Specifically, this chapter will examine the relationships between the physical climate system and the land surface, the carbon cycle, chemically reactive atmospheric gases and aerosol

  20. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  1. An assessment of the solar irradiance record for climate studies

    Directory of Open Access Journals (Sweden)

    Kopp Greg

    2014-04-01

    Full Text Available Total solar irradiance, the spatially and spectrally integrated radiant output from the Sun at a mean Sun-Earth distance of 1 astronomical unit, provides nearly all the energy driving the Earth’s climate system. Variations in this energy, particularly over long time scales, contribute to changes in Earth’s climate and have been linked to historical glaciation and inter-glacial periods as well as having a small effect on more recent global warming. Accurate measurements of solar irradiances require measurements above the Earth’s atmosphere. The total solar irradiance spaceborne record began in 1978 and has been uninterrupted since, with over a dozen instruments contributing to the present solar climate data record. I assess the required and achieved accuracies of this record with a focus on its value for climate studies.

  2. Climate change: a case study over India

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, A.K. [Indian Institute of Tropical Meteorology, Pune (India)

    1998-12-31

    A brief account of various causes of climate change in recent decades and climate change trends in the Indian region is presented. Local temperature is one of the major climatic elements to record the changes in the atmospheric environment caused by industrialization and urbanization. Literature data show that there is either a cooling tendency or cessation of warming after the late 1950s at most of the Indian industrial cities. A case study of Nagpur, a centrally located city in India, is done to understand the possible causes of cooling. Nagpur is the only city in India for which a long-term record of temperature, for urban (Mayo Hospital) and relatively suburban (Sonegaon Airport) area, is available. The study of the diurnal asymmetry in maximum and minimum temperatures indicates that the role of suspended particulate matter dominates over that of increasing greenhouse gases.

  3. Modeling lakes and reservoirs in the climate system

    NARCIS (Netherlands)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L.N.; Fang, X.; Gal, G.; Jöhnk, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere–land surface–lake climate models that could be used for both of these types of study simu

  4. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    Science.gov (United States)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  5. Sensitivity of Future U.S. Water Shortages to Socioeconomic and Climate Drivers: A Case Study in Georgia Using an Integrated Human-Earth System Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Daly, Don S.; Hejazi, Mohamad I.; Kyle, G. Page; Liu, Lu; McJeon, Haewon C.; Mundra, Anupriya; Patel, Pralit L.; Rice, Jennie S.; Voisin, Nathalie

    2016-01-06

    One of the most important interactions between humans and climate is in the demand and supply of water. Humans withdraw, use, and consume water and return waste water to the environment for a variety of socioeconomic purposes, including domestic, commercial ,and industrial use, production of energy resources and cooling thermal-electric power plants, and growing food, fiber, and chemical feedstocks for human consumption. Uncertainties in the future human demand for water and in the future impacts of climatic change on water supplies are expected to impinge on policy decisions at the international, national, regional, and local level, but until recently tools were not available to assess the uncertainties surrounding these decisions. This paper demonstrates the use of a multi-model framework in a structured sensitivity analysis to project and quantify uncertainty in deficits in future surface water in the context of climate and socioeconomic change for all U.S. states and sub-basins. The framework treats all sources of water demand and supply consistently from the world to local level. The paper features an illustrative case study of a river basin in Georgia within the South Atlantic-Gulf Basin. Despite a substantial climate-related uncertainty in water supplies, the uncertainty with the largest impact on deficits was identified as growth of irrigation demand. Potential adaptive responses are discussed.

  6. Global analysis theory of climate system and its applications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The idea and main theoretical results of the global analysis theory of climate system are briefly summarized in this paper. A theorem on the global behavior of climate system is given, i.e. there exists a global attractor in the dynamical equations of climate, any state of climate system will be evolved into the global attractor as time increases, indicating the nonlinear adjustment process of climate system to external forcing. The different effects of external forcing, dissipation and nonlinearity on the long-term behavior of solutions are pointed out, and some main applications of the global analysis theory are also introduced. Especially, three applications, the adjustment and evolution processes of climate, the principle of numerical model design and the optimally numerical integration, are discussed.

  7. The Aerosol-Monsoon Climate System of Asia

    Science.gov (United States)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  8. Solar Powered Automobile Interior Climate Control System

    Science.gov (United States)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  9. A Regional Climate Model Evaluation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a packaged data management infrastructure for the comparison of generated climate model output to existing observational datasets that includes capabilities...

  10. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Lettenmaier, Dennis P

    2013-04-08

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  11. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  12. Integrated Information Systems Across the Weather-Climate Continuum

    Science.gov (United States)

    Pulwarty, R. S.; Higgins, W.; Nierenberg, C.; Trtanj, J.

    2015-12-01

    The increasing demand for well-organized (integrated) end-to-end research-based information has been highlighted in several National Academy studies, in IPCC Reports (such as the SREX and Fifth Assessment) and by public and private constituents. Such information constitutes a significant component of the "environmental intelligence" needed to address myriad societal needs for early warning and resilience across the weather-climate continuum. The next generation of climate research in service to the nation requires an even more visible, authoritative and robust commitment to scientific integration in support of adaptive information systems that address emergent risks and inform longer-term resilience strategies. A proven mechanism for resourcing such requirements is to demonstrate vision, purpose, support, connection to constituencies, and prototypes of desired capabilities. In this presentation we will discuss efforts at NOAA, and elsewhere, that: Improve information on how changes in extremes in key phenomena such as drought, floods, and heat stress impact management decisions for resource planning and disaster risk reduction Develop regional integrated information systems to address these emergent challenges, that integrate observations, monitoring and prediction, impacts assessments and scenarios, preparedness and adaptation, and coordination and capacity-building. Such systems, as illustrated through efforts such as NIDIS, have strengthened the integration across the foundational research enterprise (through for instance, RISAs, Modeling Analysis Predictions and Projections) by increasing agility for responding to emergent risks. The recently- initiated Climate Services Information System, in support of the WMO Global Framework for Climate Services draws on the above models and will be introduced during the presentation.

  13. Ceiling-mounted personalized ventilation system integrated with a secondary air distribution system - a human response study in hot and humid climate

    DEFF Research Database (Denmark)

    Bin, Yang; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    of PV systems with the work station. A newly developed ceiling-mounted PV system addresses these challenges and provides a practical solution while retaining much of the apparent benefits of PV systems. Assessments of thermal environment, air movement, and air quality for ceiling-mounted PV system were...

  14. Strengthening Carrying Capacity of a Water Supply System under Climate Change with the Drought Early Warning System

    Science.gov (United States)

    Huang, Syujie; Liu, Tzuming; Li, Minghsu; Tung, Chingpin

    2016-04-01

    The carrying capacity of a water supply system is the maximal probable water supply amount under an acceptable risk which is related to the systematic combination of hydrology conditions, climatic conditions, and water infrastructures, for instance, reservoirs, weirs, and water treatment plants. Due to long-term imbalance of water supply and demand during the drought seasons, the carrying capacity of a water supply system may be affected gradually with more extreme climate events resulting from the climate change. To evaluate the carrying capacity of the water supply system under climate change, three major steps to build adaptation capacity under climate change are adopted, including problem identification and goal setting, current risk assessment, and future risk assessment. The carrying capacities for current climate condition and future climate condition were estimated respectively. The early warning system was taken as the effective measure to strengthen the carrying capacity for the uncertain changing climate. The water supply system of Chuoshui River basin in Taiwan is used as the case study. The system dynamics modeling software, Vensim, was used to build the water resources allocation model for Chuoshui River basin. To apply the seasonal climate forecasts released from Taiwan Central Weather Bureau (CWB) on modeling, a weather generator is adopted to generate daily weather data for the input of the hydrological component of GWLF model, to project inflows with the lead time of three months. Consequently, the water shortages with and without a drought early warning system were estimated to evaluate the effectiveness of a drought early warning system under climate change. Keywords: Climate change, Carrying capacity, Risk Assessment, Seasonal Climate Forecasts, Drought Early Warning System

  15. Evaluation of economic impact of climatic change on agro-forestry systems

    Directory of Open Access Journals (Sweden)

    Vittorio Gallerani

    Full Text Available Climate change has a strong influence on agro-forestry systems. Present estimations evisage that changes in climate patterns and extreme events connected to climate change will have greater impacts in the future. This paper seeks to illustrate the articulation of the problems concerning the economic evaluation of climate change, with particularly attention to open problems and future lines of research. Research on this topic, though using methods and approaches consolidated in the disciplines of resource economics and evaluation, still have several open problems, particularly in the field of multidisciplinary studies of the man-environmental relations, policy evaluation and development of decision support systems for decision makers.

  16. Pilot system on extreme climate monitoring and early warning for long range forecast in Korea

    Science.gov (United States)

    Cho, K.; Park, B. K.; E-hyung, P.; Gong, Y.; Kim, H. K.; Park, S.; Min, S. K.; Yoo, H. D.

    2015-12-01

    Recently, extreme weather/climate events such as heat waves, flooding/droughts etc. have been increasing in frequency and intensity under climate change over the world. Also, they can have substantial impacts on ecosystem and human society (agriculture, health, and economy) of the affected regions. According to future projections of climate, extreme weather and climate events in Korea are expected to occure more frequently with stronger intensity over the 21st century. For the better long range forecast, it is also fundamentally ruquired to develop a supporting system in terms of extreme weather and climate events including forequency and trend. In this context, the KMA (Korea Meteorological Administration) has recently initiated a development of the extreme climate monintoring and early warning system for long range forecast, which consists of three sub-system components; (1) Real-time climate monitoring system, (2) Ensemble prediction system, and (3) Mechanism analysis and display system for climate extremes. As a first step, a pilot system has been designed focusing on temperature extremes such heat waves and cold snaps using daily, monthly and seasonal observations and model prediction output on the global, regional and national levels. In parallel, the skills of the KMA long range prediction system are being evaluated comprehensively for weather and climate extremes, for which varous case studies are conducted to better understand the observed variations of extrem climates and responsible mechanisms and also to assess predictability of the ensemble prediction system for extremes. Details in the KMA extreme climate monitoring and early warning system will be intorduced and some preliminary results will be discussed for heat/cold waves in Korea.

  17. Climate Forecast System Reforecast (CFSR), for 1981 to 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCEP Climate Forecast System Reanalysis (CFSR) was designed and executed as a global, high resolution, coupled atmosphere-ocean-land surface-sea ice system to...

  18. Chemistry and Climate in Asia - An Earth System Modeling Project

    Science.gov (United States)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  19. Melancholia States in the Climate System: Exploring Global Instabilities and Critical Transitions

    CERN Document Server

    Lucarini, Valerio

    2016-01-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system's response to perturbations. Near critical transitions small causes can lead to large effects and - for all practical purposes - irreversible changes in the properties of the system. The Earth climate is multistable: present astronomical/astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate, characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches. Following an idea developed by Eckhardt and co. for the investigation of multistable turbulent fluids, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the ...

  20. Energy policies avoiding a tipping point in the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Olivier [GERAD and Department of Management Sciences, HEC Montreal, Montreal (Qc) (Canada); Edwards, Neil R. [Earth and Environmental Sciences, CEPSAR, Open University, Milton Keynes MK7 6AA (United Kingdom); Knutti, Reto [Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich (Switzerland); Stocker, Thomas F. [Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern (Switzerland)

    2011-01-15

    Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems. (author)

  1. Studies of dynamical processes affecting global climate

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C.; Cooper, D.; Eichinger, W. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  2. A Systems Perspective on Responses to Climate Change

    Science.gov (United States)

    The science of climate change integrates many scientific fields to explain and predict the complex effects of greenhouse gas concentrations on the planet’s energy balance, weather patterns, and ecosystems as well as economic and social systems. A changing climate requires respons...

  3. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    Science.gov (United States)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  4. Structural Design Feasibility Study for the Global Climate Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  5. CLIMBER-2: a climate system model of intermediate complexity. Pt. 1. Model description and performance for present climate

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, V.; Ganopolski, A.; Brovkin, V.; Claussen, M.; Eliseev, A.; Kubatzki, C.; Rahmstorf, S.

    1998-02-01

    A 2.5-dimensional climate system model of intermediate complexity CLIMBER-2 and its performance for present climate conditions are presented. The model consists of modules describing atmosphere, ocean, sea ice, land surface processes, terrestrial vegetation cover, and global carbon cycle. The modules interact (on-line) through the fluxes of momentum, energy, water and carbon. The model has a coarse spatial resolution, allowing nevertheless to capture the major features of the Earth`s geography. The model describes temporal variability of the system on seasonal and longer time scales. Due to the fact that the model does not employ any type of flux adjustment and has fast turnaround time, it can be used for study of climates significantly different from the present one and allows to perform long-term (multimillennia) simulations. The constraints for coupling the atmosphere and ocean without flux adjustment are discussed. The results of a model validation against present climate data show that the model successfully describes the seasonal variability of a large set of characteristics of the climate system, including radiative balance, temperature, precipitation, ocean circulation and cryosphere. (orig.) 62 refs.

  6. Climate Forecast System Version 2 (CFSv2) Operational Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  7. Climate Forecast System Version 2 (CFSv2) Operational Forecasts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  8. Climate Forecast System Reanalysis (CFSR), for 1979 to 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCEP Climate Forecast System Reanalysis (CFSR) was initially completed for the 31-year period from 1979 to 2009, in January 2010. The CFSR was designed and...

  9. Progress in rapid climate changes and their modeling study in millennial and centennial scales

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Rapid climate change at millennial and centennial scales is one of the most important aspects in paleoclimate study.It has been found that rapid climate change at millennial and centennial scales is a global phenomenon during both the glacial age and the Holocene with amplitudes typical of geological or astronomical time-scales.Simulations of glacial and Holocene climate changes have demonstrated the response of the climate system to the changes of earth orbital parameter and the importance of variations in feedbacks of ocean,vegetation,icecap and greenhouse gases.Modeling experiments suggest that the Atlantic thermohaline circulation was sensitive to the fresh water input into the North Atlantic and was closely related to the rapid climate changes during the last glacial age and the Holocene.Adopting the Earth-system models of inter mediate complexity (EMICs),CLIMBER-2,the response of East Asian climate change to Dansgaard/Oeschger and Heinrich events during the typical last glacial period (60 ka B.P.-20 ka B.P.) and impacts of ice on the Tibetan plateau on Holocene climate change were stimulated,studied and revealed.Further progress of paleoclimate modeling depends on developing finer-grid models and reconstructing more reliable boundary conditions.More attention should be paid on the study of mechanisms of abrupt climatic changes as well as regional climate changes in the background of global climate change.

  10. Climate Change Awareness among the High School Students: Case Study from a Climate Vulnerable Country

    Directory of Open Access Journals (Sweden)

    S.M.A. Rahman

    2014-11-01

    Full Text Available Bangladesh is one the worst sufferers of climate change. Climate change awareness creation is pivotal to adaptation and mitigation strategies. Effective dissemination of knowledge among the citizens during high school years is crucial to that end. In Bangladesh, secondary school students follow common curricula which include entries on climate change. This paper investigates the role of the diverse demographic profiles and inherent scholastic background of students on their informedness. The research is based on responses from secondary schools students in Chittagong, Bangladesh. Based on their understanding of climate change, we have constructed the Climate Awareness Index (CAI. Then the relative roles of demographic determinants of the awareness have been compared using the CAI. The quality of schools, and grade, major and merit position of students have affected the CAI values. Besides, the study concluded that the religion, gender, parental education, occupation and income, etc. could affect students’ climate change informedness in Bangladesh.

  11. INTRODUCTION: Focus on Climate Engineering: Intentional Intervention in the Climate System

    Science.gov (United States)

    2009-12-01

    Geoengineering techniques for countering climate change have been receiving much press recently as a `Plan B' if a global deal to tackle climate change is not agreed at the COP15 negotiations in Copenhagen this December. However, the field is controversial as the methods may have unforeseen consequences, potentially making temperatures rise in some regions or reducing rainfall, and many aspects remain under-researched. This focus issue of Environmental Research Letters is a collection of research articles, invited by David Keith, University of Calgary, and Ken Caldeira, Carnegie Institution, that present and evaluate different methods for engineering the Earth's climate. Not only do the letters in this issue highlight various methods of climate engineering but they also detail the arguments for and against climate engineering as a concept. Further reading Focus on Geoengineering at http://environmentalresearchweb.org/cws/subject/tag=geoengineering IOP Conference Series: Earth and Environmental Science is an open-access proceedings service available at www.iop.org/EJ/journal/ees Focus on Climate Engineering: Intentional Intervention in the Climate System Contents Modification of cirrus clouds to reduce global warming David L Mitchell and William Finnegan Climate engineering and the risk of rapid climate change Andrew Ross and H Damon Matthews Researching geoengineering: should not or could not? Martin Bunzl Of mongooses and mitigation: ecological analogues to geoengineering H Damon Matthews and Sarah E Turner Toward ethical norms and institutions for climate engineering research David R Morrow, Robert E Kopp and Michael Oppenheimer On the possible use of geoengineering to moderate specific climate change impacts Michael C MacCracken The impact of geoengineering aerosols on stratospheric temperature and ozone P Heckendorn, D Weisenstein, S Fueglistaler, B P Luo, E Rozanov, M Schraner, L W Thomason and T Peter The fate of the Greenland Ice Sheet in a geoengineered

  12. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  13. Supporting NGSS-aligned Study of Authentic Data about Climate

    Science.gov (United States)

    Zalles, D. R.

    2013-12-01

    The subject of climate change holds tremendous opportunity for students to learn how scientists use data to develop and test theories of how the natural world works and appreciate how climate change instantiates cross-cutting NGSS science themes like stability and change, energy and matter, and cause and effect. To do so, students and teachers need help seeing in authentic Earth system data complex climate interactions and generate plans for building greater understanding of the complexities through further data investigation. With ever-growing repositories of global and regional public data and user friendly tools for their display, K-12 educators are challenged to help students study data independently rather than through the usual pre-filtered didactic presentations of data found in textbooks. The paper will describe strategies for facilitating critical thinking about authentic climate-related data in two climate change education projects funded by NASA and NSF, as well as learning outcomes. Data Enhanced Investigations for Climate Change Education (dicce.sri.com) brings data from NASA satellite missions to classrooms. Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (store.sri.com) provides recent climatological and vegetation data about certain study areas in California and New York plus geospatially distributed projected values of temperature, precipitation, and land cover in 2050 and 2099, derived from NCAR's A2 climate change model. Supportive resources help students move from naïve conceptions of simple linear relationships between variables into critical analysis of what other variables could be mediating those relationships. DICCE contains guides for how to interpret multiyear trends that are evident in the NASA mission data in relation to what we know about current climate change. If a learner plots a line of best fit across multiple months or years of regional data and notices that the line is either

  14. Several Suggestions on the Climate Change and Its Studies

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to the abundant studies,the relevant information and comprehensive analysis of the climate changes,several important problems on the climate changes and its studies were proposed.Based on the temporal distribution of the meteorological disaster of agriculture,the wave theory was expounded so as to draw people's attention on climate changes and to be objective,just and careful about the study.

  15. Providing a Scientific Foundation in Climate Studies for Non-Science Majors

    Science.gov (United States)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Lambert, J.; Blair, B. A.; Hopkins, E. J.; O'Neill, K. L.; Hyre, H. R.; Nugnes, K. A.; Moses, M. N.

    2010-12-01

    Climate change has become a politically charged topic, creating the necessity for a scientifically literate population. Therefore, the American Meteorological Society (AMS), in partnership with NASA, has produced an introductory level, climate science course that engages students, allows for course flexibility, and boosts scientific knowledge about climate. This course shares NASA’s goal of observing, understanding, and modeling the Earth system, to discover how it is changing, to better predict change, and to understand the consequences for life. In Spring 2010, AMS Climate Studies was piloted to determine the most effective method to foster an understanding of some of the more difficult concepts of climate science. This study was offered as part of the NASA grant. This presentation will report the results of that study. Faculty and students from fourteen colleges and universities throughout the country evaluated the course using pre- and post-test questions, which included multiple choice and short answer questions, weekly course content evaluations, and an extensive post-course evaluation. The large majority of participating teachers rated the overall course, scientific content, internet delivery, and study materials as ‘good’, the most positive response available. Feedback from faculty members as well as suggestions from NASA reviewers were used to enhance the final version of the textbook and Investigations Manual for the Fall 2010 academic semester. Following the proven course work of AMS Weather and AMS Ocean Studies, AMS Climate Studies is a turnkey package utilizing both printed and online materials. It covers topics such as the water in Earth’s climate system, paleoclimates, along with climate change and public policy. The Investigations include 30 complimentary lab-style activities including the Conceptual Energy Model, which explores the flow of energy from space to Earth. Additionally, the course website features Current Climate Studies where

  16. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    Science.gov (United States)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated

  17. Systems Studies

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  18. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices

    Science.gov (United States)

    Dudula, John; Randhir, Timothy O.

    2016-10-01

    Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.

  19. Development and application of an interactive climate-ecosystem model system

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; D. Pollard

    2003-01-01

    A regional climate-ecosystem model system is developed in this study. It overcomes the weakness in traditional one-way coupling models and enables detailed description of interactive process between climate and natural ecosystem. It is applied to interaction study between monsoon climate and ecosystem in East Asia, with emphasis on future climate and ecosystem change scenario forced by doubled CO2. The climate tends to be warmer and wetter under doubled CO2 in Jianghuai and the Yangzi River valley, but it becomes warmer and drier in inland areas of northern and northwestern China. The largest changes and feedbacks between vegetation and climate occur in northern China. Northern inland ecosystems experience considerable degradation and desertification, indicating a marked sensitivity and vulnerability to climatic change. The strongest vegetation response to climate change occurs in northern China and the weakest in southern China. Vegetation feedbacks intensify warming and reduce drying due to increased CO2 during summer in northern China. Generally, vegetation-climate interactions are much stronger in northern China than in southern China.

  20. Impacts of Climate Change on Wastewater Systems in Reykjavík

    OpenAIRE

    Ásta Ósk Hlöðversdóttir 1982

    2011-01-01

    Due to climate change, precipitation is projected to increase in Northern Europe (Bates et. al., 2008). Such changes can influence the design and management of wastewater systems. Most of the current climate change studies have not analyzed short duration precipitation which is needed for wastewater system design. The objectives of this project are first to investigate whether changes in short duration extreme precipitation have occurred in Reykjavík in the past decades, then to assess increa...

  1. Arctic melt ponds and energy balance in the climate system

    Science.gov (United States)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  2. Climate information for public health: the role of the IRI climate data library in an integrated knowledge system.

    Science.gov (United States)

    del Corral, John; Blumenthal, M Benno; Mantilla, Gilma; Ceccato, Pietro; Connor, Stephen J; Thomson, Madeleine C

    2012-09-01

    Public health professionals are increasingly concerned about the potential impact of climate variability and change on health outcomes. Protecting public health from the vagaries of climate requires new working relationships between the public health sector and the providers of climate data and information. The Climate Information for Public Health Action initiative at the International Research Institute for Climate and Society (IRI) is designed to increase the public health community's capacity to understand, use and demand appropriate climate data and climate information to mitigate the public health impacts of the climate. Significant challenges to building the capacity of health professionals to use climate information in research and decision-making include the difficulties experienced by many in accessing relevant and timely quality controlled data and information in formats that can be readily incorporated into specific analysis with other data sources. We present here the capacities of the IRI climate data library and show how we have used it to build an integrated knowledge system in the support of the use of climate and environmental information in climate-sensitive decision-making with respect to health. Initiated as an aid facilitating exploratory data analysis for climate scientists, the IRI climate data library has emerged as a powerful tool for interdisciplinary researchers focused on topics related to climate impacts on society, including health.

  3. Beyond dichotomies: Gender and intersecting inequalities in climate change studies.

    Science.gov (United States)

    Djoudi, Houria; Locatelli, Bruno; Vaast, Chloe; Asher, Kiran; Brockhaus, Maria; Basnett Sijapati, Bimbika

    2016-12-01

    Climate change and related adaptation strategies have gender-differentiated impacts. This paper reviews how gender is framed in 41 papers on climate change adaptation through an intersectionality lens. The main findings show that while intersectional analysis has demonstrated many advantages for a comprehensive study of gender, it has not yet entered the field of climate change and gender. In climate change studies, gender is mostly handled in a men-versus-women dichotomy and little or no attention has been paid to power and social and political relations. These gaps which are echoed in other domains of development and gender research depict a 'feminization of vulnerability' and reinforce a 'victimization' discourse within climate change studies. We argue that a critical intersectional assessment would contribute to unveil agency and emancipatory pathways in the adaptation process by providing a better understanding of how the differential impacts of climate change shape, and are shaped by, the complex power dynamics of existing social and political relations.

  4. Sensitivity of proxies on non-linear interactions in the climate system.

    Science.gov (United States)

    Schultz, Johannes A; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas

    2015-12-21

    Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics.

  5. Case study applications of the BASINS climate assessment tool (CAT)

    Science.gov (United States)

    This EPA report will illustrate the application of different climate assessment capabilities within EPA’s BASINS modeling system for assessing a range of potential questions about the effects of climate change on streamflow and water quality in different watershed settings and us...

  6. Planning and costing adaptation of perennial crop systems to climate change: Coffee and banana in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Ngabitsinze, Jean Chrysostome; Mukashema, Adrie; Ikirezi, Mireille; Niyitanga, Fidele

    2011-10-15

    The Rwandan economy is mainly based on agriculture. Since agricultural production in Rwanda depends almost exclusively on the quality of the rainy season and specific temperature ranges, it makes the country particularly vulnerable to climate variability and change. The study objective of evaluating and costing the most suitable climate change adaptation measures for this geographic context responds to the Rwandan Economic Development and Poverty Reduction Strategy, 2008-2012 (EDPRS) (MINECOFIN 2007), in which climate change and its adverse impacts were recently identified as a high priority. This study has particularly focused on coffee and banana farming systems and aimed at analysing shocks due to climate change from farmer to policymaker perspectives. The study found that in the last 30 years, Rwanda has experienced a series of climate fluctuations in terms of frequency, intensity, and persistence of existing extremes. Heavy rains, storms, heatwaves and droughts are the observed manifestations of climate change in specific areas of Rwanda. Changing weather patterns have an adverse impact on the country's agricultural production and thus on the country's GDP. Adaptation options for Rwanda include the following efficiency-enhancing agricultural interventions: 1. Adaption of crop calendars to new climate patterns (more effective distribution of inputs such as fertilizers and pesticides). 2. Investments in farming equipment. 3. Improvement of extension services and research. 4. Restructuring of the institutional frameworks and development plans. Integrated water resources management (IWRM); setting up information systems for early warning systems and rapid intervention mechanisms; intense agri-pastoral activities; and research on climate-resilient varieties were identified as primary requirements for agricultural adaption to climate change. In addition, developing alternative energy sources (e.g., substituting firewood) and the promotion of non

  7. The Geopolitics of Climate Change: Challenges to the International System

    Energy Technology Data Exchange (ETDEWEB)

    Halden, Peter

    2007-12-15

    This report analyses the consequences of climate change and global warming for international politics in general and international security in particular. The report focuses on whether and in what way climate change may alter the conditions of international security. From this perspective, the initial effects of climate change will vary according to existing economic, political and social structures in different world regions. Organised violence is more likely in regions with weak states and conflictual inter-state dynamics than in those characterised by co-operative relations. In the short- to medium term, climate change is unlikely to alter the constitutive structures of international security. However, depending on the severity of climate change, these conditions may change over the long term. Such changes will probably depend on the secondary effects that change has on the world and regional economies. Climate change is unlikely to lead to an increase in conflicts in the short- to medium term, but a long-term development marked by unmitigated climate change could very well have serious consequences for international security. The report argues that, although necessary, mitigation and adaptation measures may have consequences for international politics. These are due to the changes in social and political systems that they entail.

  8. 3D Geo-Information in Urban Climate Studies

    Science.gov (United States)

    Petrescu, F.; Aldea, M.; Luca, O.; Iacoboaea, C.; Gaman, F.; Parlow, E.

    2016-10-01

    3D geo-information is essential for urban climate studies. It is obvious that both natural environment and built-up environment play the fundamental role in defining the climatic conditions for urban areas, which affect the quality of human life and human comfort. The paper presents the main categories of 3D geo-information used in urban climate studies and roles in creating and operating the numerical models specially designed to simulate urban planning scenarios and improvement of the urban climate situation.

  9. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Deal, Clara [Univ. of Alaska, Fairbanks, AL (United States); Jin, Meibing [Univ. of Alaska, Fairbanks, AL (United States)

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  10. Academic Social Climate--A Key Aspect in Architectural Studies

    Science.gov (United States)

    Davidovitch, Nitza; Casakin, Hernan

    2015-01-01

    The present research investigates academic social climate in architectural studies as perceived by students. It studies the importance that the various measures of academic social climate have in the studio and in architectural classes. It also investigates the relation between the personal background of students and their sense of academic social…

  11. Modelling climate change effects on a dutch coastal groundwater system using airborne electromagnetic measurements

    NARCIS (Netherlands)

    Faneca S̀anchez, M.; Gunnink, J.L.; Baaren, E.S. van; Oude Essink, G.H.P.; Siemon, B.; Auken, E.; Elderhorst, W.; Louw, P.G.B. de

    2012-01-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being

  12. Issues in Establishing Climate Sensitivity in Recent Studies

    Directory of Open Access Journals (Sweden)

    John T. Fasullo

    2011-09-01

    Full Text Available Numerous attempts have been made to constrain climate sensitivity with observations [1-10] (with [6] as LC09, [8] as SB11. While all of these attempts contain various caveats and sources of uncertainty, some efforts have been shown to contain major errors and are demonstrably incorrect. For example, multiple studies [11-13] separately addressed weaknesses in LC09 [6]. The work of Trenberth et al. [13], for instance, demonstrated a basic lack of robustness in the LC09 method that fundamentally undermined their results. Minor changes in that study’s subjective assumptions yielded major changes in its main conclusions. Moreover, Trenberth et al. [13] criticized the interpretation of El Niño-Southern Oscillation (ENSO as an analogue for exploring the forced response of the climate system. In addition, as many cloud variations on monthly time scales result from internal atmospheric variability, such as the Madden-Julian Oscillation, cloud variability is not a deterministic response to surface temperatures. Nevertheless, many of the problems in LC09 [6] have been perpetuated, and Dessler [10] has pointed out similar issues with two more recent such attempts [7,8]. Here we briefly summarize more generally some of the pitfalls and issues involved in developing observational constraints on climate feedbacks. [...

  13. Actor Network Theory Approach and its Application in Investigating Agricultural Climate Information System

    Directory of Open Access Journals (Sweden)

    Maryam Sharifzadeh

    2013-03-01

    Full Text Available Actor network theory as a qualitative approach to study complex social factors and process of socio-technical interaction provides new concepts and ideas to understand socio-technical nature of information systems. From the actor network theory viewpoint, agricultural climate information system is a network consisting of actors, actions and information related processes (production, transformation, storage, retrieval, integration, diffusion and utilization, control and management, and system mechanisms (interfaces and networks. Analysis of such systemsembody the identification of basic components and structure of the system (nodes –thedifferent sources of information production, extension, and users, and the understanding of how successfully the system works (interaction and links – in order to promote climate knowledge content and improve system performance to reach agricultural development. The present research attempted to introduce actor network theory as research framework based on network view of agricultural climate information system.

  14. Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis

    Science.gov (United States)

    Singh, R.; Percivall, G.

    2009-12-01

    (note: acronym glossary at end of abstract) For scientists to have confidence in the veracity of data sets and computational processes not under their control, operational transparency must be much greater than previously required. Being able to have a universally understood and machine-readable language for describing such things as the completeness of metadata, data provenance and uncertainty, and the discrete computational steps in a complex process take on increased importance. OGC has been involved with technological issues associated with climate change since 2005 when we, along with the IEEE Committee on Earth Observation, began a close working relationship with GEO and GEOSS (http://earthobservations.org). GEO/GEOS provide the technology platform to GCOS who in turn represents the earth observation community to UNFCCC. OGC and IEEE are the organizers of the GEO/GEOSS Architecture Implementation Pilot (see http://www.ogcnetwork.net/AIpilot). This continuing work involves closely working with GOOS (Global Ocean Observing System) and WMO (World Meteorological Organization). This session reports on the findings of recent work within the OGC’s community of software developers and users to apply geospatial web services to the climate studies domain. The value of this work is to evolve OGC web services, moving from data access and query to geo-processing and workflows. Two projects will be described, the GEOSS API-2 and the CCIP. AIP is a task of the GEOSS Architecture and Data Committee. During its duration, two GEO Tasks defined the project: AIP-2 began as GEO Task AR-07-02, to lead the incorporation of contributed components consistent with the GEOSS Architecture using a GEO Web Portal and a Clearinghouse search facility to access services through GEOSS Interoperability Arrangements in support of the GEOSS Societal Benefit Areas. AIP-2 concluded as GEOS Task AR-09-01b, to develop and pilot new process and infrastructure components for the GEOSS Common

  15. Climate Adaptive Planning for Urban green Roof System Chengdu Case Study%基于气候适应性的城市屋顶绿化系统规划研究以成都为例

    Institute of Scientific and Technical Information of China (English)

    董靓; 黄瑞

    2014-01-01

    城市屋顶绿地应是以本地地域气候特征为基本出发点和落脚点。以适应气候为评价标准的屋顶绿地系统规划则应在规划布局上疏导城市通风;并利用热岛环流造风;利用屋顶绿化分散污染高浓度区域。以成都为例,从改善城市风环境的角度,探讨城市尺度的屋顶绿化系统的气候适应性规划问题。%Urban roof green space should make local regional climate features as its starting point and foundation. And the climate-adaptive roof green space planning should be beneficial to city ventilation, local air circulation and dividing high pol uted areas into smal er areas. Taking Chengdu as case study, this paper discusses climate adaptive planning for city-scale urban green roof system for the purpose of improving urban wind environment.

  16. THERMAL PERFORMANCE OF ROOFTOP GREENERY SYSTEM AT THE TROPICAL CLIMATE OF MALAYSIA A case study of a 10 storied building R.C.C flat rooftop at UTM, Johor Bahru, Malaysia

    Directory of Open Access Journals (Sweden)

    Rumana Rashid

    2009-07-01

    Full Text Available In tropical countries rooftop greenery is more sympathetic to the prevailing climate and provides comfortable indoor environment. This paper analyses the above hypothesis on a 10 storied residential apartments in Universiti Teknologi Malaysia (UTM. The analysis of actual performance of the rooftop greenery can provide the information on effectiveness of its application on contemporary houses for tropical climate in Malaysia. Empirical studies have been performed an internal and external roof surface, where temperature and air temperature were measured for a period of three days in two phases. The first phase of measurement was carried out when the rooftop was empty. After the rooftop greenery was built then the second phase of measurement was conducted. Expected findings of the research are that the green rooftop will tend to experience lower surface temperature than the original exposed roof surface. So this research work will provide an introduction or preliminary guide line for thermally responsive architecture on the basis of thermal performance of the rooftop greenery system. Temperature is the main criteria of human comfort. To provide an indoor comfortable environment through the greening of the rooftop of the building is more appropriate in the tropical climate of Malaysia.

  17. Integrated web system of geospatial data services for climate research

    Science.gov (United States)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander

    2016-04-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required. An approach for integrated analysis of georefernced climatological data sets based on combination of web and GIS technologies in the framework of spatial data infrastructure paradigm is presented. According to this approach a dedicated data-processing web system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is being developed. It is based on Open Geospatial Consortium (OGC) standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement #14.613.21.0037.

  18. Intervening in Earth's climate system through space-based solar reflectors

    Science.gov (United States)

    Salazar, F. J. T.; McInnes, C. R.; Winter, O. C.

    2016-07-01

    Several space-based climate engineering methods, including shading the Earth with a particle ring for active cooling, or the use of orbital reflectors to increase the total insolation of Mars for climate warming have been considered to modify planetary climates in a controller manner. In this study, solar reflectors on polar orbits are proposed to intervene in the Earth's climate system, involving near circular polar orbits normal to the ecliptic plane of the Earth. Similarly, a family of displaced polar orbits (non-Keplerian orbits) are also characterized to mitigate future natural climate variability, producing a modest global temperature increase, again to compensate for possible future cooling. These include deposition of aerosols in the stratosphere from large volcanic events. The two-body problem is considered, taking into account the effects of solar radiation pressure and the Earth's J2 oblateness perturbation.

  19. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    climate forecasts. Aqua is a major mission of the Earth Observing System (EOS), an international program centered in NASA's Earth Science Enterprise to study the Earth in detail from the unique vantage point of space. Focused on key measurements identified by a consensus of U.S. and international scientists, EOS is further enabling studies of the complex interactions amongst the Earth's land, ocean, air, ice and biological systems. Aqua's contributions to monitoring water in the Earth's environment will involve all six of Aqua's instruments: the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer- Earth Observing System (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Frozen water in the oceans, in the form of sea ice, will be examined with both AMSR-E and MODIS data, the former allowing routine monitoring of sea ice at a coarse resolution and the latter providing greater spatial resolution but only under cloud-free conditions. Sea ice can insulate the underlying liquid water against heat loss to the often frigid overlying polar atmosphere and also reflects sunlight that would otherwise be available to warm the ocean. AMSR-E measurements will allow the routine derivation of sea ice concentrations in both polar regions, through taking advantage of the marked contrast in microwave emissions of sea ice and liquid water. This will continue, with improved resolution and accuracy, a 22-year satellite record of changes in the extent of polar ice. MODIS, with its finer resolution, will permit the identification of individual ice flows, when unobscured by clouds. AMSR-E and MODIS will also provide monitoring, the AIRS/AMSU/HSB combination will provide more-accurate space-based measurements of atmospheric temperature and water vapor than have ever been obtained before, with the highest vertical

  20. How Does a Regional Climate Model Modify the Projected Climate Change Signal of the Driving GCM: A Study over Different CORDEX Regions Using REMO

    Directory of Open Access Journals (Sweden)

    Claas Teichmann

    2013-06-01

    Full Text Available Global and regional climate model simulations are frequently used for regional climate change assessments and in climate impact modeling studies. To reflect the inherent and methodological uncertainties in climate modeling, the assessment of regional climate change requires ensemble simulations from different global and regional climate model combinations. To interpret the spread of simulated results, it is useful to understand how the climate change signal is modified in the GCM-RCM modelmodelgeneral circulation model-regional climate model (GCM-RCM chain. This kind of information can also be useful for impact modelers; for the process of experiment design and when interpreting model results. In this study, we investigate how the simulated historical and future climate of the Max-Planck-Institute earth system model (MPI-ESM is modified by dynamic downscaling with the regional model REMO in different world regions. The historical climate simulations for 1950–2005 are driven by observed anthropogenic forcing. The climate projections are driven by projected anthropogenic forcing according to different Representative Concentration Pathways (RCPs. The global simulations are downscaled with REMO over the Coordinated Regional Climate Downscaling Experiment (CORDEX domains Africa, Europe, South America and West Asia from 2006–2100. This unique set of simulations allows for climate type specific analysis across multiple world regions and for multi-scenarios. We used a classification of climate types by Köppen-Trewartha to define evaluation regions with certain climate conditions. A systematic comparison of near-surface temperature and precipitation simulated by the regional and the global model is done. In general, the historical time period is well represented by the GCM and the RCM. Some different biases occur in the RCM compared to the GCM as in the Amazon Basin, northern Africa and the West Asian domain. Both models project similar warming

  1. Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system.

    Science.gov (United States)

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Schaphoff, Sibyll; Sitch, Stephen

    2004-11-01

    Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net

  2. Nonlinear evolution characteristics of the climate system on the interdecadal-centennial timescale

    Institute of Scientific and Technical Information of China (English)

    Gao Xin-Quan; Zhang Wen

    2005-01-01

    To better understand the physical mechanism of the climate change on interdecadal-centennial timescale, this paper focuses on analysing and modelling the evolution characteristics of the climate change. The method of wavelet transform is used to pick out the interdecadal timescale oscillations from long-term instrumental observations, natural proxy records, and modelling series. The modelling series derived from the most simplified nonlinear climatic model are used to identify whether modifications are concerned with some forcings such as the solar radiation on the climate system. The results show that two major oscillations exist in various observations and model series, namely the 2030a and the 60-70a timescale respectively, and these quasi-periodicities are modulated with time. Further, modelling results suggest that the originations of these oscillations are not directly linked with the periodic variation of solar radiations such as the 1-year cycle, the 11-year cycle, and others, but possibly induced by the internal nonlinear effects of the climate system. It seems that the future study on the genesis of the climate change with interdecadal-centennial timescale should focus on the internal nonlinear dynamics in the climate system.

  3. Development, Malaria and Adaptation to Climate Change: A Case Study from India

    Science.gov (United States)

    Garg, Amit; Dhiman, R. C.; Bhattacharya, Sumana; Shukla, P. R.

    2009-05-01

    India has reasons to be concerned about climate change. Over 650 million people depend on climate-sensitive sectors, such as rain-fed agriculture and forestry, for livelihood and over 973 million people are exposed to vector borne malarial parasites. Projection of climatic factors indicates a wider exposure to malaria for the Indian population in the future. If precautionary measures are not taken and development processes are not managed properly some developmental activities, such as hydro-electric dams and irrigation canal systems, may also exacerbate breeding grounds for malaria. This article integrates climate change and developmental variables in articulating a framework for integrated impact assessment and adaptation responses, with malaria incidence in India as a case study. The climate change variables include temperature, rainfall, humidity, extreme events, and other secondary variables. Development variables are income levels, institutional mechanisms to implement preventive measures, infrastructure development that could promote malarial breeding grounds, and other policies. The case study indicates that sustainable development variables may sometimes reduce the adverse impacts on the system due to climate change alone, while it may sometimes also exacerbate these impacts if the development variables are not managed well and therefore they produce a negative impact on the system. The study concludes that well crafted and well managed developmental policies could result in enhanced resilience of communities and systems, and lower health impacts due to climate change.

  4. Mapping Climate Change: Six U.S. Case Studies

    Science.gov (United States)

    Holmberg, Marjorie O.

    2010-01-01

    This research focuses on the current role of mapping practices in communicating climate change in the United States. This includes maps used in monitoring climate change, projecting its potential impacts, and identifying potential adaptation strategies at particular scales. Since few, if any, studies have been done specifically on mapping…

  5. Evaluation of the Australian Community Climate and Earth-System Simulator Chemistry-Climate Model

    Directory of Open Access Journals (Sweden)

    K. A. Stone

    2015-07-01

    Full Text Available Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter and stratospheric cold biases (up to 10.1 K at the South Pole outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM index compares well with ERA-Interim data. Accompanying

  6. Leadership, organizational climate, and working alliance in a children's mental health service system.

    Science.gov (United States)

    Green, Amy E; Albanese, Brian J; Cafri, Guy; Aarons, Gregory A

    2014-10-01

    The goal of this study was to examine the relationships of transformational leadership and organizational climate with working alliance, in a children's mental health service system. Using multilevel structural equation modeling, the effect of leadership on working alliance was mediated by organizational climate. These results suggest that supervisors may be able to impact quality of care through improving workplace climate. Organizational factors should be considered in efforts to improve public sector services. Understanding these issues is important for program leaders, mental health service providers, and consumers because they can affect both the way services are delivered and ultimately, clinical outcomes.

  7. Climate and the erosional efficiency of fluvial systems

    Science.gov (United States)

    Rossi, M. W.; Whipple, K. X.; Dibiase, R. A.; Heimsath, A. M.

    2010-12-01

    Climate is a key driver of surface processes on Earth. Nevertheless, quantifying the climatic control on erosion rates over mountain building timescales has proven to be a difficult problem to untangle. In fact, some recent attempts to address this problem using cosmogenic radionuclide-derived erosion rates suggest very little climatic control on erosion. If this result is robust, it would have serious implications on proposed feedbacks among climate and tectonics. Here, we address two factors that may be confounding detection of climatic controls on erosion rates: (1) difficulty isolating climate from other variables in natural settings (i.e. topography, rock strength); (2) choosing appropriate climate metrics for comparison (e.g. temperature, precipitation, runoff, variability). A recent study in the San Gabriel Mountains, CA (SGM) provides a template to account for the first-order, topographic control on erosion by measuring millennial-scale erosion rates (10Be in river sands) across a gradient in relief. Building off of this work, we report new data for two other landscapes, Sierra San Pedro Mártir, MX (SSPM) and Sierra Nombre de Dios, HN (SNdD), that show similar gradients of relief and similar lithologies (granitoids), but that lie in dramatically different climate regimes (desert to rainforest). By comparing the functional relationship between relief and erosion, we are able to quantify differences in erosional efficiency due to climate. By re-casting the question in terms of how climate controls erosional efficiency, we can also better evaluate our choice of appropriate climate metrics for comparison among landscapes. For instance, theory suggests that discharge variability may rival the importance of annual climate normals (e.g. mean annual precipitation, mean annual temperature) in setting erosional efficiency by affecting the distribution of extreme events. This requires the use of more sophisticated stream erosion models that account for at least the

  8. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    NARCIS (Netherlands)

    Engels, S.; van Geel, B.

    2012-01-01

    Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of t

  9. Hydroelectric Optimized System Sensitivity to Climate

    Science.gov (United States)

    Howard, J. C.; Howard, C. D.

    2009-12-01

    This paper compares the response of a large hydro system, globally optimized for daily operations, under a range of reservoir system inflows. The modeled system consists of Projects and hydro operating constraints on the South Saskatchewan River, Lake Winnipeg, Southern Indian Lake, Churchill Diversion, Red River, Winnipeg River, and the Nelson River. The river system is continental in scale, stretching from the Rocky Mountains to Hudson Bay. The hydro storage is large enough to operate with a two year cycle, which includes freezeup conditions. The objective is to maximize seasonal value of energy generation over a two year time horizon. Linear and quadratic constraints represent reservoir stage-storage curves, tailwater stage-discharge curves, transient river routing, and seasonally dependent environmental constraints on operations. This paper describes the optimization modeling approaches used to represent an actual physical system and to accommodate uncertainties in the historical datasets used for calibration. The results are hypothetical, not a forecast.

  10. Studies towards assessing the effects of aviation on climate

    Science.gov (United States)

    Khodayari, Arezoo

    Emissions from aviation are an important component in the overall concerns about the effects of human activities on climate. Aviation emissions modify the chemical and physical properties of the upper troposphere and lower stratosphere (UTLS) in various ways. Aircraft emit gases and particles that can either directly or indirectly affect climate and air quality, including: carbon dioxide (CO2); nitrogen oxides (NOx) that can increase ozone (O3) production and increase the destruction of methane (CH4); water vapor that under certain atmospheric conditions can lead to contrail formation; and soot and other particles that along with contrails can affect the amount and characteristics of cirrus clouds. Soot and sulfate particles can also change the cloudiness by acting as cloud condensation nuclei. Due to the high growth in air traffic that is projected to continue, it is important to understand the effects of aviation on air quality and climate. Based on then existing analyses of the emissions and their effects, the aviation contribution in changing the radiative forcing on the climate system was about 5% of the total human-related emissions (relative to 1750) in 2005 (Lee et al., 2009). This contribution is a result of various effects, especially the direct effects of CO2, NOx-induced effects, aerosol direct and indirect effects, and increased cloudiness from contrail formation and aerosols acting as cloud condensation nuclei. One of the main challenges of the aviation scientific community has been to increase the level of scientific understanding of these effects, especially with respect to those most uncertain (i.e. NOx effects, contrail-cirrus and aerosol effects). Another challenge has been to develop a simple climate model (SCM) that has the level of sophistication necessary to accurately assess aviation induced climate effects while being easy to use by policy makers for use in policy considerations. The main objectives in this study were: (1) to evaluate the

  11. Climate control systems using pozzolan materials

    KAUST Repository

    Almadhoun, Mahmoud Nassar Mahmoud

    2016-02-18

    A system and method for conditioning air is provided that optimizes the use of sustainable and locally sourced materials with agrarian, residential, and industrial applications. The system can be formed with a porous siliceous, or siliceous and aluminous material that is sufficiently porous, to allow conditioning fluid to flow there through. The material can also be formed into a structure that includes one or more passageways configured to allow air to be conditioned to also pass there through. The structure can be configured to cause the conditioning fluid passing through the porous portions of the structure to intersect and mix with air passing there through. The structure may include a plurality of passageways and intersections and may include a plurality of air inlets and outlets for air passage. The system may additionally include a means for storing, collecting, and driving conditioning fluid through the system and a means for collecting solar radiation to drive airflow and regenerate conditioning fluid.

  12. Evaluating synoptic systems in the CMIP5 climate models over the Australian region

    Science.gov (United States)

    Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.

    2016-10-01

    Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.

  13. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  14. The Arctic Ocean in the global climate system (review)

    OpenAIRE

    Alekseev,G. V./Ivanov,V. V./Zakharov,V. F./Yanes,A. V.

    1996-01-01

    The oceanic portion of the Arctic climate system has a strong influence on global climate change. This is because, first, the Arctic Ocean can change its capacity for redistribution of solar heat in consequence of the changes of thermohaline structure of the upper layer and the sea ice area on its surface, second; the vertical oceanic circulation in high latitudes is very sensitive to changes of the fresh water balance on the ocean surface that can cause a profound effect on the production of...

  15. Identifying User Experience Goals for Interactive Climate Management Business Systems

    DEFF Research Database (Denmark)

    2013-01-01

    of mobile phones or e-commerce websites. In contrast, this empirical paper provides an example of how to capture user experience in work contexts and with a qualitative methodology. We present a model of the essence of the emotional user experience of interactive climate management. Then we suggest...... of interactive climate management in this and other domains. The overall aim with the paper is to take the concept of user experience into the IS community and to describe and understand what are individual workers’ positive emotional use experiences when interacting with workplace systems....

  16. Indoor climate systems in passive houses

    NARCIS (Netherlands)

    Mlecnik, E.; Hasselaar, E.; Loon, S.

    2008-01-01

    According to the definition, passive houses in Europe meet a target energy demand for heating of less than 15 kWh per square meter and per year. This low level for the heating demand is based on heating by a small post-heater in the hygienic ventilation system at 52 0C maximum, while the ventilation

  17. A Case Study: Climate Change Decision Support for the Apalachicola, Chattahoochee, Flint Basins

    Science.gov (United States)

    Day, G. N.; McMahon, G.; Friesen, N.; Carney, S.

    2011-12-01

    Riverside Technology, inc. has developed a Climate Change Decision Support System (DSS) to provide water managers with a tool to explore a range of current Global Climate Model (GCM) projections to evaluate their potential impacts on streamflow and the reliability of future water supplies. The system was developed as part of a National Oceanic and Atmospheric Administration (NOAA) Small Business Innovation Research (SBIR) project. The DSS uses downscaled GCM data as input to small-scale watershed models to produce time series of projected undepleted streamflow for various emission scenarios and GCM simulations. Until recently, water managers relied on historical streamflow data for water resources planning. In many parts of the country, great effort has been put into estimating long-term historical undepleted streamflow accounting for regulation, diversions, and return flows to support planning and water rights administration. In some cases, longer flow records have been constructed using paleohydrologic data in an attempt to capture climate variability beyond what is evident during the observed historical record. Now, many water managers are recognizing that historical data may not be representative of an uncertain climate future, and they have begun to explore the use of climate projections in their water resources planning. The Climate Change DSS was developed to support water managers in planning by accounting for both climate variability and potential climate change. In order to use the information for impact analysis, the projected streamflow time series can be exported and substituted for the historical streamflow data traditionally applied in their system operations models for water supply planning. This paper presents a case study in which climate-adjusted flows are coupled with the U.S. Army Corps of Engineers (USACE) ResSim model for the Apalachicola, Chattahoochee, and Flint (ACF) River basins. The study demonstrates how climate scenarios can be used

  18. The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES): An Observational Campaign for Determining Role of Clouds, Aerosols and Radiation in Climate System

    Science.gov (United States)

    McFarquhar, G. M.; Wood, R.; Bretherton, C. S.; Alexander, S.; Jakob, C.; Marchand, R.; Protat, A.; Quinn, P.; Siems, S. T.; Weller, R. A.

    2014-12-01

    The Southern Ocean (SO) region is one of the cloudiest on Earth, and as such clouds determine its albedo and play a major role in climate. Evidence shows Earth's climate sensitivity and the Intertropical Convergence Zone location depend upon SO clouds. But, climate models are challenged by uncertainties and biases in the simulation of clouds, aerosols, and air-sea exchanges in this region which trace back to a poor process-level understanding. Due to the SO's remote location, there have been sparse observations of clouds, aerosols, precipitation, radiation and the air-sea interface apart from those from satellites. Plans for an upcoming observational program, SOCRATES, are outlined. Based on feedback on observational and modeling requirements from a 2014 workshop conducted at the University of Washington, a plan is described for obtaining a comprehensive dataset on the boundary-layer structure and associated vertical distributions of liquid and mixed-phase cloud and aerosol properties across a range of synoptic settings, especially in the cold sector of cyclonic storms. Four science themes are developed: improved climate model simulation of SO cloud and boundary layer structure in a rapidly varying synoptic setting; understanding seasonal and synoptic variability in SO cloud condensation and ice nucleus concentration and the role of local biogenic sources; understanding supercooled liquid and mixed-phase clouds and their impacts; and advancing retrievals of clouds, precipitation, aerosols, radiation and surface fluxes. Testable hypotheses for each theme are identified. The observational strategy consists of long-term ground-based observations from Macquarie Island and Davis, continuous data collection onboard Antarctic supply ships, satellite retrievals, and a dedicated field campaign covering 2 distinct seasons using in-situ and remote sensors on low- and high-altitude aircraft, UAVs, and a ship-borne platform. A timeline for these activities is proposed.

  19. Earth System Grid II, Turning Climate Datasets into Community Resources

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  20. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The sources, abundance, composition, and effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of bioaerosol identification, characterization, transport, and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bioaerosols play in the Earth system.

  1. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  2. Perception of climate change and its impact by smallholders in pastoral/agropastoral systems of Borana, South Ethiopia.

    Science.gov (United States)

    Debela, Nega; Mohammed, Caroline; Bridle, Kerry; Corkrey, Ross; McNeil, David

    2015-01-01

    This study investigates the perception of historic changes in climate and associated impact on local agriculture among smallholders in pastoral/agropastoral systems of Borana in southern Ethiopia. We drew on empirical data obtained from farm household surveys conducted in 5 districts, 20 pastoral/agropastoral associations and 480 farm households. Using this data, this study analyses smallholders' perception of climate change and its associated impact on local agriculture, and the effect of various household and farm attributes on perception. Results suggest that most participants perceived climatic change and its negative impact on agricultural and considered climate change as a salient risk to their future livelihoods and economic development. Different levels of perception were expressed in terms of climate change and the impact on traditional rain-fed agriculture. Age, education level, livestock holding, access to climate information and extension services significantly affected perception levels. Household size, production system, farm and non-farm incomes did not significantly affect perception levels of smallholders. Smallholders attributed climate change to a range of biophysical, deistic and anthropogenic causes. Increased access to agricultural support services, which improves the availability and the quality of relevant climate information will further enhance awareness of climate change within of the rural community and result in better management of climate-induced risks in these vulnerable agricultural systems.

  3. Long-term climate sensitivity of an integrated water supply system: The role of irrigation.

    Science.gov (United States)

    Guyennon, Nicolas; Romano, Emanuele; Portoghese, Ivan

    2016-09-15

    The assessment of the impact of long-term climate variability on water supply systems depends not only on possible variations of the resources availability, but also on the variation of the demand. In this framework, a robust estimation of direct (climate induced) and indirect (anthropogenically induced) effects of climate change is mandatory to design mitigation measures, especially in those regions of the planet where the groundwater equilibrium is strongly perturbed by exploitations for irrigation purposes. The main goal of this contribution is to propose a comprehensive model that integrates distributed crop water requirements with surface and groundwater mass balance, able to consider management rules of the water supply system. The proposed overall model, implemented, calibrated and validated for the case study of the Fortore water supply system (Apulia region, South Italy), permits to simulate the conjunctive use of the water from a surface artificial reservoir and from groundwater. The relative contributions of groundwater recharges and withdrawals to the aquifer stress have been evaluated under different climate perturbations, with emphasis on irrigation practices. Results point out that irrigated agriculture primarily affects groundwater discharge, indicating that ecosystem services connected to river base flow are particularly exposed to climate variation in irrigated areas. Moreover, findings show that the recharge both to surface and to groundwater is mainly affected by drier climate conditions, while hotter conditions have a major impact on the water demand. The non-linearity arising from combined drier and hotter conditions may exacerbate the aquifer stress by exposing it to massive sea-water intrusion.

  4. A longitudinal study of an intervention to improve road safety climate: climate as an organizational boundary spanner.

    Science.gov (United States)

    Naveh, Eitan; Katz-Navon, Tal

    2015-01-01

    This study presents and tests an intervention to enhance organizational climate and expands existing conceptualization of organizational climate to include its influence on employee behaviors outside the organization's physical boundaries. In addition, by integrating the literatures of climate and work-family interface, the study explored climate spillover and crossover from work to the home domain. Focusing on an applied practical problem within organizations, we investigated the example of road safety climate and employees' and their families' driving, using a longitudinal study design of road safety intervention versus control groups. Results demonstrated that the intervention increased road safety climate and decreased the number of traffic violation tickets and that road safety climate mediated the relationship between the intervention and the number of traffic violation tickets. Road safety climate spilled over to the family domain but did not cross over to influence family members' driving.

  5. Contributions to Future Stratospheric Climate Change: An Idealized Chemistry-Climate Model Sensitivity Study

    Science.gov (United States)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Within the framework of an idealized model sensitivity study, three of the main contributors to future stratospheric climate change are evaluated: increases in greenhouse gas concentrations, ozone recovery, and changing sea surface temperatures (SSTs). These three contributors are explored in combination and separately, to test the interactions between ozone and climate; the linearity of their contributions to stratospheric climate change is also assessed. In a simplified chemistry-climate model, stratospheric global mean temperature is most sensitive to CO2 doubling, followed by ozone depletion, then by increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is more sensitive to changes in CO2, SSTs and O3 than is the Southern Hemisphere (SH); the opposing responses to ozone depletion under low or high background CO2 concentrations, as seen with present-day SSTs, are much weaker and are not statistically significant under enhanced SSTs. Consistent with previous studies, the strength of the Brewer-Dobson circulation is found to increase in an idealized future climate; SSTs contribute most to this increase in the upper troposphere/lower stratosphere (UT/LS) region, while CO2 and ozone changes contribute most in the stratosphere and mesosphere.

  6. Summertime wind climate in Yerevan: valley wind systems

    Science.gov (United States)

    Gevorgyan, Artur

    2017-03-01

    1992-2014 wind climatology analysis in Yerevan is presented with particular focus given to the summertime thermally induced valley wind systems. Persistence high winds are observed in Yerevan during July-August months when the study region is strongly affected by a heat-driven plain-plateau circulation. The local valley winds arrive in Yerevan in the evening hours, generally, from 1500 to 1800 UTC, leading to rapid enhancement of wind speeds and dramatic changes in wind direction. Valley-winds significantly impact the local climate of Yerevan, which is a densely populated city. These winds moderate evening temperatures after hot and dry weather conditions observed during summertime afternoons. On the other hand, valley winds result in significantly higher nocturnal temperatures and more frequent occurrence of warm nights (tn90p) in Yerevan due to stronger turbulent mixing of boundary layer preventing strong surface cooling and temperature drop in nighttime and morning hours. The applied WRF-ARW limited area model is able to simulate the key features of the observed spatial pattern of surface winds in Armenia associated with significant terrain channeling, wind curls, etc. By contrast, ECMWF EPS global model fails to capture mesoscale and local wind systems over Armenia. However, the results of statistical verification of surface winds in Yerevan showed that substantial biases are present in WRF 18-h wind forecasts, as well as, the temporal variability of observed surface winds is not reproduced adequately in WRF-ARW model.

  7. Climate governance in an international system under conservative hegemony: the role of major powers

    Directory of Open Access Journals (Sweden)

    Eduardo Viola

    2012-01-01

    Full Text Available In the last five years, climate change has been established as a central civilizational driver of our time. As a result of this development, the most diversified social processes - as well as the fields of science which study them - have had their dynamics altered. In International Relations, this double challenge could be explained as follows: 1 in empirical terms, climate change imposes a deepening of cooperation levels on the international community, considering the global common character of the atmosphere; and 2 to International Relations as a discipline, climate change demands from the scientific community a conceptual review of the categories designed to approach the development of global climate governance. The goal of this article is to discuss in both conceptual and empirical terms the structure of global climate change governance, through an exploratory research, aiming at identifying the key elements that allow understanding its dynamics. To do so, we rely on the concept of climate powers. This discussion is grounded in the following framework: we now live in an international system under conservative hegemony that is unable to properly respond to the problems of interdependence, among which - and mainly -, the climate issue.

  8. Teaching climate change: A 16-year record of introducing undergraduates to the fundamentals of the climate system and its complexities

    Science.gov (United States)

    Winckler, G.; Pfirman, S. L.; Hays, J. D.; Schlosser, P.; Ting, M.

    2011-12-01

    Responding to climate change challenges in the near and far future, will require a wide range of knowledge, skills and a sense of the complexities involved. Since 1995, Columbia University and Barnard College have offered an undergraduate class that strives to provide students with some of these skills. The 'Climate System' course is a component of the three-part 'Earth Environmental Systems' series and provides the fundamentals needed for understanding the Earth's climate system and its variability. Being designed both for science majors and non-science majors, the emphasis of the course is on basic physical explanations, rather than mathematical derivations of the laws that govern the climate system. The course includes lectures, labs and discussion. Laboratory exercises primarily explore the climate system using global datasets, augmented by hands-on activities. Course materials are available for public use at http://eesc.columbia.edu/courses/ees/climate/camel_modules/ and http://ncseonline.org/climate/cms.cfm?id=3783. In this presentation we discuss the experiences, challenges and future demands of conveying the science of the Earth's Climate System and the risks facing the planet to a wide spectrum of undergraduate students, many of them without a background in the sciences. Using evaluation data we reflect how the course, the students, and the faculty have evolved over the past 16 years as the earth warmed, pressures for adaptation planning and mitigation measures increased, and public discourse became increasingly polarized.

  9. Cognitive Structure of Climate Information System Actors:Using Causal Mapping Approach

    Directory of Open Access Journals (Sweden)

    Maryam Sharifzadeh

    2012-01-01

    Full Text Available Promoting sustainability, productivity, efficiency, and development of agricultural sector are the functions of utilization of appropriate information in terms of agricultural climate information system (ACIS. In this regard, the main question is that, to what extent does the ACIS lead to or provide the necessary context for agricultural development? This research aimed to employ causal mapping approach to investigate cognitive structure of human actors in a climate information system. This explorative qualitative research used case study methodology. This paper is an examination and reflection upon analysis of qualitative data reports, with particular attention to the process of interactively elicited causal maps based on focus group interviews. An exploratory coding approach was used to identify concepts that emerged from the interview transcripts. The relevant knowledge is gathered through the tacit understandings of climate information producers (2 groups, extensionists (6 groups, and users (7 groups in Fars province to reach to the point of redundancy. Investigating causal maps revealed that, actors perceived climate information system challenges as economic, information processing, socio-political, organizational, and technical challenges. The study provided some suggestions to reach to a responsive short term and sustainable long term climate information system in Fars province.

  10. Raising Climate Literacy of K-12 Teachers with Datastreme Earth's Climate System

    Science.gov (United States)

    Brey, J. A.; Geer, I.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.

    2014-12-01

    The American Meteorological Society (AMS) DataStreme Project is a free professional development program for in-service K-12 teachers, in which they gain considerable subject matter content and confidence in Earth science instruction. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with a team of AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. The 3-member LITs mentor about 8 teachers and in some instances an emergency manager, per semester through a given DataStreme course. Teachers may receive 3 tuition-free graduate credits through State University of New York's The College at Brockport upon completion of each DataStreme course. DataStreme is in close alignment with A Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). Investigating the scientific basis of the workings of Earth's atmosphere, ocean, and climate system follows the cross-cutting theme of the Framework and the NGSS and is the cornerstone of the DataStreme courses. In particular, DataStreme ECS explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's teachers and students. The course utilizes resources from respected organizations, such as the IPCC and U.S. Global Change Research Program. Key to the NGSS is that students learn disciplinary core ideas in the context of science and engineering practices. In order for the students to learn in this way, the AMS believes that it is important to train the teachers in this context. DataStreme ECS emphasizes investigation of real-word and current NASA and NOAA data. Participants also are made aware of NASA's EdGCM, a research-grade Global Climate Model where they can explore various future climate scenarios in the same way that actual

  11. Adaptive facade systems: Climate regulation utilizing kinetics and smart materials

    NARCIS (Netherlands)

    Doulkari, K.

    2011-01-01

    This paper is written for the TIDO-course AR0532 Smart & Bioclimatic Design Theory. The paper focuses on climate responsive facades, using kinetics and smart materials. Principles are studied and cases are analyzed, taking the thermal comfort for the occupants into account.

  12. Farmers' Perceived Risks of Climate Change and Influencing Factors: A Study in the Mekong Delta, Vietnam

    Science.gov (United States)

    Le Dang, Hoa; Li, Elton; Nuberg, Ian; Bruwer, Johan

    2014-08-01

    Many countries are confronting climate change that threatens agricultural production and farmers' lives. Farmers' perceived risks of climate change and factors influencing those perceived risks are critical to their adaptive behavior and well-planned adaptation strategies. However, there is limited understanding of these issues. In this paper, we attempt to quantitatively measure farmers' perceived risks of climate change and explore the influences of risk experience, information, belief in climate change, and trust in public adaptation to those perceived risks. Data are from structured interviews with 598 farmers in the Mekong Delta. The study shows that perceived risks to production, physical health, and income dimensions receive greater priority while farmers pay less attention to risks to happiness and social relationships. Experiences of the events that can be attributed to climate change increase farmers' perceived risks. Information variables can increase or decrease perceived risks, depending on the sources of information. Farmers who believe that climate change is actually happening and influencing their family's lives, perceive higher risks in most dimensions. Farmers who think that climate change is not their concern but the government's, perceive lower risks to physical health, finance, and production. As to trust in public adaptation, farmers who believe that public adaptive measures are well co-ordinated, perceive lower risks to production and psychology. Interestingly, those who believe that the disaster warning system is working well, perceive higher risks to finance, production, and social relationships. Further attention is suggested for the quality, timing, and channels of information about climate change and adaptation.

  13. Climate-hydrology-ecology interactions in glacierized river systems

    Science.gov (United States)

    Hannah, David; Brown, Lee; Milner, Alexander

    2010-05-01

    High climatic sensitivity and low anthropogenic influence make glacierized river basins important environments for examining hydrological and ecological response to global change. This presentation is based on previous and ongoing research in glacierized river basins (located in the French Pyrenees, New Zealand and Swedish Lapland), which adopts an interdisciplinary approach to investigate the climate-hydrology-ecology cascade. Data are used to advance hypotheses concerning impacts of climate change/ variability on glacier river system hydrology and ecology. Aquatic ecosystems in high latitude and altitude environments are influenced strongly by cryospheric and hydrological processes due to links between atmospheric forcing, snowpack/ glacier mass-balance, river runoff, physico-chemistry and biota. In the current phase of global warming, many glaciers are retreating. Shrinking snow and ice-masses may alter spatial and temporal dynamics in bulk basin runoff with significant changes in the relative contributions of snowmelt, glacier-melt and groundwater to stream flow. The timing of peak snow- and ice-melt may shift; and proportion of stream flow sourced from rainfall-runoff and groundwater may increase. In this presentation, the influence of changing water source contributions on physico-chemical habitat and, in turn, benthic communities is assessed using an alternative alpine stream classification. In the future, this model predicts more rapid downstream change in benthic communities as meltwater contributions decline; and, at the basin-scale, biodiversity may be reduced due to less spatio-temporal heterogeneity in water sources contributions and, thus, physico-chemical habitat. Integrated, long-term research into the climate-hydrology-ecology cascade in other glacierized river basins is vital because interdisciplinary science is fundamental: to predicting stream hydrology and ecology under scenarios of future climate/ variability, to assessing the utility of

  14. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Huang, Bohua; Schneider, Edwin K. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Hou, Yu-Tai; Yang, Fanglin [NCEP/NWS/NOAA, Environmental Modeling Center, Camp Springs, MD (United States); Wang, Wanqiu [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2011-05-15

    In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics. (orig.)

  15. Urbanism, climate change and health: systems approaches to governance.

    Science.gov (United States)

    Capon, Anthony G; Synnott, Emma S; Holliday, Sue

    2009-01-01

    Effective action on climate change health impacts and vulnerability will require systems approaches and integrated policy and planning responses from a range of government agencies. Similar responses are needed to address other complex problems, such as the obesity epidemic. Local government, with its focus on the governance of place, will have a key role in responding to these convergent agendas. Industry can also be part of the solution - indeed it must be, because it has a lead role in relevant sectors. Understanding the co-benefits for health of climate mitigation actions will strengthen the case for early action. There is a need for improved decision support tools to inform urban governance. These tools should be based on a systems approach and should incorporate a spatial perspective.

  16. Exergy analysis of air cooling systems in buildings in hot humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Alpuche, M.G. [UNAM, Temixco, Morelos (Mexico). Posgrado en Ingenieria; Heard, C. [Instituto Mexicano del Petroleo, Mexico DF (Mexico); Best, R.; Rojas, J. [UNAM, Temixco, Morelos (Mexico). Centro de Investigacion en Energia

    2005-03-01

    The purpose of this study is to analyze the influence of using air cooling desiccant systems on reaching thermal comfort conditions in the interior of a building, supposing this to be an open system. Exergy analysis has been carried out for the different design temperatures and relative humidity conditions within those established for ASHRAE summer thermal comfort conditions. The climatic conditions of a hot humid climate such as Villahermosa, Tabasco, Mexico, are used as an example. A novel reference state has been used for the exergy analysis, since this varies according to the fluctuation of the ambient temperature and humidity. (author)

  17. Preliminary analysis of Alvito-Odivelas reservoir system operation under climate change scenarios

    OpenAIRE

    2008-01-01

    The present study provides a preliminary analysis of the impact of climate change on a water resources system of Alentejo region in the South of Portugal. Regional climate model HadRM3P forced by the Global Circulation Model HadAM3P A2 of the Hadley Centre, is used to derive temperature and precipitation data, which in turn is used as input to hydrological model (SHETRAN) for simulation of future streamflow. Dynamic programming based models are used for operation of reservoir system in order ...

  18. Linking climate change education through the integration of a kite-borne remote sensing system

    Directory of Open Access Journals (Sweden)

    Yichun Xie

    2014-09-01

    Full Text Available A majority of secondary science teachers are found to include the topic of climate change in their courses. However, teachers informally and sporadically discuss climate change and students rarely understand the underlying scientific concepts. The project team developed an innovative pedagogical approach, in which teachers and students learn climate change concepts by analyzing National Aeronautics and Space Administration (NASA global data collected through satellites and by imitating the NASA data collection process through NASA Airborne Earth Research Observation Kites And Tethered Systems (AEROKATS, a kite-borne remote sensing system. Besides AEROKATS, other major components of this system include a web-collection of NASA and remote sensing data and related educational resources, project-based learning for teacher professional development, teacher and student field trips, iOS devices, smart field data collector apps, portable weather stations, probeware, and a virtual teacher collaboratory supported with a GIS-enabled mapping portal. Three sets of research instruments, the NASA Long-Term Experience –Educator End of Event Survey, the Teacher End of Project Survey, and the pre-and-post-Investigating Climate Change and Remote Sensing (ICCARS project student exams, are adapted to study the pedagogical impacts of the NASA AEROKATS remote sensing system. These findings confirm that climate change education is more effective when both teachers and students actively participate in authentic scientific inquiry by collecting and analyzing remote sensing data, developing hypotheses, designing experiments, sharing findings, and discussing results.

  19. Linking Indigenous Knowledge and Observed Climate Change Studies

    Science.gov (United States)

    Alexander, Chief Clarence; Bynum, Nora; Johnson, Liz; King, Ursula; Mustonen, Tero; Neofotis, Peter; Oettle, Noel; Rosenzweig, Cynthia; Sakakibara, Chie; Shadrin, Chief Vyacheslav; Vicarelli, Marta; Waterhouse, Jon; Weeks, Brian

    2010-01-01

    We present indigenous knowledge narratives and explore their connections to documented temperature and other climate changes and observed climate change impact studies. We then propose a framework for enhancing integration of these indigenous narratives of observed climate change with global assessments. Our aim is to contribute to the thoughtful and respectful integration of indigenous knowledge with scientific data and analysis, so that this rich body of knowledge can inform science, and so that indigenous and traditional peoples can use the tools and methods of science for the benefit of their communities if they choose to do so. Enhancing ways of understanding such connections are critical as the Intergovernmental Panel on Climate Change Fifth Assessment process gets underway.

  20. Anticipating Vulnerability to Climate Change in Dryland Pastoral Systems: Using Dynamic Systems Models for the Kalahari

    Directory of Open Access Journals (Sweden)

    Evan D.G. Fraser

    2010-06-01

    Full Text Available It is vitally important to identify agroecosystems that may cease functioning because of changing climate or land degradation. However, identifying such systems is confounded on both conceptual and methodological grounds, especially in systems that are moving toward thresholds, a common trait of dryland environments. This study explores these challenges by analyzing how a range of external pressures affect the vulnerability of dryland pastoral systems in the Kalahari. This is achieved by employing dynamic systems modeling approaches to understand the pathways by which communities became vulnerable to drought. Specifically, we evaluate how external pressures have changed: (1 different agroecosystems' abilities to tolerate drought, i.e., ecosystem resilience; (2 rural communities' abilities to adapt to drought, mediated via their access to assets; and (3 the ability of institutions and policy interventions to play a role in mediating drought-related crises, i.e., socio-political governance. This is done by reanalyzing ecological and participatory research findings along with farm-scale livestock offtake data from across the Kalahari in Botswana. An iterative process was followed to establish narratives exploring how external drivers led to changes in agroecosystem resilience, access to assets, and the institutional capacity to buffer the system. We use "causal loop diagrams" and statistical dynamic system models to express key quantitative relationships and establish future scenarios to help define where uncertainties lie by showing where the system is most sensitive to change. We highlight how that greater sharing of land management knowledge and practices between private and communal land managers can provide 'win-win-win' benefits of reducing system vulnerability, increasing economic income, and building social capital. We use future scenario analyses to identify key areas for future studies of climate change adaptation across the Kalahari.

  1. Climate change adaptation for the US National Wildlife Refuge System

    Science.gov (United States)

    Griffith, Brad; Scott, J. Michael; Adamcik, Robert S.; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua J.; McGuire, A. David; Pidgorna, Anna

    2009-01-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  2. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study

    Science.gov (United States)

    Wang, Xiaoping; Ren, Jiao; Gong, Ping; Wang, Chuanfei; Xue, Yonggang; Yao, Tandong; Lohmann, Rainer

    2016-06-01

    The Tibetan Plateau (TP) has been contaminated by persistent organic pollutants (POPs), including legacy organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here polystyrene-divinylbenzene copolymer resin (XAD)-based passive air samplers (PASs) were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT)-related chemicals delivered by Indian monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB) in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet, where both DDT and HCB were the dominant chemicals. Based on 5 years of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs) across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the ongoing usage of DDT in India. This paper demonstrates the possibility of using POP fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POP time trends.

  3. Organizational climate and hospital nurses' caring practices: a mixed-methods study.

    Science.gov (United States)

    Roch, Geneviève; Dubois, Carl-Ardy; Clarke, Sean P

    2014-06-01

    Organizational climate in healthcare settings influences patient outcomes, but its effect on nursing care delivery remains poorly understood. In this mixed-methods study, nurse surveys (N = 292) were combined with a qualitative case study of 15 direct-care registered nurses (RNs), nursing personnel, and managers. Organizational climate explained 11% of the variation in RNs' reported frequency of caring practices. Qualitative data suggested that caring practices were affected by the interplay of organizational climate dimensions with patients and nurses characteristics. Workload intensity and role ambiguity led RNs to leave many caring practices to practical nurses and assistive personnel. Systemic interventions are needed to improve organizational climate and to support RNs' involvement in a full range of caring practices.

  4. Addressing Value and Belief Systems on Climate Literacy in the Southeastern United States

    Science.gov (United States)

    McNeal, K. S.

    2012-12-01

    influence classroom climate instruction. In order to assist this educator group, CLiPSE has aligned a sub-set of the Climate and Energy Awareness Network (CLEAN) education resources to 11 SEUS state standards in order to better enable educators to implement climate topics in their classrooms. As a potential method to address the unique belief systems in the SEUS, CLiPSE has determined that the best way to engage individuals in the SEUS on the topic of climate change is to invite them into an honest dialogue surrounding climate. To facilitate these conversations effectively, CLiPSE utilizes a dialogical community model that values diversity, encourages respect for one another, recognizes and articulates viewpoints, and prioritizes understanding over resolution. CLiPSE emphasizes people's values and beliefs as they relate to climate change information. Results from pilot studies indicate that this is a promising method to bring together diverse individuals on the climate change topic and initiate the conversation about this very important issue that can often be considered "taboo" in the SEUS.

  5. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    Science.gov (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  6. The Characteristics of Earth System Thinking of Science Gifted Students in relation to Climate Changes

    Science.gov (United States)

    Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin

    2016-04-01

    This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking

  7. The research in climate system modeling, simulating and forecasting

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The major point of the World Climate Research Program (WCRP) is to predict the real-time climate change in seasons and years. Climate disasters in China occurred frequently, and resulted in a 200 billion RMB lost annually.

  8. Climate Ocean Modeling on a Beowulf Class System

    Science.gov (United States)

    Cheng, B. N.; Chao, Y.; Wang, P.; Bondarenko, M.

    2000-01-01

    With the growing power and shrinking cost of personal computers. the availability of fast ethernet interconnections, and public domain software packages, it is now possible to combine them to build desktop parallel computers (named Beowulf or PC clusters) at a fraction of what it would cost to buy systems of comparable power front supercomputer companies. This led as to build and assemble our own sys tem. specifically for climate ocean modeling. In this article, we present our experience with such a system, discuss its network performance, and provide some performance comparison data with both HP SPP2000 and Cray T3E for an ocean Model used in present-day oceanographic research.

  9. Importance of anthropogenic climate impact, sampling error and urban development in sewer system design.

    Science.gov (United States)

    Egger, C; Maurer, M

    2015-04-15

    Urban drainage design relying on observed precipitation series neglects the uncertainties associated with current and indeed future climate variability. Urban drainage design is further affected by the large stochastic variability of precipitation extremes and sampling errors arising from the short observation periods of extreme precipitation. Stochastic downscaling addresses anthropogenic climate impact by allowing relevant precipitation characteristics to be derived from local observations and an ensemble of climate models. This multi-climate model approach seeks to reflect the uncertainties in the data due to structural errors of the climate models. An ensemble of outcomes from stochastic downscaling allows for addressing the sampling uncertainty. These uncertainties are clearly reflected in the precipitation-runoff predictions of three urban drainage systems. They were mostly due to the sampling uncertainty. The contribution of climate model uncertainty was found to be of minor importance. Under the applied greenhouse gas emission scenario (A1B) and within the period 2036-2065, the potential for urban flooding in our Swiss case study is slightly reduced on average compared to the reference period 1981-2010. Scenario planning was applied to consider urban development associated with future socio-economic factors affecting urban drainage. The impact of scenario uncertainty was to a large extent found to be case-specific, thus emphasizing the need for scenario planning in every individual case. The results represent a valuable basis for discussions of new drainage design standards aiming specifically to include considerations of uncertainty.

  10. Aerial Moisture Transport in the Earth Climate System: A Study of the Mean State and Perturbations Due to CO2-Doubling using Numerical Water Tracers and a Novel Linear Algebra Analysis Framework

    Science.gov (United States)

    Singh, H. A.; Bitz, C. M.; Nusbaumer, J. M.; Noone, D. C.

    2015-12-01

    Aerial moisture transport is fundamental to the climate system, and numerical water tracers (WTs) are a powerful tool for understanding this transport. Here, we present a novel matrix operator framework that permits systematic, rather than ad hoc, analysis of WT results. We use this framework to study moisture transport, from evaporation (or sublimation) to precipitation, in a state-of-the-art global climate model (GCM) which incorporates WTs. This framework separates moisture divergence over a given tagged region into local divergence (the export of locally-evaporated moisture) and remote convergence (the import of remotely-evaporated moisture). The remote convergence term may be further subdivided into zonal, meridional, intrabasin, and interbasin parts, and can be used to predict precipitation given a particular spatial pattern of evaporation (demonstrated in Figure 1a). Findings from analysis of the preindustrial mean state concur with findings from earlier moisture transport studies: water evaporated at the equator and high latitudes tends to precipitate locally, whereas water evaporated in the subtropics and midlatitudes tends to precipitate remotely; water evaporated in the subtropics diverges both equatorward and poleward of its source region, while water evaporated in the midlatitudes mostly diverges poleward. New insights from the method reveal fundamental differences between the major ocean basins, with the Atlantic basin having the largest local divergence, smallest remote convergence, and greatest interbasin moisture export. With quasi-equilibrium CO2-doubling, we find that a greater fraction of locally-evaporated moisture is exported, moisture exchange between ocean basins increases (shown in Figure 2c), and moisture convergence within a given basin shifts towards greater distances between moisture source and sink regions. These changes can be understood in terms of a greater moisture residence time with warming, or, equivalently, a robust increase in

  11. Parallelizing Climate Data Management System, version 3 (CDMS3)

    Science.gov (United States)

    Nadeau, D.; Williams, D. N.; Painter, J.; Doutriaux, C.

    2015-12-01

    The Climate Data Management System is an object-oriented data management system, specialized for organizing multidimensional, gridded data used in climate analyses for data observation and simulation. The basic unit of computation in CDMS3 is the variable, which consist of a multidimensional array that represents climate information in four dimensions corresponding to: time, pressure levels, latitudes, and longitudes. As model become more precise in their computation, the volume of data generated becomes bigger and difficult to handle due to the limit of computational resources. Model today can produce data a time frequency of one hourly, three hourly, or six hourly for spatial footprint close to satellite data used run models. The amount of time for scientists to analyze the data and retrieve useful information is more and more unmanageable. Parallelizing libraries such as CMDS3 would ease the burden of working with such big datasets. Multiple approaches of parallelizing are possible. The most obvious one is embarrassingly parallel or pleasingly parallel programming where each computer node processes one file at a time. A more challenging approach is to send a piece of the data to each node for computation and each node will save the results at its right place in a file as a slab of data. This is possible with Hierarchical Data Format 5 (HDF5) using the Message Passing Interface (MPI). A final approach would be the use of Open Multi-Processing API (OpenMP) where a master thread is split in multiple threads for different sections of the main code. Each method has its advantages and disadvantages. This poster bring to light each benefit of these methods and seek to find an optimal solution to compute climate data analyses in a efficient fashion using one or a mixtures of these parallelized methods.

  12. A study on relationship between organizational climate and creativity

    Directory of Open Access Journals (Sweden)

    Ali Akbar Ahmadi

    2013-11-01

    Full Text Available This study examines the relationship between organizational climate and women employees' creativity of Tabriz Red Crescent Organization. The research method is descriptive correlation performed among 120 women employed at the Red Crescent and 100 cases were selected for the proposed study. For data collection, Hoy and Miskel (2005's organizational climate and Randsyp creativity questionnaires with 0.78 and 0.82 Cronbach's alpha coefficients were used. Pearson correlation and multiple regressions were used to analyze research hypotheses. Results showed that there was a significant relationship between two indices of manager and subordinate behaviors and creativity. In addition, in investigating the relationship between climate and creativity components, findings showed that there was a significant relationship only between cooperation and pretending to job dimensions and creativity. This study also has shown that managers' behavior is closed and employees' behavior is more open than managers are.

  13. Potential climatic impacts of vegetation change: A regional modeling study

    Science.gov (United States)

    Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.

    1996-01-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.

  14. Introduction. Progress in Earth science and climate studies.

    Science.gov (United States)

    Thompson, J Michael T

    2008-12-28

    In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.

  15. Dansgaard-Oeschger events: tipping points in the climate system

    CERN Document Server

    Cimatoribus, Andrea A; van der Schrier, Gerard

    2011-01-01

    The largest variability in temperature over the last sixty thousand years is connected with Dansgaard-Oeschger events (DOs) [1,2]. These are fast warming episodes (in the North Atlantic region 5-10 degrees C in a few decades), followed by a gradual cooling that lasts from hundreds to thousands of years, often with a final jump back to stadial condition. They occurred with a periodicity of approximately 1,500 years [3]. The relation between DOs and large changes in the Atlantic meridional overturning circulation is well established [3-7]. Various prototype models have been proposed to explain these rapid climate fluctuations [3,6,7], but until now no observational constraint has been forwarded to choose between different theories. Here, we show that DOs are connected with the crossing of a tipping point in the climate system. We use high-resolution ice core isotope data [8,9] to investigate the statistical properties of the climate fluctuations [10,11,12] in the period before the onset of the abrupt change. We...

  16. Hurricanes and Climate Change: Global Systems and Local Impacts

    Science.gov (United States)

    Santer, J.

    2011-12-01

    With funding from NOAA, the Miami Science Museum has been working with exhibit software developer Ideum to create an interactive exhibit exploring the global dimensions and local impacts of climate change. A particular focus is on climate-related impacts on coastal communities, including the potential effects on South Florida of ocean acidification, rising sea level, and the possibility of more intense hurricanes. The exhibit is using a 4-foot spherical display system in conjunction with a series of touchscreen kiosks and accompanying flat screens to create a user-controlled, multi-user interface that lets visitors control the sphere and choose from a range of global and local content they wish to explore. The exhibit has been designed to promote engagement of diverse, multigenerational audiences through development of a fully bilingual user interface that promotes social interaction and conversation among visitors as they trade off control of global content on the sphere and related local content on the flat screens. The open-source learning module will be adaptable by other museums, to explore climate impacts specific to their region.

  17. Methodological Issues on Climate Change Mitigation Studies

    DEFF Research Database (Denmark)

    Sørensen, Lene; Borges, Pedro Castro; Vidal, Rene Victor Valqui

    1999-01-01

    This paper uses national greenhouse gas emission abatement costing studies as a case to discuss influential factors that determine their outcome and achievement. Costing studies are seen as part of an interconnected whole social process where actors (decision makers, clients, facilitators, experts....... Some methodological principles are suggested to address such contradictions, structure, and change th einteractions between the different dimensions of hte social process framework. Two studies are mentioned in which ideas are presented on how to deal with the central contradictions. Applying...

  18. Impact of climate change on operations and planning of Hydro-Quebec's generation system

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, M.P.; Houle, B.; Robert, S. [Hydro-Quebec, Montreal, PQ (Canada)

    2008-07-01

    Hydraulic resources currently account for more than 95 per cent of Hydro-Quebec's generation capacity. Hydro-Quebec also plans to purchase more wind power in the future. However, the utility wind and hydroelectric resources will be affected by climatic change in the future. This paper outlined research needed by hydroelectric and water resource managers in order to accurately determine the impacts of climatic change. Parameters included changes in annual and seasonal distribution as well as changes in the variability of natural inflows. The research will be used to determine the configuration of new projects as well as the refurbishment and replacement of existing infrastructure. Load profiles for the future indicate that electricity use will change, with less heating needed in winter, and more air conditioning required in summer months. The Delta method was used to determine impacts of future inflows and hydrological regimes. A case study of climate change impacts and management strategies for the Outardes River system up to the year 2050 was presented. The study showed that higher inflows are expected to produce more energy. Maintenance planning and flood control techniques were also discussed. The study showed that the effects of climate change on each of Hydro-Quebec's systems is expected to follow a similar pattern to the Outardes system. tabs., figs.

  19. Impact of climate change on electricity systems and markets

    Science.gov (United States)

    Chandramowli, Shankar N.

    Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan

  20. Managing Risks? Early Warning Systems for Climate Change

    Science.gov (United States)

    Sitati, A. M.; Zommers, Z. A.; Habilov, M.

    2014-12-01

    Early warning systems are a tool with which to minimize risks posed by climate related hazards. Although great strides have been made in developing early warning systems most deal with one hazard, only provide short-term warnings and do not reach the most vulnerable. This presentation will review research results of the United Nations Environment Programme's CLIM-WARN project. The project seeks to identify how governments can better communicate risks by designing multi-hazard early warning systems that deliver actionable warnings across timescales. Household surveys and focus group discussions were conducted in 36 communities in Kenya, Ghana and Burkina Faso in order to identify relevant climate related hazards, current response strategies and early warning needs. Preliminary results show significant variability in both risks and needs within and between countries. For instance, floods are more frequent in rural western parts of Kenya. Droughts are frequent in the north while populations in urban areas face a range of hazards - floods, droughts, disease outbreaks - that sometimes occur simultaneously. The majority of the rural population, especially women, the disabled and the elderly, do not have access to modern media such as radio, television, or internet. While 55% of rural populace never watches television, 64% of urban respondents watch television on a daily basis. Communities have different concepts of how to design warning systems. It will be a challenge for national governments to create systems that accommodate such diversity yet provide standard quality of service to all. There is a need for flexible and forward-looking early warning systems that deliver broader information about risks. Information disseminated through the system could not only include details of hazards, but also long-term adaptation options, general education, and health information, thus increasingly both capabilities and response options.

  1. Integrated food–energy systems for climate-smart agriculture

    Directory of Open Access Journals (Sweden)

    Bogdanski Anne

    2012-07-01

    Full Text Available Abstract Food production needs to increase by 70%, mostly through yield increases, to feed the world in 2050. Increases in productivity achieved in the past are attributed in part to the significant use of fossil fuels. Energy use in agriculture is therefore also expected to rise in the future, further contributing to greenhouse emissions. At the same time, more than two-fifths of the world’s population still depends on unsustainably harvested wood energy for cooking and heating. Both types of energy use have detrimental impacts on the climate and natural resources. Continuing on this path is not an option as it will put additional pressure on the already stressed natural resource base and local livelihoods, while climate change is further reducing the resilience of agro-ecosystems and smallholder farmers. Ecosystem approaches that combine both food and energy production, such as agroforestry or integrated crop–livestock–biogas systems, could substantially mitigate these risks while providing both food and energy to rural and urban populations. Information and understanding on how to change course through the implementation of the practices outlined in this paper are urgently needed. Yet the scientific basis of such integrated systems, which is essential to inform decision-makers and to secure policy support, is still relatively scarce. The author therefore argues that new assessment methodologies based on a systems-oriented analysis are needed for analyzing these complex, multidisciplinary and large-scale phenomena.

  2. A Joint Approach to the Study of S-Type and P-Type Habitable Zones in Binary Systems: New Results in the View of 3-D Planetary Climate Models

    Science.gov (United States)

    Cuntz, Manfred

    2015-01-01

    In two previous papers, given by Cuntz (2014a,b) [ApJ 780, A14 (19 pages); arXiv:1409.3796], a comprehensive approach has been provided for the study of S-type and P-type habitable zones in stellar binary systems, P-type orbits occur when the planet orbits both binary components, whereas in case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach considers a variety of aspects, including (1) the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes; (2) the treatment of conservative (CHZ), general (GHZ) and extended zones of habitability (EHZ) [see Paper I for definitions] for the systems as previously defined for the Solar System; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are devised for which kind of system S-type and P-type habitability is realized; and (4) the applications of the theoretical approach to systems with the stars in different kinds of orbits, including elliptical orbits (the most expected case). Particularly, an algebraic formalism for the assessment of both S-type and P-type habitability is given based on a higher-order polynomial expression. Thus, an a prior specification for the presence or absence of S-type or P-type radiative habitable zones is - from a mathematical point of view - neither necessary nor possible, as those are determined by the adopted formalism. Previously, numerous applications of the method have been given encompassing theoretical star-panet systems and and observations. Most recently, this method has been upgraded to include recent studies of 3-D planetary climate models. Originally, this type of work affects the extent and position of habitable zones around single stars; however, it has also profound consequence for the habitable

  3. Carbon uptake sensitivity of the North Atlantic to climate change: A model study with the Bergen Climate Model

    Science.gov (United States)

    Goris, Nadine; Heinze, Christoph; Tjiputra, Jerry; Schwinger, Jörg

    2015-04-01

    The efficiency of the world's oceans to take up carbon is expected to decrease with ongoing climate change, thereby increasing the atmospheric burden of carbon. Here, the North Atlantic is a region of special interest as it is one of the most important oceanic carbon sinks, featuring an exceptionally high column inventory of anthropogenic CO2. Several model studies have identified the carbon uptake of the North Atlantic as highly sensitive to climate change, but these studies are mostly global studies and are not concerned with a detailed attribution of the underlying mechanisms and their regional differences within the North Atlantic. Yet, quantifying the climate change induced CO2-uptake variability in the North Atlantic and identifying its main drivers is of high relevance for improving climate projections. In order to assess and understand the climate sensitivity of the CO2 uptake of the North Atlantic, we investigate the differences between two simulations (denoted as simulation COU and simulation BGC) carried out with the Bergen Earth System Model (BCM-C). While simulation COU features rising atmospheric CO2 concentrations (based on observed records for 1850-1999 and the IPCC SRES-A2 scenario for 2000-2099) for radiation code and carbon fluxes, simulation BGC uses rising atmospheric concentrations only for the calculation of the carbon fluxes. The differences between those simulations identify climate induced changes. Our analysis confirms the important role of the North Atlantic for carbon uptake and demonstrates that this region is most sensitive to climate change (in comparison to other oceanic regions as defined in Tjiputra et al., 2010). We furthermore identify substantially different responses to climate change in different parts of the North Atlantic. Based on these differing responses, we divide the North Atlantic into 3 regions, namely the subpolar gyre region (SPG), the high latitude region (HL) and the rest of the North Atlantic (rNAT*, covering

  4. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies

    Energy Technology Data Exchange (ETDEWEB)

    Fatichi, S., E-mail: simone.fatichi@ifu.baug.ethz.ch; Rimkus, S.; Burlando, P.; Bordoy, R.

    2014-09-15

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. - Highlights:

  5. Planetary boundary layer as an essential component of the earth's climate system

    Science.gov (United States)

    Davy, Richard; Esau, Igor

    2015-04-01

    temperature have to be established. These relationships are necessary to complete the model (1) where the relationships between temperature variability, dT, and heat forcing, Q, are intensively studied. We demonstrate that the statistical dependences between dT and h becomes the primary factor in controlling the climate features of the earth's climate system when h is shallow (less than about 500 m). Such conditions are found in the cold (with negative surface heat balance on average) and dry (with large-scale air subsidence) climates. To get those climates and their variations correct, the climate models must be able to reproduce the shallow stably-stratified PBL. We show that the present-day CMIP-5 models are systematically and strongly biased towards producing deeper PBLs (between 20-50% deeper than observed) in this part of the parameter space which leads to large errors (around 15 K) and a damped variability of the surface temperatures under these conditions. More generally, this bias indicates that the models represent the earth's cooling processes incorrectly, which may be a part of the puzzle of the observed "hiatus" (or pause) in global warming. Frankignoul, C. & K. Hasselmann, 1977: Stochastic climate models. Part 2, Application to sea-surface temperature anomalies and thermocline variability, Tellus, 29, 289-305. Manabe, S. & R. Stouffer, 1980: Sensitivity of a Global Climate Model to an increase of CO2 concentration in the atmosphere, Journal of Geophysical Research, 85(C10): 5529-5554.

  6. Cloud-Enabled Climate Analytics-as-a-Service using Reanalysis data: A case study.

    Science.gov (United States)

    Nadeau, D.; Duffy, D.; Schnase, J. L.; McInerney, M.; Tamkin, G.; Potter, G. L.; Thompson, J. H.

    2014-12-01

    The NASA Center for Climate Simulation (NCCS) maintains advanced data capabilities and facilities that allow researchers to access the enormous volume of data generated by weather and climate models. The NASA Climate Model Data Service (CDS) and the NCCS are merging their efforts to provide Climate Analytics-as-a-Service for the comparative study of the major reanalysis projects: ECMWF ERA-Interim, NASA/GMAO MERRA, NOAA/NCEP CFSR, NOAA/ESRL 20CR, JMA JRA25, and JRA55. These reanalyses have been repackaged to netCDF4 file format following the CMIP5 Climate and Forecast (CF) metadata convention prior to be sequenced into the Hadoop Distributed File System ( HDFS ). A small set of operations that represent a common starting point in many analysis workflows was then created: min, max, sum, count, variance and average. In this example, Reanalysis data exploration was performed with the use of Hadoop MapReduce and accessibility was achieved using the Climate Data Service(CDS) application programming interface (API) created at NCCS. This API provides a uniform treatment of large amount of data. In this case study, we have limited our exploration to 2 variables, temperature and precipitation, using 3 operations, min, max and avg and using 30-year of Reanalysis data for 3 regions of the world: global, polar, subtropical.

  7. Aerosols, Clouds, and Precipitation as Scale Interactions in the Climate System and Controls on Climate Change

    Science.gov (United States)

    Donner, Leo

    Clouds are major regulators of atmospheric energy flows. Their character depends on atmospheric composition, dynamics, and thermodynamic state. Clouds can assume organized structures whose scales are planetary, while processes important for determining basic properties occur on the scale of microns. The range of processes, scales, and interactions among them has precluded the development of concise theories for the role of clouds in climate, and limitations in modeling clouds in complex climate models remain among the key uncertainties in understanding and projecting climate change. The distribution function of vertical velocities (updraft speeds) in clouds is an important control on climate forcing by clouds and possibly a strong correlate with climate sensitivity. (Climate forcing refers to the change in Earth's energy balance as atmospheric composition changes, in particular, due to human activity. Climate sensitivity is defined here as the equilibrium change in globally averaged annual surface temperature as a result of doubled carbon dioxide.) Vertical velocities are central because they determine the thermodynamic environment governing phase changes of water, with both equilibrium and non-equilibrium phenomena important. The spatial and temporal spectra of relevant vertical velocities includes scales both numerically resolved by climate models and below their resolution limit. The latter implies a requirement to parameterize these smaller scale motions in models. The scale dependence of vertical velocities and emerging observational constraints on their distribution provide new opportunities for representing aerosols, clouds, and precipitation in climate models. Success in doing so could provide important breakthroughs in understanding both climate forcing and sensitivity.

  8. 'Initial' Soil Moisture Effects on the Climate in China——A Regional Climate Model Study

    Institute of Scientific and Technical Information of China (English)

    SHI Xueli

    2009-01-01

    In this study, the effects of 'initial' soil moisture (SM) in arid and semi-arid Northwestern China on subsequent climate were investigated with a regional climate model. Besides the control simulations (denoted as CTL), a series of sensitivity experi-ments were conducted, including the DRY and WET experiments, in which the simulated 'initial' SM over the region 30-50°N, 75 -105°E was only 5% and 50%, and up to 150% and 200% of the simulated value in the CTL, respectively. The results show that SM change can modify the subsequent climate in not only the SM-change region proper but also the far downstream regions in Eastern and even Northeastern China. The SM-change effects are generally more prominent in the WET than in the DRY experiments. After the SM is initially increased, the SM in the SM-change region is always higher than that in the CTL, the latent (sensible) heat flux there increases (decreases), and the surface air temperature decreases. Spatially, the most prominent changes in the WET experiments are surface air temperature decrease, geopotential height decrease and corresponding abnormal changes of cyclonic wind vectors at the mid-upper troposphere levels. Generally opposite effects exist in the DRY experiments but with much weaker intensity. In addi-tion, the differences between the results obtained from the two sets of sensitivity experiments and those of the CTL are not always consistent with the variation of the initial SM. Being different from the variation of temperature, the rainfall modifications caused by initial SM change are not so distinct and in fact they show some common features in the WET and DRY experiments. This might imply that SM is only one of the factors that impact the subsequent climate, and its effect is involved in complex processes within the atmosphere, which needs further investigation.

  9. Climate and Energy-Water-Land System Interactions Technical Report to the U.S. Department of Energy in Support of the National Climate Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Skaggs, Richard; Hibbard, Kathleen A.; Frumhoff, Peter; Lowry, Thomas; Middleton, Richard; Pate, Ron; Tidwell, Vincent C.; Arnold, J. G.; Averyt, Kristen; Janetos, Anthony C.; Izaurralde, Roberto C.; Rice, Jennie S.; Rose, Steven K.

    2012-03-01

    This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate.

  10. The Mars climate for a photovoltaic system operation

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on the climatic conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The distribution of solar insolation (global, direct and diffuse) and ambient temperature is addressed. This data are given at the Viking lander's locations and can also be used, to a first approximation, for other latitudes. The insolation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The ambient temperature (diurnal and yearly distribution) is based on direct measurements with a thermocouple at 1.6 m above the ground at the Viking lander locations. The insolation and ambient temperature information are short term data. New information about Mars may be forthcoming in the future from new analysis of previously collected data or from future flight missions. The Mars climate data for photovoltaic system operation will thus be updated accordingly.

  11. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    Science.gov (United States)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  12. Complementarity among climate related energy sources: Sensitivity study to climate characteristics across Europe

    Science.gov (United States)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Raynaud, Damien; Borga, Marco; Vautard, Robert

    2015-04-01

    Climate related energy sources like solar-power, wind-power and hydro-power are important contributors to the transitions to a low-carbon economy. Past studies, mainly based on solar and wind powers, showed that the power from such energy sources fluctuates in time and space following their driving climatic variables. However, when combining different energy sources together, their intermittent feature is smoothed, resulting to lower time variability of the produced power and to lower storage capacity required for balancing. In this study, we consider solar, wind and hydro energy sources in a 100% renewable Europe using a set of 12 regions following two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine wind and solar irradiance data from the Weather Research and Forecasting Model (Vautard et al., 2014), temperature data from the European Climate Assessment & Dataset (Haylock et al., 2008) and runoff from the Global Runoff Data Center (GRDC, 1999) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 30 years. The use of this set of 12 regions across Europe allows integrating knowledge about time and space variability for each different energy sources. We then assess the optimal share of each energy sources, aiming to decrease the time variability of the regional energy balance at different time scales as well as the energy storage required for balancing within each region. We also evaluate how energy transport among regions contributes for smoothing out both the energy balance and the storage requirement. The strengths of this study are i) to handle with run-of-the-river hydro power in addition to wind and solar energy sources and ii) to carry out this analysis

  13. Understanding the Impacts of Soil, Climate and Farming Practices on Soil Organic Carbon Sequestration: a Simulation Study in Australia

    Directory of Open Access Journals (Sweden)

    Cecile Marie Godde

    2016-05-01

    Full Text Available Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical and chemical properties. The review of literature pertaining to soil organic carbon (SOC dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate and farming practices on SOC. We undertook a modeling study with the APSIM (Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates and farming practices (crop rotations, and management within rotations, such as fertilization, tillage and residue management in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66%, 18% and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (Queensland on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O emissions and nitrate leaching in farming systems. The transposition of contrasting soils

  14. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.

    Science.gov (United States)

    Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in

  15. Systems Approach to Climate, Water, and Diarrhea in Hubli-Dharwad, India.

    Science.gov (United States)

    Mellor, Jonathan; Kumpel, Emily; Ercumen, Ayse; Zimmerman, Julie

    2016-12-06

    Anthropogenic climate change will likely increase diarrhea rates for communities with inadequate water, sanitation, or hygiene facilities including those with intermittent water supplies. Current approaches to study these impacts typically focus on the effect of temperature on all-cause diarrhea while excluding precipitation and diarrhea etiology while not providing actionable adaptation strategies. We develop a partially mechanistic, systems approach to estimate future diarrhea prevalence and design adaptation strategies. The model incorporates downscaled global climate models, water quality data, quantitative microbial risk assessment, and pathogen prevalence in an agent-based modeling framework incorporating precipitation and diarrhea etiology. It is informed using water quality and diarrhea data from Hubli-Dharwad, India-a city with an intermittent piped water supply exhibiting seasonal water quality variability vulnerable to climate change. We predict all-cause diarrhea prevalence to increase by 4.9% (Range: 1.5-9.0%) by 2011-2030, 11.9% (Range: 7.1-18.2%) by 2046-2065, and 18.2% (Range: 9.1-26.2%) by 2080-2099. Rainfall is an important modifying factor. Rotavirus prevalence is estimated to decline by 10.5% with Cryptosporidium and E. coli prevalence increasing by 9.9% and 6.3%, respectively, by 2080-2099 in this setting. These results suggest that ceramic water filters would be recommended as a climate adaptation strategy over chlorination. This work highlights the vulnerability of intermittent water supplies to climate change and the urgent need for improvements.

  16. Building integration of photovoltaic systems in cold climates

    Science.gov (United States)

    Athienitis, Andreas K.; Candanedo, José A.

    2010-06-01

    This paper presents some of the research activities on building-integrated photovoltaic (BIPV) systems developed by the Solar and Daylighting Laboratory at Concordia University. BIPV systems offer considerable advantages as compared to stand-alone PV installations. For example, BIPV systems can play a role as essential components of the building envelope. BIPV systems operate as distributed power generators using the most widely available renewable source. Since BIPV systems do not require additional space, they are especially appropriate for urban environments. BIPV/Thermal (BIPV/T) systems may use exterior air to extract useful heat from the PV panels, cooling them and thereby improving their electric performance. The recovered thermal energy can then be used for space heating and domestic hot water (DHW) heating, supporting the utilization of BIVP/T as an appropriate technology for cold climates. BIPV and BIPV/T systems are the subject of several ongoing research and demonstration projects (in both residential and commercial buildings) led by Concordia University. The concept of integrated building design and operation is at the centre of these efforts: BIPV and BIPV/T systems must be treated as part of a comprehensive strategy taking into account energy conservation measures, passive solar design, efficient lighting and HVAC systems, and integration of other renewable energy systems (solar thermal, heat pumps, etc.). Concordia Solar Laboratory performs fundamental research on heat transfer and modeling of BIPV/T systems, numerical and experimental investigations on BIPV and BIPV/T in building energy systems and non-conventional applications (building-attached greenhouses), and the design and optimization of buildings and communities.

  17. A NASA Climate Model Data Services (CDS) End-to-End System to Support Reanalysis Intercomparison

    Science.gov (United States)

    Carriere, L.; Potter, G. L.; McInerney, M.; Nadeau, D.; Shen, Y.; Duffy, D.; Schnase, J. L.; Maxwell, T. P.; Huffer, E.

    2014-12-01

    The NASA Climate Model Data Service (CDS) and the NASA Center for Climate Simulation (NCCS) are collaborating to provide an end-to-end system for the comparative study of the major Reanalysis projects, currently, ECMWF ERA-Interim, NASA/GMAO MERRA, NOAA/NCEP CFSR, NOAA/ESRL 20CR, and JMA JRA25. Components of the system include the full spectrum of Climate Model Data Services; Data, Compute Services, Data Services, Analytic Services and Knowledge Services. The Data includes standard Reanalysis model output, and will be expanded to include gridded observations, and gridded Innovations (O-A and O-F). The NCCS High Performance Science Cloud provides the compute environment (storage, servers, and network). Data Services are provided through an Earth System Grid Federation (ESGF) data node complete with Live Access Server (LAS), Web Map Service (WMS) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) for visualization, as well as a collaborative interface through the Earth System CoG. Analytic Services include UV-CDAT for analysis and MERRA/AS, accessed via the CDS API, for computation services, both part of the CDS Climate Analytics as a Service (CAaaS). Knowledge Services include access to an Ontology browser, ODISEES, for metadata search and data retrieval. The result is a system that provides the ability for both reanalysis scientists and those scientists in need of reanalysis output to identify the data of interest, compare, compute, visualize, and research without the need for transferring large volumes of data, performing time consuming format conversions, and writing code for frequently run computations and visualizations.

  18. Designing a new cropping system for high productivity and sustainable water usage under climate change

    Science.gov (United States)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) –summer maize system. The M-M system improved yield by 14–31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr‑1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  19. Planning and costing agricultural adaptation to climate change in the pastoral livestock system of Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Tumbo, S.; Mutabazi, K.; Kimambo, A.; Rwehumbiza, F.

    2011-08-15

    farmers (such as those involving temporary and permanent migration). From this study, some policy-relevant recommendations have been formulated: 1. The need to establish an environmental section in the Ministry of Livestock and Fisheries Development (MLFD). 2. The necessity for increased investment systems and structures for animal agriculture. 3. The need for increased investment in research, extension and training. 4. The requirement for more bottom-up studies on the economics of climate change in agriculture to be undertaken in order to fill knowledge gaps, apply existing and emerging methods, and improve the estimates.

  20. STUDYING OF SAFETY CLIMATE ASSESSMENT: A CASE STUDY AT STEEL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Hassan DARVISH

    2011-01-01

    Full Text Available Evolution of safety climate used as a practical means has determined and assessed potential problems relevant to safety issues in an organization and can be used in individuals’ performance and work efficiency and decreasing rate of incidents ;as well as; guidance to provide safety organization policy and comparison of safety performance in different organizations. The study wants to determine and prepare safety climate profile and application of its results in improving safety situation. In this study, applied tools presented by Loughborough University are used to evaluate safety climate in one of steel industries and data is collected through questionnaire, group discussions or purposeful interviews and observations, and safety climate score was obtained in 17 scopes. Calculating the score of each safety climate domain and preparing the profile indicated there is the average rate (4.89 2 in the safety climate of the industry.

  1. Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity

    Directory of Open Access Journals (Sweden)

    M. Eby

    2013-05-01

    is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

  2. Quantitative assessment of resilience of a water supply system under rainfall reduction due to climate change

    Science.gov (United States)

    Amarasinghe, Pradeep; Liu, An; Egodawatta, Prasanna; Barnes, Paul; McGree, James; Goonetilleke, Ashantha

    2016-09-01

    A water supply system can be impacted by rainfall reduction due to climate change, thereby reducing its supply potential. This highlights the need to understand the system resilience, which refers to the ability to maintain service under various pressures (or disruptions). Currently, the concept of resilience has not yet been widely applied in managing water supply systems. This paper proposed three technical resilience indictors to assess the resilience of a water supply system. A case study analysis was undertaken of the Water Grid system of Queensland State, Australia, to showcase how the proposed indicators can be applied to assess resilience. The research outcomes confirmed that the use of resilience indicators is capable of identifying critical conditions in relation to the water supply system operation, such as the maximum allowable rainfall reduction for the system to maintain its operation without failure. Additionally, resilience indicators also provided useful insight regarding the sensitivity of the water supply system to a changing rainfall pattern in the context of climate change, which represents the system's stability when experiencing pressure. The study outcomes will help in the quantitative assessment of resilience and provide improved guidance to system operators to enhance the efficiency and reliability of a water supply system.

  3. Assessing the vulnerability of traditional maize seed systems in Mexico to climate change.

    Science.gov (United States)

    Bellon, Mauricio R; Hodson, David; Hellin, Jon

    2011-08-16

    Climate change is predicted to have major impacts on small-scale farmers in Mexico whose livelihoods depend on rain-fed maize. We examined the capacity of traditional maize seed systems to provide these farmers with appropriate genetic material under predicted agro-ecological conditions associated with climate change. We studied the structure and spatial scope of seed systems of 20 communities in four transects across an altitudinal gradient from 10-2,980 m above sea level in five states of eastern Mexico. Results indicate that 90% of all of the seed lots are obtained within 10 km of a community and 87% within an altitudinal range of ±50 m but with variation across four agro-climate environments: wet lowland, dry lowland, wet upper midlatitude, and highlands. Climate models suggest a drying and warming trend for the entire study area during the main maize season, leading to substantial shifts in the spatial distribution patterns of agro-climate environments. For all communities except those in the highlands, predicted future maize environments already are represented within the 10-km radial zones, indicating that in the future farmers will have easy access to adapted planting material. Farmers in the highlands are the most vulnerable and probably will need to acquire seed from outside their traditional geographical ranges. This change in seed sources probably will entail important information costs and the development of new seed and associated social networks, including improved linkages between traditional and formal seed systems and more effective and efficient seed-supply chains. The study has implications for analogous areas elsewhere in Mexico and around the world.

  4. Energy analysis of the personalized ventilation system in hot and humid climates

    DEFF Research Database (Denmark)

    Schiavon, S.; Melikov, Arsen Krikor; Sekhar, C.

    2010-01-01

    Personalized ventilation (PV) is an individually controlled air distribution system aimed at improving the quality of inhaled air and the thermal comfort of each occupant. Numerous studies have shown that PV in comparison with traditional mechanical ventilation systems may improve occupants’ health......, inhaled air quality, thermal comfort, and self-estimated productivity. Little is known about its energy performance. In this study, the energy consumption of a personalized ventilation system introduced in an office building located in a hot and humid climate (Singapore) has been investigated by means...

  5. An empirical system for probabilistic seasonal climate prediction

    Science.gov (United States)

    Eden, Jonathan; van Oldenborgh, Geert Jan; Hawkins, Ed; Suckling, Emma

    2016-04-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  6. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States)

    2016-10-17

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate through polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.

  7. Regional modelling of nitrate leaching from Swiss organic and conventional cropping systems under climate change

    Science.gov (United States)

    Calitri, Francesca; Necpalova, Magdalena; Lee, Juhwan; Zaccone, Claudio; Spiess, Ernst; Herrera, Juan; Six, Johan

    2016-04-01

    Organic cropping systems have been promoted as a sustainable alternative to minimize the environmental impacts of conventional practices. Relatively little is known about the potential to reduce NO3-N leaching through the large-scale adoption of organic practices. Moreover, the potential to mitigate NO3-N leaching and thus the N pollution under future climate change through organic farming remain unknown and highly uncertain. Here, we compared regional NO3-N leaching from organic and conventional cropping systems in Switzerland using a terrestrial biogeochemical process-based model DayCent. The objectives of this study are 1) to calibrate and evaluate the model for NO3-N leaching measured under various management practices from three experiments at two sites in Switzerland; 2) to estimate regional NO3-N leaching patterns and their spatial uncertainty in conventional and organic cropping systems (with and without cover crops) for future climate change scenario A1B; 3) to explore the sensitivity of NO3-N leaching to changes in soil and climate variables; and 4) to assess the nitrogen use efficiency for conventional and organic cropping systems with and without cover crops under climate change. The data for model calibration/evaluation were derived from field experiments conducted in Liebefeld (canton Bern) and Eschikon (canton Zürich). These experiments evaluated effects of various cover crops and N fertilizer inputs on NO3-N leaching. The preliminary results suggest that the model was able to explain 50 to 83% of the inter-annual variability in the measured soil drainage (RMSE from 12.32 to 16.89 cm y-1). The annual NO3-N leaching was also simulated satisfactory (RMSE = 3.94 to 6.38 g N m-2 y-1), although the model had difficulty to reproduce the inter-annual variability in the NO3-N leaching losses correctly (R2 = 0.11 to 0.35). Future climate datasets (2010-2099) from the 10 regional climate models (RCM) were used in the simulations. Regional NO3-N leaching

  8. Norwegian Hydrological Reference Dataset for Climate Change Studies

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-01

    Based on the Norwegian hydrological measurement network, NVE has selected a Hydrological Reference Dataset for studies of hydrological change. The dataset meets international standards with high data quality. It is suitable for monitoring and studying the effects of climate change on the hydrosphere and cryosphere in Norway. The dataset includes streamflow, groundwater, snow, glacier mass balance and length change, lake ice and water temperature in rivers and lakes.(Author)

  9. Potential Of Light Pipes System In Malaysian Climate

    Science.gov (United States)

    Abd Kadir, Aslila; Hakim Ismail, Lokman; Kasim, Narimah; Kaamin, Masiri

    2016-11-01

    Light-pipes system are simple structures that allow the transmission of daylight from the outside to the inside of a room. It is a practical application in many buildings where daylight cannot reach due to building design and limited facade to placing windows. Since roof is the element directly exposed to the sunlight, light pipes system could be introduced. This paper examines the illumination levels obtained using light pipes system under Malaysia climate conditions. A light-pipe system that was installed in a test room located in Batu Pahat. Indoor illuminance distributions and concurrent outdoor illuminance were monitored at a 30 minutes interval for 5 days. The results indicated that the amount of daylight penetrated into the building are varied with less than 150lux in the early morning and late evening, and maximum at over 350lux in the noon and early afternoon. The average internal illuminance levels offer by light pipe system met the MS 1525:2007 recommendation for application in Malaysian buildings. These findings indicated that the light pipe system has a potential as a tool for introducing daylight indoors in Malaysia.

  10. Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia.

    Science.gov (United States)

    Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois

    2016-08-01

    Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.

  11. Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia

    Science.gov (United States)

    Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois

    2016-08-01

    Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.

  12. Leishmaniasis and climate change-case study: Argentina.

    Science.gov (United States)

    Salomón, Oscar Daniel; Quintana, María Gabriela; Mastrángelo, Andrea Verónica; Fernández, María Soledad

    2012-01-01

    Vector-borne diseases closely associated with the environment, such as leishmaniases, have been a usual argument about the deleterious impact of climate change on public health. From the biological point of view interaction of different variables has different and even conflicting effects on the survival of vectors and the probability transmission of pathogens. The results on ecoepidemiology of leishmaniasis in Argentina related to climate variables at different scales of space and time are presented. These studies showed that the changes in transmission due to change or increase in frequency and intensity of climatic instability were expressed through changes in the probability of vector-human reservoir effective contacts. These changes of contact in turn are modulated by both direct effects on the biology and ecology of the organisms involved, as by perceptions and changes in the behavior of the human communities at risk. Therefore, from the perspective of public health and state policy, and taking into account the current nonlinear increased velocity of climate change, we concluded that discussing the uncertainties of large-scale models will have lower impact than to develop-validate mitigation strategies to be operative at local level, and compatibles with sustainable development, conservation biodiversity, and respect for cultural diversity.

  13. Leishmaniasis and Climate Change—Case Study: Argentina

    Science.gov (United States)

    Salomón, Oscar Daniel; Quintana, María Gabriela; Mastrángelo, Andrea Verónica; Fernández, María Soledad

    2012-01-01

    Vector-borne diseases closely associated with the environment, such as leishmaniases, have been a usual argument about the deleterious impact of climate change on public health. From the biological point of view interaction of different variables has different and even conflicting effects on the survival of vectors and the probability transmission of pathogens. The results on ecoepidemiology of leishmaniasis in Argentina related to climate variables at different scales of space and time are presented. These studies showed that the changes in transmission due to change or increase in frequency and intensity of climatic instability were expressed through changes in the probability of vector-human reservoir effective contacts. These changes of contact in turn are modulated by both direct effects on the biology and ecology of the organisms involved, as by perceptions and changes in the behavior of the human communities at risk. Therefore, from the perspective of public health and state policy, and taking into account the current nonlinear increased velocity of climate change, we concluded that discussing the uncertainties of large-scale models will have lower impact than to develop-validate mitigation strategies to be operative at local level, and compatibles with sustainable development, conservation biodiversity, and respect for cultural diversity. PMID:22685477

  14. Leishmaniasis and Climate Change—Case Study: Argentina

    Directory of Open Access Journals (Sweden)

    Oscar Daniel Salomón

    2012-01-01

    Full Text Available Vector-borne diseases closely associated with the environment, such as leishmaniases, have been a usual argument about the deleterious impact of climate change on public health. From the biological point of view interaction of different variables has different and even conflicting effects on the survival of vectors and the probability transmission of pathogens. The results on ecoepidemiology of leishmaniasis in Argentina related to climate variables at different scales of space and time are presented. These studies showed that the changes in transmission due to change or increase in frequency and intensity of climatic instability were expressed through changes in the probability of vector-human reservoir effective contacts. These changes of contact in turn are modulated by both direct effects on the biology and ecology of the organisms involved, as by perceptions and changes in the behavior of the human communities at risk. Therefore, from the perspective of public health and state policy, and taking into account the current nonlinear increased velocity of climate change, we concluded that discussing the uncertainties of large-scale models will have lower impact than to develop-validate mitigation strategies to be operative at local level, and compatibles with sustainable development, conservation biodiversity, and respect for cultural diversity.

  15. Assessing climate change impacts on the Iberian power system using a coupled water-power model

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Madsen, Henrik; Arnbjerg-Nielsen, Karsten;

    2014-01-01

    , these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal......Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However...... patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes...

  16. The impact of iceberg calving on climate: a model study with a fully coupled ice-sheet - climate model

    Science.gov (United States)

    Bugelmayer, Marianne; Roche, Didier; Renssen, Hans

    2013-04-01

    In the current period of climate change the understanding of the interactions between different parts of the climate system gets more and more important. The ice-sheets and ice-shelves, an important part of this system, experienced strong changes in the geological past, ranging from fully ice free to ice covered - thereby altering the whole climate. In the present climate, thousands of icebergs are released every year from Greenland and Antarctica, acting as a moving source of freshwater and a sink of latent heat. As a consequence, these icebergs alter the oceans' stratification and facilitate the formation of sea ice, thus influencing the state of the ocean and of the atmosphere. Up to now, the impact of icebergs on climate has been addressed in different studies which utilize climate models using freshwater and latent heat fluxes to parameterize icebergs. Mostly these fluxes were equally distributed around the coast. However, more recently iceberg modules were integrated into climate models to take into account the temporal and spatial distribution of the iceberg melting. In the presented study, an earth system model of intermediate complexity - iLOVECLIM - that includes a 3D dynamic - thermodynamic iceberg module (Jongma et al., 2008) is coupled to the Grenoble ice shelves and land ice model - GRISLI (Ritz et al., 1997, 2001). In GRISLI, ice sheets evolve according to the precipitation and temperature received from iLOVECLIM. In turn, GRISLI provides its topography and the ice mask to the atmospheric component of iLOVECLIM and all freshwater fluxes (ablation and calving) to its oceanic component. The ablation is directly put into the uppermost layer of the ocean, whereas the calving is used to generate icebergs at the calving sites following the size distribution of Bigg et al. (1997). Using this model set-up we analyse the evolution and the equilibrium state of the Greenland ice-sheet under pre-industrial conditions within three different coupling methods. All

  17. A regional climate simulation study with land cover dynamics in Northern China

    Science.gov (United States)

    Wang, Hanjie; Ju, Yongmao; Li, Jianyun; Qiu, Guoyu

    2007-09-01

    A social-economic database based on the Governmental Statistical Annals, county-to-county investigation, literature verification, as well as the satellite identification was completed recently by the Remote Sensing and GIS Research Center, Beijing Normal University of China. The GIS Operational System handing this database not only provides details of the social, ecological, and economic information of the Northern China's 13 provinces since earlier 1950s, but also gives out predictions of these information by 2050 with different sceneries concerning the population increase, land use variation, governmental policy adjusting, administrating capability, science and technology development, National GDP increment, as well as world climate change. Aims at further regional climate simulation study, there is a special module nested in the GIS Operational System that interprets the county-level administrative data-units to a 60 × 60 km numerical mesh-grid suitable for climate model. By incorporating the land use dynamics provided by the above database, the new generation of the Regional Integrate Environment Modeling System (RIEMS2.0) was used for climate simulation study. The preliminary simulation studies show that: (1) the regional climate will be affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed; (2) the integrate impact of the LULC variation on climate (such as temperature, humidity and net long-wave radiation, precipitation) is not only limited to the Northern China where LULC varies, but also to the whole numerical domain where the LULC does not vary at all; (3) the ecological construction engineering implemented in Northern China including the Green-Great Wall construction engineering, the replace farming with forestry and grass movement, and the natural forest conservation etc has shown and will work positively on the eco-environment improvement, particularly shown as the increased

  18. Geomorphic systems of the Palliser Triangle, southern Canadian prairies : description and response to changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Lemmen, D.S. [Geological Survey of Canada, Calgary, AB (Canada); Vance, R.E.; Wolfe, S.A. [Geological Survey of Canada, Ottawa, ON (Canada); Campbell, I.A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Earth and Atmospheric Sciences; David, P.P. [Montreal Univ., Montreal, PQ (Canada). Dept. of Geology; Pennock, D.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science; Sauchyn, D.J. [Regina Univ., Regina, SK (Canada). Dept. of Geography

    1998-12-31

    Four geomorphic systems in the Palliser Triangle of southeastern Alberta and southwestern Saskatchewan are reviewed. The region is characterized by a variable climate, strong annual moisture deficit, and recurrent drought. An assessment of the potential impacts of climate change of the geomorphic systems has shown that eolian landscapes are the most sensitive to climate change. Fluvial systems are the least predictable in terms of response to climate change. The climate influences the frequency of mass wasting processes by changing the regional groundwater table. Wind, water and tillage are the principal agents of soil redistribution, and wind and water erosion are closely related to extreme climatic events. By identifying possible responses to climate change, proactive land management is facilitated. refs., tabs., figs.

  19. A coupled human-natural systems analysis of irrigated agriculture under changing climate

    Science.gov (United States)

    Giuliani, M.; Li, Y.; Castelletti, A.; Gandolfi, C.

    2016-09-01

    Exponentially growing water demands and increasingly uncertain hydrologic regimes due to changes in climate and land use are challenging the sustainability of agricultural water systems. Farmers must adapt their management strategies in order to secure food production and avoid crop failures. Investigating the potential for adaptation policies in agricultural systems requires accounting for their natural and human components, along with their reciprocal interactions. Yet this feedback is generally overlooked in the water resources systems literature. In this work, we contribute a novel modeling approach to study the coevolution of irrigated agriculture under changing climate, advancing the representation of the human component within agricultural systems by using normative meta-models to describe the behaviors of groups of farmers or institutional decisions. These behavioral models, validated against observational data, are then integrated into a coupled human-natural system simulation model to better represent both systems and their coevolution under future changing climate conditions, assuming the adoption of different policy adaptation options, such as cultivating less water demanding crops. The application to the pilot study of the Adda River basin in northern Italy shows that the dynamic coadaptation of water supply and demand allows farmers to avoid estimated potential losses of more than 10 M€/yr under projected climate changes, while unilateral adaptation of either the water supply or the demand are both demonstrated to be less effective. Results also show that the impact of the different policy options varies as function of drought intensity, with water demand adaptation outperforming water supply adaptation when drought conditions become more severe.

  20. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  1. ClimaDat: A long-term network to study at different scales climatic processes and interactions between climatic compartments

    Science.gov (United States)

    Morgui, Josep Anton; Agueda, Alba; Batet, Oscar; Curcoll, Roger; Ealo, Marina; Grossi, Claudia; Occhipinti, Paola; Sánchez-García, Laura; Arias, Rosa; Rodó, Xavi

    2013-04-01

    ClimaDat (www.climadat.es) is a pioneer project of the Institut Català de Ciències del Clima (IC3) in collaboration with and funded by "la Caixa" Foundation. This project aims at studying the interactions between climate and ecosystems at different spatial and temporal scales. The ClimaDat project consists of a network of eight long-term observatory stations distributed over Spain, installed at natural and remote areas, and covering different climatic domains (e.g. Mediterranean, Atlantic, subtropics) and natural systems (e.g. delta, karsts, high mountain areas). Data obtained in the ClimaDat network will help us to understand how ecosystems are influenced by and eventually might feedback different processes in the climate system. The point of focus of these studies will be taken into account regional-and-local conditions to understand climatic global scale eventsThe data gathered will be used to study the behavior of the global element cycles and associated greenhouse gas emissions. The network is expected to offer near real-time (NRT) data free for the scientific community. Instrumentation installed at these stations mainly consists of: CO2, CH4, H2O, CO, N2O, SF6 and 222Rn analyzers, isotopic CO2, CH4 and H2O analyzers, meteorological sensors, eddy covariance equipment, four-component radiometers, soil moisture and temperature sensors, and sap flow meters. Each station may have a more focused subset of all this equipment, depending on the specific characteristics of the site. Instrumentation selected for this network has been chosen to comply with standards established in international research infrastructure projects, such as ICOS (http://www.icos-infrastructure.eu/home) or InGOS (http://www.ingos-infrastructure.eu/). Preliminary data time-series of greenhouse gases concentrations and meteorological variables are presented in this study for three currently operational ClimaDat stations: the Natural Park of the Ebre Delta (lat 40.75° N - long 0.79° E), the

  2. A modeling study of the role of deforestation on the climate of central and eastern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Semazzi, F.H.M.; Sun, Liqiang [North Carolina State Univ., Raleigh, NC (United States); Giorgi, F. [National Center for Atmospheric Research, Boulder, CO (United States)

    1997-11-01

    This study assessed the effects of deforestation on the physical climate system of eastern and central Africa. The model used was the regional climate model (RegCM2) developed at the National Center for Atmospheric Research, and customized for the region under study. In the anomaly simulation, the land cover was systematically altered to replace the tropical forest with grass and Savannah cover. The RegCM2 realistically simulated the main features of the climate over eastern and central Africas. It was found that: (1) the rainfall dramatically decreased in 2 subregions, decreased in two subregions, increased in 1 subregion, and remained the same in 1 subregion; (2) rainfall deficit mainly happened during night time over the TF subregion and daytime over the LV subregion; and (3) mean surface air temperature increased over 5 subregions and decreased in 1 subregions. Deforestation also increased the diurnal variation of surface air temperature over one subregion. 12 refs., 2 figs., 3 tabs.

  3. Climate change effects on high-elevation hydropower system in California

    Science.gov (United States)

    Madani Larijani, Kaveh

    The high-elevation hydropower system in California, composed of more than 150 hydropower plants and regulated by the Federal Energy Regulatory Commission (FERC), supplies 74 percent of in-state hydropower. The system has modest reservoir capacities and has been designed to take advantage of snowpack. The expected shift of runoff peak from spring to winter as a result of climate warming, resulting in snowpack reduction and earlier snowmelt, might have important effects on hydropower operations. Estimation of climate warming effects on such a large system by conventional simulation or optimization methods would be tedious and expensive. This dissertation presents a novel approach for modeling large hydropower systems. Conservation of energy and energy flows are used as the basis for modeling high-elevation high-head hydropower systems in California. The unusual energy basis for reservoir modeling allows for development of hydropower operations models to estimate large-scale system behavior without the expense and time needed to develop traditional streamflow and reservoir volume-based models in absence of storage and release capacity, penstock head, and efficiency information. An Energy-Based Hydropower Optimization Model (EBHOM) is developed to facilitate a practical climate change study based on the historical generation data high-elevation hydropower plants in California. Employing recent historical hourly energy prices, energy generation in California is explored for three climate warming scenarios (dry warming, wet warming, and warming-only) over 14 years, representing a range of hydrologic conditions. Currently, the high-elevation hydropower plants in California have to renew their FERC licenses. A method based on cooperative game theory is developed to explore FERC relicensing process, in which dam owners negotiate over the available instream water with other interest groups downstream. It is discussed how the lack of incentive for cooperation results in long

  4. Drifting snow climate of the Greenland ice sheet: a study with a regional climate model

    NARCIS (Netherlands)

    Lenaerts, J.T.M.; van den Broeke, M.R.; van Angelen, J.H.; van Meijgaard, E.; Déry, S.J.

    2012-01-01

    This paper presents the drifting snow climate of the Greenland ice sheet, using output from a high-resolution ( 11 km) regional climate model. Because reliable direct observations of drifting snow do not exist, we evaluate the modeled near-surface climate instead, using automatic weather station (AW

  5. PROGRESS IN THE STUDY OF RETROSPECTIVE NUMERICAL SCHEME AND THE CLIMATE PREDICTION

    Institute of Scientific and Technical Information of China (English)

    DONG Wenjie; CHOU Jieming; FENG Guolin

    2004-01-01

    The retrospective numerical scheme (RNS) is a numerical computation scheme designed for multiple past value problems of the initial value in mathematics and considering the selfmemory property of the system in physics. This paper briefly presents the historical background of RNS, elaborates the relation of the scheme with other difference schemes and other meteorological prediction methods, and introduces the application of RNS to the regional climatic self-memory model,simplified climate model, barotropic model, spectral model, and mesoscale model. At last, the paper sums up and points out the application perspective of the scheme and the direction for the future study.

  6. Climate Change Impacts on the Electric Power System in the Western United States

    Science.gov (United States)

    Veselka, T. D.; Botterud, A.; Conzelmann, G.; Koritarov, V.; Poch, L. A.; Wang, J.

    2007-12-01

    Future climate change is projected to vary substantially across regions. Changes in regional temperature and precipitation patterns may have significant implications on our existing and future power system infrastructure. In this paper, we use results from regional climate models to examine the impacts of projected changes in temperature and precipitation on the development and operations of the power system in the Western United States. We study three scenarios to evaluate potential effects of climate change on the electricity demand as well as on the power supply side. Impacts are measured in terms of changes in investment requirements, fuel and generation mix, emissions of greenhouse gases and criteria pollutants, and thermal power water withdrawals and consumption. We also identify potential issues regarding the western transmission grid. Our methodology includes a long-term investment algorithm that takes into account interdependencies between hydroelectric, thermal power, and non-dispatchable resources, such as wind turbines. We also include temporal aspects associated with hydropower energy constraints, wind variability, thermal power plant availability, and hourly load profiles. Thermal power plant availability and resulting generation and fuel consumption are based on maintenance outage schedules and a probabilistic dispatch algorithm that accounts for random forced outages. We conclude with some observations regarding the vulnerability of our electricity infrastructure to projected regional climate changes.

  7. A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Gent, Peter; Lamarque, Jean-Francois; Conley, Andrew; Vertenstein, Mariana; Craig, Anthony

    2013-02-13

    The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the development of the CESM1 atmospheric chemistry component was substantially funded by this award, as was the development of the significantly improved coupler component. The CESM1 allows new climate change science in areas such as future air quality in very large cities, the effects of recovery of the southern hemisphere ozone hole, and effects of runoff from ice melt in the Greenland and Antarctic ice sheets. Results from a whole series of future climate projections using the CESM1 are also freely available via the web from the CMIP5 archive at the Lawrence Livermore National Laboratory. Many research papers using these results have now been published, and will form part of the 5th Assessment Report of the United Nations Intergovernmental Panel on Climate Change, which is to be published late in 2013.

  8. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies.

    Science.gov (United States)

    Fatichi, S; Rimkus, S; Burlando, P; Bordoy, R

    2014-09-15

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature.

  9. Sustainable development and climate change: Lessons from country studies

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Shukla, P.; Garg, A.

    2008-01-01

    national et les concessions entre les différents aspects du développement durable qui doivent être abordés. Les secteurs de l'énergie et du transport sont couverts dans maintes études, et un certain degré d'attention est aussi porté au secteur de l'infrastructure et de l'approvisionnement en eau. La....... The energy and transportation sectors are covered in many studies, but some attention is also given to the infrastructure sector and water supply. Most existing development policies will not lead to a sustainable development pattern, since they insufficiently address climate change. However, good...... opportunities exist for integrated policies to achieve development goals while engaging with climate change. The energy and transportation sector studies identified many alternative national low-cost policies with much lower GHG emissions than the business-as-usual policy. Opportunities are identified...

  10. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  11. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  12. The Soft Underbelly of System Change: The Role of Leadership and Organizational Climate in Turnover during Statewide Behavioral Health Reform.

    Science.gov (United States)

    Aarons, Gregory A; Sommerfeld, David H; Willging, Cathleen E

    2011-01-01

    This study examined leadership, organizational climate, staff turnover intentions, and voluntary turnover during a large-scale statewide behavioral health system reform. The initial data collection occurred nine months after initiation of the reform with a follow-up round of data collected 18 months later. A self-administered structured assessment was completed by 190 participants (administrators, support staff, providers) employed by 14 agencies. Key variables included leadership, organizational climate, turnover intentions, turnover, and reform-related financial stress ("low" versus "high") experienced by the agencies. Analyses revealed that positive leadership was related to a stronger empowering climate in both high and low stress agencies. However, the association between more positive leadership and lower demoralizing climate was evident only in high stress agencies. For both types of agencies empowering climate was negatively associated with turnover intentions, and demoralizing climate was associated with stronger turnover intentions. Turnover intentions were positively associated with voluntary turnover. Results suggest that strong leadership is particularly important in times of system and organizational change and may reduce poor climate associated with turnover intentions and turnover. Leadership and organizational context should be addressed to retain staff during these periods of systemic change.

  13. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  14. Stochastic variability and noise-induced generation of chaos in a climate feedback system including the carbon dioxide dynamics

    Science.gov (United States)

    Alexandrov, D. V.; Bashkirtseva, I. A.; Ryashko, L. B.

    2016-08-01

    In this work, a non-linear dynamics of a simple three-dimensional climate model in the presence of stochastic forcing is studied. We demonstrate that a dynamic scenario of mixed-mode stochastic oscillations of the climate system near its equilibrium can be formed. As this takes place, a growth of noise intensity increases the frequency of interspike intervals responsible for the abrupt climate changes. In addition, a certain enhancement of stochastic forcing abruptly increases the atmospheric carbon dioxide and decreases the Earth's ice mass. A transition from order to chaos occurring at a critical noise is shown.

  15. Climate Literacy: Climate.gov Follow-Up Evaluation—A Study of the Four NOAA Audiences

    Science.gov (United States)

    Niepold, F., III; Sullivan, S. B.; Gold, A. U.; Lynds, S. E.; Kirk, K.

    2014-12-01

    NOAA Climate.gov provides science and information for a climate-smart nation. Americans' health, security, and economic well-being are closely linked to climate and weather. NOAA Climate.gov's goals are to promote public understanding of climate science and climate-related events, to make our data products and services easy to access and use, to support educators in improving the nations climate literacy, and to serve people making climate-related decisions with tools and resources that help them answer specific questions.The Climate.Gov Follow-Up Study of the four NOAA Audiences (climate interested public, educators, scientists, policy-makers) built upon the previous literature review and evaluation study conducted by Mooney and Phillips in 2010 and 2012, http://tinyurl.com/ma8vo83. The CIRES Education and Outreach team at the Cooperative Institute for Research in Environmental Sciences at University of Colorado at Boulder and the NOAA Climate.gov team will present results of the new study that used the Quality of Relationship index (awareness, trust, satisfaction, usability, and control mutuality). This index was developed in the previous study and places a new emphasis on the experience of individual users from the four audiences in their regular work or home setting. This new evaluation project used mixed methods, including an online survey, usability studies, phone interviews, and web statistics, providing multiple lines of evidence from which to draw conclusion and recommendations.In the session, we will explore how the NOAA Climate.gov teams used the literature review and new CIRES research to address underlying challenges to achieving the portal's goals. The research in these studies finds that people seek information in ways that are complex and that they do so by consulting a vast array of technologies. Improved and different modes of access to information have, throughout history, been led by technological innovation, but human behavior tends to be

  16. Potential Effects of Climate Changes on Aquatic Systems: Laurentian Great Lakes and Precambrian Shield Region

    Science.gov (United States)

    Magnuson, J. J.; Webster, K. E.; Assel, R. A.; Bowser, C. J.; Dillon, P. J.; Eaton, J. G.; Evans, H. E.; Fee, E. J.; Hall, R. I.; Mortsch, L. R.; Schindler, D. W.; Quinn, F. H.

    1997-06-01

    The region studied includes the Laurentian Great Lakes and a diversity of smaller glacial lakes, streams and wetlands south of permanent permafrost and towards the southern extent of Wisconsin glaciation. We emphasize lakes and quantitative implications. The region is warmer and wetter than it has been over most of the last 12000 years. Since 1911 observed air temperatures have increased by about 0·11°C per decade in spring and 0·06°C in winter; annual precipitation has increased by about 2·1% per decade. Ice thaw phenologies since the 1850s indicate a late winter warming of about 2·5°C. In future scenarios for a doubled CO2 climate, air temperature increases in summer and winter and precipitation decreases (summer) in western Ontario but increases (winter) in western Ontario, northern Minnesota, Wisconsin and Michigan. Such changes in climate have altered and would further alter hydrological and other physical features of lakes. Warmer climates, i.e. 2 × CO2 climates, would lower net basin water supplies, stream flows and water levels owing to increased evaporation in excess of precipitation. Water levels have been responsive to drought and future scenarios for the Great Lakes simulate levels 0·2 to 2·5 m lower. Human adaptation to such changes is expensive. Warmer climates would decrease the spatial extent of ice cover on the Great Lakes; small lakes, especially to the south, would no longer freeze over every year. Temperature simulations for stratified lakes are 1-7°C warmer for surface waters, and 6°C cooler to 8°C warmer for deep waters. Thermocline depth would change (4 m shallower to 3·5 m deeper) with warmer climates alone; deepening owing to increases in light penetration would occur with reduced input of dissolved organic carbon (DOC) from dryer catchments. Dissolved oxygen would decrease below the thermocline. These physical changes would in turn affect the phytoplankton, zooplankton, benthos and fishes. Annual phytoplankton production may

  17. Climate correlates of 20 years of trophic changes in a high-elevation riparian system

    Science.gov (United States)

    Martin, T.E.

    2007-01-01

    The consequences of climate change for ecosystem structure and function remain largely unknown. Here, I examine the ability of climate variation to explain long-term changes in bird and plant populations, as well as trophic interactions in a high-elevation riparian system in central Arizona, USA, based on 20 years of study. Abundances of dominant deciduous trees have declined dramatically over the 20 years, correlated with a decline in overwinter snowfall. Snowfall can affect overwinter presence of elk, whose browsing can significantly impact deciduous tree abundance. Thus, climate may affect the plant community indirectly through effects on herbivores, but may also act directly by influencing water availability for plants. Seven species of birds were found to initiate earlier breeding associated with an increase in spring temperature across years. The advance in breeding time did not affect starvation of young or clutch size. Earlier breeding also did not increase the length of the breeding season for single-brooded species, but did for multi-brooded species. Yet, none of these phenology-related changes was associated with bird population trends. Climate had much larger consequences for these seven bird species by affecting trophic levels below (plants) and above (predators) the birds. In particular, the climate-related declines in deciduous vegetation led to decreased abundance of preferred bird habitat and increased nest predation rates. In addition, summer precipitation declined over time, and drier summers also were further associated with greater nest predation in all species. The net result was local extinction and severe population declines in some previously common bird species, whereas one species increased strongly in abundance, and two species did not show clear population changes. These data indicate that climate can alter ecosystem structure and function through complex pathways that include direct and indirect effects on abundances and interactions

  18. Mainstreaming Climate Change Into Geosciences Curriculum of Tertiary Educational Systems in Ghana

    Science.gov (United States)

    Nyarko, B. K.

    2015-12-01

    The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana and also juxtapose with the WASCAL graduate school curriculum. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognize that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to make Climate Change education practical.

  19. Climate change impact studies - how reliable are they?

    Science.gov (United States)

    Blöschl, Günter; Montanari, Alberto

    2010-05-01

    When two experts estimate the 100-year flood in a small ungauged catchment, chances are that their estimates are very different. When two groups predict the effects of future hydrological changes on stream flow and recharge for the same catchment, the results will hardly be consistent. Yet, climate change impact analyses have become a standard method in our tool box for addressing issues that seem to be of overwhelming concern to the society today. In this paper we argue that impact studies often tend to be overly optimistic about the reliability of their predictions, and overly pessimistic about the effects on society. Just as a medical doctor who, when in doubt, would say that his patient is going to die - to be on the safe side. We will contrast this assessment with our views on the current state of change prediction and outline the opportunities in this area of hydrologic research. Improving the understanding of hydrological processes under the current climate, focusing on why impact studies predict changes rather than on the magnitudes of the change, improving hydrologically-driven uncertainty methods, being more transparent about what we can and cannot predict and being realistic about the role of adaptation measures in the context of water management, we believe, are the cornerstones of more successful climate impact studies. We are truly optimistic that hydrologists will make progress in this important and exciting area of hydrology. Blöschl and A. Montanari (2009) Climate change impacts - throwing the dice? Hydrol. Process. DOI: 10.1002/hyp.7574

  20. Performance of Chaos Theory in Weather Forecasts (Case Study: Tehran-Temperate Climate

    Directory of Open Access Journals (Sweden)

    SohrabHajjam

    2016-06-01

    Full Text Available Accurate weather forecast is of great importance for providing the suitable substrates for water resources management and crisis management. Therefore, the use of methods with high accuracy and updating the forecast models seem to be necessary in this regard. In evaluation of hydrological and climate data, the investigation of precipitation parameter is in non-linear time series method. The present research aimed to compare the performance of intelligent systems based on nonlinear methods, chaos theory, and neural network system in estimating monthly precipitation in temperate climate of Tehran. The results of neural network system, local model methods, and the nearest neighbor showed that chaos-based methods not only are sensitive to the range of data but also influenced by the length of data and attitude towards data review process based on conditions. Evaluation of results indicated that chaos-based have an acceptable and high precision and accuracy and chaos theory produces better results than neural network system in temperate climates. Considering the nature of data, the studied climate, and the procedures required in forecast of meteorological parameters, chaos theory can bring very good results. Due to the sensitivity of meteorological forecasts, the use of this theory can be helpful and beneficial.

  1. Scenarios of climate change in the northern Veracruz Coral Reef System

    Science.gov (United States)

    Allende-Arandía, M.; Zavala-Hidalgo, J.; Mateos-Jasso, A.; Romero-Centeno, R.; Ocean-Atmosphere Interaction Group

    2013-05-01

    Some studies of the impact of climate change on coral reef ecosystems have focused on the abundance and distribution of species, but both are closely related to environmental conditions determined by the physical factors of the particular area. The impact on these ecosystems depend on the increase in sea level (growth rates and sediment supply), changes in oceanographic conditions (temperature, salinity and acidification), changes in the frequency and intensity of storms, and the anthropogenic influence on coastal areas, thereby increasing the vulnerability of coral reefs to climate change and reducing its adaptation ability. This work aims to study average and extreme conditions in the Veracruz Coral Reef System (SAV) that may have an environmental impact associated with climate change. Data from two global models (MIROC3.2 and ECHAM/MPI-OM) and reanalysis data (NARR) are used to compare weather conditions in the SAV for the period 1991-2000 and the proposed IPCC projections for the period 2091-2100. No significant difference in wind patterns were observed, so these scenarios suggest that no significant changes are expected in the dynamic conditions and stratification caused by climate change in the SAV.

  2. Second California Assessment: Integrated climate change impacts assessment of natural and managed systems. Guest editorial

    Science.gov (United States)

    Franco, G.; Cayan, D.R.; Moser, S.; Hanemann, M.; Jones, M.A.

    2011-01-01

    Since 2006 the scientific community in California, in cooperation with resource managers, has been conducting periodic statewide studies about the potential impacts of climate change on natural and managed systems. This Special Issue is a compilation of revised papers that originate from the most recent assessment that concluded in 2009. As with the 2006 studies that influenced the passage of California's landmark Global Warming Solutions Act (AB32), these papers have informed policy formulation at the state level, helping bring climate adaptation as a complementary measure to mitigation. We provide here a brief introduction to the papers included in this Special Issue focusing on how they are coordinated and support each other. We describe the common set of downscaled climate and sea-level rise scenarios used in this assessment that came from six different global climate models (GCMs) run under two greenhouse gas emissions scenarios: B1 (low emissions) and A2 (a medium-high emissions). Recommendations for future state assessments, some of which are being implemented in an on-going new assessment that will be completed in 2012, are offered. ?? 2011 Springer Science+Business Media B.V.

  3. Indigenous Food Systems and Climate Change: Impacts of Climatic Shifts on the Production and Processing of Native and Traditional Crops in the Bolivian Andes.

    Science.gov (United States)

    Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L

    2016-01-01

    Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, "indigenous food systems." Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat

  4. Indigenous Food Systems and Climate Change: Impacts of climatic shifts on the production and processing of native and traditional crops in the Bolivian Andes

    Directory of Open Access Journals (Sweden)

    Alder eKeleman Saxena

    2016-03-01

    Full Text Available Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data was collected between 2012 and 2014 via mixed-methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes a the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia; and b the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp., oca (Oxalis tuberosa, tarwi (Lupinus mutabilis, papalisa (Ullucus tuberosus, and charkay (llama or sheep jerky. Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, the use and spatial distribution of particular crop varieties. Further, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. While these findings are drawn from a single case-study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, indigenous food systems. Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture, and may be under different, more direct, and more immediate threat

  5. Knowledge systems in upland farming practices in the Philippines and implications for climate change adaptation

    OpenAIRE

    Espaldon, Maria Victoria O.

    2008-01-01

    The paper focuses on the importance of multiple knowledge systems on enhancing the adaptive capacity of farming communities in the Philippines. It discusses the epistemologies of knowledge that are pertinent to strengthen the resilience of small farmers and farming households, who are one of the most vulnerable groups in the event of climatic variabilities, climatic extremes and climate change. It also brings to the discussion the need for effective communication systems to disseminate the kn...

  6. Impacts of Future Climate Change on Ukraine Transportation System

    Science.gov (United States)

    Khomenko, Inna

    2016-04-01

    Transportation not only affects climate, but are strongly influenced with the climate conditions, and key hubs of the transportation sector are cities. Transportation decision makers have an opportunity now to prepare for projected climate changes owing to development of emission scenarios. In the study impact of climate change on operation of road transport along highways are analyzed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean and maximum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 8 cities (Dnipropetrovsk, Khmelnytskyi, Kirovohrad, Kharkiv, Odesa, Ternopil, Vinnytsia and Voznesensk) situated down the highways. The highways of 'Odesa-Voznesensk-Dnipropetrovsk-Kharkiv' and 'Dnipropetrovsk-Kirovohrad-Vinnytsia-Khmelnytskyi-Ternopil' are considered. The first highway goes across the Black Sea Lowland, the Dnieper Upland and Dnieper Lowland, the other passes through the Dnieper and Volhynia-Podillia Uplands. The both highways are situated in steppe and forest-steppe native zones. For both scenarios, significant climate warming is registered; it is revealed in significant increase of average monthly and yearly temperature by 2-3°C in all cities in questions, and also, in considerable increment of frequency of days with maximum temperature higher than +30 and 35°C, except Kharkiv, where decrease number of days with such temperatures is observed. On the contrary, number of days with daily mean temperature being equal to or below 0°C decreases in the south of steppe, is constant in the north of steppe and increases in the forest-steppe native zone. Extreme negative temperatures don't occur in the steppe zone, but takes place in the forest-steppe zone. Results obtained shows that road surface must hold in extreme maximum temperature, and in the forest-steppe zone hazards of extreme negative temperatures

  7. Climate change negotiation simulations for students: responses across gender and age.A case study: San Francisco State University World Climate Exercises

    Science.gov (United States)

    Rasheva, E. A.

    2015-12-01

    For decades, role-play and simulation exercises have been utilized for learning and policy decision making. While the power of Model UN simulations in building first-person experience and understanding of complex international issues is well known, the effectiveness of simulations for inspiring citizen engagement in scientific public-policy issues is little studied. My work hypothesizes that climate-change negotiation simulations can enhance students' scientific literacy and policy advocacy. It aims to determine how age and gender influence the responsiveness of students to such simulations. During the 2015 fall semester, I am conducting World Climate exercises for fellow graduate and undergraduate students at San Francisco State University. At the end of the exercise, I will have collected the responses to an anonymous questionnaire in which the participants indicate age and gender. The questionnaire asks participants to describe their hopes and fears for the future and to propose public and personal actions for achieving a strong climate change agreement. I am tracking differences to determine whether participants' age and gender correlate with particular patterns of feeling and thinking. My future research will aim to determine whether and how strongly the World Climate Exercise has affected participants' actual policy engagement. This work will also reflect on my experiences as a World Climate facilitator. I will describe the facilitation process and then discuss some of my observations from the sessions. I will specify the challenges I have encountered and suggest strategies that can strengthen the learning process. World Climate is a computer-simulation-based climate change negotiations role-playing exercise developed by Climate Interactive in partnership with the System Dynamics Group at the MIT Sloan School of Management.

  8. Translating global climate model projections into usable information for water managers and industry: A case study from Tasmania, Australia

    Science.gov (United States)

    Bennett, J.; Ling, F.; Graham, B.; Grose, M.; Corney, S.; Holz, G.; White, C.; Gaynor, S.; Bindoff, N.

    2010-09-01

    Translating meteorological projections from global climate models (GCMs) into useful information for water managers and industry involves addressing a combination of technical and communication challenges. The Climate Futures for Tasmania project has projected water yield in Tasmania, Australia to 2100. This paper describes how the Climate Futures for Tasmania project successfully translated climate projections into useable information for water managers and industry. From its inception, the Climate Futures for Tasmania project has maintained a dialogue with the two major water managers in the Tasmania: the Department of Primary Industry, Parks, Water and Environment (DPIPWE), the government body with statutory responsibility for water management in Tasmania, and Hydro Tasmania, Australia's largest hydropower generator. Frequent discussions with these two organisations directed the technical research into future water yields. Tasmania is a difficult region for climate change-hydrology studies. Tasmania's complex rainfall patterns are not replicated by GCMs, and hence GCMs produce information that is too general to be useful to Tasmanian water managers. To overcome this problem, GCM projections were downscaled to a finer spatial resolution. Downscaling greatly improved the spatial correlation of modelled rainfall with observations, and accordingly the usefulness of the projections to water managers. The downscaled climate projections were fed into hydrological models to produce projections of streamflow. The hydrological modelling involved two steps: 1. Runoff modelling - calculating statewide, gridded natural runoff at a resolution of 0.05 degrees 2. River system modelling - aggregating the gridded natural runoff to 65 Tasmanian river basins and then accounting for human activities in rivers including dams, irrigation and hydropower generation. Splitting the hydrological modelling into these two steps allows the effects of climate and human activity to be

  9. Strategic risk assessment: A case study of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Beer, T. [CSIRO, Mordialloc, Victoria (Australia). Div. of Atmospheric Research

    1996-12-31

    The philosophical basis for the on-going international and Australian action on climate change is the precautionary principle. The version of this relevant to Australia is that agreed to by the Australian States and by the Commonwealth of Australia as expressed in the Inter-Governmental Agreement on the Environment (IGAE). This study addresses the following questions: 1. What form of assessment of the risk-weighted consequences of climate change has been undertaken, as required under the precautionary principle? This paper claims that the IPCC process constitutes the risk-weighted assessment that is needed to justify the use of the precautionary principle. 2. Reducing the risk due to climate change requires actions on the basis of some combination of environmental integrity, equity, and economic efficiency as measured by cost-benefit analysis. Is the concept of intergenerational equity consistent with cost-benefit analysis? This paper claims that the problems of valuation over future time-scales, which may range from decades to centuries, make it difficult to apply cost-benefit analysis to the problem.

  10. Towards the Prediction of Decadal to Centennial Climate Processes in the Coupled Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhengyu [Univ. of Wisconsin, Madison, WI (United States); Kutzbach, J. [Univ. of Wisconsin, Madison, WI (United States); Jacob, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Prentice, C. [Bristol Univ. (United Kingdom)

    2011-12-05

    In this proposal, we have made major advances in the understanding of decadal and long term climate variability. (a) We performed a systematic study of multidecadal climate variability in FOAM-LPJ and CCSM-T31, and are starting exploring decadal variability in the IPCC AR4 models. (b) We develop several novel methods for the assessment of climate feedbacks in the observation. (c) We also developed a new initialization scheme DAI (Dynamical Analogue Initialization) for ensemble decadal prediction. (d) We also studied climate-vegetation feedback in the observation and models. (e) Finally, we started a pilot program using Ensemble Kalman Filter in CGCM for decadal climate prediction.

  11. 全球气候研究计划(WCRP)中的气候与冰冻圈项目(CliC): 冰冻圈与气候的优先研究领域%The World Climate Research Programme (WCRP) Climate and Cryosphere Project (CliC): Priority Studies of the Cryosphere and Climate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The cryosphere is an integral part of the global climate system, however, many aspects of the cryosphere have not been fully covered within WCRP. Issues relating to potential changes in the climate cryosphere system become more and more important in order to describes research and coordination initiatives required to integrate fully studies of impact and response of the cryosphere to climate change. The article also indicates the recent progress of CliC, and its future plan.

  12. Groundwater and climate change in Africa : review of recharge studies

    OpenAIRE

    Bonsor, H. C.; MacDonald, A. M.

    2010-01-01

    The review of recharge studies was conducted as part of a one year DFID-funded research programme, aimed at improving understanding of the impacts of climate change on groundwater resources and local livelihoods – see http://www.bgs.ac.uk/GWResilience/. The review is one of a series of components within the project. The overall outputs of the project are: Two hydrogeological case studies in West and East Africa – which assess the storage and availability of groundwater in different aquifers a...

  13. The 21st century Museum Climatic Monitoring System

    Science.gov (United States)

    Liu, W.-S.

    2015-08-01

    Technology has provided us work convenience and shaped our quality of life; it has enabled an unprecedented level of access to knowledge by flipping screen of a hand-held electronic device without going elsewhere but stay connected wireless communication. This kind of technology has been broadly acquired at museums in Hong Kong for preserving their valuable collections. Similar gadget was applied on the monitoring system to record climatic conditions of museum's stores and galleries. Sensors have been equipped with chips for the wireless transmission of RH/Temp, without installation of any conduit or LAN lines. Useful and important data will then be grouped into a packet format for efficient delivery. As long as the static IP address of the target workstation has been set, data can be accurately retrieved from one place to another via commercially available browsers, such as: Firefox or Internet Explorer, even on hand-held electronic devices. This paper will discuss the detail of this system, its pros and cons in comparison with the old model. After all, the new technology is highly significant in supporting the current needs and the future developments of the museum service.

  14. Mars: A Planet with a Dynamic Climate System

    Science.gov (United States)

    Haberle, Robert M.

    2013-01-01

    Mars is a well-observed planet. Since the 1960s orbiters, landers, rovers, and earth-based telescopic observations show that its climate system is dynamic. Its dynamic nature, largely the result of atmosphere-surface interactions, is most obvious in the seasonal cycles of dust, water, and carbon dioxide that define the planet's climate system. These cycles are linked through the global circulation and MGS, Odyssey, Phoenix, MER, Mars Express, MRO, and now MSL have continuously observed them at Mars for the past 16 years. Their observations show that while the seasonal cycles are largely annually repeatable, there are interannual variations. Planet-encircling dust storms, for example, are quasi-triennial and originate over a broader range of seasons and locations than previously thought. Water moves from pole-to-pole each year in a largely, but not precisely, repeatable pattern that suggests but does not demand non-polar surface reservoirs. And the seasonal CO2 polar caps grow and retreat in a very predictable way with only minor deviations from year-to-year in spite of significant differences in atmospheric dust content. These behaviors suggest a complicated but robust coupled system in which these cycles interact to produce the greatest interannual variability in the dust cycle and least variability in the CO2 cycle. The nature of these interactions is the subject of ongoing research, but clouds, both water ice and CO2 ice, now appear to play a bigger role than believed at the end of the 20th century. There may also be some long-term trends in these cycles as there is evidence from imaging data, for example, that the south polar residual cap may not be stable on decadal to centennial time scales. On even longer time scales, the discovery of as much as 5 mb global equivalent of buried CO2 ice near the south pole, the detection of vast quantities of subsurface water ice at very shallow depths in midlatitudes of both hemispheres, and the presence of remnant glacial

  15. Analysis agriculture's impact in a system of lakes on a karst environment with tropical climate.

    Science.gov (United States)

    Olea Olea, Selene; Escolero Fuentes, Oscar

    2015-04-01

    This paper has as main object to analyze the impact of agriculture in the water quality of the "Lagos de Montebello" area; which is located in the Southeast of Mexico. This area is prominent by its tropical climate and a karstic environment. The issue arises in a lake system affected by pollution in the later years, which has turned its former clear water into a highly sedimented muddy water in the topographically lower terrains while no polluted on the higher ones; therefore it is intended to determine if the rise in agricultural activity in the lower terrains has induced this phenomenon. The impact of agriculture has been historically studied in temperate climates with karstic environments; nevertheless it has not been very well studied in tropical climates; which are the reason of this proposal to perform a study to analyze the impact of the intensive agriculture running in the area. To develop this project we studied the area regarding to the types of crops that has being established in the zone, being mostly tomato, corn, and bean; and the fertilizers and pesticides applied to them. A groundwater monitoring plan was designed with a variety of phases such as: piezometers building, measurement of groundwater levels, measurement of field parameters, with a two months intervals (Ph, temperature, electric conductivity, total dissolved solids), and water samplings for laboratory analysis (major ions, nutrients, total organic carbon, pesticides) at twice a year, once during rainy season and then on drought. The rates of pollution agents infiltration depends on the type of soil retention and volume of water. The materials found in the soil by the piezometers are clay, silt, sand and variations between them. We determined that the geochemical qualities of the groundwater vary from calcic bicarbonate to calcic sulfated. The results reached with this monitoring provides a preliminary diagnosis on the possible causes and other implications that intensive agriculture in a

  16. Mitigation of climate change impacts by hydrologic and cultural components of traditional acequia irrigation systems

    Science.gov (United States)

    Fernald, A.

    2009-12-01

    In northern New Mexico and other physiographically similar semi-arid settings worldwide, traditional irrigation systems divert snowmelt runoff from streams for distribution to valley croplands. This field hydrology and culture study is taking place in three New Mexico watersheds. Ongoing measurements show that seepage to groundwater and subsequent stream recharge from subsurface return flows effectively reduce spring runoff peaks and augment summer baseflow. This retransmission function of traditional acequia irrigated valleys is important for downstream users, particularly in the face of changing climate with projected earlier snowmelt and increased rain. Preliminary evaluations of the community irrigation management structure show high adaptability to climate variation. Water is partitioned to individual users based on water availability, with more water for all in wet years and less for all in dry years. Irrigation water seepage has additional benefits: water quality improvement, wildlife habitat creation, riparian vegetation support, and aesthetic enhancement. Community cohesion and longevity are supported by hydrologic and cultural aspects of the irrigation systems. Lessons learned from these systems promise a window into techniques for sustainable management of linked watersheds and river valleys under future climate change scenarios.

  17. Adapting complex multi-level landscape systems to climate change

    NARCIS (Netherlands)

    Koomen, E.; Steingröver, E.G.; Opdam, P.F.M.

    2012-01-01

    Adaptation to climate change is becoming a prominent issue in both landscape research and landuse planning. Current research focuses mainly on the description of potential impacts for different societal sectors and in general fails to provide useful information to help define climate adaptation stra

  18. Adaptation Strategy of Seaweed Cultivation to Face the Climate Change (Case Study in Segoro Anakan Bay Ngadirojo, Pacitan

    Directory of Open Access Journals (Sweden)

    Syahrial Nur Amri

    2016-08-01

    Full Text Available The damage of coastal ecosystems are no longer dominated by human activity, but the condition of global climate change were also influenced. Climate change impact on the environment influencing the coastal management paradigm. This study emphasizes on how to develop a adaptation strategy of coastal zone management due to the impact of climate change through remote sensing approach, Geographic Information Systems (GIS, and adaptation strategies analysis. Location of research conducted in the Region of Segoro Anakan Bay, District Ngadirojo Pacitan. The results showed the impact of climate change is affecting the area and production of seaweed culture in the form of tectonic conditions aggravated by silting waters. To combat the effects of climate change, the adaptation scenario is implemented to intensification and extensification of land use, alternative livelihoods, minawisata as a combination of all three.

  19. Climate Change Management Approaches of Cities: A Comparative Study Between Globally Leading and Turkish Metropolitan Cities

    Directory of Open Access Journals (Sweden)

    Solmaz Filiz Karabag

    2011-05-01

    Full Text Available Many studies have focused on climate change policies and action at the national level, but few have studied policies and action at the city level, especially cities in emerging economies. To address this gap, the present study analyzes the management strategies globally leading cities have developed to address climate change and related issues and compares them with the city strategies of one rapidly urbanizing emerging economy, Turkey. In the analysis, the strategic plans of five leading global cities are compared with those of sixteen Turkish cities. While the leading global cities have specific managerial approaches to mitigate climate change, none of the Turkish cities exhibits any comprehensive approach. Furthermore, while leading global cities modify urban services to reduce greenhouse gas (GHG emissions, few Turkish cities adjust any services to address this challenge. Some Turkish cities propose an increased use of renewable energy sources and modification in their transportation system, but the focus in these plans is the current daily needs of their inhabitants. The findings of this study suggest several climate change strategies both for Turkish cities and cities in other developing countries.

  20. Rapid climatic signal propagation from source to sink in a southern California sediment-routing system

    Science.gov (United States)

    Covault, J.A.; Romans, B.W.; Fildani, A.; McGann, M.; Graham, S.A.

    2010-01-01

    Terrestrial source areas are linked to deep-sea basins by sediment-routing systems, which only recently have been studied with a holistic approach focused on terrestrial and submarine components and their interactions. Here we compare an extensive piston-core and radiocarbon-age data set from offshore southern California to contemporaneous Holocene climate proxies in order to test the hypothesis that climatic signals are rapidly propagated from source to sink in a spatially restricted sediment-routing system that includes the Santa Ana River drainage basin and the Newport deep-sea depositional system. Sediment cores demonstrate that variability in rates of Holocene deep-sea turbidite deposition is related to complex ocean-atmosphere interactions, including enhanced magnitude and frequency of the North American monsoon and El Ni??o-Southern Oscillation cycles, which increased precipitation and fluvial discharge in southern California. This relationship is evident because, unlike many sediment-routing systems, the Newport submarine canyon-and-channel system was consistently linked tothe Santa Ana River,which maintained sediment delivery even during Holocene marine transgression and highstand. Results of this study demonstrate the efficiency of sediment transport and delivery through a spatially restricted, consistently linked routing system and the potential utility of deep-sea turbidite depositional trends as paleoclimate proxies in such settings. ?? 2010 by The University of Chicago.

  1. Recent Progress in Studies of Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    REN Guoyu; DING Yihui; ZHAO Zongci; ZHENG Jingyun; WU Tongwen; TANG Guoli; XU Ying

    2012-01-01

    An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China,average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (10 yr)-1 to 0.12℃ (10 yr)-1.This warming is more evident in northern China and is more significant in winter and spring.In the past 50 years in China,at least 27% of the average annual warming has been caused by urbanization.Overall,no significant trends have been detected in annual and/or summer precipitation in China on a whole for the past 100 years or 50 years. Both increases and decreases in frequencies of major extreme climate events have been observed for the past 50 years. The frequencies of extreme temperature events have generally displayed a consistent pattern of change across the country,while the frequencies of extreme precipitation events have shown only regionally and seasonally significant trends.The frequency of tropical cyclone landfall decreased slightly,but the frequency of sand/dust storms decreased significantly.Proxy records indicate that the annual mean SAT in the past a few decades is the highest in the past 400-500 years in China,but it may not have exceeded the highest level of the Medieval Warm Period (1000-1300 AD).Proxy records also indicate that droughts and floods in eastern China have been characterized by continuously abnormal rainfall periods,with the frequencies of extreme droughts and floods in the 20th century most likely being near the average levels of the past 2000 years.The attribution studies suggest that increasing greenhouse gas (GHG) concentrations in the atmosphere are likely to be a main factor for the observed surface warming nationwide.The Yangtze River and Huaihe River basins underwent a cooling trend in summer over the past 50 years,which might have been caused by increased aerosol concentrations and cloud cover.However,natural climate variability might have been a main driver for the mean and

  2. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    Science.gov (United States)

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  3. Using large-scale climate indices in climate change ecology studies

    DEFF Research Database (Denmark)

    Forchhammer, Mads Cedergreen; Post, Eric

    2004-01-01

    Ecological responses, El Niño 3.4, Long-term climate variability, North Atlantic Oscillation, North Pacific Oscillation, Teleconnection patterns......Ecological responses, El Niño 3.4, Long-term climate variability, North Atlantic Oscillation, North Pacific Oscillation, Teleconnection patterns...

  4. Impacts of Irrigation on Daily Extremes in the Coupled Climate System

    Science.gov (United States)

    Puma, Michael J.; Cook, Benjamin I.; Krakauer, Nir; Gentine, Pierre; Nazarenka, Larissa; Kelly, Maxwell; Wada, Yoshihide

    2014-01-01

    Widespread irrigation alters regional climate through changes to the energy and water budgets of the land surface. Within general circulation models, simulation studies have revealed significant changes in temperature, precipitation, and other climate variables. Here we investigate the feedbacks of irrigation with a focus on daily extremes at the global scale. We simulate global climate for the year 2000 with and without irrigation to understand irrigation-induced changes. Our simulations reveal shifts in key climate-extreme metrics. These findings indicate that land cover and land use change may be an important contributor to climate extremes both locally and in remote regions including the low-latitudes.

  5. Is climatic regionalization in frame of estimated pedologic-ecological system actual in 21st century?

    Science.gov (United States)

    Středová, Hana; Chuchma, Filip

    2014-09-01

    Climatic variables defining climatic regions of estimated pedologic-ecological system (EPEU) were calculated based on fifty-year climatic data from 1961 to 2010. Obtained results were subsequently compared to intervals determining individual climatic regions defined by previous climatic data (1901-1950). In many agricultural intense areas sum of air temperature and mean air temperature exceeded upper limit. In terms of precipitation it is especially noticeable in the wet (higher) altitudes. Significant volatility was found for probability of dry periods from April to September. The values of the moisture certainty from April to September for the period 1961-2010 reached to several tens. In the final analysis, the only safe prediction is that the present and future are likely to be very different from the past. It is necessary to take it into account for actualization of EPEU methodology. Among the strongest arguments justifying the need of this actualization is in particular climate development since 1901, technological progress and improved measurement technology as well as automation and development of climate models coupled with simulations of complex characteristics and estimates of future climate. It is evident that the development of climate and other factors have an enormous impact on soil fertility. This should be also taken into consideration when fixing the official price. It is necessary to consider the possible replacement of the existing characteristics by more suitable (for example soil moisture balance). The findings might be summarized in few words: old climatic regions do not reflect actual climatic conditions.

  6. Study on the Sensitivity and Vulnerability of Wheat to Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    SUN Fang; YANG Xiu; LIN Er-da; JU Hui; XIONG Wei

    2005-01-01

    Based on B2 climate change scenario produced by PRECIS (providing regional climates for impacts studies), which was developed by the UK Hadley Center, and the wheat yield data outputted by CERES-wheat model, the sensitivity and vulnerability of wheat production to the future climate change in China were studied through analyzing the yield variation using the GIS (geographical information system) techniques. Results showed that, by the 2070s, there will be three negative sensitive areas of rain-fed wheat, i.e., northeastern China, the region of the middle and lower reaches of the Yangtze River, and part of the Loess Plateau. Irrigated wheat is generally sensitive to the future climate change for most areas of China, with a lower sensitive degree and a distribution of sensitive areas similar to the rain-fed wheat. For the irrigated wheat, northeast and northwest of China are strongly negative sensitive, while the middle and lower reaches of the Yangtze River, the coastal areas of southern China and the southwest of China, are moderately negative sensitive to the climate change. With the appropriate adaptation to the climate change, the rain-fed wheat in most regions of China will not be vulnerable and even has a yield increase, while the irrigated wheat will still have a larger vulnerable area (occupying about 2/3 of its total area in China), with the highly vulnerable regions distributed in northeastern China and northwestern China, and the medium and light vulnerable areas distributed along the middle and lower reaches of the Yangtze River,Yunnan and Guizhou provinces.

  7. MOSAiC - Multidisciplinary drifting Observatory for the Study of Arctic Climate

    Science.gov (United States)

    Shupe, M.; Persson, O. P.; Tjernstrom, M. K.; Dethloff, K.

    2012-12-01

    The climate in the Arctic is changing faster than in other regions of the Earth, with near surface temperatures rising more than twice as fast as the global average and the perennial sea-ice cover shrinking fast, especially in summer. The Arctic is transitioning towards a new climate regime dominated by first year sea-ice. At the same time, the scientific understanding of processes and feedbacks causing this rapid change is poor and climate modeling in the Arctic remains problematic. Furthermore, the key physical processes and process-interactions in this new emerging Arctic system are likely different from those in the old system that was dominated by multi-year ice. Our understanding of this complex climate system, and ability to improve climate and weather models, is limited by the lack of observations in the extreme and remote central Arctic. Multi-year, detailed and comprehensive measurements, extending from the atmosphere through the sea-ice and into the ocean in the central Arctic Basin are needed to provide process-level understanding of the central Arctic climate system. To address this need, a manned, international drifting station will be installed in the young sea-ice of the western Arctic and follow the evolution of the ice pack as it proceeds through the transpolar drift towards the Fram Strait over the course of 1-2 years. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), proposed to start in autumn 2017, will be guided by the broad theme: What are the causes and consequences of diminished Arctic sea-ice coverage? To address this theme requires a number of interdisciplinary investigations that target more specific science questions. *How do ongoing changes in the Arctic ice-ocean-atmosphere system drive heat and mass transfers of importance to climate and ecosystems? *What are the processes and feedbacks affecting sea ice cover, atmosphere-ocean stratification and energy budget in the Arctic? *Will an ice reduced

  8. Final report: The effect of climate change on the Norwegian Energy System towards 2050

    Energy Technology Data Exchange (ETDEWEB)

    Seljom, P.; Rosenberg, E.; Fidje, A.; Meir, M.; Haugen, J.E.; Jarlseth, T.

    2010-08-15

    The climate impact on the renewable resources, end use demand, and on the Norwegian energy system towards 2050 is identified. Climate change will reduce the heat demand, increase the cooling demand, result in no impact on the wind power potential, and increase the hydro power potential. The total impact is reduced energy system costs, and lower Norwegian electricity prices. The net electricity export will increase, and national investments in new renewable power production like offshore wind- , tidal- and wave power will decrease due to climate change. Additionally, the electricity consumption in the residential and in the commercial sector will decrease, and climate change will lead to an earlier profitable implementation of electric based vehicles in Norway. Despite great uncertainties in the future climate, various future emission scenarios are compatible regarding the Norwegian climate impact, although the magnitude of the impact varies. (Author)

  9. Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon

    Science.gov (United States)

    Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.

    2013-01-01

    We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect

  10. Climate change in Germany. Vulnerability and adaption of climate sensitive sectors; Klimawandel in Deutschland. Vulnerabilitaet und Anpassungsstrategien klimasensitiver Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Zebisch, Marc; Grothmann, Torsten; Schroeter, Dagmar; Hasse, Clemens; Fritsch, Uta; Cramer, Wolfgang [Potsdam Institut fuer Klimaforschung, Potsdam (Germany)

    2005-08-15

    The objectives of this study were the following: documentation of existing knowledge on global change (and particularly climate change) in Germany and to analysis of its current and potential future impacts on seven climate-sensitive sectors (water management, agriculture, forestry, biodiversity/nature conservation, health, tourism and transport).; the evaluation of the present degree of adaptation and the adaptive capacity of these climate-sensitive sectors to global change; conclusions on the vulnerability to global change of sectors and regions in Germany by considering potential global change impacts, degrees of adaptation and adaptive capacity; and the discussion of the results of the study with decision-makers from government, administration, economy and society, in order to develop a basis for the development of strategies of adaptation to global change in Germany.

  11. Computing and Systems Applied in Support of Coordinated Energy, Environmental, and Climate Planning

    Science.gov (United States)

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: ...

  12. Nonlinear problems of complex natural systems: Sun and climate dynamics

    CERN Document Server

    Bershadskii, A

    2012-01-01

    Universal role of the nonlinear one-third subharmonic resonance mechanism in generation of the strong fluctuations in such complex natural dynamical systems as global climate and global solar activity is discussed using wavelet regression detrended data. Role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Nino phenomenon have been discussed in detail. The large fluctuations of the reconstructed temperature on the millennial time-scales (Antarctic ice cores data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to Earth precession effect on the energy that the intertropical regions receive from the Sun. Effects of Galactic turbulence on the temperature fluctuations are discussed in this content. It is also shown that the one-third subharmonic resonance can be considered as a background for the 11-years solar cycle, and again the global (solar) rotation and chaoti...

  13. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.

    a temperature index method. The delta change approach was used to generate synthetic precipitation and temperature data based on observations (1961-1990) and three regional climate models (2036-2065, CLM, RACMO and REMO). Because modelling generation on 1000+ hydropower plants is intractable, the capacities...... and marginal costs of the power producers. Two effects of climate change on the power system were studied: changes in the hydropower production caused by changes in precipitation and temperature, and changes in the electricity demand over the year caused by temperature changes. A rainfall-runoff model...... was established to estimate the impact of precipitation and temperature changes on reservoir inflows. The model was calibrated using observed precipitation, temperature and river discharge time series. Potential evapotranspiration was estimated from temperature data, and snow accumulation/melt was modelled using...

  14. Tectonic and climatic controls on fan systems: The Kohrud mountain belt, Central Iran

    Science.gov (United States)

    Jones, Stuart J.; Arzani, Nasser; Allen, Mark B.

    2014-04-01

    Late Pleistocene to Holocene fans of the Kohrud mountain belt (Central Iran) illustrate the problems of differentiating tectonic and climatic drivers for the sedimentary signatures of alluvial fan successions. It is widely recognised that tectonic processes create the topography that causes fan development. The existence and position of fans along the Kohrud mountain belt, NE of Esfahan, are controlled by faulting along the Qom-Zefreh fault system and associated fault zones. These faults display moderate amounts of historical and instrumental seismicity, and so may be considered to be tectonically active. However, fluvial systems on the fans are currently incising in response to low Gavkhoni playa lake levels since the mid-Holocene, producing incised gullies on the fans up to 30 m deep. These gullies expose an interdigitation of lake deposits (dominated by fine-grained silts and clays with evaporites) and coarse gravels that characterise the alluvial fan sediments. The boundaries of each facies are mostly sharp, with fan sediments superimposed on lake sediments with little to no evidence of reworking. In turn, anhydrite-glauberite, mirabilite and halite crusts drape over the gravels, recording a rapid return to still water, shallow ephemeral saline lake sedimentation. Neither transition can be explained by adjustment of the hinterland drainage system after tectonic uplift. The potential influence in Central Iran of enhanced monsoons, the northward drift of the Intertopical Convergence Zone (ITCZ) and Mediterranean climates for the early Holocene (~ 6-10 ka) point to episodic rainfall (during winter months) associated with discrete high magnitude floods on the fan surfaces. The fan sediments were deposited under the general influence of a highstand playa lake whose level was fluctuating in response to climate. This study demonstrates that although tectonism can induce fan development, it is the sensitive balance between aridity and humidity resulting from changes in

  15. Climate and energy scenarios for Ireland to 2050 using the Irish TIMES energy systems model

    OpenAIRE

    Chiodi, Alessandro

    2014-01-01

    Due to growing concerns regarding the anthropogenic interference with the climate system, countries across the world are being challenged to develop effective strategies to mitigate climate change by reducing or preventing greenhouse gas (GHG) emissions. The European Union (EU) is committed to contribute to this challenge by setting a number of climate and energy targets for the years 2020, 2030 and 2050 and then agreeing effort sharing amongst Member States. This thesis focus on one Member S...

  16. Evaluating the Representation and Impact of Convective Processes in the NCAR’s Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoqing Wu

    2008-07-31

    Convection and clouds affect atmospheric temperature, moisture and wind fields through the heat of condensation and evaporation and through redistributions of heat, moisture and momentum. Individual clouds have a spatial scale of less than 10 km, much smaller than the grid size of several hundred kilometers used in climate models. Therefore the effects of clouds must be approximated in terms of variables that the model can resolve. Deriving such formulations for convection and clouds has been a major challenge for the climate modeling community due to the lack of observations of cloud and microphysical properties. The objective of our DOE CCPP project is to evaluate and improve the representation of convection schemes developed by PIs in the NCAR (National Center for Atmospheric Research) Community Climate System Model (CCSM) and study its impact on global climate simulations.

  17. Spatio-temporal impact of climate change on the groundwater system

    Directory of Open Access Journals (Sweden)

    J. Dams

    2011-11-01

    Full Text Available Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs it is essential to assess the impact of climate change on this freshwater resource. In this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared with the reference period 1960–1991, a change in annual groundwater recharge between −20% and +7%. On average annual groundwater recharge decreases 7%. Seasonally, in most scenarios the recharge increases during winter but decreases during summer. The altered recharge patterns cause the groundwater level to decrease significantly from September to January. On average the groundwater level decreases about 7 cm with a standard deviation between the scenarios of 5 cm. Groundwater levels in interfluves and upstream areas are more sensitive to climate change than groundwater levels in the river valley. Groundwater discharge to GWDTEs is expected to decrease during late summer and autumn as much as 10%, though the discharge remains at reference-period level during winter and early spring. As GWDTEs are strongly influenced by temporal dynamics of the groundwater system, close monitoring of groundwater and implementation of adaptive management measures are required to prevent ecological loss.

  18. Spatio-temporal impact of climate change on the groundwater system

    Directory of Open Access Journals (Sweden)

    J. Dams

    2012-05-01

    Full Text Available Given the importance of groundwater for food production and drinking water supply, but also for the survival of groundwater dependent terrestrial ecosystems (GWDTEs it is essential to assess the impact of climate change on this freshwater resource. In this paper we study with high temporal and spatial resolution the impact of 28 climate change scenarios on the groundwater system of a lowland catchment in Belgium. Our results show for the scenario period 2070–2101 compared with the reference period 1960–1991, a change in annual groundwater recharge between −20% and +7%. On average annual groundwater recharge decreases 7%. In most scenarios the recharge increases during winter but decreases during summer. The altered recharge patterns cause the groundwater level to decrease significantly from September to January. On average the groundwater level decreases about 7 cm with a standard deviation between the scenarios of 5 cm. Groundwater levels in interfluves and upstream areas are more sensitive to climate change than groundwater levels in the river valley. Groundwater discharge to GWDTEs is expected to decrease during late summer and autumn as much as 10%, though the discharge remains at reference-period level during winter and early spring. As GWDTEs are strongly influenced by temporal dynamics of the groundwater system, close monitoring of groundwater and implementation of adaptive management measures are required to prevent ecological loss.

  19. Numerical modeling study into the climatic impact of deforestation associated with the fall of Mayan Empire

    Science.gov (United States)

    Kongoli, C.; Nair, U. S.; Welch, R. M.; Sever, T. L.; Irwin, D.; Pielke, R. A.

    2002-05-01

    The collapse the Mayan Empire, which flourished from 250 to 900 AD in the Southern Mexico and Central American regions, is one of the greatest demographic disasters in the human history. Early studies of Mayan civilization found cessation in dating and inscription of monuments in the ninth century. Later studies suggest a two-thirds decline in Mayan population numbering millions between 830 and 900 AD. The reason for this population decline and the subsequent collapse of Mayan Empire in ninth century is not known. The mass exodus of population has been ruled out since the population in the surrounding regions remained stable during this time period. Other suggested reasons for this population decline include conflict, disease, warfare, climate change. However, studies of historical pollen data indicate increased rates of deforestation starting in the fifth century with most of the trees in the region being cut down by the ninth century. Lake core sediments document a major drought around 800 AD that was one of the most intense drought in an 8000 year history. A recent study on climatic reconstruction from pollen records also indicate that climate became drier following the collapse of the Mayan Empire, and suggest that this may be due to the cutting down of trees. In the present study, the effect of forest clearing on the regional climate in the Mayan region is examined using the Colorado State University Regional Atmospheric Modeling System (CSU RAMS). The RAMS is being used to simulate the rainfall over the Mayan region for conditions where the surface is assumed to be completely forested and deforested. Simulations are being done for two months, both in the wet and dry season. Comparison of RAMS simulated rainfall between the completely forested and deforested scenarios are expected to provide bounds on regional climate change brought about by deforestation. Further details will be presented at the conference.

  20. System and Method for Providing a Climate Data Analytic Services Application Programming Interface Distribution Package

    Science.gov (United States)

    Schnase, John L. (Inventor); Duffy, Daniel Q. (Inventor); Tamkin, Glenn S. (Inventor)

    2016-01-01

    A system, method and computer-readable storage devices for providing a climate data analytic services application programming interface distribution package. The example system can provide various components. The system provides a climate data analytic services application programming interface library that enables software applications running on a client device to invoke the capabilities of a climate data analytic service. The system provides a command-line interface that provides a means of interacting with a climate data analytic service by issuing commands directly to the system's server interface. The system provides sample programs that call on the capabilities of the application programming interface library and can be used as templates for the construction of new client applications. The system can also provide test utilities, build utilities, service integration utilities, and documentation.

  1. Future illumination systems and the climate change challenge

    DEFF Research Database (Denmark)

    Bjarklev, Araceli; Bjarklev, Anders Overgaard

    2010-01-01

    LED technology will be part of the development, but hybrid illumination systems can also play an important role for the future illumination systems in the tertiary sector in the future. From the ecodesign perspective, the study points out that some of the major technological and economic challenges...

  2. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    Science.gov (United States)

    Port, Ulrike; Claussen, Martin; Brovkin, Victor

    2016-07-01

    We evaluate the radiative forcing of forests and the feedbacks triggered by forests in a warm, basically ice-free climate and in a cool climate with permanent high-latitude ice cover using the Max Planck Institute for Meteorology Earth System Model. As a paradigm for a warm climate, we choose the early Eocene, some 54 to 52 million years ago, and for the cool climate, the pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet for the early Eocene climate and for pre-industrial conditions. The warming can be attributed to different feedback processes, though. The lapse-rate and water-vapour feedback is stronger for the early Eocene climate than for the pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate and water-vapour feedback for the early Eocene climate. Subsequently, global mean warming by forests is weaker for the early Eocene climate than for pre-industrial conditions. Sea-ice related feedbacks are weak for the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than for pre-industrial conditions. When the land is covered with dark soils, and hence, albedo differences between forests and soil are small, forests cool the early Eocene climate more than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger for the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  3. Aquifer Recharge and Watershed Response to Climate Change in the Upper Umatilla River Subbasin Using the Precipitation Runoff Modeling System

    Science.gov (United States)

    Yazzie, K.

    2014-12-01

    Groundwater recharge in the Columbia River Basalt Group (CRBG) in the Umatilla River Basin, OR, is poorly understood. The long-term decline of groundwater storage in the basalt aquifers, present a serious environmental challenge for the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). This study will provide a groundwater estimate to help CTUIR better understand the hydrologic budget and inform water management decisions for present and future needs. The study site is in the upper Umatilla River Subbasin in Northeastern Oregon with an area that is 2,365 km2. The Precipitation Runoff Modeling System (PRMS) developed by the U.S. Geological Survey (USGS) is a distributed-parameter, physical-process watershed model that will be used to calculate groundwater recharge and simulate the watershed response to different climate and land use scenarios (Markstrom, 2008). The response of the hydrologic regime to climate change in the 2050s and 2080s will be determined using three downscaled Global Climate Models (GCMs), including the Earth System model of the Hadley Centre Global Environment Model, Version 2 (HadGEM2-ES), Model for Interdisciplinary Research on Climate (MIROC5), and the Geophysical Fluid Dynamics Laboratory - Earth System Model, (GFDL-ESM2M). The relationships between hydrologic processes at the surface, soil-zone, subsurface and groundwater reservoirs will be studied and defined in a water budget analysis to characterize the hydrologic regime in response to climate change.

  4. Climate change impact on freshwater resources in a deltaic environment: A groundwater modeling study

    Science.gov (United States)

    Matiatos, Ioannis; Alexopoulos, John D.; Panagopoulos, Andreas; Nastos, Panagiotis T.; Kotsopoulos, Spyros; Ghionis, George; Poulos, Serafim

    2016-04-01

    Climate change is expected to affect the hydrological cycle, altering seawater level and groundwater recharge to coastal aquifers with various other associated impacts on natural ecosystems and human activities. As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. This study investigates the impacts of climate change on the groundwater of the deltaic plain of River Pinios (Central Greece). Geophysical data processing indicates that the phreatic aquifer extends mainly in the central and northern parts of the region. A one-layer transient groundwater flow and contaminant mass transport model of the aquifer system is calibrated and validated. Impacts of climate change were evaluated by incorporating the estimated recharge input and sea level change of different future scenarios within the simulation models. The most noticeable and consistent result of the climate change impact simulations is a prominent sea water intrusion in the coastal aquifer mainly as a result of sea level change which underlines the need for a more effective planning of environmental measures.

  5. Impact of regional afforestation on climatic conditions in metropolitan areas: case study of Copenhagen

    Science.gov (United States)

    Stysiak, Aleksander Andrzej; Bergen Jensen, Marina; Mahura, Alexander

    2016-04-01

    Like most other places, European metropolitan areas will face a range of climate-related challenges over the next decades that may influence the nature of urban life across the continent. Under future urbanization and climate change scenarios the well-being and comfort of the urban population might become progressively compromised. In urban areas, the effects of the warming climate will be accelerated by combination of Urban Heat Island effect (UHI) and extreme heat waves. The land cover composition directly influences atmospheric variability, and can either escalate or downscale the projected changes. Vegetation, forest ecosystems in particular, are anticipated to play an important role in modulating local and regional climatic conditions, and to be vital factor in the process of adapting cities to warming climate. This study investigates the impact of forest and land-cover change on formation and development of temperature regimes in the Copenhagen Metropolitan Area (CPH-MA). Potential to modify the UHI effect in CPH-MA is estimated. Using 2009 meteorological data, and up-to-date 2012 high resolution land-cover data we employed the online integrated meteorology-chemistry/aerosols Enviro-HIRLAM (Environment - High Resolution Limited Area Model) modeling system to simulate air temperature (at 2 meter height) fields for a selected period in July 2009. Employing research tools (such as METGRAF meteorological software and Geographical Information Systems) we then estimated the influence of different afforestation and urbanization scenarios with new forests being located after the Danish national afforestation plan, after proximity to the city center, after dominating wind characteristics, and urbanization taking place as densification of the existing conurbation. This study showed the difference in temperature up to 3.25°C, and the decrease in the spatial extent of temperature fields up to 68%, depending on the selected scenario. Performed simulations demonstrated

  6. 75 FR 51806 - Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices

    Science.gov (United States)

    2010-08-23

    ...-0701] Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices AGENCY...-day public comment period for the draft document titled, ``Climate Change Vulnerability Assessment... utilities to assess their vulnerability to future climate change. The report is intended to illustrate...

  7. THE VULNERABILITY OF THE BAIA MARE URBAN SYSTEM (ROMANIA TO EXTREME CLIMATE PHENOMENA DURING THE WARM SEMESTER OF THE YEAR

    Directory of Open Access Journals (Sweden)

    DRAGOTĂ CARMEN

    2013-03-01

    Full Text Available The geographical position of the Baia Mare Urban System (intra-hilly depression favours the occurrence of a wide range of extreme climate phenomena which, coupled with the industrial profile of the city (non-ferrous mining and metallurgical industry triggering typical emissions (CO2, SOX, particulate matters and Pb, might pose a significant threat to human health. The article is aiming to assess the occurrence, frequency and amplitude of these extreme climate phenomena based on monthly and daily extreme climatic values from Baia Mare weather station in order to identify the areas more exposed. A GIS-based qualitative-heuristic method was used, each extreme climatic hazard being evaluated on a 1 to 3 scale according to its significance/impact in the study area and assigned with a weight (w and a rank (r, resulting the climate hazard map for the warm semester of the year. The authors further relate the areas exposed to the selected extreme climatic events to socio-economic aspects: demographic and economic in order to delineate the spatial distribution of the environmental vulnerability in the Baia Mare Urban System.

  8. Building Climate Resilience in the Blue Nile/Abay Highlands: A Role for Earth System Sciences

    Directory of Open Access Journals (Sweden)

    Jeremy D. Foltz

    2012-01-01

    Full Text Available The Blue Nile (Abay Highlands of Ethiopia are characterized by significant interannual climate variability, complex topography and associated local climate contrasts, erosive rains and erodible soils, and intense land pressure due to an increasing population and an economy that is almost entirely dependent on smallholder, low-input agriculture. As a result, these highland zones are highly vulnerable to negative impacts of climate variability. As patterns of variability and precipitation intensity alter under anthropogenic climate change, there is concern that this vulnerability will increase, threatening economic development and food security in the region. In order to overcome these challenges and to enhance sustainable development in the context of climate change, it is necessary to establish climate resilient development strategies that are informed by best-available Earth System Science (ESS information. This requirement is complicated by the fact that climate projections for the Abay Highlands contain significant and perhaps irreducible uncertainties. A critical challenge for ESS, then, is to generate and to communicate meaningful information for climate resilient development in the context of a highly uncertain climate forecast. Here we report on a framework for applying ESS to climate resilient development in the Abay Highlands, with a focus on the challenge of reducing land degradation.

  9. Building climate resilience in the Blue Nile/Abay Highlands: a role for Earth system sciences.

    Science.gov (United States)

    Zaitchik, Benjamin F; Simane, Belay; Habib, Shahid; Anderson, Martha C; Ozdogan, Mutlu; Foltz, Jeremy D

    2012-02-01

    The Blue Nile (Abay) Highlands of Ethiopia are characterized by significant interannual climate variability, complex topography and associated local climate contrasts, erosive rains and erodible soils, and intense land pressure due to an increasing population and an economy that is almost entirely dependent on smallholder, low-input agriculture. As a result, these highland zones are highly vulnerable to negative impacts of climate variability. As patterns of variability and precipitation intensity alter under anthropogenic climate change, there is concern that this vulnerability will increase, threatening economic development and food security in the region. In order to overcome these challenges and to enhance sustainable development in the context of climate change, it is necessary to establish climate resilient development strategies that are informed by best-available Earth System Science (ESS) information. This requirement is complicated by the fact that climate projections for the Abay Highlands contain significant and perhaps irreducible uncertainties. A critical challenge for ESS, then, is to generate and to communicate meaningful information for climate resilient development in the context of a highly uncertain climate forecast. Here we report on a framework for applying ESS to climate resilient development in the Abay Highlands, with a focus on the challenge of reducing land degradation.

  10. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Drake, John B [ORNL; Worley, Patrick H [ORNL; Hoffman, Forrest M [ORNL; Jones, Phil [Los Alamos National Laboratory (LANL)

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  11. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    Science.gov (United States)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean

  12. Soil Tillage Systems and Wheat Yield under Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Pieranna Servadio

    2016-09-01

    Full Text Available In this study, the effects of three different main preparatory tillage operations: ploughing at 0.4 m (P40 and 0.20 m (P20 depth and harrowing at 0.20 m depth (MT were investigated. The tillage operations were carried out at two different times, as the soil water content increased over time from rainfall: (low, 58% (LH and high, 80% (HH of field capacity. Results obtained from the soil monitoring carried out before and after tillage showed high values of soil strength in terms of Penetration resistance and shear strength particularly in deeper soil layers at lower water content. During tillage, fossil-fuel energy requirements for P40 LH and P20 LH were 25% and 35% higher, respectively, with respect to the HH treatments and tractor slip was very high (P40 LH = 32.4% with respect to the P40 HH treatment (16%. Soil water content significantly influenced tractor performance during soil ploughing at 0.40 m depth but no effect was observed for the MT treatment. The highly significant linear relations between grain yield and soil penetration resistance highlight how soil strength may be good indicator of soil productivity. We conclude that ploughing soil to a 0.20 m depth or harrowing soil to a 0.20 m depth is suitable for this type of soil under climate change scenarios.

  13. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric concent

  14. Climate regionalization for main production areas of Indonesia: Case study of West Java

    Science.gov (United States)

    Perdinan; Farysca Adi, Ryco; Sugiarto, Yon; Arifah, Annisa; Yustisi Arini, Enggar; Atmaja, Tri

    2017-01-01

    Spatially, climate condition is vary within a region and considered as essential information for planning activities such as agro-climate zonation. An approach to understand the spatial climate variability is the utilization of climate regionalization that is applied to rainfall data to distinguish differences in the pattern and magnitude (characteristics) of spatial rainfall variability over a region. Unfortunately, the application of climate regionalization poses a challenging issue in Indonesia, considering the availability of climate data. Recent advances in satellite and reanalysis data measuring climate variability over a large area provided an opportunity for the application of climate regionalization in the country. Using the West Java, one of main crop production regions in Indonesia, climate regionalization techniques were applied to map spatial variability of climate types based on rainfall data recorded by climate stations (point based analysis) and estimated by modeled/reanalysis data and satellite observations (gridded data). The regionalization derived from gridded rainfall data have reasonably better in capturing the zonal pattern of differences in climate types within the study region than the regionalization applied to insufficient numbers of site-based rainfall observation. This indicates that the gridded data offers an alternative for climate regionalization, when site-based observations are unavailable or limited.

  15. Climate variability and campylobacter infection: an international study

    Science.gov (United States)

    Sari Kovats, R.; Edwards, Sally J.; Charron, Dominique; Cowden, John; D'Souza, Rennie M.; Ebi, Kristie L.; Gauci, Charmaine; Gerner-Smidt, Peter; Hajat, Shakoor; Hales, Simon; Hernández Pezzi, Gloria; Kriz, Bohumir; Kutsar, Kuulo; McKeown, Paul; Mellou, Kassiani; Menne, Bettina; O'Brien, Sarah; Pelt, Wilfrid; Schmid, Hans

    2005-03-01

    Campylobacter is among the most important agents of enteritis in developed countries. We have described the potential environmental determinants of the seasonal pattern of infection with campylobacter in Europe, Canada, Australia and New Zealand. Specifically, we investigated the role of climate variability on laboratory-confirmed cases of campylobacter infection from 15 populations. Regression analysis was used to quantify the associations between timing of seasonal peaks in infection in space and time. The short-term association between weekly weather and cases was also investigated using Poisson regression adapted for time series data. All countries in our study showed a distinct seasonality in campylobacter transmission, with many, but not all, populations showing a peak in spring. Countries with milder winters have peaks of infection earlier in the year. The timing of the peak of infection is weakly associated with high temperatures 3 months previously. Weekly variation in campylobacter infection in one region of the UK appeared to be little affected by short-term changes in weather patterns. The geographical variation in the timing of the seasonal peak suggests that climate may be a contributing factor to campylobacter transmission. The main driver of seasonality of campylobacter remains elusive and underscores the need to identify the major serotypes and routes of transmission for this disease.

  16. Examining Impact of Global warming on the summer monsoon system using regional Climate Model (PRECIS)

    Science.gov (United States)

    Patwardhan, S. K.; Kundeti, K.; Krishna Kumar, K.

    2011-12-01

    Every year, southwest monsoon arrives over Indian region with remarkable regularity. It hits the southern state of Kerala first by the end of May or the early June. More than 70% of the annual precipitation is received during the four monsoon months viz. June to September. This monsoon rainfall is vital for the agriculture as well as for the yearly needs of Indian population. The performance of the monsoon depends on the timely onset over southern tip of India and its progress along the entire country. This northward progression of monsoon to cover the entire Indian landmass, many times, is associated with the formation of synoptic scale system in the Bay of Bengal region and their movement along the monsoon trough region. The analysis of the observed cyclonic disturbances show that their frequency has reduced in recent decades. It is, therefore, necessary to assess the effect of global warming on the monsoon climate of India. A state-of-art regional climate modelling system, known as PRECIS (Providing REgional Climates for Impacts Studies) developed by the Hadley Centre for Climate Prediction and Research, U.K. is applied over the South Asian domain to investigate the impact of global warming on the cyclonic disturbances. The PRECIS simulations at 50 km x 50 km horizontal resolution are made for two time slices, present (1961-1990) and the future (2071-2100), for two socio-economic scenarios A2 and B2. The model skills are evaluated using observed precipitation and surface air temperature. The model has shown reasonably good skill in simulating seasonal monsoon rainfall, whereas cold bias is seen in surface air temperature especially in post-monsoon months. The typical monsoon features like monsoon trough, precipitation maxima over west coast and northeast India are well simulated by the model. The model simulations under the scenarios of increasing greenhouse gas concentrations and sulphate aerosols are analysed to study the likely changes in the quasi

  17. Global Modeling and Projection of Short-Lived Climate Pollutants in an Earth System Model

    Science.gov (United States)

    Sudo, K.; Takemura, T.; Klimont, Z.; Kurokawa, J.; Akimoto, H.

    2013-12-01

    In predicting and mitigating future global warming, short-lived climate pollutants (SLCPs) such as tropospheric ozone (O3), black carbon (BC), and other related components including CH4/VOCs and aerosols play crucial roles as well as long-lived species like CO2 or N2O. Several recent studies suggests that reduction of heating SLCPs (i.e., O3 and black carbon) together with CH4 can decrease and delay the expected future warming, and can be an alternative to CO2 mitigation (Shindell et al., 2012). However it should be noted that there are still large uncertainties in simulating SLCPs and their climate impacts. For instance, present global models generally have a severe tendency to underestimate BC especially in remote areas like the polar regions as shown by the recent model intercomparison project under the IPCC (ACCMIP/AeroCOM). This problem in global BC modeling, basically coming from aging and removal processes of BC, causes still a large uncertainty in the estimate of BC's atmospheric heating and climate impacts (Bond et al., 2013; Kerr et al., 2013). This study attempted to improve global simulation of BC by developing a new scheme for simulating aging process of BC and re-evaluate radiative forcing of BC in the framework of a chemistry-aerosol coupled climate model (Earth system model) MIROC-ESM-CHEM. Our improved model with the new aging scheme appears to relatively well reproduce the observed BC concentrations and seasonality in the Arctic/Antarctic region. The new model estimates radiative forcing of BC to be 0.83 W m-2 which is about two times larger than the estimate by our original model with no aging scheme (0.41 W m-2), or the model ensemble mean in the IPCC report. Using this model, future projection of SLCPs and their climate impacts is conducted following the recent IIASA emission scenarios for the year 2030 (Klimont et al., 2006; Cofala et al., 2007). Our simulation suggests that heating SLCPs components (O3, BC, and CH4) are significantly reduced

  18. Using climate response functions in analyzing electricity production variables. A case study from Norway.

    Science.gov (United States)

    Tøfte, Lena S.; Martino, Sara; Mo, Birger

    2016-04-01

    This study analyses whether and to which extent today's hydropower system and reservoirs in Mid-Norway are able to balance new intermittent energy sources in the region, in both today's and tomorrow's climate. We also investigate if the electricity marked model EMPS gives us reasonable results also when run in a multi simulation mode without recalibration. Climate related energy (CRE) is influenced by the weather, the system for energy production and transport, and by market mechanisms. In the region of Mid-Norway, nearly all power demand is generated by hydro-electric facilities. Due to energy deficiency and limitations in the power grid the region experiences a deficit of electricity. The region is likely to experience considerable investments in wind power and small-scale hydropower and the transmission grid within and out of the region will probably be extended, so this situation might change. In addition climate change scenarios for the region agree on higher temperatures, more precipitation in total and a larger portion of the precipitation coming as rain instead of snow, as well as we expect slightly higher wind speed and more storms during the winter. Changing temperatures will also change the electricity demand. EMPS is a tool for forecasting and planning in electricity markets, developed for optimization and simulation of hydrothermal power systems with a considerable share of hydro power. It takes into account transport constraints and hydrological differences between major areas or regional subsystems. During optimization the objective is to minimize the expected cost in the whole system subject to all constraints. Incremental water values (marginal costs for hydropower) are computed for each area using stochastic dynamic programming. A heuristic approach is used to treat the interaction between areas. In the simulation part of the model total system costs are minimized week by week for each climate scenario in a linear problem formulation. A detailed

  19. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia; Poerschke, Andrew

    2015-04-01

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  20. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS Inc., Pittsburgh, PA (United States)

    2015-04-09

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  1. Speeding up CRMs for cloud-climate interaction studies by acceleration of mean state tendencies

    Science.gov (United States)

    Jones, C. R.; Bretherton, C. S.

    2014-12-01

    Cloud-resolving models (CRMs) are routinely used to simulate boundary-layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. CRMs are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We use this time scale separation to accelerate the time-integration of a CRM, the System for Atmospheric Modelling. Our approach uses a large time step to evolve the horizontally averaged state variables, followed by a short time step to calculate the turbulent fluctuations about the mean state. Using this approach, we are able to accelerate the model evolution by a factor of 8 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. We show how to adapt the approach to challenges arising from rapidly falling precipitation and from advecting scalars with a variety of lifetimes.

  2. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    Directory of Open Access Journals (Sweden)

    Engels Stefan

    2012-07-01

    Full Text Available Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of the processes that drive the global climate system. In this review paper, we present palaeoclimatological evidence for the past influence of solar variability on Earth’s climate, highlighting the effects of solar forcing on a range of timescales. On a decadal timescale, instrumental measurements as well as historical records show the effects of the 11-year Schwabe cycle on climate. The variation in total solar irradiance that is associated with a Schwabe cycle is only ~1 W m−2 between a solar minimum and a maximum, but winter and spring temperatures on the Northern Hemisphere show a response even to this small-scale variability. There is a large body of evidence from palaeoclimatic reconstructions that shows the influence of solar activity on a centennial to millennial timescale. We highlight a period of low solar activity starting at 2800 years before present when Europe experienced a shift to colder and wetter climate conditions. The spatial pattern of climate change that can be recognized in the palaeoclimatological data is in line with the suggested pattern of climate change as simulated by climate models. Millennial-scale climate oscillations can be recognized in sediment records from the Atlantic Ocean as well as in records of lake-level fluctuations in southeastern France. These oscillations coincide with variation in 14C production as recognized in the atmospheric 14C record (which is a proxy-record for solar activity, suggesting that Earth’s climate is sensitive to changes in solar activity on a millennial timescale as well.

  3. Is the impact of future climate change on hydro-climatic conditions significant? - A climate change study for an Eastern European catchment area.

    Science.gov (United States)

    Pavlik, Dirk; Söhl, Dennis; Bernhofer, Christian

    2014-05-01

    The future change of climatic conditions is, among others, closely linked to future hydrological changes. One important aspect of these issues is the question of future availability of water resources. A changed climatic water balance, as indicator for potential water availability, has far-reaching consequences for the water cycle, hydrological conditions, ecology, water management, the energy business, agriculture and forestry, and for anthropogenic use of the river. We generated regional climate projections via dynamic downscaling for the catchment area of the Western Bug river in the border area of Poland, Belarus, and Ukraine. The hydro-climatic conditions of the past and their projected future changes in the catchment were analyzed based on 2m-temperature, precipitation, potential evaporation and climatic water balance. Up to the end of the century, the used IPCC scenarios B1 and A2 lead to warming for each month in the long-term mean, with highest warming rates in winter. Instead, precipitation does not change in the long-term yearly mean. However, the intra-annual distribution of monthly precipitation sums shifts with an increase in winter and a strong decrease in summer. Combined, this leads to a changed climatic water balance with a stronger deficit in summer and a higher gain in winter. Particular in the south-eastern part of the catchment, the summer deficit cannot be compensated within the annual cycle. It raised the question: are these changes statistically significant and thus robust for use in further impact studies? Using a significance analysis, we found, that climatic changes in temperature, precipitation and potential evaporation and thus the climatic water balance change is most significant for scenario A2 from 2071 to 2100. The temperature changes are significant throughout the year. For the other variables changes are most significant in the late summer months (July, August, and September) and the winter months (December, January, and February

  4. Integrated hydrological SVAT model for climate change studies in Denmark

    Science.gov (United States)

    Mollerup, M.; Refsgaard, J.; Sonnenborg, T. O.

    2010-12-01

    hydrological impacts of characterising climate change in terms of changes in the reference evapotranspiration or in the individual climate variables have been analysed. References Abrahamsen, P., and Hansen, S. (2000) Daisy: An Open Soil-Crop-Atmosphere System Model. Environ. Model. Software 15, 313-330. Hansen, S., Jensen, H. E., Nielsen, N. E., and Svendsen, H. (1990). Daisy - soil plant atmostphere system model. Technical Report A10, Miljostyrelsen. Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C. and Madsen, B. (2003) Methodology for construction, calibration and validation of a national hydrological model for Denmark. Journal of Hydrology 280(1-4), 52-71. Henriksen, H. J., Troldborg, L., Hojberg, A. L. and Refsgaard, J. C. (2008) Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater-surface water model. Journal of Hydrology 348(1-2), 224-240.

  5. Experimental and numerical evaluation of a solar passive cooling system under hot and humid climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Jose; Almao, Nastia [Universidad del Zulia, Lab. de Simulacion Computacional, Zulia (Venezuela); Gonzalez, Eduardo [Universidad del Zulia, Inst. de Investigaciones de la Facultad de Arquitectura, Zulia (Venezuela)

    2001-07-01

    The thermal performance of a solar passive cooling system (SPCS) under a hot and humid climate is experimentally and numerically evaluated. The experimental data were obtained from two full scale cells, with identical walls, but different roof configurations. One cell has a highly-insulated roof and the other has an SPCS incorporated consisting of a thermal mass (water), which is cooled by evaporation and long wave nocturnal radiation. The study was conducted taking into account the local climatic conditions of Maracaibo, a tropical city located in Venezuela. The numerical evaluation was accomplished using the computational code 'EVITA' which is based on the finite volume approach with high order bounded treatment of the convective terms. A PISO-like solution algorithm is used to solve the transient form of the continuity, momentum and energy equations. It has been demonstrated experimentally and numerically that under a hot and humid climate, it is possible to keep the indoor temperature below the outdoor temperature, using a passive cooling technique of a roof pond. The numerical results obtained using the model have demonstrated that the computational code used is a suitable cost-efficient alternative for the thermal performance evaluation of SPCS. (Author)

  6. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, Joseph [Home Innovation Research Labs, Upper Marlboro, MD (United States); Kochkin, Vladimir [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-29

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wall system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.

  7. Self-organized criticality of power system faults and its application in adaptation to extreme climate

    Institute of Scientific and Technical Information of China (English)

    SU Sheng; LI YinHong; DUAN XianZhong

    2009-01-01

    This paper analyzes the statistics of faults in a transmission and distribution networks in central China, unveils long-term autocorrelation and power law distribution of power system faults, which indicates that power system fault has self-organized criticality (SOC) feature. The conclusion is consistent with the power systems data in 2008 with ice storm present. Since power systems cover large areas, climate is the key factor to its safety and stability. In-depth analysis shows that the SOC of atmosphere system contributes much to that of power system faults. Extreme climate will be more intense and frequent with global warming, it will have more and more impact upon power systems. The SOC feature of power system faults is utilized to develop approaches to facilitate power systems adaptation to climate varia-tion in an economical and efficient way.

  8. Risk assessment of climate systems for national security.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Boslough, Mark Bruce Elrick; Brown, Theresa Jean; Cai, Ximing; Conrad, Stephen Hamilton; Constantine, Paul G; Dalbey, Keith R.; Debusschere, Bert J.; Fields, Richard; Hart, David Blaine; Kalinina, Elena Arkadievna; Kerstein, Alan R.; Levy, Michael; Lowry, Thomas Stephen; Malczynski, Leonard A.; Najm, Habib N.; Overfelt, James Robert; Parks, Mancel Jordan; Peplinski, William J.; Safta, Cosmin; Sargsyan, Khachik; Stubblefield, William Anthony; Taylor, Mark A.; Tidwell, Vincent Carroll; Trucano, Timothy Guy; Villa, Daniel L.

    2012-10-01

    Climate change, through drought, flooding, storms, heat waves, and melting Arctic ice, affects the production and flow of resource within and among geographical regions. The interactions among governments, populations, and sectors of the economy require integrated assessment based on risk, through uncertainty quantification (UQ). This project evaluated the capabilities with Sandia National Laboratories to perform such integrated analyses, as they relate to (inter)national security. The combining of the UQ results from climate models with hydrological and economic/infrastructure impact modeling appears to offer the best capability for national security risk assessments.

  9. A Fast Version of LASG/IAP Climate System Model and Its 1000-year Control Integration

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tianjun; WU Bo; WEN Xinyu; LI Lijuan; WANG Bin

    2008-01-01

    A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geo- physical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG (GAMIL), with the other parts of the model, namely an oceanic com- ponent LASG/IAP Climate Ocean Model (LICOM), land component Common Land Model (CLM), and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2), as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model (FGOALS_g). The parameterizatious of physical and dynamical processes of the at- mospheric component in the fast version are identical to the standard version, although some parameter values are different. However, by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component, it runs faster by a factor of 3 and can serve as a useful tool for long- term and large-ensemble integrations. A 1000-year control simulation of the present-day climate has been completed without flux adjustments. The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies. Several aspects of the control simulation's mean climate and variability axe evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated. The mean atmospheric circulation is well simulated, except in high latitudes. The Asian-Australian monsoonal meridional cell shows realistic features, however, an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year. The mean bias of SST resembles that of the standard version, appearing as a "double ITCZ" (Inter

  10. Contribution of anthropology to the study of climate change

    Science.gov (United States)

    Barnes, Jessica; Dove, Michael; Lahsen, Myanna; Mathews, Andrew; McElwee, Pamela; McIntosh, Roderick; Moore, Frances; O'Reilly, Jessica; Orlove, Ben; Puri, Rajindra; Weiss, Harvey; Yager, Karina

    2013-06-01

    Understanding the challenge that climate change poses and crafting appropriate adaptation and mitigation mechanisms requires input from the breadth of the natural and social sciences. Anthropology's in-depth fieldwork methodology, long engagement in questions of society-environment interactions and broad, holistic view of society yields valuable insights into the science, impacts and policy of climate change. Yet the discipline's voice in climate change debates has remained a relatively marginal one until now. Here, we identify three key ways that anthropological research can enrich and deepen contemporary understandings of climate change.

  11. Comparative study of climate-change scenarios on groundwater recharge, southwestern Mississippi and southeastern Louisiana, USA

    Science.gov (United States)

    Beigi, Ehsan; Tsai, Frank T.-C.

    2015-02-01

    A geographic information system (GIS)-based water-budget framework has been developed to study the climate-change impact on regional groundwater recharge, and it was applied to the Southern Hills aquifer system of southwestern Mississippi and southeastern Louisiana, USA. The framework links historical climate variables and future emission scenarios of climate models to a hydrologic model, HELP3, to quantify spatiotemporal potential recharge variations from 1950 to 2099. The framework includes parallel programming to divide a large amount of HELP3 simulations among multiple cores of a supercomputer, to expedite computation. The results show that a wide range of projected potential recharge for the Southern Hills aquifer system resulted from the divergent projections of precipitation, temperature and solar radiation using three scenarios (B1, A2 and A1FI) of the National Center for Atmospheric Research's Parallel Climate Model 1 (PCM) and the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Lab's (GFDL) model. The PCM model projects recharge change ranging from -33.7 to +19.1 % for the 21st century. The GFDL model projects less recharge than the PCM, with recharge change ranging from -58.1 to +7.1 %. Potential recharge is likely to increase in 2010-2039, but likely to decrease in 2070-2099. Projected recharge is more sensitive to the changes in the projected precipitation than the projected solar radiation and temperature. Uncertainty analysis confirms that the uncertainty in projected precipitation yields more changes in the potential recharge than in the projected temperature for the study area.

  12. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    model, HIRHAM. The physics of the coupling is formulated using an energy-based SVAT (land surface) model while the numerical coupling exploits the OpenMI modelling interface. First, some investigations of the applicability of the SVAT model are presented, including our ability to characterise...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...

  13. Assessing climate adaptation options and uncertainties for cereal systems in West Africa

    Science.gov (United States)

    Guan, K.; Sultan, B.; Biasutti, M.; Lobell, D. B.

    2015-12-01

    The already fragile agriculture production system in West Africa faces further challenges in meeting food security in the coming decades, primarily due to a fast increasing population and risks of climate change. Successful adaptation of agriculture should not only benefit in the current climate but should also reduce negative (or enhance positive) impacts for climate change. Assessment of various possible adaptation options and their uncertainties provides key information for prioritizing adaptation investments. Here, based on the several robust aspects of climate projections in this region (i.e. temperature increases and rainfall pattern shifts), we use two well-validated crop models (i.e. APSIM and SARRA-H) and an ensemble of downscaled climate forcing to assess five possible and realistic adaptation options (late sowing, intensification, thermal time increase, water harvesting and increased resilience to heat stress) in West Africa for the staple crop production of sorghum. We adopt a new assessment framework to account for both the impacts of adaptation options in current climate and their ability to reduce impacts of future climate change, and also consider changes in both mean yield and its variability. Our results reveal that most proposed "adaptation options" are not more beneficial in the future than in the current climate, i.e. not really reduce the climate change impacts. Increased temperature resilience during grain number formation period is the main adaptation that emerges. We also find that changing from the traditional to modern cultivar, and later sowing in West Sahel appear to be robust adaptations.

  14. New Methods for Gas Hydrate Energy and Climate Studies

    Science.gov (United States)

    Ruppel, C. D.; Pohlman, J.; Waite, W. F.; Hunt, A. G.; Stern, L. A.; Casso, M.

    2015-12-01

    Over the past few years, the USGS Gas Hydrates Project has focused on advancements designed to enhance both energy resource and climate-hydrate interaction studies. On the energy side, the USGS now manages the Pressure Core Characterization Tools (PCCTs), which includes the Instrumented Pressure Testing Chamber (IPTC) that we have long maintained. These tools, originally built at Georgia Tech, are being used to analyze hydrate-bearing sediments recovered in pressure cores during gas hydrate drilling programs (e.g., Nankai 2012; India 2015). The USGS is now modifying the PCCTs for use on high-hydrate-saturation and sand-rich sediments and hopes to catalyze third-party tool development (e.g., visualization). The IPTC is also being used for experiments on sediments hosting synthetic methane hydrate, and our scanning electron microscope has recently been enhanced with a new cryo-stage for imaging hydrates. To support climate-hydrate interaction studies, the USGS has been re-assessing the amount of methane hydrate in permafrost-associated settings at high northern latitudes and examined the links between methane carbon emissions and gas hydrate dissociation. One approach relies on the noble gas signature of methane emissions. Hydrate dissociation uniquely releases noble gases partitioned by molecular weight, providing a potential fingerprint for hydrate-sourced methane emissions. In addition, we have linked a DOC analyzer with an IRMS at Woods Hole Oceanographic Institution, allowing rapid and precise measurement of DOC and DIC concentrations and carbon isotopic signatures. The USGS has also refined methods to measure real-time sea-air flux of methane and CO2 using cavity ring-down spectroscopy measurements coupled with other data. Acquiring ~8000 km of data on the Western Arctic, US Atlantic, and Svalbard margins, we have tested the Arctic methane catastrophe hypothesis and the link between seafloor methane emissions and sea-air methane flux.

  15. An Integrated Control System for Heating and Indoor Climate Applications

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh

    2012-01-01

    in terms of energy efficiency, associated energy cost and occupants’ thermal comfort is the main objective to be fulfilled via design of an integrated controller. We also proposed control strategies to manage energy consumption of the building to turn domestic heat demands into a flexible load in the smart...... adapted to the modeling of the sub-floor heating system. In order to minimize the electric power consumption of the integrated heating system, a novel hypothesis is proposed and further investigated via experimental and simulation studies. The idea is to minimize the forward temperature of hot water...... which geothermal heat pump, solar driven heat pumps and the other types are categorized as renewable or renewable energy sources. In the present study, we investigated modeling and control of hydronic heat emitters integrated with a ground-source heat pump. Optimization of the system performance...

  16. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) Precipitation Forecast Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast precipitation data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near real-time...

  17. Subseasonal features of the Asian summer monsoon in the NCEP climate forecast system

    Institute of Scientific and Technical Information of China (English)

    Song YANG; WEN Min; R Wayne HIGGINS

    2008-01-01

    The operational climate forecast system (CFS) of the US National Centers for Environmental Prediction provides climate predic-tions over the world, and CFS products are becoming an important source of information for regional climate predictions in many Asian countries where monsoon climate dominates. Recent studies have shown that, on monthly-to-seasonal time-scales, the CFS is highly skillful in simulating and predicting the variability of the Asian monsoon. The higher-frequency variability of the Asian summer monsoon in the CFS is analyzed, using output from a version with a spectral triangular truncation of 126 waves in horizon-tal and 64 sigma layers in vertical, focusing on synoptic, quasi-biweekly, and intraseasonal time-scales. The onset processes of different regional monsoon components were investigated within Asia. Although the CFS generally overestimates variability of mon-soon on these time-scales, it successfully captures many major features of the variance patterns, especially for the synoptic time-scale. The CFS also captures the timing of summer monsoon onsets over India and the Indo-China Peninsula. However, it encoun-ters difficulties in simulating the onset of the South China Sea monsoon. The success and failure of the CFS in simulating the onset of monsoon precipitation can also be seen from the associated features of simulated atmospheric circulation processes. Overall, the CFS is capable of simulating the synoptic-to-intraseasonal variability of the Asian summer monsoon with skills. As for seasonal-to-interannual time-scales shown previously, the model is expected to possess a potential for skillful predictions of the high-frequencyvariability of the Asian monsoon.

  18. Collaborative Proposal: Transforming How Climate System Models are Used: A Global, Multi-Resolution Approach

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald

    2013-04-15

    Despite the great interest in regional modeling for both weather and climate applications, regional modeling is not yet at the stage that it can be used routinely and effectively for climate modeling of the ocean. The overarching goal of this project is to transform how climate models are used by developing and implementing a robust, efficient, and accurate global approach to regional ocean modeling. To achieve this goal, we will use theoretical and computational means to resolve several basic modeling and algorithmic issues. The first task is to develop techniques for transitioning between parameterized and high-fidelity regional ocean models as the discretization grid transitions from coarse to fine regions. The second task is to develop estimates for the error in scientifically relevant quantities of interest that provide a systematic way to automatically determine where refinement is needed in order to obtain accurate simulations of dynamic and tracer transport in regional ocean models. The third task is to develop efficient, accurate, and robust time-stepping schemes for variable spatial resolution discretizations used in regional ocean models of dynamics and tracer transport. The fourth task is to develop frequency-dependent eddy viscosity finite element and discontinuous Galerkin methods and study their performance and effectiveness for simulation of dynamics and tracer transport in regional ocean models. These four projects share common difficulties and will be approach using a common computational and mathematical toolbox. This is a multidisciplinary project involving faculty and postdocs from Colorado State University, Florida State University, and Penn State University along with scientists from Los Alamos National Laboratory. The completion of the tasks listed within the discussion of the four sub-projects will go a long way towards meeting our goal of developing superior regional ocean models that will transform how climate system models are used.

  19. An intercomparison of regional climate model data for hydrological impact studies in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Jens Hesselbjerg; Butts, Michael;

    2010-01-01

    The use of high-resolution regional climate models (RCM) to examine the hydrological impacts of climate change has grown significantly in recent years due to the improved representation of the local climate. However, the application is not straightforward because most RCMs are subject...... to considerable systematic errors. In this study, projected climate change data from the RCM HIRHAM4 are used to generate climate scenario time series of precipitation, temperature, and reference evapotranspiration for the period 2071-2100 for hydrological impact assessments in Denmark. RCM output for the present...

  20. FUTURE CLIMATE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    R.M. Forester

    2000-03-14

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog.

  1. Cpl6: The New Extensible, High-Performance Parallel Coupler forthe Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anthony P.; Jacob, Robert L.; Kauffman, Brain; Bettge,Tom; Larson, Jay; Ong, Everest; Ding, Chris; He, Yun

    2005-03-24

    Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-art climate model that has released several versions to the climate community over the past ten years. Like many climate models, CCSM employs a coupler, a functional unit that coordinates the exchange of data between parts of climate system such as the atmosphere and ocean. This paper describes the new coupler, cpl6, contained in the latest version of CCSM,CCSM3. Cpl6 introduces distributed-memory parallelism to the coupler, a class library for important coupler functions, and a standardized interface for component models. Cpl6 is implemented entirely in Fortran90 and uses Model Coupling Toolkit as the base for most of its classes. Cpl6 gives improved performance over previous versions and scales well on multiple platforms.

  2. A Spatial Extrapolation Approach to Assess the Impact of Climate Change on Water Resource Systems

    Science.gov (United States)

    Pina, J.; Tilmant, A.; Anctil, F.

    2015-12-01

    The typical approach to assess climate change impacts on water resources systems is based on a vertical integration/coupling of models: GCM models are run to project future precipitations and temperatures, which are then downscaled and used as inputs to hydrologic models whose outputs are processed by water systems models. From a decision-making point of view, this top-down vertical approach presents some challenges. For example, since the range of uncertainty that can be explored with GCM is limited, researchers are relying on ensembles to enlarge the spread, making the modeling approach even more demanding in terms of computation time and resource. When a particular water system must be analyzed, the question is to know whether this computationally intensive vertical approach is necessary in the first place or if we could extrapolate projections available in neighboring systems to feed the water system model? This would be equivalent to a horizontal approach. The proposed study addresses this question by comparing the performance of a water resource system under future climate conditions using the vertical and horizontal approaches. The methodology is illustrated with the hydropower system of the Gatineau River Basin in Quebec, Canada. Vertically obtained hydrologic projections available in those river basins are extrapolated and used as inputs to a stochastic multireservoir optimization model. Two different extrapolation techniques are tested. The first one simply relies on the ratios between the drainage areas. The second exploits the covariance structure found in historical flow data throughout the region. The analysis of the simulation results reveals that the annual and weekly energy productions of the system derived from the horizontal approach are statistically equivalent to those obtained with the vertical one, regardless of the extrapolation technique used.

  3. Systems thinking methodology in researching the impacts of climate change on livestock industry

    OpenAIRE

    Nguyen,Quan; Nguyen, Nam Cao

    2013-01-01

    The impacts of climate change on livestock production are complex problems, existing in the rela-tionship among this sector and others sectors such as environmental, social, economic and political systems. The complexity and dynamic of these impacts cannot be solved simply in isolation with the linear approach. A system thinking methodology is introduced in this paper to understand the impacts of climate change on livestock production, and identify effective interventions strategies to addres...

  4. Impacts of climate change on water resources and hydropower systems in central and southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Hamududu, Byman H.

    2012-11-15

    Climate change is altering hydrological processes with varying degrees in various regions of the world. This research work investigates the possible impacts of climate change on water resource and Hydropower production potential in central and southern Africa. The Congo, Zambezi and Kwanza, Shire, Kafue and Kabompo basins that lie in central and southern Africa are used as case studies. The review of climate change impact studies shows that there are few studies on impacts of climate change on hydropower production. Most of these studies were carried out in Europe and north America and very few in Asia, south America and Africa. The few studies indicate that southern Africa would experience reduction in precipitation and runoff, consequently reductions in hydropower production. There are no standard methods of assessing the resulting impacts. Two approaches were used to assess the impacts of climate change on water resources and hydropower. One approach is lumping changes on country or regional level and use the mean climate changes on mean annual flows as the basis for regional changes in hydropower production. This is done to get an overall picture of the changes on global and regional level. The second approach is a detailed assessment process in which downscaling, hydrological modelling and hydropower simulations are carried out. The possible future climate scenarios for the region of central and southern Africa depicted that some areas where precipitation are likely to have increases while other, precipitation will reduce. The region northern Zambia and southern Congo showed increases while the northern Congo basin showed reductions. Further south in southern African region, there is a tendency of decreases in precipitation. To the west, in Angola, inland showed increases while towards the coast highlighted some decreases in precipitation. On a global scale, hydropower is likely to experience slight changes (0.08%) due to climate change by 2050. Africa is

  5. Crop yield network and its response to changes in climate system

    Science.gov (United States)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  6. Prediction of the performance of a solar water detoxification system under Malaysian climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jubran, B.A.; Ismail, A.F.; Pervez, T. [International Islamic University Malaysia, Dept. of Mechanical Engineering, Kuala Lumpur (Malaysia)

    2000-07-01

    This paper reports a prediction study for computing the ultra violet (UV) light received by two types of solar collector systems used in solar detoxification systems under Malaysian climatic conditions. Furthermore, the average daily yield outputs of two types of solar detoxification are predicted. The predicted results indicate that the average daily UV light insolation throughout the year in Malaysia is almost constant with values of 40 and 30 W/m{sup 2} for flat plate and compound parabolic concentrator (CPC) collectors, respectively. The average daily yield outputs of the solar detoxification systems investigated are 1000 l/m{sup 2} for the flat plate collector and 600 l/m{sup 2} for the CPC collector with unit costs per 1000 gallons of 36 US dollars and 42 US dollars for flat plate and CPC collectors, respectively. (Author)

  7. Teaching Scales in the Climate System: An example of interdisciplinary teaching and learning

    Science.gov (United States)

    Baehr, Johanna; Behrens, Jörn; Brüggemann, Michael; Frisius, Thomas; Glessmer, Mirjam S.; Hartmann, Jens; Hense, Inga; Kaleschke, Lars; Kutzbach, Lars; Rödder, Simone; Scheffran, Jürgen

    2016-04-01

    Climate change is commonly regarded as one of 21st century's grand challenges that needs to be addressed by conducting integrated research combining natural and social sciences. To meet this need, how to best train future climate researchers should be reconsidered. Here, we present our experience from a team-taught semester-long course with students of the international master program "Integrated Climate System Sciences" (ICSS) at the University of Hamburg, Germany. Ten lecturers with different backgrounds in physical, mathematical, biogeochemical and social sciences accompanied by a researcher trained in didactics prepared and regularly participated in a course which consisted of weekly classes. The foundation of the course was the use of the concept of 'scales' - climate varying on different temporal and spatial scales - by developing a joint definition of 'scales in the climate system' that is applicable in the natural sciences and in the social sciences. By applying this interdisciplinary definition of 'scales' to phenomena from all components of the climate system and the socio-economic dimensions, we aimed for an integrated description of the climate system. Following the concept of research-driven teaching and learning and using a variety of teaching techniques, the students designed their own scale diagram to illustrate climate-related phenomena in different disciplines. The highlight of the course was the presentation of individually developed scale diagrams by every student with all lecturers present. Based on the already conducted course, we currently re-design the course concept to be teachable by a similarly large group of lecturers but with alternating presence in class. With further refinement and also a currently ongoing documentation of the teaching material, we will continue to use the concept of 'scales' as a vehicle for teaching an integrated view of the climate system.

  8. A Study of Rural Senegalese Attitudes and Perceptions of Their Behavior to Changes in the Climate

    Science.gov (United States)

    Dieye, Amadou M.; Roy, D. P.

    2012-11-01

    Semi-structured focus group discussions were employed to capture rural Senegalese attitudes and perceptions of their behavior to changes in the climate and their land use and livelihood strategies. Seven focus groups stratified by gender, ethnicity (Wolof and Peulh) and dominant production system (cultivators and pastoralists) in five villages in semi-arid northern Senegal revealed seven main themes. Rural livelihoods remain predominantly based on rainfall dependant practices, and although cultivators and pastoralists had a clear appreciation of changes in natural resources compared to a perceived more favorable past, few adaptive coping strategies beyond established ones were advocated. The seven themes are discussed in detail and their implications for rural livelihoods under future long term climate predictions discussed with the implications of this study for the development of scenarios of future land cover land use.

  9. Vulnerability of the Tibetan Pastoral Systems to Climate and Global Change

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-12-01

    Full Text Available The impacts of climate and global change on Tibetan pastoral systems have become increasingly evident. Thus, a significant research endeavor is to explore the combined effects of these changes on the livelihoods of herder households and communities, on the adaptation strategies they adopted to respond to the current and expected risks associated with these changes, and on the emerging opportunities that can strengthen their resilience and adaptive capacity. We performed an integrated analysis of the dynamics of Tibetan pastoral systems influenced by climate and global changes by using the analytical framework developed by Ostrom. Climate and global changes have significantly altered the attributes of and the interactions within Tibetan pastoral systems, thus posing great challenges to their sustainable development. We used Nagqu County, a remote area of the northern Tibetan Plateau of China, as a case study to analyze the adaptation strategies adopted by local herders to respond to multiple stressors, as well as the emerging opportunities that they can take advantage of to increase their adaptive capacity. Findings show that although local herders have developed various adaptation strategies, such as planting forage grass, buying fodder from the market, renting pastures, joining formal or informal cooperatives, and diversifying livelihoods, social, cultural, and institutional challenges still exist. To enhance the adaptive capacity of herders and to reduce their vulnerability, we recommend that future rangeland policies and programs promote: (1 comprehensive support for formal or informal pastoral cooperatives, (2 development of the rangeland economy to take advantage of the multifunctionalities of rangeland ecosystems, and (3 revitalization of the mobility paradigm to allow the flexible use of rangelands.

  10. The present-day climate of Greenland : a study with a regional climate model

    NARCIS (Netherlands)

    Ettema, J.

    2010-01-01

    Present-day climate of Greenland Over the past 20 years, the Greenland ice sheet (GrIS) has warmed. This temperature increase can be explained by an increase in downwelling longwave radiation due to a warmer overlying atmosphere. These temperature changes are strongly correlated to changes in the la

  11. Comparative study on Climate Change Policies in the EU and China

    Science.gov (United States)

    Bray, M.; Han, D.

    2012-04-01

    environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.

  12. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    Science.gov (United States)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  13. Influence of external climate forcing on coastal upwelling systems analysed in ensemble of past millennium climate simulations

    Science.gov (United States)

    Tim, Nele; Zorita, Eduardo; Hünicke, Birgit; Yi, Xin; Emeis, Kay

    2016-04-01

    Eastern Boundary Upwelling Systems are highly productive coastal ocean areas where nutrient rich, cold water upwells by the action of favorable winds. Observations over the 20th century and ocean sediment records, which may be indicative of upwelling, display an intensification due to stronger external climate forcing, such as increasing greenhouse gas concentrations or changes in solar irradiance. This intensification is compatible with the hypothesis put forward by Bakun (1990) that a stronger external radiative forcing should lead to a more intense coastal upwelling. Here, we analyze ensemble of simulations covering the past millennium with the aim of identifying and quantifying the role of external climate forcing on upwelling in the major Eastern Boundary Upwelling System. We analyse the decadal variability and centennial trends of upwelling in ensemble of simulations with the global climate model MPI-ESM covering the past millennium, the last 150 years and the next 100 years. The future simulations were driven by three IPCC scenarios of concentrations of anthropogenic greenhouse gases, RCP2.5, RCP4.5 and RCP 8.5. For the past millennium and the last 150 years, coastal upwelling does not show any imprint of external forcing. This result indicates that chaotic internal variability has dominated upwelling intensity in major upwelling regions over the last thousand years and even since industrialisation up to present. For the 21st century, all ensemble members show a consistent and significant intensification of upwelling in the strongest scenario RCP8.5 for the Benguela upwelling region, consistent and significant weakening for Morocco and California, and no significant change for the Peruvian upwelling. Weaker scenarios do not produce consistent long-term trends that are replicated in all ensemble members. The results are confirmed by analysing another ensemble of past millennium simulations with the model CESM-CAM5 (Community Earth System Model

  14. [Research progress on carbon sink function of agroforestry system under climate change].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Zhou, Zi-Juan; Shan, Li-Shan

    2014-10-01

    As a land comprehensive utilization system, agroforestry system can absorb and fix CO2 effectively to increase carbon storage, and also reduces greenhouse effect convincingly while reaching the aim of harvest. The regulatory role in CO2 makes humans realize that agroforestry systems have significant superiority compared with single cropping systems, therefore, understanding the carbon sinks of different components in an agroforestry system and its influencing factors play an important role in studying global carbon cycle and accurate evaluation of carbon budget. This paper reviewed the concept and classification of agroforestry system, and then the carbon sequestration potentials of different components in agroforestry systems and influencing factors. It was concluded that the carbon sequestration rate of plants from different agroforestry systems in different regions are highly variable, ranging from 0.59 to 11.08 t C · hm(-2) · a(-1), and it is mainly influenced by climatic factors and the characteristics of agroforestry systems (species composition, tree density and stand age). The soil C sequestration of any agroforestry system is influenced by the amount and quality of biomass input provided by tree and nontree components of the system and the soil properties such as soil texture and soil structure. Overall the amount of carbon storage in any agroforestry system depends on the structure and function of its each component. The future studies should focus on the carbon sink functions of structurally optimized agroforestry systems, the temporal variation and spatial distribution pattern of carbon storage in agroforestry system and its carbon sequestration mechanism in a long time.

  15. Modeling the Roles of Precipitation Increasing in Glacier Systems Responding to Climate Warming - Taking Xinjiang Glaciated Region as Example

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; XIE Zichu; LIU Shiyin; TAO Jianjun; HAN Yongshun; YANG Yuelong

    2005-01-01

    The studies on prediction of climate in Xinjiang almost show that the precipitation would increase in the coming 50 years, although there were surely some uncertainties in precipitation predictions.On the basis of the structure of glacier system and nature of equilibrium line altitude at steady state (ELAo), a functional model of the glacier system responding to climate changes was established, and it simultaneously involved the rising of summer mean temperature and increasing of mean precipitation.The results from the functional model under the climatic scenarios with temperature increasing rates of 0.01, 0.03 and 0.05 K/year indicated that the precipitation increasing would play an evident role in glacier system responding to climate change: if temperature become 1℃ higher, the precipitation would be increased by 10%, which can slow down the glaciers retreating rate in the area by 4%, accelerate runoff increasing rate by 8% and depress the ELAo rising gradient by 24 m in northern Xinjiang glacier system where semi-continental glaciers dominate,while it has corresponding values of only 1%, 5 % and 18m respectively in southern Xinjiang glacier system,where extremely continental glaciers dominate.

  16. Transport systems meeting long-term climate targets: A backcasting approach

    Energy Technology Data Exchange (ETDEWEB)

    Aakerman, Jonas

    2011-02-15

    Future transport systems consistent with long-term climate targets are examined in this thesis, using a systems perspective covering the entire transport system. Aviation is given particular attention, as expansion of this mode is difficult to reconcile with climate targets. The aim is to provide scientific decision support for current transport policy-making, especially regarding structures with high inertia, e.g. urban structure, roads, railways, fuel production systems and vehicle fleets. An additional aim is to widen the perception of possible transport futures consistent with meeting climate targets, and to support a wider discussion in society on this topic. Papers I and III are backcasting studies which encompass the whole transport system. Paper III outlines an image of future Swedish transport by 2050, in which energy use per capita is reduced by 60%. This reduction is consistent with a 42% reduction in total global greenhouse gas emissions. Paper IV shows that total air travel by Swedes generates about 8.7 million tons of CO{sub 2}-equivalents annually. This corresponds to about 12% of total Swedish emissions. Considering the rapid growth in emissions, aviation is key to achieving overall climate targets. Paper V indicates that building high-speed tracks between Stockholm, Gothenburg and Malmoe may yield emissions reductions of about 550,000 tons of CO{sub 2}-equivalents annually, if a life-cycle perspective is considered for all modes. However, this reduction is contingent on continuing growth of transport volumes, which seems difficult to reconcile with the images in Papers II and III. This might consequently be a 'second best' solution if a more radical break in transport growth is deemed unlikely due to external drivers. The overall conclusion from this thesis is that improved vehicle technology and low carbon fuels are necessary, but not solely sufficient, to achieve long-term targets consistent with limiting global warming to two degrees

  17. Multi-criteria objective based climate change impact assessment for multi-purpose multi-reservoir systems

    Science.gov (United States)

    Müller, Ruben; Schütze, Niels

    2014-05-01

    Water resources systems with reservoirs are expected to be sensitive to climate change. Assessment studies that analyze the impact of climate change on the performance of reservoirs can be divided in two groups: (1) Studies that simulate the operation under projected inflows with the current set of operational rules. Due to non adapted operational rules the future performance of these reservoirs can be underestimated and the impact overestimated. (2) Studies that optimize the operational rules for best adaption of the system to the projected conditions before the assessment of the impact. The latter allows for estimating more realistically future performance and adaption strategies based on new operation rules are available if required. Multi-purpose reservoirs serve various, often conflicting functions. If all functions cannot be served simultaneously at a maximum level, an effective compromise between multiple objectives of the reservoir operation has to be provided. Yet under climate change the historically preferenced compromise may no longer be the most suitable compromise in the future. Therefore a multi-objective based climate change impact assessment approach for multi-purpose multi-reservoir systems is proposed in the study. Projected inflows are provided in a first step using a physically based rainfall-runoff model. In a second step, a time series model is applied to generate long-term inflow time series. Finally, the long-term inflow series are used as driving variables for a simulation-based multi-objective optimization of the reservoir system in order to derive optimal operation rules. As a result, the adapted Pareto-optimal set of diverse best compromise solutions can be presented to the decision maker in order to assist him in assessing climate change adaption measures with respect to the future performance of the multi-purpose reservoir system. The approach is tested on a multi-purpose multi-reservoir system in a mountainous catchment in Germany. A

  18. Multi-year GNSS monitoring of atmospheric IWV over Central and South America for climate studies

    Science.gov (United States)

    Bianchi, Clara Eugenia; Mendoza, Luciano Pedro Oscar; Fernández, Laura Isabel; Natali, María Paula; Meza, Amalia Margarita; Francisco Moirano, Juan

    2016-07-01

    Atmospheric water vapour has been acknowledged as an essential climate variable. Weather prediction and hazard assessment systems benefit from real-time observations, whereas long-term records contribute to climate studies. Nowadays, ground-based global navigation satellite system (GNSS) products have become widely employed, complementing satellite observations over the oceans. Although the past decade has seen a significant development of the GNSS infrastructure in Central and South America, its potential for atmospheric water vapour monitoring has not been fully exploited. With this in mind, we have performed a regional, 7-year-long and homogeneous analysis, comprising 136 GNSS tracking stations, obtaining high-rate and continuous observations of column-integrated water vapour and troposphere zenith total delay. As a preliminary application for this data set, we have estimated local water vapour trends, their significance, and their relation with specific climate regimes. We have found evidence of drying at temperate regions in South America, at a rate of about 2 % per decade, while a slow moistening of the troposphere over tropical regions is also weakly suggested by our results. Furthermore, we have assessed the regional performance of the empirical model GPT2w to blindly estimate troposphere delays. The model reproduces the observed mean delays fairly well, including their annual and semi-annual variations. Nevertheless, a long-term evaluation has shown systematical biases, up to 20 mm, probably inherited from the underlying atmospheric reanalysis. Additionally, the complete data set has been made openly available as supplementary material.

  19. A review of decadal/interdecadal climate variation studies in China

    Science.gov (United States)

    Li, Chongyin; He, Jinhai; Zhu, Jinhong

    2004-06-01

    Decadal/interdecadal climate variability is an important element in the CLIVAR (Climate Variability and Predictability) and has received much attention in the world. Many studies in relation to interdecadal variation have also been completed by Chinese scientists in recent years. In this paper, an introduction in outline for interdecadal climate variation research in China is presented. The content includes the features of interdecadal climate variability in China, global warming and interdecadal temperature variability, the NAO (the North Atlantic Oscillation)/NPO (the North Pacific Oscillation) and interdecadal climate variation in China, the interdecadal variation of the East Asian monsoon, the interdecadal mode of SSTA (Sea Surface Temperature Anomaly) in the North Pacific and its climate impact, and abrupt change feature of the climate.

  20. A Review of Decadal/Interdecadal Climate Variation Studies in China

    Institute of Scientific and Technical Information of China (English)

    李崇银; 何金海; 朱锦红

    2004-01-01

    Decadal/interdecadal climate variability is an important element in the CLIVAR (Climate Variability and Predictability) and has received much attention in the world. Many studies in relation to interdecadal variation have also been completed by Chinese scientists in recent years. In this paper, an introduction in outline for interdecadal climate variation research in China is presented. The content includes the features of interdecadal climate variability in China, global warming and interdecadal temperature variability,the NAO (the North Atlantic Oscillation)/NPO (the North Pacific Oscillation) and interdecadal climate variation in China, the interdecadal variation of the East Asian monsoon, the interdecadal mode of SSTA (Sea Surface Temperature Anomaly) in the North Pacific and its climate impact, and abrupt change feature of the climate.

  1. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  2. Assessing the relative effects of emissions, climate means, and variability on large water supply systems

    Science.gov (United States)

    Whateley, Sarah; Brown, Casey

    2016-11-01

    Some of the greatest societal risks of climate change rise from the potential impacts to water supply. Yet prescribing adaptation policies in the near term is made difficult by the uncertainty in climate projections at relevant spatial scales and the conflating effects of uncertainties in emissions, model error, and internal variability. In this work, a new framework is implemented to explore the vulnerability of reservoir systems in the northeastern U.S. to climate change and attribute vulnerabilities to changes in mean climate, natural variability, or emission scenarios. Analysis of variance is used to explore the contributions of uncertainties to system performance. Diagnosing the relative risks to water supply will help water resource engineers better adapt to uncertain future conditions. The results indicate that uncertainty in water supply system performance can be attributed mostly to uncertainty in internal variability over policy-relevant planning horizons, and thus, adaptation efforts should focus on managing variability.

  3. Embedding complex hydrology in the regional climate system – Dynamic coupling across different modelling domains

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl

    2014-01-01

    To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling...... system. The OpenMI modelling interface is used to couple a comprehensive hydrological modelling system, MIKE SHE running on personal computers, and a regional climate modelling system, HIRHAM running on a high performance computing platform. The coupled model enables two-way interaction between...... the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological...

  4. Developing the next-generation climate system models: challenges and achievements.

    Science.gov (United States)

    Slingo, Julia; Bates, Kevin; Nikiforakis, Nikos; Piggott, Matthew; Roberts, Malcolm; Shaffrey, Len; Stevens, Ian; Vidale, Pier Luigi; Weller, Hilary

    2009-03-13

    Although climate models have been improving in accuracy and efficiency over the past few decades, it now seems that these incremental improvements may be slowing. As tera/petascale computing becomes massively parallel, our legacy codes are less suitable, and even with the increased resolution that we are now beginning to use, these models cannot represent the multiscale nature of the climate system. This paper argues that it may be time to reconsider the use of adaptive mesh refinement for weather and climate forecasting in order to achieve good scaling and representation of the wide range of spatial scales in the atmosphere and ocean. Furthermore, the challenge of introducing living organisms and human responses into climate system models is only just beginning to be tackled. We do not yet have a clear framework in which to approach the problem, but it is likely to cover such a huge number of different scales and processes that radically different methods may have to be considered. The challenges of multiscale modelling and petascale computing provide an opportunity to consider a fresh approach to numerical modelling of the climate (or Earth) system, which takes advantage of the computational fluid dynamics developments in other fields and brings new perspectives on how to incorporate Earth system processes. This paper reviews some of the current issues in climate (and, by implication, Earth) system modelling, and asks the question whether a new generation of models is needed to tackle these problems.

  5. Predictability during active break phases of Indian summer monsoon in an ensemble prediction system using climate forecast system

    Science.gov (United States)

    Abhilash, S.; Sahai, A. K.; Pattnaik, S.; De, S.

    2013-08-01

    This study examines the phase dependant temporal and spatial error evolution and prediction of active break spells of Indian summer monsoon rainfall in an ensemble prediction system (EPS) on a pentad time scale using climate forecast system (CFS). The EPS system shows systematic wet bias (overestimation) over west coast over the Arabian Sea and Myanmar coast and dry bias (underestimation) over Indian land mass even at pentad 1 lead and these biases consistently increase up to 4 pentad lead and saturate thereafter. Irrespective of the phases of the monsoon, the lower bound of predictability is 2 pentads, while upper bound of predictability for initial conditions starting from active phase saturates at 3 pentads and for break and transition phases predictability error saturates at a later stage at about 5 pentad. Initial conditions started from transition phase shows higher potential predictability followed by break phase and then active phase.

  6. The farming system sensibility of the Normandy in connection with the Climatic Change (2000-2100)

    Science.gov (United States)

    Le Gouée, Patrick; Cantat, Olivier; Bensaïd, Abdelkrim; Savouret, Edwige

    2010-05-01

    The French agricultural economy is closely connected with weather-climatic conditions. For example, dryness caused by the heat-wave of 2003 seriously affected the vegetation leading to a significant slowdown of photosynthetic activity. This resulted in logical decrease of agricultural production, in particular for arable lands and fodders. The Global warming that has begun at the end of the 19th century and seems to continue and even intensify during the 21st century (GIEC, 2007) arises a question of farming system sensibility when faced with Climate Change in the future. In France, recent studies (Cloppet and al, 2009) have conducted to the probable climate features spatialization on the national territory according to different scenarios. Whatever the scenario considered, it seems that the present Norman climate type is going to disappear by the end of century to be supplanted by a type of weather influenced by raising evapotranspiration, minimal and maximum temperatures as well as a raising speed of wind and solar radiation. Globally, this could emphasize agriculture soil dryness negative impact on large cereal land and pastures production (Butault, 2009, Ruget & Brisson, 2007). However, this climatic evolution could bring some production gain when the available water content of soils allows preventing or strongly limiting the hydrous stress emergence. For the current period and horizon 2100, according to the scenario A1B of the GIEC, the evaluation and the mapping with fine spatial resolution of this pedo-climatic indicator present a capital stake to appreciate the sensitivity of the agriculture of the Normandy in connection with the climatic evolution announced for the end of the 21st century. This exploratory work has been undertaken for the departmental territory of Calvados (5500 km²). For that purpose, it has been necessary beforehand to work out a precise mapping of soils on the basis of 7514 soil boreholes. The treatment of the soil database has allowed

  7. Efficiency of a Solar Hydronic Space Heating System under the Algerian Climate

    Directory of Open Access Journals (Sweden)

    I. Zeghib

    2016-12-01

    Full Text Available Hydronic heating systems supplied by renewable energy sources are one of the main solutions for substituting fossil fuel and natural gas consumption. This paper presents the development of modeling and analysis of a solar hydronic heating system in an existing single-family house built in 1990’s heated by low-temperature radiators. The simulation has been used to study the potential of using this system under climatic conditions in Algeria. And for this purpose, a component based on the simulation model for the thermal behavior of each component of the system are carried out in order to evaluate the economic performance for this system. The system is compared, with a conventional high-temperature boiler system. The results indicated that single-family houses could be heated with solar hydronic heating and provided an acceptable level of thermal comfort in the room with 22°C, according to the results of the analysis, the solar energy covers only 20.8% of the total energy consumption in a single-family house. Furthermore, the thermal performance of the heating conventional system can be largely improved up to 15%.

  8. Climate change and socio-ecological transformation in high mountains: an empirical study of Garhwal Himalaya

    Directory of Open Access Journals (Sweden)

    Sati Vishwambhar Prasad

    2015-01-01

    Full Text Available Mountain regions are highly vulnerable to climate change, as they are ecologically fragile, tectonically and seismically active, and geologically sensitive. The main objectives of this study are to examine socio-ecological transformations and to illustrate the major driving forces - climate change, education and waves of modern civilization - in the Garhwal Himalaya. Data on socio-ecological systems and their patterns of change were accumulated from primary and secondary sources and through participatory rural appraisal. We present a case study where household level surveys were conducted in two villages. A total of 37 households were surveyed. Additionally, marginal farmers and extension workers were interviewed. Questions on population, migration, cropping pattern and livestock were answered by the head of the surveyed households. Population size was decreasing due to out-migration. The whole Garhwal region experienced 15.3% out-migration, while migration from the two villages was observed at 50% during the period 1990-2014. Similarly, changes in land use and cropping patterns and in the livestock population were observed. There was a decrease in the extent of land under cereals (24% and fruits (79%, a decrease in fruit production (75%, and a decrease in the number of livestock (76%. Climate change was observed as a major driver of the decrease in production and productivity of cereals and fruits, leading to land abandonment. Education, on the other hand, was a major driver of out-migration. Further, extreme events through climate change happened more frequently and changed the landscape. This study reveals that an increase in infrastructural facilities to create jobs and sustainable land management can control out-migration and can enhance land capability.

  9. Accurately measuring sea level change from space: an ESA climate change initiative for MSL closure budget studies

    Science.gov (United States)

    Legeais, JeanFrancois; Benveniste, Jérôme

    2016-07-01

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing long-term monitoring of the sea level ECV with regular updates, as required for climate studies. The program is now in its second phase of 3 year (following phase I during 2011-2013). The objectives are firstly to involve the climate research community, to refine their needs and collect their feedbacks on product quality. And secondly to develop, test and select the best algorithms and standards to generate an updated climate time series and to produce and validate the Sea Level ECV product. This will better answer the climate user needs by improving the quality of the Sea Level products and maintain a sustain service for an up-to-date production. This has led to the production of a first version of the Sea Level ECV which has benefited from yearly extensions and now covers the period 1993-2014. Within phase II, new altimeter standards have been developed and tested in order to reprocess the dataset with the best standards for climate studies. The reprocessed ECV will be released in summer 2016. We will present the main achievements of the ESA CCI Sea Level Project. On the one hand, the major steps required to produce the 22 years climate time series are briefly described: collect and refine the user requirements, development of adapted algorithms for climate applications and specification of the production system. On the other hand, the product characteristics are described as well as the results from product

  10. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    Science.gov (United States)

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable.

  11. Operation of hydropower generation systems in the Alps under future climate and socio-economic drivers

    Science.gov (United States)

    Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2015-04-01

    describes the behavior of hydropower operators. This integrated model allows to quantitatively explore possible trajectories of future evolution of the hydropower systems under the combined effect of climate and socio-economic drivers. In a multi-objective perspective, the model can test how different hydropower operation strategies perform in terms of power production, reliability and flexibility of supply, profitability of operation, and ecosystem conservation. This contribution presents the methodological framework designed to formulate the integrated model, its expected outcomes, and some preliminary results on a pilot study.

  12. Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, T; Zwiers, F; Hegerl, G; Allen, M; Crowley, T; Gillett, N; Hasselmann, K; Jones, P; Santer, B; Schnur, R; Stott, P; Taylor, K; Tett, S

    2005-01-26

    We review recent research that assesses evidence for the detection of anthropogenic and natural external influences on the climate. Externally driven climate change has been detected by a number of investigators in independent data covering many parts of the climate system, including surface temperature on global and large regional scales, ocean-heat content, atmospheric circulation, and variables of the free atmosphere, such as atmospheric temperature and tropopause height. The influence of external forcing is also clearly discernible in reconstructions of hemispheric scale temperature of the last millennium. These observed climate changes are very unlikely to be due only to natural internal climate variability, and they are consistent with the responses to anthropogenic and natural external forcing of the climate system that are simulated with climate models. The evidence indicates that natural drivers such as solar variability and volcanic activity are at most partially responsible for the large-scale temperature changes observed over the past century, and that a large fraction of the warming over the last 50 years can be attributed to greenhouse gas increases. Thus the recent research supports and strengthens the IPCC Third Assessment Report conclusion that ''most of the global warming over the past 50 years is likely due to the anthropogenic increase in greenhouse gases''.

  13. Identification and discrimination of patterns of dynamical influences within the climate system by means of complex network approaches

    Science.gov (United States)

    Donner, R. V.

    2014-12-01

    Complex network theory provides a powerful toolbox for studying the structure of statistical interrelationships between multiple time series. In this work, we demonstrate how networks constructed from fields of climatological observables like surface air temperatures, geopotential height or vertically integrated moisture divergence can be used for characterizing the evolving spatio-temporal correlation structure of the Earth's climate system and the time-dependent coupling between different variables. As a first application, we study the temporal variability of several network characteristics based on global surface air temperature data. The corresponding evolving climate network properties provide a functional discrimination between different large-scale climatological situations associated with different phases of the El Nino Southern Oscillation (ENSO), as well as reorganizations of dynamical similarity patterns following localized perturbations of the global climate system after strong volcanic eruptions. As a particular application, we demonstrate the distinction between the two previously known El Nino types based on global climate network properties and discuss implications for the possible existence of different La Nina types. A second example concerns the spatio-temporal organization of strong evapotranspiration events over South America. By constructing climate networks based on the synchronicity of extreme values in the vertically integrated moisture flux at different locations, we obtain distinct spatial patterns associated with the organization of strong atmospheric upwelling events. Again, our results exhibit a distinct imprint of the phasing of ENSO. Finally, we demonstrate how the climate network approach can be extended to studying the interaction structure between two climatological fields. As an example, we discuss the cross-linkage structure of mid-to-high latitude northern hemispheric ocean-atmosphere interactions during summer and winter

  14. Methodological discussion for interdisciplinary project on the effects of climatic variability on cropping systems.

    Science.gov (United States)

    Capa-Morocho, M.; Ruiz-Ramos, M.; Rodríguez-Fonseca, B.

    2012-04-01

    The Campus of International Excellence Moncloa (CEI, 2009) is a joint project of the Universities Complutense (UCM) and Politécnica of Madrid (UPM) which aims to promote connectivity between both of them in a context of scientific excellence. Within this framework an interdisciplinary doctoral Thesis is being developed, whose methodological line is presented here to collect the comments from the international scientific community. The aim of the Thesis is to assess the effect of the climatic variability in the agricultural systems of the Iberian Peninsula. It takes place between the group of agricultural systems (AgSystems) of the UPM and the TROPA group of Climatic Variability of the UCM. The provisional methodology consists on using time series of simulated crop yields and to correlate the monthly deviations with different atmospheric and oceanic anomalous fields in order to characterize the climate variability patterns affecting the fluctuations in productivity. We use observed data of climate reanalysis, general circulation models and crop simulation models. We have identified a common tool to connect both modeling disciplines: MATLAB software is used to program the functions used in data processing, for both climate and agricultural data. In this paper the methodological scheme will be shown. Both the potentials and synergies that we are finding between the group of modelers of climate and cropping systems, as well as the problems and methodological points to be resolved will be specified. We invite researchers with similar experiences to contribute to this discussion.

  15. Climate services for the assessment of climate change impacts and risks in coastal areas at the regional scale: the North Adriatic case study (Italy).

    Science.gov (United States)

    Valentina, Gallina; Torresan, Silvia; Giannini, Valentina; Rizzi, Jonathan; Zabeo, Alex; Gualdi, Silvio; Bellucci, Alessio; Giorgi, Filippo; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    At the international level, the interest for climate services is rising due to the social and economic benefits that different stakeholders can achieve to manage climate risks and take advantage of the opportunities associated with climate change impacts. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. Within the CLIM-RUN project (FP7), the case study of the North Adriatic Sea is aimed at analysing the need of climate information and the effectiveness of climate services for the integrated assessment of climate change impacts in coastal zones of the North Adriatic Sea at the regional to local scale. A participative approach was developed and applied to identify relevant stakeholders which have a mandate for coastal zone management and to interact with them in order to elicit their climate information needs. Specifically, the participative approach was carried out by means of two local workshops and trough the administration of a questionnaire related to climate information and services. The results of the process allowed identifying three major themes of interest for local stakeholders (i.e. hydro-climatic regime, coastal and marine environment, agriculture) and their preferences concerning key climate variables (e.g. extreme events, sea-level, wave height), mid-term temporal projections (i.e. for the next 30-40 years) and medium-high spatial resolution (i.e. from 1 to 50 km). Furthermore, the workshops highlighted stakeholder concern about several climate-related impacts (e.g. sea-level rise, storm surge, droughts) and vulnerable receptors (e.g. beaches, wetlands, agricultural areas) to be considered in vulnerability and risk assessment studies for the North Adriatic coastal zones. This information was used by climate and environmental risk experts in order to develop targeted climate information and

  16. Good Practice in Designing and Implementing National Monitoring Systems for Adaptation to Climate Change

    DEFF Research Database (Denmark)

    Naswa, Prakriti; Trærup, Sara Lærke Meltofte; Bouroncle, Claudia;

    In this report, we identify, analyse and compare international good practices in the design and implementation of national monitoring and evaluating indicator systems for climate change adaptation. This first chapter provides an introduction to the context and key terminology in the domain...... of climate change adaptation and indicators for M&E of adaptation. The second chapter discusses the existing approaches to M&E, while Chapter 3 provides a general overview of approaches to M&E Frameworks for Climate Change Adaptation. Chapters 4 and 5 outline and discuss the application and relevance...

  17. Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten;

    Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems provides a state-of-the-art overview of existing methodologies and relevant results related to the assessment of the climate change impacts on urban rainfall extremes as well as on urban hydrology and hydraulics....... This overview focuses mainly on several difficulties and limitations regarding the current methods and discusses various issues and challenges facing the research community in dealing with the climate change impact assessment and adaptation for urban drainage infrastructure design and management....

  18. Evaluating Vulnerability and Resilience between Urban and Rural Area in a Regional Water Resources System under Climate Change

    Science.gov (United States)

    Liu, T. M.; Tung, C. P.; Li, M. H.; Tsao, J. H.; Lin, C. Y.

    2014-12-01

    To the threat of climate change, the risk of water resources vary in different area but the same system because of the structure of water supply system and the different sensitivity and exposure to climate for different urbanization area. For example, the urban area with high population density is sensitive to any disturbance from drought and the rural area with unpopular tap water system is insensitive to disturbance of drought but highly risk to water shortage. The resilience of water supply relies on water storage from reservoirs or lakes and water management in urban area but relies on intake from groundwater in rural area. The strategies to water resources should be considered with the water mass flow between urban and rural area. To strengthen the whole water resources system, also, it is important to find where the vulnerability from, how to reduce it and how to build up the resilience for both urban and rural area. This study aims to evaluate the vulnerability and resilience of water resources in different township and city but in the same system. An integrated tool - TaiWAP (Taiwan Water Resources Assessment Program) for climate change vulnerability assessment on water resources is used for climate impact assessment. For the simulation of the complex water supply system, the system dynamics model- VENSIM which is connected with TaiWAP is adopted to simulate a water supply system and evaluate risk of each township and city in a water supply system. The cause of vulnerability will be identified and discussed in both urban and rural. The strategies to reduce vulnerability of water resources for urban and rural will be proposed and discussed in this study.

  19. The relationship between team climate and interprofessional collaboration: Preliminary results of a mixed methods study.

    Science.gov (United States)

    Agreli, Heloise F; Peduzzi, Marina; Bailey, Christopher

    2017-03-01

    Relational and organisational factors are key elements of interprofessional collaboration (IPC) and team climate. Few studies have explored the relationship between IPC and team climate. This article presents a study that aimed to explore IPC in primary healthcare teams and understand how the assessment of team climate may provide insights into IPC. A mixed methods study design was adopted. In Stage 1 of the study, team climate was assessed using the Team Climate Inventory with 159 professionals in 18 interprofessional teams based in São Paulo, Brazil. In Stage 2, data were collected through in-depth interviews with a sample of team members who participated in the first stage of the study. Results from Stage 1 provided an overview of factors relevant to teamwork, which in turn informed our exploration of the relationship between team climate and IPC. Preliminary findings from Stage 2 indicated that teams with a more positive team climate (in particular, greater participative safety) also reported more effective communication and mutual support. In conclusion, team climate provided insights into IPC, especially regarding aspects of communication and interaction in teams. Further research will provide a better understanding of differences and areas of overlap between team climate and IPC. It will potentially contribute for an innovative theoretical approach to explore interprofessional work in primary care settings.

  20. Optimal Design of a Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    Science.gov (United States)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, Hosung

    2017-04-01

    In the present work, the optimum design of thermoelectric car seat climate control (CSCC) is studied analytically in an attempt to achieve high system efficiency. Optimal design of a thermoelectric device (element length, cross-section area and number of thermocouples) is carried out using our newly developed optimization method based on the ideal thermoelectric equations and dimensional analysis to improve the performance of the thermoelectric device in terms of the heating/cooling power and the coefficient of performance (COP). Then, a new innovative system design is introduced which also includes the optimum input current for the initial (transient) startup warming and cooling before the car heating ventilation and air conditioner (HVAC) is active in the cabin. The air-to-air heat exchanger's configuration was taken into account to investigate the optimal design of the CSCC.

  1. Optimal Design of a Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    Science.gov (United States)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, Hosung

    2016-12-01

    In the present work, the optimum design of thermoelectric car seat climate control (CSCC) is studied analytically in an attempt to achieve high system efficiency. Optimal design of a thermoelectric device (element length, cross-section area and number of thermocouples) is carried out using our newly developed optimization method based on the ideal thermoelectric equations and dimensional analysis to improve the performance of the thermoelectric device in terms of the heating/cooling power and the coefficient of performance (COP). Then, a new innovative system design is introduced which also includes the optimum input current for the initial (transient) startup warming and cooling before the car heating ventilation and air conditioner (HVAC) is active in the cabin. The air-to-air heat exchanger's configuration was taken into account to investigate the optimal design of the CSCC.

  2. An Agent-based Extensible Climate Control System for Sustainable Greenhouse Production

    DEFF Research Database (Denmark)

    Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard; Klein, Mark

    2011-01-01

    The slow adoption pace of new control strategies for sustainable greenhouse climate control by industrial growers is mainly due to the complexity of identifying and resolving potentially conflicting climate control requirements. In this paper, we present a multi-agent-based climate control system...... that allows new requirements to be added without any need to identify or resolve conflicts beforehand. This is achieved by representing the climate control requirements as separate agents. Identifying and solving conflicts now become a negotiation problem among agents sharing the same controlled environment....... Negotiation is done using a novel multi-issue negotiation protocol that uses a generic algorithm to find an optimized solution within the search space. The Multi-Agent control system has been empirically evaluated in an ornamental floriculture research facility in Denmark. The evaluation showed...

  3. Reconciling Scale Mismatch in Water Governance, Hydro-climatic Processes and Infrastructure Systems of Water Supply in Las Vegas

    Science.gov (United States)

    Garcia, M. E.; Alarcon, T.; Portney, K.; Islam, S.

    2013-12-01

    Water resource systems are a classic example of a common pool resource due to the high cost of exclusion and the subtractability of the resource; for common pool resources, the performance of governance systems primarily depends on how well matched the institutional arrangements and rules are to the biophysical conditions and social norms. Changes in water governance, hydro-climatic processes and infrastructure systems occur on disparate temporal and spatial scales. A key challenge is the gap between current climate change model resolution, and the spatial and temporal scale of urban water supply decisions. This gap will lead to inappropriate management policies if not mediated through a carefully crafted decision making process. Traditional decision support and planning methods (DSPM) such as classical decision analysis are not equipped to deal with a non-static climate. While emerging methods such as decision scaling, robust decision making and real options are designed to deal with a changing climate, governance systems have evolved under the assumption of a static climate and it is not clear if these methods are well suited to the existing governance regime. In our study, these questions are contextualized by examining an urban water utility that has made significant changes in policy to adapt to changing conditions: the Southern Nevada Water Authority (SNWA) which serves metropolitan Las Vegas. Like most desert cities, Las Vegas exists because of water; the artesian springs of the Las Vegas Valley once provided an ample water supply for Native Americans, ranchers and later a small railroad city. However, population growth has increased demands far beyond local supplies. The area now depends on the Colorado River for the majority of its water supply. Natural climate variability with periodic droughts has further challenged water providers; projected climate changes and further population growth will exacerbate these challenges. Las Vegas is selected as a case

  4. Study of the influence of solar variability on a regional (Indian) climate: 1901-2007

    CERN Document Server

    Aslam, O P M

    2014-01-01

    We use Indian temperature data of more than 100 years to study the influence of solar activity on climate. We study the Sun-climate relationship by averaging solar and climate data at various time scales; decadal, solar activity and solar magnetic cycles. We also consider the minimum and maximum values of sunspot number (SSN) during each solar cycle. This parameter SSN is correlated better with Indian temperature when these data are averaged over solar magnetic polarity epochs (SSN maximum to maximum). Our results indicate that the solar variability may still be contributing to ongoing climate change and suggest for more investigations.

  5. Diminished Wastewater Treatment: Evaluation of Septic System Performance Under a Climate Change Scenario

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2015-12-01

    The effects of climate change are expected to reduce the ability of soil-based onsite wastewater treatment systems (OWTS), to treat domestic wastewater. In the northeastern U.S., the projected increase in atmospheric temperature, elevation of water tables from rising sea levels, and heightened precipitation will reduce the volume of unsaturated soil and oxygen available for treatment. Incomplete removal of contaminants may lead to transport of pathogens, nutrients, and biochemical oxygen demand (BOD) to groundwater, increasing the risk to public health and likelihood of eutrophying aquatic ecosystems. Advanced OWTS, which include pre-treatment steps and provide unsaturated drainfields of greater volume relative to conventional OWTS, are expected to be more resilient to climate change. We used intact soil mesocosms to quantify water quality functions for two advanced shallow narrow drainfield types and a conventional drainfield under a current climate scenario and a moderate climate change scenario of 30 cm rise in water table and 5°C increase in soil temperature. While no fecal coliform bacteria (FCB) was released under the current climate scenario, up to 109 CFU FCB/mL (conventional) and up to 20 CFU FCB/mL (shallow narrow) were released under the climate change scenario. Total P removal rates dropped from 100% to 54% (conventional) and 71% (shallow narrow) under the climate change scenario. Total N removal averaged 17% under both climate scenarios in the conventional, but dropped from 5.4% to 0% in the shallow narrow under the climate change scenario, with additional leaching of N in excess of inputs indicating release of previously held N. No significant difference was observed between scenarios for BOD removal. The initial data indicate that while advanced OWTS retain more function under the climate change scenario, all three drainfield types experience some diminished treatment capacity.

  6. A Power Efficient Exaflop Computer Design for Global Cloud System Resolving Climate Models.

    Science.gov (United States)

    Wehner, M. F.; Oliker, L.; Shalf, J.

    2008-12-01

    Exascale computers would allow routine ensemble modeling of the global climate system at the cloud system resolving scale. Power and cost requirements of traditional architecture systems are likely to delay such capability for many years. We present an alternative route to the exascale using embedded processor technology to design a system optimized for ultra high resolution climate modeling. These power efficient processors, used in consumer electronic devices such as mobile phones, portable music players, cameras, etc., can be tailored to the specific needs of scientific computing. We project that a system capable of integrating a kilometer scale climate model a thousand times faster than real time could be designed and built in a five year time scale for US$75M with a power consumption of 3MW. This is cheaper, more power efficient and sooner than any other existing technology.

  7. Climate change impact on shallow groundwater conditions in Hungary: Conclusions from a regional modelling study

    Science.gov (United States)

    Kovács, Attila; Marton, Annamária; Tóth, György; Szöcs, Teodóra

    2016-04-01

    A quantitative methodology has been developed for the calculation of groundwater table based on measured and simulated climate parameters. The aim of the study was to develop a toolset which can be used for the calculation of shallow groundwater conditions for various climate scenarios. This was done with the goal of facilitating the assessment of climate impact and vulnerability of shallow groundwater resources. The simulated groundwater table distributions are representative of groundwater conditions at the regional scale. The introduced methodology is valid for modelling purposes at various scales and thus represents a versatile tool for the assessment of climate vulnerability of shallow groundwater bodies. The calculation modules include the following: 1. A toolset to calculate climate zonation from climate parameter grids, 2. Delineation of recharge zones (Hydrological Response Units, HRUs) based on geology, landuse and slope conditions, 3. Calculation of percolation (recharge) rates using 1D analytical hydrological models, 4. Simulation of the groundwater table using numerical groundwater flow models. The applied methodology provides a quantitative link between climate conditions and shallow groundwater conditions, and thus can be used for assessing climate impacts. The climate data source applied in our calculation comprised interpolated daily climate data of the Central European CARPATCLIM database. Climate zones were determined making use of the Thorntwaite climate zonation scheme. Recharge zones (HRUs) were determined based on surface geology, landuse and slope conditions. The HELP hydrological model was used for the calculation of 1D water balance for hydrological response units. The MODFLOW numerical groundwater modelling code was used for the calculation of the water table. The developed methodology was demonstrated through the simulation of regional groundwater table using spatially averaged climate data and hydrogeological properties for various time

  8. Improving NASA's Multiscale Modeling Framework for Tropical Cyclone Climate Study

    Science.gov (United States)

    Shen, Bo-Wen; Nelson, Bron; Cheung, Samson; Tao, Wei-Kuo

    2013-01-01

    One of the current challenges in tropical cyclone (TC) research is how to improve our understanding of TC interannual variability and the impact of climate change on TCs. Recent advances in global modeling, visualization, and supercomputing technologies at NASA show potential for such studies. In this article, the authors discuss recent scalability improvement to the multiscale modeling framework (MMF) that makes it feasible to perform long-term TC-resolving simulations. The MMF consists of the finite-volume general circulation model (fvGCM), supplemented by a copy of the Goddard cumulus ensemble model (GCE) at each of the fvGCM grid points, giving 13,104 GCE copies. The original fvGCM implementation has a 1D data decomposition; the revised MMF implementation retains the 1D decomposition for most of the code, but uses a 2D decomposition for the massive copies of GCEs. Because the vast majority of computation time in the MMF is spent computing the GCEs, this approach can achieve excellent speedup without incurring the cost of modifying the entire code. Intelligent process mapping allows differing numbers of processes to be assigned to each domain for load balancing. The revised parallel implementation shows highly promising scalability, obtaining a nearly 80-fold speedup by increasing the number of cores from 30 to 3,335.

  9. Vegetation-climate feedback causes reduced precipitation in CMIP5 regional Earth system model simulation over Africa

    Science.gov (United States)

    Wu, Minchao; Smith, Benjamin; Schurgers, Guy; Lindström, Joe; Rummukainen, Markku; Samuelsson, Patrick

    2013-04-01

    Terrestrial ecosystems have been demonstrated to play a significant role within the climate system, amplifying or dampening climate change via biogeophysical and biogeochemical exchange with the atmosphere and vice versa (Cox et al. 2000; Betts et al. 2004). Africa is particularly vulnerable to climate change and studies of vegetation-climate feedback mechanisms on Africa are still limited. Our study is the first application of A coupled Earth system model at regional scale and resolution over Africa. We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feedback to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feedback to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and

  10. Using the Terrestrial Observation and Prediction System (TOPS) to Analyze Impacts of Climate Change on Ecosystems within Northern California Climate Regions

    Science.gov (United States)

    Pitts, K.; Little, M.; Loewenstein, M.; Iraci, L. T.; Milesi, C.; Schmidt, C.; Skiles, J. W.

    2011-12-01

    The projected impacts of climate change on Northern California ecosystems using model outputs from the Terrestrial Observation and Prediction System (TOPS) for the period 1950-2099 based on 1km downscaled climate data from the Geophysical Fluid Dynamics Laboratory (GFDL) model are analyzed in this study. The impacts are analyzed for the Special Report Emissions Scenarios (SRES) A1B and A2, both maintaining present levels of urbanization constant and under projected urban expansion. The analysis is in support of the Climate Adaptation Science Investigation at NASA Ames Research Center. A statistical analysis is completed for time series of temperature, precipitation, gross primary productivity (GPP), evapotranspiration, soil runoff, and vapor pressure deficit. Trends produced from this analysis show that increases in maximum and minimum temperatures lead to declines in peak GPP, length of growing seasons, and overall declines in runoff within the watershed. For Northern California, GPP is projected under the A2 scenario to decrease by 18-25% by the 2090 decade as compared to the 2000 decade. These trends indicate a higher risk to crop production and other ecosystem services, as conditions would be less hospitable to vegetation growth. The increase in dried out vegetation would then lead to a higher risk of wildfire and mudslides in the mountainous regions.

  11. Study on the Influence of Abrupt Climate Variation on the Vegetation Based on NDVI

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the influence of abrupt climate variation on the vegetation based on NDVI. [Method] Based on NDVI and climate data in China during 1982-2000, by using Mann-kendall (MK) abrupt change detection method, the abrupt variations of climate and NDVI were detected. Then, the relationship between two kinds of abrupt variations was discussed. [Result] The large-area abrupt variations of monthly average temperature and rainfall happened in 1983, and the occurrence range in 1999 ...

  12. Climate Change Impact Chains in Coastal Areas (ICCA): Final study report

    OpenAIRE

    Pramova, Emilia; Chazarin, Florie; Locatelli, Bruno; Hoppe, Michael

    2013-01-01

    The studyClimate Change Impact Chains in Coastal Areas”, produced by the Center for International Forestry Research, CIFOR, was commissioned by the Inventory of Methods for Adaptation to Climate Change (IMACC) project, a global project by the Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, and funded through the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). The project aims at user-driven a...

  13. Climate change and climate variability impacts on rainfed agricultural activities and possible adaptation measures. A Mexican case study

    Energy Technology Data Exchange (ETDEWEB)

    Conde, C.; Ferrer, R. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico Circuito Exterior, Mexico, D.F. (Mexico)]. E-mail: e-mail: conde@servidor.unam.mx; Orozco, S. [Escuela de Agrobiologia, Universidad Autonoma de Tlaxcala, Tlaxcala (Mexico)

    2006-07-15

    Climate extreme events (such as those associated to strong El Nino events) highly affect Mexican agriculture, since more than sixty percent of it is rainfed. The basic crop cultivated is maize, which is still the main source of nutrients for a large portion of the rural population in the country. Within the project Capacity Building for Stage II Adaptation to Climate Change in Central America, Mexico and Cuba, we analyze the strategies developed by maize producers in the central region of the country to cope with climatic adverse events. Impact on rainfed maize due to climate variability and climate change conditions are studied using a crop simulation model. Several adaptation measures can be evaluated using that model. However, the effect of other stressors must be considered in an assessment of the adaptive capacity of small farmers to climate variability and change. Key stakeholders' involvement in the region helped us to decide which of the adaptive measures could be viable under the current conditions and under future climatic conditions. The construction of greenhouses, the use of compost, and dripping irrigation, were some of the techniques selected with the participation of the stakeholders. The enthusiastic responses to these measures allow us to consider that they can prevail in the future, under climate change conditions. However, the adaptation to climate change includes -besides the stated techniques- the generation of the capacities to cope with climatic adverse events, that is, to enhance the adaptive capacities to climate change among the key stakeholders. [Spanish] Los eventos climaticos extremos (como los asociados con eventos fuertes de El Nino) afectan de manera importante a la agricultura mexicana, ya que mas del sesenta por ciento de ella es de temporal, esto es, depende fundamentalmente de una buena temporada de lluvias para producir. El cultivo que se siembra es basicamente maiz, que todavia es la principal fuente de nutrientes para

  14. Territorial Systems with Rural Vocation, Innovation and Climate Change: from the Web an Opportunity for the Sustainability of Well-Being

    Directory of Open Access Journals (Sweden)

    Rosa Misso

    2013-08-01

    Full Text Available Well-being of the territorial systems with rural vocation can be compromised by climate change, but they also can influence, both positively than negatively, the factors that determine climate change. Starting from this dichotomous vision of the relationship between climate change and rural development, this study focuses on the role that Internet and the web mar-kiting strategies can develop in the mitigation and in the adaptation to climate change trough the spread of information on virtuous behaviour by individuals and firms. In such optics, the study provides a survey to evaluate the propensity of firms to use the web in order to promote responsible behaviour among the users of websites (suggesting virtuous behaviours or to valorise their commitment in the fight against climate change.

  15. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST -AIRC): An overview

    Science.gov (United States)

    Zhangqing, Li; Li, C.; Chen, H.; Tsay, S.-C.; Holben, B.; Huang, J.; Li, B.; Maring, H.; Qian, Y.; Shi, G.; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

    2011-01-01

    As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas, Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC), The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF-China), the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE), The former two are U,S,-China collaborative projects, and the latter is a part of the China's National Basic Research program (or often referred to as "973 project"), Routine meteorological data of China are also employed in some studies, The wealth of general and speCIalized measurements lead to extensive and close-up investigations of the optical, physical, and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation, and transport mechanisms; horizontal, vertical, and temporal variations; direct and indirect effects; and interactions with the East Asian monsoon system, Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc, In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

  16. The Earth System Grid Federation (ESGF): Climate Science Infrastructure for Large-scale Data Management and Dissemination

    Science.gov (United States)

    Williams, D. N.

    2015-12-01

    Progress in understanding and predicting climate change requires advanced tools to securely store, manage, access, process, analyze, and visualize enormous and distributed data sets. Only then can climate researchers understand the effects of climate change across all scales and use this information to inform policy decisions. With the advent of major international climate modeling intercomparisons, a need emerged within the climate-change research community to develop efficient, community-based tools to obtain relevant meteorological and other observational data, develop custom computational models, and export analysis tools for climate-change simulations. While many nascent efforts to fill these gaps appeared, they were not integrated and therefore did not benefit from collaborative development. Sharing huge data sets was difficult, and the lack of data standards prevented the merger of output data from different modeling groups. Thus began one of the largest-ever collaborative data efforts in climate science, resulting in the Earth System Grid Federation (ESGF), which is now used to disseminate model, observational, and reanalysis data for research assessed by the Intergovernmental Panel on Climate Change (IPCC). Today, ESGF is an open-source petabyte-level data storage and dissemination operational code-base that manages secure resources essential for climate change study. It is designed to remain robust even as data volumes grow exponentially. The internationally distributed, peer-to-peer ESGF "data cloud" archive represents the culmination of an effort that began in the late 1990s. ESGF portals are gateways to scientific data collections hosted at sites around the globe that allow the user to register and potentially access the entire ESGF network of data and services. The growing international interest in ESGF development efforts has attracted many others who want to make their data more widely available and easy to use. For example, the World Climate

  17. A globally coherent fingerprint of climate change impacts across natural systems

    Energy Technology Data Exchange (ETDEWEB)

    Parmesan, C. [University of Texas, Austin (United States). Patterson Laboratories; Yohe, G. [Wesleyan University, Middletown, Connecticut (United States)

    2003-01-02

    Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems. (author)

  18. Implications of climate variability for the detection of multiple equilibria and for rapid transitions in the atmosphere-vegetation system

    Energy Technology Data Exchange (ETDEWEB)

    Bathiany, S. [Max Planck Institute for Meteorology, Hamburg (Germany); Claussen, M. [Max Planck Institute for Meteorology, Hamburg (Germany); Universitaet Hamburg, Meteorologisches Institut, Hamburg (Germany); Fraedrich, K. [Universitaet Hamburg, Meteorologisches Institut, Hamburg (Germany)

    2012-05-15

    Paleoclimatic records indicate a decline of vegetation cover in the Western Sahara at the end of the African Humid Period (about 5,500 years before present). Modelling studies have shown that this phenomenon may be interpreted as a critical transition that results from a bifurcation in the atmosphere-vegetation system. However, the stability properties of this system are closely linked to climate variability and depend on the climate model and the methods of analysis. By coupling the Planet Simulator (PlaSim), an atmosphere model of intermediate complexity, with the simple dynamic vegetation model VECODE, we assess previous methods for the detection of multiple equilibria, and demonstrate their limitations. In particular, a stability diagram can yield misleading results because of spatial interactions, and the system's steady state and its dependency on initial conditions are affected by atmospheric variability and nonlinearities. In addition, we analyse the implications of climate variability for the abruptness of a vegetation decline. We find that a vegetation collapse can happen at different locations at different times. These collapses are possible despite large and uncorrelated climate variability. Because of the nonlinear relation between vegetation dynamics and precipitation the green state is initially stabilised by the high variability. When precipitation falls below a critical threshold, the desert state is stabilised as variability is then also decreased. (orig.)

  19. Smart and Resilient Cities. A Systemic Approach for Developing Cross-sectoral Strategies in the Face of Climate Change

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2015-04-01

    Full Text Available Climate change is considered one of the main environmental issues challenging contemporary cities. Meanwhile, urban development patterns and the growth of urban population represent the main contributors to climate change, affecting the total energy consumptions and the related greenhouse gas emissions. Therefore, a breakthrough in current urban development patterns is required to counterbalance the climate-related issues.This study focuses on the Smart City and Resilient City concepts; in detail, based on the review of existing literature, it analyzes the synergies between the two concepts, highlighting how the Smart City concept is more and more widely interpreted as a process addressed to make cities “more livable and resilient and, hence, able to respond quicker to new challenges” (Kunzmann, 2014. Nevertheless, current initiatives to improve cities’ smartness and resilience in the European cities are very fragmented and operational tools capable to support multi-objective strategies are still at an early stage. To fill this gap, embracing a systemic perspective, the main characteristics of a smart and resilient urban system have been identified and arranged into a conceptual model. The latter represents a preliminary step for the development of an operational tool capable to guide planners and decision-makers in carrying out multi-objective strategies addressed to enhance the response capacities of complex urban systems in the face of climate change.

  20. Extratropical cyclone classification and its use in climate studies

    Science.gov (United States)

    Catto, J. L.

    2016-06-01

    Extratropical cyclones have long been known to be important for midlatitude weather. It is therefore important that our current state-of-the-art climate models are able to realistically represent these features, in order that we can have confidence in how they are projected to change in a warming climate. Despite the observation that these cyclones are extremely variable in their structure and features, there have, over the years, been numerous attempts to classify or group them. Such classifications can provide insight into the different cloud structures, airflows, and dynamical forcing mechanisms within the different cyclone types. This review collects and details as many classification techniques as possible, and may therefore act as a reference guide to classifications. These classifications offer the opportunity to improve the way extratropical cyclone evaluation in climate models is currently done by giving more insight into the dynamical and physical processes that occur in climate models (rather than just evaluating the mean state over a broad region as is often done). Examples of where these ideas have been used, or could be used, are reviewed. Finally, the potential impacts of future climate changes on extratropical cyclones are detailed. The ways in which the classification techniques could improve our understanding of future changes in extratropical cyclones and their impacts are given.

  1. Self-organization in the Earth climate system versus Milankovitch-Berger astronomical cycles

    CERN Document Server

    Maslov, Lev A

    2014-01-01

    The Late Pleistocene Antarctic temperature variation curve is decomposed into two parts: cyclic and stochastic. These two parts represent different but tightly interconnected processes and also represent two different types of self-organization of the Earth climate system. The self-organization in the cyclic component is the non-linear auto-oscillation reaction of the Earth climate system, as a whole, to the input of solar radiation. The self-organization in the stochastic component is a nonlinear critical process, taking energy from, and fluctuating around the cyclic component of the temperature variations. The system of ODEs is written to model the cyclic part of the temperature variation, and the multifractal spectrum of the stochastic part of the temperature variation is calculated. The Earth climate can be characterized as an open, complex, self-organized dynamical system with nonlinear reaction to the input of solar radiation.

  2. Characterization of the Dynamics of Climate Systems and Identification of Missing Mechanisms Impacting the Long Term Predictive Capabilities of Global Climate Models Utilizing Dynamical Systems Approaches to the Analysis of Observed and Modeled Climate

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Uma S. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Wackerbauer, Renate [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Polyakov, Igor V. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Newman, David E. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Sanchez, Raul E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fusion Energy Division; Univ. Carlos III de Madrid (Spain)

    2015-11-13

    The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were applied to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.

  3. Efficient heat supply and use from an energy-system and climate perspective

    Energy Technology Data Exchange (ETDEWEB)

    Danestig, Maria

    2009-03-15

    The aim of this thesis is to illustrate whether the heat demand in district heating systems can be seen as a resource that enables efficient energy utilization, how this can be achieved and to discuss consequences of this assumption. Based on the answers to posed research questions and on the studies included in this thesis, it is concluded that the hypothesis 'A common system approach for energy supply and heat demand will show climate and economic efficient solutions' is true. In cold-climate countries, energy for heating of buildings is essential and heating options that interplay with the power system through electricity use or generation have potential for efficiency improvements. In Sweden, district heating is used extensively, especially in large buildings but to a growing extent also for small houses. Some industrial heat loads and absorption cooling can complement space heating demand so that the production resources may be more evenly utilised during the seasons of the year. Rising electricity prices in recent years cause problems for the extensive use of electric heating in Sweden and further switching to district heating should be a possible option. To be economically favourable, district-heating systems require a certain heat load density. New low-energy houses and energy-efficiency measures in existing buildings decrease the heat demand in buildings and, thus, in district heating systems. Optimisation models have been used in several studies of large, complex energy systems. Such models allow scenarios with changing policy instruments and changed consumer behaviour to be analysed. Energy efficiency measures as well as good conditions for efficient electricity generation, which can replace old, inefficient plants, are needed to reduce carbon dioxide emissions from the energy sector. Results when having a European energy perspective to studies of changes in Sweden differ from when having for example a Swedish energy system perspective The

  4. Testing the ability of RIEMS2.0 (Regional Integrated Environment Modeling System) on regional climate simulation in East Asia

    Science.gov (United States)

    Zhao, D.; Fu, C.; Yan, X.

    2010-12-01

    RIEMS1.0 (Regional Integrated Environmental Modeling System version 1.0) was developed by researchers from the START (Global change System for Analysis, Research, and Training) Regional Center for Temperate East Asia, IAP/CAS in 1998. The model was built on the thermodynamic frame of PSU/NCAR MM5V2, into which a land surface scheme (BATS1e) and radiative transfer scheme (the revised CCM3) are integrated. The model has been widely used in regional climate studies in the East Asia monsoon system and expresses excellent performance from RMIP (Regional Climate Model Inter-comparison Project). RIEMS2.0 is now being developed starting from RIEMS1.0 by the Key Laboratory of Regional Climate Environment Research for Temperate East Asia, IAP/CAS, and Nanjing University. The new version is built on the thermodynamic framework of nonhydrostatic approximation from MM5V3 with the same land surface model and radiation scheme as RIEMS1.0. To make it an integrated modeling system, the Princeton ocean mode (POM), Atmosphere-Vegetation interaction model (AVIM) and a chemical model are now being integrated. In order to test RIEMS2.0’s ability to simulate short-term climate, we perform ensemble simulations with different physics process schemes. The model will be used to perform ensemble simulations on two continuous extreme climate events, which is serve drought with high temperature in north China in the summer (June, July and August) of 1997 and serve flood in the Yangtze River valley in the summer of 1998. The results show that RIEMS2.0 can reproduce the spatial distribution of the precipitation and SAT from two continuous extreme climate events in the summer of 1997/1998, and disclose sub-regional characteristics. Though difference can be found among ensemble members, ensembles can decrease the model’s uncertainty and improve the simulation decision in a certain degree. In order to test RIEMS2.0’s ability to simulate long-term climate and climate change, we compare

  5. Assessing Student Learning About Climate Change With Earth System Place-Based Geospatial Data

    Science.gov (United States)

    Zalles, D. R.; Krumhansl, R. A.; Acker, J. G.; Manitakos, J.; Elston, A.

    2012-12-01

    Powerful web-based data sets about geospatially situated Earth system phenomena are now available for analysis by the general public, including for any teacher or set of students who have the requisite skills to partake in the analyses. Unfortunately there exist impediments to successful use of these data. Teachers and students may lack (1) readiness to use the software interfaces for querying and representing the data, (2) needed scientific practice skills such as interpreting geographic information system-based maps and time series plots, and (3) needed understandings of the fundamental scientific concepts to make sense of the data. Hence, to evaluate any program designed to engage students and teachers with these data resources, there need to be assessment strategies to check for understanding. Assessment becomes the key to identifying learning needs and intervening appropriately with additional task scaffolding or other forms of instructional support. The paper will describe contrasting assessment strategies being carried out in two climate change education projects funded by NASA and NSF. The NASA project, Data Enhanced Investigations for Climate Change Education (DICCE), brings data from NASA satellite missions to the classroom. A bank of DICCE assessment items is being developed to measure students' abilities to transfer their skills in analyzing data about their local region to other regions of the world. Teachers choose pre-post assessment items for variables of Earth system phenomena that they target in their instruction. The data vary depending on what courses the teachers are teaching. For example, Earth science teachers are likely to choose data about atmospheric phenomena and biology teachers are more likely to choose land cover data. The NSF project, Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE), provides to teachers recent climatological and vegetation data about "study areas" in Central

  6. Performance evaluation of NCEP climate forecast system for the prediction of winter temperatures over India

    Science.gov (United States)

    Nageswararao, M. M.; Mohanty, U. C.; Kiran Prasad, S.; Osuri, Krishna K.; Ramakrishna, S. S. V. S.

    2016-11-01

    The surface air temperature during the winter season (December-February) in India adversely affects agriculture as well as day-to-day life. Therefore, the accurate prediction of winter temperature in extended range is of utmost importance. The National Center for Environmental Prediction (NCEP) has been providing climatic variables from the fully coupled global climate model, known as Climate Forecast System version 1 (CFSv1) on monthly to seasonal scale since 2004, and it has been upgraded to CFSv2 subsequently in 2011. In the present study, the performance of CFSv1 and CFSv2 in simulating the winter 2 m maximum, minimum, and mean temperatures ( T max, T min, and T mean, respectively) over India is evaluated with respect to India Meteorological Department (IMD) 1° × 1° observations. The hindcast data obtained from both versions of CFS from 1982 to 2009 (27 years) with November initial conditions (lead-1) are used. The analyses of winter ( T max, T min, and T mean) temperatures revealed that CFSv1 and CFSv2 are able to replicate the patterns of observed climatology, interannual variability, and coefficient of variation with a slight negative bias. Of the two, CFSv2 is appreciable in capturing increasing trends of winter temperatures like observed. The T max, T min, and T mean correlations from CFSv2 is significantly high (0.35, 0.53, and 0.51, respectively), while CFSv1 correlations are less (0.29, 0.15, and 0.12) and insignificant. This performance of CFSv2 may be due to the better estimation of surface heat budget terms and realistic CO2 concentration, which were absent in CFSv1. CFSv2 proved to have a high probability of detection in predicting different categories (below, near, and above normal) for winter T min, which are required for crop yield and public utility services, over north India.

  7. Electricity Consumption Risk Map - The use of Urban Climate Mapping for smarter analysis: Case study for Birmingham, UK.

    Science.gov (United States)

    Antunes Azevedo, Juliana; Burghardt, René; Chapman, Lee; Katzchner, Lutz; Muller, Catherine L.

    2015-04-01

    Climate is a key driving factor in energy consumption. However, income, vegetation, building mass structure, topography also impact on the amount of energy consumption. In a changing climate, increased temperatures are likely to lead to increased electricity consumption, affecting demand, distribution and generation. Furthermore, as the world population becomes more urbanized, increasing numbers of people will need to deal with not only increased temperatures from climate change, but also from the unintentional modification of the urban climate in the form of urban heat islands. Hence, climate and climate change needs to be taken into account for future urban planning aspects to increase the climate and energy resilience of the community and decrease the future social and economic costs. Geographical Information Systems provide a means to create urban climate maps as part of the urban planning process. Geostatistical analyses linking these maps with demographic and social data, enables a geo-statistical analysis to identify linkages to high-risk groups of the community and vulnerable areas of town and cities. Presently, the climatope classification is oriented towards thermal aspects and the ventilation quality (roughness) of the urban areas but can also be adapted to take into account other structural "environmental factors". This study aims to use the climatope approach to predict areas of potential high electricity consumption in Birmingham, UK. Several datasets were used to produce an average surface temperature map, vegetation map, land use map, topography map, building height map, built-up area roughness calculations, an average air temperature map and a domestic electricity consumption map. From the correlations obtained between the layers it is possible to average the importance of each factor and create a map for domestic electricity consumption to understand the influence of environmental aspects on spatial energy consumption. Based on these results city

  8. Climate impact on groundwater systems: the past is the key to the future

    Science.gov (United States)

    van der Ploeg, Martine; Cendón, Dioni; Haldorsen, Sylvi; Chen, Jinyao; Gurdak, Jason; Tujchneider, Ofelia; Vaikmäe, Rein; Purtschert, Roland; Chkir Ben Jemâa, Najiba

    2013-04-01

    important focus, little attention has been given to groundwater as a potential record of past climate variations. A groundwater system's history is vital to forecast its vulnerability under future and potentially adverse climatic changes. By processing groundwater information from vast regions and different continents, recharge and palaeoclimate can be correlated at a global scale. To successfully evaluate the sustainability of groundwater resources, "the past is the key to the future". To address the identified lack of palaeoclimatic data available from groundwater studies, a global collaboration has been set-up in 2011 called Groundwater@Global Palaeoclimate Signals (www.gw-gps.com), and has already more than 70 participants from 5 continents. Since 2012 G@GPS receives seed funding to support meetings by the International Geoscience Programme, the International Union for Quaternary Research and UNESCO-GRAPHIC International Hydrologic Project. This collaboration targets groundwater basins on five continents —Africa, America, Asia, Australia, Europe — containing vast groundwater resources with an estimated dependence of tens of millions of people. We will present G@GPS, show examples from groundwater basins, and discuss possibilities to integrate groundwater information from these basins. References Cartwright, I. et al. 2007. Consraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: Applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J. Hydrol. 332: 69-92. Clark, I. and P. Fritz. 1997. Environmental isotopes in hydrogeology, Lewis Publishers. Collon, P. et al. 2000. 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth and Planetary Science Letters 182: 103-113. Currell, M. J. et al. 2010. Recharge history and controls on groundwater quality in the Yuncheng Basin, north China, J. Hydrol. 385: 216-229. Davison, M. R. and P. L. Airey. 1982. The

  9. Climate change and viticulture in Mediterranean climates: the complex response of socio-ecosystems. A comparative case study from France and Australia (1955-2040)

    Science.gov (United States)

    Lereboullet, A.-L.; Beltrando, G.; Bardsley, D. K.

    2012-04-01

    The wine industry is very sensitive to extreme weather events, especially to temperatures above 35°C and drought. In a context of global climate change, Mediterranean climate regions are predicted to experience higher variability in rainfall and temperatures and an increased occurrence of extreme weather events. Some viticultural systems could be particularly at risk in those regions, considering their marginal position in the growth climatic range of Vitis vinifera, the long commercial lifespan of a vineyard, the high added-value of wine and the volatile nature of global markets. The wine industry, like other agricultural systems, is inserted in complex networks of climatic and non-climatic (other physical, economical, social and legislative) components, with constant feedbacks. We use a socio-ecosystem approach to analyse the adaptation of two Mediterranean viticultural systems to recent and future increase of extreme weather events. The present analysis focuses on two wine regions with a hot-summer Mediterranean climate (CSb type in the Köppen classification): Côtes-du-Roussillon in southern France and McLaren Vale in southern Australia. Using climate data from two synoptic weather stations, Perpignan (France) and Adelaide (Australia), with time series running from 1955 to 2010, we highlight changes in rainfall patterns and an increase in the number of days with Tx >35°c since the last three decades in both regions. Climate models (DRIAS project data for France and CSIRO Mk3.5 for Australia) project similar trends in the future. To date, very few projects have focused on an international comparison of the adaptive capacity of viticultural systems to climate change with a holistic approach. Here, the analysis of climate data was complemented by twenty in-depth semi-structured interviews with key actors of the two regional wine industries, in order to analyse adaptation strategies put in place regarding recent climate evolution. This mixed-methods approach

  10. Recent Studies on Attributions of Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zongci; DING Yihui; LUO Yong; Wang Shaowu

    2005-01-01

    Attributions of floods/cooler along the Yangtze River Valley and droughts/warmer in North China for the last 25 years have been reviewed in this paper. Both natural climate variability and human activities are considered. Some stronger evidences contributed to the natural climate variability, such as decadal and interdecadal variabilities of East Asian summer monsoon, the periodicities and transitions of rainfall and temperature changes in China, abrupt climate change, NAO, AO, AAO, ENSO, and snow cover. The signals produced by the human activities such as greenhouse gases and "brown clouds" likely play the role for the patterns. But the physical feedbacks and mechanisms still keep ambiguous and vague. More researches should be carried out in future to solve this issue.

  11. A multi-resolution method for climate system modeling: application of Spherical Centroidal A multi-resolution method for climate system modeling: Application of Spherical Centroidal Voroni Tessellations

    Energy Technology Data Exchange (ETDEWEB)

    Ringler, Todd D [Los Alamos National Laboratory; Gunzburger, Max [FLORIDA STATE UNIV; Ju, Lili [UNIV OF SOUTH CAROLINA

    2008-01-01

    During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multi-resolution schemes that are able, at least regional to faithfully simulate these fine-scale processes. Spherical Centroidal Voronoi Tessellations (SCVTs) offer one potential path toward the development of robust, multi-resolution climate system component models, SCVTs allow for the generation of high quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function, each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean-ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear shallow-water equations spanning the entire surface of the sphere. This example is used to elucidate both the potential benefits of this multi-resolution method and the challenges ahead.

  12. Comparing smallholder farmers’ perception of climate change with meteorological data: A case study from southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Ayansina Ayanlade

    2017-03-01

    Full Text Available This paper examines smallholder farmers’ perceptions of climate change, climate variability and their impacts, and adaptation strategies adopted over the past three decades. We use ethnographic analysis, combined with Cumulative Departure Index (CDI, Rainfall Anomaly Index (RAI analysis, and correlation analysis to compare farmers’ perceptions in Southwestern Nigeria with historical meteorological data, in order to assess the way farmers’ observations mirror the climatic trends. The results show that about 67% of farmers who participated had observed recent changes in climate. Perceptions of rural farmers on climate change and variability are consistent with the climatic trend analysis. RAI and CDI results illustrate that not less than 11 out of 30 years in each study site experienced lower-than-normal rainfall. Climatic trends show fluctuations in both early growing season (EGS and late growing season (LGS rainfall and the 5-year moving average suggests a reduction in rainfall over the 30 years. Climatic trends confirmed farmers’ perceptions that EGS and LGS precipitations are oscillating, that rainfall onset is becoming later, and EGS rainfall is reducing. Overall impacts of climate change on both crops and livestock appear to be highly negative, much more on maize (62.8%, yam (52.2%, poultry (67% and cattle (63.2%. Years of farming experiences and level of income of farmers appear to have a significant relationship with farmers’ choice of adaptation strategies, with r≥0.60@ p<0.05 and r≥0.520@ p<0.05 respectively. The study concluded that farmers’ perceptions of climate change mirror meteorological analysis, though their perceptions were based on local climate parameters. Smallholder farmers are particularly vulnerable to climate change since the majority of them do not have enough resources to cope.

  13. A study on the influence of organizational climate on motivation of employees

    Directory of Open Access Journals (Sweden)

    Sibel Gök

    2009-10-01

    Full Text Available The relation between organizational climate and organizational efficiency is frequently pointed out in recent management and labour psychology studies. Organizational climate has positive or negative impacts on performance, job satisfaction, and motivation of employees.In this study, which consists of two parts, the relation between organizational climate and work motivation is examined. The first part of the study contains theoretical framework with regard to the organizational climate and work motivation.In the second part, a field research is presented. 252 employees were interviewed in this study. The data that obtained from interviews were analyzed and subsequently evaluated in terms of statistical outcomes. The statistical results demonstrated that organizational climate has a positive influence on motivation of employees.

  14. Regional projections of North Indian climate for adaptation studies.

    Science.gov (United States)

    Mathison, Camilla; Wiltshire, Andrew; Dimri, A P; Falloon, Pete; Jacob, Daniela; Kumar, Pankaj; Moors, Eddy; Ridley, Jeff; Siderius, Christian; Stoffel, Markus; Yasunari, T

    2013-12-01

    Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes.

  15. Assessment of the desertification vulnerability of the Cappadocian district (Central Anatolia, Turkey based on aridity and climate-process system

    Directory of Open Access Journals (Sweden)

    Murat Türkeş

    2011-03-01

    Full Text Available The present study discusses climate of the Cappadocian district in Turkey on the basis of Thornthwaite’s climate classification and water budget, Erinç’s aridity index and United Nations Convention to Combat Desertification (UNCCD aridity index, along with the spatial and inter-seasonal variations of precipitation and air temperatures. Vulnerability of the Cappadocia to desertification processes was also investigated with respect to the aridity, lithology dominated by tuffs and climate-process system and present land-use features of the district. The data analysis revealed that coefficients of variation (CV of the mean and maximum temperatures are the greatest in summer and the smallest in winter. Nevşehir and Kayseri environs are the most continental parts of the Cappadocia with a high inter-annual variability and low temperatures. Cappadocia is characterized with a continental rainfall regime having a maximum precipitation in spring. Variability of summer precipitation totals is greater than that of other seasons, varying from 65.7% to 78%. The CVs of the annual precipitation totals are about 18% at north and about 20% at south. Semi-arid and dry sub-humid or semi-humid climate types prevail over Cappadocia according to Thornthwaite’s moisture and Erinç’s aridity indices. Steppe is the dominant vegetation formation with sparse dry forests. The Cappadocia is vulnerable to the desertification processes due to both natural factors (e.g. degree of aridity, climate-process system, weathering of tuffs, erosion, climate change, etc. and human-involvement (e.g. land degradation and intensive tourism, etc.. In order to mitigate desertification and to preserve the historical and cultural heritages in Cappadocia, sustainable land-use management and tourism planning applications are urgently needed.

  16. Assessment of the desertification vulnerability of the Cappadocian district (Central Anatolia, Turkey based on aridity and climate-process system

    Directory of Open Access Journals (Sweden)

    Murat Türkeş

    2011-03-01

    Full Text Available The present study discusses climate of the Cappadocian district in Turkey on the basis of Thornthwaite’s climate classification and water budget, Erinç’s aridity index and United Nations Convention to Combat Desertification (UNCCD aridity index, along with the spatial and inter-seasonal variations of precipitation and air temperatures. Vulnerability of the Cappadocia to desertification processes was also investigated with respect to the aridity, lithology dominated by tuffs and climate-process system and present land-use features of the district. The data analysis revealed that coefficients of variation (CV of the mean and maximum temperatures are the greatest in summer and the smallest in winter. Nevşehir and Kayseri environs are the most continental parts of the Cappadocia with a high inter-annual variability and low temperatures. Cappadocia is characterized with a continental rainfall regime having a maximum precipitation in spring. Variability of summer precipitation totals is greater than that of other seasons, varying from 65.7% to 78%. The CVs of the annual precipitation totals are about 18% at north and about 20% at south. Semi-arid and dry sub-humid or semi-humid climate types prevail over Cappadocia according to Thornthwaite’s moisture and Erinç’s aridity indices. Steppe is the dominant vegetation formation with sparse dry trees. The Cappadocia is vulnerable to the desertification processes due to both natural factors (e.g. degree of aridity, climate-process system, weathering of tuffs, erosion, climate change, etc. and human-involvement (e.g. land degradation and intensive tourism, etc.. In order to mitigate desertification and to preserve the historical and cultural heritages in Cappadocia, sustainable land-use management and tourism planning applications are urgently needed.

  17. Regional Approaches to Climate Change for Inland Pacific Northwest Cereal Production Systems

    Science.gov (United States)

    Eigenbrode, S. D.; Abatzoglou, J. T.; Burke, I. C.; Capalbo, S.; Gessler, P.; Huggins, D. R.; Johnson-Maynard, J.; Kruger, C.; Lamb, B. K.; Machado, S.; Mote, P.; Painter, K.; Pan, W.; Petrie, S.; Paulitz, T. C.; Stockle, C.; Walden, V. P.; Wulfhorst, J. D.; Wolf, K. J.

    2011-12-01

    The long-term environmental and economic sustainability of agriculture in the Inland Pacific Northwest (northern Idaho, north central Oregon, and eastern Washington) depends upon improving agricultural management, technology, and policy to enable adaptation to climate change and to help realize agriculture's potential to contribute to climate change mitigation. To address this challenge, three land-grant institutions (Oregon State University, the University of Idaho and Washington State University) (OSU, UI, WSU) and USDA Agricultural Research Service (ARS) units are partners in a collaborative project - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA). The overarching goal of REACCH is to enhance the sustainability of Inland Pacific Northwest (IPNW) cereal production systems under ongoing and projected climate change while contributing to climate change mitigation. Supporting goals include: - Develop and implement sustainable agricultural practices for cereal production within existing and projected agroecological zones throughout the region as climate changes, - Contribute to climate change mitigation through improved fertilizer, fuel, and pesticide use efficiency, increased sequestration of soil carbon, and reduced greenhouse gas (GHG) emissions consistent with the 2030 targets set by the USDA National Institute for Food and Agriculture (NIFA), - Work closely with stakeholders and policymakers to promote science-based agricultural approaches to climate change adaptation and mitigation, - Increase the number of scientists, educators, and extension professionals with the skills and knowledge to address climate change and its interactions with agriculture. In this poster, we provide an overview of the specific goals of this project and activities that are underway since its inception in spring of 2011.

  18. Collective behaviour of climate indices in the North Pacific air-sea system and its potential relationships with decadal climate changes

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Juan; Zhi Rong; He Wen-Ping; Gong Zhi-Qiang

    2012-01-01

    A climate network of six climate indices of the North Pacific air-sea system is constructed during the period of 1948-2009.In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift,the synchronization behaviour and the coupling behaviour of these indices are investigated.Results indicate that climate network synchronization happened around the beginning of the 1960s,in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately.These synchronization states were always followed by the decrease of the coupling coefficient.Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal vaiues of North Pacific sea-surface temperature and 500-hPa height,among which the one that happened in the middle of the 1970s is the most noticeable climate shift.We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices.That is to say,abrupt climate shift in North Pacific air-sea system is not only shown by the phase or trend changes of climate indices,but also night be indicated by the synchronizing and the coupling of climate indices.Furthermore,at the turning point of 1975,there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific,which further proves the probability of climate index synchronization and coupling shift in air-sea systems.

  19. The DSET Tool Library: A software approach to enable data exchange between climate system models

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Climate modeling is a computationally intensive process. Until recently computers were not powerful enough to perform the complex calculations required to simulate the earth`s climate. As a result standalone programs were created that represent components of the earth`s climate (e.g., Atmospheric Circulation Model). However, recent advances in computing, including massively parallel computing, make it possible to couple the components forming a complete earth climate simulation. The ability to couple different climate model components will significantly improve our ability to predict climate accurately and reliably. Historically each major component of the coupled earth simulation is a standalone program designed independently with different coordinate systems and data representations. In order for two component models to be coupled, the data of one model must be mapped to the coordinate system of the second model. The focus of this project is to provide a general tool to facilitate the mapping of data between simulation components, with an emphasis on using object-oriented programming techniques to provide polynomial interpolation, line and area weighting, and aggregation services.

  20. Modelling oxygen isotopes in the University of Victoria Earth System Climate Model

    Directory of Open Access Journals (Sweden)

    C. E. Brennan

    2011-09-01

    Full Text Available Implementing oxygen isotopes (H218O, H216O in coupled climate models provides both an important test of the individual model's hydrological cycle, and a powerful tool to mechanistically explore past climate changes while producing results directly comparable to isotope proxy records. Here we describe the addition of oxygen isotopes in the University of Victoria Earth System Climate Model (UVic ESCM. Equilibrium simulations are performed for preindustrial and Last Glacial Maximum conditions. The oxygen isotope content in the model preindustrial climate is compared against observations for precipitation and seawater. The distribution of oxygen isotopes during the LGM is compared against available paleo-reconstructions.

  1. Impacts of climate change on rainfall extremes and urban drainage systems: A review

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Willems, P.; Olsson, J.;

    2013-01-01

    A review is made of current methods for assessing future changes in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic-induced climate change. The review co