WorldWideScience

Sample records for climate surface hydrology

  1. Climate change from the perspective of the surface energy balance and global hydrologic cycle

    Science.gov (United States)

    Ramaswamy, V.; Ming, Y.; Schwarzkopf, M. D.

    2015-12-01

    Major changes have occurred in the radiative drive of the surface since preindustrial times owing to both changes in the emissions of greenhouse gases and aerosols. These are to be contrasted with the drive at the top-of-the-atmosphere. Using global climate models and multiple observations of the surface fluxes from various platforms, we discuss how the energy balance has evolved with time and the manner in which this has affected the hydrologic cycle, including an account of the critical uncertainties. We make use of the simulations performed with global climate models and used in the IPCC assessments to diagnose the factors that are principally responsible for the changes, the contrasting atmospheric mechanisms exerted by greenhouse gases and aerosols, and the relative roles of the atmospheric constituents.

  2. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  3. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...... to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and recipitation between the two models are included...

  4. Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions

    Science.gov (United States)

    Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.

    2012-12-01

    General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.

  5. Surface water hydrology and geomorphic characterization of a playa lake system: Implications for monitoring the effects of climate change

    Science.gov (United States)

    Adams, Kenneth D.; Sada, Donald W.

    2014-03-01

    Playa lakes are sensitive recorders of subtle climatic perturbations because these ephemeral water bodies respond to the flux of diffuse and channelized flow from their watersheds as well as from direct precipitation. The Black Rock Playa in northwestern Nevada is one of the largest playas in North America and is noted for its extreme flatness, varying less than one meter across a surface area of 310 km2. Geo-referenced Landsat imagery was used to map surface-area fluctuations of ephemeral lakes on the playa from 1972 to 2013 to provide baseline data on surface water hydrology of this system to compare to future hydrologic conditions caused by climate change. The area measurements were transformed into depth and volumetric estimates using results of detailed topographic global positioning system (GPS) surveys and correlated with available surface hydrological and meteorological monitoring data. Playa lakes reach their maximum size (<350 km2) in spring, fed by melting snows from high mountains on the periphery of the drainage basin, and usually desiccate by early- to mid-summer. The combination of a shallow groundwater table, sediment deposition, and hydro-aeolian planation probably are largely responsible for the flatness of the playa. When lakes do not form for a period of several years, the clay- and silt-rich playa surface transforms from one that is hard and durable into one that is soft and puffy, probably from upward capillary movement of water and resultant evaporation. Subsequent flooding restores the hard and durable surface. The near-global availability of Landsat imagery for the last 41 years should allow the documentation of baseline surface hydrologic characteristics for a large number of widely-distributed playa lake systems that can be used to assess the hydrologic effects of future climate changes.

  6. Research on Land Surface Thermal-Hydrologic Exchange in Southern China under Future Climate and Land Cover Scenarios

    Directory of Open Access Journals (Sweden)

    Jianwu Yan

    2013-01-01

    Full Text Available Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS. Our findings are summarized as follows. (i Spatiotemporal variation patterns of sensible heat flux (H and evapotranspiration (ET under the land cover scenarios (A2a or B2a and climate change scenario (A1B are unanimous. (ii Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii Based on the regional interannual variability analysis, H displays a downward trend (10% and ET presents an increasing trend (15%. (iv The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.

  7. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5

    Directory of Open Access Journals (Sweden)

    F. Zabel

    2013-05-01

    Full Text Available Most land surface hydrological models (LSHMs consider land surface processes (e.g. soil–plant–atmosphere interactions, lateral water flows, snow and ice in a spatially detailed manner. The atmosphere is considered as exogenous driver, neglecting feedbacks between the land surface and the atmosphere. On the other hand, regional climate models (RCMs generally simulate land surface processes through coarse descriptions and spatial scales but include land–atmosphere interactions. What is the impact of the differently applied model physics and spatial resolution of LSHMs on the performance of RCMs? What feedback effects are induced by different land surface models? This study analyses the impact of replacing the land surface module (LSM within an RCM with a high resolution LSHM. A 2-way coupling approach was applied using the LSHM PROMET (1 × 1 km2 and the atmospheric part of the RCM MM5 (45 × 45 km2. The scaling interface SCALMET is used for down- and upscaling the linear and non-linear fluxes between the model scales. The change in the atmospheric response by MM5 using the LSHM is analysed, and its quality is compared to observations of temperature and precipitation for a 4 yr period from 1996 to 1999 for the Upper Danube catchment. By substituting the Noah-LSM with PROMET, simulated non-bias-corrected near-surface air temperature improves for annual, monthly and daily courses when compared to measurements from 277 meteorological weather stations within the Upper Danube catchment. The mean annual bias was improved from −0.85 to −0.13 K. In particular, the improved afternoon heating from May to September is caused by increased sensible heat flux and decreased latent heat flux as well as more incoming solar radiation in the fully coupled PROMET/MM5 in comparison to the NOAH/MM5 simulation. Triggered by the LSM replacement, precipitation overall is reduced; however simulated precipitation amounts are still of high uncertainty, both

  8. ClimoBase: Rouse Canadian Surface Observations of Weather, Climate, and Hydrological Variables, 1984-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ClimoBase is a collection of surface climate measurements collected in Northern Canada by Dr. Wayne Rouse between 1984 and 1998 in three locations: Churchill,...

  9. Surface area changes of Himalayan ponds as a proxy of hydrological climate-driven fluctuations

    Science.gov (United States)

    Salerno, Franco; Thakuri, Sudeep; Guyennon, Nicolas; Viviano, Gaetano; Tartari, Gianni

    2016-04-01

    The meteorological measurements at high-elevations of the Himalayan range are scarce due to the harsh conditions of these environments which limit the suitable maintenance of weather stations. As a consequence, the meager knowledge on how the climate is changed in the last decades at Himalayan high-elevations sets a serious limit upon the interpretation of relationships between causes and recent observed effects on the cryosphere. Although the glaciers masses reduction in Himalaya is currently sufficiently well described, how changes in climate drivers (precipitation and temperature) have influenced the melting and shrinkage processes are less clear. Consequently, the uncertainty related to the recent past amplifies when future forecasts are done, both for climate and impacts. In this context, a substantial body of research has already demonstrated the high sensitivity of lakes and ponds to climate. Some climate-related signals are highly visible and easily measurable in lakes. For example, climate-driven fluctuations in lake surface area have been observed in many remote sites. On interior Tibetan Plateau the lake growth since the late 1990s is mainly attributed to increased regional precipitation and weakened evaporation. Differently, other authors attribute at the observed increases of lake surfaces at the enhanced glacier melting. In our opinion these divergences found in literature are due to the type of glacial lakes considered in the study and in particular their relationship with glaciers. In general, in Himalaya three types of glacial lakes can be distinguished: (i) lakes that are not directly connected with glaciers, but that may have a glacier located in their basin (unconnected glacial lakes); (ii) supraglacial lakes, which develop on the surface of the glacier downstream; or (iii) proglacial lakes, which are moraine-dammed lakes that are in contact with the glacier front. Some of these lakes store large quantities of water and are susceptible to GLOFs

  10. Climate driven changes in hydrology, nutrient cycling, and food web dynamics in surface waters of the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    Koch, J. C.; Wipfli, M.; Schmutz, J.; Gurney, K.

    2011-12-01

    Arctic ecosystems are changing rapidly as a result of a warming climate. While many areas of the arctic are expected to dry as a result of warming, the Arctic Coastal Plain (ACP) of Alaska, which extends from the Brooks Range north to the Beaufort Sea will likely become wetter, because subsurface hydrologic fluxes are constrained by thick, continuous permafrost. This landscape is characterized by large, oriented lakes and many smaller ponds that form in the low centers and troughs/edges of frost polygons. This region provides important breeding habitat for many migratory birds including loons, arctic terns, eiders, shorebirds, and white-fronted geese, among others. Increased hydrologic fluxes may provide a bottom-up control on the success of these species by altering the availability of food resources including invertebrates and fish. This work aimed to 1) characterize surface water fluxes and nutrient availability in the small streams and lake types of two study regions in the ACP, 2) predict how increased hydrological fluxes will affect the lakes, streams, and water chemistry, and 3) use nutrient additions to simulate likely changes in lake chemistry and invertebrate availability. Initial observations suggest that increasing wetland areas and availability of nutrients will result in increased invertebrate abundance, while the potential for drainage and terrestrialization of larger lakes may reduce fish abundance and overwintering habitat. These changes will likely have positive implications for insectivores and negative implications for piscivorous waterfowl.

  11. Modelling Hydrological Consequences of Climate Change-Progress and Challenges

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases,(2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods)for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales.Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.

  12. Mississippi Climate & Hydrology Conference

    Energy Technology Data Exchange (ETDEWEB)

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  13. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    to imperfect model forecasts. It remains a crucial challenge to account for system uncertainty, so as to provide model outputs accompanied by a quantified confidence interval. Properly characterizing and reducing uncertainty opens-up the opportunity for risk-based decision-making and more effective emergency...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...

  14. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  15. California Basin Characterization Model Downscaled Climate and Hydrology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The California Basin Characterization Model (CA-BCM 2014) dataset provides historical and projected climate and hydrologic surfaces for the region that encompasses...

  16. Impacts of Climate Change on Surface Hydrology in the Source Region of the Yellow River

    Science.gov (United States)

    Yuan, F.; Zhang, L.; Berndtsson, R.

    2015-12-01

    The source region of the Yellow River contributes about 35% of the total water yield in the Yellow River basin playing an important role for meeting the downstream water resources requirements. Hydroclimatic trend and periodicity during the last 50 years were investigated to identify significant changes in time and space over the study area. Results showed that mean annual temperature increased for all stations and it had an accelerated increasing trend during the last decade. Mean annual precipitation trends varied depending on station location; however, they were generally slightly decreasing. Annual streamflow decreased markedly especially from the 1990s but showed recovery during recent years. Statistically significant changes in trend occurred for temperature in 1998 and for streamflow in 1990. Based on the streamflow change point, seasonal analysis results showed that precipitation mainly decreased during the summer monsoon period (July-September) and temperature increased throughout the year. Corresponding to the weakened monsoon period the average runoff depth is decreasing by 0.74 mm/year over the whole area. Statistically significant 2 to 4-year periodicities for mean areal precipitation and temperature occurred over the area. For streamflow, an even stronger 8-year periodicity was revealed from the end of the 60s to the beginning of the 90s. Summer precipitation trends and teleconnections with global sea surface temperature (SST) and Southern Oscillation Index (SOI) from 1961 to 2010 were investigated. The summer precipitation in the whole region shows statistically significant negative correlations with the central Pacific SST for 0-4 month lags and with the southern Indian and Atlantic Ocean SST for 5-8 month lags. Analyses of sub-regions reveal intricate and complex correlations with different SST areas that further explain the summer precipitation variability. The SOI had significant positive correlations mainly for 0-2 month lag with summer

  17. The interaction of climate and glacial landforms on subsurface and surface hydrology and chemistry across a heterogeneous boreal plain landscape

    Science.gov (United States)

    Hokanson, Kelly; Carrera-Hernández, Jaime; Devito, Kevin; Mendoza, Carl

    2016-04-01

    The Boreal Plains (BP) region of Canada is experiencing high levels of anthropogenic activity and may be susceptible to climate change to various degrees. The BP is characterized by heterogeneous glacial landforms, with large contrasts in storage and transmissivity, which when coupled with wet-dry climate cycles, results in complex groundwater-surface water interactions. Predicting the impacts of land use change, climate change, and the future performance of constructed and reclaimed landscapes is currently not possible due to our limited knowledge regarding the natural variability of water table fluctuations, geochemistry, and salinity across the various glacial landforms in the BP. We compare isotopes, EC, chemistry (DOC, Ca, Mg, SO4) and water table position between a drought (2003) and a wet (2013) year to examine the interactions between climate, landform, and geology on the variation in landscape connectivity and overall salinity distribution. Data were collected from surface waters to a depth of 40 m, along a 50 km transect encompassing pond-wetland-forestland sequences across the major glacial depositional types typical of the BP (coarse textured glaciofluvial outwash, fine textured stagnant ice moraine, and lacustrine clay plain). Within each landform, sites range from isolated local flow systems to large intermediate scale flow systems. High spatial variability of water table fluctuations and salinity illustrate the strong regional controls that climate and geology exerts over scales of groundwater flow between landforms and surface water bodies across the BP, reinforcing the need to link surface water and groundwater processes when developing conceptual models. Additionally, when coupled with a strong, physical hydrogeologic conceptual model, synoptic chemical and isotopic surveys can be used to confirm scales and directions of flow; however, without an understanding of the climatic and geologic influence of the region, such data cannot be used as a

  18. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    model, HIRHAM. The physics of the coupling is formulated using an energy-based SVAT (land surface) model while the numerical coupling exploits the OpenMI modelling interface. First, some investigations of the applicability of the SVAT model are presented, including our ability to characterise...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...

  19. Using a new high resolution regional model for malaria that accounts for population density and surface hydrology to determine sensitivity of malaria risk to climate drivers

    Science.gov (United States)

    Tompkins, Adrian; Ermert, Volker; Di Giuseppe, Francesca

    2013-04-01

    In order to better address the role of population dynamics and surface hydrology in the assessment of malaria risk, a new dynamical disease model been developed at ICTP, known as VECTRI: VECtor borne disease community model of ICTP, TRIeste (VECTRI). The model accounts for the temperature impact on the larvae, parasite and adult vector populations. Local host population density affects the transmission intensity, and the model thus reproduces the differences between peri-urban and rural transmission noted in Africa. A new simple pond model framework represents surface hydrology. The model can be used on with spatial resolutions finer than 10km to resolve individual health districts and thus can be used as a planning tool. Results of the models representation of interannual variability and longer term projections of malaria transmission will be shown for Africa. These will show that the model represents the seasonality and spatial variations of malaria transmission well matching a wide range of survey data of parasite rate and entomological inoculation rate (EIR) from across West and East Africa taken in the period prior to large-scale interventions. The model is used to determine the sensitivity of malaria risk to climate variations, both in rainfall and temperature, and then its use in a prototype forecasting system coupled with ECMWF forecasts will be demonstrated.

  20. Hydrological response to climate change

    NARCIS (Netherlands)

    Yan, Dan; Werners, S.E.; Ludwig, Fulco; Huang, He Qing

    2015-01-01

    Study region: The Pearl River, located in the south of China, is the second largest river in China in terms of streamflow. Study focus: The study aims to assess the impact of climate change on seasonal discharge and extreme flows. For the assessment we use the variable infiltration capacity (VIC)

  1. Uncertainty of the hydrological response to climate change conditions; 605 basins, 3 hydrological models, 5 climate models, 5 hydrological variables

    Science.gov (United States)

    Melsen, Lieke; Mizukami, Naoki; Newman, Andrew; Clark, Martyn; Teuling, Adriaan

    2016-04-01

    Many studies investigated the effect of a changing climate on the hydrological response of a catchment and uncertainty of the effect coming from hydrologic modelling (e.g., forcing, hydrologic model structures, and parameters). However, most past studies used only a single or a small number of catchments. To go beyond the case-study, and to assess the uncertainty involved in modelling the hydrological impact of climate change more comprehensively, we studied 605 basins over a wide range of climate regimes throughout the contiguous USA. We used three different widely-used hydrological models (VIC, HBV, SAC), which we forced with five distinct climate model outputs. The hydrological models have been run for a base period (1986-2008) for which observations were available, and for a future period (2070-2099). Instead of calibrating each hydrological model for each basin, the model has been run with a parameter sample (varying from 1600 to 1900 samples dependent on the number of free parameters in the model). Five hydrological states and fluxes were stored; discharge, evapotranspiration, soil moisture, SWE and snow melt, and 15 different metrics and signatures have been obtained for each model run. With the results, we conduct a sensitivity analysis over the change in signatures from the future period compared to the base period. In this way, we can identify the parameters that are responsible for certain projected changes, and identify the processes responsible for this change. By using three different models, in which VIC is most distinctive in including explicit vegetation parameters, we can compare different process representations and the effect on the projected hydrological change.

  2. Mekong River flow and hydrological extremes under climate change

    NARCIS (Netherlands)

    Hoang, P.L.; Lauri, P.; Kummu, M.; Koponen, J.; Vliet, van M.T.H.; Supit, I.; Leemans, H.B.J.; Kabat, P.; Ludwig, F.

    2016-01-01

    Climate change poses critical threats to water related safety and sustainability in the Mekong River basin. Hydrological impact signals derived from CMIP3 climate change scenarios, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrologic

  3. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  4. HyCAW: Hydrological Climate change Adaptation Wizard

    Science.gov (United States)

    Bagli, Stefano; Mazzoli, Paolo; Broccoli, Davide; Luzzi, Valerio

    2016-04-01

    Changes in temporal and total water availability due to hydrologic and climate change requires an efficient use of resources through the selection of the best adaptation options. HyCAW provides a novel service to users willing or needing to adapt to hydrological change, by turning available scientific information into a user friendly online wizard that lets to: • Evaluate the monthly reduction of water availability induced by climate change; • Select the best adaptation options and visualize the benefits in terms of water balance and cost reduction; • Quantify potential of water saving by improving of water use efficiency. The tool entails knowledge of the intra-annual distribution of available surface and groundwater flows at a site under present and future (climate change) scenarios. This information is extracted from long term scenario simulation by E-HYPE (European hydrological predictions for the environment) model from Swedish Meteorological and Hydrological Institute, to quantify the expected evolution in water availability (e.g. percent reduction of soil infiltration and aquifer recharge; relative seasonal shift of runoff from summer to winter in mountain areas; etc.). Users are requested to provide in input their actual water supply on a monthly basis, both from surface and groundwater sources. Appropriate decision trees and an embedded precompiled database of Water saving technology for different sectors (household, agriculture, industrial, tourisms) lead them to interactively identify good practices for water saving/recycling/harvesting that they may implement in their specific context. Thanks to this service, users are not required to have a detailed understanding neither of data nor of hydrological processes, but may benefit of scientific analysis directly for practical adaptation in a simple and user friendly way, effectively improving their adaptation capacity. The tool is being developed under a collaborative FP7 funded project called SWITCH

  5. Landscape structure and climate influences on hydrologic response

    Science.gov (United States)

    Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.

    2011-12-01

    Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.

  6. Understanding Hydrologic Processes in Semi-Arid Cold Climates

    Science.gov (United States)

    Barber, M. E.; Beutel, M.; Lamb, B.; Watts, R.

    2004-12-01

    Water shortages destabilize economies and ecosystems. These shortages are caused by complex interactions between climate variability, ecosystem processes, and increased demand from human activities. In the semi-arid region of the northwestern U.S., water availability during drought periods has already reached crisis levels and the problems are expected to intensify as the effects of global climate change and population growth continue to alter the supply and demand patterns. Many of the problems are critical to this region because hydropower, agriculture, navigation, fish and wildlife survival, water supply, tourism, environmental protection, and water-based recreation are vital to state economies and our way of life. In order to assess the spatial and temporal nature of hydrologic responses, consistent and comprehensive long-term data sets are needed. In response to these needs, we would like to propose the Spokane River drainage basin as a long-term hydrologic observatory. The Spokane River basin is located in eastern Washington and northern Idaho and is a tributary of the Columbia River. The watershed consists of several major surface water tributaries as well as natural and man-made lakes and reservoirs. With headwaters beginning in the Rocky Mountains, the drainage area is approximately 6,640 mi2. In addition to providing an excellent study area for examining many conventional water resource problems, the Spokane River watershed also presents a unique opportunity for investigating many of the hydrologic processes found in semi-arid cold climates. Snowfall in the watershed varies spatially between 35 inches near the mouth of the basin to over 112 inches at the headwaters. These varied hydrologic uses provide a unique opportunity to address many common challenges faced by water resource professionals. This broad array of issues encompasses science, engineering, agriculture, social sciences, economics, fisheries, and a host of other disciplines. In addition

  7. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian;

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  8. Mekong River flow and hydrological extremes under climate change

    OpenAIRE

    Hoang, L.P.; H. Lauri; M. Kummu; Koponen, J.; van Vliet, M. T. H.; I. Supit; Leemans, R.; Kabat, P.; Ludwig, F.

    2016-01-01

    Climate change poses critical threats to water-related safety and sustainability in the Mekong River basin. Hydrological impact signals from earlier Coupled Model Intercomparison Project phase 3 (CMIP3)-based assessments, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the CMIP5 climate projections. Furthermore, we model and analyse changes in river flow regimes and hydrologica...

  9. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin;

    2016-01-01

    simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface......, plant coverand the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub......-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact...

  10. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    Science.gov (United States)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian; Trolle, Dennis; Børgesen, Christen Duus; Olesen, Jørgen E.; Jeppesen, Erik; Jensen, Karsten H.

    2016-04-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice remained the dominant factor for mean discharge, low and high flows as well as hydraulic head at the end of the century.

  11. A comparative analysis of the impacts of climate change and irrigation on land surface and subsurface hydrology in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi; Leung, Lai-Yung R.

    2015-02-01

    The Community Land Model 4.0 (CLM4) was used to investigate and compare the effects of climate change and irrigation on terrestrial water cycle. Three climate change scenarios and one irrigation scenario (IRRIG) were simulated in the North China Plain (NCP), which is one of the most vulnerable regions to climate change and human perturbations in China. The climate change scenarios consist of (1) HOT (i.e. temperature increase by 2oC); (2) HOTWET (same with HOT but with an increase of precipitation by 15%); (3) HOTDRY (same with HOT but with a decrease of precipitation by 15%). In the IRRIG scenario, the irrigation scheme was calibrated to simulate irrigation amounts that match the actual irrigation amounts and irrigation was divided between surface water and groundwater withdrawals based on census data. Our results show that the impacts of climate change were more widespread while those of irrigation were concentrated only over the agricultural regions. Specifically, the mean water table depth was simulated to decline persistently by over 1 m annually due to groundwater exploitation during the period of 1980-2000, while much smaller effects were induced by climate change. Although irrigation has comparable effects on surface fluxes and surface soil moisture as climate change, it has much greater effects on water table depth and groundwater storage. Moreover, irrigation has much larger effects on the top layer soil moisture whereas increase in precipitation associated with climate change exerts more influence on lower layer soil moisture. This study emphasizes the need to accurately account for irrigation impacts in adapting to climate change.

  12. Mekong River flow and hydrological extremes under climate change

    Science.gov (United States)

    Phi Hoang, Long; Lauri, Hannu; Kummu, Matti; Koponen, Jorma; van Vliet, Michelle T. H.; Supit, Iwan; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2016-07-01

    Climate change poses critical threats to water-related safety and sustainability in the Mekong River basin. Hydrological impact signals from earlier Coupled Model Intercomparison Project phase 3 (CMIP3)-based assessments, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the CMIP5 climate projections. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high-flow and low-flow conditions). In general, the Mekong's hydrological cycle intensifies under future climate change. The scenario's ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location). Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. The scenario's ensemble, however, shows reduced uncertainties in climate projection and hydrological impacts compared to earlier CMIP3-based assessments. We further found that extremely high-flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risks in the basin. Climate-change-induced hydrological changes will have important implications for safety, economic development, and ecosystem dynamics and thus require special attention in climate change adaptation and water management.

  13. Building hydrologic information systems to promote climate resilience in the Blue Nile/Abay higlands

    Science.gov (United States)

    Climate adaptation requires information about climate and land-surface conditions – spatially distributed, and at scales of human influence (the field scale). This article describes a project aimed at combining meteorological data, satellite remote sensing, hydrologic modeling, and downscaled clima...

  14. Land-surface modelling in hydrological perspective

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Rosbjerg, Dan; Butts, M.B.

    2006-01-01

    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches, ......, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed....

  15. On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration

    Science.gov (United States)

    Milly, P.C.D.; Dunne, K.A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.

  16. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  17. Norwegian Hydrological Reference Dataset for Climate Change Studies

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-01

    Based on the Norwegian hydrological measurement network, NVE has selected a Hydrological Reference Dataset for studies of hydrological change. The dataset meets international standards with high data quality. It is suitable for monitoring and studying the effects of climate change on the hydrosphere and cryosphere in Norway. The dataset includes streamflow, groundwater, snow, glacier mass balance and length change, lake ice and water temperature in rivers and lakes.(Author)

  18. Mekong River flow and hydrological extremes under climate change

    Directory of Open Access Journals (Sweden)

    L. P. Hoang

    2015-11-01

    Full Text Available Climate change poses critical threats to water related safety and sustainability in the Mekong River basin. Hydrological impact signals derived from CMIP3 climate change scenarios, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the most recent CMIP5 climate change scenarios. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high flow and low flow conditions. Similar to earlier CMIP3-based assessments, the hydrological cycle also intensifies in the CMIP5 climate change scenarios. The scenarios ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location. Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. We further found that extremely high flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risk in the basin. The implications of climate change induced hydrological changes are critical and thus require special attention in climate change adaptation and disaster-risk reduction.

  19. Integrated climate and hydrology modelling - Coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Larsen, M.A. [Technical Univ. of Denmark. DTU Management Engineering, DTU Risoe Campus, Roskilde (Denmark)

    2013-10-15

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model (LSM), which is superior to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and precipitation between the two models are included. The preparation of the HIRHAM and MIKE SHE models for the coupled study revealed several findings. The performance of HIRHAM was highly affected by the domain size, domain

  20. Embedding complex hydrology in the regional climate system – Dynamic coupling across different modelling domains

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl

    2014-01-01

    To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling...... system. The OpenMI modelling interface is used to couple a comprehensive hydrological modelling system, MIKE SHE running on personal computers, and a regional climate modelling system, HIRHAM running on a high performance computing platform. The coupled model enables two-way interaction between...... the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological...

  1. Integrated hydrological SVAT model for climate change studies in Denmark

    Science.gov (United States)

    Mollerup, M.; Refsgaard, J.; Sonnenborg, T. O.

    2010-12-01

    In a major Danish funded research project (www.hyacints.dk) a coupling is being established between the HIRHAM regional climate model code from Danish Meteorological Institute and the MIKE SHE distributed hydrological model code from DHI. The linkage between those two codes is a soil vegetation atmosphere transfer scheme, which is a module of MIKE SHE. The coupled model will be established for the entire country of Denmark (43,000 km2 land area) where a MIKE SHE based hydrological model already exists (Henriksen et al., 2003, 2008). The present paper presents the MIKE SHE SVAT module and the methodology used for parameterising and calibrating the MIKE SHE SVAT module for use throughout the country. As SVAT models previously typically have been tested for research field sites with comprehensive data on energy fluxes, soil and vegetation data, the major challenge lies in parameterisation of the model when only ordinary data exist. For this purpose annual variations of vegetation characteristics (Leaf Area Index (LAI), Crop height, Root depth and the surface albedo) for different combinations of soil profiles and vegetation types have been simulated by use of the soil plant atmosphere model Daisy (Hansen et al., 1990; Abrahamsen and Hansen, 2000) has been applied. The MIKE SHE SVAT using Daisy generated surface/soil properties model has been calibrated against existing data on groundwater heads and river discharges. Simulation results in form of evapotranspiration and percolation are compared to the existing MIKE SHE model and to observations. To analyse the use of the SVAT model in climate change impact assessments data from the ENSEMBLES project (http://ensembles-eu.metoffice.com/) have been analysed to assess the impacts on reference evapotranspiration (calculated by the Makkink and the Penmann-Monteith equations) as well as on the individual elements in the Penmann-Monteith equation (radiation, wind speed, humidity and temperature). The differences on the

  2. Hydrological Modelling of Mountainous and Glacierised regions under Changing Climate

    OpenAIRE

    Li, Hong

    2015-01-01

    Climate change is one of the most serious environmental threats that humanity has ever been confronted to. Hydrological models are vital tools to asses its impacts on the water cycle and water resources. The goal of this project is to evaluate and improve the capacity of the HBV model (Hydrologiska Byr°ans Vattenbalansavdelning) in simulating hydrological processes in mountainous and glacierised regions under both the present and future climate. This goal is achieved in two steps: (1) impleme...

  3. Efficient Use of Prior Information to Calibrate the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) Hydrology Model

    Science.gov (United States)

    2014-09-01

    Gridded Surface Subsurface Hydrologic Analysis (GSSHA) Hydrology Model by Brian E. Skahill and Charles W. Downer PURPOSE: The purpose of this... Hydrologic Analysis (GSSHA) model. These new capabilities enable the incorporation of soft data, or prior information (i.e., extra observations which...traditional hydrologic simulation models (viz., lumped and semidistributed model structures). Such models have the potential to predict with greater

  4. Hydrological responses to climate change in Mt. Elgon watersheds

    Directory of Open Access Journals (Sweden)

    J. Musau

    2015-03-01

    New Hydrological Insights for the Region: Comparison between the simulated baseline and future streamflow shows that in the Koitobos and Kimilili watersheds, August to December streamflow is likely to be highly altered. In the Kuywa watershed, March to June flows is likely to change considerably due to climate change. Major streamflow changes are likely in March to June and August to November in the Rongai watershed. Projected changes differed between the four watersheds despite their proximity, indicating different sensitivities to climate change and uncertainty about the potential hydrological impacts of climate change in the area.

  5. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  6. Revising Hydrology of a Land Surface Model

    Science.gov (United States)

    Le Vine, Nataliya; Butler, Adrian; McIntyre, Neil; Jackson, Christopher

    2015-04-01

    Land Surface Models (LSMs) are key elements in guiding adaptation to the changing water cycle and the starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, before this potential is realised, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. An important limitation is the simplistic or non-existent representation of the deep subsurface in LSMs; and another is the lack of connection of LSM parameterisations to relevant hydrological information. In this context, the paper uses a case study of the JULES (Joint UK Land Environmental Simulator) LSM applied to the Kennet region in Southern England. The paper explores the assumptions behind JULES hydrology, adapts the model structure and optimises the coupling with the ZOOMQ3D regional groundwater model. The analysis illustrates how three types of information can be used to improve the model's hydrology: a) observations, b) regionalized information, and c) information from an independent physics-based model. It is found that: 1) coupling to the groundwater model allows realistic simulation of streamflows; 2) a simple dynamic lower boundary improves upon JULES' stationary unit gradient condition; 3) a 1D vertical flow in the unsaturated zone is sufficient; however there is benefit in introducing a simple dual soil moisture retention curve; 4) regionalized information can be used to describe soil spatial heterogeneity. It is concluded that relatively simple refinements to the hydrology of JULES and its parameterisation method can provide a substantial step forward in realising its potential as a high-resolution multi-purpose model.

  7. Climate change effects on the hydrological regime of small non-perennial river basins.

    Science.gov (United States)

    Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Noto, Leonardo V

    2016-01-15

    Recent years have been witnessing an increasing interest on global climate change and, although we are only at the first stage of the projected trends, some signals of climate alteration are already visible. Climate change encompasses modifications in the characteristics of several interrelated climate variables, and unavoidably produces relevant effects on almost all the natural processes related to the hydrological cycle. This study focuses on potential impacts of climate variations on the streamflow regime of small river basins in Mediterranean, seasonally dry, regions. The paper provides a quantitative evaluation of potential modifications in the flow duration curves (FDCs) and in the partitioning between surface and subsurface contributions to streamflow, induced by climate changes projected over the next century in different basins, also exploring the role exerted by different soil–vegetation compositions. To this aim, it is used a recent hydrological model, which is calibrated at five Sicilian (Italy) basins using a past period with available streamflow observations. The model is then forced by daily precipitation and reference evapotranspiration series representative of the current climatic conditions and two future temporal horizons, referring to the time windows 2045–2065 and 2081–2100. Future climatic series are generated by a weather generator, based on a stochastic downscaling of an ensemble of General Circulation Models. The results show how the projected climatic modifications are differently reflected in the hydrological response of the selected basins, implying, in general, a sensible downshift of the FDCs, with a significant reduction in the mean annual streamflow, and substantial alterations in streamflow seasonality and in the relative importance of the surface and subsurface components. The projected climate change impact on the hydrological regime of ephemeral rivers could have important implications for the water resource management and

  8. Climate-hydrology-ecology interactions in glacierized river systems

    Science.gov (United States)

    Hannah, David; Brown, Lee; Milner, Alexander

    2010-05-01

    High climatic sensitivity and low anthropogenic influence make glacierized river basins important environments for examining hydrological and ecological response to global change. This presentation is based on previous and ongoing research in glacierized river basins (located in the French Pyrenees, New Zealand and Swedish Lapland), which adopts an interdisciplinary approach to investigate the climate-hydrology-ecology cascade. Data are used to advance hypotheses concerning impacts of climate change/ variability on glacier river system hydrology and ecology. Aquatic ecosystems in high latitude and altitude environments are influenced strongly by cryospheric and hydrological processes due to links between atmospheric forcing, snowpack/ glacier mass-balance, river runoff, physico-chemistry and biota. In the current phase of global warming, many glaciers are retreating. Shrinking snow and ice-masses may alter spatial and temporal dynamics in bulk basin runoff with significant changes in the relative contributions of snowmelt, glacier-melt and groundwater to stream flow. The timing of peak snow- and ice-melt may shift; and proportion of stream flow sourced from rainfall-runoff and groundwater may increase. In this presentation, the influence of changing water source contributions on physico-chemical habitat and, in turn, benthic communities is assessed using an alternative alpine stream classification. In the future, this model predicts more rapid downstream change in benthic communities as meltwater contributions decline; and, at the basin-scale, biodiversity may be reduced due to less spatio-temporal heterogeneity in water sources contributions and, thus, physico-chemical habitat. Integrated, long-term research into the climate-hydrology-ecology cascade in other glacierized river basins is vital because interdisciplinary science is fundamental: to predicting stream hydrology and ecology under scenarios of future climate/ variability, to assessing the utility of

  9. Sensitivity of the hydrologic cycle to cloud changes in warm climates

    Science.gov (United States)

    Carlson, Henrik; Caballero, Rodrigo

    2016-04-01

    Climates of the deep past have posed the longstanding challenge to understand which mechanisms maintained very warm climates. Warm climates have been hard to simulate without very high CO2 concentrations compared to estimates from proxy data. Large climate sensitivity implies a route to warm temperatures without very high concentrations of CO2. In at least one model cloud feedbacks play a central role in increasing climate sensitivity with temperature. However, it is hard to evaluate cloud feedbacks using proxies. On the other hand, there are proxies that provide information about the hydrologic cycle for example through estimating aridity and isotope analysis of leaf wax. Cloud feedbacks could influence the hydrologic cycle through a change in the shortwave radiative flux at the surface that causes a change in latent heat flux and thereby a change in precipitation. We study the impact of clouds in a general circulation model for a broad range of temperatures. One set of simulations with variable clouds is compared to a set of simulations where clouds are represented by a climatology. Our aim to provide a constraint for cloud feedbacks based on hydrology proves elusive. Precipitation change with temperature is very similar regardless of cloud treatment and there is no saturation effect in precipitation as seen in idealized models. However, there is a large change in shortwave absorption by atmospheric water vapor. Our results indicate that the hydrologic cycle is not sensitive to cloud representation in Eocene-like climates but correct representation of shortwave absorption is essential.

  10. Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow

    Science.gov (United States)

    Burn, Donald H.; Hannaford, Jamie; Hodgkins, Glenn A.; Whitfield, Paul H.; Thorne, Robin; Marsh, Terry

    2012-01-01

    Reference hydrologic networks (RHNs) can play an important role in monitoring for changes in the hydrological regime related to climate variation and change. Currently, the literature concerning hydrological response to climate variations is complex and confounded by the combinations of many methods of analysis, wide variations in hydrology, and the inclusion of data series that include changes in land use, storage regulation and water use in addition to those of climate. Three case studies that illustrate a variety of approaches to the analysis of data from RHNs are presented and used, together with a summary of studies from the literature, to develop approaches for the investigation of changes in the hydrological regime at a continental or global scale, particularly for international comparison. We present recommendations for an analysis framework and the next steps to advance such an initiative. There is a particular focus on the desirability of establishing standardized procedures and methodologies for both the creation of new national RHNs and the systematic analysis of data derived from a collection of RHNs.

  11. Surface Velocities and Hydrology at Engabreen

    DEFF Research Database (Denmark)

    Messerli, Alexandra

    on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...... complicates comparisons with other surface-oriented glaciohydrological studies. One major aim of this thesis is to provide a longer record of surface velocity, enabling a more complete understanding of the glacial hydro-mechanical relationship at Engabreen. In order to extend the velocity dataset here, a time......-lapse camera based study was carried out, providing seasonal velocity maps over a large portion of an inaccessible region of the glacier. The processing and feature tracking of terrestrially based imagery, in order to obtain quantitative velocity measurements, is challenging. Whilst optical feature tracking...

  12. Landscape-based hydrological modelling: Understanding the influence of climate, topography, and vegetation on catchment hydrology

    NARCIS (Netherlands)

    Gao, H.

    2015-01-01

    In this thesis, a novel landscape-based hydrological model is presented that was developed and tested in numerous catchments around the world with various landscapes and climate conditions. A landscape is considered to consist of a topography and an ecosystem living on it. Firstly, the influence of

  13. Can the Gravity Recovery and Climate Experiment (GRACE) mission detect hydrological droughts?

    Science.gov (United States)

    Agustin Brena Naranjo, Jose; Pedrozo Acuña, Adrian

    2016-04-01

    Detecting and characterizing hydrological droughts at the global scale is a difficult task as several thousands of mid-to-large catchments remain ungauged or have limited discharge records. In water-limited regions, research on hydrological drought is even more complex because of the dominant streamflow perennial regime that characterizes small order watersheds. Over the last decade, the emergence of global remote sensing products has remarkably improved the capability to observe different climate and land surface processes that affect catchment discharge. Among several observational satellites that provide continuous data on terrestrial hydrology, the Gravity Recovery and Climate Experiment (GRACE) is perhaps the only tool able to retrieve information about large-scale water storage variations across the world's terrestrial surface. This work tests the hypothesis that water storage deficits derived from GRACE are inextricably linked to below-than-average baseflow values extracted from streamflow records. This study case analyzed several regions in Mexico and USA with different hydro-climate regimes. Drought conditions using total water storage variations and observed streamflow records from 2003 until 2013 were computed and compared. Results indicate that although the GRACE mission is moderately/highly correlated to streamflow and baseflow time series, discrepancies in the magnitude of hydrological deficit exist and can be attributed to active versus passive catchment storage issues. Finally, the suitability of creating an improved product to monitor hydrological drought by merging in situ with remote sensed information will be discussed.

  14. Hydrological Impact of Climate Change Scenarios for the Southern Alps

    Science.gov (United States)

    Maran, S.; Barontini, S.; Grossi, G.; Ranzi, R.; Quaglia, G.

    2005-12-01

    Starting from results of Global Circulation Models, IPCC-based scenarios for the XXI century were selected and the expected time series for surface temperature and precipitation were extracted together with model results for the second half of the XX century for two regions of the southern Alps, in Italy. Both monthly and daily data were analysed. Monthly data were used to describe the variability of climatic data in terms of trend, and characteristic frequencies were singled out. Comparisons were made among results of different models and, for past data, experimental records collected in meteorological stations located in Northern Italy. The aim was to derive the expected trends in two watersheds where hydropower is well developed. From daily data, statistics on rainy events were derived and they were compared to experimental data, for model's verification. These results were used in a hydrological model in order to assess the expected changes of runoff regimes in the two watersheds. The model, of the semi-distributed and conceptual type, assumes the projected meteorological data as forcing for the XXI century. It also assumes that land use changes (snow and forest cover) will adapt to climate changes. In the area, in fact, an increase of the timberline altitude is already being observed, since the end of the Little Ice Age. Using detailed knowledge of characteristics of the hydropower plants and their past operation rules, and of irrigation uses downstream, the influence of climate change on hydropower production and water resources availability for irrigation and human use was extrapolated for the 21st century in these two representative basins.

  15. Comparison of hydrological simulations of climate change using perturbation of observations and distribution-based scaling

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Sonnenborg, Torben; Jensen, Karsten Høgh;

    2011-01-01

    Projected climate change eff ects on groundwater and stream discharges were investigated through simulations with a distributed, physically based, surface water–groundwater model. Input to the hydrological model includes precipitation, reference evapotranspiration, and temperature data...... of the HIRHAM4 regional climate model (RCM). The aim of this study was to determine whether the choice of bias-correction method, applied to the RCM data, aff ected the projected hydrological changes. One method consisted of perturbation of observed data (POD) using climate change signals derived from the RCM...... output, while the other consisted of distribution-based scaling (DBS) of the RCM output. Distributionbased scaling resulted in RCM control period data closely approaching the observed climate data and thereby considerably improved the simulation of recharge and stream discharges. When comparing...

  16. 21 century climatic change impacts on the hydrology of major rivers in the Tibetan Plateau

    Science.gov (United States)

    Su, F.; Duan, X.; Zhang, L.; Hao, Z.; Cuo, L.

    2011-12-01

    Major Asian rivers including Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtz originate from the Tibetan Plateau (TP). These rivers support billions of people downstream, and the TP is therefore considered as the water tower of Asia. Changes of climate factors (e.g., temperature and precipitation) and the induced changes (e.g, melting of glacial and permafrost) may have substantial impacts on the hydrological cycle and runoff of the rivers in the TP. Therefore, quantifying the potential impacts of future climate changes over the TP is essential to assist policy-makers and water managers in adopting strategies reflecting the state of scientific understanding of the likelihood. In this work, temperature and precipitation projected by 20 general circulation models (GCMs) from emission scenarios B1 (lower emission scenario) and A2 (mid-high emission scenario) were used to characterize the potential climate changes over the TP for 2011-2099. Outputs from the 20 GCMs were bias corrected and statistically downscaled, and were used to force a land surface hydrology model. The hydrology model was applied to investigate the impacts of potential climate changes on the hydrology over the TP in the 21th century. Precipitation and streamflow regimes vary among the river basins in the TP. The investigation of climate change impacts was focused on the precipitation-dominated and melting water-dominated river basins.

  17. Climate model uncertainty vs. conceptual geological uncertainty in hydrological modeling

    Directory of Open Access Journals (Sweden)

    T. O. Sonnenborg

    2015-04-01

    Full Text Available Projections of climate change impact are associated with a cascade of uncertainties including CO2 emission scenario, climate model, downscaling and impact model. The relative importance of the individual uncertainty sources is expected to depend on several factors including the quantity that is projected. In the present study the impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Each projection of future climate is a result of a GCM-RCM model combination (from the ENSEMBLES project forced by the same CO2 scenario (A1B. The changes from the reference period (1991–2010 to the future period (2081–2100 in projected hydrological variables are evaluated and the effects of geological model and climate model uncertainties are quantified. The results show that uncertainty propagation is context dependent. While the geological conceptualization is the dominating uncertainty source for projection of travel time and capture zones, the uncertainty on the climate models is more important for groundwater hydraulic heads and stream flow.

  18. Climate change impacts on hydrology and water resources

    Directory of Open Access Journals (Sweden)

    Fred Fokko Hattermann

    2015-04-01

    Full Text Available Aim of our study is to quantify the impacts of climate change on hydrology in the large river basins in Germany (Rhine, Elbe, Danube, Weser and Ems and thereby giving the range of impact uncertainty created by the most recent regional climate projections. The study shows mainly results for the A1B SRES (Special Report on Emission Scenario scenario by comparing the reference period 1981–2010 and the scenario periods 2031–2060 and 2061–2090 and using climate projections of a combination of 4 Global Climate Models (GCMs and 12 Regional Climate Models (RCMs as climate driver. The outcome is compared against impacts driven by a more recent RCP (Representative Emission Pathways scenario by using data of a statistical RCM. The results indicate that more robust conclusions can be drawn for some river basins, especially the Rhine and Danube basins, while diversity of results leads to higher uncertainty in the other river basins. The results also show that hydrology is very sensitive to changes in climate and effects of a general increase in precipitation can even be over-compensated by an increase in evapotranspiration. The decrease of runoff in late summer shown in most results can be an indicator for more pronounced droughts under scenario conditions.

  19. The isotope hydrology of Quaternary climate change.

    Science.gov (United States)

    Darling, W G

    2011-04-01

    Understanding the links between climate change and human migration and culture is an important theme in Quaternary archaeology. While oxygen and hydrogen stable isotopes in high-latitude ice cores provide the ultimate detailed record of palaeoclimate extending back to the Middle Pleistocene, groundwater can act as a climate archive for areas at lower latitudes, permitting a degree of calibration for proxy records such as lake sediments, bones, and organic matter. Not only can oxygen and hydrogen stable isotopes be measured on waters, but the temperature of recharge can be calculated from the amount of the atmospheric noble gases neon, argon, krypton, and xenon in solution, while residence time can be estimated from the decay of the radioisotopes carbon-14, chlorine-36, and krypton-81 over timescales comparable to the ice core record. The Pleistocene-Holocene transition is well characterised in aquifers worldwide, and it is apparent that isotope-temperature relationships of the present day are not necessarily transferable to past climatic regimes, with important implications for the interpretation of proxy isotope data. Groundwaters dating back to one million years, i.e., to beyond the Middle Pleistocene, are only found in major aquifer basins and information is relatively sparse and of low resolution. Speleothem fluid inclusions offer a way of considerably increasing this resolution, but both speleothem formation and large-scale groundwater recharge requires humid conditions, which may be relatively infrequent for areas currently experiencing arid climates. Both types of record therefore require caution in their interpretation when considering a particular archaeological context.

  20. Climate change impacts on hydrological extremes in Central Europe

    Science.gov (United States)

    Fokko Hattermann, Fred; Huang, Shaochun; Kundzewicz, Zbigniew W.; Hoffmann, Peter

    2016-04-01

    An increase of hydro-climatic extremes can be observed worldwide and is challenging national and regional risk management and adaptation plans. Our study presents and discusses possible trends in climate drivers and hydro-climatic extremes in Europe observed and under future climate conditions. In a case study for Germany, impacts of different regional climate scenario ensembles are compared. To this end, a hydrological model was applied to transform the scenarios data into river runoff for more than 5000 river reaches in Germany. Extreme Value Distributions have been fitted to the hydrographs of the river reaches to derive the basic flood statistics. The results for each river reach have been linked to related damage functions as provided by the German Insurance Association considering damages on buildings and small enterprises. The robust result is that under scenario conditions a significant increase in flood related losses can be expected in Germany, while also the number of low flow events may rise.

  1. Using R for Hydrologic Investigations of Climate Change (Invited)

    Science.gov (United States)

    Obeysekera, J.

    2013-12-01

    Climate change hydrologic investigations involve assembling, organizing, and analyzing large data sets from archived observations and complex model outputs. R is a free open-source software system consisting of nearly 4,800 packages running on Windows, Unix-like, and Mac families of operating systems. It is becoming a popular option for statisticians, scientists and engineers for investigations associated with climate change. The rapid growth and use of R is facilitated by the relative ease of assembling the user's scripts into a customized 'package' that can be submitted to the Comprehensive R Archive Network (CRAN) for others to use. This presentation includes several examples of climate change investigations where R was used for trend analysis in historical time series; reading and analyzing downscaled; large climate data sets; extreme value modeling of hydrologic time series and presentation of analysis results. An R package called nsextremes was created for modeling non-stationary hydrologic time series using a recently developed methodology for computing risk and return periods in changing environments. The presentation describes the theory, details of the scripts, and the process that was used to create the nsextremes package.

  2. California climate change, hydrologic response, and flood forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Norman L.

    2003-11-11

    There is strong evidence that the lower atmosphere has been warming at an unprecedented rate during the last 50 years, and it is expected to further increase at least for the next 100 years. Warmer air mass implies a higher capacity to hold water vapor and an increased likelihood of an acceleration of the global water cycle. This acceleration is not validated and considerable new research has gone into understanding aspects of the water cycle (e.g. Miller et al. 2003). Several significant findings on the hydrologic response to climate change can be reported. It is well understood that the observed and expected warming is related to sea level rise. In a recent seminar at Lawrence Berkeley National Laboratory, James Hansen (Director of the Institute for Space Studies, National Aeronautics and Space Administration) stressed that a 1.25 Wm{sup -2} increase in radiative forcing will lead to an increase in the near surface air temperature by 1 C. This small increase in temperature from 2000 levels is enough to cause very significant impacts to coasts. Maury Roos (Chief Hydrologist, California Department of Water Resources) has shown that a 0.3 m rise in sea level shifts the San Francisco Bay 100-year storm surge flood event to a 10-year event. Related coastal protection costs for California based on sea level rise are shown. In addition to rising sea level, snowmelt-related streamflow represents a particular problem in California. Model studies have indicated that there will be approximately a 50% decrease in snow pack by 2100. This potential deficit must be fully recognized and plans need to be put in place well in advance. In addition, the warmer atmosphere can hold more water vapor and result in more intense warm winter-time precipitation events that result in flooding. During anticipated high flow, reservoirs need to release water to maintain their structural integrity. California is at risk of water shortages, floods, and related ecosystem stresses. More research

  3. Climate model validation and selection for hydrological applications in representative Mediterranean catchments

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-07-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22-degree (about 24 km rotated grid over Europe and the Mediterranean. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the E-OBS dataset, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of 4 RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the XXI century. We present and discuss the validation setting, as well as the obtained results and, to some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and hint for an audience of researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more in general, climate change impact studies in the Mediterranean.

  4. Effects of Heterogeneous Vegetation on the Surface Hydrological Cycle

    Institute of Scientific and Technical Information of China (English)

    ZHOU Suoquan; CHEN Jingming; GONG Peng; XUE Genyuan

    2006-01-01

    Using the three-layer variable infiltration capacity (VIC-3L) hydrological model and the successive interpolation approach (SIA) of climate factors, the authors studied the effect of different land cover types on the surface hydrological cycle. Daily climate data from 1992 to 2001 and remotely-sensed leaf area index (LAI) are used in the model. The model is applied to the Baohe River basin, a subbasin of the Yangtze River basin, China, with an area of 2500 km2. The vegetation cover types in the Baohe River basin consist mostly of the mixed forest type (~85%). Comparison of the modeled results with the observed discharge data suggests that: (1) Daily discharges over the period of 1992-2001 simulated with inputs of remotely-sensed land cover data and LAI data can generally produce observed discharge variations, and the modeled annual total discharge agrees with observations with a mean difference of 1.4%. The use of remote sensing images also makes the modeled spatial distributions of evapotranspiration physically meaningful. (2) The relative computing error (RCE) of the annual average discharge is -24.8% when the homogeneous broadleaf deciduous forestry cover is assumed for the watershed. The error is 21.8% when a homogeneous cropland cover is assumed and -14.32% when an REDC (Resource and Environment Database of China) land cover map is used. The error is reduced to 1.4% when a remotely-sensed land cover at 1000-m resolution is used.

  5. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    Science.gov (United States)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  6. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  7. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    Full Text Available Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014 and near future (2015-2024, by combining two land use models (i.e., Markov chain model and Dyna-CLUE with a hydrological model (i.e., SWAT. The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  8. Simulating Hydrologic Changes with Climate Change Scenarios in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; XIE Zheng-Hui; LIU Qian; XIA Jun

    2005-01-01

    Climate change scenarios, predicted using the regional climate modeling system of PRECIS (providing regional climates for impacts studies), were used to derive three-layer variable infiltration capacity (VIC-3L) land surface model for the simulation of hydrologic processes at a spatial resolution of 0.25°× 0.25° in the Haihe River Basin. Three climate scenaxios were considered in this study: recent climate (1961-1990), future climate A2 (1991-2100) and future climate B2 (1991-2100) with A2 and B2 being two storylines of future emissions developed with the Intergovernmental Panel on Climate Change (IPCC) special report on emissions scenarios. Overall, under future climate scenarios A2 and B2, the Haihe River Basin would experience warmer climate with increased precipitation, evaporation and runoff production as compared with recent climate, but would be still likely prone to water shortages in the period of 2031-2070. In addition,under future climate A2 and B2, an increase in runoff during the wet season was noticed, indicating a future rise in the flood occurrence possibility in the Haihe River Basin.

  9. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations

    Science.gov (United States)

    Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; Berndt, Markus; Garimella, Rao; Moulton, J. David; Svyatskiy, Daniil; Wilson, Cathy J.

    2016-08-01

    The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in the microtopography, physically the result of wind scour, is modeled phenomenologically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100 year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. These simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.

  10. Hydrological regime modifications induced by climate change in Mediterranean area

    Science.gov (United States)

    Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Valerio Noto, Leonardo

    2015-04-01

    The knowledge of river flow regimes has a capital importance for a variety of practical applications, in water resource management, including optimal and sustainable use. Hydrological regime is highly dependent on climatic factors, among which the most important is surely the precipitation, in terms of frequency, seasonal distribution and intensity of rainfall events. The streamflow frequency regime of river basins are often summarized by flow duration curves (FDCs), that offer a simple and comprehensive graphical view of the overall historical variability associated with streamflow, and characterize the ability of the basin to provide flows of various magnitudes. Climate change is likely to lead shifts in the hydrological regime, and, consequently, in the FDCs. Staring from this premise, the primary objective of the present study is to explore the effects of potential climate changes on the hydrological regime of some small Mediterranean basins. To this aim it is here used a recent hydrological model, the ModABa model (MODel for Annual flow duration curves assessment in ephemeral small BAsins), for the probabilistic characterization of the daily streamflows in small catchments. The model has been calibrated and successively validated in a unique small catchment, where it has shown a satisfactory accuracy in reproducing the empirical FDC starting from easily derivable parameters arising from basic ecohydrological knowledge of the basin and commonly available climatic data such as daily precipitation and temperatures. Thus, this work also represents a first attempt to apply the ModABa to basins different from that used for its preliminary design in order to testing its generality. Different case studies are selected within the Sicily region; the model is first calibrated at the sites and then forced by future climatic scenarios, highlighting the principal differences emerging from the current scenario and future FDCs. The future climate scenarios are generated using

  11. A framework for evaluating regional hydrologic sensitivity to climate change using archetypal watershed modeling

    Directory of Open Access Journals (Sweden)

    S. R. Lopez

    2012-12-01

    Full Text Available The current study focuses on the development of a regional framework to evaluate hydrologic and sediment sensitivity due to predicted future climate variability using developed archetypal watersheds. The developed archetypes are quasi-synthetic watersheds that integrate observed regional physiographic features (i.e., geomorphology, land cover patterns, etc. with synthetic derivation of basin and reach networks. Each of the three regional archetypes (urban, vegetated and mixed land covers simulates satisfactory hydrologic and sediment behavior compared to historical observations (flow and sediment prior to the climate sensitivity analysis. Climate scenarios considered increasing temperature estimated from the IPCC and precipitation variability based on historical observations and expectations. Archetypal watersheds are modeled using the Environmental Protection Agency's Hydrologic Simulation Program–Fortran model (EPA HSPF and relative changes to streamflow and sediment flux are evaluated. Results indicate that the variability and extent of vegetation play a key role in watershed sensitivity to predicted climate change. Temperature increase alone causes a decrease in annual flow and an increase in sediment flux within the vegetated archetypal watershed only, and these effects are partially mitigated by the presence of impervious surfaces within the urban and mixed archetypal watersheds. Depending on extent of precipitation variability, urban and moderately urban systems can expect the largest alteration to flow regimes where high flow events are expected to become more frequent. As a result, enhanced wash-off of suspended-sediments from available pervious surfaces is expected.

  12. HydroClimATe: hydrologic and climatic analysis toolkit

    Science.gov (United States)

    Dickinson, Jesse E.; Hanson, Randall T.; Predmore, Steven K.

    2014-01-01

    The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.

  13. Projecting impacts of climate change on hydrological conditions and biotic responses in a chalk valley riparian wetland

    Science.gov (United States)

    House, A. R.; Thompson, J. R.; Acreman, M. C.

    2016-03-01

    Projected changes in climate are likely to substantially impact wetland hydrological conditions that will in turn have implications for wetland ecology. Assessing ecohydrological impacts of climate change requires models that can accurately simulate water levels at the fine-scale resolution to which species and communities respond. Hydrological conditions within the Lambourn Observatory at Boxford, Berkshire, UK were simulated using the physically based, distributed model MIKE SHE, calibrated to contemporary surface and groundwater levels. The site is a 10 ha lowland riparian wetland where complex geological conditions and channel management exert strong influences on the hydrological regime. Projected changes in precipitation, potential evapotranspiration, channel discharge and groundwater level were derived from the UK Climate Projections 2009 ensemble of climate models for the 2080s under different scenarios. Hydrological impacts of climate change differ through the wetland over short distances depending on the degree of groundwater/surface-water interaction. Discrete areas of groundwater upwelling are associated with an exaggerated response of water levels to climate change compared to non-upwelling areas. These are coincident with regions where a weathered chalk layer, which otherwise separates two main aquifers, is absent. Simulated water levels were linked to requirements of the MG8 plant community and Desmoulin's whorl snail (Vertigo moulinsiana) for which the site is designated. Impacts on each are shown to differ spatially and in line with hydrological impacts. Differences in water level requirements for this vegetation community and single species highlight the need for separate management strategies in distinct areas of the wetland.

  14. Use of System Identification Techniques to Explore the Hydrological Cycle Response to Perturbations in Climate Models

    Science.gov (United States)

    Kravitz, B.; MacMartin, D. G.; Rasch, P. J.; Wang, H.

    2015-12-01

    Identifying the influence of radiative forcing on hydrological cycle changes in climate models can be challenging due to low signal-to-noise ratios, particularly for regional changes. One method of improving the signal-to-noise ratio, even for short simulations, is to use techniques from engineering, broadly known as system identification. Through this method, forcing (or any other chosen field) in multiple regions in a climate model is perturbed simultaneously by using mutually uncorrelated signals with a chosen frequency content, depending upon the climate behavior one wishes to reveal. The result is the sensitivity of a particular climate field (e.g., temperature, precipitation, or cloud cover) to changes in any perturbed region. We demonstrate this technique in the Community Earth System Model (CESM). We perturbed surface air temperatures in 22 regions by up to 1°C. The amount of temperature perturbation was changed every day corresponding to a predetermined sequence of random numbers between -1 and 1, filtered to contain particular frequency content. The matrix of sequences was then orthogonalized such that all individual sequences were mutually uncorrelated. We performed CESM simulations with both fixed sea surface temperatures and a fully coupled ocean. We discuss the various patterns of climate response in several fields relevant to the hydrological cycle, including precipitation and surface latent heat fluxes. We also discuss the potential limits of this technique in terms of the spatial and temporal scales over which it would be appropriate to use.

  15. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic...

  16. Improved Hydrological Predictions by the Coupling of Land-Surface-Atmosphere Processes

    Science.gov (United States)

    Larsen, M. A.; Refsgaard, J.; Jensen, K. H.; Christensen, J. H.; Butts, M. B.; Drews, M.

    2012-12-01

    The study is a part of the Danish HYACINTS project (www.hyacints.dk). A part of the study involves the development of a fully dynamic coupling between the HIRHAM regional climate model (Danish Meteorological Institute) and the MIKE SHE hydrological model (DHI / Geological Survey of Denmark and Greenland). A main expectation of the coupled setup is improved hydrological predictions. As climate models generally include only a simplistic hydrological description, the improvements are expected as a result of higher detail and resolution in soil water and water table depths as generated in the hydrological model component. Equally, the hydrological model may benefit from the horizontal redistribution of sensible energy made possible through the climate model. In the preparation of the coupling, the optimal setup of the climate model component is assessed among eight simulations with varying domain sizes and resolutions. Similarly the hydrological model is parameterized by upscaling from autocalibration results performed against field measurements at distinct surfaces within the catchment. The coupled climate model domain is covering an area of 4000x2800 km in 11 km resolution over northern Europe forced by ERA-Interim reanalysis data at the boundaries. The coupled hydrological model catchment is located at the approximate climate model domain center in the Western part of Denmark covering an area of 2500 km2. The effect of the coupling is tested using a 1 year period by running the model in two versions; a fully coupled setup and a traditional passive one-way setup using HIRHAM output as MIKE SHE input. Validation variables include evapotranspiration, sensible heat flux and soil moisture.

  17. Hydrological drought severity explained by climate and catchment characteristics

    Science.gov (United States)

    Van Loon, A. F.; Laaha, G.

    2015-07-01

    Impacts of a drought are generally dependent on the severity of the hydrological drought event, which can be expressed by streamflow drought duration or deficit volume. For prediction and the selection of drought sensitive regions, it is crucial to know how streamflow drought severity relates to climate and catchment characteristics. In this study we investigated controls on drought severity based on a comprehensive Austrian dataset consisting of 44 catchments with long time series of hydrometeorological data (on average around 50 year) and information on a large number of physiographic catchment characteristics. Drought analysis was performed with the variable threshold level method and various statistical tools were applied, i.e. bivariate correlation analysis, heatmaps, linear models based on multiple regression, varying slope models, and automatic stepwise regression. Results indicate that streamflow drought duration is primarily controlled by storage, quantified by the Base Flow Index or by a combination of catchment characteristics related to catchment storage and release, e.g. geology and land use. Additionally, the duration of dry spells in precipitation is important for streamflow drought duration. Hydrological drought deficit, however, is governed by average catchment wetness (represented by mean annual precipitation) and elevation (reflecting seasonal storage in the snow pack and glaciers). Our conclusion is that both drought duration and deficit are governed by a combination of climate and catchment control, but not in a similar way. Besides meteorological forcing, storage is important; storage in soils, aquifers, lakes, etc. influences drought duration and seasonal storage in snow and glaciers influences drought deficit. Consequently, the spatial variation of hydrological drought severity is highly dependent on terrestrial hydrological processes.

  18. Hydrology

    Science.gov (United States)

    Eisenbies, Mark H.; Hughes, W. Brian

    2000-01-01

    Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.

  19. Climate change impacts on groundwater hydrology – where are the main uncertainties and can they be reduced?

    DEFF Research Database (Denmark)

    Refsgaard, Jens C.; Sonnenborg, Torben; Butts, Michael;

    2016-01-01

    This paper assesses how various sources of uncertainty propagate through the uncertainty cascade from emission scenarios through climate models and hydrological models to impacts with particular focus on groundwater aspects for a number of coordinated studies in Denmark. We find results similar...... to surface water studies showing that climate model uncertainty dominates for projections of climate change impacts on streamflow and groundwater heads. However, we find uncertainties related to geological conceptualisation and hydrological model discretisation to be dominating for projections of well field...... capture zones, while the climate model uncertainty here is of minor importance. The perspectives of reducing the uncertainties on climate change impact projections related to groundwater are discussed with particular focus on the potentials for reducing climate model biases through use of fully coupled...

  20. Integrated snow and hydrology modeling for climate change impact assessment in Oregon Cascades

    Science.gov (United States)

    Safeeq, M.; Grant, G.; Lewis, S.; Nolin, A. W.; Hempel, L. A.; Cooper, M.; Tague, C.

    2014-12-01

    In the Pacific Northwest (PNW), increasing temperatures are expected to alter the hydrologic regimes of streams by shifting precipitation from snow to rain and forcing earlier snowmelt. How are such changes likely to affect peak flows across the region? Shifts in peak flows have obvious implications for changing flood risk, but are also likely to affect channel morphology, sediment transport, aquatic habitat, and water quality, issues with potentially high economic and environmental cost. Our goal, then, is to rigorously evaluate sensitivity to potential peak flow changes across the PNW. We address this by developing a detailed representation of snowpack and streamflow evolution under varying climate scenarios using a cascade-modeling approach. We have identified paired watersheds located on the east (Metolius River) and west (McKenzie River) sides of the Cascades, representing dry and wet climatic regimes, respectively. The tributaries of these two rivers are comprised of contrasting hydrologic regimes: surface-runoff dominated western cascades and deep-groundwater dominated high-cascades systems. We use a detailed hydro-ecological model (RHESSys) in conjunction with a spatially distributed snowpack evolution model (SnowModel) to characterize the peak flow behavior under present and future climate. We first calibrated and validated the SnowModel using observed temperature, precipitation, snow water equivalent, and manual snow survey data sets. We then employed a multi-objective calibration strategy for RHESSys using the simulated snow accumulation and melt from SnowModel and observed streamflow. The Nash-Sutcliffe Efficiency between observed and simulated streamflow varies between 0.5 in groundwater and 0.71 in surface-runoff dominated systems. The initial results indicate enhanced peak flow under future climate across all basins, but the magnitude of increase varies by the level of snowpack and deep-groundwater contribution in the watershed. Our continuing effort

  1. Incorporating Climate Change Projections into a Hydrologic Hazard Analysis for Friant Dam

    Science.gov (United States)

    Holman, K. D.; Novembre, N.; Sankovich-Bahls, V.; England, J. F.

    2015-12-01

    The Bureau of Reclamation's Dam Safety Office has initiated a series of pilot studies focused on exploring potential impacts of climate change on hydrologic hazards at specific dam locations across the Western US. Friant Dam, located in Fresno, California, was chosen for study because the site had recently undergone a high-level hydrologic hazard analysis using the Stochastic Event Flood Model (SEFM). SEFM is a deterministic flood-event model that treats input parameters as variables, rather than fixed values. Monte Carlo sampling allows the hydrometeorological input parameters to vary according to observed relationships. In this study, we explore the potential impacts of climate change on the hydrologic hazard at Friant Dam using historical and climate-adjusted hydrometeorological inputs to the SEFM. Historical magnitude-frequency relationships of peak inflow and reservoir elevation were developed at Friant Dam for the baseline study using observed temperature and precipitation data between 1966 and 2011. Historical air temperatures, antecedent precipitation, mean annual precipitation, and the precipitation-frequency curve were adjusted for the climate change study using the delta method to create climate-adjusted hydrometeorological inputs. Historical and future climate projections are based on the Bias-Corrected Spatially-Disaggregated CMIP5 dataset (BCSD-CMIP5). The SEFM model was run thousands of times to produce magnitude-frequency relationships of peak reservoir inflow, inflow volume, and reservoir elevation, based on historical and climate-adjusted inputs. Results suggest that peak reservoir inflow and peak reservoir elevation increase (decrease) for all return periods under mean increases (decreases) in precipitation, independently of changes in surface air temperature.

  2. Hydrologic sensitivity of Indian sub-continental river basins to climate change

    Science.gov (United States)

    Mishra, Vimal; Lilhare, Rajtantra

    2016-04-01

    Climate change may pose profound implications for hydrologic processes in Indian sub-continental river basins. Using downscaled and bias corrected future climate projections and the Soil Water Assessment Tool (SWAT), we show that a majority of the Indian sub-continental river basins are projected to shift towards warmer and wetter climate in the future. During the monsoon (June to September) season, under the representative concentration pathways (RCP) 4.5 (8.5), the ensemble mean air temperature is projected to increase by more than 0.5 (0.8), 1.0 (2.0), and 1.5 (3.5) °C in the Near (2010-2039), Mid (2040-2069), and End (2070-2099) term climate, respectively. Moreover, the sub-continental river basins may face an increase of 3-5 °C in the post-monsoon season under the projected future climate. While there is a large intermodel uncertainty, robust increases in precipitation are projected in many sub-continental river basins under the projected future climate especially in the Mid and End term climate. A sensitivity analysis for the Ganges and Godavari river basins shows that surface runoff is more sensitive to change in precipitation and temperature than that of evapotranspiration (ET). An intensification of the hydrologic cycle in the Indian sub-continental basins is evident in the projected future climate. For instance, for Mid and End term climate, ET is projected to increase up to 10% for the majority of the river basins under both RCP 4.5 and 8.5 scenarios. During the monsoon season, ensemble mean surface runoff is projected to increase more than 40% in 11 (15) basins under the RCP 4.5 (8.5) scenarios by the end of the 21st century. Moreover, streamflow is projected to increase more than 40% in 8 (9) basins during the monsoon season under the RCP 4.5 (8.5) scenarios. Results show that water availability in the sub-continental river basins is more sensitive towards changes in the monsoon season precipitation rather than air temperature. While in the majority

  3. The hydrological response of catchments to simulated changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Viney, Neil R.; Sivapalan, Murugesu [Centre for Water Research, University of Western Australia, Nedlands, WA (Australia)

    1996-04-17

    The Large Scale Catchment Model has been developed to predict the responses in stream yield and salinity to changes in land use and climate in southwestern Western Australia. In this paper it is used to simulate, for one small forested catchment, the hydrological consequences that might be associated with a doubling of the atmospheric carbon dioxide concentration. The simulations assume that the region will experience a decrease in the amount of winter rainfall (with an increase in rainfall intensity) and an increase in potential evaporation. The results suggest that the assumed change in climate has the potential to lead to a 45% decrease in stream runoff in this catchment. About two-thirds of this decrease is associated with the reduction in rainfall; the remainder being associated with the increased potential evaporation. Furthermore, stream salinity is predicted to increase by about 8%, mostly in response to the enhanced evaporation regime

  4. Modeling the Hydrological Response to Climate Change in an Arid Inland River Basin

    Science.gov (United States)

    Zheng, C.; Zhang, A.; Tian, Y.; Zheng, Y.; Liu, J.

    2014-12-01

    Located deep in the hinterlands of Eurasia, the Heihe River Basin (HRB) is an arid inland river basin in northwest China where the hydrologic regime responds sensitively to climate change. From the headwater region to terminal lakes, the HRB can be roughly divided into three sections, i.e., the upstream Qilian Mountains, the midstream oases and the downstream Gobi Desert. Runoff generated in the upstream mountainous terrains, dominated by climate variations, is the critical water resource for the whole river basin. With increasing intensification of climate change, there is an urgent need to understand future changes of water resources and water-related disasters to support regional water management. This study investigates the potential impact of climate change on hydrologic processes in the upper HRB for the future period of 2021~2150. Downscaled temperature and precipitation projections from six General Circulation Models under two emission scenarios (RCP4.5 and RCP8.5) are adopted to drive a commonly used flow model, Soil Water Assessment Tool (SWAT), for the upper HRB. The impacts of climate change on the total runoff and its components are quantified based on the future climate scenario analysis and the results of SWAT simulation. To understand how the climate change affects the availability and distribution of water resources in the middle and lower HRB where irrigated agriculture and ecosystem conservation compete for water resources, runoffs from the upper HRB are used as the boundary conditions for an integrated groundwater-surface water model based on the USGS GSFLOW for the middle and lower HRB. The integrated model assimilated multiple types of data including groundwater levels at monitoring wells, streamflow at gaging stations, and evapotranspiration (ET) derived from remote sensing data. The calibrated model was able to adequately reproduce the observed hydrological variables. The integrated model was then used to assess the potential response of the

  5. Thermal and Hydrological Response of Rock Glaciers to Climate Change: A Scenario Based Simulation Study

    Science.gov (United States)

    Apaloo, Jotham; Brenning, Alexander; Gruber, Stephan

    2014-05-01

    Rock glaciers are ice-debris landforms characterized by creeping ice-rich permafrost. Recognition of their hydrological significance is increasing and is of particular relevance to the dry Andes, where rock glaciers cover greater area than glaciers. However, additional knowledge and research approaches pertaining to the seasonal hydrological contributions and climatic sensitivities of rock glaciers are necessary for improved water resource planning in many regions around the world. This work explores the utility of the energy and water balance model GEOtop to quantify the thermal and hydrological response of rock glaciers to climate scenarios. Weather data was generated with the intermediate-stochastic weather generator AWE-GEN for a site in the Southeast Swiss Alps, which marked a novel approach in cryospheric studies. Weather data for a reference scenario was generated which approximates conditions during the observation period (1985-2012). AWE-GEN produced time series of weather data for the reference scenario with statistical properties of precipitation in close agreement with observations, but air temperature showed substantial negative biases in summer months, which are attributed to difficulties in modeling local climatic characteristics. To examine the influence of climate change, data for eight climate change scenarios were generated by specifying change factors for mean monthly air temperature. The thermal and hydrological evolution of rock glacier soils were simulated for 50 years under the climatic forcing of the reference scenario followed by 50 years under each climate change scenario. Mean annual ground surface temperature (MAGST), active layer depth, permafrost total ice content, and the potential summer runoff contribution were quantified and compared before and after the onset of the climate change conditions. Air temperature increases in the climate change scenarios were amplified in MAGST. Stable rock glacier points were resistant to changes in

  6. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.

    Science.gov (United States)

    Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa

    2016-08-15

    Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative

  7. Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation

    Science.gov (United States)

    McMahon, T. A.; Peel, M. C.; Karoly, D. J.

    2015-01-01

    The objective of this paper is to identify better performing Coupled Model Intercomparison Project phase 3 (CMIP3) global climate models (GCMs) that reproduce grid-scale climatological statistics of observed precipitation and temperature for input to hydrologic simulation over global land regions. Current assessments are aimed mainly at examining the performance of GCMs from a climatology perspective and not from a hydrology standpoint. The performance of each GCM in reproducing the precipitation and temperature statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the Climatic Research Unit (CRU) 3.10 gridded data set and re-sampled to the resolution of each GCM for comparison. Observed and GCM-based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen-Geiger climate type were compared. The main metrics for assessing GCM performance were the Nash-Sutcliffe efficiency (NSE) index and root mean square error (RMSE) between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following better performing GCMs from a hydrologic perspective: HadCM3 (Hadley Centre for Climate Prediction and Research), MIROCm (Model for Interdisciplinary Research on Climate) (Center for Climate System Research (The University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change), MIUB (Meteorological Institute of the University of Bonn, Meteorological Research Institute of KMA, and Model and Data group), MPI (Max Planck Institute for Meteorology) and MRI (Japan Meteorological Research Institute). The future response of these GCMs was found to be representative of the 44 GCM ensemble members which confirms that the selected GCMs are reasonably

  8. Quadrotor helicopter for surface hydrological measurements

    Science.gov (United States)

    Pagano, C.; Tauro, F.; Porfiri, M.; Grimaldi, S.

    2013-12-01

    Surface hydrological measurements are typically performed through user-assisted and intrusive field methodologies which can be inadequate to monitor remote and extended areas. In this poster, we present the design and development of a quadrotor helicopter equipped with digital acquisition system and image calibration units for surface flow measurements. This custom-built aerial vehicle is engineered to be lightweight, low-cost, highly customizable, and stable to guarantee optimal image quality. Quadricopter stability guarantees minimal vibrations during image acquisition and, therefore, improved accuracy in flow velocity estimation through large scale particle image velocimetry algorithms or particle tracking procedures. Stability during the vehicle pitching and rolling is achieved by adopting large arm span and high-wing configurations. Further, the vehicle framework is composed of lightweight aluminum and durable carbon fiber for optimal resilience. The open source Ardupilot microcontroller is used for remote control of the quadricopter. The microcontroller includes an inertial measurement unit (IMU) equipped with accelerometers and gyroscopes for stable flight through feedback control. The vehicle is powered by a 3 cell (11.1V) 3000 mAh Lithium-polymer battery. Electronic equipment and wiring are hosted into the hollow arms and on several carbon fiber platforms in the waterproof fuselage. Four 35A high-torque motors are supported at the far end of each arm with 10 × 4.7 inch propellers. Energy dissipation during landing is accomplished by four pivoting legs that, through the use of shock absorbers, prevent the impact energy from affecting the frame thus causing significant damage. The data capturing system consists of a GoPro Hero3 camera and in-house built camera gimbal and shock absorber damping device. The camera gimbal, hosted below the vehicle fuselage, is engineered to maintain the orthogonality of the camera axis with respect to the water surface by

  9. Changes in Köppen-Geiger climate types under a future climate for Australia: hydrological implications

    Directory of Open Access Journals (Sweden)

    R. S. Crosbie

    2012-09-01

    Full Text Available The Köppen-Geiger climate classification has been used for over a century to delineate climate types across the globe. As it was developed to mimic the distribution of vegetation, it may provide a useful surrogate for making projections of the future distribution of vegetation, and hence resultant hydrological implications, under climate change scenarios. This paper developed projections of the Köppen-Geiger climate types covering the Australian continent for a 2030 and 2050 climate relative to a 1990 historical baseline climate using 17 Global Climate Models (GCMs and five global warming scenarios. At the highest level of classification for a +2.4 °C future climate (the upper limit projected for 2050 relative to the historical baseline, it was projected that the area of the continent covered by

    – tropical climate types would increase from 8.8% to 9.1%;
    – arid climate types would increase from 76.5% to 81.7%;
    – temperate climate types would decrease from 14.7% to 9.2%;
    – cold climate types would decrease from 0.016% to 0.001%.

    Previous climate change impact studies on water resources in Australia have assumed a static vegetation distribution. If the change in projected climate types is used as a surrogate for a change in vegetation, then the major transition in climate from temperate to arid in parts of Australia under a drier future climate could cause indirect effects on water resources. A transition from annual cropping to perennial grassland would have a compounding effect on the projected reduction in recharge. In contrast, a transition from forest to grassland would have a mitigating effect on the projected reduction in runoff.

  10. Changes in Köppen-Geiger climate types under a future climate for Australia: hydrological implications

    Directory of Open Access Journals (Sweden)

    R. S. Crosbie

    2012-06-01

    Full Text Available The Köppen-Geiger climate classification has been used for over a century to delineate climate types across the globe. As it was developed to mimic the distribution of vegetation it may provide a useful surrogate for making projections of the future distribution of vegetation, and hence resultant hydrological implications, under climate change scenarios. This paper developed projections of the Köppen-Geiger climate types covering the Australian continent for a 2030 and 2050 climate relative to a 1990 historical baseline climate using 17 Global Climate Models (GCMs and five global warming scenarios. At the highest level of classification for a +2.4 °C future climate (the upper limit projected for 2050 relative to the historical baseline, it was projected that the area of the continent covered by:
    – Tropical climate types would increase from 8.8% to 9.1%
    – Arid climate types would increase from 76.5% to 81.7%
    – Temperate climate types would decrease from 14.7% to 9.2%
    – Cold climate types would decrease from 0.016% to 0.001%.
    Previous climate change impact studies on water resources in Australia have assumed a static vegetation distribution. If the change in projected climate types is used as a surrogate for a change in vegetation, then the major transition in climate from Temperate to Arid in parts of Australia under a drier future climate could cause indirect effects on water resources. For a transition from annual cropping to perennial grassland this would have a compounding effect on the projected reduction in recharge. In contrast, a transition from forest to grassland would have a mitigating effect on the projected reduction in runoff.

  11. Assessment of the effect of climate change on the hydrological cycle

    DEFF Research Database (Denmark)

    Karlsson, Ida Bjørnholt

    , implying that when doing a future impact study, hydrological predictions could be compromised when using hydrological models calibrated on present time series. The hydrological response to a future high-end emission scenario was also explored. The hydrological model simulations and drought indices analyses...... on hydrological impacts and modelling uncertainties of two Danish catchments. This is investigated by calibrating a simple lumped hydrological model under non-stationary historical climate conditions. The model showed deteriorating performance for periods outside the period where the model was calibrated...

  12. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NARCIS (Netherlands)

    Walsum, van P.E.V.; Supit, I.

    2012-01-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, acc

  13. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NARCIS (Netherlands)

    Walsum, van P.E.V.

    2011-01-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The couplin

  14. Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan

    2010-01-01

    Hydrologic models that use components for integrated modelling of surface water and groundwater systems help conveniently simulate the dynamically linked hydrologic and hydraulic processes that govern flow conditions in watersheds. The Soil and Water Assessment Tool (SWAT) is one such model...... that allows continuous simulations over long time periods in the land phase of the hydrologic cycle by incorporating surface water and groundwater interactions. This study provides a verified structure for the SWAT to evaluate existing flow regimes in a small-sized catchment in Denmark and examines a simple...... simulation to help quantify the effects of climate change on regional water quantities. SWAT can be regarded among the alternative hydrologic simulation tools applicable for catchments with similar characteristics and of similar sizes in Denmark. However, the modellers would be required to determine a proper...

  15. Assessment of climate change impact on floodplain and hydrologic ecotones

    Science.gov (United States)

    Moradkhani, Hamid; Baird, Ruben G.; Wherry, Susan A.

    2010-12-01

    SummaryCurrent modeling efforts continue to indicate that the effects of climate change will be both global and local in scale, and that ecohydrologic factors including vegetation pattern, altered precipitation events, reduced system yields due to streamflow changes, increased flooding and changes to current floodplain characteristics will be affected. Therefore, using technology such as light detection and ranging (LiDAR) data, using future general circulation model (GCM) data, and conducting floodplain analyses to predict the changes to ecohydrologic factors are critical for cataloging existing ecosystem resources and for understanding the effects that different climate change scenarios may have on these resources at the basin scale. This study considers the effects of three different GCM climate change emissions scenarios (high from the IPSL GCM's A2 scenario, middle from the ECHAM5 GCM's A2 scenario and low from the GISS GCM's B1 scenario) using daily downscaled precipitation and temperature data over the Lower Tualatin basin in the Pacific Northwest US. The Tualatin River basin is a dynamic watershed that supports urban and agricultural uses and is also 50% forested. Its economic drivers include agricultural and forest products, as well as other consumer products including high-tech software and hardware industries. The Soil and Water Assessment Tool (SWAT) software was used as a distributed hydrologic model to predict the daily flows in the basin. It is predicted the 50-year recurrence interval (RI) flow will decrease significantly for the low and middle emissions scenarios (to between approximately 18,000-19,000 cfs compared to the observed 50-year RI of near 26,000 cfs) and will increase significantly under the high emissions scenario to nearly 33,000 cfs. Floodplain extents for the various climate scenarios and timeframes were delineated using the HEC-RAS model. A geo-processing procedure was employed to delineate hydrologic ecotones to evaluate the

  16. Toward understanding nonstationarity in climate and hydrology through tree ring proxy records

    Science.gov (United States)

    Razavi, Saman; Elshorbagy, Amin; Wheater, Howard; Sauchyn, David

    2015-03-01

    Natural proxy records of hydroclimatic behavior, such as tree ring chronologies, are a rich source of information of past climate-driven nonstationarities in hydrologic variables. In this study, we investigate tree ring chronologies that demonstrate significant correlations with streamflows, with the objective of identifying the spatiotemporal patterns and extents of nonstationarities in climate and hydrology, which are essentially representations of past "climate changes." First and second-order nonstationarities are of particular interest in this study. As a prerequisite, we develop a methodology to assess the consistency and credibility of a regional network of tree ring chronologies as proxies for hydrologic regime. This methodology involves a cluster analysis of available tree ring data to understand and evaluate their dependence structure, and a regional temporal-consistency plot to assess the consistency of different chronologies over time. The major headwater tributaries of the Saskatchewan River basin (SaskRB), the main source of surface water in the Canadian Prairie Provinces, are used as the case study. Results indicate that stationarity might never have existed in the hydrology of the region, as the statistical properties of annual paleo-hydrologic proxy records across the basin, i.e., the mean and autocorrelation structure, have consistently undergone significant changes (nonstationarities) at different points in the history of the region. The spatial pattern of the changes in the mean statistic has been variable with time, indicating a time-varying cross-correlation structure across the tributaries of the SaskRB. Conversely, the changes in the autocorrelation structure across the basin have been in harmony over time. The results demonstrate that the 89 year period of observational record in this region is a poor representation of the long-term properties of the hydrologic regime, and shorter periods, e.g., 30 year periods, are by no means

  17. Projected hydrologic changes in monsoon-dominated Himalaya Mountain basins with changing climate and deforestation

    Science.gov (United States)

    Neupane, Ram P.; White, Joseph D.; Alexander, Sara E.

    2015-06-01

    In mountain headwaters, climate and land use changes affect short and long term site water budgets with resultant impacts on landslide risk, hydropower generation, and sustainable agriculture. To project hydrologic change associated with climate and land use changes in the Himalaya Mountains, we used the Soil and Water Assessment Tool (SWAT) calibrated for the Tamor and Seti River basins located at eastern and western margins of Nepal. Future climate change was modeled using averaged temperature and precipitation for 2080 derived from Special Report on Emission Scenarios (SRES) (B1, A1B and A2) of 16 global circulation models (GCMs). Land use change was modeled spatially and included expansion of (1) agricultural land, (2) grassland, and (3) human settlement area that were produced by considering existing land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use type. From these simulations, higher annual stream discharge was found for all GCM-derived scenarios compared to a baseline simulation with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. On seasonal basis, we assessed higher precipitation during monsoon season in all scenarios that corresponded with higher stream discharge of 72 and 68% for Tamor and Seti basins, respectively. This effect appears to be geographically important with higher influence in the eastern Tamor basin potentially due to longer and stronger monsoonal period of that region. However, we projected minimal changes in stream discharge for the land use scenarios potentially due to higher water transmission to groundwater reservoirs associated with fractures of the Himalaya Mountains rather than changes in surface runoff. However, when combined the effects of climate and land use changes, discharge was moderately increased indicating counteracting mechanisms of hydrologic yield in these mountains

  18. Climate Change Impacts on North Dakota: Agriculture and Hydrology

    Science.gov (United States)

    Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.

    2011-01-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.

  19. Effects of Topographic Slopes on Hydrological Proecsses and Climate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on previous research results on river re-distribution models, a modification on the effects of topographic slopes for a runoff parameterization was proposed and implemented to the NCAR's land sur face model (LSM). This modification has two aspects: firstly, the topographic slopes cause outflows from higher topography and inflows into the lower topography points; secondly, topographic slopes also cause decrease of infiltration at higher topography and increases of infiltration at lower topography. Then changes in infiltration result in changes in soil moisture, surface fluxes and then in surface temperature, and eventual ly in the upper atmosphere and the climate. This mechanism is very clearly demonstrated in the point bud gets analysis at the Andes Mountains vicinities. Analysis from a regional scale perspective in the Mackenzie GEWEX Study (MAGS) area, the focus of the ongoing Canadian GEWEX program, shows that the modi fied runoff parameterization does bring significant changes in the regional surface climate. More important ly, detailed analysis from a global perspective shows many encouraging improvements introduced by the modified LSM over the original model in simulating basic atmospheric climate properties such as thermodynamic features (temperature and humidity). All of these improvements in the atmospheric climate simulation illustrate that the inclusion of topographic effects in the LSM can force the AGCM to produce a more realistic model climate.

  20. Linking coral river runoff proxies with climate variability, hydrology and land-use in Madagascar catchments.

    Science.gov (United States)

    Maina, Joseph; de Moel, Hans; Vermaat, Jan E; Bruggemann, J Henrich; Guillaume, Mireille M M; Grove, Craig A; Madin, Joshua S; Mertz-Kraus, Regina; Zinke, Jens

    2012-10-01

    Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region.

  1. Hydrologic Remote Sensing and Land Surface Data Assimilation

    Directory of Open Access Journals (Sweden)

    Hamid Moradkhani

    2008-05-01

    Full Text Available Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface–atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF and Particle filter (PF, for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law and could be a strong alternative to EnKF which is subject to some

  2. Surface Water Resources Response to Climate Changes in Jilin Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The response of surface water resources on climate changes was studied.[Method] By dint of monthly average temperature and precipitation in 45 meteorological stations in Jilin Province from 1960 to 2000,monthly runoff in 56 hydrological stations in Songhuajiang and Liaohe region,the surface runoff change and the response of surface water resources to climate change in 41 years were expounded.[Result] The runoff of Songliao region was limited during 1960s and 1970s.It began to increase slowly in ...

  3. On the hydrological performance in preparation for fully coupled climate-hydrology modelling in a data-sparse region

    Science.gov (United States)

    Dahl Larsen, Morten Andreas; Senatore, Alfonso; Drews, Martin; Mendicino, Giuseppe

    2016-04-01

    Within the recently emerging field of research employing a dynamical coupling between existing advanced atmosphere-hydrology model codes lays a demand for a wide range of data. The data are needed to both drive and validate the models and need to be of a high quality in terms of spatial coverage, temporal resolution, representation of local attributes and data selection. As a consequence, most studies have been performed over regions of vast data coverage. Although good data coverage is mainly seen in regions of more economically developed countries, the advantages of the coupled models could be of at least equal relevance in lesser developed regions. We here evaluate the prediction capabilities of the joint MIKE SHE-SWET hydrology and land surface model which has recently been employed in a dynamical coupling with the HIRHAM regional climate model (RCM). As a test case, we use the Crati River catchment in Southern Italy. The catchment is used due to: 1) A reasonable availability of data in terms of discharge, a flux tower station, climate stations and gridded data products such as ERA-I, E-OBS, SWBM and RCM output (e.g. MED-CORDEX) albeit with problems resembling those of data sparse regions (lack of temporal overlap, gap filling, availability, hydrogeological interpretations and land use). 2) The location (the Mediterranean) has previously been shown to exhibit substantial biases which potentially could be reduced the future coupling. 3) The Mediterranean highlands with large variations in orography provide an interesting test case as this is poorly represented in models. And 4) Model runs using the WRF-Hydro model have been performed enabling the basis for valuable comparison studies. In the present study the model is parameterized through inverse calibration using variations of the available data to highlight the influence of data quality and availability on the model outcome and assets/disadvantages of individual products.

  4. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    Science.gov (United States)

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century.

  5. Hydrologic landscape classification assesses streamflow vulnerability to climate change in Oregon, USA

    OpenAIRE

    S. G. Leibowitz; R. L. Comeleo; P. J. Wigington Jr.; Weaver, C. P.; P. E. Morefield; E. A. Sproles; Ebersole, J L

    2014-01-01

    Classification can allow assessments of the hydrologic functions of landscapes and their responses to stressors. Here we demonstrate the use of a hydrologic landscape (HL) approach to assess vulnerability to potential future climate change at statewide and basin scales. The HL classification has five components: climate, seasonality, aquifer permeability, terrain, and soil permeability. We evaluate changes when the 1971–2000 HL climate indices are recalculated using 2...

  6. Reservoir performance under uncertainty in hydrologic impacts of climate change

    Science.gov (United States)

    Raje, Deepashree; Mujumdar, P. P.

    2010-03-01

    Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible future scenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India, which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045-65 and 2075-95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to

  7. Decision support for dutch drought management and climate change with the Netherland Hydrological Modeling Instrument

    Science.gov (United States)

    Hunink, J.; Hoogewoud, J. C.; Prinsen, G.; Veldhuizen, A.

    2012-04-01

    Netherlands Hydrological Modeling Instrument Decision support for dutch drought management and climate change. J. Hunink , J.C.Hoogewoud , A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods and is updated every year. During periods of water scarcity the NHI is used for operational forecasting and decision support system for the National Board of water Distribution. It provides data on nationwide calculated water demands, development of water levels in reservoirs and possible los of yield in agricultural area's. For the exploration of the future of fresh water supply in the Netherlands an extensive study is set up using the NHI. In this study different climate scenarios are being evalueated. In the first phase the focus is on describing the range of possible effects, the second phase focuses on adaptive measures and preparing for decisions how to alter the hydrological system. Results from the first phase show that in future scenario's fresh water may not be available to current water users. Important decisions about the

  8. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    Directory of Open Access Journals (Sweden)

    Xiaofan Zeng

    Full Text Available The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  9. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    Science.gov (United States)

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  10. Modelling the effects of climate and land use change on the hydrological system of Urumqi, Northwest China

    Science.gov (United States)

    Fricke, K.; Bubenzer, O.

    2012-04-01

    This case study is about the hydrological system of Urumqi City, Northwest China, where the effects of climate change and land use change until 2050 are modelled. The research is part of the BMBF-funded project "RECAST Urumqi - Meeting the Resource Efficiency Challenge in a Climate Sensitive Dryland Megacity Environment". Northwest China is a region where notable climate change takes place. Regional climate has shifted during the last 30 years to a wetter regime, while at the same time exhibiting rising temperatures. The provincial capital Urumqi is a fast expanding economic and industrial centre, leading to enforced and notable land use change around the city. The hydrological effects of both drivers have to be assessed to allow customized adaptation to the inevitable changes. The hydrological model is based on the water balance equation and uses partly physically based modules e.g. to calculate potential evapotranspiration with the Penman-Monteith formula and partly index based modules e.g. to simulate snow melt water and surface runoff. The main challenge when applying the model was the lack of field research and hydrological data such as measured runoff or groundwater recharge. Hence, input data was almost completely collected from afar, from climate and soil databases and remote sensing (land use and cover, spatial distribution of land surface temperature and precipitation). The hydrological model was calibrated at one of the upper sub-catchments with good results for the total annual runoff volume but low values for the Nash-Sutcliffe model efficiency coefficient. In order to assess the annual water balance, the methodology was transferred to the whole catchment area. The hydrological behaviour of the other sub-catchments was assumed to be comparable to the calibrated one, applying the concept of predicting ungauged basins based on similar characteristics of the hydrological system. Future scenarios that were modelled include on the one hand the projection of

  11. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens;

    The complexity of precipitation processes makes it difficult for climate models to reliably simulate precipitation, particularly at sub-grid scales, where the important processes are associated with detailed land-atmosphere feedbacks like the vertical circulations driven by latent heat that affec...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies.......The complexity of precipitation processes makes it difficult for climate models to reliably simulate precipitation, particularly at sub-grid scales, where the important processes are associated with detailed land-atmosphere feedbacks like the vertical circulations driven by latent heat that affect......- and river flow as well as land surface-atmosphere fluxes of water (evapotranspiration) and energy - significantly reduces precipitation bias compared to the regional climate model alone. For a six year simulation period (2004 – 2010) covering a 2500 km2 catchment substantial improvements in the reproduction...

  12. Hydrological Response to ~30 years of Agricultural Surface Water Management

    Directory of Open Access Journals (Sweden)

    Giulia Sofia

    2017-01-01

    Full Text Available Amongst human practices, agricultural surface-water management systems represent some of the largest integrated engineering works that shaped floodplains during history, directly or indirectly affecting the landscape. As a result of changes in agricultural practices and land use, many drainage networks have changed producing a greater exposure to flooding with a broad range of impacts on society, also because of climate inputs coupling with the human drivers. This research focuses on three main questions: which kind of land use changes related to the agricultural practices have been observed in the most recent years (~30 years? How does the influence on the watershed response to land use and land cover changes depend on the rainfall event characteristics and soil conditions, and what is their related significance? The investigation presented in this work includes modelling the water infiltration due to the soil properties and analysing the distributed water storage offered by the agricultural drainage system in a study area in Veneto (north-eastern Italy. The results show that economic changes control the development of agro-industrial landscapes, with effects on the hydrological response. Key elements that can enhance or reduce differences are the antecedent soil conditions and the climate characteristics. Criticalities should be expected for intense and irregular rainfall events, and for events that recurrently happen. Agricultural areas might be perceived to be of low priority when it comes to public funding of flood protection, compared to the priority given to urban ones. These outcomes highlight the importance of understanding how agricultural practices can be the driver of or can be used to avoid, or at least mitigate, flooding. The proposed methods can be valuable tools in evaluating the costs and benefits of the management of water in agriculture to inform better policy decision-making.

  13. Hydrological Response of Alpine Wetlands to Climate Warming in the Eastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Wenjiang Zhang

    2016-04-01

    Full Text Available Alpine wetlands in the Tibetan Plateau (TP play a crucial role in the regional hydrological cycle due to their strong influence on surface ecohydrological processes; therefore, understanding how TP wetlands respond to climate change is essential for projecting their future condition and potential vulnerability. We investigated the hydrological responses of a large TP wetland complex to recent climate change, by combining multiple satellite observations and in-situ hydro-meteorological records. We found different responses of runoff production to regional warming trends among three basins with similar climate, topography and vegetation cover but different wetland proportions. The basin with larger wetland proportion (40.1% had a lower mean runoff coefficient (0.173 ± 0.006, and also showed increasingly lower runoff level (−3.9% year−1, p = 0.002 than the two adjacent basins. The satellite-based observations showed an increasing trend of annual non-frozen period, especially in the wetland-dominated region (2.64 day·year−1, p < 0.10, and a strong extension of vegetation growing-season (0.26–0.41 day·year−1, p < 0.10. Relatively strong increasing trends in evapotranspiration (ET (~1.00 mm·year−1, p < 0.01 and the vertical temperature gradient above ground surface (0.043 °C·year−1, p < 0.05 in wetland-dominant areas were documented from satellite-based ET observations and weather station records. These results indicate recent surface drying and runoff reduction of alpine wetlands, and their potential vulnerability to degradation with continued climate warming.

  14. Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios

    NARCIS (Netherlands)

    Beyene, T.; Lettenmaier, D.P.; Kabat, P.

    2010-01-01

    We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scen

  15. An intercomparison of regional climate model data for hydrological impact studies in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Jens Hesselbjerg; Butts, Michael;

    2010-01-01

    The use of high-resolution regional climate models (RCM) to examine the hydrological impacts of climate change has grown significantly in recent years due to the improved representation of the local climate. However, the application is not straightforward because most RCMs are subject...... to considerable systematic errors. In this study, projected climate change data from the RCM HIRHAM4 are used to generate climate scenario time series of precipitation, temperature, and reference evapotranspiration for the period 2071-2100 for hydrological impact assessments in Denmark. RCM output for the present...

  16. Climate change impact assessment on mountain snow hydrology by water and energy budget-based distributed hydrological model

    Science.gov (United States)

    Bhatti, Asif M.; Koike, Toshio; Shrestha, Maheswor

    2016-12-01

    A water and energy budget-based distributed hydrological model with improved snow physics (WEB-DHM-S) was applied to elucidate the impact of climate change on mountain snow hydrology in the Shubuto River basin, Hokkaido, Japan. The simulated spatial distribution of snow cover was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow-cover extent (MOD10A2) product, which revealed the model's capability for capturing the spatiotemporal variations in snow cover within the study area. Four Atmosphere Ocean General Circulation Models (AOGCMs) were selected and the SRESA1B emission scenario of the Intergovernmental Panel on Climate Change was used to describe climate predictions in the basin. All AOGCMs predict a future decrease in snowmelt contribution to total discharge 11-22% and an average decrease in SWE of 36%, with a shift in peak SWE by 4-14 days. The shift in runoff regime is broadly consistent between the AOGCMs with snowmelt-induced peak discharge expected to occur on average about two weeks earlier in the future hydrological year. The warming climate will drive a shift in runoff regime from a combined rainfall- and snowmelt-driven regime to one with a reduced contribution from snowmelt. The results of the study revealed that the model could be successfully applicable on the basin scale to simulate river discharge and snow processes and to investigate the effect of climate change on hydrological processes. This research contributes to improve the understanding of basin hydrological responses and the pace of change associated with climate variability.

  17. Responses of Hydrological Cycle to Recent Climatic Changes in the Yellow River Basin

    Science.gov (United States)

    Tang, Y.; Tang, Q.

    2012-12-01

    China Meteorological Administration (CMA) data showed that precipitation in Yellow River Basin was low in the 1990s but returned to above normal after 2002. In recent decades, the meteorological observations also showed rapid increase in surface air temperature and decrease in wind speed. However, little is known about how hydrological cycle responds to these recent climatic changes. Here, we applied a well calibrated and verified hydrological model, the Soil and Water Assessment Tool (SWAT), to reconstruct the hydrological cycle in the Yellow River Basin during 1960-2009. The basin was divided into 76 sub-basins. We calculated percentage changes in three hydrologic variables runoff, evapotranspiration (ET) and precipitation between two periods 1991-2002 and 2003-2009 and historical period 1960-1990. The results showed that basin-averaged runoff and precipitation in 1991-2002 were lower than those in 1960-1990, and runoff became higher and precipitation was still lower in 2003-2009. ET in both periods 1991-2002 and 2003-2009 was lower than that in 1960-1990. The hydrologic changes were not homogeneous over the basin. In the arid upper and middle reaches, precipitation in 2003-2009 had recovered to be higher than that in 1960-1990. However, runoff was lower and ET was higher than that in 1960-1990. In the middle and lower basin, precipitation in 2003-2009 had never recovered to its level in 1960-1990 whereas runoff was greatest. Meanwhile, ET in 2003-2009 was lower than that in 1960-1990. The distinct change patterns in runoff and precipitation suggests long-term water resources change could be largely modulated by ET change.

  18. Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and Hydrological Impact

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Yasunari, Teppei J.; Doherty, Sarah J.; Flanner, M. G.; Lau, William K.; Ming, J.; Wang, Hailong; Wang, Mo; Warren, Stephen G.; Zhang, Rudong

    2015-01-01

    Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, andclimatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

  19. IMPACT OF CLIMATE VARIATION AND CHANGE ON MID-ATLANTIC REGION HYDROLOGY AND WATER RESOURCES

    Science.gov (United States)

    The sensitivity of hydrology and water resources to climate variation and climate change is assessed for the Mid-Atlantic Region (MAR) of the United States. Observed streamflow, groundwater, and water-quality data are shown to vary in association with climate variation. Projectio...

  20. Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity.

    Science.gov (United States)

    Tisseuil, C; Vrac, M; Grenouillet, G; Wade, A J; Gevrey, M; Oberdorff, T; Grodwohl, J-B; Lek, S

    2012-05-01

    To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed.

  1. Role of Soils in Hydrologic Response to Climate Extremes and Land Use Change

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Reedy, R. C.; Faunt, C. C.

    2015-12-01

    Increasing demand for water in response to growing global population underscores the need to better understand linkages and feedbacks between land surface processes and water resources to manage water resources more sustainably. Here we examine the role of soils on hydrologic response to climate extremes and land use change using field scale and remote sensing data at point to basin scales in the U.S. High Plains and California Central Valley. In the U.S. High Plains, soil-textural variations make the difference between sustainable water resources related to coarse-grained soils in the northern High Plains and groundwater mining associated with fine-grained soils in much of the central and southern High Plains. Field data show dynamic response of water resources to droughts and land use change in the northern High Plains with limited response in much of the central and southern High Plains. Soil profiles provide a key to the past by archiving system response to environmental changes in subsurface soil physics and environmental tracer data. Areas with coarse-grained soils are vulnerable to reduced recharge during droughts and increased recharge with land use change from perennial to annual vegetation whereas fine-grained soils are generally insensitive to these stresses. GRACE satellite monitoring of total water storage variations in response to recent droughts is consistent with these spatial variations in soils across the High Plains and hydrologic response to droughts.In the California Central Valley, coarse grained soils in alluvial basins result in dynamic hydrologic responses to climate extremes. GRACE satellite data show marked depletion in total water storage in response to recent droughts reflecting groundwater and surface reservoir storage declines consistent with regional groundwater modeling and monitoring data. The coarse alluvial soils typical of much of the region facilitate managed aquifer recharge in depleted aquifers to complement surface reservoir

  2. Land surface processes and Sahel climate

    Science.gov (United States)

    Nicholson, Sharon

    2000-02-01

    This paper examines the question of land surface-atmosphere interactions in the West African Sahel and their role in the interannual variability of rainfall. In the Sahel, mean rainfall decreased by 25-40% between 1931-1960 and 1968-1997; every year in the 1950s was wet, and nearly every year since 1970 has been anomalously dry. Thus the intensity and multiyear persistence of drought conditions are unusual and perhaps unique features of Sahel climate. This article presents arguments for the role of land surface feedback in producing these features and reviews research relevant to land surface processes in the region, such as results from the 1992 Hydrologic Atmospheric Pilot Experiment (HAPEX)-Sahel experiment and recent studies on aerosols and on the issue of desertification in the region, a factor implicated by some as a cause of the changes in rainfall. Included also is a summary of evidence of feedback on meteorological processes, presented from both model results and observations. The reviewed studies demonstrate numerous ways in which the state of the land surface can influence interactions with the atmosphere. Surface hydrology essentially acts to delay and prolong the effects of meteorological drought. Each evaporative component of the surface water balance has its own timescale, with the presence of vegetation affecting the process both by delaying and prolonging the return of soil moisture to the atmosphere but at the same time accelerating the process through the evaporation of canopy-intercepted water. Hence the vegetation structure, including rooting depth, can modulate the land-atmosphere interaction. Such processes take on particular significance in the Sahel, where there is a high degree of recycling of atmospheric moisture and where the meteorological processes from the scale of boundary layer development to mesoscale disturbance generation are strongly influenced by moisture. Simple models of these feedback processes and their various timescales

  3. Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

    Science.gov (United States)

    Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.

    2009-01-01

    This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key

  4. Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2016-01-01

    Full Text Available Quantitative evaluation of future climate change impacts on hydrological drought characteristics is one of important measures for implementing sustainable water resources management and effective disaster mitigation in drought-prone regions under the changing environment. In this study, a modeling system for projecting the potential future climate change impacts on hydrological droughts in the Weihe River basin (WRB in North China is presented. This system consists of a large-scale hydrological model driven by climate outputs from three climate models (CMs for future streamflow projections, a probabilistic model for univariate drought assessment, and a copula-based bivariate model for joint drought frequency analysis under historical and future climates. With the observed historical climate data as the inputs, the Variable Infiltration Capacity hydrological model projects an overall runoff reduction in the WRB under the Intergovernmental Panel on Climate Change A1B scenario. The univariate drought assessment found that although fewer hydrological drought events would occur under A1B scenario, drought duration and severity tend to increase remarkably. Moreover, the bivariate drought assessment reveals that future droughts in the same return period as the baseline droughts would become more serious. With these trends in the future, the hydrological drought situation in the WRB would be further deteriorated.

  5. Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA

    Science.gov (United States)

    Classification can allow assessments of the hydrologic functions of landscapes and their responses to stressors. Here we demonstrate the use of a hydrologic landscape (HL) approach to assess vulnerability to potential future climate change at statewide and basin scales. The HL ...

  6. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions

    Directory of Open Access Journals (Sweden)

    Asma Foughali

    2015-07-01

    Full Text Available This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2 in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT from the European program ENSEMBLES, forced by two global climate models (GCM: ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to

  7. Managing the impact of climate change on the hydrology of the Gallocanta Basin, NE-Spain

    Science.gov (United States)

    Kuhn, N. J.

    2010-12-01

    The endorheic Gallocanta Basin represents an environment highly sensitive to climate change. Over the past 60 years, the Laguna de Gallocanta, an ephemeral lake situated in the centre of the Gallocanta basin, experienced a sequence of wet and dry phases. The lake and its surrounding wetlands are one of only a few bird sanctuaries left in NE-Spain for grey cranes on their annual migration from Scandinavia to northern Africa. Understanding the impact of climate change on basin hydrology is therefore of utmost importance for the appropriate management of the bird sanctuary. Changes in lake level are only weakly linked to annual rainfall, but strongly to individual events, with reaction times from hours to months after rainfall. Individual extreme event intensities as well as magnitudes affect lake level through both groundwater and surface runoff. In this study, the characteristics and frequencies of daily, event, monthly and bi-monthly rainfall over the past 60 years were analysed to assess the role of past, current and future rainfall characteristics for the lake level and its fluctuations. The results revealed a clear link between increased frequencies of high magnitude rainfall and phases of water filling in the Laguna de Gallocanta. In the middle of the 20th century, the rainfall recharge of groundwater appears to have been more important for lake level, while more recently the frequency of high magnitude rainfall and surface runoff has emerged as the dominant variable. In the Gallocanta Basin, climate change and the distinct and continuing land use change since Spain joined the EU in 1986 have created an environment that is in a more or less constant state of transition. This highlights two challenges faced by researchers involved in developing water management tools for the Gallocanta Basin in particular, but also other endorheic basins with sensitive and rapidly changing environments. Hydrologists have to understand the processes and the spatial and temporal

  8. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  9. Hydrologic Sensitivity to Climate Change of Precipitation Patterns via Integrated Modeling

    Science.gov (United States)

    Daniels, B. K.

    2011-12-01

    Understanding the impacts of climate change on water resources is critical to ecosystems and to human well being. Most previous work has involved coupling hydrologic models to global and regional climate models. While there is impressive agreement among climate models on temperature increase, unfortunately precipitation estimates present "wildly diverging pictures" [Schiermeier, Nature 2010]. In the IPCC AR4 WG1 SPM on page 16 one sees for most of the mid-latitudes that more than 1/3 of the models disagree with the majority on even the sign of any precipitation change and significant agreement of 90% is typically only found in the polar reaches [Oreskes, Philosophy of Science 2010]. Since precipitation is the primary driver of hydrology, therefore coupling of these climate models to hydrology can only yield projections that are highly uncertain. This work instead offers basic insight into the connections between all sorts of climate possibilities and hydrology. The observational climate inputs to GSFLOW basin models have been tweaked to compute the sensitivity of hydrological components to change in many climate variables. Impacts were evaluated from individual changes from a precipitation pattern such as total amounts, event intensities, event rates, durations, frequencies, and season lengths. By considering each precipitation pattern separately, we separate the confounding factors when all are changing at the same time and can then observe the impact of each factor by itself. Sensitivities have been computed for some 20 hydrologic flow components, such as runoff, infiltration, soil ET, interflow, recharge, baseflow, and streamflows. This hydrological system is highly non-linear and so a single set of computed hydrologic sensitivity values only describes the hydrologic partitioning for a single environmental condition. For a more complete picture, hydrological sensitivities have been computed over wide ranges of climate variables, such as a warmer to a colder

  10. Divergent hydrological responses to 20th century climate change in shallow tundra ponds, western Hudson Bay Lowlands

    Science.gov (United States)

    Wolfe, Brent B.; Light, Erin M.; Macrae, Merrin L.; Hall, Roland I.; Eichel, Kaleigh; Jasechko, Scott; White, Jerry; Fishback, LeeAnn; Edwards, Thomas W. D.

    2011-12-01

    The hydrological fate of shallow tundra lakes and ponds under conditions of continued warming remains uncertain, but has important implications for wildlife habitat and biogeochemical cycling. Observations of unprecedented pond desiccation, in particular, signify catastrophic loss of aquatic habitat in some Arctic locations. Shallow tundra ponds are a ubiquitous feature in the western Hudson Bay Lowlands (HBL), a region that has undergone intense warming over the past ˜50 years. But it remains unknown how hydrological processes in these ponds have responded. Here, we use cellulose-inferred pond water oxygen isotope records from sediment cores, informed by monitoring of modern pond water isotope compositions during the 2009 and 2010 ice-free seasons, to reconstruct hydrological conditions of four shallow tundra ponds in the western HBL over the past three centuries. Following an interval of relative hydrological stability during the early part of the records, results reveal widely differing hydrological responses to 20th century climate change among the study sites, which is largely dependent on hydrological connectivity of the basins within their respective surrounding peatlands. These findings suggest the 20th century has been characterized by an increasingly dynamic landscape that has variably influenced surface water balance - a factor that is likely to play a key role in determining the future water balance of ponds in this region.

  11. Large-basin hydrological response to climate model outputs: uncertainty caused by the internal atmospheric variability

    Directory of Open Access Journals (Sweden)

    A. Gelfan

    2015-02-01

    Full Text Available An approach is proposed to assess hydrological simulation uncertainty originating from internal atmospheric variability. The latter is one of three major factors contributing to the uncertainty of simulated climate change projections (along with so-called "forcing" and "climate model" uncertainties. Importantly, the role of the internal atmospheric variability is the most visible over the spatial–temporal scales of water management in large river basins. The internal atmospheric variability is represented by large ensemble simulations (45 members with the ECHAM5 atmospheric general circulation model. The ensemble simulations are performed using identical prescribed lower boundary conditions (observed sea surface temperature, SST, and sea ice concentration, SIC, for 1979–2012 and constant external forcing parameters but different initial conditions of the atmosphere. The ensemble of the bias-corrected ECHAM5-outputs as well as ensemble averaged ECHAM5-output are used as the distributed input for ECOMAG and SWAP hydrological models. The corresponding ensembles of runoff hydrographs are calculated for two large rivers of the Arctic basin: the Lena and the Northern Dvina rivers. A number of runoff statistics including the mean and the SD of the annual, monthly and daily runoff, as well as the annual runoff trend are assessed. The uncertainties of runoff statistics caused by the internal atmospheric variability are estimated. It is found that the uncertainty of the mean and SD of the runoff has a distinguished seasonal dependence with maximum during the periods of spring-summer snowmelt and summer-autumn rainfall floods. A noticeable non-linearity of the hydrological models' response to the ensemble ECHAM5 output is found most strongly expressed for the Northern Dvine River basin. It is shown that the averaging over ensemble members effectively filters stochastic term related to internal atmospheric variability. The simulated trends are close to

  12. Glacier and hydrology changes in future climate over western Canada

    Science.gov (United States)

    Winger, Katja; Sushama, Laxmi; Marshall, Shawn

    2016-04-01

    Glaciers are frozen fresh water reservoirs that respond to changes in temperature and snowfall. Concern is growing about the impact that changes in glaciers may have on water resources in regions such as western Canada that derive a lot of their summer streamflow from glacier melt. Given that RCM projections are an important tool and are increasingly being used in assessing projected changes to water resources, particularly due to its high resolution compared with GCMs, realistic representation of glaciers in RCMs is very important. Currently, glaciers are only represented in an extremely simplified way in the fifth generation Canadian Regional Climate Model (CRCM5). This simple approach of representing glaciers as static glacier masks is appropriate for short-term integrations, where the response of glacier to changing atmospheric conditions might still be small due to glacier response times and therefore the feedback of changing glacier extent on large-scale atmospheric flow conditions might be negligible. A new dynamic glacier scheme has been developed for use within CRCM5, based on volume-area relationships. Simulations have been performed with this glacier model and Land Surface Scheme CLASS for the 2000-2100 period over a domain covering western Canada. These simulations were driven by outputs from a CRCM5 transient climate change simulation driven by CanESM2 at the lateral boundaries, for RCPs 4.5 and 8.5. Preliminary results suggest significant decreases to glacier fractions in future climate. Though the glacier contribution to streamflows is found to dramatically decrease in future climate, the total streamflows did not show any dramatic decreases due to the increase in precipitation for these regions.

  13. Significance of hydrological model choice and land use changes when doing climate change impact assessment

    Science.gov (United States)

    Bjørnholt Karlsson, Ida; Obel Sonnenborg, Torben; Refsgaard, Jens Christian; Høgh Jensen, Karsten

    2014-05-01

    Uncertainty in impact studies arises both from Global Climate Models (GCM), emission projections, statistical downscaling, Regional Climate Models (RCM), hydrological models and calibration techniques (Refsgaard et al. 2013). Some of these uncertainties have been evaluated several times in the literature; however few studies have investigated the effect of hydrological model choice on the assessment results (Boorman & Sefton 1997; Jiang et al. 2007; Bastola et al. 2011). These studies have found that model choice results in large differences, up to 70%, in the predicted discharge changes depending on the climate input. The objective of the study is to investigate the impact of climate change on hydrology of the Odense catchment, Denmark both in response to (a) different climate projections (GCM-RCM combinations); (b) different hydrological models and (c) different land use scenarios. This includes: 1. Separation of the climate model signal; the hydrological model signal and the land use signal 2. How do the different hydrological components react under different climate and land use conditions for the different models 3. What land use scenario seems to provide the best adaptation for the challenges of the different future climate change scenarios from a hydrological perspective? Four climate models from the ENSEMBLES project (Hewitt & Griggs 2004): ECHAM5 - HIRHAM5, ECHAM5 - RCA3, ARPEGE - RM5.1 and HadCM3 - HadRM3 are used, assessing the climate change impact in three periods: 1991-2010 (present), 2041-2060 (near future) and 2081-2100 (far future). The four climate models are used in combination with three hydrological models with different conceptual layout: NAM, SWAT and MIKE SHE. Bastola, S., C. Murphy and J. Sweeney (2011). "The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments." Advances in Water Resources 34: 562-576. Boorman, D. B. and C. E. M. Sefton (1997). "Recognising the uncertainty in the

  14. Analysis of possible impacts of climate change on the hydrological regimes of different regions in Germany

    Directory of Open Access Journals (Sweden)

    H. Bormann

    2009-08-01

    Full Text Available In this study, the impact of climate change scenarios on the hydrological regimes of five different regions in Germany is investigated. These regions (Northwest Germany, Northeast Germany and East German basins, upper and lower Rhine, pre-Alps differ with respect to present climate and projected climate change. The physically based SVAT-model SIMULAT is applied to theoretical soil columns based on combinations of land use, soil texture and groundwater depth to quantify climate change effects on the hydrological regime. Observed climate, measured at climate stations of the German Weather Service (1991–2007, is used for comparison with climate projections (2071–2100 generated by the regional scale climate model WETTREG.

    While all climate scenarios implicate an increase in precipitation in winter, a decrease in precipitation in summer and an increase in temperature, the simulated impacts on the hydrological regime are regionally different. In the Rhine region and in Northwest Germany, an increase in the annual runoff and groundwater recharge is simulated despite the increase in temperature and potential evapotranspiration. In the Eastern part of Germany and the pre-Alps, annual runoff and groundwater recharge will decrease. Due to dry conditions in summer, the soil moisture deficit will increase (in Northeast Germany and the East German basins in particular or remain constant (Rhine region. In all regions the seasonal variability in runoff and soil moisture status will increase. Despite regional warming actual evapotranspiration will decrease in most regions except in areas with shallow groundwater tables and the lower Rhine. Although the study is limited by the fact that only one climate model was used to drive one hydrologic model, the study shows that the hydrological regime will be affected by climate change. The direction of the expected changes seems to be obvious as well as the necessity of the adaptation of future water

  15. Impact of climate change on the streamflow hydrology of the Yangtze River in China

    Science.gov (United States)

    Tuotuo River basin, the source region of the Yangtze River, is the key area, where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six global climate models (GCMs) under three Respectively ...

  16. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.

    Science.gov (United States)

    Ficklin, Darren L; Stewart, Iris T; Maurer, Edwin P

    2013-01-01

    In the Upper Colorado River Basin (UCRB), the principal source of water in the southwestern U.S., demand exceeds supply in most years, and will likely continue to rise. While General Circulation Models (GCMs) project surface temperature warming by 3.5 to 5.6°C for the area, precipitation projections are variable, with no wetter or drier consensus. We assess the impacts of projected 21(st) century climatic changes on subbasins in the UCRB using the Soil and Water Assessment Tool, for all hydrologic components (snowmelt, evapotranspiration, surface runoff, subsurface runoff, and streamflow), and for 16 GCMs under the A2 emission scenario. Over the GCM ensemble, our simulations project median Spring streamflow declines of 36% by the end of the 21(st) century, with increases more likely at higher elevations, and an overall range of -100 to +68%. Additionally, our results indicated Summer streamflow declines with median decreases of 46%, and an overall range of -100 to +22%. Analysis of hydrologic components indicates large spatial and temporal changes throughout the UCRB, with large snowmelt declines and temporal shifts in most hydrologic components. Warmer temperatures increase average annual evapotranspiration by ∼23%, with shifting seasonal soil moisture availability driving these increases in late Winter and early Spring. For the high-elevation water-generating regions, modest precipitation decreases result in an even greater water yield decrease with less available snowmelt. Precipitation increases with modest warming do not translate into the same magnitude of water-yield increases due to slight decreases in snowmelt and increases in evapotranspiration. For these basins, whether modest warming is associated with precipitation decreases or increases, continued rising temperatures may make drier futures. Subsequently, many subbasins are projected to turn from semi-arid to arid conditions by the 2080 s. In conclusion, water availability in the UCRB could

  17. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.

    Directory of Open Access Journals (Sweden)

    Darren L Ficklin

    Full Text Available In the Upper Colorado River Basin (UCRB, the principal source of water in the southwestern U.S., demand exceeds supply in most years, and will likely continue to rise. While General Circulation Models (GCMs project surface temperature warming by 3.5 to 5.6°C for the area, precipitation projections are variable, with no wetter or drier consensus. We assess the impacts of projected 21(st century climatic changes on subbasins in the UCRB using the Soil and Water Assessment Tool, for all hydrologic components (snowmelt, evapotranspiration, surface runoff, subsurface runoff, and streamflow, and for 16 GCMs under the A2 emission scenario. Over the GCM ensemble, our simulations project median Spring streamflow declines of 36% by the end of the 21(st century, with increases more likely at higher elevations, and an overall range of -100 to +68%. Additionally, our results indicated Summer streamflow declines with median decreases of 46%, and an overall range of -100 to +22%. Analysis of hydrologic components indicates large spatial and temporal changes throughout the UCRB, with large snowmelt declines and temporal shifts in most hydrologic components. Warmer temperatures increase average annual evapotranspiration by ∼23%, with shifting seasonal soil moisture availability driving these increases in late Winter and early Spring. For the high-elevation water-generating regions, modest precipitation decreases result in an even greater water yield decrease with less available snowmelt. Precipitation increases with modest warming do not translate into the same magnitude of water-yield increases due to slight decreases in snowmelt and increases in evapotranspiration. For these basins, whether modest warming is associated with precipitation decreases or increases, continued rising temperatures may make drier futures. Subsequently, many subbasins are projected to turn from semi-arid to arid conditions by the 2080 s. In conclusion, water availability in the UCRB

  18. Effects of different regional climate model resolution and forcing scales on projected hydrologic changes

    Science.gov (United States)

    Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji

    2016-10-01

    We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.

  19. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle.

    Science.gov (United States)

    Ramanathan, V; Chung, C; Kim, D; Bettge, T; Buja, L; Kiehl, J T; Washington, W M; Fu, Q; Sikka, D R; Wild, M

    2005-04-12

    South Asian emissions of fossil fuel SO(2) and black carbon increased approximately 6-fold since 1930, resulting in large atmospheric concentrations of black carbon and other aerosols. This period also witnessed strong negative trends of surface solar radiation, surface evaporation, and summer monsoon rainfall. These changes over India were accompanied by an increase in atmospheric stability and a decrease in sea surface temperature gradients in the Northern Indian Ocean. We conducted an ensemble of coupled ocean-atmosphere simulations from 1930 to 2000 to understand the role of atmospheric brown clouds in the observed trends. The simulations adopt the aerosol radiative forcing from the Indian Ocean experiment observations and also account for global increases in greenhouse gases and sulfate aerosols. The simulated decreases in surface solar radiation, changes in surface and atmospheric temperatures over land and sea, and decreases in monsoon rainfall are similar to the observed trends. We also show that greenhouse gases and sulfates, by themselves, do not account for the magnitude or even the sign in many instances, of the observed trends. Thus, our simulations suggest that absorbing aerosols in atmospheric brown clouds may have played a major role in the observed regional climate and hydrological cycle changes and have masked as much as 50% of the surface warming due to the global increase in greenhouse gases. The simulations also raise the possibility that, if current trends in emissions continue, the subcontinent may experience a doubling of the drought frequency in the coming decades.

  20. Hydrologic modeling using elevationally adjusted NARR and NARCCAP regional climate-model simulations: Tucannon River, Washington

    Science.gov (United States)

    Praskievicz, Sarah; Bartlein, Patrick

    2014-09-01

    An emerging approach to downscaling the projections from General Circulation Models (GCMs) to scales relevant for basin hydrology is to use output of GCMs to force higher-resolution Regional Climate Models (RCMs). With spatial resolution often in the tens of kilometers, however, even RCM output will likely fail to resolve local topography that may be climatically significant in high-relief basins. Here we develop and apply an approach for downscaling RCM output using local topographic lapse rates (empirically-estimated spatially and seasonally variable changes in climate variables with elevation). We calculate monthly local topographic lapse rates from the 800-m Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset, which is based on regressions of observed climate against topographic variables. We then use these lapse rates to elevationally correct two sources of regional climate-model output: (1) the North American Regional Reanalysis (NARR), a retrospective dataset produced from a regional forecasting model constrained by observations, and (2) a range of baseline climate scenarios from the North American Regional Climate Change Assessment Program (NARCCAP), which is produced by a series of RCMs driven by GCMs. By running a calibrated and validated hydrologic model, the Soil and Water Assessment Tool (SWAT), using observed station data and elevationally-adjusted NARR and NARCCAP output, we are able to estimate the sensitivity of hydrologic modeling to the source of the input climate data. Topographic correction of regional climate-model data is a promising method for modeling the hydrology of mountainous basins for which no weather station datasets are available or for simulating hydrology under past or future climates.

  1. Comparison of Hydrological Impacts of Climate Change Simulated by WASMOD and HBV Models in Different Climatic Zones China, Ethiopia, and Norway

    OpenAIRE

    Eregno, Fasil Ejigu

    2009-01-01

    Abstract Recent advances in hydrological impact studies points that the response of specific catchments to climate change scenario using a single model approach is questionable. Based on this hypothesis, this study was aimed at investigating the impact of climate change on the hydrological regime of river basins in three different climatic zones (China, Ethiopia and Norway) using WASMOD and HBV hydrological models. Specifically the objectives include (i) examining and comparing the hydrolo...

  2. Linking climate change and karst hydrology to evaluate species vulnerability: The Edwards and Madison aquifers (Invited)

    Science.gov (United States)

    Mahler, B. J.; Long, A. J.; Stamm, J. F.; Poteet, M.; Symstad, A.

    2013-12-01

    Karst aquifers present an extreme case of flow along structurally variable pathways, making them highly dynamic systems and therefore likely to respond rapidly to climate change. In turn, many biological communities and ecosystems associated with karst are sensitive to hydrologic changes. We explored how three sites in the Edwards aquifer (Texas) and two sites in the Madison aquifer (South Dakota) might respond to projected climate change from 2011 to 2050. Ecosystems associated with these karst aquifers support federally listed endangered and threatened species and state-listed species of concern, including amphibians, birds, insects, and plants. The vulnerability of selected species associated with projected climate change was assessed. The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate at a 36-km grid spacing for three weather stations near the study sites, using boundary and initial conditions from the global climate model Community Climate System Model (CCSM3) and an A2 emissions scenario. Daily temperature and precipitation projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI) model. RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, combining the responses of quick and slow flow that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to determine the vulnerability of selected species on the basis of species exposure to climate change, sensitivity to factors associated with climate change, and capacity to adapt to climate change. An upward trend in temperature was projected for 2011-2050 at all three weather stations; there was a trend (downward) in annual precipitation only for the weather station in Texas. A downward trend in mean annual spring flow or groundwater level was projected for

  3. Combining data sources to characterise climatic variability for hydrological modelling in high mountain catchments

    Science.gov (United States)

    Pritchard, David; Fowler, Hayley; Bardossy, Andras; O'Donnell, Greg; Forsythe, Nathan

    2016-04-01

    Robust hydrological modelling of high mountain catchments to support water resources management depends critically on the accuracy of climatic input data. However, the hydroclimatological complexity and sparse measurement networks typically characteristic of these environments present significant challenges for determining the structure of spatial and temporal variability in key climatic variables. Focusing on the Upper Indus Basin (UIB), this research explores how different data sources can be combined in order to characterise climatic patterns and related uncertainties at the scales required in hydrological modelling. Analysis of local observations with respect to underlying climatic processes and variability is extended relative to previous studies in this region, which forms a basis for evaluating the domains of applicability and potential insights associated with selected remote sensing and reanalysis products. As part of this, the information content of recent high resolution simulations for understanding climatic patterns is assessed, with particular reference to the High Asia Refined Analysis (HAR). A strategy for integrating these different data sources to obtain plausible realisations of the distributed climatic fields needed for hydrological modelling is developed on the basis of this analysis, which provides a platform for exploring uncertainties arising from potential biases and other sources of error. The interaction between uncertainties in climatic input data and alternative approaches to process parameterisation in hydrological and cryospheric modelling is explored.

  4. Effects of surface wind speed decline on hydrology in China

    Science.gov (United States)

    Liu, X.; Zhang, X.; Tang, Q.; Zhang, X.

    2013-12-01

    Surface wind speed decline in China has been widely reported, but its effects on hydrology have not been fully evaluated to date. In this study, we evaluate the effects of wind speed decline on hydrology in China during 1966-2011 by using the Variable Infiltration Capacity (VIC) hydrological model. Two model experiments, i.e. VIC simulations with the observed (EXP1) and detrended wind speed (EXP2), are performed in the major river basins in China. The differences between the two experiments are analyzed to assess the effects of wind speed decline on hydrology. Results show that wind speed has decreased by 29% of its mean in China, even by 80% for some areas in the northern China. The wind speed decline have resulted in a decrease of evapotranspiration by 1-3% of mean annual evapotranspiration and an increase of runoff by 1-6% of mean annual runoff at most basins in China. The effect of wind speed on runoff and soil moisture is large in the northern basins where small change in hydrological conditions would have significant implications for water management. In addition, Wind speed decline has offset the expansion of the drought area in China. It has contributed to a reduction of drought areas by 21%, 17%, 15% and 12% for the mean drought area in the Songhuajiang River, Hai River, Liao River and Yellow River basins, respectively, and by 8.8% of the mean drought area over China. The effect of wind speed decline on soil moisture drought is large in most basins in China expect for the Southwest and Pearl River basins.

  5. Hydrological drought across the world: impact of climate and physical catchment structure

    Directory of Open Access Journals (Sweden)

    H. A. J. Van Lanen

    2012-10-01

    Full Text Available Large-scale hydrological drought studies have demonstrated spatial and temporal patterns in observed trends and considerable difference exists among global hydrological models in their ability to reproduce these patterns. A controlled modeling experiment has been set up to systematically explore the role of climate and physical catchment structure (soils and groundwater systems to better understand underlying drought-generating mechanisms. Daily climate data (1958–2001 of 1495 grid cells across the world were selected that represent Köppen-Geiger major climate types. These data were fed into a hydrological model. Nine realizations of physical catchment structure were defined for each grid cell, i.e. three soils with different soil moisture supply capacity and three groundwater systems (quickly-, intermediary- and slowly-responding. Hydrological drought characteristics (number, duration and standardized deficit volume were identified from time series of daily discharge. Summary statistics showed that the equatorial and temperate climate types (A- and C-climates had about twice as many drought events as the arid and polar types (B- and E-climates and the duration of more extreme droughts were about half the length. Soils were found to have a minor effect on hydrological drought characteristics, whereas groundwater systems had major impact. Groundwater systems strongly controlled the hydrological drought characteristics of all climate types, but particularly those of the wetter A-, C- and D-climates because of higher recharge. The median number of drought for quickly-responding groundwater systems was about three times higher than for slowly-responding systems, which substantially affected the duration, particularly of the more extreme drought events. Bivariate probability distributions of drought duration and standardized deficit for combinations of Köppen-Geiger climate, soil and groundwater system showed that responsiveness of groundwater

  6. Hydrological drought across the world: impact of climate and physical catchment structure

    Directory of Open Access Journals (Sweden)

    H. A. J. Van Lanen

    2013-05-01

    Full Text Available Large-scale hydrological drought studies have demonstrated spatial and temporal patterns in observed trends, and considerable difference exists among global hydrological models in their ability to reproduce these patterns. In this study a controlled modeling experiment has been set up to systematically explore the role of climate and physical catchment structure (soils and groundwater systems to better understand underlying drought-generating mechanisms. Daily climate data (1958–2001 of 1495 grid cells across the world were selected that represent Köppen–Geiger major climate types. These data were fed into a conceptual hydrological model. Nine realizations of physical catchment structure were defined for each grid cell, i.e., three soils with different soil moisture supply capacity and three groundwater systems (quickly, intermediately and slowly responding. Hydrological drought characteristics (number, duration and standardized deficit volume were identified from time series of daily discharge. Summary statistics showed that the equatorial and temperate climate types (A- and C-climates had about twice as many drought events as the arid and polar types (B- and E-climates, and the durations of more extreme droughts were about half the length. Selected soils under permanent grassland were found to have a minor effect on hydrological drought characteristics, whereas groundwater systems had major impact. Groundwater systems strongly controlled the hydrological drought characteristics of all climate types, but particularly those of the wetter A-, C- and D-climates because of higher recharge. The median number of droughts for quickly responding groundwater systems was about three times higher than for slowly responding systems. Groundwater systems substantially affected the duration, particularly of the more extreme drought events. Bivariate probability distributions of drought duration and standardized deficit for combinations of K

  7. Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades

    Science.gov (United States)

    Luo, Kaisheng; Tao, Fulu; Moiwo, Juana P.; Xiao, Dengpan

    2016-09-01

    The contributions of climate and land use change (LUCC) to hydrological change in Heihe River Basin (HRB), Northwest China were quantified using detailed climatic, land use and hydrological data, along with the process-based SWAT (Soil and Water Assessment Tool) hydrological model. The results showed that for the 1980s, the changes in the basin hydrological change were due more to LUCC (74.5%) than to climate change (21.3%). While LUCC accounted for 60.7% of the changes in the basin hydrological change in the 1990s, climate change explained 57.3% of that change. For the 2000s, climate change contributed 57.7% to hydrological change in the HRB and LUCC contributed to the remaining 42.0%. Spatially, climate had the largest effect on the hydrology in the upstream region of HRB, contributing 55.8%, 61.0% and 92.7% in the 1980s, 1990s and 2000s, respectively. LUCC had the largest effect on the hydrology in the middle-stream region of HRB, contributing 92.3%, 79.4% and 92.8% in the 1980s, 1990s and 2000s, respectively. Interestingly, the contribution of LUCC to hydrological change in the upstream, middle-stream and downstream regions and the entire HRB declined continually over the past 30 years. This was the complete reverse (a sharp increase) of the contribution of climate change to hydrological change in HRB.

  8. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    OpenAIRE

    2012-01-01

    The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekon...

  9. Improving predictions and management of hydrological extremes through climate services

    NARCIS (Netherlands)

    Hurk, van den Bart J.J.M.; Bouwer, Laurens M.; Buontempo, Carlo; Döscher, Ralf; Ercin, Ertug; Hananel, Cedric; Hunink, Johannes E.; Kjellström, Erik; Klein, Bastian; Manez, Maria; Pappenberger, Florian; Pouget, Laurent; Ramos, Maria Helena; Ward, Philip J.; Weerts, Albrecht H.; Wijngaard, Janet B.

    2016-01-01

    The EU Roadmap on climate services can be seen as a result of a convergence between the society's call for "actionable research", and the ability of the climate research community to provide tailored data, information and knowledge. However, although weather and climate have clearly distinct defi

  10. Importance of hydrological uncertainty assessment methods in climate change impact studies

    Science.gov (United States)

    Honti, M.; Scheidegger, A.; Stamm, C.

    2014-01-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with a recent boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the following decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time-series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The source, structure and composition of uncertainty depended strongly on the uncertainty assessment method. This demonstrated that one could arrive to rather different conclusions about predictive uncertainty for the same

  11. The importance of hydrological uncertainty assessment methods in climate change impact studies

    Science.gov (United States)

    Honti, M.; Scheidegger, A.; Stamm, C.

    2014-08-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980s with a recent boost after the publication of the IPCC AR4 report. From hundreds of impact studies a quasi-standard methodology has emerged, to a large extent shaped by the growing public demand for predicting how water resources management or flood protection should change in the coming decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The choice of uncertainty assessment method actually determined what sources of uncertainty could be identified at all. This demonstrated that one could arrive at rather different conclusions about the causes behind

  12. An experimental seasonal hydrological forecasting system over the Yellow River basin - Part 2: The added value from climate forecast models

    Science.gov (United States)

    Yuan, Xing

    2016-06-01

    This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease over leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982-2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08-0.2. To compare with the observed

  13. Key aspects in representing the impact of irrigation on hydrology and climate

    Science.gov (United States)

    de Vrese, Philipp; Hagemann, Stefan

    2015-04-01

    The hydrological cycle is a key component in the climate system and its alteration presents a critical anthropogenic influence on climate change. The amount of solar radiation absorbed by water vapor within the atmosphere makes it the most important greenhouse gas. Furthermore strong positive climate feedbacks are presumed in connection with atmospheric water vapor; increasing temperatures could increase the global water vapor concentration by increasing the water vapor pressure at saturation. This in turn increases the amount of absorbed solar radiation and thus temperatures. It is often assumed that on the global scale the atmospheric input of water vapor attributed to irrigation is negligible in comparison to the naturally occurring water vapor. On the regional scale however many studies showed that irrigation has a strong impact on climate which will very likely increase in the future due to increasing demands and changing climate conditions. Furthermore it is plausible that the estimated impact of irrigation is not only depending on the scope (regional vs. global) but also on the design of a given study. Thus the key concern of this study was not only to estimate the impact of irrigation on a global scale, but rather to evaluate the importance of the way irrigation is represented in a model. On one hand, the effect of the representation of different irrigation characteristics was investigated e.g. the extent to which irrigation was applied to the vegetated/ non-vegetated part of a grid box. On the other hand it was investigated, whether the scheme used to couple the two model components plays an important role for the impact of irrigation on climate. For the investigation, several 20-year-AMIP-type experiments were conducted using the Max Planck Institute for Meteorology's earth system model, i.e. the general circulation ECHAM6 coupled to a version of the land-surface model JSBACH, which had been modified to represent irrigated areas. It was found that

  14. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  15. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  16. Hydrological drought severity explained by climate and catchment characteristics

    NARCIS (Netherlands)

    Loon, Van A.F.; Laaha, G.

    2015-01-01

    Impacts of a drought are generally dependent on the severity of the hydrological drought event, which can be expressed by streamflow drought duration or deficit volume. For prediction and the selection of drought sensitive regions, it is crucial to know how streamflow drought severity relates to

  17. Implications of climate change on hydrological extremes in the Blue Nile basin: A review

    Directory of Open Access Journals (Sweden)

    Meron Teferi Taye

    2015-09-01

    New hydrological insights: The review illustrates some discrepancy among research outputs. For the historical context, this is partially related to the period and length of data analyzed and the failure to consider the influence of multi-decadal oscillations. Consequently, we show that annual cycle of Blue Nile flow has not changed in the past five decades. For the future context, discrepancy is partially attributable to the various and differing climate and hydrological models included and the downscaling techniques applied. The need to prudently consider sources of uncertainty and potential causes of bias in historical trend and climate change impact research is highlighted.

  18. Simulated discharge trends indicate robustness of hydrological models in a changing climate

    Science.gov (United States)

    Addor, Nans; Nikolova, Silviya; Seibert, Jan

    2016-04-01

    Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant

  19. Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.

    Science.gov (United States)

    Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan

    2014-05-01

    Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.

  20. The Green Sahara: Climate Change, Hydrologic History and Human Occupation

    Science.gov (United States)

    Blom, Ronald G.; Farr, Tom G.; Feynmann, Joan; Ruzmaikin, Alexander; Paillou, Philippe

    2009-01-01

    Archaeology can provide insight into interactions of climate change and human activities in sensitive areas such as the Sahara, to the benefit of both disciplines. Such analyses can help set bounds on climate change projections, perhaps identify elements of tipping points, and provide constraints on models. The opportunity exists to more precisely constrain the relationship of natural solar and climate interactions, improving understanding of present and future anthropogenic forcing. We are beginning to explore the relationship of human occupation of the Sahara and long-term solar irradiance variations synergetic with changes in atmospheric-ocean circulation patterns. Archaeological and climate records for the last 12 K years are gaining adequate precision to make such comparisons possible. We employ a range of climate records taken over the globe (e.g. Antarctica, Greenland, Cariaco Basin, West African Ocean cores, records from caves) to identify the timing and spatial patterns affecting Saharan climate to compare with archaeological records. We see correlation in changing ocean temperature patterns approx. contemporaneous with drying of the Sahara approx. 6K years BP. The role of radar images and other remote sensing in this work includes providing a geographically comprehensive geomorphic overview of this key area. Such coverage is becoming available from the Japanese PALSAR radar system, which can guide field work to collect archaeological and climatic data to further constrain the climate change chronology and link to models. Our initial remote sensing efforts concentrate on the Gilf Kebir area of Egypt.

  1. Variability of basin scale water resources indicators derived from global hydrological and land surface models

    Science.gov (United States)

    Werner, Micha; Blyth, Eleanor; Schellekens, Jaap

    2016-04-01

    Global hydrological and land-surface models are becoming increasingly available, and as the resolution of these improves, as well how hydrological processes are represented, so does their potential. These offer consistent datasets at the global scale, which can be used to establish water balances and derive policy relevant indicators in medium to large basins, including those that are poorly gauged. However, differences in model structure, model parameterisation, and model forcing may result in quite different indicator values being derived, depending on the model used. In this paper we explore indicators developed using four land surface models (LSM) and five global hydrological models (GHM). Results from these models have been made available through the Earth2Observe project, a recent research initiative funded by the European Union 7th Research Framework. All models have a resolution of 0.5 arc degrees, and are forced using the same WATCH-ERA-Interim (WFDEI) meteorological re-analysis data at a daily time step for the 32 year period from 1979 to 2012. We explore three water resources indicators; an aridity index, a simplified water exploitation index; and an indicator that calculates the frequency of occurrence of root zone stress. We compare indicators derived over selected areas/basins in Europe, Colombia, Southern Africa, the Indian Subcontinent and Australia/New Zealand. The hydrological fluxes calculated show quite significant differences between the nine models, despite the common forcing dataset, with these differences reflected in the indicators subsequently derived. The results show that the variability between models is related to the different climates types, with that variability quite logically depending largely on the availability of water. Patterns are also found in the type of models that dominate different parts of the distribution of the indicator values, with LSM models providing lower values, and GHM models providing higher values in some

  2. Impact of lake-river connectivity and interflow on the Canadian RCM simulated regional climate and hydrology for Northeast Canada

    Science.gov (United States)

    Huziy, O.; Sushama, L.

    2017-02-01

    Lakes affect regional climate by modulating surface albedo, surface energy, and moisture budgets. This is especially important for regions such as Northeast Canada with approximately 10 % of the landmass covered by lakes, wetlands and rivers. From the regional hydrology perspective, interactions between lakes and rivers are important as streamflow patterns can be significantly modified by lake storage, and similarly lake levels can be modified by streamflows. In this study, using a suite of experiments performed with the fifth generation Canadian Regional Climate Model (CRCM5) driven by the European Centre for Medium range Weather Forecasting ERA40 reanalysis data at the lateral boundaries for the 1979-2010 period, lake-river-atmosphere interactions and their impact on the regional climate/hydrology of north-east Canada are assessed. In these CRCM5 simulations, a one-dimensional lake model represents lakes, while the rivers are modeled using a distributed routing scheme, and one of the simulations includes interflow, i.e. lateral flow of water in the soil layers. Comparison of CRCM5 simulations with and without lakes suggests significant differences in winter/summer precipitation and winter temperature for the study region. CRCM5 simulations performed with and without lake-river interactions suggest improved representation of streamflows when lake storage and routing are taken into account. Adding the interflow process leads to increased streamflows during summer and fall seasons for the majority of the rivers, causing modest changes to land-atmosphere interactions via modified soil moisture. The impact of interflow on streamflow, obtained in this study, is comparable to the impact of lake-atmosphere interactions on streamflows. This study clearly demonstrates the need for realistic representation of lake-river interactions in regional climate models for realistic simulation of regional hydrology, particularly streamflows.

  3. Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand

    OpenAIRE

    Mayzonee Ligaray; Hanna Kim; Suthipong Sthiannopkao; Seungwon Lee; Kyung Hwa Cho; Joon Ha Kim

    2015-01-01

    The Chao Phraya River in Thailand has been greatly affected by climate change and the occurrence of extreme flood events, hindering its economic development. This study assessed the hydrological responses of the Chao Phraya River basin under several climate sensitivity and greenhouse gas emission scenarios. The Soil and Water Assessment Tool (SWAT) model was applied to simulate the streamflow using meteorological and observed data over a nine-year period from 2003 to 2011. The SWAT model prod...

  4. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams

    OpenAIRE

    Jaeger, Kristin L.; Julian D. Olden; Pelland, Noel A.

    2014-01-01

    We provide the first demonstration to our knowledge that projected changes in regional climate regimes will have significant consequences for patterns of intermittence and hydrologic connectivity in dryland streams of the American Southwest. By simulating fine-resolution streamflow responses to forecasted climate change, we simultaneously evaluate alterations in local flow continuity over time and network flow connectivity over space and relate how these changes may challenge the persistence ...

  5. Improving Predictions and Management of Hydrological Extremes through Climate Services

    Science.gov (United States)

    van den Hurk, Bart; Wijngaard, Janet; Pappenberger, Florian; Bouwer, Laurens; Weerts, Albrecht; Buontempo, Carlo; Doescher, Ralf; Manez, Maria; Ramos, Maria-Helena; Hananel, Cedric; Ercin, Ertug; Hunink, Johannes; Klein, Bastian; Pouget, Laurent; Ward, Philip

    2016-04-01

    The EU Roadmap on Climate Services can be seen as a result of convergence between the society's call for "actionable research", and the climate research community providing tailored data, information and knowledge. However, although weather and climate have clearly distinct definitions, a strong link between weather and climate services exists that is not explored extensively. Stakeholders being interviewed in the context of the Roadmap consider climate as a far distant long term feature that is difficult to consider in present-day decision taking, which is dominated by daily experience with handling extreme events. It is argued that this experience is a rich source of inspiration to increase society's resilience to an unknown future. A newly started European research project, IMPREX, is built on the notion that "experience in managing current day weather extremes is the best learning school to anticipate consequences of future climate". This paper illustrates possible ways to increase the link between information and services addressing weather and climate time scales by discussing the underlying concepts of IMPREX and its expected outcome.

  6. The Effects of Climate Change on the Hydrology and Water Resources of the Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, N.S.; Wood, A.W.; Voisin, N.; Lettenmaier, D.P.; Palmer, R.N. [Department of Civil and Environmental Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Colorado River basin are assessed by comparing simulated hydrologic and water resources scenarios derived from downscaled climate simulations of the U.S. Department of Energy/National Center for Atmospheric Research Parallel Climate Model (PCM) to scenarios driven by observed historical (1950-1999) climate. PCM climate scenarios include an ensemble of three 105-year future climate simulations based on projected 'business-as-usual' (BAU) greenhouse gas emissions and a control climate simulation based on static 1995 greenhouse gas concentrations. Downscaled transient temperature and precipitation sequences were extracted from PCM simulations, and were used to drive the Variable Infiltration Capacity (VIC) macroscale hydrology model to produce corresponding streamflow sequences. Results for the BAU scenarios were summarized into Periods 1, 2, and 3 (2010-2039, 2040-2069, 2070-2098). Average annual temperature changes for the Colorado River basin were 0.5C warmer for control climate, and 1.0, 1.7, and 2.4C warmer for Periods 1-3, respectively, relative to the historical climate. Basin-average annual precipitation for the control climate was slightly (1%) less than for observed historical climate, and 3, 6, and 3% less for future Periods 1-3, respectively. Annual runoff in the control run was about 10% lower than for simulated historical conditions, and 14, 18, and 17% less for Periods 1-3, respectively. Analysis of water management operations using a water management model driven by simulated streamflows showed that streamflows associated with control and future BAU climates would significantly degrade the performance of the water resources system relative to historical conditions, with average total basin storage reduced by 7% for the control climate and 36, 32 and 40% for Periods 1-3, respectively. Releases from Glen Canyon Dam to the Lower Basin (mandated by the Colorado

  7. Phosphorus dynamics in lowland streams as a response to climatic, hydrological and agricultural land use gradients

    DEFF Research Database (Denmark)

    Goyenola, G.; Meerhoff, M.; Teixeira-de Mello, F.;

    2015-01-01

    contrasting climate and hydrological regimes (temperate Denmark and subtropical Uruguay). We applied two alternative nutrient sampling programmes (high frequency composite sampling and low frequency instantaneous-grab sampling) and three alternative methods to estimate exported P from the catchments. A source...

  8. Hydrological responses to climate change in Mt. Elgon watersheds

    OpenAIRE

    J. Musau; Sang, J.; J. Gathenya; Luedeling, E

    2015-01-01

    Study Region: The Upper catchments of the Nzoia River basin in western Kenya. Study Focus: The potential streamflow responses to climate change in the upper Nzoia River basin are studied. The Soil and Water Assessment Tool (SWAT) was forced with monthly temperature and precipitation change scenarios for the periods 2011–2040 (2020s), 2041–2070 (2050s) and 2071–2100 (2080s). Data from 10 climate models and three greenhouse gases emission scenarios was downscaled using the delta change metho...

  9. Changes in Hydrologic Conditions and Greenhouse Gas Emissions in Circumpolar Regions due to Climate Change-Induced Permafrost Retreat

    Science.gov (United States)

    Whiticar, M. J.; Bhatti, J.; Startsev, N.

    2012-12-01

    Thawing permafrost peatlands influence northern ecosystems by changing the regional hydrology and mobilizing the vast carbon (C) reserves that results in increased greenhouse gas (GHGs) emissions to the atmosphere. With permafrost distribution controlled largely by topography and climate, our IPY study intensively monitored the local C cycling processes and GHG fluxes associated with different hydrologic and permafrost environments at 4 sites along a latitudinal climatic gradient of Boreal, Subarctic and Arctic ecoclimatic regions that extend south-north from the Isolated Patches Permafrost Zone (northern Alberta), to the Continuous Permafrost Zone (Inuvik, NWT). Each site encompasses a local hydrologic gradient from upland forest and peat plateau to collapse scar. Our multi-year measurements of peatland profiles and flux chambers for CH4 and CO2 concentrations and stable isotope ratios indicate processes, including methanogenesis, methanotrophy, transport and emission that control the distribution of these GHGs. These relationships are modulated by fluctuating local soil water and corresponding ecosystem conditions. The gas geochemistry shows that significant surface CH4 production occurs by both hydrogenotrophic and methyl-fermentative methanogenesis in submerged, anaerobic peats, e.g., collapse scars, whereas methane oxidation is restricted to aerobic, drier environments, e.g., upland sites and peat-atmosphere interface. The most active methanogenesis and emissions are in areas of actively thawing permafrost contrasting with sites under continuous permafrost. This degree of methanogenesis is being amplified by the increased rate of Arctic warming and the rapid retreat of permafrost in Canada's Arctic (ca. 2.5 km/yr).

  10. The Impacts of Climate Change on Hydrology and Water Resources in Zayandeh-Rood Basin - Iran

    Science.gov (United States)

    Abrishamchi, A.; Azaranfar, A.; Ghasemi, S.; Tajrishy, M.; Marino, M. A.; Abrishamchi, A.

    2007-12-01

    Increasing concentration of greenhouse gases may have significant consequences on the global climate. If climate change occurs, changes in temperature and precipitation may have profound impacts on hydrologic processes, water resources and water uses such as agriculture. In Zayandeh-River Basin of Iran, agriculture is an important economic activity and is the main water user. Climate change may exacerbate the already contentious water supply situation in the basin. This paper focuses on the impact of climate change on hydrology and water resources of Zayandeh-Rood river basin. GCM models do not have suitable spatial resolution for regional assessment, so GCM outputs should be downscaled to the regional scale. In this paper, statistical downscaling is used in two difference methods (probability and regression) for downscaling the CGCM2 model outputs under A2 and B2 scenarios for two periods: 2021-2050 (immediate future) and 2071-2100 (far future). Temperature and precipitation projections from the downscaled GCM outputs were used as inputs to the hydrologic model. To study the impact of climate change on the water resources in the basin, an operational model was used to simulate the operation of the Zayandeh-Rood reservoir under different hydrologic projections. Both scenarios showed similar increases in temperature while they have less agreement in the amount and rate of precipitation they projected. The results of this study also show that the water resources in the study area are sensitive to changes in temperature and precipitation projections. The reservoir simulations provide information on the timing and rate of changes expected in water supply. The methodology developed can be used to predict the impacts of new or updated predictions of climate change. Vulnerability to climate change may be characterized as a function of three components: sensitivity, exposure, and adaptive capacity. In this study, only the first component and infrastructure as an indicator

  11. A generic method for hydrological drought identification across different climate regions

    Directory of Open Access Journals (Sweden)

    M. H. J. van Huijgevoort

    2012-08-01

    Full Text Available The identification of hydrological drought at global scale has received considerable attention during the last decade. However, climate-induced variation in runoff across the world makes such analyses rather complicated. This especially holds for the drier regions of the world (both cold and warm, where, for a considerable period of time, zero runoff can be observed. In the current paper, we present a method that enables to identify drought at global scale across climate regimes in a consistent manner. The method combines the characteristics of the classical variable threshold level method that is best applicable in regions with non-zero runoff most of the time, and the consecutive dry days (period method that is better suited for areas where zero runoff occurs. The newly presented method allows a drought in periods with runoff to continue in the following period without runoff. The method is demonstrated by identifying droughts from discharge observations of four rivers situated within different climate regimes, as well as from simulated runoff data at global scale obtained from an ensemble of five different land surface models. The identified drought events obtained by the new approach are compared to those resulting from application of the variable threshold level method or the consecutive dry period method separately. Results show that, in general, for drier regions, the threshold level method overestimates drought duration, because zero runoff periods are included in a drought, according to the definition used within this method. The consecutive dry period method underestimates drought occurrence, since it cannot identify droughts for periods with runoff. The developed method especially shows its relevance in transitional areas, because, in wetter regions, results are identical to the classical threshold level method. By combining both methods, the new method is able to identify single drought events that occur during positive and zero

  12. A generic method for hydrological drought identification across different climate regions

    Directory of Open Access Journals (Sweden)

    M. H. J. van Huijgevoort

    2012-02-01

    Full Text Available The identification of hydrological drought at global scale has received considerable attention during the last decade. However, climate-induced variation in runoff across the world makes such analyses rather complicated. This especially holds for the drier regions of the world (both cold and warm, where for a considerable period of time, zero runoff can be observed. In the current paper, we present a method that enables to identify drought at global scale across climate regimes in a consistent manner. The method combines the characteristics of the classical variable threshold level method that is best applicable in regions with non zero runoff most of the time, and the consecutive dry days (period method that is better suited for areas where zero runoff occurs. The newly presented method allows a drought in periods with runoff to continue in the following period without runoff. The method was demonstrated by identifying droughts from discharge observations of four rivers situated within different climate regimes, as well as from simulated runoff data at global scale obtained from an ensemble of five different land surface models. The identified drought events obtained by the new approach were compared to those resulting from application of the variable threshold level method or the consecutive dry period method separately. Results show that, in general, for drier regions, the threshold level method overestimates drought duration, because zero runoff periods were included in a drought, according to the definition used within this method. The consecutive dry period method underestimates drought occurrence, since it cannot identify droughts for periods with runoff. The developed method especially shows its relevance in transitional areas, because in wetter regions, results were identical to the classical threshold level method. By combining both methods, the new method is able to identify single drought events that occur during positive and zero

  13. Climate induced changes on the hydrology of Mediterranean basins - assessing uncertainties and quantifying risks

    Science.gov (United States)

    Ludwig, Ralf

    2014-05-01

    According to current climate projections, the Mediterranean area is at high risk for severe changes in the hydrological budget and extremes. With innovative scientific measures, integrated hydrological modeling and novel field geophysical field monitoring techniques, the FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins; GA: 244151) assessed the impacts of climate change on the hydrology in seven basins in the Mediterranean area, in Italy, France, Turkey, Tunisia, Egypt and the Gaza Strip, and quantified uncertainties and risks for the main stakeholders of each test site. Intensive climate model auditing selected four regional climate models, whose data was bias corrected and downscaled to serve as climate forcing for a set of hydrological models in each site. The results of the multi-model hydro-climatic ensemble and socio-economic factor analysis were applied to develop a risk model building upon spatial vulnerability and risk assessment. Findings generally reveal an increasing risk for water resources management in the test sites, yet at different rates and severity in the investigated sectors, with highest impacts likely to occur in the transition months. Most important elements of this research include the following aspects: • Climate change contributes, yet in strong regional variation, to water scarcity in the Mediterranean; other factors, e.g. pollution or poor management practices, are regionally still dominant pressures on water resources. • Rain-fed agriculture needs to adapt to seasonal changes; stable or increasing productivity likely depends on additional irrigation. • Tourism could benefit in shoulder seasons, but may expect income losses in the summer peak season due to increasing heat stress. • Local & regional water managers and water users, lack, as yet, awareness of climate change induced risks; emerging focus areas are supplies of domestic drinking water, irrigation, hydropower and livestock. • Data

  14. Eco-hydrological and climatic drivers of fuel moisture dynamics in complex terrain

    Science.gov (United States)

    Nyman, Petter; Duff, Thomas; Baillie, Craig; Sheridan, Gary

    2016-04-01

    Fuel moisture is a critical parameter for predicting fire behaviour and for planning prescribed burning operations. Moisture content in fuels located on or near the forest floor is particularly important because this fuel source 1) can comprise a large component of the overall fuel load, 2) can have a strong impact on fire spread, and 3) it can in many cases be effectively managed with prescribed burning. Being able to predict surface fuel moisture content is therefore an important research topic. Moisture dynamics in surface fuel are a function of microclimate above the litter layer, rainfall, interception, soil moisture and the hydraulic properties of the fuel itself. Process-based fuel moisture models include these factors in their predictions. However, the data needed to parametrise and test such models at landscape scales are often lacking. The relative importance of various components of the water balance in the litter layer is therefore unknown. In this research we seek to quantify how climate, vegetation and eco-hydrological feedback contribute to variation in net radiation and potential evaporation at the forest floor. Research sites were established at 16 locations in eucalyptus forests in south-east Australia with variable elevation, solar exposure, and drainage areas. Forests ranged from open woodland to tall temperate forests. At these sites we measured solar radiation, air temperature, relative humidity, throughfall, litter moisture, soil moisture, and litter temperature. Forest structure was characterised using hemispherical photos. Using these data on microclimate and vegetation structure we develop and parametrise a Penman-Monteith model of potential evaporation on the forest floor at daily timescales. Using this model of potential evaporation alongside landscape-scale information on the long term water and energy balance we quantify the effects of topography, long-term climate and eco-hydrological feedback on the energy and water balance at the

  15. Response of hydrological processes to climate change in the middle reaches of the Yellow River, China

    Science.gov (United States)

    Yao, X.; Cui, X.; Yu, J.; Sun, W.

    2015-05-01

    According to the IPCC Fourth Assessment, the temperature and evapotranspiration will increase in the future. As a sensitive region to climate change, hydrological process in the middle reaches of the Yellow River will be significantly affected by climate change. In this study, water resources change in the future for a typical basin there: Lushi basin is assessed using the Soil and Water Assessment Tool (SWAT) hydrological model. Downscaled ensemble output from sixteen General Circulation Models (GCMs) for the A1B emission scenario in the 2050s was input to SWAT as the regional climate change scenario. The prediction shows that ET of this basin increases in winter and spring, and decreases in summer and autumn, and the streamflow increases throughout the year. The increased streamflow will probably improve the water demand guarantee and be conducive to crop growth in winter and spring, and may improve the flood risk in summer.

  16. Hydrologic Information Science (Invited)

    Science.gov (United States)

    Maidment, D. R.

    2009-12-01

    The CUAHSI Hydrologic Information System is intended to advance hydrologic science through better capacity to access and organize hydrologic information, as described by Tarboton et al. (2009), in this session. This development may help to create a new branch of hydrologic science, namely hydrologic information science, which is that branch of hydrologic science which deals with the organization, analysis and synthesis of hydrologic information. There are several parts of this body of information: time series data on water observations at point locations that describe the flow, level, and quality of water; GIS data that describe the watersheds, aquifers, streams, waterbodies, wells and other water features of the landscape; remote sensing data that measure distributed properties such as rainfall intensity and land surface temperature; climate grids that describe current and predict climate conditions, and information from hydrologic simulation models. Taken together, these various forms of information can be considered as a description of a set of hydrologic fields that are groups of variables distributed over a domain of time and space. The fundamental principles of hydrologic information science need to be formulated around the representation of hydrologic fields, and the interaction of one form of field with another. In particular, what is needed are insights as to how to define transformations of hydrologic fields which link information at different spatial scales, and which support interpolation of information simultaneously in space and time.

  17. Phosphorus dynamics in lowland streams as a response to climatic, hydrological and agricultural land use gradients

    Directory of Open Access Journals (Sweden)

    G. Goyenola

    2015-03-01

    Full Text Available Climate and hydrology are relevant control factors for determining the timing and amount of nutrient losses from agricultural fields to freshwaters. In this study, we evaluated the effect of agricultural intensification on the concentrations, dynamics and export of phosphorus (P in streams in two contrasting climate and hydrological regimes (temperate Denmark and subtropical Uruguay. We applied two alternative nutrient sampling programmes (high frequency composite sampling and low frequency instantaneous-grab sampling and three alternative methods to estimate exported P from the catchments. A source apportionment model was applied to evaluate the contribution derived from point and diffuse sources in all four catchments studied. Climatic and hydrological characteristics of catchments expressed as flow responsiveness (flashiness, exerted control on catchment and stream TP dynamics, having consequences that were more significant than the outcome of different TP monitoring and export estimation strategies. The impact of intensification of agriculture differed between the two contrasting climate zones. Intensification had a significant impact on subtropical climate with much higher total (as high as 4436 μg P L−1, particulate, dissolved and reactive soluble P concentrations and higher P export (as high as 5.20 kg P ha−1 year−1. However, we did not find an increased contribution of particulate P to total P as consequence of higher stream flashiness and intensification of agriculture. The high P concentrations at low flow and predominance of dissolved P in subtropical streams actually exacerbate the environmental and sanitary risks associated with eutrophication. In the other hand, temperate intensively farmed stream had lower TP than extensively farmed stream. Our results suggest that the lack of environmental regulations of agricultural production has more severe consequences on water quality, than climatic and hydrological differences

  18. Assessment of LULC and climate change on the hydrology of Ashti Catchment, India using VIC model

    Indian Academy of Sciences (India)

    Narendra Hengade; T I Eldho

    2016-12-01

    The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971−2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971−2010).

  19. Assessment of LULC and climate change on the hydrology of Ashti Catchment, India using VIC model

    Science.gov (United States)

    Hengade, Narendra; Eldho, T. I.

    2016-12-01

    The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971-2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971-2010).

  20. The relative influence of climate and catchment properties on hydrological drought

    Science.gov (United States)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a

  1. Functional integrity of freshwater forested wetlands, hydrologic alteration, and climate change

    Science.gov (United States)

    Middleton, Beth A.; Souter, Nicholas J.;

    2016-01-01

    Climate change will challenge managers to balance the freshwater needs of humans and wetlands. The Intergovernmental Panel on Climate Change predicts that most regions of the world will be exposed to higher temperatures, CO2, and more erratic precipitation, with some regions likely to have alternating episodes of intense flooding and mega-drought. Coastal areas will be exposed to more frequent saltwater inundation as sea levels rise. Local land managers desperately need intra-regional climate information for site-specific planning, management, and restoration activities. Managers will be challenged to deliver freshwater to floodplains during climate change-induced drought, particularly within hydrologically altered and developed landscapes. Assessment of forest health, both by field and remote sensing techniques, will be essential to signal the need for hydrologic remediation. Studies of the utility of the release of freshwater to remediate stressed forested floodplains along the Murray and Mississippi Rivers suggest that brief episodes of freshwater remediation for trees can have positive health benefits for these forests. The challenges of climate change in forests of the developing world will be considered using the Tonle Sap of Cambodia as an example. With little ecological knowledge of the impacts, managing climate change will add to environmental problems already faced in the developing world with new river engineering projects. These emerging approaches to remediate stressed trees will be of utmost importance for managing worldwide floodplain forests with predicted climate changes.

  2. Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics

    Science.gov (United States)

    Wang, Dehai; Lu, Shicong; Han, Shuang; Sun, Xiaoyan; Quan, Cheng

    2013-01-01

    Hydrological dynamics of sedimentary basins are essential for understanding regional climatic pattern in the geological past. In previous qualitative studies lithologically depending on the occurrence of featured sedimentary rocks, the Eocene climate of China had been subdivided into three latitudinal zones, with one subtropical high-controlled arid zone throughout middle China, and two humid zones respectively in the north and south. However, recent advances on mammalian fauna distribution, plant fossil-based quantitative paleoclimatic reconstruction, and modeling experiment jointly suggest that the relatively humid monsoonal climate might have prevailed over the territory. Here we examine and compare sedimentary sequences of 10 Eocene sections across eastern China, and hence the lake level fluctuations, to discuss the nature of climate type. Our results show that, instead of the categorically zonal pattern, the hydroclimate dynamics is intensified landward. This is demonstrated by the fact that, in contrast to the wide developed coal layers around the periphery, evaporites are growingly occurred endocentrically to the central part of middle China. However, although we have had assumed that all evaporites are indicator of extreme aridity, the highly oscillated climate in the central part of middle China was humid in the majority of the Eocene, distinct from permanent arid as seen in deserts or steppe along modern horse latitude. From the upcountry distribution pattern of the Eocene hydrological dynamics, it appears that the relatively dry climate in central China was caused by the impact of continentality or rain shadow effect under monsoonal, or monsoon-like climate.

  3. Hydrologic regime alteration of a Mediterranean catchment under climate change projection

    Science.gov (United States)

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Herrmann, Frank; Vanclooster, Marnik

    2014-05-01

    Most of the climate models projections for the Mediterranean basin have showed that the region will likely to experience a general tendency towards drier climate conditions with decreases in total precipitation, increases in temperature, alterations in the rainfall extreme events and droughts frequency (IPCC, 2007; Giorgi and Lionello, 2008; López-Moreno et al., 2011). The region is already suffering from water resources scarcity and vulnerability which are expected to amplify in the next century (Ludwig et al., 2011; Schneider et al., 2013). Therefore, assessing the impact of climate change on the hydrologic regime of Mediterranean catchments is with a major concern not only to scientist but also to water resources policy makers and general public. However, most of the climate change impact studies focus on the flow regime on global or regional scale rather than on the catchment scale which is more useful and more appropriate to guide practical mitigation and adaptation policy. This is because hydro-climate modeling at the local scale is confronted to the variability in climate, topography, geology, lack of observations and anthropogenic activities within the catchment. Furthermore, it is well recognized that hydrological and climate models forecasts are always affected with uncertainty making the assessment of climate change impact on Mediterranean catchment hydrology more challenging. This work aims to assess the impact of climate change on a Mediterranean catchment located in North Africa (the Chiba catchment in northeast Tunisia) through a conjunctive use of physically based hydrological model (SWAT) driven with four climate models*. Quantification of the impact of climate change has been conducted by means of the Indicators of Hydrologic Alteration (Richter et al., 1996) which are also ecologically meaningful. By comparing changes in these indicators in the reference period (1971-2000) to the projected ones in the future (2041-2070), it was possible to draw

  4. Hydrologi

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    Hydro1ogi er den videnskab, der omhand1er jordens vand, dets forekomst, cirku1ation og forde1ing, dets kemiske og fysiske egenskaber samt indvirkning på omgivelserne, herunder dets relation ti1 alt liv på jorden. Således lyder en b1andt mange definitioner på begrebet hydrologi, og som man kan se...

  5. Eco-hydrological requirements of dune slack vegetation and the implications of climate change.

    Science.gov (United States)

    Curreli, A; Wallace, H; Freeman, C; Hollingham, M; Stratford, C; Johnson, H; Jones, L

    2013-01-15

    Dune slacks are a seasonal coastal wetland habitat, whose plant assemblages and soil properties are strongly linked to a fluctuating water table. Climate change is predicted to cause major shifts in sand dune hydrological regimes, yet we know remarkably little about the tolerance of these communities to change, and their precise hydrological requirements are poorly quantified. Dune slack vegetation and soils were sampled within five vegetation types across four west coast UK sites. Relationships between vegetation assemblages, and parameters of soil development (moisture, loss on ignition, pH, KCl extractable ions) and groundwater hydrological regime (annual maximum and minimum water levels and range, duration of flooding) were established to define the environmental tolerances of different communities. In multivariate analysis of the vegetation, the dominant gradient was hydrological: dry to wet, followed by a secondary soil development gradient: young calcareous organic-poor soils to acidic/neutral soils with greater organic matter contents. Most measured hydrological and soil variables explained a significant proportion of observed variation in species composition when tested individually, with the exception of soil nitrate and soil calcium concentrations. Maximum water level was the key hydrological variable, and soil moisture and soil pH were the key soil variables. All hydrological and soil parameters together explained 22.5% of the total species variation. There were significant differences in hydrological and soil parameters between community types, with only 40 cm difference in mean annual minimum water levels (averaged over 4 years) separating the wettest and the driest dune slack communities. Therefore, predicted declines in water level exceeding 100 cm by 2080 are likely to have a major impact on the vegetation of these priority conservation habitats.

  6. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  7. Integrating remotely sensed surface water extent into continental scale hydrology

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R2, RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  8. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R(2), RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  9. "As-If" the Climate Has Changed; What We Can Expect in Hydrologic Response

    Science.gov (United States)

    Vieux, B. E.; Looper, J.

    2015-12-01

    Predicting the effects of climate change through hydrologic modeling with hydrologic forcing representative of historic and future climates. Understanding the hydrologic impacts of various climate scenarios and pathways is accomplished with a physics-based distributed hydrologic model with historic and future precipitation and evapotranspiration inputs. Vflo is a gridded hydrologic model setup for the 71,009 sq.-km. study area, the Canadian River, extending from arid areas in eastern New Mexico, across the Texas Panhandle to Lake Eufaula in sub-humid eastern Oklahoma. This model uses merged radar and rain gauge data to generate hydrographs at gauged and ungauged locations. Vflo is calibrated to observed stream gauge data minimizing Nash-Sutcliffe error function for volume and discharge. Streamflow characteristics at ungauged locations, for both historic and future scenarios, are used to develop ecological relationships between water quality, discharge, and fish species. Testing the change in hydrologic response from future potential evapotranspiration (PET) and future precipitation is accomplished using observed rainfall. Historical rainfall is perturbed to represent future climate scenarios. Model-based simulations are used to test various scenarios comprising: 1) warmer and drier, 2) warmer and status quo precipitation, and 3) status quo PET but drier. Bias corrected and spatially down-sampled CMIP3 datasets are used to create perturbations for the latter portion of the 21st Century, 2070-2099. The change in precipitation and PET between 1970-1999 and 2070-2099 is applied to radar data from the observed period, 1995-2010. Then GCM-predicted changes in precipitation under the perturbation of historic rainfall accomplishes an important feature, i.e. preserving realistic spatial, temporal, and convective patterns of rainfall typical of the southern plains, which adds confidence to the model-based simulation of future climate impacts. Simulation of the perturbed

  10. Assessment of climate change impacts on meteorological and hydrological droughts in the Jucar River Basin

    Science.gov (United States)

    Marcos-Garcia, Patricia; Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio

    2016-04-01

    Extreme natural phenomena, and more specifically droughts, constitute a serious environmental, economic and social issue in Southern Mediterranean countries, common in the Mediterranean Spanish basins due to the high temporal and spatial rainfall variability. Drought events are characterized by their complexity, being often difficult to identify and quantify both in time and space, and an universally accepted definition does not even exist. This fact, along with future uncertainty about the duration and intensity of the phenomena on account of climate change, makes necessary increasing the knowledge about the impacts of climate change on droughts in order to design management plans and mitigation strategies. The present abstract aims to evaluate the impact of climate change on both meteorological and hydrological droughts, through the use of a generalization of the Standardized Precipitation Index (SPI). We use the Standardized Flow Index (SFI) to assess the hydrological drought, using flow time series instead of rainfall time series. In the case of the meteorological droughts, the Standardized Precipitation and Evapotranspiration Index (SPEI) has been applied to assess the variability of temperature impacts. In order to characterize climate change impacts on droughts, we have used projections from the CORDEX project (Coordinated Regional Climate Downscaling Experiment). Future rainfall and temperature time series for short (2011-2040) and medium terms (2041-2070) were obtained, applying a quantile mapping method to correct the bias of these time series. Regarding the hydrological drought, the Témez hydrological model has been applied to simulate the impacts of future temperature and rainfall time series on runoff and river discharges. It is a conceptual, lumped and a few parameters hydrological model. Nevertheless, it is necessary to point out the time difference between the meteorological and the hydrological droughts. The case study is the Jucar river basin

  11. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    Science.gov (United States)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2016-02-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2 ), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  12. Hydrological Excitations of Polar Motion Derived from Different Variables of Fgoals - g2 Climate Model

    Science.gov (United States)

    Winska, M.

    2016-12-01

    The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC). The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.

  13. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The climate impact studies in hydrology often rely on climate change information at fine spatial resolution. However, the general circulation model (GCM), which is widely used to simulate future climate scenario, operates on a coarse scale and does not provide reliable data on local or regional scale for hydrological modeling. Therefore the outputs from GCM have to be downscaled to obtain the information fit for hydrologic studies. The variable infiltration capacity (VIC) distributed hydrological model with 9×9 km2 grid resolution was applied and calibrated in the Hanjiang Basin. Validation results show that SSVM can approximate observed precipitation and temperature data reasonably well, and that the VIC model can simulate runoff hydrograph with high model efficiency and low relative error. By applying the SSVM model, the trends of precipitation and temperature (including daily mean temperature, daily maximum temperature and daily minimum temperature) projected from CGCM2 under A2 and B2 scenarios will decrease in the 2020s (2011―2040), and increase in the 2080s (2071―2100). However, in the 2050s (2041―2070), the precipitation will be decreased under A2 scenario and no significant changes under B2 scenario, but the temperature will be not obviously changed under both climate change scenarios. Under both climate change scenarios, the impact analysis of runoff, made with the downscaled precipitation and temperature time series as input of the VIC distributed model, has resulted in a decreasing trend for the 2020s and 2050s, and an overall increasing trend for the 2080s.

  14. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin

    Institute of Scientific and Technical Information of China (English)

    GUO ShengLian; GUO Jing; ZHANG Jun; CHEN Hua

    2009-01-01

    The climate Impact studies In hydrology often rely on climate change information at fine spatial resolu-tion.However, the general circulation model (GCM), which is widely used to simulate future climate scenario, operates on a coarse scale and does not provide reliable data on local or regional scale for hydrological modeling.Therefore the outputs from GCM have to be downscaled to obtain the informa-tion fit for hydrologic studies.The variable infiltration capacity (VIC) distributed hydrological model with 9×9 km~2 grid resolution was applied and calibrated in the Hanjiang Basin.Validation results show that SSVM can approximate observed precipitation and temperature data reasonably well, and that the VIC model can simulate runoff hydrograph with high model efficiency and low relative error.By apply-Ing the SSVM model, the trends of precipitation and temperature (including daily mean temperature, daily maximum temperature and daily minimum temperature) projected from CGCM2 under A2 and B2 scenarios will decrease in the 2020s (2011-2040), and Increase in the 2080s (2071-2100).However, in the 2050s (2041-2070), the precipitation will be decreased under A2 scenario and no significant changes under B2 scenario, but the temperature will be not obviously changed under both climate change scenarios.Under both climate change scenarios, the impact analysis of runoff, made with the downscaled precipitation and temperature time series as input of the VIC distributed model, has re-sulted in a decreasing trend for the 2020s and 2050s, and an overall increasing trend for the 2080s.

  15. Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China

    Science.gov (United States)

    Zhou, Guo-Yi; Wei, Xiaohua; Wu, Yiping; Liu, Shu-Guang; Huang, Yuhui; Yan, Junhua; Zhang, Deqiang; Zhang, Qianmei; Liu, Juxiu; Meng, Ze; Wang, Chunlin; Chu, Guowei; Liu, Shizhong; Tang, Xu-Li; Liu, Xiaodong

    2011-01-01

    Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible.

  16. Trend assessment: applications for hydrology and climate research

    Directory of Open Access Journals (Sweden)

    M. Kallache

    2005-01-01

    Full Text Available The assessment of trends in climatology and hydrology still is a matter of debate. Capturing typical properties of time series, like trends, is highly relevant for the discussion of potential impacts of global warming or flood occurrences. It provides indicators for the separation of anthropogenic signals and natural forcing factors by distinguishing between deterministic trends and stochastic variability. In this contribution river run-off data from gauges in Southern Germany are analysed regarding their trend behaviour by combining a deterministic trend component and a stochastic model part in a semi-parametric approach. In this way the trade-off between trend and autocorrelation structure can be considered explicitly. A test for a significant trend is introduced via three steps: First, a stochastic fractional ARIMA model, which is able to reproduce short-term as well as long-term correlations, is fitted to the empirical data. In a second step, wavelet analysis is used to separate the variability of small and large time-scales assuming that the trend component is part of the latter. Finally, a comparison of the overall variability to that restricted to small scales results in a test for a trend. The extraction of the large-scale behaviour by wavelet analysis provides a clue concerning the shape of the trend.

  17. Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland

    Directory of Open Access Journals (Sweden)

    Paweł Marcinkowski

    2017-02-01

    Full Text Available Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz in Poland in two future periods (near future: 2021–2050, and far future: 2071– 2100. The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models—Regional Climate Models (GCM-RCM runs based on the Coordinated Downscaling Experiment—European Domain (EURO-CORDEX. Hydrological response to climate warming and wetter conditions (particularly in winter and spring in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability. Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment.

  18. Effects of the climate change in the hydrologic cycle

    Science.gov (United States)

    Arreguin Cortés, F.; López Pérez, M.

    2010-03-01

    Among the different effects resulting from the Climate Change around the world related to the water cycle those that account more are the drought and the flooding. Also the water supply sources is expected to diminished or polluted, wetlands tend to disappear and aquatic environments degrade, population is expected to be displaced because of the increase in sea level in deltaic zones and a lowering in health standards related to water diseases due to extreme meteorological phenomena and new climatic conditions. That the climate has changed in México is a fact and its features are the increase in seasonal temperature (winter and summer) as well as a reduction in summer precipitation in central and northern Mexico coupled to an increase in winter in the northwestern regions. More frequent severe storms in different Mexican regions (southeastern and central Mexico) and in urban areas like Mexico City and the gradual reduction in the water flowing in rivers are also evidence of this change. The National Water Commission has developed studies using maximum and minimum temperature and daily precipitation analysis from a new data base called Maya v1 which accounts for a regular network that covers the entire country. Also coastal aquifer studies, hurricane strikes incidence and identification of specific areas in water basins with major vulnerability (closely related to urban and rural settlements invading floodplains and water courses) are underway. Some studies and actions that need to be developed and taken are indicated and an example of coordinated work is shown. In addition a set of adaptation measures to take according to the regional situation is described. Such measures should focus on the present situation as well as for the future and need to be studied and foreseen now. If such measures are quickly taken in those vulnerable areas the costs they represent will be less compared with the costs of the damages due to the presence of the hydrometeorological

  19. Revealing, Reducing, and Representing Uncertainties in New Hydrologic Projections for Climate-changed Futures

    Science.gov (United States)

    Arnold, Jeffrey; Clark, Martyn; Gutmann, Ethan; Wood, Andy; Nijssen, Bart; Rasmussen, Roy

    2016-04-01

    The United States Army Corps of Engineers (USACE) has had primary responsibility for multi-purpose water resource operations on most of the major river systems in the U.S. for more than 200 years. In that time, the USACE projects and programs making up those operations have proved mostly robust against the range of natural climate variability encountered over their operating life spans. However, in some watersheds and for some variables, climate change now is known to be shifting the hydroclimatic baseline around which that natural variability occurs and changing the range of that variability as well. This makes historical stationarity an inappropriate basis for assessing continued project operations under climate-changed futures. That means new hydroclimatic projections are required at multiple scales to inform decisions about specific threats and impacts, and for possible adaptation responses to limit water-resource vulnerabilities and enhance operational resilience. However, projections of possible future hydroclimatologies have myriad complex uncertainties that require explicit guidance for interpreting and using them to inform those decisions about climate vulnerabilities and resilience. Moreover, many of these uncertainties overlap and interact. Recent work, for example, has shown the importance of assessing the uncertainties from multiple sources including: global model structure [Meehl et al., 2005; Knutti and Sedlacek, 2013]; internal climate variability [Deser et al., 2012; Kay et al., 2014]; climate downscaling methods [Gutmann et al., 2012; Mearns et al., 2013]; and hydrologic models [Addor et al., 2014; Vano et al., 2014; Mendoza et al., 2015]. Revealing, reducing, and representing these uncertainties is essential for defining the plausible quantitative climate change narratives required to inform water-resource decision-making. And to be useful, such quantitative narratives, or storylines, of climate change threats and hydrologic impacts must sample

  20. Impact of climate change on hydrological behaviour and crop production in a glacial river basin

    Science.gov (United States)

    Remesan, Renji; Holman, Ian; Janes, Victoria

    2015-04-01

    Himalayan valleys are confronting severe climate change related issues (flash flood and landslides, water scarcity in higher altitudes) because of fluctuating monsoon precipitation and increasing seasonal temperatures. In this study, the Soil and Water Assessment Tool (SWAT) model has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. The Beas is regionally significant as it holds two giant dams, one which annually diverts 4700 Mm3 of water to a nearby basin. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream flow modelling. The model evaluation statistics for Daily River flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). We then applied the models within a scenario-neutral framework to develop hydrological and crop yield Impact Response Surfaces (IRS) for future changes in annual temperature and precipitation for the region from AR5. Future Q10 and Q90 daily flows indicate amplified 'flash flood' situations and increased low flows, respectively, with increasing temperatures due to increased snowmelt from retreating glaciers. Under existing crop and irrigation management practices, the IRS show decreasing and increasing crop yields for summer (monsoon) and winter (post monsoon) crops, respectively, with rising temperature. The sensitivity of winter (post monsoon) crop yields to precipitation increases with increasing temperature. The paper will consider the implications of the research for future agricultural water management and the potential of agronomic and irrigation adaptation to offset yield losses

  1. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Science.gov (United States)

    Lauri, H.; de Moel, H.; Ward, P. J.; Räsänen, T. A.; Keskinen, M.; Kummu, M.

    2012-12-01

    The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20-30 yr. We downscaled the output of five general circulation models (GCMs) that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia) between the baseline (1982-1992) and projected time period (2032-2042) ranges from -11% to +15% for the wet season and -10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25-160% higher dry season flows and 5-24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20-30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will increase the uncertainty of the

  2. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-12-01

    Full Text Available The transboundary Mekong River is facing two ongoing changes that are expected to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled the output of five general circulation models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For the hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact on hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will

  3. Human and climate impacts on the 21st century hydrological drought

    Science.gov (United States)

    Wanders, N.; Wada, Y.

    2015-07-01

    Climate change will very likely impact future hydrological drought characteristics across the world. Here, we quantify the impact of human water use including reservoir regulation and climate change on future low flows and associated hydrological drought characteristics on a global scale. The global hydrological and water resources model PCR-GLOBWB is used to simulate daily discharge globally at 0.5 ° resolution for 1971-2099. The model was forced with the latest CMIP5 climate projections taken from five General Circulation Models (GCMs) and four emission scenarios (RCPs), under the framework of the Inter-Sectoral Impact Model Intercomparison Project. A natural or pristine scenario has been used to calculate the impact of the changing climate on hydrological drought and has been compared to a scenario with human influences. In the latter scenario reservoir operations and human water use are included in the simulations of discharge for the 21st century. The impact of humans on the low flow regime and hydrological drought characteristics has been studied at a catchment scale. Results show a significant impact of climate change and human water use in large parts of Asia, Middle East and the Mediterranean, where the relative contribution of humans on the changed drought severity can be close to 100%. The differences between Representative Concentration Pathways are small indicating that human water use is proportional to the changes in the climate. Reservoirs tend to reduce the impact of drought by water retention in the wet season, which in turn will lead to increased water availability in the dry season, especially for large regions in Europe and North America. The impact of climate change varies throughout the season for parts of Europe and North-America, while in other regions (e.g. North-Africa, Middle East and Mediterranean), the impact is not influenced by seasonal changes. This study illustrates that the impact of human water use and reservoirs is nontrivial

  4. Modelling of spatio-temporal precipitation relevant for urban hydrology with focus on scales, extremes and climate change

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen

    Time series of precipitation are necessary for assessment of urban hydrological systems. In a changed climate this is challenging as climate model output is not directly comparable to observations at the scales relevant for urban hydrology. The focus of this PhD thesis is downscaling...... of precipitation to spatio-temporal scales used in urban hydrology. It investigates several observational data products and identifies relevant scales where climate change and precipitation can be assessed for urban use. Precipitation is modelled at different scales using different stochastic techniques. A weather...... generator is used to produce an artificial spatio-temporal precipitation product that can be used both directly in large scale urban hydrological modelling and for derivation of extreme precipitation statistics relevant for urban hydrology. It is discussed why precipitation time series from a changed...

  5. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed

    Science.gov (United States)

    Neupane, Ram P.; Kumar, Sandeep

    2015-10-01

    Land use and climate are two major components that directly influence catchment hydrologic processes, and therefore better understanding of their effects is crucial for future land use planning and water resources management. We applied Soil and Water Assessment Tool (SWAT) to assess the effects of potential land use change and climate variability on hydrologic processes of large agriculture dominated Big Sioux River (BSR) watershed located in North Central region of USA. Future climate change scenarios were simulated using average output of temperature and precipitation data derived from Special Report on Emission Scenarios (SRES) (B1, A1B, and A2) for end-21st century. Land use change was modeled spatially based on historic long-term pattern of agricultural transformation in the basin, and included the expansion of corn (Zea mays L.) cultivation by 2, 5, and 10%. We estimated higher surface runoff in all land use scenarios with maximum increase of 4% while expanding 10% corn cultivation in the basin. Annual stream discharge was estimated higher with maximum increase of 72% in SRES-B1 attributed from higher groundwater contribution of 152% in the same scenario. We assessed increased precipitation during spring season but the summer precipitation decreased substantially in all climate change scenarios. Similar to decreased summer precipitation, discharge of the BSR also decreased potentially affecting agricultural production due to reduced future water availability during crop growing season in the basin. However, combined effects of potential land use change with climate variability enhanced for higher annual discharge of the BSR. Therefore, these estimations can be crucial for implications of future land use planning and water resources management of the basin.

  6. Climate Change Impacts on the Hydrological Processes of a Small Agricultural Watershed

    Directory of Open Access Journals (Sweden)

    Sushant Mehan

    2016-11-01

    Full Text Available Weather extremes and climate variability directly impact the hydrological cycle influencing agricultural productivity. The issues related to climate change are of prime concern for every nation as its implications are posing negative impacts on society. In this study, we used three climate change scenarios to simulate the impact on local hydrology of a small agricultural watershed. The three emission scenarios from the Special Report on Emission Scenarios, of the Intergovernmental Panel on Climate Change (IPCC 2007 analyzed in this study were A2 (high emission, A1B (medium emission, and B1 (low emission. A process based hydrologic model SWAT (Soil and Water Assessment Tool was calibrated and validated for the Skunk Creek Watershed located in eastern South Dakota. The model performance coefficients revealed a strong correlation between simulated and observed stream flow at both monthly and daily time step. The Nash Sutcliffe Efficiency for monthly model performace was 0.87 for the calibration period and 0.76 for validation period. The future climate scenarios were built for the mid-21st century time period ranging from 2046 to 2065. The future climate data analysis showed an increase in temperatures between 2.2 °C to 3.3 °C and a decrease in precipitation from 1.8% to 4.5% expected under three different climate change scenarios. A sharp decline in stream flow (95.92%–96.32%, run-off (83.46%–87.00%, total water yield (90.67%–91.60%, soil water storage (89.99%–92.47%, and seasonal snow melt (37.64%–43.06% are predicted to occur by the mid-21st century. In addition, an increase in evapotranspirative losses (2%–3% is expected to occur within the watershed when compared with the baseline period. Overall, these results indicate that the watershed is highly susceptible to hydrological and agricultural drought due to limited water availability. These results are limited to the available climate projections, and future refinement in

  7. METHODOLOGY FOR DETERMINING EFFECTS OF EXTENT AND GEOMETRY OF IMPERVIOUS SURFACE ON HYDROLOGIC BALANCE

    Science.gov (United States)

    In the urbanization of watersheds, impervious surface is the primary agent of hydrologic change. The impact of impervious surface on hydrology and sediment transport is understood only in terms of unverified models not specifically adapted for urban watersheds. Therefore, in this...

  8. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime

    Science.gov (United States)

    Zhang, Mingfang; Liu, Ning; Harper, Richard; Li, Qiang; Liu, Kuan; Wei, Xiaohua; Ning, Dingyuan; Hou, Yiping; Liu, Shirong

    2017-03-01

    Despite extensive studies on hydrological responses to forest cover change in small watersheds, the hydrological responses to forest change and associated mechanisms across multiple spatial scales have not been fully understood. This review thus examined about 312 watersheds worldwide to provide a generalized framework to evaluate hydrological responses to forest cover change and to identify the contribution of spatial scale, climate, forest type and hydrological regime in determining the intensity of forest change related hydrological responses in small (<1000 km2) and large watersheds (⩾1000 km2). Key findings include: (1) the increase in annual runoff associated with forest cover loss is statistically significant at multiple spatial scales whereas the effect of forest cover gain is statistically inconsistent; (2) the sensitivity of annual runoff to forest cover change tends to attenuate as watershed size increases only in large watersheds; (3) annual runoff is more sensitive to forest cover change in water-limited watersheds than in energy-limited watersheds across all spatial scales; and (4) small mixed forest-dominated watersheds or large snow-dominated watersheds are more hydrologically resilient to forest cover change. These findings improve the understanding of hydrological response to forest cover change at different spatial scales and provide a scientific underpinning to future watershed management in the context of climate change and increasing anthropogenic disturbances.

  9. Comparing snow models under current and future climates: Uncertainties and implications for hydrological impact studies

    Science.gov (United States)

    Troin, Magali; Poulin, Annie; Baraer, Michel; Brissette, François

    2016-09-01

    Projected climate change effects on snow hydrology are investigated for the 2041-2060 horizon following the SRES A2 emissions scenario over three snowmelt-dominated catchments in Quebec, Canada. A 16-member ensemble of eight snow models (SM) simulations, based on the high-resolution Canadian Regional Climate Model (CRCM-15 km) simulations driven by two realizations of the Canadian Global Climate Model (CGCM3), is established per catchment. This study aims to compare a range of SMs in their ability at simulating snow processes under current climate, and to evaluate how they affect the assessment of the climate change-induced snow impacts at the catchment scale. The variability of snowpack response caused by the use of different models within two different SM approaches (degree-day (DD) versus mixed degree-day/energy balance (DD/EB)) is also evaluated, as well as the uncertainty of natural climate variability. The simulations cover 1961-1990 in the present period and 2041-2060 in the future period. There is a general convergence in the ensemble spread of the climate change signals on snow water equivalent at the catchment scale, with an earlier peak and a decreased magnitude in all basins. The results of four snow indicators show that most of the uncertainty arises from natural climate variability (inter-member variability of the CRCM) followed by the snow model. Both the DD and DD/EB models provide comparable assessments of the impacts of climate change on snow hydrology at the catchment scale.

  10. Adaptation of land-use demands to the impact of climate change on the hydrological processes of an urbanized watershed.

    Science.gov (United States)

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-11-12

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region's hydrology. The objective of this study is to simulate and assess a region's ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology.

  11. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2012-11-01

    Full Text Available The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology.

  12. Analysis of the Impact of Climate Change on Extreme Hydrological Events in California

    Science.gov (United States)

    Ashraf Vaghefi, Saeid; Abbaspour, Karim C.

    2016-04-01

    Estimating magnitude and occurrence frequency of extreme hydrological events is required for taking preventive remedial actions against the impact of climate change on the management of water resources. Examples include: characterization of extreme rainfall events to predict urban runoff, determination of river flows, and the likely severity of drought events during the design life of a water project. In recent years California has experienced its most severe drought in recorded history, causing water stress, economic loss, and an increase in wildfires. In this paper we describe development of a Climate Change Toolkit (CCT) and demonstrate its use in the analysis of dry and wet periods in California for the years 2020-2050 and compare the results with the historic period 1975-2005. CCT provides four modules to: i) manage big databases such as those of Global Climate Models (GCMs), ii) make bias correction using observed local climate data , iii) interpolate gridded climate data to finer resolution, and iv) calculate continuous dry- and wet-day periods based on rainfall, temperature, and soil moisture for analysis of drought and flooding risks. We used bias-corrected meteorological data of five GCMs for extreme CO2 emission scenario rcp8.5 for California to analyze the trend of extreme hydrological events. The findings indicate that frequency of dry period will increase in center and southern parts of California. The assessment of the number of wet days and the frequency of wet periods suggests an increased risk of flooding in north and north-western part of California, especially in the coastal strip. Keywords: Climate Change Toolkit (CCT), Extreme Hydrological Events, California

  13. A surface hydrology model for regional vector borne disease models

    Science.gov (United States)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  14. Climate change adaptation for hydrology and water resources. FINADAPT Working Paper 6

    OpenAIRE

    2006-01-01

    The most important effect of climate change on hydrological regimes in Finland is the change in seasonal distribution of runoff. Winter runoff is expected to increase considerably due to an increase in snowmelt and rainfall, while spring floods are estimated to decrease in southern Finland. In northern Finland spring floods are expected to increase during the next few decades due to increased snowfall, but then to decline over the longer term with continuous warming. Yearly runoff is estimate...

  15. Assessment of the effects of climate variability and land use change on the hydrology of the Meuse river basin

    NARCIS (Netherlands)

    Tu, M.

    2006-01-01

    Potential impacts of climate change/variability on regional or local precipitation patterns and, subsequently, the hydrology of individual river basins have received a growing attention. This research aims to improve our understanding of the hydrological response of a large river basin (the Meuse in

  16. Climatic and hydrologic aspects of the 2008 Midwest floods

    Science.gov (United States)

    Budikova, D.; Coleman, J.; Strope, S. A.

    2010-12-01

    Between May and June 2008 the Midwest region of the United States (U.S.) experienced record flooding. The event was produced by distinct hydroclimatic conditions that included saturated antecedent soil moisture conditions and atmospheric circulation that guided moist air from the Gulf of Mexico into the area between late May and mid-June. The latter included a well-developed trough over the central/west U.S., a strong Great Plains Low Level Jet (GPLLJ), and unseasonably strong westerlies that promoted upper level divergence in regions of positive vorticity advection. The flooding coincided with a strongly negative phase of the North Atlantic Oscillation linked to the strength of the GPLLJ. The atmospheric flow contributed to flooding within three river basins across nine states. Iowa, southern Wisconsin, and central Indiana located within the Upper Mississippi River Basin (UMRB) and the Wabash River Basin were most impacted and also recorded the greatest anomalies in rainfall. Record rainfall, persistent multi-day precipitation events, high frequency of localized high-intensity rainfall events all contributed to the severity of the flooding. Conditions peaked between May 21 and June 13 when rain fell somewhere within the region each day. River discharge rates reached record levels in June at many locations; return periods throughout Iowa, southern Wisconsin and in central Indiana were estimated to exceed 100 years, and often times 200 years. Record river stage levels were observed during this time in similar areas. Conditions began to recover into July and August. The timing of occurrence of the precipitation and hydrological anomalies towards late spring and into early summer in the Midwest was rather unusual. The 2008 flood event occurred 15 years after the infamous 1993 event. The importance of its occurrence is underscored by the observed increasing trends in extreme and flood-related precipitation characteristics during the 20th century and the anticipated

  17. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region

    Science.gov (United States)

    Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin

    2016-04-01

    It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same stationary climate conditions (Karlsen et al., 2014), but that they also play a fundamental role for the sensitivity of a catchment to a changing climate (Teutschbein et al., 2015). A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions. References Karlsen, R.H., T. Grabs, K. Bishop, H. Laudon, and J. Seibert (2014). Landscape controls on

  18. Future changes in Mekong River hydrology: impact of climate change and reservoir operation on discharge

    Directory of Open Access Journals (Sweden)

    H. Lauri

    2012-05-01

    Full Text Available The transboundary Mekong River is facing two on-going changes that are estimated to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and the projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled output of five General Circulation Models (GCMs that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact to hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia between the baseline (1982–1992 and projected time period (2032–2042 ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will increase the

  19. CLIMB - Climate induced changes on the hydrology of mediterranean basins - Reducing uncertainties and quantifying risk

    Science.gov (United States)

    Ludwig, Ralf

    2010-05-01

    According to future climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources. Threats include severe droughts and extreme flooding, salinization of coastal aquifers, degradation of fertile soils and desertification due to poor and unsustainable water management practices. It can be foreseen that, unless appropriate adaptation measures are undertaken, the changes in the hydrologic cycle will give rise to an increasing potential for tension and conflict among the political and economic actors in this vulnerable region. The presented project initiative CLIMB, funded under EC's 7th Framework Program (FP7-ENV-2009-1), has started in January 2010. In its 4-year design, it shall analyze ongoing and future climate induced changes in hydrological budgets and extremes across the Mediterranean and neighboring regions. This is undertaken in study sites located in Sardinia, Northern Italy, Southern France, Tunisia, Egypt and the Palestinian-administered area Gaza. The work plan is targeted to selected river or aquifer catchments, where the consortium will employ a combination of novel field monitoring and remote sensing concepts, data assimilation, integrated hydrologic (and biophysical) modeling and socioeconomic factor analyses to reduce existing uncertainties in climate change impact analysis. Advanced climate scenario analysis will be employed and available ensembles of regional climate model simulations will be downscaling. This process will provide the drivers for an ensemble of hydro(-geo)logical models with different degrees of complexity in terms of process description and level of integration. The results of hydrological modeling and socio-economic factor analysis will enable the development of a GIS-based Vulnerability and Risk Assessment Tool. This tool will serve as a platform

  20. Uncertainties in assessing climate change impacts on the hydrology of Mediterranean basins

    Science.gov (United States)

    Ludwig, Ralf

    2013-04-01

    subsequent variety of management options and adaptation strategies. Therefore, the 4-year FP7-project CLIMB (Climate induced changes on the hydrology of Mediterranean basins, GA: 244151) includes a major focus on the assessment and quantification of uncertainties. First, CLIMB employs a rigorous climate change model analysis, auditing the Global and Regional Climate Model data available through the ENSEMBLES and PRUDENCE initiatives. The audits lead to select the best regional performers as compared to observed values during the climatic reference period (1971- 2000). Specific bias correction and downscaling procedures are applied to provide the driving inputs and meet the demands of the subsequent impact models, transferring a future climate signal (2041-2070) into hydrological quantities at the catchment or landscape scale. However, very limited quantitative knowledge is as yet available about the role of hydrological model complexity for climate change impact assessment, where predictive power becomes more and more important and raises the demand for process-based and spatially explicit model types. Thus, CLIMB uses hydrological model ensembles to analyze the performance of existing models and works to identify the appropriate level of model complexity, and thus to determine the data specifications required to provide robust results in a climate change context. The presentation focuses on the CLIMB multi-level strategy to uncertainty assessment and highlights latest findings in some of the seven CLIMB case studies. In particular, the presentation will demonstrate the current constraints of hydro-meteorological data availability and processing and searches for solutions that can eventually be provided by integrating hydro-meteorology and ICT research communities.

  1. A decade of sea level rise slowed by climate-driven hydrology.

    Science.gov (United States)

    Reager, J T; Gardner, A S; Famiglietti, J S; Wiese, D N; Eicker, A; Lo, M-H

    2016-02-12

    Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of continental land mass changes and a quantification of this term. We found that between 2002 and 2014, climate variability resulted in an additional 3200 ± 900 gigatons of water being stored on land. This gain partially offset water losses from ice sheets, glaciers, and groundwater pumping, slowing the rate of sea level rise by 0.71 ± 0.20 millimeters per year. These findings highlight the importance of climate-driven changes in hydrology when assigning attribution to decadal changes in sea level.

  2. A decade of sea level rise slowed by climate-driven hydrology

    Science.gov (United States)

    Reager, J. T.; Gardner, A. S.; Famiglietti, J. S.; Wiese, D. N.; Eicker, A.; Lo, M.-H.

    2016-02-01

    Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of continental land mass changes and a quantification of this term. We found that between 2002 and 2014, climate variability resulted in an additional 3200 ± 900 gigatons of water being stored on land. This gain partially offset water losses from ice sheets, glaciers, and groundwater pumping, slowing the rate of sea level rise by 0.71 ± 0.20 millimeters per year. These findings highlight the importance of climate-driven changes in hydrology when assigning attribution to decadal changes in sea level.

  3. Framework for studying the hydrological impact of climate change in an alley cropping system

    Science.gov (United States)

    Hallema, Dennis W.; Rousseau, Alain N.; Gumiere, Silvio J.; Périard, Yann; Hiemstra, Paul H.; Bouttier, Léa; Fossey, Maxime; Paquette, Alain; Cogliastro, Alain; Olivier, Alain

    2014-09-01

    Alley cropping is an agroforestry practice whereby crops are grown between hedgerows of trees planted at wide spacings. The local climate and the physiological adaptation mechanisms of the trees are key factors in the growth and survival of the trees and intercrops, because they directly affect the soil moisture distribution. In order to evaluate the long-term hydrological impact of climate change in an alley cropping system in eastern Canada, we developed a framework that combines local soil moisture data with local projections of climate change and a model of soil water movement, root uptake and evapotranspiration. Forty-five frequency domain reflectometers (FDR) along a transect perpendicular to the tree rows generated a two-year dataset that we used for the parameterization and evaluation of the model. An impact study with simulations based on local projections of three global and one regional climate simulation suggest that the soil becomes drier overall in the period between 2041 and 2070, while the number of critically wet periods with a length of one day increases slightly with respect to the reference period between 1967 and 1996. Hydrological simulations based on a fourth climate scenario however point toward wetter conditions. In all cases the changes are minor. Although our simulations indicate that the experimental alley cropping system will possibly suffer drier conditions in response to higher temperatures and increased evaporative demand, these conditions are not necessarily critical for vegetation during the snow-free season.

  4. The HC-LAC: a Platform for Modeling Hydrology and Climate Change in Latin America and the Caribbean

    Science.gov (United States)

    Moreda, F.; Wyatt, A.; Bruhn, M.; Wheaton, W.; Miralles-Wilhelm, F.; Muñoz-Castillo, R.; Rineer, J.

    2013-05-01

    This platform, called the Hydrology and Climate Change in Latin America and The Caribbean, or "HC-LAC", is an integrated quantitative simulation of hydrology and climate change. The HC-LAC is composed of two principal components: the Analytical Hydrography Dataset (AHD) and an enhanced version of the Generalized Watershed Loading Function (GWLF). The AHD is a spatially explicit surface water data layer of Central and South America derived from digital elevation data from the Shuttle Radar Topography Mission (SRTM) and modified by the USGS to provide more accurate flow between cells in the raster data. For the LAC area, AHD consists 230, 000 catchments and stream segments with an average area of 100 km2 and length of 10 km, respectively. The AHD data structure is patterned after the US National Hydrography Dataset Plus (NHDPlus), thus providing a proven structure for flexible data integration and analyses necessary for spatial models like the HC-LAC. The structure of the AHD enables the implementation of water balance modeling and general routing of flows through the stream network thus supporting a range of environmental models. GWLF is applied on each AHD catchment which is characterized by multiple land use and soil type. The response of each land use in a given catchment is modeled separately in generating stream flow as well as recharge to soil storage. The stream flows generated from each catchment are routed through stream networks, providing total flow at any point in the stream network. A pilot implementation of the HC-LAC was established for the Rio Grande basin in North West Argentina (drainage area 6,700 km2). The model was parameterized and calibrated using readily available data. Three stream flow time series were generated using a reference climate case and two climate change projections. The reference case was based on historical records and assumes no climate change. The two climate change projections were generated using the IPCC "A2" high

  5. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Directory of Open Access Journals (Sweden)

    J. A. Velázquez

    2013-02-01

    Full Text Available Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e., lumped, semi distributed and distributed models. The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada and one in Southern Bavaria (Germany. Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by global climate models over a reference (1971–2000 and a future (2041–2070 period. The results show that, for our hydrological model ensemble, the choice of model strongly affects the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model.

  6. The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model

    Directory of Open Access Journals (Sweden)

    T. L. A. Driessen

    2009-11-01

    Full Text Available The Meuse is an important river in western Europe, and almost exclusively rain-fed. Projected changes in precipitation characteristics due to climate change, therefore, are expected to have a considerable effect on the hydrological regime of the river Meuse. We focus on an important tributary of the Meuse, the Ourthe, measuring about 1600 km2. The well-known hydrological model HBV is forced with three high-resolution (0.088° regional climate scenarios, each based on one of three different IPCC CO2 emission scenarios: A1B, A2 and B1. To represent the current climate, a reference model run at the same resolution is used. Prior to running the hydrological model, the biases in the climate model output are investigated and corrected for. Different approaches to correct the distributed climate model output using single-site observations are compared. Correcting the spatially averaged temperature and precipitation is found to give the best results, but still large differences exist between observations and simulations. The bias corrected data are then used to force HBV. Results indicate a small increase in overall discharge for especially the B1 scenario during the beginning of the 21st century. Towards the end of the century, all scenarios show a decrease in summer discharge, partially because of the diminished buffering effect by the snow pack, and an increased discharge in winter. It should be stressed, however, that we used results from only one GCM (the only one available at such a high resolution. It would be interesting to repeat the analysis with multiple models.

  7. Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites

    OpenAIRE

    Beldring, Stein; Engen-Skaugen, Torill; Førland, Eirik J.; Roald, Lars A.

    2008-01-01

    Climate change impacts on hydrological processes in Norway have been estimated through combination of results from the IPCC SRES A2 and B2 emission scenarios, global climate models from the Hadley Centre and the Max-Planck Institute, and dynamical downscaling using the RegClim HIRHAM regional climate model. Temperature and precipitation simulations from the regional climate model were transferred to meteorological station sites using two different approaches, the delta change or perturbation ...

  8. From GCM Output to Local Hydrologic and Ecological Impacts: Integrating Climate Change Projections into Conservation Lands

    Science.gov (United States)

    Weiss, S. B.; Micheli, L.; Flint, L. E.; Flint, A. L.; Thorne, J. H.

    2014-12-01

    Assessment of climate change resilience, vulnerability, and adaptation options require downscaling of GCM outputs to local scales, and conversion of temperature and precipitation forcings into hydrologic and ecological responses. Recent work in the San Francisco Bay Area, and California demonstrate a practical approach to this process. First, climate futures (GCM x Emissions Scenario) are screened using cluster analysis for seasonal precipitation and temperature, to select a tractable subset of projections that still represent the range of climate projections. Second, monthly climate projections are downscaled to 270m and the Basin Characterization Model (BCM) applied, to generate fine-scale recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) accounting for soils, bedrock geology, topography, and local climate. Third, annual time-series are used to derive 30-year climatologies and recurrence intervals of extreme events (including multi-year droughts) at the scale of small watersheds and conservation parcels/networks. We take a "scenario-neutral" approach where thresholds are defined for system "failure," such as water supply shortfalls or drought mortality/vegetation transitions, and the time-window for hitting those thresholds is evaluated across all selected climate projections. San Francisco Bay Area examples include drought thresholds (CWD) for specific vegetation-types that identify leading/trailing edges and local refugia, evaluation of hydrologic resources (recharge and runoff) provided by conservation lands, and productivity of rangelands (AET). BCM outputs for multiple futures are becoming available to resource managers through on-line data extraction tools. This approach has wide applicability to numerous resource management issues.

  9. Simulating the Hydrological Response of Rock Glaciers to Climate Change with GEOtop

    Science.gov (United States)

    Apaloo, J.; Brenning, A.; Gruber, S.

    2013-05-01

    Rock glaciers are creeping bodies of ice-rich permafrost typical in cold high-mountain environments. In the arid and semi-arid Andes, and presumably other dry high-mountain areas, rock glaciers are considered more significant than glaciers as a water resource. The active layer of rock glaciers, and other seasonally frozen ground, in more temperate high-mountain climates may also represent an important contribution to summer baseflow in lowland rivers. The multi-decadal evolution of rock glacier permafrost and its relationship to climate is largely unknown and presents a massive challenge to assess in-situ due to limited spatial and temporal observations, the resource-intensity of geophysical observation, and lack of meteorological observation in most rock glaciers areas. As a step in addressing these knowledge gaps, this work simulates a rock glacier based on the Murtel-Corvatsch rock glacier in the Upper Engadin, Switzerland - the most intensively studied rock glacier in the world. Three decades of high-quality hourly climate data are used to generate 50 year time-series of synthetic meteorological observations with the Advanced WEather GENerator (AWE-GEN) under the observed climate and 8 additional climate change scenarios. One-dimensional simulations of rock glaciers are conducted with the combined hydrological and energy balance model GEOtop, which is forced by the synthetic meteorological data. The experimental approach consists of three parts: 1) establishing a realistic rock glacier model under the observed climate, 2) subjecting the rock glacier to meteorological forcing from climate change scenarios, and 3) testing the sensitivity of the model to input parameters. For the mountain cryosphere community and many lowland populations around the world, this work represents an important outcome in developing the understanding and methodologies pertaining to the role of seasonal ice and permafrost in the hydrological cycle of high mountain watersheds.

  10. Effects of Climate Change and Human Activities on Surface Runoff in the Luan River Basin

    Directory of Open Access Journals (Sweden)

    Sidong Zeng

    2015-01-01

    Full Text Available Quantifying the effects of climate change and human activities on runoff changes is the focus of climate change and hydrological research. This paper presents an integrated method employing the Budyko-based Fu model, hydrological modeling, and climate elasticity approaches to separate the effects of the two driving factors on surface runoff in the Luan River basin, China. The Budyko-based Fu model and the double mass curve method are used to analyze runoff changes during the period 1958~2009. Then two types of hydrological models (the distributed Soil and Water Assessment Tool model and the lumped SIMHYD model and seven climate elasticity methods (including a nonparametric method and six Budyko-based methods are applied to estimate the contributions of climate change and human activities to runoff change. The results show that all quantification methods are effective, and the results obtained by the nine methods are generally consistent. During the study period, the effects of climate change on runoff change accounted for 28.3~46.8% while those of human activities contributed with 53.2~71.7%, indicating that both factors have significant effects on the runoff decline in the basin, and that the effects of human activities are relatively stronger than those of climate change.

  11. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area.

    Science.gov (United States)

    Viola, F; Francipane, A; Caracciolo, D; Pumo, D; La Loggia, G; Noto, L V

    2016-02-15

    The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed.

  12. Climate Change Impact on Hydrological Extremes: Preliminary Results from the Polish-Norwegian Project

    Science.gov (United States)

    Romanowicz, Renata J.; Bogdanowicz, Ewa; Debele, Sisay E.; Doroszkiewicz, Joanna; Hisdal, Hege; Lawrence, Deborah; Meresa, Hadush K.; Napiórkowski, Jarosław J.; Osuch, Marzena; Strupczewski, Witold G.; Wilson, Donna; Wong, Wai Kwok

    2016-04-01

    This paper presents the background, objectives, and preliminary outcomes from the first year of activities of the Polish-Norwegian project CHIHE (Climate Change Impact on Hydrological Extremes). The project aims to estimate the influence of climate changes on extreme river flows (low and high) and to evaluate the impact on the frequency of occurrence of hydrological extremes. Eight "twinned" catchments in Poland and Norway serve as case studies. We present the procedures of the catchment selection applied in Norway and Poland and a database consisting of near-natural ten Polish and eight Norwegian catchments constructed for the purpose of climate impact assessment. Climate projections for selected catchments are described and compared with observations of temperature and precipitation available for the reference period. Future changes based on those projections are analysed and assessed for two periods, the near future (2021-2050) and the far-future (2071-2100). The results indicate increases in precipitation and temperature in the periods and regions studied both in Poland and Norway.

  13. Climate change, geological and hydrological hazard and adaptation policy in Italy

    Science.gov (United States)

    Margottini, Claudio; Spizzichino, Daniele

    2010-05-01

    The present work try to underling the scientific and technical background for a national plan for adaptation to climate change in the field of geo hydrological disasters. The adaptation policy represents the need tool to prevent from the adverse effect of climate change, minimizing the impacts and maximizing the opportunity from these changes. The "decision and policy makers" therefore needs to understand the vulnerability of existing territory in terms of impacts, related risks, opportunities, costs and consequences of different options and scenarios. Climate change has significant impacts on the hydrological cycle and all its related phenomena. Landslide and floods represent the conflict between natural and physic system and social and economical setting, constituting a fundamental imbalance and risk for population. Italian territory due to geological and geomorphological settings is always been interested by geological and hydrological extreme events. Between 1279 and 2002 A.D. in Italy, the AVI catalog (http://avi.gndci.cnr.it) recorded 4521 extreme events in terms of damages. In the same period we had 13.8 victims per year during landslide and 49.6 victims per year due to floods. To define a strong correlation between actual trend in occurrence of geological and hydrological hazards and future scenarios, it seems to be very difficult. The correlation should consider the relationship between meteorological trigger mechanisms (not yet very well associated to climate change) and hazard. For the Italian situations the most recent models provide the following scenario: further increase in temperature (steadily increasing trend already in the last two decades) with increasing periods of drought and heat waves; a general decrease in average precipitation; a decrease in wet days; an increase in intensity of rainfall (extreme events). Such trend seem to be more relevant in the southern part of Italy. The same problems arise when defining the socio economic impacts. The

  14. Hydrologic modeling using topographically corrected NARR and NARCCAP climate data: Tucannon River, Washington

    Science.gov (United States)

    Praskievicz, S. J.; Bartlein, P. J.

    2013-12-01

    An emerging approach to downscaling the projections from General Circulation Models (GCMs) to scales relevant for basin hydrology is to use lateral boundary conditions supplied by GCMs to force higher-resolution Regional Climate Models (RCMs). With spatial resolution often in the tens of kilometers, however, even these RCM outputs fail to resolve local topography that may be climatically significant in high-relief basins. Here we develop and apply an approach to downscaling RCM output using local topographic lapse rates. We calculate monthly local topographic lapse rates for the northwestern United States from the 800-m Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset, which is based on regressions of observed climate against location and topographic variables. The maximum temperature lapse rates are mostly negative, with temperatures decreasing with increasing elevation, which is the expected relationship. In the winter months, positive lapse rates in some valleys in the northeastern part of the study region indicate the presence of temperature inversions. A narrow band of positive lapse rates can also be seen along the coast in the summer, when temperatures increase with distance from the ocean. The minimum temperature lapse rates, which were created from a smaller search window, are more spatially variable than those for maximum temperature, and the winter temperature inversions are more pronounced. Precipitation lapse rates are mostly positive, with precipitation increasing with increasing elevation, but with some areas of negative lapse rates on the leeward side of mountain ranges. We then use these lapse rates to elevationally correct two types of simulated regional-scale climate data: the North American Regional Reanalysis (NARR), a retrospective dataset produced from regional forecasting models constrained by observations, and a range of baseline climate scenarios from the North American Regional Climate Change Assessment Program

  15. Comparison of hydrological signal in polar motion excitation with those based on the FGOALS-g2 climate model

    Science.gov (United States)

    Wińska, Małgorzata; Nastula, Jolanta; Salstein, David

    2016-04-01

    Our investigations are focused on the influence of different land hydrosphere surface parameters (precipitation, evaporation, total runoff, soil moisture, accumulated snow) on polar motion excitation functions at seasonal and nonseasonal timescales. Here these different variables are obtained from the Flexible Global Ocean-Atmosphere-Land System Model, Grid point Version 2 (FGOALS-g2), which is a climate model from the fifth phase of the Coupled Model Intercomparison Project (CMIP5); with CMIP5 being composed of separate component models of the atmosphere, ocean, sea ice, and land surface. In this study Terrestrial Water Storage TWS changes were determined as: differences between the precipitation, evaporation and total surface runoff content, and as the total soil moisture content being a sum of soil moisture and snowfall flux changes. We compare the model-based data with those from estimates of the Equivalent Water Thickness determined by GRACE satellite observations from the Center for Space Research (CSR). The transfer of angular momentum from global geophysical fluids to the solid Earth is described by the equatorial components χ1 and χ2 of the polar motion excitation functions. Observationally, these so-called geodetic excitation functions of polar motion can be determined on the basis of the equations of motion by using observed x, y components of the pole. The second-degree, first-order coefficients of the Earth gravity field are proportional to variations of the equatorial component χ1, χ2 of the series of the gravimetric excitation function of polar motion. This gravimetric function can be compared with the mass term of geodetic excitation of polar motion. Our analysis comprises (1) determinations and comparisons of regional patterns of hydrological excitation functions of polar motion, and (2) comparison of the global hydrological function determined from the FGOALS-g2 and GRACE data with a hydrological signal in the geodetic excitation function of

  16. Future Flows Climate: an ensemble of 1-km climate change projections for hydrological application in Great Britain

    Directory of Open Access Journals (Sweden)

    C. Prudhomme

    2012-11-01

    Full Text Available The dataset Future Flows Climate was developed as part of the project ''Future Flows and Groundwater Levels'' to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications, and to enable climate change uncertainty and climate variability to be accounted for in the assessment of their possible impacts on the environment.

    Future Flows Climate is derived from the Hadley Centre's ensemble projection HadRM3-PPE that is part of the basis of UKCP09 and includes projections in available precipitation (water available to hydrological processes after snow and ice storages have been accounted for and potential evapotranspiration. It corresponds to an 11-member ensemble of transient projections from January 1950 to December 2098, each a single realisation from a different variant of HadRM3. Data are provided on a 1-km grid over the HadRM3 land areas at a daily (available precipitation and monthly (PE time step as netCDF files.

    Because systematic biases in temperature and precipitation were found between HadRM3-PPE and gridded temperature and precipitation observations for the 1962–1991 period, a monthly bias correction procedure was undertaken, based on a linear correction for temperature and a quantile-mapping correction (using the gamma distribution for precipitation followed by a spatial downscaling. Available precipitation was derived from the bias-corrected precipitation and temperature time series using a simple elevation-dependant snow-melt model. Potential evapotranspiration time series were calculated for each month using the FAO-56 Penman-Monteith equations and bias-corrected temperature, cloud cover, relative humidity and wind speed from HadRM3-PPE along with latitude of the grid and the day of the year.

    Future Flows Climate is freely available for non-commercial use under certain licensing conditions. It is the

  17. Using an integrated hydrological model to estimate the usefulness of meteorological drought indices in a changing climate

    Science.gov (United States)

    von Gunten, Diane; Wöhling, Thomas; Haslauer, Claus P.; Merchán, Daniel; Causapé, Jesus; Cirpka, Olaf A.

    2016-10-01

    Droughts are serious natural hazards, especially in semi-arid regions. They are also difficult to characterize. Various summary metrics representing the dryness level, denoted drought indices, have been developed to quantify droughts. They typically lump meteorological variables and can thus directly be computed from the outputs of regional climate models in climate-change assessments. While it is generally accepted that drought risks in semi-arid climates will increase in the future, quantifying this increase using climate model outputs is a complex process that depends on the choice and the accuracy of the drought indices, among other factors. In this study, we compare seven meteorological drought indices that are commonly used to predict future droughts. Our goal is to assess the reliability of these indices to predict hydrological impacts of droughts under changing climatic conditions at the annual timescale. We simulate the hydrological responses of a small catchment in northern Spain to droughts in present and future climate, using an integrated hydrological model calibrated for different irrigation scenarios. We compute the correlation of meteorological drought indices with the simulated hydrological time series (discharge, groundwater levels, and water deficit) and compare changes in the relationships between hydrological variables and drought indices. While correlation coefficients linked with a specific drought index are similar for all tested land uses and climates, the relationship between drought indices and hydrological variables often differs between present and future climate. Drought indices based solely on precipitation often underestimate the hydrological impacts of future droughts, while drought indices that additionally include potential evapotranspiration sometimes overestimate the drought effects. In this study, the drought indices with the smallest bias were the rainfall anomaly index, the reconnaissance drought index, and the standardized

  18. Modeling climate change impacts on hydrological variability using an efficient multi-site GCM downscaling method

    Science.gov (United States)

    LI, Z.; Lü, Z.

    2014-12-01

    The coarse resolution of GCM outputs cannot match the high resolution input requirement of hydrological models and thus are inappropriate for impact assessment of climate change. Though numerous downscaling techniques have been used to gap the mismatch, the methods based on single site cannot be used by the distributed hydrological models for hydrological extreme simulation since the flood in one subbasin can be offset by the adjacent ones due to the ignorance of multi-site spatiotemporal correlation of meteorological variables. This study developed a multi-site downscaling method based on a two-stage weather generator (TSWG) through three steps: (i) spatially downscaling GCMs with a transfer function method; (ii) temporally downscaling GCMs with a single-site weather generator; (iii) reconstructing the spatiotemporal correlations with a post-processing and nonparametric shuffle procedure. Five GCMs (CanESM2, CSIRO_3.6.0, GFDL_CM3, HadGEM2-AO and MPI-ESM-LR) under four RCPs (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) were used to generate climate scenarios for the period of 2011-2040. The hydrological simulation was carried out by SWAT in the Jing River catchment on the Loess Plateau. Future annual mean precipitation would change by -7.7% to 9.2%, annual mean maximum and minimum temperature would increase by 1.4-1.8 ℃ and 1.1-1.4 ℃, respectively. Overall, future climate tended to be warmer and drier under most GCMs and RCPs, and this trend would be more significant for flood season; however, the variations of monthly precipitation would be greater than present. The annual mean streamflow would change by -18% to 38% and be more variable. The monthly streamflow would be more variable for most months due to the increase of monthly maximum streamflow and decrease of monthly minimum streamflow. Therefore, the stremflow in the Jing River should be paid more attention for its possible disasters. The multi-site downscaling method proposed in this study is efficient and

  19. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Directory of Open Access Journals (Sweden)

    J. A. Velázquez

    2012-06-01

    Full Text Available Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models. The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada and one in Southern Bavaria (Germany. Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971–2000 and a future (2041–2070 periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual give a significant level of trust for high and overall mean flows.

  20. Estimating groundwater dynamics at a Colorado River floodplain site using historical hydrological data and climate information

    Science.gov (United States)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Ficklin, Darren L.

    2016-03-01

    Long-term prediction of groundwater dynamics is important for assessing water resources and their impacts on biogeochemical cycling. However, estimating future groundwater dynamics is challenging due to the wide range of spatiotemporal scales in hydrological processes and uncertainty in future climate conditions. In this study, we develop a Bayesian model to combine small-scale historical hydrological data with large-scale climate information to estimate groundwater dynamics at a floodplain site in Rifle, Colorado. Although we have only a few years of groundwater elevation measurements, we have 47 years of streamflow data from a gaging station approximately 43 km upstream and long-term climate prediction on the Upper Colorado River Basin. To estimate future daily groundwater dynamics, we first develop a time series model to downscale the monthly streamflow derived from climate information to daily streamflow, and then transform the daily streamflow to groundwater dynamics at the downstream floodplain site. We use Monte Carlo methods to estimate future groundwater dynamics at the site through sampling from the joint posterior probability distribution. The results suggest that although future groundwater levels are expected to be similar to the current levels, the timing of the high groundwater levels is predicted to occur about 1 month earlier. The developed framework is extendable to other sites to estimate future groundwater dynamics given disparate data sets and climate projections. Additionally, the obtained estimates are being used as input to a site-specific watershed reactive transport models to predict how climate-induced changes will influence future biogeochemical cycling relevant to a variety of ecosystem services.

  1. Impacts of Climate Changes in Ukraine on Hydrological Regime and Water Resources: Assessment and Measures of Adaptation

    Science.gov (United States)

    Manukalo, V.

    2009-12-01

    Results of implementation of the National Climate Program of Ukraine in the area of researches of climate changes on hydrological regime and surface water resources are presented. The researches have been carried out for major plain rivers of different natural zones of Ukraine. Researches showed that were no large changes of mean annual flow discharges for long-term period. The trend of increase or decrease of mean annual flow has not been revealed. Other results are obtained for mean monthly and seasonal discharges (snow spring flood in March - May, summer - autumn low flow in June - September, winter low flow in December - February). An increase of discharges has been revealed for northern rivers in all months, except for April and May. The larges increase of river flow has taken place in winter months. A tendency of decrease of mean flow for period of spring floods for the most rivers has been revealed. Maximum spring discharges became less approximately on 25% - 40%. There was an increase of discharges in a winter low flow period. Investigations of a runoff for Carpathians rivers have shown an increase of mean annual flow on 13- 27%. Since 1975 a frequency of high floods has increased for the Carpathians rivers. During last years 6 - 10 high floods have been formed annually. The assessment of possible changes of hydrological regime until 2030 has been carried out by Ukrainian hydrologists using the approaches developed in the State Hydrological Institute (Russia). There are essential peculiarities in possible hydrological changes for northern and southern plain rivers. The 15-25% rise in annual runoff for northern rivers is expected. Particularly, important changes are to be expected in a distribution of runoff by seasons: a rise in winters and a fall in springs. Unfavorable changes are expected for rivers of forest - steppe and steppe zones - decreasing of mean annual runoff up to 30-50%. There may be changes in distribution of river flow during hydrological

  2. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Directory of Open Access Journals (Sweden)

    Y. Sun

    2013-04-01

    Full Text Available This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4. Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent – as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty

  3. Hydrologic landscape classification assesses streamflow vulnerability to climate change in Oregon, USA

    Directory of Open Access Journals (Sweden)

    S. G. Leibowitz

    2014-03-01

    Full Text Available Classification can allow assessments of the hydrologic functions of landscapes and their responses to stressors. Here we demonstrate the use of a hydrologic landscape (HL approach to assess vulnerability to potential future climate change at statewide and basin scales. The HL classification has five components: climate, seasonality, aquifer permeability, terrain, and soil permeability. We evaluate changes when the 1971–2000 HL climate indices are recalculated using 2041–2070 simulation results from the ECHAM and PCM climate models with the A2, A1b, and B1 emission scenarios. Changes in climate class were modest (4–18% statewide. However, there were major changes in seasonality class for five of the six realizations (excluding PCM_B1: Oregon shifts from being 13% snow-dominated to 4–6% snow-dominated under these five realizations, representing a 56–68% reduction in snowmelt-dominated area. At the basin scale, projected changes for the Siletz basin, in Oregon's coast range, include a small switch from very wet to wet climate, with no change in seasonality. However, there is a modest increase in fall and winter water due to increased precipitation. For the Sandy basin, on the western slope of the Cascades, HL climate class does not change, but there are major changes in seasonality, especially for areas with low aquifer permeability, which experiences a 100% loss of spring seasonality. This would reduce summer baseflow, but impacts could potentially be mitigated by streamflow buffering effects provided by groundwater in the high aquifer permeability portions of the upper Sandy. The Middle Fork John Day basin (MFJD, in northeastern Oregon, is snowmelt-dominated. The basin experiences a net loss of wet and moist climate area, along with an increase in dry climate area. The MFJD also experiences major shifts from spring to winter seasonality, representing a 20–60% reduction in snowmelt-dominated area. Altered seasonality and/or magnitude

  4. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    NARCIS (Netherlands)

    Droogers, P.; Loon, van A.F.; Immerzeel, W.W.

    2008-01-01

    Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario

  5. On the utilization of hydrological modelling for road drainage design under climate and land use change.

    Science.gov (United States)

    Kalantari, Zahra; Briel, Annemarie; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-03-15

    Road drainage structures are often designed using methods that do not consider process-based representations of a landscape's hydrological response. This may create inadequately sized structures as coupled land cover and climate changes can lead to an amplified hydrological response. This study aims to quantify potential increases of runoff in response to future extreme rain events in a 61 km(2) catchment (40% forested) in southwest Sweden using a physically-based hydrological modelling approach. We simulate peak discharge and water level (stage) at two types of pipe bridges and one culvert, both of which are commonly used at Swedish road/stream intersections, under combined forest clear-cutting and future climate scenarios for 2050 and 2100. The frequency of changes in peak flow and water level varies with time (seasonality) and storm size. These changes indicate that the magnitude of peak flow and the runoff response are highly correlated to season rather than storm size. In all scenarios considered, the dimensions of the current culvert are insufficient to handle the increase in water level estimated using a physically-based modelling approach. It also appears that the water level at the pipe bridges changes differently depending on the size and timing of the storm events. The findings of the present study and the approach put forward should be considered when planning investigations on and maintenance for areas at risk of high water flows. In addition, the research highlights the utility of physically-based hydrological models to identify the appropriateness of road drainage structure dimensioning.

  6. Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin of Northwest China

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2015-01-01

    Full Text Available This study evaluated hydrological impacts of potential climate and land use changes in Heihe River Basin of Northwest China. The future climate data for the simulation with Soil and Water Assessment Tool (SWAT were prepared using a dynamical downscaling method. The future land uses were simulated with the Dynamic Land Use System (DLS model by establishing Multinomial Logistic Regression (MNL model for six land use types. In 2006–2030, land uses in the basin will experience a significant change with a prominent increase in urban areas, a moderate increase in grassland, and a great decrease in unused land. Besides, the simulation results showed that in comparison to those during 1981–2005 the temperature and precipitation during 2006–2030 will change by +0.8°C and +10.8%, respectively. The land use change and climate change will jointly make the water yield change by +8.5%, while they will separately make the water yield change by −1.8% and +9.8%, respectively. The predicted large increase in future precipitation and the corresponding decrease in unused land will have substantial impacts on the watershed hydrology, especially on the surface runoff and streamflow. Therefore, to mitigate negative hydrological impacts and utilize positive impacts, both land use and climate changes should be considered in water resource planning for the Heihe River Basin.

  7. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains

    Science.gov (United States)

    Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P.

    2015-07-01

    A clear understanding of the hydrology is required to capture surface processes and potential inherent hazards in orogens. Complex climatic interactions control hydrological processes in high mountains that in their turn regulate the erosive forces shaping the relief. To unravel the hydrological cycle of a glaciated watershed (Gunt River) considered representative of the Pamir Mountains' hydrologic regime, we developed a remote-sensing-based approach. At the boundary between two distinct climatic zones dominated by the Westerlies and Indian summer monsoon, the Pamir Mountains are poorly instrumented and only a few in situ meteorological and hydrological data are available. We adapted a suitable conceptual distributed hydrological model (J2000g). Interpolations of the few available in situ data are inadequate due to strong, relief-induced, spatial heterogeneities. Instead of these we use raster data, preferably from remote sensing sources depending on availability and validation. We evaluate remote-sensing-based precipitation and temperature products. MODIS MOD11 surface temperatures show good agreement with in situ data, perform better than other products, and represent a good proxy for air temperatures. For precipitation we tested remote sensing products as well as the HAR10 climate model data and the interpolation-based APHRODITE data set. All products show substantial differences both in intensity and seasonal distribution with in situ data. Despite low resolutions, the data sets are able to sustain high model efficiencies (NSE ≥ 0.85). In contrast to neighbouring regions in the Himalayas or the Hindu Kush, discharge is dominantly the product of snow and glacier melt, and thus temperature is the essential controlling factor. Eighty percent of annual precipitation is provided as snow in winter and spring contrasting peak discharges during summer. Hence, precipitation and discharge are negatively correlated and display complex hysteresis effects that allow for

  8. Mitigation of climate change impacts by hydrologic and cultural components of traditional acequia irrigation systems

    Science.gov (United States)

    Fernald, A.

    2009-12-01

    In northern New Mexico and other physiographically similar semi-arid settings worldwide, traditional irrigation systems divert snowmelt runoff from streams for distribution to valley croplands. This field hydrology and culture study is taking place in three New Mexico watersheds. Ongoing measurements show that seepage to groundwater and subsequent stream recharge from subsurface return flows effectively reduce spring runoff peaks and augment summer baseflow. This retransmission function of traditional acequia irrigated valleys is important for downstream users, particularly in the face of changing climate with projected earlier snowmelt and increased rain. Preliminary evaluations of the community irrigation management structure show high adaptability to climate variation. Water is partitioned to individual users based on water availability, with more water for all in wet years and less for all in dry years. Irrigation water seepage has additional benefits: water quality improvement, wildlife habitat creation, riparian vegetation support, and aesthetic enhancement. Community cohesion and longevity are supported by hydrologic and cultural aspects of the irrigation systems. Lessons learned from these systems promise a window into techniques for sustainable management of linked watersheds and river valleys under future climate change scenarios.

  9. The Eco-Hydrological Role of Physical Surface Sealing in Dry Environments

    Science.gov (United States)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2016-04-01

    Soil surface sealing is a widespread natural process in dry environments occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water availability and consequently transpiration rates. This effect is investigated here using two separate physically based models - a runoff model, and a root water uptake model. High resolution rainfall data is used to demonstrate the seal layer effect on runoff generation and vegetation water availability, while the seal layer effect on vegetation water uptake is studied using a long-term climatic dataset (44 years) from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes water uptake parameters for the dominant shrub at the study site (Sarcopoterium spinosum) were acquired using an inverse calibration procedure using data from a lysimeter experiment. The results indicate that the presence of surface sealing increases significantly vegetation water availability through runoff generation. Following water infiltration, the shrub transpiration generally increases if the shrub is surrounded by a seal layer, but this effect can switch from positive to negative depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on inter-annual variability of the seal layer effect on the shrub transpiration, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. These results shed light on the importance of surface sealing on the eco-hydrology of dry environments and its contribution to the resilience of woody vegetation.

  10. Evaluation of airborne lidar elevation surfaces for propagation of coastal inundation: the importance of hydrologic connectivity

    Science.gov (United States)

    Poppenga, Sandra; Worstell, Bruce B.

    2015-01-01

    Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2) that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas were considered as

  11. Evaluation of Airborne Lidar Elevation Surfaces for Propagation of Coastal Inundation: The Importance of Hydrologic Connectivity

    Directory of Open Access Journals (Sweden)

    Sandra Poppenga

    2015-09-01

    Full Text Available Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2 that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas

  12. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    Science.gov (United States)

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  13. Grid cells used for Surface-Water Network for the Central Valley Hydrologic Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the segment and reaches for the surface-water network by model cell for the Central Valley Hydrologic Model (CVHM). The Central Valley...

  14. Location of diversions from the surface-water network of the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the name and location for the diversions from the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central...

  15. Surface-Water Network for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an approximate...

  16. Monthly inflows to the surface-water network for the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the monthly inflows to the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an...

  17. Monthly Diversions from the Surface-Water Network of the Central Valley Hydrologic Model (CVHM)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the monthly diversions from the surface-water network for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an...

  18. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    Directory of Open Access Journals (Sweden)

    M. T. Taye

    2011-01-01

    Full Text Available The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo, considering 17 General Circulation Model (GCM simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated.

    The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  19. Projecting supply and demand of hydrologic ecosystem services under future climate conditions

    Science.gov (United States)

    Chiang, Li-Chi; Huang, Tao; Lee, Tsung-Yu

    2014-05-01

    Ecosystems provide essential goods and services, such as food, clean water, water purification, soil conservation and cultural services for human being. In a watershed, these water-related ecosystem goods and services can directly or indirectly benefit both local people and downstream beneficiaries through a reservoir. Water quality and quantity in a reservoir are of importance for agricultural, industrial and domestic uses. Under the impacts of climate and land use changes, both ecosystem service supply and demand will be affected by changes in precipitation patterns, temperature, urbanization and agricultural activities. However, the linkage between ecosystem service provisioning (ESP) and ecosystem service beneficiary (ESB), and scales of supply and demand of ecosystem services are not clear yet. Therefore, to investigate water-related ecosystem service supply under climate and land use change, we took the Xindian river watershed (303 km2) as a case study, where the Feitsui Reservoir provides hydro-power and daily domestic water use of 3,450,000 m3 for 3.46 million people in Taipei, Taiwan. We integrated a hydrological model (Soil and Water Assessment Tool, SWAT) and a land use change model (Conversion of Land Use and its Effects, CLUE-s) with future climate change scenarios derived from General Circulation Models (GCMs), to assess the changes in ecosystem service supply and demand at different hydrologic scales. The results will provide useful information for decision-making on future land use management and climate change adaptation strategies in the watersheds. Keywords: climate change, land use change, ecosystem service, watershed, scale

  20. Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods

    Science.gov (United States)

    Broderick, Ciaran; Matthews, Tom; Wilby, Robert L.; Bastola, Satish; Murphy, Conor

    2016-10-01

    Understanding hydrological model predictive capabilities under contrasting climate conditions enables more robust decision making. Using Differential Split Sample Testing (DSST), we analyze the performance of six hydrological models for 37 Irish catchments under climate conditions unlike those used for model training. Additionally, we consider four ensemble averaging techniques when examining interperiod transferability. DSST is conducted using 2/3 year noncontinuous blocks of (i) the wettest/driest years on record based on precipitation totals and (ii) years with a more/less pronounced seasonal precipitation regime. Model transferability between contrasting regimes was found to vary depending on the testing scenario, catchment, and evaluation criteria considered. As expected, the ensemble average outperformed most individual ensemble members. However, averaging techniques differed considerably in the number of times they surpassed the best individual model member. Bayesian Model Averaging (BMA) and the Granger-Ramanathan Averaging (GRA) method were found to outperform the simple arithmetic mean (SAM) and Akaike Information Criteria Averaging (AICA). Here GRA performed better than the best individual model in 51%-86% of cases (according to the Nash-Sutcliffe criterion). When assessing model predictive skill under climate change conditions we recommend (i) setting up DSST to select the best available analogues of expected annual mean and seasonal climate conditions; (ii) applying multiple performance criteria; (iii) testing transferability using a diverse set of catchments; and (iv) using a multimodel ensemble in conjunction with an appropriate averaging technique. Given the computational efficiency and performance of GRA relative to BMA, the former is recommended as the preferred ensemble averaging technique for climate assessment.

  1. Hydrological extremes and their agricultural impacts under a changing climate in Texas

    Science.gov (United States)

    Lee, K.; Gao, H.; Huang, M.; Sheffield, J.

    2015-12-01

    With the changing climate, hydrologic extremes (such as floods, droughts, and heat waves) are becoming more frequent and intensified. Such changes in extreme events are expected to affect agricultural production and food supplies. This study focuses on the State of Texas, which has the largest farm area and the highest value of livestock production in the U.S. The objectives are two-fold: First, to investigate the climatic impact on the occurrence of future hydrologic extreme events; and second, to evaluate the effects of the future extremes on agricultural production. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over Texas river basins during the historical period, is employed for this study. The VIC model is forced by the statistically downscaled climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four different scenarios in terms of Representative Concentration Pathway (RCP) (i.e. 2.6, 4.5, 6.0 and 8.5 w/m2). To carry out the analysis, VIC outputs forced by the CMIP5 model scenarios over three 30-year periods (1970-1999, 2020-2049 and 2070-2099) are first evaluated to identify how the frequency and the extent of the extreme events will be altered in the ten Texas major river basins. The results suggest that a significant increase in the number of extreme events will occur starting in the first half of the 21st century in Texas. Then, the effects of the predicted hydrologic extreme events on the irrigation water demand are investigated. It is found that future changes in water demand vary by crop type and location, with an east-to-west gradient. The results are expected to contribute to future water management and planning in Texas.

  2. On the Potential Predictability of Seasonal Land-Surface Climate

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J

    2001-10-01

    The chaotic behavior of the continental climate of an atmospheric general circulation model is investigated from an ensemble of decadal simulations with common specifications of radiative forcings and monthly ocean boundary conditions, but different initial states of atmosphere and land. The variability structures of key model land-surface processes appear to agree sufficiently with observational estimates to warrant detailed examination of their predictability on seasonal time scales. This predictability is inferred from several novel measures of spatio-temporal reproducibility applied to eleven model variables. The reproducibility statistics are computed for variables in which the seasonal cycle is included or excluded, the former case being most pertinent to climate model simulations, and the latter to predictions of the seasonal anomalies. Because the reproducibility metrics in the latter case are determined in the context of a ''perfectly'' known ocean state, they are properly viewed as estimates of the potential predictability of seasonal climate. Inferences based on these reproducibility metrics are shown to be in general agreement with those derived from more conventional measures of potential predictability. It is found that the land-surface variables which include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land-surface anomaly is generally low, although it is considerably higher in the Tropics; its spatial reproducibility also fluctuates in tandem with warm and cold phases of the El Nino/Southern Oscillation phenomenon. However, the detailed sensitivities to initial conditions depend somewhat on the land-surface process: pressure and temperature anomalies exhibit the highest temporal reproducibilities, while hydrological and turbulent flux anomalies show the highest spatial

  3. Uncertainty and extreme events in future climate and hydrologic projections for the Pacific Northwest: providing a basis for vulnerability and core/corridor assessments

    Science.gov (United States)

    Littell, Jeremy S.; Mauger, Guillaume S.; Salathe, Eric P.; Hamlet, Alan F.; Lee, Se-Yeun; Stumbaugh, Matt R.; Elsner, Marketa; Norheim, Robert; Lutz, Eric R.; Mantua, Nathan J.

    2014-01-01

    The purpose of this project was to (1) provide an internally-consistent set of downscaled projections across the Western U.S., (2) include information about projection uncertainty, and (3) assess projected changes of hydrologic extremes. These objectives were designed to address decision support needs for climate adaptation and resource management actions. Specifically, understanding of uncertainty in climate projections – in particular for extreme events – is currently a key scientific and management barrier to adaptation planning and vulnerability assessment. The new dataset fills in the Northwest domain to cover a key gap in the previous dataset, adds additional projections (both from other global climate models and a comparison with dynamical downscaling) and includes an assessment of changes to flow and soil moisture extremes. This new information can be used to assess variations in impacts across the landscape, uncertainty in projections, and how these differ as a function of region, variable, and time period. In this project, existing University of Washington Climate Impacts Group (UW CIG) products were extended to develop a comprehensive data archive that accounts (in a reigorous and physically based way) for climate model uncertainty in future climate and hydrologic scenarios. These products can be used to determine likely impacts on vegetation and aquatic habitat in the Pacific Northwest (PNW) region, including WA, OR, ID, northwest MT to the continental divide, northern CA, NV, UT, and the Columbia Basin portion of western WY New data series and summaries produced for this project include: 1) extreme statistics for surface hydrology (e.g. frequency of soil moisture and summer water deficit) and streamflow (e.g. the 100-year flood, extreme 7-day low flows with a 10-year recurrence interval); 2) snowpack vulnerability as indicated by the ratio of April 1 snow water to cool-season precipitation; and, 3) uncertainty analyses for multiple climate

  4. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Science.gov (United States)

    Null, Sarah E; Viers, Joshua H; Mount, Jeffrey F

    2010-04-01

    This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  5. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Sarah E Null

    Full Text Available This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  6. ALPINE3D: a detailed model of mountain surface processes and its application to snow hydrology

    Science.gov (United States)

    Lehning, Michael; Völksch, Ingo; Gustafsson, David; Nguyen, Tuan Anh; Stähli, Manfred; Zappa, Massimiliano

    2006-06-01

    in eastern Switzerland, we demonstrate that the model is able to simulate snow distribution as seen from a NOAA advanced very high-resolution radiometer image. We then analyse the sensitivity of simulated snow cover distribution and catchment runoff to the use of different surface process descriptions. We compare model runoff simulations with runoff data from 10 consecutive years. The quantitative analysis shows that terrain influence on the radiation processes has a significant influence on catchment hydrology dynamics. Neglecting the role of vegetation and the spatial variability of the soil, on the other hand, had a much smaller influence on the runoff generation dynamics. We conclude that ALPINE3D is a valuable tool to investigate surface dynamics in mountains. It is currently used to investigate snow cover dynamics for avalanche warning and permafrost development and vegetation changes under climate change scenarios. It could also serve to test the output of simpler soil-vegetation-atmosphere transfer schemes used in larger scale climate or meteorological models and to create accurate soil moisture assessments for meteorological and flood forecasting.

  7. Degradation processes of hydrological resources by human and climate - example of small lakes in Northern Kazakhstan and Southern Siberia.

    Science.gov (United States)

    Meyer, Burghard; Schreiner, Vera

    2014-05-01

    The presentation discusses (on the basis of an actual application in the development of a curriculum for Integrated Water Cycle Management in Kazakhstan; TEMPUS I-WEB project) the diverse scientific approaches to explain the degradation of hydrological resources in West-Siberia and Nord-Kazakhstan by focussing on natural and anthropogenic causes by the example of the dry out of small lakes. Since Pleistocene in the region a diverse mosaic of large and small lakes of at total shrinking surface area was formed. On natural causes it includes (1) climatic cycling, (2) lake developments since the Pleistocene originate by the Northern glaciations by ice dammed lakes (without tectonics). The man made causes are (1) the sediment accumulation in lakes, (2) the (problematic) water management and water usage and (3) the land use changes in the watersheds. Climate change includes finally both natural and climatic causes of the change. The latter is explained using actual reports of (1) IPCC on extreme events and (2) gives a note about radiative forcing components as proxy to integrate.

  8. Climatic change due to land surface alterations

    Energy Technology Data Exchange (ETDEWEB)

    Franchito, S.H.; Rao, V.B.

    1992-01-01

    A primitive equations global zonally averaged climate model is developed. The model includes biofeedback mechanisms. For the Northern Hemisphere the parameterization of biofeedback mechanisms is similar to that used by Gutman et al. For the Southern Hemisphere new parameterizations are derived. The model simulates reasonably well the mean annual zonally averaged climate and geobotanic zones. Deforestation, desertification, and irrigation experiments are performed. In the case of deforestation and desertification there is a reduction in the surface net radiation, evaporation, and precipitation and an increase in the surface temperature. In the case of irrigation experiment opposite changes occurred. In all the cases considered the changes in evapotranspiration overcome the effect of surface albedo modification. In all the experiments changes are smaller in the Southern Hemisphere.

  9. Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites

    Science.gov (United States)

    Beldring, Stein; Engen-Skaugen, Torill; Førland, Eirik J.; Roald, Lars A.

    2008-05-01

    Climate change impacts on hydrological processes in Norway have been estimated through combination of results from the IPCC SRES A2 and B2 emission scenarios, global climate models from the Hadley Centre and the Max-Planck Institute, and dynamical downscaling using the RegClim HIRHAM regional climate model. Temperature and precipitation simulations from the regional climate model were transferred to meteorological station sites using two different approaches, the delta change or perturbation method and an empirical adjustment procedure that reproduces observed monthly means and standard deviations for the control period. These climate scenarios were used for driving a spatially distributed version of the HBV hydrological model, yielding a set of simulations for the baseline period 1961-1990 and projections of climate change impacts on hydrological processes for the period 2071-2100. A comparison between the two methods used for transferring regional climate model results to meteorological station sites is provided by comparing the results from the hydrological model for basins located in different parts of Norway. Projected changes in runoff are linked to changes in the snow regime. Snow cover will be more unstable and the snowmelt flood will occur earlier in the year. Increased rainfall leads to higher runoff in the autumn and winter.

  10. Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites

    Energy Technology Data Exchange (ETDEWEB)

    Beldring, Stein; Roald, Lars A. (Norwegian Water Resources and Energy Directorate, PO Box 5091 Majorstua, 0301 Oslo (Norway)). e-mail: stein.beldring@nve.no; Engen-Skaugen, Torill; Foerland, Eirik J. (Norwegian Meteorological Inst., PO Box 43 Blindern, 0313 Oslo (Norway))

    2008-07-01

    Climate change impacts on hydrological processes in Norway have been estimated through combination of results from the IPCC SRES A2 and B2 emission scenarios, global climate models from the Hadley Centre and the Max- Planck Institute, and dynamical downscaling using the RegClim HIRHAM regional climate model. Temperature and precipitation simulations from the regional climate model were transferred to meteorological station sites using two different approaches, the delta change or perturbation method and an empirical adjustment procedure that reproduces observed monthly means and standard deviations for the control period. These climate scenarios were used for driving a spatially distributed version of the HBV hydrological model, yielding a set of simulations for the baseline period 1961- 1990 and projections of climate change impacts on hydrological processes for the period 2071-2100. A comparison between the two methods used for transferring regional climate model results to meteorological station sites is provided by comparing the results from the hydrological model for basins located in different parts of Norway. Projected changes in runoff are linked to changes in the snow regime. Snow cover will be more unstable and the snow melt flood will occur earlier in the year. Increased rainfall leads to higher runoff in the autumn and winter

  11. Glaciological and hydrological sensitivities to climate change in the Hindu-Kush Himalayas

    Science.gov (United States)

    Shea, J. M.; Immerzeel, W.

    2014-12-01

    The impact of climate change on glaciers will affect the timing and magnitude of water availability from high-altitude catchments in the Hindu-Kush Himalaya (HKH) region. In this study, we quantify the current sensitivity of glacier systems to climatic change and the associated sub-basin hydrological sensitivity throughout the HKH region using glacier inventory data and high-resolution dynamically downscaled climate fields. We first estimate the glaciological sensitivity, or change in glacierized area with change in equilibrium line altitude (ELA), for each sub-basin using a glacier inventory and SRTM DEM. We assign a climatic sensitivity of the ELA to temperature changes (dELA/dT) based on published values for tropical and sub-tropical glaciers and a high-resolution annual precipitation field. To assess the change in glacier meltwater contribution as a result of warming, we first estimate baseline glacier meltwater contributions using a mass balance gradient and estimated current ELA. Future climate warming scenarios of +1K and +2K are then used to examine the change in glacier meltwater contributions based on the increased ELA and ablation area. Finally, we calculate a glacier significance index that examines the relative importance of melt within each sub-basin, and discuss regional variations in glacier sensitivity and significance.

  12. Projecting future climate change effects on the extreme hydrological drought events in the Weihe River basin, China

    Science.gov (United States)

    Yuan, F.; San, Y. Y.; Li, Y.; Ma, M.; Ren, L.; Zhao, C.; Liu, Y.; Yang, X.; Jiang, S.; Shen, H.

    2015-06-01

    In this study, a framework to project the potential future climate change impacts on extreme hydrological drought events in the Weihe River basin in North China is presented. This framework includes a large-scale hydrological model driven by climate outputs from a regional climate model for historical streamflow simulations and future streamflow projections, and models for univariate drought assessment and copula-based bivariate drought analysis. It is projected by the univariate drought analysis that future climate change would lead to increased frequencies of extreme hydrological drought events with higher severity. The bivariate drought assessment using copula shows that future droughts in the same return periods as historical droughts would be potentially longer and more severe, in terms of drought duration and severity. This trend would deteriorate the hydrological drought situation in the Weihe River basin. In addition, the uncertainties associated with climate models, hydrological models, and univariate and bivariate drought analysis should be quantified in the future research to improve the reliability of this study.

  13. Cretaceous desert cycles, wind direction and hydrologic cycle variations in Ordos Basin:Evidence for Cretaceous climatic unequability

    Institute of Scientific and Technical Information of China (English)

    JIANG Xinsheng; PAN Zhongxi; XIE Yuan; LI Minghui

    2004-01-01

    Climatic state under greenhouse effect is a currently hot point. Whether greenhouse climate in geological history, especially in Cretaceous, was equable or not has aroused extensive discussion. By analysis on depositional cyclcity, wind direction change and hydrologic cycle variation of Cretaceous desert in the Ordos Basin of China, the unequability of Cretaceous climate is dealt. It is shown that Cretaceous climate was extremely cyclic, not only having long and mid term but also having strong seasonal even instantaneous changes. Therefore, it is suggested that Cretaceous climate was not equable.

  14. Cretaceous desert cycles, wind direction and hydrologic cycle variations in Ordos Basin: Evidence for Cretaceous climatic unequability

    Institute of Scientific and Technical Information of China (English)

    JIANG; Xinsheng; PAN; Zhongxi; XIE; Yuan; LI; Minghui

    2004-01-01

    Climatic state under greenhouse effect is a currently hot point. Whether greenhouse climate in geological history, especially in Cretaceous, was equable or not has aroused extensive discussion. By analysis on depositional cyclcity, wind direction change and hydrologic cycle variation of Cretaceous desert in the Ordos Basin of China, the unequability of Cretaceous climate is dealt. It is shown that Cretaceous climate was extremely cyclic, not only having long and mid term but also having strong seasonal even instantaneous changes. Therefore, it is suggested that Cretaceous climate was not equable.

  15. Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge

    Directory of Open Access Journals (Sweden)

    M. Wegehenkel

    2009-08-01

    Full Text Available Vegetation affects water balance of the land surface by e.g. storage of precipitation water in the canopy and soil water extraction by transpiration. Therefore, it is essential to consider the role of vegetation in affecting water balance by taking into account the temporal dynamics of e.g. leaf area index, rooting depth and stomatal conductance in hydrological models. However until now, most conceptual hydrological models do not treat vegetation as a dynamic component. This paper presents an analysis of the effects of the application of two different complex vegetation models combined with a hydrological model on the model outputs evapotranspiration and groundwater recharge. Both model combinations were used for the assessment of the effects of climate change on water balance in a mesoscale catchment loctated in the Northeastern German Lowlands. One vegetation model assumes a static vegetation development independent from environmental conditions. The other vegetation model calculates dynamic development of vegetation based on photosynthesis, respiration, allocation, and phenology. The analysis of the results obtained from both model combinations indicated the importance of taking into account vegetation dynamics in hydrological models especially if such models are used for the assessment of the impacts of climate change on water balance components.

  16. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Directory of Open Access Journals (Sweden)

    C. Draper

    2011-12-01

    Full Text Available This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%, this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  17. Far-infrared surface emissivity and climate.

    Science.gov (United States)

    Feldman, Daniel R; Collins, William D; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-18

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8-2.0 W m(-2) difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m(-2), and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  18. On the importance of including vegetation dynamics in hydrological simulation under climate change: A case study in the Jing River Basin

    Science.gov (United States)

    Li, Q.; Li, Z.; Ishidaira, H.

    2012-04-01

    The role of catchment vegetation within the hydrological cycle and its impact on hydrological processes has long been a topic of research within hydrology. A key element in quantifying the hydrological impact of climate change is the relationship between catchment vegetation and runoff, which continues to be a productive area of research within hydrology. However, the parameterization of vegetation composition and distribution as a dynamic component is insufficient in stand-alone hydrological modeling studies. Dynamic global vegetation models (DGVMs) are able to simulate transient structural changes in major vegetation types but do not simulate runoff generation reliably. A biosphere hydrological model (LPJH) coupling a prominent DGVM (Lund-Postdam-Jena model referred to as LPJ) with a stand-alone hydrological model (HYMOD) may simulate both vegetation dynamics and runoff generation reasonably. This study applies the LPJH model to the Jing River basin, a tributary of the Yellow River, with the objective of analyzing the role of vegetation in the hydrological processes at this semi-arid basin and evaluating the impact of vegetation change on the hydrological processes under climate change. The results show that the LPJH model gives reasonable hydrological simulation in terms of runoff. It is shown that changing climate conditions in terms of co2, temperature, precipitation, and the combination changes of these variables would result in actual evapotranspiration and runoff changes. Theses changes are mainly attributable to changes in transpiration driven by vegetation dynamics, which are not simulated in stand-alone hydrological models. Therefore, the composition and distribution of vegetation are of fundamental importance for evapotranspiration and runoff generation, especially under climate change. The percent of impact from each climate variable is also explored by using the LPJH model, which gives an overall view of climate change impact on hydrological processes

  19. Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates

    Science.gov (United States)

    Shin, Yera; Lee, Eun-Ju; Jeon, Young-Joon; Hur, Jin; Oh, Neung-Hwan

    2016-09-01

    The spatial and hydrological dynamics of dissolved organic matter (DOM) composition and biodegradability were investigated for the five largest rivers in the Republic of Korea (South Korea) during the years 2012-2013 using incubation experiments and spectroscopic measurements, which included parallel factor analysis (PARAFAC). The lower reaches of the five rivers were selected as windows showing the integrated effects of basin biogeochemistry of different land use under Asian monsoon climates, providing an insight on consistency of DOM dynamics across multiple sites which could be difficult to obtain from a study on an individual river. The mean dissolved organic carbon (DOC) concentrations of the five rivers were relatively low, ranging from 1.4 to 3.4 mg L-1, due to the high slope and low percentage of wetland cover in the basin. Terrestrial humic- and fulvic-like components were dominant in all the rivers except for one, where protein-like compounds were up to ∼80%. However, terrestrial components became dominant in all five of the rivers after high precipitation during the summer monsoon season, indicating the strong role of hydrology on riverine DOM compositions for the basins under Asian monsoon climates. Considering that 64% of South Korea is forested, our results suggest that the forests could be a large source of riverine DOM, elevating the DOM loads during monsoon rainfall. Although more DOM was degraded when DOM input increased, regardless of its sources, the percent biodegradability was reduced with increased proportions of terrestrially derived aromatic compounds. The shift in DOM quality towards higher percentages of aromatic terrestrial compounds may alter the balance of the carbon cycle of coastal ecosystems by changing microbial metabolic processes if climate extremes such as heavy storms and typhoons become more frequent due to climate change.

  20. Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change

    Science.gov (United States)

    Ruelland, D.; Ardoin-Bardin, S.; Collet, L.; Roucou, P.

    2012-03-01

    SummaryThis paper assesses the future variability of water resources in the short, medium and long terms over a large Sudano-Sahelian catchment in West Africa. Flow simulations were performed with a daily conceptual model. A period of nearly 50 years (1952-2000) was chosen to capture long-term hydro-climatic variability. Calibration and validation were performed on the basis of a multi-objective function that aggregates a variety of goodness-of-fit indices. The climate models HadCM3 and MPI-M under SRES-A2 were used to provide future climate scenarios over the catchment. Outputs from these models were used to generate daily rainfall and temperature series for the 21st century according to: (i) the unbias and delta methods application and (ii) spatial and temporal downscaling. A temperature-based formula was used to calculate present and future potential evapotranspiration (PET). The daily rainfall and PET series were introduced into the calibrated and validated hydrological model to simulate future discharge. The model correctly reproduces the observed discharge at the basin outlet. The Nash-Sutcliffe efficiency criterion is over 89% for both calibration and validation periods, and the volume error between simulation and observation is close to null for the overall considered period. With regard to future climate, the results show clear trends of reduced rainfall over the catchment. This rainfall deficit, together with a continuing increase in potential evapotranspiration, suggests that runoff from the basin could be substantially reduced, especially in the long term (60-65%), compared to the 1961-1990 reference period. As a result, the long-term hydrological simulations show that the catchment discharge could decrease to the same levels as those observed during the severe drought of the 1980s.

  1. Climate Change, Hydrology and Landscapes of America's Heartland: A Coupled Natural-Human System

    Science.gov (United States)

    Lant, C.; Misgna, G.; Secchi, S.; Schoof, J. T.

    2012-12-01

    This paper will present a methodological overview of an NSF-funded project under the Coupled Natural and Human System program. Climate change, coupled with variations and changes in economic and policy environments and agricultural techniques, will alter the landscape of the U.S. Midwest. Assessing the effects of these changes on watersheds, and thus on water quantity, water quality, and agricultural production, entails modeling a coupled natural-human system capable of answering research questions such as: (1) How will the climate of the U.S. Midwest change through the remainder of the 21st Century? (2) How will climate change, together with changing markets and policies, affect land use patterns at various scales, from the U.S. Midwest, to agricultural regions, to watersheds, to farms and fields? (3) Under what policies and prices does landscape change induced by climate change generate a positive or a negative feedback through changes in carbon storage, evapotranspiration, and albedo? (4) Will climate change expand or diminish the agricultural production and ecosystem service generation capacities of specific watersheds? Such research can facilitate early adaptation and make a timely contribution to the successful integration of agricultural, environmental, and trade policy. Rural landscapes behave as a system through a number of feedback mechanisms: climatic, agro-technology, market, and policy. Methods, including agent-based modeling, SWAT modeling, map algebra using logistic regression, and genetic algorithms for analyzing each of these feedback mechanisms will be described. Selected early results that link sub-system models and incorporate critical feedbacks will also be presented.igure 1. Overall Modeling framework for Climate Change, Hydrology and Landscapes of America's Heartland.

  2. Hierarchy of climate and hydrological uncertainties in transient low-flow projections

    Science.gov (United States)

    Vidal, Jean-Philippe; Hingray, Benoît; Magand, Claire; Sauquet, Eric; Ducharne, Agnès

    2016-09-01

    This paper proposes a methodology for estimating the transient probability distribution of yearly hydrological variables conditional to an ensemble of projections built from multiple general circulation models (GCMs), multiple statistical downscaling methods (SDMs), and multiple hydrological models (HMs). The methodology is based on the quasi-ergodic analysis of variance (QE-ANOVA) framework that allows quantifying the contributions of the different sources of total uncertainty, by critically taking account of large-scale internal variability stemming from the transient evolution of multiple GCM runs, and of small-scale internal variability derived from multiple realizations of stochastic SDMs. This framework thus allows deriving a hierarchy of climate and hydrological uncertainties, which depends on the time horizon considered. It was initially developed for long-term climate averages and is here extended jointly to (1) yearly anomalies and (2) low-flow variables. It is applied to better understand possible transient futures of both winter and summer low flows for two snow-influenced catchments in the southern French Alps. The analysis takes advantage of a very large data set of transient hydrological projections that combines in a comprehensive way 11 runs from four different GCMs, three SDMs with 10 stochastic realizations each, as well as six diverse HMs. The change signal is a decrease in yearly low flows of around -20  % in 2065, except for the more elevated catchment in winter where low flows barely decrease. This signal is largely masked by both large- and small-scale internal variability, even in 2065. The time of emergence of the change signal is however detected for low-flow averages over 30-year time slices starting as early as 2020. The most striking result is that a large part of the total uncertainty - and a higher one than that due to the GCMs - stems from the difference in HM responses. An analysis of the origin of this substantial divergence in

  3. Landscape and Hydrological Transformation in the Canadian High Arctic: Climate Change and Permafrost Degradation As Drivers of Change

    Science.gov (United States)

    Lamoureux, S. F.; Lafreniere, M. J.

    2014-12-01

    Recent climate warming and landscape instability arising from permafrost degradation in the Canadian High Arctic have resulted in significant changes to the hydrological system. We have undertaken an integrated watershed and permafrost research program at the Cape Bounty Arctic Watershed Observatory (75°N, 109°W) in paired watershed-lake systems to assess the impact of these changes. Research has captured hydrological changes resulting from exceptional warmth, and permafrost degradation and disturbance. Results highlight the contrasting effect of thermal (deeper soil thaw) versus physical perturbation (slope failures and permafrost degradation). Thermal perturbation applies to most of the landscape, and results indicate that ground ice melt alters flow and mobilizes solutes for a number of years following a single warm year. These effects are measureable at the slope-catchment scale, especially during baseflow. By contrast, physical disturbance is highly localized and produces high sediment and particulate carbon erosion from slopes, but downstream particulate delivery is dependent on surface connectivity. Recovery from disturbances appears to occur rapidly, and continued geomorphic change and new slope channels result in sustained delivery of particulates to channels. The result is increased long term landscape heterogeneity with respect to erosion compared to the pre-disturbance condition. Downstream channel response to particulate loading further dampens the response to physical disturbance through channel storage of material. Hence, at the larger watershed scale, the effect of physical perturbation is minimal in the initial years of recovery. These results point to a landscape that has been substantially impacted by recent hydrological and permafrost changes. Understanding and distinguishing these impacts provides a basis for systematically evaluating biogeochemical cycling and ecosystem responses in aquatic settings.

  4. Climate change and stream temperature projections in the Columbia River Basin: biological implications of spatial variation in hydrologic drivers

    Directory of Open Access Journals (Sweden)

    D. L. Ficklin

    2014-06-01

    Full Text Available Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled General Circulation Model outputs to explore the spatially and temporally varying changes in stream temperature at the subbasin and ecological province scale for the Columbia River Basin. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil flow, and groundwater, are negatively correlated to increases in stream temperature depending on the season and ecological province. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by non-migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically-explicit modeling approach to accurately characterize the

  5. HIMALA: Climate Impacts on Glaciers, Snow, and Hydrology in the Himalayan Region

    Science.gov (United States)

    Brown, Molly Elizabeth; Ouyang, Hua; Habib, Shahid; Shrestha, Basanta; Shrestha, Mandira; Panday, Prajjwal; Tzortziou, Maria; Policelli, Frederick; Artan, Guleid; Giriraj, Amarnath; Bajracharya, Sagar R.; Racoviteanu, Adina

    2010-01-01

    Glaciers are the largest reservoir of freshwater on Earth, supporting one third of the world s population. The Himalaya possess one of the largest resources of snow and ice, which act as a freshwater reservoir for more than 1.3 billion people. This article describes a new project called HIMALA, which focuses on utilizing satellite-based products for better understanding of hydrological processes of the river basins of the region. With support from the US Agency for International Development (USAID), the International Centre for Integrated Mountain Development (ICIMOD), together with its partners and member countries, has been working on the application of satellite-based rainfall estimates for flood prediction. The US National Aeronautics and Space Administration (NASA) partners are working with ICIMOD to incorporate snowmelt and glacier melt into a widely used hydrological model. Thus, through improved modeling of the contribution of snow and ice meltwater to river flow in the region, the HIMALA project will improve the ability of ICIMOD and its partners to understand the impact of weather and climate on floods, droughts, and other water- and climate-induced natural hazards in the Himalayan region in Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan.

  6. HIMALA: climate impacts on glaciers, snow, and hydrology in the Himalayan region

    Science.gov (United States)

    Brown, Molly Elizabeth; Ouyang, Hua; Habib, Shahid; Shrestha, Basanta; Shrestha, Mandira; Panday, Prajjwal; Tzortziou, Maria; Policelli, Frederick; Artan, Guleid; Giriraj, Amarnath; Bajracharya, Sagar R.; Racoviteanu, Adina

    2010-01-01

    Glaciers are the largest reservoir of freshwater on Earth, supporting one third of the world's population. The Himalaya possess one of the largest resources of snow and ice, which act as a freshwater reservoir for more than 1.3 billion people. This article describes a new project called HIMALA, which focuses on utilizing satellite-based products for better understanding of hydrological processes of the river basins of the region. With support from the US Agency for International Development (USAID), the International Centre for Integrated Mountain Development (ICIMOD), together with its partners and member countries, has been working on the application of satellite-based rainfall estimates for flood prediction. The US National Aeronautics and Space Administration (NASA) partners are working with ICIMOD to incorporate snowmelt and glacier melt into a widely used hydrological model. Thus, through improved modeling of the contribution of snow and ice meltwater to river flow in the region, the HIMALA project will improve the ability of ICIMOD and its partners to understand the impact of weather and climate on floods, droughts, and other water- and climate-induced natural hazards in the Himalayan region in Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan.

  7. Surface-water hydrology and runoff simulations for three basins in Pierce County, Washington

    Science.gov (United States)

    Mastin, M.C.

    1996-01-01

    The surface-water hydrology in Clear, Clarks, and Clover Creek Basins in central Pierce County, Washington, is described with a conceptual model of the runoff processes and then simulated with the Hydrological Simulation Program-FORTRAN (HSPF), a continuous, deterministic hydrologic model. The study area is currently undergoing a rapid conversion of rural, undeveloped land to urban and suburban land that often changes the flow characteristics of the streams that drain these lands. The complex interactions of land cover, climate, soils, topography, channel characteristics, and ground- water flow patterns determine the surface-water hydrology of the study area and require a complex numerical model to assess the impact of urbanization on streamflows. The U.S. Geological Survey completed this investigation in cooperation with the Storm Drainage and Surface Water Management Utility within the Pierce County Department of Public Works to describe the important rainfall-runoff processes within the study area and to develop a simulation model to be used as a tool to predict changes in runoff characteristics resulting from changes in land use. The conceptual model, a qualitative representation of the study basins, links the physical characteristics to the runoff process of the study basins. The model incorporates 11 generalizations identified by the investigation, eight of which describe runoff from hillslopes, and three that account for the effects of channel characteristics and ground-water flow patterns on runoff. Stream discharge was measured at 28 sites and precipitation was measured at six sites for 3 years in two overlapping phases during the period of October 1989 through September 1992 to calibrate and validate the simulation model. Comparison of rainfall data from October 1989 through September 1992 shows the data-collection period beginning with 2 wet water years followed by the relatively dry 1992 water year. Runoff was simulated with two basin models-the Clover

  8. Stochastic modeling of nutrient losses in streams: Interactions of climatic, hydrologic, and biogeochemical controls

    Science.gov (United States)

    Botter, G.; Basu, N. B.; Zanardo, S.; Rao, P. S. C.; Rinaldo, A.

    2010-08-01

    We present an analytical, stochastic approach for quantifying intra-annual fluctuations of in-stream nutrient losses induced by naturally variable hydrologic conditions. The relevance of the problem we address lies in the growing concern for the major environmental impacts of increasing nutrient loads from watersheds to freshwater bodies and coastal waters. Here we express the first-order nutrient loss rate constant, ke, as a function of key biogeochemical and hydrologic controls, in particular the stream depth (h). The stage h modulates the impact of natural streamflow temporal fluctuations (induced by intermittent rainfall forcings) on the underlying biogeochemical processes and thus represents the major driver of at-a-site fluctuations of ke. Novel expressions for the probability distribution function (pdf) of h and ke are derived as a function of a few eco-hydrologic, morphologic and biogeochemical parameters. The shape of such pdf's chiefly depends on the following attributes: (1) the average frequency of streamflow-producing rainfall events, λ; (2) the inverse of mean catchment residence time, k; and (3) a stream channel shape factor, identified through the discharge rating curve exponent b. For λ/(kb) > 1, h and ke have lower intra-annual variability and lower sensitivity to climatic and morphologic controls, leading to improved predictability and ease of measurement of these attributes. Moment analyses suggest that the variability of ke, relative to that of h, is attenuated for λ/(kb) > 1. Thus, the interplay between climate-landscape parameters and the stream shape factor b controls the temporal variability induced by stochastic rainfall forcings on stream stages and nutrient removal rates.

  9. Assessment of Climate Change and Hydrological Responses of the Mara River Basin, Kenya/Tanzania

    Science.gov (United States)

    Dessu, S. B.; Melesse, A. M.

    2012-12-01

    Mara River Basin (MRB) is endowed with diverse cultural heritage and pristine biodiversity. Climate change is predicated to exacerbate land degradation and reduction in the fauna and flora affecting livelihood and the Mara-Serengeti ecosystem. We employed past and projected climate scenarios from sixteen Global Circulation Models (GCMs) outputs and historical records to better understand the climate dynamics and its implication on the hydrological system of the MRB. Nine of the sixteen GCMs showed positive correlation (Mara river flow will experience significant changes in all scenarios with extents depending on the choice of GCM and downscaling technique (Figure 2). Findings of the study point to a higher impact of climate change in the basin, hence incorporating the negative and positive aspects in strategic planning may promote sustainable development in MRB. Figure 1. % change of the 2050s and 2080s rainfall from the control period at Bomet, Keekorok GL and Buhemba TC of the MRB for the A1B, A2 and B1 SRES scenarios using the Delata and Direct downscaling mehtods. Figure 2. Annual average runoff based on downscaled rainfall and temperature data for the MRB. The trend of each model hydrograph was plotted with the corresponding R2 Value. Average of the five GCMs was also included.

  10. Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis

    Science.gov (United States)

    DeBeer, Chris M.; Wheater, Howard S.; Carey, Sean K.; Chun, Kwok P.

    2016-04-01

    It is well established that the Earth's climate system has warmed significantly over the past several decades, and in association there have been widespread changes in various other Earth system components. This has been especially prevalent in the cold regions of the northern mid- to high latitudes. Examples of these changes can be found within the western and northern interior of Canada, a region that exemplifies the scientific and societal issues faced in many other similar parts of the world, and where impacts have global-scale consequences. This region has been the geographic focus of a large amount of previous research on changing climatic, cryospheric, and hydrological regimes in recent decades, while current initiatives such as the Changing Cold Regions Network (CCRN) introduced in this review seek to further develop the understanding and diagnosis of this change and hence improve the capacity to predict future change. This paper provides a comprehensive review of the observed changes in various Earth system components and a concise and up-to-date regional picture of some of the temporal trends over the interior of western Canada since the mid- or late 20th century. The focus is on air temperature, precipitation, seasonal snow cover, mountain glaciers, permafrost, freshwater ice cover, and river discharge. Important long-term observational networks and data sets are described, and qualitative linkages among the changing components are highlighted. Increases in air temperature are the most notable changes within the domain, rising on average 2 °C throughout the western interior since 1950. This increase in air temperature is associated with hydrologically important changes to precipitation regimes and unambiguous declines in snow cover depth, persistence, and spatial extent. Consequences of warming air temperatures have caused mountain glaciers to recede at all latitudes, permafrost to thaw at its southern limit, and active layers over permafrost to thicken

  11. On improving cold region hydrological processes in the Canadian Land Surface Scheme

    Science.gov (United States)

    Ganji, Arman; Sushama, Laxmi; Verseghy, Diana; Harvey, Richard

    2017-01-01

    Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the treatment of frozen water in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis (ERA-Interim) for the 1990-2001 period over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration and therefore soil moisture during the snowmelt season for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS over most of the study domain. The simulated spring peaks and their timing in this simulation are also in better agreement to those observed. This study thus demonstrates the importance of treatment of frozen water for realistic simulation of streamflows.

  12. The influence of climate and hydrological variables on opposite anomaly in active layer thickness between Eurasian and North American watersheds

    Directory of Open Access Journals (Sweden)

    H. Park

    2012-07-01

    Full Text Available This study not only examined the spatiotemporal variations of permafrost active layer thickness (ALT during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE. The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while ALT in North American watersheds showed decreases. An opposition of ALT variations implicated with climate and hydrological variables was most significant when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher Annual Thawing Index in the Mackenzie and Yukon Basins was offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing Annual Thawing Index together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s provide memory that manifests itself during the summer. While it is widely believed that ALT will increase with global warming, this hypothesis may need modification because the ALT also shows responses to variations in snow depth and soil moisture that can over-ride the effect of air temperature. The dependence of the hydrological variables driven by the atmosphere further increases the uncertainty in future changes of the permafrost active layer.

  13. Global off-line evaluation of the ISBA-TRIP continental hydrological system used in the CNRM-CM6 climate model for the next CMIP6 exercise

    Science.gov (United States)

    Decharme, Bertrand; Vergnes, Jean-Pierre; Minvielle, Marie; Colin, Jeanne; Delire, Christine

    2016-04-01

    The land surface hydrology represents an active component of the climate system. It is likely to influence the water and energy exchanges at the land surface, the ocean salinity and temperature at the mouth of the largest rivers, and the climate at least at the regional scale. In climate models, the continental hydrology is simulated via Land Surface Models (LSM), which compute water and energy budgets at the surface, coupled to River Routing Model (RRM), which convert the runoff simulated by the LSMs into river discharge in order to transfer the continental fresh water into the oceans and then to close the global hydrological cycle. Validating these Continental Hydrological Systems (CHS) at the global scale is therefore a crucial task, which requires off-line simulations driven by realistic atmospheric fluxes to avoid the systematic biases commonly found in the atmospheric models. In the CNRM-CM6 climate model of Météo-France, that will be used for the next Coupled Climate Intercomparison Project phase 6 (CMIP6) exercise, the land surface hydrology is simulated using the ISBA-TRIP CHS coupled via the OASIS-MCT coupler. The ISBA LSM solves explicitly the one dimensional Fourier law for soil temperature and the mixed form of the Richards equation for soil moisture using a 14-layers discretization over 12m depths. For the snowpack, a discretization using 12 layers allows the explicit representation of some snow key processes as its viscosity, its compaction due to wind, its age and its albedo on the visible and near infrared spectra. The TRIP RRM uses a global river channel network at 0.5° resolution. It is based on a three prognostic equations for the surface stream water, the seasonal floodplains, and the groundwater. The streamflow velocity is computed using the Maning's formula. The floodplain reservoir fills when the river height exceeds the river bankfull height and vice-versa. The flood interacts with the ISBA soil hydrology through infiltration and with

  14. Plot-scale field experiment of surface hydrologic processes with EOS implications

    Science.gov (United States)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  15. Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution

    Science.gov (United States)

    Troch, P. A.; Carrillo, G.; Sivapalan, M.; Wagener, T.; Sawicz, K.

    2013-06-01

    Budyko (1974) postulated that long-term catchment water balance is controlled to first order by the available water and energy. This leads to the interesting question of how do landscape characteristics (soils, geology, vegetation) and climate properties (precipitation, potential evaporation, number of wet and dry days) interact at the catchment scale to produce such a simple and predictable outcome of hydrological partitioning? Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different paramterizations) are subjected to the 12 different climate forcings, resulting in 144 10 yr model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates) and per climate (one climate filtered by 12 different model parameterization), and compared to water balance predictions based on Budyko's hypothesis (E/P = ϕ (Ep/P); E: evaporation, P: precipitation, Ep: potential evaporation). We find significant anti-correlation between average deviations of the evaporation index (E/P) computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005). Next, we analyze which model (i.e., landscape filter) characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls subsurface storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer subsurface storage

  16. Climate-vegetation-soil interactions and long-term hydrologic partitioning: Signatures of catchment co-evolution (Invited)

    Science.gov (United States)

    Troch, P. A.; Carrillo, G. A.; Sivapalan, M.; Sawicz, K. A.; Wagener, T.

    2013-12-01

    Budyko (1974) postulated that long-term catchment water balance is controlled to first order by the available water and energy. This leads to the interesting question of how do landscape characteristics (soils, geology, vegetation) and climate properties (precipitation, potential evaporation, number of wet and dry days) interact at the catchment scale to produce such a simple and predictable outcome of hydrological partitioning? Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different paramterizations) are subjected to the 12 different climate forcings, resulting in 144 10-year model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates) and per climate (one climate filtered by 12 different model parameterization), and compared to water balance predictions based on Budyko's hypothesis (E/P=φ(Ep/P); E: evaporation, P: precipitation, Ep: potential evaporation). We find significant anti-correlation between average deviations of the evaporation index (E/P) computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005). Next, we analyze which model (i.e., landscape filter) characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls subsurface storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer subsurface storage

  17. Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution

    Directory of Open Access Journals (Sweden)

    P. A. Troch

    2013-06-01

    Full Text Available Budyko (1974 postulated that long-term catchment water balance is controlled to first order by the available water and energy. This leads to the interesting question of how do landscape characteristics (soils, geology, vegetation and climate properties (precipitation, potential evaporation, number of wet and dry days interact at the catchment scale to produce such a simple and predictable outcome of hydrological partitioning? Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different paramterizations are subjected to the 12 different climate forcings, resulting in 144 10 yr model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates and per climate (one climate filtered by 12 different model parameterization, and compared to water balance predictions based on Budyko's hypothesis (E/P = ϕ (Ep/P; E: evaporation, P: precipitation, Ep: potential evaporation. We find significant anti-correlation between average deviations of the evaporation index (E/P computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005. Next, we analyze which model (i.e., landscape filter characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls subsurface storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer

  18. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea

    Science.gov (United States)

    Wu, Mong-Sin; Zong, Yongqiang; Mok, Ka-Man; Cheung, Ka-Ming; Xiong, Haixian; Huang, Guangqing

    2017-03-01

    In order to reconstruct the Holocene environmental history of a coastal site in the northern South China Sea, this study analysed the organic carbon isotope ratios (δ13Corg) and alkenone unsaturation ratios (UK‧37) from a 36.5 m-long sediment core drilled at seabed in the mouth region of the Pearl River estuary and generated a coupled hydrological and temperature record. This record reveals changes of monsoon-induced sediment discharge and sea surface temperature of the Holocene in four stages. In Stage I, the site was under fluvial conditions prior to postglacial marine transgression. Stage II saw an increase of sea surface temperature from c. 23.0 °C to 27.0 °C, associated with a strengthened summer monsoon from c. 10,350 to 8900 cal. years BP. This was also a period of rapid sea-level rise and marine transgression, during which the sea inundated the palaeo-incised channel, i.e. the lower part of the T-shape accommodation space created by the rising sea. In these 1500 years, fluvial discharge was strong and concentrated within the channel, and the high sedimentation rate (11.8 mm/year) was very close to the rate of sea-level rise. In the subsequent 2000 years (Stage III) sea level continued to rise and the sea flooded the broad seabed above the palaeo-incised channel, resulted in fluvial discharge spreading thinly across the wide accommodation space and a much reduced sedimentation rate (1.8 mm/year). Sea surface temperature in this stage reached 27.3 °C initially, but dropped sharply to 26.1 °C towards c. 8200 cal. years BP. The final stage covers the last 7000 years, and the site was under a stable sea level. Sedimentation in this stage varied a little, but averaged at 1.8 mm/year. Whilst fluvial discharge and sea surface temperature didn't change much, two short periods of hydrological and temperature change were observed, which are related to the climatic cooling events of c. 4200 cal. years ago and the Little Ice Age.

  19. An effective hyper-resolution pseudo-3D implementation of small scale hydrological features to improve regional and global climate studies

    Science.gov (United States)

    Hazenberg, P.; Broxton, P. D.; Gochis, D. J.; Niu, G.; Pelletier, J. D.; Troch, P. A.; Zeng, X.

    2013-12-01

    Global land surface processes play an important role in the land-atmosphere exchanges of energy, water, and trace gases. As such, correct representation of the different hydrological processes has long been an important research topic in climate modeling. Historically, these processes were presented at a relatively coarse horizontal resolution, focusing mainly on the vertical hydrological response, while lateral exchanges were either disregarded or implemented in a relatively crude manner. Increases in computational power have led to higher resolution regional and global land surface models. For the coming years, it is anticipated that these models will simulate the hydrological response of the earth surface at a 100-1000 meter pixel size, which is stated as hyper-resolution earth surface modeling. At these relatively high resolutions, correct representation of groundwater, including lateral interactions across pixels and with the channel network, becomes important. Next to that, at these high resolutions elevation differences have a larger impact on the hydrological response and therefore need to be represented properly. We will present a new hydrological framework specifically developed to operate at these hyper-resolutions. Our new approach discriminates between differences in the hydrological response of hillslopes, riparian zones, wetlands and flat regions within a given pixel, while interacting with the channel network and the atmosphere. Instead of applying the traditional conceptual approach, these interactions are incorporated using a physically-based approach. In order to be able to differentiate between these different hydrological features, globally available high-resolution 30 meter DEM data were analyzed using a state-of-the-art digital geomorphological identification method. Based on these techniques, local estimates of soil depth, hillslope width functions, channel network density, etc. were also obtained that are used as input to the model In the

  20. Influence of hydrological modelling strategies on the diagnosis of the impact of climate change on water resources

    Science.gov (United States)

    Seiller, Grégory; Roy, René; Anctil, François

    2016-04-01

    Uncertainties related to the assessment of the impacts of climate change on water resources are large, from multiple sources, and lead to diagnoses sometimes difficult to interpret. Therefore, the quantification of these uncertainties is a key element to yield confidence in the analyses and to provide water managers with valuable information. This research specifically evaluates the sensitivity of future water resources projections to the choice of hydrological modelling strategies, on thirty-seven watersheds in the Province of Québec, Canada. These modelling strategies mainly focus on calibration and hydrological model choices, as well as individual versus ensemble approaches. Twenty lumped hydrological models, representing a wide range of operational options, are calibrated with three objective functions on six historical calibration periods. The hydrological models are forced with 122 climate simulations corresponding to four RCP and twenty-nine GCM from CMIP5 (Coupled Model Intercomparison Project phase 5), provided by the Canadian consortium Ouranos. Two bias correction techniques are also evaluated and lead to future projections in the 2041-2070 period. Results show that the diagnosis of the impacts of climate change on water resources are quite sensitive to the hydrological models selection and calibration strategies. This statement is particularly true when evaluating changes in an absolute way. Multimodel approaches offer the best options in terms of calibration performance and robustness on contrasted climate conditions. Hydrological indicators, dedicated to water management, are sensitive to the calibration objective functions and period selection. Overall, these results illustrate the need to provide water managers with detailed information on relative changes analysis, but also absolute changes values, especially for hydrological indicators acting as security policy thresholds.

  1. Hydrologic climate change: are the existing dams still safe? The Flumendosa case study in Sardinia

    Science.gov (United States)

    Maccioni, G.; Montaldo, N.; Saba, A.

    2009-04-01

    The problem of the hydraulic safety of existing dams is becoming crucial due to the recent increase of floods. In Sardinia dams were built for both electric production and water supply for irrigation and civil uses during the 1920-1960 period. Recent floods showed a significant increase in magnitude and frequency, supporting the hypothesis of a hydrologic climate change. Are the existing dams still safe? For answering the question 1) a method for estimating the flood hydrograph with return period of 2000 years also accounting for possible climate change is developed, 2) an hydrologic model is implemented, and 3) the hydraulic safety of existing dams is tested. The case study is the Flumendosa river basin (area of about 1300 km2) located in central-eastern Sardinia (Italy), whose reservoir system (3 dams) is the main water supply of southern Sardinia, including its largest city, Cagliari. The smallest dam is located in the upper part of the basin with a drainage area of about 50 km2. At this dam, during the December 2004 flood an extremely high peak discharge of around 2000 m3/s was observed (total daily rain was of 600 mm). In the basin the soils are generally of modest thickness, the vegetation throughout the basin has been in part altered by human activities, with many areas (before covered by scrubs) converted to pasture. Urbanized areas are a minor component. Rainfall and discharge data of historical floods (from 1940) were acquired so that a fully evaluation of the hydrologic model has been performed. The distributed hydrologic model is an event model (FEST) which assesses runoff through a simplified approach based on Soil Conservation Service equations and runoff propagation through the Muskingum-Cunge approach. The FEST model well simulates historical and recent floods. The results demonstrated that the dams are not safe for the estimated flood with return period of 2000 year, but also demonstrated the extreme uncertainty in the estimate of floods with

  2. Interactions between climate change, hydrology and soil erosion in different climatic zones in Italy

    Science.gov (United States)

    Capra, A.; Pavanelli, D.

    2010-03-01

    In Italy, during last century the mean annual temperature (Tym) increased by 0.4°C/100 years in Northern areas (N) (continental zone) and by 0.7°C/100 years in Central (C) and Southern (S) parts (peninsular zones). A negative trend of annual rainfall (Py) was evident in both N and S areas. Extreme events had different tendencies, corresponding to increases in rainfall intensity and in drought conditions in both N and S areas. Climate change affects both vegetation water availability and runoff and erosion. Different results on climatic trends were obtained for smaller sub-regions of Southern Italy. Therefore, climate change studies at a regional level should also account for geographical factors (e.g. distance from the sea, elevation, aspect). In the current study trend in precipitation recorded during last century in three different climatic zones in Italy were investigated and compared. The three zones are: a typical Tuscan-Emilian Apennines watershed (the Reno river) located in the continental area, the Calabria region located in the peninsular zone, and the Sicily region, an island located in the South of Italy. For Reno river mountain watershed (2.597 km2), an attempt was made to gain some knowledge about the changes in the 20th century of the land use and of the climate, connected to the erosion soil risk. The Italian Apennines, from the 16th century, were exploited for farming and for agro forestry and pastoral activities. This human activities encouraged intense erosive processes, but an important factor controlling the intense morphodynamics is the contemporary increase of rainfall in the "Little Ice Age". From the beginning of the 1900, have been led two conflicting and simultaneous phenomena: population moving both to cities and valley bottoms and agricultural mechanization. Their consequences have been evident on land use: abandonment of unproductive fields, of forestry practices and enlargement of the remaining plots. The Calabria region is a long

  3. Climate Change Impact on the Hydrology and Water Quality of a Small Partially-Irrigated Agricultural Lowland Catchment

    Science.gov (United States)

    Visser, A.; Kroes, J.; van Vliet, M. T.; Blenkinsop, S.; Broers, H.

    2010-12-01

    The objective of this study was to assess the potential effects of climate change on the hydrology of the small partially-irrigated agricultural lowland catchment of the Keersop, in south of the Netherlands, as well as the transport of a pre-existing spatially extensive trace metal contamination. The area surrounding the Keersop has been contaminated with heavy metals by the atmospheric emissions of four zinc ore smelters. This heavy metal contamination, with Cd and Zn for example, has accumulated in the topsoil and leaches towards the surface water system, especially during periods with high groundwater levels and high discharge rates. Daily time-series of precipitation and potential evapotranspiration were derived from the results of eight regional climate model experiments under the SRES A2 emissions scenario. They each span 100 years and are representative for the periods 1961-1990 (“baseline climate”) and 2071-2100 (“future climate”). The time-series of future climate were characterized by lower precipitation (-1% to -12%) and higher air temperatures (between 2°C and 5°C), and as a result higher potential evapotranspiration, especially in summer. The time-series were used to drive the quasi-2D unsaturated-saturated zone model (SWAP) of the Keersop catchment (43 km2). The model consisted of an ensemble of 686 1D models, each of which represented a 250x250 m area within the catchment. Simulation results for the future climate scenarios show a shift in the water balance of the catchment. The decrease in annual rainfall is nearly compensated by an increase in irrigation in the catchment, if present day irrigation rules are followed. On the other hand, both evaporation and transpiration fluxes increase. This increase is compensated by a decrease in the drainage flux and groundwater recharge. As a result, groundwater levels decline and the annual discharge of the Keersop stream decreases under all future climate scenarios, by 26% to 46%. Because Cd and Zn

  4. Evaluation of high-resolution WRF climate simulations for hydrological variables over Iberian Peninsula

    Science.gov (United States)

    García-Valdecasas-Ojeda, Matilde; De Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Esteban-Parra, María Jesus

    2016-04-01

    Meteorological inputs play an essential role in predicting the potential effects of climate change on water resources. Consequently, this study is focused on evaluating the skill of Weather Research and Forecasting (WRF) model to simulate present climate characteristics in term of different variables used for hydrological modeling. For the 35-yr period (1980-2014), high-resolution simulations have been performed with a spatial resolution of 0.088° over a domain encompassing the Iberian Peninsula, and nested in the coarser EURO-CORDEX domain (0.44° resolution). WRF model was driven by the global bias-corrected climate model output data from version 1 of NCAR's Community Earth System Model (CESM1). In addition, other simulation forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) as "perfect boundary conditions" was also run. For validation purposes, WRF outputs were compared for Spain and Portugal independently, using two observational data sources: the Spain02 version 4 daily precipitation and (maximum and minimum) temperature gridded datasets, and the PT02 daily gridded precipitation data. The study was carried out at different time scales in order to evaluate the model ability to capture long-term mean values (from annual to monthly) and high-order statistics (extreme events) by directly comparing grid-points. Furthermore, the observational gridded data were grouped using a multistep regionalization to facilitate the comparison in term of several parameters such as the monthly annual cycle or the percentiles of daily values. The main result is that WRF provides useful information at regional scale, with significant improvement in complex terrain areas such as Iberian Peninsula. Although considerable errors are still observed, the model is able to capture the main precipitation and temperature patterns. The major benefits of using WRF are related to the better representation of extreme events that are an

  5. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Silva, C. G.; Rigsby, C. A.; Absy, M. L.; Almeida, R. P.; Caputo, M.; Chiessi, C. M.; Cruz, F. W.; Dick, C. W.; Feakins, S. J.; Figueiredo, J.; Freeman, K. H.; Hoorn, C.; Jaramillo, C.; Kern, A. K.; Latrubesse, E. M.; Ledru, M. P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W. E.; Ramos, M. I. F.; Ribas, C. C.; Trnadade, R.; West, A. J.; Wahnfried, I.; Willard, D. A.

    2015-12-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  6. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, M.C.; Chiessi, C.M.; Cruz, F.W.; Dick, C.W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.A.; Kern, A.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trinadade, R.; West, A.J.; Wahnfried, I.; Willard, Debra A.

    2015-01-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  7. Uncertainty of tipping elements on risk analysis in hydrology under climate change

    Science.gov (United States)

    Kiguchi, M.; Iseri, Y.; Tawatari, R.; Kanae, S.; Oki, T.

    2015-12-01

    Risk analysis in this study characterizes the events that could be caused by climate change and estimates their effects on society. In order to characterize climate change risks, events that might be caused by climate change will be investigated focusing on critical geophysical phenomena such as changes in thermohaline circulation (THC) in oceans and the large-scale melting of the Greenland and other ice sheets. The results of numerical experiments with climate models and paleoclimate studies will be referenced in listing up these phenomena. The trigger mechanisms, tendency to occur and relationship of these phenomena to global climate will be clarified. To clarify that relationship between the RCP scenarios and tipping elements, we identified which year tipping elements in case of "Arctic summer sea ice" and "Greenland ice sheet" are appeared using the increase of global average temperature in 5 GCMs under RCP (2.6, 4.5, 6.0, and 8.5) from Zickfeld et al. (2013) and IPCC (2013), and tipping point of each tipping elements from IPCC (2013). In case of "Greenland ice sheet" (Tipping point takes a value within the range of 1.0oC and 4.0oC), we found that "Greenland ice sheet" may melt down when the tipping point is 1.0oC as lowest value. On the other hand, when tipping point sets as 4.0oC, it may not melt down except for RCP 8.5. As above, we show the uncertainty of tipping point itself. In future, it is necessary how to reflect such uncertainty in risk analysis in hydrology.

  8. Effect of Climate Change on Hydrologic Ecotones Over the Pacific Northwest River Basin

    Science.gov (United States)

    Wherry, S.; Gonzalez-Baird, J.; Moradkhani, H.

    2009-12-01

    Current modeling efforts continue to indicate that the effects of climate change will be both global and local in scale, and that ecohydrologic factors including altered precipitation events, reduced system yields due to streamflow changes, increased flooding and changes to current floodplain characteristics, and changes in vegetation will be affected. Therefore, using technology such as light detection and ranging (LiDAR) data, future general circulation model (GCM) data, and advanced floodplain analyses to predict the changes to ecohydrologic factors is critical for understanding the effects of climate change on the regional scale watershed. This study considers the effects of three different GCM climate change emissions scenarios (high, middle of the road and low) as proposed by the University of Washington’s Climate Impacts Group using daily, downscaled Fourth IPCC Assessment data over the Pacific Northwest. Our study region is the Lower Tualatin watershed in Tualatin, Oregon over the historical period of 1960-1999 and future periods of 2010-2049 and 2050-2089. Using the LiDAR data, Soil and Water Assessment Tool (SWAT) software, Sacramento model, flood frequency analysis and HEC-RAS, we were able to delineate the basin and extract the vegetative features, calculate the 50-year return interval flow within the basin and predict the 50-year floodplain for 2049 and 2089. A specialized geo-processing algorithm was developed to delineate hydrologic “ecotones”, a floodplain-connected area used in evaluating the condition of riparian areas and streams. A complete current and future conditions analysis was performed for the vegetation within the ecotones in order to: 1) provide an existing inventory of vegetation within the watershed and 2) to predict the affect that climate change may have on vegetation within the watershed.

  9. Characterization of dominant hydrologic events: the role of spatial, temporal and climatic forces in generating the greatest sediment loads

    Science.gov (United States)

    Squires, A. L.; Boll, J.; Brooks, E. S.

    2013-12-01

    Soil erosion and the ensuing elevated sediment loads in surface water bodies result in impaired water quality and unsuitable habitat for salmonid species and other cold water biota. Increased sediment loads also relate to high nutrient levels in streams at downstream locations. Identification of the most sensitive factors leading to major sediment loads is useful in selection and placement of agricultural best management practices (BMPs), especially those that are management oriented such as nutrient management plans and the timing of tillage. Many BMPs work well for average storms but do not achieve desired results during the large storms, when hydrologically sensitive areas contribute the greatest amount of runoff and erosion. Research has shown that the majority of sediment loads in streams and rivers occur during a small proportion of the year, specifically during a few large storm events. In this research, we look beyond the conclusion that large events contribute the majority of sediment loads by investigating the driving forces behind each event. Long-term monitoring data were used from two monitoring stations in a small, mixed land use watershed in northern Idaho. The upper monitoring station is below mostly agricultural land use, and the lower monitoring station is below mostly urban land use. The watershed in question, Paradise Creek in Idaho, is the subject of a sediment TMDL which has not yet been consistently achieved and is currently up for review by the Idaho Department of Environmental Quality. We statistically analyzed the influence of multiple interacting variables on the magnitude of sediment loads during hydrologic events from 2002 to 2012. Spatial (i.e., above and below monitoring station data), temporal (i.e., seasonality), and climatic effects (i.e., precipitation, snowfall and snow melt) were examined, as well as the presence of frozen soils and the timing of events relative to each other. We hypothesized that (1) the events with the

  10. Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand

    Directory of Open Access Journals (Sweden)

    Mayzonee Ligaray

    2015-12-01

    Full Text Available The Chao Phraya River in Thailand has been greatly affected by climate change and the occurrence of extreme flood events, hindering its economic development. This study assessed the hydrological responses of the Chao Phraya River basin under several climate sensitivity and greenhouse gas emission scenarios. The Soil and Water Assessment Tool (SWAT model was applied to simulate the streamflow using meteorological and observed data over a nine-year period from 2003 to 2011. The SWAT model produced an acceptable performance for calibration and validation, yielding Nash-Sutcliffe efficiency (NSE values greater than 0.5. Precipitation scenarios yielded streamflow variations that corresponded to the change of rainfall intensity and amount of rainfall, while scenarios with increased air temperatures predicted future water shortages. High CO2 concentration scenarios incorporated plant responses that led to a dramatic increase in streamflow. The greenhouse gas emission scenarios increased the streamflow variations to 6.8%, 41.9%, and 38.4% from the reference period (2003–2011. This study also provided a framework upon which the peak flow can be managed to control the nonpoint sources during wet season. We hope that the future climate scenarios presented in this study could provide predictive information for the river basin.

  11. Projected Impact of Climate Change on Hydrological Regimes in the Philippines

    Science.gov (United States)

    Kanamaru, Hideki; Keesstra, Saskia; Maroulis, Jerry; David, Carlos Primo C.; Ritsema, Coen J.

    2016-01-01

    The Philippines is one of the most vulnerable countries in the world to the potential impacts of climate change. To fully understand these potential impacts, especially on future hydrological regimes and water resources (2010-2050), 24 river basins located in the major agricultural provinces throughout the Philippines were assessed. Calibrated using existing historical interpolated climate data, the STREAM model was used to assess future river flows derived from three global climate models (BCM2, CNCM3 and MPEH5) under two plausible scenarios (A1B and A2) and then compared with baseline scenarios (20th century). Results predict a general increase in water availability for most parts of the country. For the A1B scenario, CNCM3 and MPEH5 models predict an overall increase in river flows and river flow variability for most basins, with higher flow magnitudes and flow variability, while an increase in peak flow return periods is predicted for the middle and southern parts of the country during the wet season. However, in the north, the prognosis is for an increase in peak flow return periods for both wet and dry seasons. These findings suggest a general increase in water availability for agriculture, however, there is also the increased threat of flooding and enhanced soil erosion throughout the country. PMID:27749908

  12. The Effects of Changing Land Use and Climate on the Hydrology and Carbon Budget of Lake Simcoe Watershed, Ontario, Canada

    Science.gov (United States)

    Oni, Stephen Kayode

    indicates the sensitivity of surface water quantity-quality to rising air temperature with the possibility of an increase in CO2 emissions from the rivers in the future. Understanding the processes that mediate DOC mobilization into Lake Simcoe from its catchment may lead to improvements in watershed management and a better understanding of other carbon dependent biogeochemical processes such as mercury. Keywords: CGCM, Climate change, Dissolved organic carbon, Environmental modelling, HBV model, Hydrology, INCA-C, Lake Simcoe, Land use change, Remote sensing, SDSM, Statistical downscaling.

  13. Evaluating the influence of long term historical climate change on catchment hydrology – using drought and flood indices

    Directory of Open Access Journals (Sweden)

    J. C. Refsgaard

    2013-02-01

    Full Text Available This study uses a 133 yr data set from the 1055 km2 Skjern River catchment in a western Danish catchment to evaluate: long-term past climate changes in the area; the capability of a conceptual hydrological model NAM to simulate climate change impacts on river discharge; and the occurrences of droughts and floods in a changing climate. The degree of change in the climatic variables is examined using the non-parametric Mann-Kendall test. During the last 133 yr the area has experienced a significant change in precipitation of 46% and a temperature change of 1.3 °C leading to (simulated increases in discharge of 103% and groundwater recharge of 172%. Only a small part of the past climatic changes was found to be correlated to the climatic drivers: NAO, SCA and AMO. The NAM model was calibrated on the period 1961–1970 and showed generally an excellent match between simulated and observed discharge. The capability of the hydrological model to predict climate change impact was investigated by looking at performances outside the calibration period. The results showed a reduced model fit, especially for the modern time periods (after the 1970s, and not all hydrological changes could be explained. This might indicate that hydrological models cannot be expected to predict climate change impacts on discharge as accurately in the future, as they perform under present conditions, where they can be calibrated. The (simulated stream discharge was subsequently analyzed using flood and drought indices based on the threshold method. The extreme signal was found to depend highly on the period chosen as reference to normal. The analysis, however, indicated enhanced amplitude of the hydrograph towards the drier extremes superimposed on the overall discharge increase leading to more relative drought periods.

  14. Long-term environmental drivers of DOC fluxes: Linkages between management, hydrology and climate in a subtropical coastal estuary

    Science.gov (United States)

    Regier, Peter; Briceño, Henry; Jaffé, Rudolf

    2016-12-01

    Urban and agricultural development of the South Florida peninsula has disrupted historic freshwater flow in the Everglades, a hydrologically connected ecosystem stretching from central Florida to the Gulf of Mexico, USA. Current system-scale restoration efforts aim to restore natural hydrologic regimes to reestablish pre-drainage ecosystem functioning through increased water availability, quality and timing. Aquatic transport of carbon in this ecosystem, primarily as dissolved organic carbon (DOC), plays a critical role in biogeochemical cycling and food-web dynamics, and will be affected both by water management policies and climate change. To better understand DOC dynamics in South Florida estuaries and how hydrology, climate and water management may affect them, 14 years of monthly data collected in the Shark River estuary were used to examine DOC flux dynamics in a broader environmental context. Multivariate statistical methods were applied to long-term datasets for hydrology, water quality and climate to untangle the interconnected environmental drivers that control DOC export at monthly and annual scales. DOC fluxes were determined to be primarily controlled by hydrology but also by seasonality and long-term climate patterns and episodic weather events. A four-component model (salinity, rainfall, inflow, Atlantic Multidecadal Oscillation) capable of predicting DOC fluxes (R2 = 0.84, p < 0.0001, n = 155) was established and applied to potential climate change scenarios for the Everglades to assess DOC flux response to climate and restoration variables. The majority of scenario runs indicated that DOC export from the Everglades is expected to decrease due to future changes in rainfall, water management and salinity.

  15. Global change and terrestrial hydrology - A review

    Science.gov (United States)

    Dickinson, Robert E.

    1991-01-01

    This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models ae considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.

  16. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    Directory of Open Access Journals (Sweden)

    C. Prudhomme

    2012-12-01

    Full Text Available The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future.

    Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology.

    Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided.

    Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for

  17. Hydrological response to climate change: The Pearl River, China under different RCP scenarios

    Directory of Open Access Journals (Sweden)

    Dan Yan

    2015-09-01

    New hydrological insights for the region: Previous studies focussed on annual discharge and extreme flood events in the basin. However it is also important to assess variations in low flow across the basin, because it is suffering from water shortage and salt water intrusion in the dry season. Results indicate a reduction in average low flow under the five climate models. The reduction varies across the basin and is between 6 and 48% for RCP4.5. River discharge in the dry season is projected to decrease throughout the basin. In the wet season, river discharge tends to increase in the middle and lower reaches and decrease in the upper reach of the Pearl River basin. The variation of river discharge is likely to aggravate water stress. Especially the reduction of low flow is problematic as already now the basin experiences temporary water shortages in the delta.

  18. Climate-related change of snow contribution in the development of dangerous hydrological phenomenon on rivers

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2013-01-01

    Full Text Available Under current climate change the amount of snow plays a fundamental role in occurrence of hazardous hydrological events causing a steady growth in frequency of hazardous snow melt floods in mountain and piedmont areas in the south of Siberia and the Urals and coastal areas of the Far East. For these areas as well as for the Caucasus the following is also typical: greater influence of snow on occurrence of hazardous snow-rainfall floods, higher frequency of hazardous snowfalls and avalanching. Small amount of snow is one of the factors causing higher frequency of extreme lacks of water in summer low water periods on rivers of Asian Russia. On rivers of European Russia increased frequency of thaws and longer periods of snow melt reduce flood risk and enhance the role of snow in feeding underground waters to impede the growth in frequency of extreme lacks of water during low water periods.

  19. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios

    DEFF Research Database (Denmark)

    Molina Navarro, Eugenio; Trolle, Dennis; Martínez-Pérez, Silvia

    2014-01-01

    Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate and land use change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...

  20. Impacts of rainfall and air temperature variations due to climate change upon hydrological characteristics: a case study

    Science.gov (United States)

    Rainfall and air temperature variations resulting from climate change are important driving forces to alter hydrologic processes in watershed ecosystems. This study investigated impacts of past and potential future rainfall and air temperature variations upon water discharge, water outflow (from th...

  1. HESS Opinions: "Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability"

    Directory of Open Access Journals (Sweden)

    G. Karavokiros

    2009-02-01

    Full Text Available Since 1990 extensive funds have been spent on research in climate change. Although Earth Sciences, including climatology and hydrology, have benefited significantly, progress has proved incommensurate with the effort and funds, perhaps because these disciplines were perceived as "tools" subservient to the needs of the climate change enterprise rather than autonomous sciences. At the same time, research was misleadingly focused more on the "symptom", i.e. the emission of greenhouse gases, than on the "illness", i.e. the unsustainability of fossil fuel-based energy production. Unless energy saving and use of renewable resources become the norm, there is a real risk of severe socioeconomic crisis in the not-too-distant future. A framework for drastic paradigm change is needed, in which water plays a central role, due to its unique link to all forms of renewable energy, from production (hydro and wave power to storage (for time-varying wind and solar sources, to biofuel production (irrigation. The extended role of water should be considered in parallel to its other uses, domestic, agricultural and industrial. Hydrology, the science of water on Earth, must move towards this new paradigm by radically rethinking its fundamentals, which are unjustifiably trapped in the 19th-century myths of deterministic theories and the zeal to eliminate uncertainty. Guidance is offered by modern statistical and quantum physics, which reveal the intrinsic character of uncertainty/entropy in nature, thus advancing towards a new understanding and modelling of physical processes, which is central to the effective use of renewable energy and water resources.

  2. Efficient Parallel Global Optimization for High Resolution Hydrologic and Climate Impact Models

    Science.gov (United States)

    Shoemaker, C. A.; Mueller, J.; Pang, M.

    2013-12-01

    High Resolution hydrologic models are typically computationally expensive, requiring many minutes or perhaps hours for one simulation. Optimization can be used with these models for parameter estimation or for analyzing management alternatives. However Optimization of these computationally expensive simulations requires algorithms that can obtain accurate answers with relatively few simulations to avoid infeasibly long computation times. We have developed a number of efficient parallel algorithms and software codes for optimization of expensive problems with multiple local minimum. This is open source software we are distributing. It runs in Matlab and Python, and has been run on Yellowstone supercomputer. The talk will quickly discuss the characteristics of the problem (e.g. the presence of integer as well as continuous variables, the number of dimensions, the availability of parallel/grid computing, the number of simulations that can be allowed to find a solution, etc. ) that determine which algorithms are most appropriate for each type of problem. A major application of this optimization software is for parameter estimation for nonlinear hydrologic models, including contaminant transport in subsurface (e.g. for groundwater remediation or multi-phase flow for carbon sequestration), nutrient transport in watersheds, and climate models. We will present results for carbon sequestration plume monitoring (multi-phase, multi-constiuent), for groundwater remediation, and for the CLM climate model. The carbon sequestration example is based on the Frio CO2 field site and the groundwater example is for a 50,000 acre remediation site (with model requiring about 1 hour per simulation). Parallel speed-ups are excellent in most cases, and our serial and parallel algorithms tend to outperform alternative methods on complex computationally expensive simulations that have multiple global minima.

  3. HESS Opinions "Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability"

    Directory of Open Access Journals (Sweden)

    G. Karavokiros

    2008-10-01

    Full Text Available Since 1990 extensive funds have been spent on research in climate change. Although Earth Sciences, including climatology and hydrology, have benefited significantly, progress has proved incommensurate with the effort and funds, perhaps because these disciplines were perceived as "tools" subservient to the needs of the climate change enterprise rather than autonomous sciences. At the same time, research was misleadingly focused more on the "symptom", i.e. the emission of greenhouse gases, than on the "illness", i.e. the unsustainability of fossil fuel-based energy production. There is a real risk of severe socioeconomic crisis in the not-too-distant future, unless energy saving and use of renewables become the norm. A framework for drastic change is needed, in which water plays a central role, due to its unique link to all forms of renewable energy, from production (hydro, wave to storage (for time-varying wind and solar sources, to biofuel production (irrigation. The expanded role of water should be considered in parallel to usual roles in domestic, agricultural and industrial use. Hydrology, the science of water on Earth, must reinvent itself within this new paradigm and radically rethink its fundaments, which are unjustifiably trapped in the 19th-century myths of deterministic theories and the zeal to eliminate uncertainty. Guidance is offered by modern statistical and quantum physics, revealing the intrinsic character of uncertainty/entropy in nature, thus advancing towards a new understanding and modelling of physical processes, which is fundamental for the effective use of renewable energy and water resources.

  4. Isotopic and hydrologic responses of small, closed lakes to climate variability: Comparison of measured and modeled lake level and sediment core oxygen isotope records

    Science.gov (United States)

    Steinman, Byron A.; Abbott, Mark B.; Nelson, Daniel B.; Stansell, Nathan D.; Finney, Bruce P.; Bain, Daniel J.; Rosenmeier, Michael F.

    2013-03-01

    Simulations conducted using a coupled lake-catchment isotope mass balance model forced with continuous precipitation, temperature, and relative humidity data successfully reproduce (within uncertainty limits) long-term (i.e., multidecadal) trends in reconstructed lake surface elevations and sediment core oxygen isotope (δ18O) values at Castor Lake and Scanlon Lake, north-central Washington. Error inherent in sediment core dating methods and uncertainty in climate data contribute to differences in model reconstructed and measured short-term (i.e., sub-decadal) sediment (i.e., endogenic and/or biogenic carbonate) δ18O values, suggesting that model isotopic performance over sub-decadal time periods cannot be successfully investigated without better constrained climate data and sediment core chronologies. Model reconstructions of past lake surface elevations are consistent with estimates obtained from aerial photography. Simulation results suggest that precipitation is the strongest control on lake isotopic and hydrologic dynamics, with secondary influence by temperature and relative humidity. This model validation exercise demonstrates that lake-catchment oxygen isotope mass balance models forced with instrumental climate data can reproduce lake hydrologic and isotopic variability over multidecadal (or longer) timescales, and therefore, that such models could potentially be used for quantitative investigations of paleo-lake responses to hydroclimatic change.

  5. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    Science.gov (United States)

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  6. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  7. Parameterization of FAO's AquaCrop Model by Integrating a Hydrological Model and Climate Indices

    Science.gov (United States)

    Langhorn, C.; Kienzle, S. W.; Doria, R.; Jiskoot, H.; Cheng, H.

    2014-12-01

    One of the greatest global challenges is to meet growing food demand under rapidly changing climate conditions. Continued global population growth increases the pressure on the agriculture sector to produce enough food to feed the world. In 2013, the province of Alberta, Canada, set a record high for principal field crop production of 34.5 million tonnes (Matejovsky, 2014). AquaCrop, a crop yield and water productivity model developed by the Land and Water Division of the Food and Agriculture Organization of the United Nations (FAO), attempts to balance the accuracy, simplicity and robustness of crop modelling (Steduto et al., 2009). The model is focused on the three components of the soil-plant-atmosphere continuum. AquaCrop is applied in this study for simulating hard red spring wheat and durum wheat yields, and simulated yields are verified against observed yields available from a crop insurer. One of the challenges of crop yield modelling is the selection of a realistic seeding date, which can vary by four to five weeks (end of March to end of April). In order to enable realistic simulation for the historical period 1950-2010 as well the future period 2041-2070, AquaCrop is coupled with the ACRU agro-hydrological modelling system to determine the soil moisture conditions after the spring snow melt, and with a WMO climate index which determines the climatological beginning of the growing season. Therefore, the selection of a realistic seeding data for individual years can be dynamically optimized, based on the combination of the beginning of the climatological growing season and soil moisture status. The results of the coupling of ACRU and calculated climate indices with AquaCrop will be presented to show how improvements of parameterization of the AquaCrop model can be used to simulate wheat yields in Southern Alberta under changing climate conditions.

  8. Global Climate Model Simulated Hydrologic Droughts and Floods in the Nelson-Churchill Watershed

    Science.gov (United States)

    Vieira, M. J. F.; Stadnyk, T. A.; Koenig, K. A.

    2014-12-01

    There is uncertainty surrounding the duration, magnitude and frequency of historical hydroclimatic extremes such as hydrologic droughts and floods prior to the observed record. In regions where paleoclimatic studies are less reliable, Global Climate Models (GCMs) can provide useful information about past hydroclimatic conditions. This study evaluates the use of Coupled Model Intercomparison Project 5 (CMIP5) GCMs to enhance the understanding of historical droughts and floods across the Canadian Prairie region in the Nelson-Churchill Watershed (NCW). The NCW is approximately 1.4 million km2 in size and drains into Hudson Bay in Northern Manitoba, Canada. One hundred years of observed hydrologic records show extended dry and wet periods in this region; however paleoclimatic studies suggest that longer, more severe droughts have occurred in the past. In Manitoba, where hydropower is the primary source of electricity, droughts are of particular interest as they are important for future resource planning. Twenty-three GCMs with daily runoff are evaluated using 16 metrics for skill in reproducing historic annual runoff patterns. A common 56-year historic period of 1950-2005 is used for this evaluation to capture wet and dry periods. GCM runoff is then routed at a grid resolution of 0.25° using the WATFLOOD hydrological model storage-routing algorithm to develop streamflow scenarios. Reservoir operation is naturalized and a consistent temperature scenario is used to determine ice-on and ice-off conditions. These streamflow simulations are compared with the historic record to remove bias using quantile mapping of empirical distribution functions. GCM runoff data from pre-industrial and future projection experiments are also bias corrected to obtain extended streamflow simulations. GCM streamflow simulations of more than 650 years include a stationary (pre-industrial) period and future periods forced by radiative forcing scenarios. Quantile mapping adjusts for magnitude

  9. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    Directory of Open Access Journals (Sweden)

    C. Prudhomme

    2013-03-01

    Full Text Available The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate–hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice

  10. Towards a climate impact assessment of the Tarim River, NW China: integrated hydrological modelling using SWIM

    Science.gov (United States)

    Wortmann, Michel

    2014-05-01

    The Tarim River is the principle water source of the Xinjiang Uyghur Autonomous Region, NW China and the country's largest endorheic river, terminating in the Taklamakan desert. The vast majority of discharge is generated in the glaciated mountain ranges to the north (Tian Shan), south (Kunlun Shan/Tibetan Plateau) and west (Pamir Mountains) of the Taklamakan desert. The main water user is the intensive irrigation agriculture for mostly cotton and fruit production in linear river oases of the middle and lower reaches as well as a population of 10 Mil. people. Over the past 40 years, an increase in river discharge was reported, assumed to be caused by enhanced glacier melt due to a warming climate. Rapid population growth and economic development have led to a significant expansion of area under irrigation, resulting in water shortages for downstream users and the floodplain vegetation. Water resource planning and management of the Tarim require integrated assessment tools to examine changes under future climate change, land use and irrigation scenarios. The development of such tools, however, is challenged by sparse climate and discharge data as well as available data on water abstractions and diversions. The semi-distributed, process-based hydrological model SWIM (Soil and Water Integrated Model) was implemented for the headwater and middle reaches that generate over 90% of discharge, including the Aksu, Hotan and Yarkant rivers. It includes the representation of snow and glacier melt as well as irrigation abstractions. Once calibrated and validated to river discharge, the model is used to analyse future climate scenarios provided by one physically-based and one statistical regional climate model (RCM). Preliminary results of the model calibration and validation indicate that SWIM is able simulate river discharge adequately, despite poor data conditions. Snow and glacier melt account for the largest share in river discharge. The modelling results will devise

  11. Assessing the changes of return periods of floods and droughts in response to climate change using a hydrologic modeling approach

    Science.gov (United States)

    Chien, H.

    2015-12-01

    When accessing the impacts of climate change on water resources, it is important to estimate changes in the frequencies and magnitudes of projected floods and droughts in response to climate change, considering that most disasters result from these hydrological extremes. The objective of this study is to estimate the changes of return periods of floods and droughts based on projected future streamflows in the Illinois River Watershed according to various climate change models. Future streamflows are simulated by combining data from 59 climate model scenarios with the Soil and Water Assessment Tool (SWAT) hydrologic model. Subsequently, a Gumbel distribution (Extreme Value Type I) is fitted to the annual maximum simulated streamflow to derive the number of return periods of future hydrological extremes. The annual minimum 7-day average streamflow has been adopted for drought analysis. A Weibull distribution (Extreme Value Type Ш) is used to analyze the return periods of low flows. The 10-year and 100-year return periods of floods and droughts from 2020 to 2049 and from 2070 to 2099 are analyzed in comparison to streamflows from 1975 to 2004. Results indicate that average streamflow predicted from 33 (2020-2049) and 29 (2070-2099) climate scenarios are expected to decrease. The majority of the 10-year and 100-year return periods of floods in 2020-2049 and 2070-2099 increase; however 10-year and 100-year return periods for droughts tend to decrease.

  12. Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal

    Directory of Open Access Journals (Sweden)

    Laxmi Prasad Devkota

    2015-09-01

    New hydrological insights for the region: The study found that climate change does not pose major threat on average water availability. However, temporal flow variations are expected to increase in the future. The magnitude of projected flow for given return periods, however, strongly depends on the climate model run considered. The ECHAM05 results show higher flow changes than those estimated from the HADCM3 outputs. A relation was derived to estimate projected flood flow as a function of return period and flow estimated from historical series. Amidst the uncertainties, these predictions provide reasonable insight for re-consideration of design standards or design values of hydraulic structures under climate change.

  13. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin

    Science.gov (United States)

    Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio

    2003-07-01

    This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.

  14. Climate change and hydrologic process response in the Tarim River Basin over the past 50 years

    Institute of Scientific and Technical Information of China (English)

    XU Changchun; CHEN Yaning; LI Weihong; CHEN Yapeng

    2006-01-01

    Climate change and hydrologic process response in the Tarim River Basin over the past 50years are the focus of more and more researchers'attention. In this paper, both temperature and precipitation time series were found to present a monotonic increasing trend using nonparametric tests.Noticeably, a significant step change in both temperature and precipitation time series occurred in 1986. By contrasting the trends of natural water process in headstream and mainstream, we found that it was anthropogenic activities not climate change that caused the river dried up and vegetation degenerated in the lower reaches of Tarim River. The results of gray correlation analysis show that the runoff of higher latitude distributing river is more closely associated with winter snow stocking, while that of lower latitude is more closely related to summer temperature. Runoff in the headstream is more sensitive to precipitation, while that in the mainstream is more sensitive to evaporation. The strong evaporation caused by increasing temperature weakened runoff to some extent in spite of the fact that precipitation increased over the past 50 years.

  15. Response in the trophic state of stratified lakes to changes in hydrology and water level: potential effects of climate change

    Science.gov (United States)

    Robertson, Dale M.; Rose, William J.

    2011-01-01

    To determine how climate-induced changes in hydrology and water level may affect the trophic state (productivity) of stratified lakes, two relatively pristine dimictic temperate lakes in Wisconsin, USA, were examined. Both are closed-basin lakes that experience changes in water level and degradation in water quality during periods of high water. One, a seepage lake with no inlets or outlets, has a small drainage basin and hydrology dominated by precipitation and groundwater exchange causing small changes in water and phosphorus (P) loading, which resulted in small changes in water level, P concentrations, and productivity. The other, a terminal lake with inlets but no outlets, has a large drainage basin and hydrology dominated by runoff causing large changes in water and P loading, which resulted in large changes in water level, P concentrations, and productivity. Eutrophication models accurately predicted the effects of changes in hydrology, P loading, and water level on their trophic state. If climate changes, larger changes in hydrology and water levels than previously observed could occur. If this causes increased water and P loading, stratified (dimictic and monomictic) lakes are expected to experience higher water levels and become more eutrophic, especially those with large developed drainage basins.

  16. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario

    Directory of Open Access Journals (Sweden)

    Ji-Woo Lee

    2014-01-01

    Full Text Available This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM, namely, the Global/Regional Integrated Model System (GRIMs, Regional Model Program (RMP. The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4. The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070 simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.

  17. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    Science.gov (United States)

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  18. Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan

    Science.gov (United States)

    Ali, Shaukat; Li, Dan; Congbin, Fu; Khan, Firdos

    2015-01-01

    This study is based on both the recent and the predicted twenty first century climatic and hydrological changes over the mountainous Upper Indus Basin (UIB), which are influenced by snow and glacier melting. Conformal-Cubic Atmospheric Model (CCAM) data for the periods 1976-2005, 2006-2035, 2041-2070, and 2071-2100 with RCP4.5 and RCP8.5; and Regional Climate Model (RegCM) data for the periods of 2041-2050 and 2071-2080 with RCP8.5 are used for climatic projection and, after bias correction, the same data are used as an input to the University of British Columbia (UBC) hydrological model for river flow projections. The projections of all of the future periods were compared with the results of 1976-2005 and with each other. Projections of future changes show a consistent increase in air temperature and precipitation. However, temperature and precipitation increase is relatively slow during 2071-2100 in contrast with 2041-2070. Northern parts are more likely to experience an increase in precipitation and temperature in comparison to the southern parts. A higher increase in temperature is projected during spring and winter over southern parts and during summer over northern parts. Moreover, the increase in minimum temperature is larger in both scenarios for all future periods. Future river flow is projected by both models to increase in the twenty first century (CCAM and RegCM) in both scenarios. However, the rate of increase is larger during the first half while it is relatively small in the second half of the twenty first century in RCP4.5. The possible reason for high river flow during the first half of the twenty first century is the large increase in temperature, which may cause faster melting of snow, while in the last half of the century there is a decreasing trend in river flow, precipitation, and temperature (2071-2100) in comparison to 2041-2070 for RCP4.5. Generally, for all future periods, the percentage of increased river flow is larger in winter than in

  19. Integrating hydropower and intermittent climate-related renewable energies: a call for hydrology

    Science.gov (United States)

    Francois, Baptiste; Anquetin, Sandrine; Creutin, Jean-Dominique; Engeland, Kolbjorn; Favre, Anne-Catherine; Hingray, Benoit; Ramos, Maria-Helena; Raynaud, Damien; Renard, Benjamin; Sauquet, Eric; Sauterleute, Julian-Friedrich; Vidal, Jean-Philippe; Warland, Geir

    2014-05-01

    Currently, the debate about the role of hydropower as energy storage and balancing energy source in context of high intermittency and variability of solar and wind energy exposes hydrologists to new challenges. There is a common consensus that a high penetration of wind and solar energies can only be achieved if the issues to their intermittent power outputs are solved - issues which can be at least partially approached by means of hydropower systems. Indeed, unlike wind and solar energies which are only produced when wind and sun are available, hydro resources can be stored in reservoirs for later use. Finally, the energy production should balance the energy demand which is to a large degree, controlled by weather variables, especially temperature. However, despite substantial work on the space-time variability of each individual hydro-meteorological variable, advances on the joint analysis of the processes that are underlying this integration are more limited. In this commentary, we analyze three specific challenges dedicated to the hydrological community. They aim to improve the integration of hydropower with solar and wind energy sources to make more effective the use of renewable energy and water resources. These challenges are: i) the need to provide a new hydro-meteorological framework for the analysis of the space-time co-fluctuations between runoff regimes and solar, wind and temperature variables; ii) understanding how processes like land-use and climate change affect the nature of these co-fluctuations; and iii) the need to develop means for a quantitative analysis of interactions between the use of water for power generation and other water uses including the preservation of aquatic ecosystems. In some way, the success of climate change mitigation policies based on high intermittent energy integration will depend on how these different challenges have been achieved by hydrologist community. The work presented is part of the FP7 project COMPLEX

  20. Simulating the Hydrologic Effects of Climate Change in 5 Research Watersheds using a Distributed-Parameter Watershed Model

    Science.gov (United States)

    Walker, J. F.; Hunt, R.; Aulenbach, B. T.; Clow, D. W.; Murphy, S.; Shanley, J. B.; Scholl, M. A.; Hay, L.; Regan, R. S.; Markstrom, S. L.

    2013-12-01

    A new focus of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets (WEBB) program is the development of watershed models to predict hydrologic response to future conditions including land-use and climate change. Fine-scale models of 5 WEBB watersheds were constructed and embedded in coarse-scale models of larger stream systems. The WEBB watersheds range in size from 41 to 3,260 hectares; the coarse-scale models range in size from 1,100 to 4,800 square kilometers. The coarse-scale models were calibrated using data collected from 1980 to 2012 and included streamflow, snow-water equivalent (where appropriate), and seasonal distributions of solar radiation and potential evapotranspiration. Solar radiation and potential evapotranspiration were retrieved from a national gridded dataset using the USGS Geodata Portal (GDP) tool. Snowpack data was available as a national gridded dataset from December 2003 through November 2012, and was retrieved using the GDP. A stepwise approach was taken to identify specific hydrologic processes pertinent to the calibration targets. Calibration was carried out using the Parameter ESTimation (PEST) suite of automated calibration tools. Several climate models and three emission scenarios were selected from a range of Intergovernmental Panel on Climate Change (IPCC) climate projections to investigate the potential hydrologic effects of climate change in the WEBB watersheds. The GDP was used to construct input data sets for each coarse-scale model using a national dataset of downscaled climate data. Comparisons include projected changes in the dominant hydrologic processes across the five WEBB headwater basins, as well as, differences between headwater streams and higher-order streams at a regional scale.

  1. Regional hydrologic response to climate change in the conterminous United States using high-resolution hydroclimate simulations

    Science.gov (United States)

    Naz, Bibi S.; Kao, Shih-Chieh; Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; Bowling, Laura C.

    2016-08-01

    Despite the fact that Global Climate Model (GCM) outputs have been used to project hydrologic impacts of climate change using off-line hydrologic models for two decades, many of these efforts have been disjointed - applications or at least calibrations have been focused on individual river basins and using a few of the available GCMs. This study improves upon earlier attempts by systematically projecting hydrologic impacts for the entire conterminous United States (US), using outputs from ten GCMs from the latest Coupled Model Intercomparison Project phase 5 (CMIP5) archive, with seamless hydrologic model calibration and validation techniques to produce a spatially and temporally consistent set of current hydrologic projections. The Variable Infiltration Capacity (VIC) model was forced with ten-member ensemble projections of precipitation and air temperature that were dynamically downscaled using a regional climate model (RegCM4) and bias-corrected to 1/24° (~ 4 km) grid resolution for the baseline (1966-2005) and future (2011-2050) periods under the Representative Concentration Pathway 8.5. Based on regional analysis, the VIC model projections indicate an increase in winter and spring total runoff due to increases in winter precipitation of up to 20% in most regions of the US. However, decreases in snow water equivalent (SWE) and snow-covered days will lead to significant decreases in summer runoff with more pronounced shifts in the time of occurrence of annual peak runoff projected over the eastern and western US. In contrast, the central US will experience year-round increases in total runoff, mostly associated with increases in both extreme high and low runoff. The projected hydrological changes described in this study have implications for various aspects of future water resource management, including water supply, flood and drought preparation, and reservoir operation.

  2. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  3. Climate and Hydrological Data Analysis for hydrological and solute transport modelling purposes in the Muriaé River basin, Atlantic Forest Biome, SE Brazil

    Science.gov (United States)

    Santos, Juliana; Künne, Annika; Kralisch, Sven; Fink, Manfred; Brenning, Alexander

    2016-04-01

    The Muriaé River basin in SE Brazil has been experiencing an increasing pressure on water resources, due to the population growth of the Rio de Janeiro urban area connected with the growth of the industrial and agricultural sector. This leads to water scarcity, riverine forest degradation, soil erosion and water quality problems among other impacts. Additionally the region has been suffering with seasonal precipitation variations leading to extreme events such as droughts, floods and landslides. Climate projections for the near future indicate a high inter-annual variability of rainfall with an increase in the frequency and intensity of heavy rainfall events combined with a statistically significant increase in the duration of dry periods and a reduced duration of wet periods. This may lead to increased soil erosion during the wet season, while the longer dry periods may reduce the vegetation cover, leaving the soil even more exposed and vulnerable to soil erosion. In consequence, it is crucial to understand how climate affects the interaction between the timing of extreme rainfall events, hydrological processes, vegetation growth, soil cover and soil erosion. In this context, physically-based hydrological modelling can contribute to a better understanding of spatial-temporal process dynamics in the Earth's system and support Integrated Water Resourses Management (IWRM) and adaptation strategies. The study area is the Muriaé river basin which has an area of approx. 8000 km² in Minas Gerais and Rio de Janeiro States. The basin is representative of a region of domain of hillslopes areas with the predominancy of pasture for livestock production. This study will present some of the relevant analyses which have been carried out on data (climate and streamflow) prior to using them for hydrological modelling, including consistency checks, homogeneity, pattern and statistical analyses, or annual and seasonal trends detection. Several inconsistencies on the raw data were

  4. Nutrients and hydrology indicate the driving mechanisms of peatland surface patterning.

    Science.gov (United States)

    Eppinga, Maarten B; de Ruiter, Peter C; Wassen, Martin J; Rietkerk, Max

    2009-06-01

    Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for empirically testing model predictions by field manipulations. Here, we present a model that describes spatial interactions between vegetation, nutrients, hydrology, and peat. We used this model to study pattern formation as driven by three different mechanisms: peat accumulation, water ponding, and nutrient accumulation. By on-and-off switching of each mechanism, we created a full-factorial design to see how these mechanisms affected surface patterning (pattern of vegetation and peat height) and underlying patterns in nutrients and hydrology. Results revealed that different combinations of structuring mechanisms lead to similar types of peatland surface patterning but contrasting underlying patterns in nutrients and hydrology. These contrasting underlying patterns suggest that the presence or absence of the structuring mechanisms can be identified by relatively simple short-term field measurements of nutrients and hydrology, meaning that longer-term field manipulations can be circumvented. Therefore, this study provides promising avenues for future empirical studies on peatland patterning.

  5. The concept of hydrologic landscapes

    Science.gov (United States)

    Winter, T.C.

    2001-01-01

    Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land-surface form, geology, and climate. The basic land-surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground-water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land-surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake-research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic-landscapes concept to evaluate the effect of ground water on the degree of mineralization and major-ion chemistry of lakes that lie within ground-water flow systems.

  6. A review of measurement and modeling of Light-absorbing Particles in Snow and Ice and their climatic and hydrological impact

    Science.gov (United States)

    Qian, Y.; Doherty, S. J.; Lau, W. K. M.; Ming, J.; Wang, H.; Warren, S. G.; Yasunari, T. J.; Zhang, R.; Flanner, M.

    2015-12-01

    Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance , which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this talk, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.

  7. Emergence of new hydrologic regimes of surface water resources in the conterminous United States under future warming

    Science.gov (United States)

    Leng, Guoyong; Huang, Maoyi; Voisin, Nathalie; Zhang, Xuesong; Asrar, Ghassem R.; Leung, L. Ruby

    2016-11-01

    Despite the importance of surface water to people and ecosystems, few studies have explored detectable changes in surface water supply in a changing climate, given its large natural variability. Here we analyze runoff projections from the Variable Infiltration Capacity hydrological model driven by 97 downscaled and bias-corrected Coupled Model Intercomparison Project Phase 5 climate projections over the conterminous United States (CONUS). Our results show that more than 40% of the CONUS land area will experience significant changes in the probability distribution functions (i.e. PDFs) of summer and winter runoff by the end of the 21st century, which may pose great challenges to future surface water supply. Sub-basin mean runoff PDFs are projected to change significantly after 2040s depending on the emission scenarios, with earliest occurrence in the Pacific Northwest and northern California regions. When examining the response as a function of changes in the global mean temperature (ΔGMT), a linear relationship is revealed at the 95% confidence level. Generally, 1 °C increase of GMT leads to 11% and 17% more lands experiencing changes in summer and winter runoff PDFs, respectively. Such changes in land fraction scale with ΔGMT at the country scale independent of emission scenarios, but the same relationship does not necessarily hold at sub-basin scales, due to the larger role of atmospheric circulation changes and their uncertainties on regional precipitation. Further analyses show that the emergence of significant changes in sub-basin runoff PDFs is indicative of the emergence of new hydrology regimes and it is dominated by the changes in variability rather than shift in the mean, regardless of the emission scenarios.

  8. Cloud microphysics and surface properties in climate

    Energy Technology Data Exchange (ETDEWEB)

    Stamnes, K. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-09-01

    Cloud optical thickness is determined from ground-based measurements of broadband incoming solar irradiance using a radiation model in which the cloud optical depth is adjusted until computed irradiance agrees with the measured value. From spectral measurements it would be feasible to determine both optical thickness and mean drop size, which apart from cloud structure and morphology, are the most important climatic parameters of clouds. A radiative convective model is used to study the sensitivity of climate to cloud liquid water amount and cloud drop size. This is illustrated in Figure 21.1 which shows that for medium thick clouds a 10 % increase in drop size yields a surface warming of 1.5{degrees}C, which is the same as that due to a doubling of carbon dioxide. For thick clouds, a 5% decrease in drop size is sufficient to offset the warming due to doubling of carbon dioxide. A radiative transfer model for the coupled atmosphere/sea ice/ocean system is used to study the partitioning of radiative energy between the three strata, and the potential for testing such a model in terms of planned experiments in the Arctic is discussed.

  9. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams. 817.57 Section 817.57 Mineral Resources OFFICE OF SURFACE... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance:...

  10. Using local knowledge, hydrological, and climate data to develop a driftwood harvest model in interior Alaska

    Science.gov (United States)

    Jones, C.; Hinzman, L. D.; Kielland, K.

    2011-12-01

    Residents of rural Alaska usually harvest driftwood from the Yukon River during two distinct periods in the summer. Typically, driftwood accompanies high flows on the Yukon River associated with spring break-up. A few weeks later, a second pulse of driftwood associated with the "2nd Rise" typically flows during early June. This study examines the nature of the differential timing of high flow events in the Yukon River to develop a model of the driftwood harvest. Many communities in interior Alaska have grown to rely upon driftwood as an important source of wood, which is used in construction and as a source of fuel. Increasingly, villages in rural Alaska are trying to lessen their dependence upon high-cost fossil fuels and other non-renewable energy sources. A number of Alaskan villages have recently installed wood chip-fired boilers to generate heat and/or electricity and additional boilers are slated to be installed in rural Alaska in the near future. These boilers are largely fed by driftwood which can be harvested cheaply and processed easily. But if the driftwood harvest is dependent upon high flows in the Yukon, how will fluctuations in river hydrology affect the efficacy and reliability of driftwood harvest? We examined this question using information from local knowledge in conjunction with U.S. census, hydrological, and climate reanalysis data sets to model the magnitude of Yukon River driftwood harvest during summer. It appears that since 1995, high flow events have decreased magnitude, but increased in frequency, compared to the period between 1977 and 1994. Based upon this observation, the annual potential driftwood harvest in Tanana since 1995 was modeled to be greater compared to the average prior to 1994. This pattern was largely driven by a change in the frequency and duration of high flow events. Thus, the availability of driftwood as an energy resource is expected to be commensurate to the recurrence of high flow events on the Yukon River.

  11. Mitigating Climate Change with Ocean Pipes: Influencing Land Temperature and Hydrology and Termination Overshoot Risk

    Science.gov (United States)

    Kwiatkowski, L.; Caldeira, K.; Ricke, K.

    2014-12-01

    With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.

  12. Hydrologic effects of potential changes in climate, water use, and land cover in the Upper Scioto River Basin, Ohio

    Science.gov (United States)

    Ebner, Andrew D.; Koltun, G.F.; Ostheimer, Chad J.

    2015-01-01

    This report presents the results of a study to provide information on the hydrologic effects of potential 21st-century changes in climate, water use, and land cover in the Upper Scioto River Basin, Ohio (from Circleville, Ohio, to the headwaters). A precipitation-runoff model, calibrated on the basis of historical climate and streamflow data, was used to simulate the effects of climate change on streamflows and reservoir water levels at several locations in the basin. Two levels of simulations were done. The first level of simulation (level 1) accounted only for anticipated 21st-century changes in climate and operations of three City of Columbus upground reservoirs located in northwest Delaware County, Ohio. The second level of simulation (level 2) accounted for development-driven changes in land cover and water use in addition to changes in climate and reservoir operations.

  13. Infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the urbanizing Capibaribe River Basin - Brazil

    Science.gov (United States)

    Ribeiro Neto, A.; Scott, C. A.; Lima, E. A.; Montenegro, S. M. G. L.; Cirilo, J. A.

    2014-03-01

    Water availability for a range of human uses will increasingly be affected by climate change especially in the arid and semi-arid tropics. This paper aims to evaluate the ability of reservoirs and related infrastructure to meet targets for water supply in the Capibaribe River Basin (CRB), in the state of Pernambuco, Brazil. The basin has experienced spatial and sectoral (agriculture-urban) reconfiguration of water demands. Human settlements that were once dispersed, relying on intermittent sources of surface water, are now increasingly experiencing water-scarcity effects. As a result, rural populations in the CRB are concentrating around infrastructural water supplies in a socio-hydrological transition process that results from (a) hydroclimatic variability, (b) investment and assistance programs that may enhance but can also supplant local adaptive capacity, and (c) demographic trends driving urbanization of the state capital, Recife, which mirror urban growth across Brazil. In the CRB, demands are currently composed of 69.1% urban potable water, 14.3% industrial, 16.6% irrigation (with ecosystem-service demands met by residual flow). Based on the application of linked hydrologic and water-resources models using precipitation and temperature projections of the IPCC SRES A1B scenario, a reduction in rainfall of 31.8% translated to streamflow reduction of 67.4% under present reservoir operations rules. The increasing demand due to population was also taken into account. This would entail severe water supply reductions for human consumption (-45.3%) and irrigation (-78.0%) by the end of the 21st century. This study demonstrates the vulnerabilities of the infrastructure system during socio-hydrological transition in response to hydroclimatic and demand variabilities in the CRB and also indicates the differential spatial impacts and vulnerability of multiple uses of water to changes over time. The paper concludes with a discussion of the broader implications of climate

  14. Hydrologic response to forest cover changes following a Mountain Pine Beetle outbreak in the context of a changing climate

    Science.gov (United States)

    Moore, Dan; Jost, Georg; Nelson, Harry; Smith, Russell

    2013-04-01

    Over the last 15 years, there has been extensive mortality of pine forests in western North America associated with an outbreak of Mountain Pine Beetle, often followed by salvage logging. The objective of this study was to quantify the separate and combined effects of forest recovery and climate change over the 21st century on catchment hydrology in the San Jose watershed, located in the semi-arid Interior Plateau of British Columbia. Forest cover changes were simulated using a dynamic spatial model that uses a decentralized planning approach. We implemented management strategies representing current timber management objectives around achieving targeted harvest levels and incorporating existing management constraints under two different scenarios, one with no climate change and one under climate change, using climate-adjusted growth and yield curves. In addition, higher rates of fire disturbance were modelled under climate change. Under climate change, while productivity improves for some species (mainly Douglas-fir on better quality sites), on drier and poorer quality sites most species, especially Lodgepole Pine, become significantly less productive, and stocking is reduced to the point that those sites transition into grasslands. The combined effect of initial age classes (where the forest has been severely impacted by MPB), increased fire, and reduced stocking results in a greater proportion of the forest in younger age classes compared to a "Business As Usual" scenario with no climate change. The hydrologic responses to changes in vegetation cover and climate were evaluated with the flexible Hydrology Emulator and Modelling Platform (HEMP) developed at the University of British Columbia. HEMP allows a flexible discretization of the landscape. Water is moved vertically within landscape units by processes such as precipitation, canopy interception and soil infiltration, and routed laterally between units as a function of local soil and groundwater storage. The

  15. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2010-10-01

    Full Text Available The Tibetan Plateau (TP, the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating faster than those anywhere else in the world. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative forcing of black carbon (BC and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 μg/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust in snow compared to other snow-covered regions in the world.

    Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative forcing of 5–25 W m−2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 °C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates. The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1–4 times larger for BC-in-snow than CO2 increase during April–July, indicating that BC-in-snow more

  16. Five Years of Land Surface Phenology in a Large Scale Hydrological Manipulation Experiment in an Arctic Tundra Landscape

    Science.gov (United States)

    Goswami, S.; Gamon, J. A.; Tweedie, C. E.

    2010-12-01

    Climate change appears to be most pronounced at high northern latitudes. Many of the observed and modeled climate change responses in arctic tundra ecosystems have profound effects on surface energy budgets, land-atmosphere carbon exchange, plant phenology, and geomorphic processes. Detecting biotic responses to a changing environment is essential for understanding the consequences of global change. Plants can work as very effective indicators of changing conditions and, depending on the nature of the change, respond by increasing or decreasing amounts of green-leaf biomass, chlorophyll, and water content. Shifts in the composition and abundance of plant species have important effects on ecosystem processes such as net primary production and nutrient cycling. Vegetation is expected to be responsive to arctic warming, although there is some uncertainty as to how the interplay between geomorphic, hydrologic, climatic and other biotic will manifest over a range of spatial scales. The NSF-supported Biocomplexity project in Barrow, Alaska, involves experimental manipulation of water table (drained, flooded, and control treatments) in a vegetated arctic thaw lake basin to investigate the effects of altered hydrology on land-atmosphere carbon balance. In each experimental treatment, hyperspectral reflectance data were collected in the visible and near IR range of the spectrum using a robotic tram system that operated along a 300m tramline during the snow free growing period between June and August 2005-09. Water table depths and soil volumetric water content was also collected along these transects. The years 2005-2007 were control or unmanipulated experimental years and 2008 and 2009 were experimental years where water table was raised (+10cm) and lowered (-10cm) in flooding and draining experiments respectively. This presentation will document the change in phenology (NDVI) between years, treatments, and land cover types. Findings from this research have implications

  17. The hydrological performance of a green roof test bed under UK climatic conditions

    Science.gov (United States)

    Stovin, Virginia; Vesuviano, Gianni; Kasmin, Hartini

    2012-01-01

    SummaryThis paper presents new rainfall and runoff data from a UK green roof test bed which has been collected almost-continuously over a 29-month period from 01/01/2007 to 31/05/2009. Overall, the monitoring period was fairly typical of the location's long-term climatic averages, although the data set includes some extreme events in June 2007, which were associated with serious flooding locally. To focus on the system's performance under rainfall events likely to be of interest from an urban drainage/stormwater management perspective, return period analysis has been applied to identify those storm events with a rainfall depth in excess of 5 mm and a return period greater than one year. According to these criteria, 22 significant events have been identified, of which 21 have reliable runoff records. Overall the roof provided 50.2% cumulative annual rainfall retention, with a total volumetric retention equivalent to 30% during the significant events. The annual performance figures are towards the lower end of a range of international data, probably reflecting the fact that rainfall depths may be higher and evapotranspiration rates lower than in some more continental climatic settings. The roof's finite retention depth means that the maximum possible retention percentage declines as storm depth increases, and retention varied from between 0 and 20 mm, or 0% to 100%. Although some attenuation and delay of peak runoff is generally observed (mean peak flow reduction of 60% for the 21 significant events), the irregularity of natural rainfall patterns, combined with the variable influence of detention storage in specific events, makes the identification of peak-to-peak lag times difficult and arguably meaningless. Regression analyses have been undertaken to explore the potential to predict the roof's hydrological performance as a function of storm characteristics. However, these are shown to have poor predictive capability, even for the system from which they were derived

  18. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    Directory of Open Access Journals (Sweden)

    P. K. Sikdar

    2009-04-01

    Full Text Available This paper attempts to utilize hydrogeoloy and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW – a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater from the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. Aquifer within the depths of 80 m to 120 m has the maximum potential to supply water. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deeper groundwater with very low tritium is recharged mainly from distant areas. At places the deeper aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminum, nickel and chromium are also present in groundwater of various depths. Therefore, aquifers of wetland and surrounding urban areas which are heavily

  19. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    Directory of Open Access Journals (Sweden)

    P. Sahu

    2009-07-01

    Full Text Available This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW – a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also

  20. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2010-09-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low monthly runoff. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff

  1. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2011-01-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%, and they are generally larger for indicators of high and low monthly runoff

  2. Potential Implications of PCM Climate Change Scenarios for Sacramento-San Joaquin River Basin Hydrology and Water Resources

    Energy Technology Data Exchange (ETDEWEB)

    Van Rheenen, N.T.; Wood, A.W.; Palmer, R.N.; Lettenmaier, D.P. [Department of Civil and Environmental Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Sacramento-San Joaquin River Basin were evaluated using ensemble climate simulations generated by the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). Five PCM scenarios were employed. The first three were ensemble runs from 1995-2099 with a 'business as usual' global emissions scenario, each with different atmospheric initializations. The fourth was a 'control climate' scenario with greenhouse gas emissions set at 1995 levels and run through 2099. The fifth was a historical climate simulation forced with evolving greenhouse gas concentrations from 1870-2000, from which a 50-year portion is taken for use in bias-correction of the other runs. From these global simulations, transient monthly temperature and precipitation sequences were statistically downscaled to produce continuous daily hydrologic model forcings, which drove a macro-scale hydrology model of the Sacramento-San Joaquin River Basins at a ?-degree spatial resolution, and produced daily streamflow sequences for each climate scenario. Each streamflow scenario was used in a water resources system model that simulated current and predicted future performance of the system. The progressive warming of the PCM scenarios (approximately 1.2C at midcentury, and 2.2C by the 2090s), coupled with reductions in winter and spring precipitation (from 10 to 25%), markedly reduced late spring snowpack (by as much as half on average by the end of the century). Progressive reductions in winter, spring, and summer streamflow were less severe in the northern part of the study domain than in the south, where a seasonality shift was apparent. Results from the water resources system model indicate that achieving and maintaining status quo (control scenario climate) system performance in the future would be nearly impossible, given the altered climate scenario

  3. DOC Dynamics in Small Headwater Streams: the Role of Hydrology, Climate, and Land Management

    Science.gov (United States)

    Lajtha, K.; Lee, B. S.; Jones, J. A.

    2015-12-01

    Dissolved organic carbon (DOC) is a critical component of the carbon (C) cycle of both terrestrial and aquatic systems. For small headwater allochthonous streams, terrestrial C delivery fuels the metabolism of receiving waters and significantly influences biotic diversity and function. While nutrient fluxes in streams have long been used as indicators of terrestrial ecosystem processes, less attention has been given to terrestrial controls on DOC export. We used the long-term stream chemistry records from the H.J. Andrews Forest LTER to examine forest management, climatic, and hydrologic controls on both seasonal and annual DOC fluxes. Within a watershed, annual DOC flux was highly related to annual discharge (Q), although considerable variability in higher discharge years suggested a role for indices of storminess, especially early in the water year. Among watersheds, younger, previously harvested watersheds generally had significantly lower DOC fluxes for a given Q than old-growth watersheds, even 4+ decades after harvest. The exception to this pattern was a harvested watershed that had significant downed wood retained on site, and had densities of coarse woody debris (CWD) close to that of the old-growth watersheds even though live tree biomass was similar to the other harvested watersheds. Other climatic factors did not appear to have significant roles in predicting either seasonal or annual fluxes of DOC. This is in sharp contrast to fluxes of nitrate at our site, which appears to be related most significantly to the presence of alder within the watershed. Taken together, our data suggest a persistent and cascading role for CWD in old-growth forest ecosystems.

  4. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change

    Science.gov (United States)

    Wang, Le; Guo, Shenglian; Hong, Xingjun; Liu, Dedi; Xiong, Lihua

    2016-09-01

    Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of climate change in the region, this study adopted the Statistical Downscaling Model (SDSM) to downscale the outputs of a Global Climate Model (GCM) under three scenarios (RCP2.6, RCP4.5 and RCP8.5) as recommended by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) during future periods (2010‒2099) in the Poyang Lake Basin. A semi-distributed two-parameter monthly water balance model was also used to simulate and predict projected changes of runoff in the Ganjiang sub-basin. Results indicate that: 1) SDSM can simulate monthly mean precipitation reasonably well, while a bias correction procedure should be applied to downscaled extreme precipitation indices (EPI) before being employed to simulate future precipitation; 2) for annual mean precipitation, a mixed pattern of positive or negative changes are detected in the entire basin, with a slightly higher or lower trend in the 2020s and 2050s, with a consistent increase in the 2080s; 3) all six EPI show a general increase under RCP4.5 and RCP8.5 scenarios, while a mixed pattern of positive and negative changes is detected for most indices under the RCP2.6 scenario; and 4) the future runoff in the Ganjiang sub-basin shows an overall decreasing trend for all periods but the 2080s under the RCP8.5 scenario when runoff is more sensitive to changes in precipitation than evaporation.

  5. Efects of Crop Growth on Hydrological Processes in River Basins and on Regional Climate in China

    Institute of Scientific and Technical Information of China (English)

    QIN; Pei-Hua; CHEN; Feng; XIE; Zheng-Hui

    2013-01-01

    The regional climate model RegCM3 incorporating the crop model CERES,called the RegCM3CERES model,was used to study the efects of crop growth and development on regional climate and hydrological processes over seven river basins in China.A 20-year numerical simulation showed that incorporating the crop growth and development processes improved the simulation of precipitation over the Haihe River Basin,Songhuajiang River Basin and Pearl River Basin.When compared with the RegCM3 control run,RegCM3CERES reduced the negative biases of monthly mean temperature over most of the seven basins in summer,especially the Haihe River Basin and Huaihe River Basin.The simulated maximum monthly evapotranspiration for summer(JJA)was around 100 mm in the basins of the Yangtze,Haihe,Huaihe and Pearl Rivers.The seasonal and annual variations of water balance components(runof,evapotranspiration and total precipitation)over all seven basins indicate that changes of evapotranspiration agree well with total precipitation.Compared to the RegCM3,RegCM3CERES simulations indicate reduced local water recycling rate over most of the seven basins due to lower evapotranspiration and greater water flux into these basins and an increased precipitation in the Heihe River Basin and Yellow River Basin,but reduced precipitation in the other five basins.Furthermore,a lower summer leaf area index(1.20 m2m 2),greater root soil moisture(0.01 m3m 3),lower latent heat flux(1.34 W m 2),and greater sensible heat flux(2.04 W m 2)are simulated for the Yangtze River Basin.

  6. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change

    Science.gov (United States)

    Wang, Le; Guo, Shenglian; Hong, Xingjun; Liu, Dedi; Xiong, Lihua

    2017-03-01

    Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of climate change in the region, this study adopted the Statistical Downscaling Model (SDSM) to downscale the outputs of a Global Climate Model (GCM) under three scenarios (RCP2.6, RCP4.5 and RCP8.5) as recommended by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) during future periods (2010‒2099) in the Poyang Lake Basin. A semi-distributed two-parameter monthly water balance model was also used to simulate and predict projected changes of runoff in the Ganjiang sub-basin. Results indicate that: 1) SDSM can simulate monthly mean precipitation reasonably well, while a bias correction procedure should be applied to downscaled extreme precipitation indices (EPI) before being employed to simulate future precipitation; 2) for annual mean precipitation, a mixed pattern of positive or negative changes are detected in the entire basin, with a slightly higher or lower trend in the 2020s and 2050s, with a consistent increase in the 2080s; 3) all six EPI show a general increase under RCP4.5 and RCP8.5 scenarios, while a mixed pattern of positive and negative changes is detected for most indices under the RCP2.6 scenario; and 4) the future runoff in the Ganjiang sub-basin shows an overall decreasing trend for all periods but the 2080s under the RCP8.5 scenario when runoff is more sensitive to changes in precipitation than evaporation.

  7. Global surface water quality hotspots under climate change and anthropogenic developments

    Science.gov (United States)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality with physical and socio-economic drivers.

  8. The hydrological behaviour of extensive and intensive green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S

    2014-11-15

    This paper presents the results of a hydrological investigation of four medium scale green roofs that were set up at the University of South Australia. In this study, the potential of green roofs as a source control device was investigated over a 2 year period using four medium size green roof beds comprised of two growth media types and two media depths. During the term of this study, 226 rainfall events were recorded and these were representative of the Adelaide climate. In general, there were no statistically significant differences between the rainfall and runoff parameters for the intensive and extensive beds except for peak attenuation and peak runoff delay, for which higher values were recorded in the intensive beds. Longer dry periods generally resulted in higher retention coefficients and higher retention was also recorded in warmer seasons. The average retention coefficient for intensive systems (89%) was higher than for extensive systems (74%). It was shown that rainfall depth, intensity, duration and also average dry weather period between events can change the retention performance and runoff volume of the green roofs. Comparison of green and simulated conventional roofs indicated that the former were able to mitigate the peak of runoff and could delay the start of runoff. These characteristics are important for most source control measures. The recorded rainfall and runoff data displayed a non-linear relationship. Also, the results indicated that continuous time series modelling would be a more appropriate technique than using peak rainfall intensity methods for green roof design and simulation.

  9. Improving pan-european hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations

    Directory of Open Access Journals (Sweden)

    R. Rojas

    2011-04-01

    Full Text Available In this work we asses the benefits of removing bias in climate forcing data used for hydrological climate change impact assessment at pan-European scale, with emphasis on floods. Climate simulations from the HIRHAM5-ECHAM5 model driven by the SRES-A1B emission scenario are corrected for bias using a histogram equalization method. As predictand for the bias correction we employ gridded interpolated observations of precipitation, average, minimum, and maximum temperature from the E-OBS data set. Bias removal transfer functions are derived for the control period 1961–1990. These are subsequently used to correct the climate simulations for the control period, and, under the assumption of a stationary error model, for the future time window 2071–2100. Validation against E-OBS climatology in the control period shows that the correction method performs successfully in removing bias in average and extreme statistics relevant for flood simulation over the majority of the European domain in all seasons. This translates into considerably improved simulations with the hydrological model of observed average and extreme river discharges at a majority of 554 validation river stations across Europe. Probabilities of extreme events derived employing extreme value techniques are also more closely reproduced. Results indicate that projections of future flood hazard in Europe based on uncorrected climate simulations, both in terms of their magnitude and recurrence interval, are likely subject to large errors. Notwithstanding the inherent limitations of the large-scale approach used herein, this study strongly advocates the removal of bias in climate simulations prior to their use in hydrological impact assessment.

  10. Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations

    Directory of Open Access Journals (Sweden)

    R. Rojas

    2011-08-01

    Full Text Available In this work we asses the benefits of removing bias in climate forcing data used for hydrological climate change impact assessment at pan-European scale, with emphasis on floods. Climate simulations from the HIRHAM5-ECHAM5 model driven by the SRES-A1B emission scenario are corrected for bias using a histogram equalization method. As target for the bias correction we employ gridded interpolated observations of precipitation, average, minimum, and maximum temperature from the E-OBS data set. Bias removal transfer functions are derived for the control period 1961–1990. These are subsequently used to correct the climate simulations for the control period, and, under the assumption of a stationary error model, for the future time window 2071–2100. Validation against E-OBS climatology in the control period shows that the correction method performs successfully in removing bias in average and extreme statistics relevant for flood simulation over the majority of the European domain in all seasons. This translates into considerably improved simulations with the hydrological model of observed average and extreme river discharges at a majority of 554 validation river stations across Europe. Probabilities of extreme events derived employing extreme value techniques are also more closely reproduced. Results indicate that projections of future flood hazard in Europe based on uncorrected climate simulations, both in terms of their magnitude and recurrence interval, are likely subject to large errors. Notwithstanding the inherent limitations of the large-scale approach used herein, this study strongly advocates the removal of bias in climate simulations prior to their use in hydrological impact assessment.

  11. Impact of Direct Soil Moisture and Revised Soil Moisture Index Methods on Hydrologic Predictions in an Arid Climate

    OpenAIRE

    Milad Jajarmizadeh; Sobri bin Harun; Shamsuddin Shahid; Shatirah Akib; Mohsen Salarpour

    2014-01-01

    The soil and water assessment tool (SWAT) is a physically based model that is used extensively to simulate hydrologic processes in a wide range of climates around the world. SWAT uses spatial hydrometeorological data to simulate runoff through the computation of a retention curve number. The objective of the present study was to compare the performance of two approaches used for the calculation of curve numbers in SWAT, that is, the Revised Soil Moisture Index (SMI), which is based on previou...

  12. Quantification of Hydrological Responses Due to Climate Change and Human Activities over Various Time Scales in South Korea

    Directory of Open Access Journals (Sweden)

    Sangho Lee

    2017-01-01

    Full Text Available Hydrological responses are being impacted by both climate change and human activities. In particular, climate change and regional human activities have accelerated significantly during the last three decades in South Korea. The variation in runoff due to the two types of factors should be quantitatively investigated to aid effective water resources’ planning and management. In water resources’ planning, analysis using various time scales is useful where rainfall is unevenly distributed. However, few studies analyzed the impacts of these two factors over different time scales. In this study, hydrologic model-based approach and hydrologic sensitivity were used to separate the relative impacts of these two factors at monthly, seasonal and annual time scales in the Soyang Dam upper basin and the Seom River basin in South Korea. After trend analysis using the Mann–Kendall nonparametric test to identify the causes of gradual change, three techniques, such as the double mass curve method, Pettitt’s test and the BCP (Bayesian change point analysis, were used to detect change points caused by abrupt changes in the collected observed runoff. Soil and Water Assessment Tool (SWAT models calibrated from the natural periods were used to calculate the impacts of human activities. Additionally, six Budyko-based methods were used to verify the results obtained from the hydrological-based approach. The results show that impacts of climate change have been stronger than those of human activities in the Soyang Dam upper basin, while the impacts of human activities have been stronger than those of climate change in the Seom River basin. Additionally, the quantitative characteristics of relative impacts due to these two factors were identified at the monthly, seasonal and annual time scales. Finally, we suggest that the procedure used in this study can be used as a reference for regional water resources’ planning and management.

  13. Tracking climate change in oligotrophic mountain lakes: Recent hydrology and productivity synergies in Lago de Sanabria (NW Iberian Peninsula).

    Science.gov (United States)

    Jambrina-Enríquez, Margarita; Recio, Clemente; Vega, José Carlos; Valero-Garcés, Blas

    2017-07-15

    Mountain lakes are particularly sensitive to global change as their oligotrophic conditions may be rapidly altered after reaching an ecological threshold, due to increasing human impact and climate change. Sanabria Lake, the largest mountain lake in the Iberian Peninsula and with a recent history of increased human impact in its watershed, provides an opportunity to investigate recent trends in an oligotrophic, hydrologically-open mountain lake, and their relationship with climate, hydrological variability and human pressure. We conducted the first systematic and detailed survey of stable isotope compositions of Sanabria Lake and Tera River together with limnological analyses during 2009-2011. δ(18)Olakewater and δDlakewater seasonal fluctuations are strongly linked to river discharges, and follow the monthly mean isotopic composition of precipitation, which is controlled by NAO dynamics. δ(13)CPOM and δ(13)CDIC revealed higher contribution of allochthonous organic matter in winter and spring due to higher river inflow and lower primary productivity. Increased phytoplankton biomass in late summer correlated significantly with higher pH and Chl-a, and higher nutrient input and lower river inflow. However, the small δ(13)CPOM seasonal amplitude underlines the stability of the oligotrophic conditions and the isotopic variation in POM and DIC reflect small seasonal fluctuations mostly as a consequence of strong throughflow. The stability of hydrology and productivity patterns is consistent with Holocene and last millennium reconstructions of past limnological changes in Sanabria Lake. The results of this study indicate that trophic state in this hydrologically-open mountain lake is strongly controlled by climate variability, but recent changes in human-land uses have increased sediment delivery and nutrients supply to the lake and have to be considered for management policies. Monitoring surveys including isotope techniques provide snapshots of modern isotope

  14. Modelling the impacts of climate change on hydrology and water quality in a mediterranean limno-reservoir

    DEFF Research Database (Denmark)

    Molina-Navarro, Euginio; Trolle, Dennis; Martinez-Pérez, Silvia

    Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...... in the Pareja Limno-reservoir and a switch from an oligo-mesotrophic to a mesotrophic state, which may threaten the maintenance of a favourable water quality. Our model framework may help water managers to assess and manage how climate change affects aquatic ecosystems....

  15. Climatic Redistribution of Canada's Water Resources (CROCWR): An analysis of spatial and temporal hydrological trends and patterns in western Canada

    Science.gov (United States)

    Bawden, A. J.; Burn, D. H.; Prowse, T. D.

    2012-12-01

    Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non

  16. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    Science.gov (United States)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent

  17. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China.

    Science.gov (United States)

    Wang, Sheng; Qian, Xin; Han, Bo-Ping; Luo, Lian-Cong; Hamilton, David P

    2012-05-15

    Thermal regime is strongly associated with hydrodynamics in water, and it plays an important role in the dynamics of water quality and ecosystem succession of stratified reservoirs. Changes in both climate and hydrological conditions can modify thermal regimes. Liuxihe Reservoir (23°45'50″N; 113°46'52″E) is a large, stratified and deep reservoir in Guangdong Province, located at the Tropic of Cancer of southern China. The reservoir is a warm monomictic water body with a long period of summer stratification and a short period of mixing in winter. The vertical distribution of suspended particulate material and nutrients are influenced strongly by the thermal structure and the associated flow fields. The hypolimnion becomes anoxic in the stratified period, increasing the release of nutrients from the bottom sediments. Fifty-one years of climate and reservoir operational observations are used here to show the marked changes in local climate and reservoir operational schemes. The data show increasing air temperature and more violent oscillations in inflow volumes in the last decade, while the inter-annual water level fluctuations tend to be more moderate. To quantify the effects of changes in climate and hydrological conditions on thermal structure, we used a numerical simulation model to create scenarios incorporating different air temperatures, inflow volumes, and water levels. The simulations indicate that water column stability, the duration of the mixing period, and surface and outflow temperatures are influenced by both natural factors and by anthropogenic factors such as climate change and reservoir operation schemes. Under continuous warming and more stable storage in recent years, the simulations indicate greater water column stability and increased duration of stratification, while irregular large discharge events may reduce stability and lead to early mixing in autumn. Our results strongly suggest that more attention should be focused on water quality

  18. HOBE – a hydrological observatory

    DEFF Research Database (Denmark)

    Jensen, Karsten Høgh; Illangasekare, Tissa

    2011-01-01

    In this paper a short introducO on is given to the Danish hydrological observatory—HOBE. We describe characteristics of the catchment, which is subject to experimental and modeling investigations. An overview is given of the research reported in this special section of the journal, which includes...... 11 papers of original research covering precipitation, evapotranspiration, emission of greenhouse gasses, unsaturated flow, groundwater–surface water interaction, and climate change impacts on hydrology....

  19. Applications of remote sensing and GIS in surface hydrology: Snow cover, soil moisture and precipitation

    Science.gov (United States)

    Wang, Xianwei

    Studies on surface hydrology can generally be classified into two categories, observation for different components of surface water, and modeling their dynamic movements. This study only focuses on observation part of surface water components: snow cover, soil moisture, and precipitation. Moreover, instead of discussion on the detailed algorithm and instrument technique behind each component, this dissertation pours efforts on analysis of the standard remotely sensed products and their applications under different settings. First in Chapter 2, validation of MODIS Terra 8-day maximum snow cover composite (MOD10A2) in the Northern Xinjiang, China, from 2000-2006, shows that the 8-day MODIS/Terra product has high agreements with in situ measurements as the in situ snow depth is larger or equal to 4 cm, while the agreement is low for the patchy snow as the in situ snow depth less than 4 cm. According to the in situ observation, this chapter develops an empirical algorithm to separate the cloud-covered pixels into snow and no snow. Continued long-term production of MODIS-type snow cover product is critical to assess water resources of the study area, as well as other larger scale global environment monitoring. Terra and Aqua satellites carry the same MODIS instrument and provide two parallel MODIS daily snow cover products at different time (local time 10:30 am and 1:30 pm, respectively). Chapter 3 develops an algorithm and automated scripts to combine the daily MODIS Terra (MOD10A1) and Aqua (MYD10A1) snow cover products, and to automatically generate multi-day Terra-Aqua snow cover image composites, with flexible starting and ending dates and a user-defined cloud cover threshold. Chapter 4 systematically compares the difference between MODIS Terra and Aqua snow cover products within a hydrologic year of 2003-2004, validates the MODIS Terra and Aqua snow cover products using in situ measurements in Northern Xinjiang, and compares the accuracy among the standard MODIS

  20. Hydrological response to climate change in the Lesse and the Vesdre catchments: contribution of a physically based model (Wallonia, Belgium

    Directory of Open Access Journals (Sweden)

    A. Bauwens

    2011-06-01

    Full Text Available The Meuse is an important rain-fed river in North-Western Europe. Nine million people live in its catchment, split over five countries. Projected changes in precipitation and temperature characteristics due to climate change would have a significant impact on the Meuse River and its tributaries. In this study, we focused on the impacts of climate change on the hydrology of two sub-catchments of the Meuse in Belgium, the Lesse and the Vesdre, placing the emphasis on the water-soil-plant continuum in order to highlight the effects of climate change on plant growth, and water uptake on the hydrology of two sub-catchments. These effects were studied using two climate scenarios and a physically based distributed model, which reflects the water-soil-plant continuum. Our results show that the vegetation will evapotranspirate between 10 and 17 % less at the end of the century because of water scarcity in summer, even if the root development is better under climate change conditions. In the low scenario, the mean minimal 7 days discharge value could decrease between 19 and 24 % for a two year return period, and between 20 and 35 % for a fifty year return period. It will lead to rare but severe drought in rivers, with potentially huge consequences on water quality.

  1. Hydrologic Alterations from Climate Change Inform Assessment of Ecological Risk to Pacific Salmon in Bristol Bay, Alaska.

    Directory of Open Access Journals (Sweden)

    Cameron Wobus

    Full Text Available We developed an integrated hydrologic model of the upper Nushagak and Kvichak watersheds in the Bristol Bay region of southwestern Alaska, a region under substantial development pressure from large-scale copper mining. We incorporated climate change scenarios into this model to evaluate how hydrologic regimes and stream temperatures might change in a future climate, and to summarize indicators of hydrologic alteration that are relevant to salmon habitat ecology and life history. Model simulations project substantial changes in mean winter flow, peak flow dates, and water temperature by 2100. In particular, we find that annual hydrographs will no longer be dominated by a single spring thaw event, but will instead be characterized by numerous high flow events throughout the winter. Stream temperatures increase in all future scenarios, although these temperature increases are moderated relative to air temperatures by cool baseflow inputs during the summer months. Projected changes to flow and stream temperature could influence salmon through alterations in the suitability of spawning gravels, changes in the duration of incubation, increased growth during juvenile stages, and increased exposure to chronic and acute temperature stress. These climate-modulated changes represent a shifting baseline in salmon habitat quality and quantity in the future, and an important consideration to adequately assess the types and magnitude of risks associated with proposed large-scale mining in the region.

  2. Satellite cloud and precipitation property retrievals for climate monitoring and hydrological applications

    Science.gov (United States)

    Wolters, E. L. A.

    2012-03-01

    This thesis presents the retrieval, evaluation, and application of cloud physical property datasets (cloud phase, cloud particle effective radius, and precipitation occurrence and intensity) obtained from Spinning Enhanced Visible and Infrared Imager (SEVIRI) reflectance measurements using the Cloud Physical Properties (CPP) retrieval algorithm. In Chapter 3 it is shown that the CPP cloud-phase retrieval algorithm has sufficient accuracy (West Africa. During the afternoon, precipitation occurrence frequency over dry soils becomes significantly higher than over wet soils, whereas for precipitation intensity no significant difference is discerned. The study demonstrates that the combination of satellite-based soil moisture and precipitation observations can be helpful in improving the understanding of the land surface-precipitation interaction over tropical areas. The thesis concludes with a number of recommendations on future algorithm improvements and potential research applications. For both cloud phase and precipitation properties, extension of the algorithm to include nighttime observations would be desirable to enable detailed studies on the full diurnal cycle. Further, the SEVIRI High-Resolution Visible (HRV) channel could be incorporated to correct retrieved cloud physical properties for broken and inhomogeneous cloud cases. Finally, the accurate cloud phase and precipitation datasets combined with the high SEVIRI spatial and temporal sampling resolution enables possibilities for detailed research on climate monitoring, nowcasting applications, evaluation of cloud schemes in climate models, studies on land surface-precipitation interactions (with a special focus on the diurnal cycle), and assimilation of the datasets in weather and climate models

  3. A lysimeter-based approach to quantify the impact of climate change on soil hydrological processes

    Science.gov (United States)

    Slawitsch, Veronika; Steffen, Birk; Herndl, Markus

    2016-04-01

    The predicted climate change involving increasing CO2 concentrations and increasing temperatures will have effects on both vegetation and soil properties and thus on the soil water balance. The aim of this work is to quantify the effects of changes in these climatic factors on soil hydrological processes and parameters. For this purpose data of six high precision weighable lysimeters will be used. The lysimeters are part of a Lysi-T-FACE concept, where free-air will be enriched with CO2 (FACE-Technique) and infrared heaters heat the plots for investigation on effects of increasing temperatures (T-FACE-Technique). The Lysi-T-FACE concept was developed on the „Clim Grass Site" at the HBLFA Raumberg-Gumpenstein (Styria, Austria) in 2011 and 2012 with a total of 54 experimental plots. These include six plots with lysimeters where the two climatic factors are varied in different combinations. On the basis of these grass land lysimeters the soil hydraulic parameters under different experimental conditions will be investigated. The lysimeters are equipped with TDR-Trime sensors and temperature sensors combined with tensiometers in different depths. In addition, a mechanical separation snow cover system is implemented to obtain a correct water balance in winter. To be able to infer differences between the lysimeters reliably a verification of functionalities and a plausibility check of the data from the lysimeters as well as adequate data corrections are needed. Both an automatic and a user-defined control including the recently developed filter method AWAT (Adaptive Window and Adaptive Threshold Filter) are combined with a visualisation tool using the software NI DIAdem. For each lysimeter the raw data is classified in groups of matric potentials, soil water contents and lysimeter weights. Values exceeding technical thresholds are eliminated and marked automatically. The manual data control is employed every day to obtain high precision seepage water weights. The

  4. Hydrological Model Parameter (In)stability - Implications for the Assessment of Climate Change Impacts on Flood Seasonality

    Science.gov (United States)

    Vormoor, K.; Lawrence, D.; Heistermann, M.; Bronstert, A.

    2014-12-01

    Using a multi-model/multi-parameter ensemble consisting of (i) eight combinations of global and regional climate models, (ii) two statistical downscaling methods, and (iii) the HBV hydrological model with 25 calibrated parameter sets, we simulated daily discharge for a control (1961-1990) and future period (2071-2099) to investigate the potential impacts of climate change on flood seasonality and flood generating processes (FGPs) in six catchments with mixed snowmelt-rainfall regimes in Norway. For the catchments in northern and south-eastern Norway, we found more frequent autumn and winter events (partly also of higher magnitude) leading to possible shifts in the current flood regime from spring and early summer to autumn and winter. The possible shifts in flood regimes correspond to an increasing importance of rainfall as a FGP in all catchments considered, while rainfall replaces snowmelt as the dominant FGP in those catchments showing the largest changes in flood seasonality. The analysis of the relative role of the single ensemble components in contributing to overall uncertainty show that hydrological model parameter uncertainty is highest in those catchments showing the largest shifts in flood seasonality and FGPs. This points to difficulties in the time-transferability of the calibrated hydrological parameter sets under changing hydrometeorological conditions and highlights the need of alternative calibration approaches. In this study, we detect time periods in the observation data sets of catchments showing changes in observed hydrometeorological conditions and differing phases of predominant flood seasonality. The HBV model is calibrated for the detected time periods using the Dynamically Dimensioned Search (DDS) global optimization algorithm, and split sampling tests are applied to study the role of the calibrated hydrological parameter sets under changing conditions. Preliminary results show that the hydrological model parameters are sensitive to the

  5. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    Science.gov (United States)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Wada, Y.

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  6. Impact of soil parameter and physical process on reproducibility of hydrological processes by land surface model in semiarid grassland

    Science.gov (United States)

    Miyazaki, S.; Yorozu, K.; Asanuma, J.; Kondo, M.; Saito, K.

    2014-12-01

    The land surface model (LSM) takes part in the land-atmosphere interaction on the earth system model for the climate change research. In this study, we evaluated the impact of soil parameters and physical process on reproducibility of hydrological process by LSM Minimal Advanced Treatments of Surface Interaction and RunOff (MATSIRO; Takata et al, 2003, GPC) forced by the meteorological data observed at grassland in semiarid climate in China and Mongolia. The testing of MATSIRO was carried out offline mode over the semiarid grassland sites at Tongyu (44.42 deg. N, 122.87 deg. E, altitude: 184m) in China, Kherlen Bayan Ulaan (KBU; 47.21 deg. N, 108.74 deg. E, altitude: 1235m) and Arvaikheer (46.23 N, 102.82E, altitude: 1,813m) in Mongolia. Although all sites locate semiarid grassland, the climate condition is different among sites, which the annual air temperature and precipitation are 5.7 deg. C and 388mm (Tongyu), 1.2 deg.C and 180mm (KBU), and 0.4 deg. C and 245mm(Arvaikheer). We can evaluate the effect of climate condition on the model performance. Three kinds of experiments have been carried out, which was run with the default parameters (CTL), the observed parameters (OBS) for soil physics and hydrology, and vegetation, and refined MATSIRO with the effect of ice in thermal parameters and unfrozen water below the freezing with same parameters as OBS run (OBSr). The validation data has been provided by CEOP(http://www.ceop.net/) , RAISE(http://raise.suiri.tsukuba.ac.jp/), GAME-AAN (Miyazaki et al., 2004, JGR) for Tongyu, KBU, and Arvaikheer, respectively. The reproducibility of the net radiation, the soil temperature (Ts), and latent heat flux (LE) were well reproduced by OBS and OBSr run. The change of soil physical and hydraulic parameter affected the reproducibility of soil temperature (Ts) and soil moisture (SM) as well as energy flux component especially for the sensible heat flux (H) and soil heat flux (G). The reason for the great improvement on the

  7. Regional Climate Simulations of the Hydrological Cycle in the Iberian Peninsula with a Coupled WRF-HYDRO Model

    Science.gov (United States)

    Rios-Entenza, A.; Miguez-Macho, G.

    2008-12-01

    Land-atmosphere water exchanges and heat fluxes play an important role in climate and particularly in controlling precipitation in water-limited regions. One of such regions is the Iberian Peninsula, and in this study we examine the relevance of water recycling in convective precipitation regimes of the Fall and Spring there, when rainfall is critical for agriculture and many other human activities. We conducted simulations with WRF-ARW model at 5 km horizontal resolution, using a 1500 km x 1500 km nested grid that covers the Iberian Peninsula, with a parent domain that uses spectral nudging in order to avoid the distortion of the large-scale circulation caused by the interaction of the modeled flow with the lateral boundaries of the nested grid. For land-surface interactions we coupled WRF with the LEAF-HYDRO land surface model, which includes water table dynamics. We use therefore a tool that simulates the entire water cycle, including the water table, which has been reported to be critical for soil moisture dynamics in semi-arid regions like the Iberian Peninsula. For each one of the events that we selected, we performed two simulations: a control one, where all land-atmosphere feedbacks are taken into account, and the experiment, where infiltration of the precipitated water into the soil was suppressed. In this manner we explore the role of upward latent and sensible heat fluxes and evapotranspiration in precipitation dynamics. Preliminary results suggest that water recycling is a key factor in extending convective precipitation during several days, and that the total new water added in the area as a whole is only a fraction of the total measured rainfall. An estimation of this fraction is very important to better understanding the water budget and for hydrological planning in this water-stressed region.

  8. Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT

    Science.gov (United States)

    Wu, Y.; Liu, S.; Abdul-Aziz, O. I.

    2012-01-01

    Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.

  9. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    Science.gov (United States)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  10. GC23G-1310: Investigation Into the Effects of Climate Variability and Land Cover Change on the Hydrologic System of the Lower Mekong Basin

    Science.gov (United States)

    Markert, Kel N.; Griffin, Robert; Limaye, Ashutosh S.; McNider, Richard T.; Anderson, Eric R.

    2016-01-01

    The Lower Mekong Basin (LMB) is an economically and ecologically important region that experiences hydrologic hazards such as floods and droughts, which can directly affect human well-being and limit economic growth and development. To effectively develop long-term plans for addressing hydrologic hazards, the regional hydrological response to climate variability and land cover change needs to be evaluated. This research aims to investigate how climate variability, specifically variations in the precipitation regime, and land cover change will affect hydrologic parameters both spatially and temporally within the LMB. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using projected climate variables and modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand the relative contribution of climate variability and land cover to change, where these changes occur, and to what degree these changes affect the hydrology. This study found that the LMB hydrologic system is more sensitive to climate variability than land cover change. On average, climate variability was found to increase discharge and evapotranspiration (ET) while decreasing water storage. The change in land cover show that increasing forest area will slightly decrease discharge and increase ET while increasing agriculture area increases discharge and decreases ET. These findings will help the LMB by supporting individual country policy to plan for future hydrologic changes as well as policy for the basin as a whole.

  11. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area].

    Science.gov (United States)

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping

    2012-11-01

    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  12. The development of a glacio-hydrologic model in the river basin context: Applicability for climate change risk assessment

    Science.gov (United States)

    Wi, S.; Yang, Y. C. E.; Brown, C. M.

    2015-12-01

    In high latitude and altitude regions of the world, melting water from snow and glacier is critical for domestic, agricultural and industrial water supply. These water supplies depending on the melting water are particularly vulnerable to changing climate caused by temperature increases and precipitation variation. A better understanding of how water availability change due to climate change impact in these regions is essential for water resources management. To achieve this goal, a recent research trend highlights the need of advancing hydrologic modeling tools with enhanced snow and glacier modeling capability. This study demonstrates a recently developed distributed glacio-hydrologic model that specifically targets the Himalayan region. We describe the model's development background, underlying concepts, and some typical applications of the model and test it as a tool for assessing climate change risk for snow and glacier-fed river basins. Enhanced snow and glacier modules based on temperature-energy index are the primary feature of the model. We demonstrate the model's applicability in case studies for the Upper Trishuli River Basin and the Koshi River Basin in Nepal and detailed climate change impact on water resources in these snow and glacier dominated are presented.

  13. Impact of Climate Change on Hydrologic Extremes in the Upper Basin of the Yellow River Basin of China

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-01-01

    Full Text Available To reveal the revolution law of hydrologic extremes in the next 50 years and analyze the impact of climate change on hydrologic extremes, the following main works were carried on: firstly, the long duration (15 d, 30 d, and 60 d rainfall extremes according to observed time-series and forecast time-series by dynamical climate model product (BCC-CSM-1.1 were deduced, respectively, on the basis that the quantitative estimation of the impact of climate change on rainfall extremes was conducted; secondly, the SWAT model was used to deduce design flood with the input of design rainfall for the next 50 years. On this basis, quantitative estimation of the impact of climate change on long duration flood volume extremes was conducted. It indicates that (1 the value of long duration rainfall extremes for given probabilities (1%, 2%, 5%, and 10% of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years and (2 long duration flood volume extremes of given probabilities of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years. The conclusions may provide technical supports for basin level planning of flood control and hydropower production.

  14. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    Directory of Open Access Journals (Sweden)

    P. Droogers

    2008-04-01

    Full Text Available Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario model errors will level out. For a polder in The Netherlands an innovative procedure has been introduced, referred to as the Model-Scenario-Ratio (MSR, to express model inaccuracy on climate change impact assessment studies based on simulation models comparing a reference situation to a climate change situation. The SWAP (Soil Water Atmosphere Plant model was used for the case study and the reference situation was compared to two climate change scenarios. MSR values close to 1, indicating that impact assessment is mainly a function of the scenario itself rather than of the quality of the model, were found for most indicators evaluated. A climate change scenario with enhanced drought conditions and indicators based on threshold values showed lower MSR values, indicating that model accuracy is an important component of the climate change impact assessment. It was concluded that the MSR approach can be applied easily and will lead to more robust impact assessment analyses.

  15. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Directory of Open Access Journals (Sweden)

    C. Draper

    2011-06-01

    Full Text Available The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively. When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  16. Hydrological Responses of Andean Lakes and Tropical Floodplains to Climate Variability and Human Intervention: an Integrative Modelling Framework

    Science.gov (United States)

    Hoyos, I. C.; González Morales, C.; Serna López, J. P.; Duque, C. L.; Canon Barriga, J. E.; Dominguez, F.

    2013-12-01

    Andean water bodies in tropical regions are significantly influenced by fluctuations associated with climatic and anthropogenic drivers, which implies long term changes in mountain snow peaks, land covers and ecosystems, among others. Our work aims at providing an integrative framework to realistically assess the possible future of natural water bodies with different degrees of human intervention. We are studying in particular the evolution of three water bodies in Colombia: two Andean lakes and a floodplain wetland. These natural reservoirs represent the accumulated effect of hydrological processes in their respective basins, which exhibit different patterns of climate variability and distinct human intervention and environmental histories. Modelling the hydrological responses of these local water bodies to climate variability and human intervention require an understanding of the strong linkage between geophysical and social factors. From the geophysical perspective, the challenge is how to downscale global climate projections in the local context: complex orography and relative lack of data. To overcome this challenge we combine the correlational and physically based analysis of several sources of spatially distributed biophysical and meteorological information to accurately determine aspects such as moisture sources and sinks and past, present and future local precipitation and temperature regimes. From the social perspective, the challenge is how to adequately represent and incorporate into the models the likely response of social agents whose water-related interests are diverse and usually conflictive. To deal with the complexity of these systems we develop interaction matrices, which are useful tools to holistically discuss and represent each environment as a complex system. Our goal is to assess partially the uncertainties of the hydrological balances in these intervened water bodies we establish climate/social scenarios, using hybrid models that combine

  17. Detrital cave sediments record Late Quaternary hydrologic and climatic variability in northwestern Florida, USA

    Science.gov (United States)

    Winkler, Tyler S.; van Hengstum, Peter J.; Horgan, Meghan C.; Donnelly, Jeffrey P.; Reibenspies, Joseph H.

    2016-04-01

    Detrital sediment in Florida's (USA) submerged cave systems may preserve records of regional climate and hydrologic variability. However, the basic sedimentology, mineralogy, stratigraphic variability, and emplacement history of the successions in Florida's submerged caves remains poorly understood. Here we present stratigraphic, mineralogical, and elemental data on sediment cores from two phreatic cave systems in northwestern Florida (USA), on the Dougherty Karst Plain: Hole in the Wall Cave (HITW) and Twin Cave. Water flowing through these caves is subsurface flow in the Apalachicola River drainage basin, and the caves are located just downstream from Jackson Blue (1st magnitude spring, > 2.8 m3 s- 1 discharge). Sedimentation in these caves is dominated by three primary sedimentary styles: (i) ferromanganese deposits dominate the basal recovered stratigraphy, which pass upsection into (ii) poorly sorted carbonate sediment, and finally into (iii) fine-grained organic matter (gyttja) deposits. Resolving the emplacement history of the lower stratigraphic units was hampered by a lack of suitable material for radiocarbon dating, but the upper organic-rich deposits have a punctuated depositional history beginning in the earliest Holocene. For example, gyttja primarily accumulated in HITW and Twin Caves from ~ 5500 to 3500 cal yr. BP, which coincides with regional evidence for water-table rise of the Upper Floridian Aquifer associated with relative sea-level rise in the Gulf of Mexico, and evidence for invigorated drainage through the Apalachicola River drainage basin. Gyttja sediments were also deposited in one of the caves during the Bølling/Allerød climate oscillation. Biologically, these results indicate that some Floridian aquatic cave (stygobitic) ecosystems presently receive minimal organic matter supply in comparison to prehistoric intervals. The pre-Holocene poorly sorted carbonate sediment contains abundant invertebrate fossils, and likely documents a period

  18. Hydrological drought across the world: impact of climate and physical catchment structure

    NARCIS (Netherlands)

    Lanen, van H.A.J.; Wanders, N.; Tallaksen, L.M.; Loon, van A.F.

    2013-01-01

    Large-scale hydrological drought studies have demonstrated spatial and temporal patterns in observed trends, and considerable difference exists among global hydrological models in their ability to reproduce these patterns. In this study a controlled modeling experiment has been set up to systematica

  19. Hydrological drought across the world: impact of climate and physical catchment structure

    NARCIS (Netherlands)

    Lanen, H.A.J. van; Wanders, N.; Tallaksen, L.M.; Loon, A.F. van

    2013-01-01

    Large-scale hydrological drought studies have demonstrated spatial and temporal patterns in observed trends and considerable difference exists among global hydrological models in their ability to reproduce these patterns. A controlled modeling experiment has been set up to systematically explore the

  20. Can isolated and riparian wetlands mitigate the impact of climate change on watershed hydrology? A case study approach.

    Science.gov (United States)

    Fossey, M; Rousseau, A N

    2016-12-15

    The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows.

  1. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates.

    Science.gov (United States)

    Perez-Saez, Javier; Mande, Theophile; Ceperley, Natalie; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Rinaldo, Andrea

    2016-06-07

    We report about field and theoretical studies on the ecology of the aquatic snails (Bulinus spp. and Biomphalaria pfeifferi) that serve as obligate intermediate hosts in the complex life cycle of the parasites causing human schistosomiasis. Snail abundance fosters disease transmission, and thus the dynamics of snail populations are critically important for schistosomiasis modeling and control. Here, we single out hydrological drivers and density dependence (or lack of it) of ecological growth rates of local snail populations by contrasting novel ecological and environmental data with various models of host demography. Specifically, we study various natural and man-made habitats across Burkina Faso's highly seasonal climatic zones. Demographic models are ranked through formal model comparison and structural risk minimization. The latter allows us to evaluate the suitability of population models while clarifying the relevant covariates that explain empirical observations of snail abundance under the actual climatic forcings experienced by the various field sites. Our results link quantitatively hydrological drivers to distinct population dynamics through specific density feedbacks, and show that statistical methods based on model averaging provide reliable snail abundance projections. The consistency of our ranking results suggests the use of ad hoc models of snail demography depending on habitat type (e.g., natural vs. man-made) and hydrological characteristics (e.g., ephemeral vs. permanent). Implications for risk mapping and space-time allocation of control measures in schistosomiasis-endemic contexts are discussed.

  2. Assessing the potential impacts of climate change on return periods of hydrological extremes in the Illinois River watershed of the Midwestern United States

    Science.gov (United States)

    Chien, H.; Yeh, P. J. F.; Knouft, J.

    2014-12-01

    As the Earth's climate is predicted to change significantly in terms of warmer temperature and higher precipitation extremes during this century due to the increased combustion of fossil fuels, accurate estimations of the frequencies of future hydrological extremes are important to understanding the potential impacts of changes in climate on water resources management, particularly in accessing flood risk. The goal of this study is to use the Soil and Water Assessment Tool (SWAT), a distributed landscape-scale hydrological model, to predict current streamflow and the potential impacts of climate change on future stream flows in the Illinois River watershed in the Midwestern United States. Subsequently Gumbel distribution (Extreme Value Type Ⅰ) is fitted to the annual maxima simulated streamflow to derive a number of return periods of future hydrological extremes. The question in this study is: How do the return periods of future hydrological extremes change under future climate change scenarios and what factors cause the change? Daily simulated future streamflow from 2046-2065 and 2081-2100 are simulated using SWAT model based on nine separate downscaled global climate models (GCM) with three emissions scenarios. SWAT model predictions generally indicate that annual streamflow will likely decrease due to warmer temperatures. Based on the simulated daily streamflow, probability models for annual maxima flows frequency analysis are developed using Gumbel distribution and the values of hydrological extremes for different return periods including 50, 100, 200, 500, 1000 years are derived. The change of return periods of hydrological extremes and the implications will be discussed.

  3. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    Science.gov (United States)

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  4. Hydrological Modelling and data assimilation of Satellite Snow Cover Area using a Land Surface Model, VIC

    Directory of Open Access Journals (Sweden)

    S. Naha

    2016-06-01

    Full Text Available The snow cover plays an important role in Himalayan region as it contributes a useful amount to the river discharge. So, besides estimating rainfall runoff, proper assessment of snowmelt runoff for efficient management and water resources planning is also required. A Land Surface Model, VIC (Variable Infiltration Capacity is used at a high resolution grid size of 1 km. Beas river basin up to Thalot in North West Himalayas (NWH have been selected as the study area. At first model setup is done and VIC has been run in its energy balance mode. The fluxes obtained from VIC has been routed to simulate the discharge for the time period of (2003-2006. Data Assimilation is done for the year 2006 and the techniques of Data Assimilation considered in this study are Direct Insertion (D.I and Ensemble Kalman Filter (EnKF that uses observations of snow covered area (SCA to update hydrologic model states. The meteorological forcings were taken from 0.5 deg. resolution VIC global forcing data from 1979-2006 with daily maximum temperature, minimum temperature from Climate Research unit (CRU, rainfall from daily variability of NCEP and wind speed from NCEP-NCAR analysis as main inputs and Indian Meteorological Department (IMD data of 0.25 °. NBSSLUP soil map and land use land cover map of ISRO-GBP project for year 2014 were used for generating the soil parameters and vegetation parameters respectively. The threshold temperature i.e. the minimum rain temperature is -0.5°C and maximum snow temperature is about +0.5°C at which VIC can generate snow fluxes. Hydrological simulations were done using both NCEP and IMD based meteorological Forcing datasets, but very few snow fluxes were obtained using IMD data met forcing, whereas NCEP based met forcing has given significantly better snow fluxes throughout the simulation years as the temperature resolution as given by IMD data is 0.5°C and rainfall resolution of 0.25°C. The simulated discharge has been validated

  5. Hydrological Modelling and data assimilation of Satellite Snow Cover Area using a Land Surface Model, VIC

    Science.gov (United States)

    Naha, Shaini; Thakur, Praveen K.; Aggarwal, S. P.

    2016-06-01

    The snow cover plays an important role in Himalayan region as it contributes a useful amount to the river discharge. So, besides estimating rainfall runoff, proper assessment of snowmelt runoff for efficient management and water resources planning is also required. A Land Surface Model, VIC (Variable Infiltration Capacity) is used at a high resolution grid size of 1 km. Beas river basin up to Thalot in North West Himalayas (NWH) have been selected as the study area. At first model setup is done and VIC has been run in its energy balance mode. The fluxes obtained from VIC has been routed to simulate the discharge for the time period of (2003-2006). Data Assimilation is done for the year 2006 and the techniques of Data Assimilation considered in this study are Direct Insertion (D.I) and Ensemble Kalman Filter (EnKF) that uses observations of snow covered area (SCA) to update hydrologic model states. The meteorological forcings were taken from 0.5 deg. resolution VIC global forcing data from 1979-2006 with daily maximum temperature, minimum temperature from Climate Research unit (CRU), rainfall from daily variability of NCEP and wind speed from NCEP-NCAR analysis as main inputs and Indian Meteorological Department (IMD) data of 0.25 °. NBSSLUP soil map and land use land cover map of ISRO-GBP project for year 2014 were used for generating the soil parameters and vegetation parameters respectively. The threshold temperature i.e. the minimum rain temperature is -0.5°C and maximum snow temperature is about +0.5°C at which VIC can generate snow fluxes. Hydrological simulations were done using both NCEP and IMD based meteorological Forcing datasets, but very few snow fluxes were obtained using IMD data met forcing, whereas NCEP based met forcing has given significantly better snow fluxes throughout the simulation years as the temperature resolution as given by IMD data is 0.5°C and rainfall resolution of 0.25°C. The simulated discharge has been validated using observed

  6. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    Science.gov (United States)

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC.

  7. Energetic and hydrological responses of Hadley circulations and the African Sahel to sea surface temperature perturbations

    Science.gov (United States)

    Hill, Spencer Alan

    Tropical precipitation is linked through the moist static energy (MSE) budget to the global distribution of sea surface temperatures (SSTs), and large deviations from the present-day SST distribution have been inferred for past climates and projected for global warming. We use idealized SST perturbation experiments in multiple atmospheric general circulation models (AGCMs) to examine the hydrologic and energetic responses in the zonal mean and in the African Sahel to SST perturbations. We also use observational data to assess the prospects for emergent constraints on future rainfall in the Sahel. The tropical zonal mean anomalous MSE fluxes in the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) AM2.1 AGCM due to SST anomalies caused by either historical greenhouse gas or aerosol forcing primarily occur through the time-mean, zonal mean (Hadley) circulation. Away from the Intertropical Convergence Zone (ITCZ), this largely stems from altered efficiency of the Hadley circulation energy transport, i.e. the gross moist stability (GMS). A thermodynamic scaling-based estimate that relates GMS change to the local climatological moisture and temperature change relative to the ITCZ captures most of the qualitative GMS responses. It also yields a heuristic explanation for the well known correlation between low-latitude MSE fluxes and the ITCZ latitude. Severe Sahelian drying with uniform SST warming in AM2.1 is eliminated when the default convective parameterization is replaced with an alternate. The drying is commensurate with MSE convergence due to suppressed ascent balanced by MSE divergence due to increased dry advection from the Sahara. These qualitative energetic responses to uniform warming are shared by five other GFDL models and ten CMIP5 models, although they do not translate into quantitative predictors of the Sahel rainfall response. Climatological values and interannual variability in observations and reanalyses suggest that drying in AM2.1 is exacerbated by

  8. Implications of climate-driven variability and trends for the hydrologic assessment of the Reynolds Creek Experimental Watershed, Idaho

    Science.gov (United States)

    Sridhar, V.; Nayak, Anurag

    2010-05-01

    SummaryThe Soil and Water Assessment Tool (SWAT) model was used to assess the implications of long-term climate trends for the hydroclimatology of the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains, Idaho of the Intermountain West over a 40-year period (1967-2006). Calibration and validation of the macroscale hydrology model in this highly monitored watershed is key to address the watershed processes that are vulnerable to both natural climate variability and climate change. The model was calibrated using the streamflow data collected between 1997 and 2006 from the three nested weirs, the Reynolds Mountain East (RME), Tollgate and Outlet. For assessing the performance of the calibrated model, this study used 30 years of streamflow data for the period between 1966 and 1996. This investigation suggested that the model predicted streamflow was best at RME, and inadequate at Outlet. Simulated soil moisture was also verified using the data available from five soil moisture measurement sites. The model was able to capture the seasonal patterns of changes in soil water storage considering the differences in the spatial extent of the observed and predicted soil water storage (point measurements against the spatially averaged values for the HRU) and uncertainty associated with the soil moisture measurements due to instrument effects. Water budget partitioning during a wet (1984) water year and a dry (1987) water year were also analyzed to characterize the differences in hydrologic cycles during the extreme hydrologic conditions. Our analysis showed that in the dry water year, vegetation at the higher elevation were under water stress by the end of the water year. Contrastingly, in the wet water year only the vegetation at low and mid-elevations were under water stress whereas vegetation at the higher elevations derived substantial soil moisture for ET processes even towards the end of the growing season. To understand the effect of climate change on

  9. Impacts of recent climate change on the hydrology in the source region of the Yellow River basin

    Directory of Open Access Journals (Sweden)

    Fanchong Meng

    2016-06-01

    New hydrological insights for the region: Decreased precipitation and lightly increased evapotranspiration both contributed to reduced runoff in the 1990s, with the decreased precipitation playing a more important role (70% than the increased evapotranspiration (30%. In the 2000s, precipitation contributed 3% to the runoff reduction, while the increased evapotranspiration accounted for 97%. Along with rapid warming, evapotranspiration is playing an increasingly important role in affecting runoff changes in the SRYE. During 2001–2012, snow cover in May decreased over the region. Spring peak flow mainly caused by snowmelt occurred earlier for about 15 days at the Jimai hydrological station due to an earlier snow melt associated with the climate warming in the past 3 decades.

  10. Global change and terrestrial hydrology — a review

    OpenAIRE

    Robert E. Dickinson

    2011-01-01

    This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models are considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.DOI: 10.103...

  11. Hydrology of a Water‐Limited Forest under Climate Change Scenarios: The Case of the Caatinga Biome, Brazil

    Directory of Open Access Journals (Sweden)

    Everton Alves Rodrigues Pinheiro

    2017-02-01

    Full Text Available Given the strong interactions between climate and vegetation, climate change effects on natural and agricultural ecosystems are common objects of research. Reduced water availability is predicted to take place across large regions of the globe, including Northeastern Brazil. The Caatinga, a complex tropical water‐limited ecosystem and the only exclusively Brazilian biome, prevails as the main natural forest of this region. The aim of this study was to examine the soil‐water balance for this biome under a climate‐warming scenario and with reduced rainfall. Climate change projections were assessed from regional circulation models earlier applied to the Brazilian territory. A statistical climate data generator was used to compose a synthetic weather dataset, which was later integrated into a hydrological model. Compared to simulations with current climate for the same site, under the scenario with climate change, transpiration was enhanced by 36%, and soilwater evaporation and interception were reduced by 16% and 34%, respectively. The greatest change in soil‐water components was observed for deep drainage, accounting only for 2% of the annual rainfall. Soil‐plant‐atmosphere fluxes seem to be controlled by the top layer (0.0-0.2 m, which provides 80% of the total transpiration, suggesting that the Caatinga forest may become completely soil‐water pulse dominated under scenarios of reduced water availability.

  12. Climatic controls on the snowmelt hydrology of the northern Rocky Mountains

    Science.gov (United States)

    Pederson, G.T.; Gray, S.T.; Ault, T.; Marsh, W.; Fagre, D.B.; Bunn, A.G.; Woodhouse, C.A.; Graumlich, L.J.

    2011-01-01

    The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and biophysical processes in high-mountain environments. This study investigates oceanic and atmospheric controls underlying changes in timing, variability, and trends documented across the entire hydroclimatic-monitoring system within critical NRM watersheds. Analyses were conducted using records from 25 snow telemetry (SNOTEL) stations, 148 1 April snow course records, stream gauge records from 14 relatively unimpaired rivers, and 37 valley meteorological stations. Over the past four decades, midelevation SNOTEL records show a tendency toward decreased snowpack with peak snow water equivalent (SWE) arriving and melting out earlier. Temperature records show significant seasonal and annual decreases in the number of frost days (days ???0??C) and changes in spring minimum temperatures that correspond with atmospheric circulation changes and surface-albedo feedbacks in March and April. Warmer spring temperatures coupled with increases in mean and variance of spring precipitation correspond strongly to earlier snowmeltout, an increased number of snow-free days, and observed changes in streamflow timing and discharge. The majority of the variability in peak and total annual snowpack and streamflow, however, is explained by season-dependent interannual-to-interdecadal changes in atmospheric circulation associated with Pacific Ocean sea surface temperatures. Over recent decades, increased spring precipitation appears to be buffering NRM total annual streamflow from what would otherwise be greater snow-related declines in hydrologic yield. Results have important implications for ecosystems, water resources, and long-lead-forecasting capabilities. ?? 2011 American Meteorological Society.

  13. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    Science.gov (United States)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-06-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological respon