WorldWideScience

Sample records for climate sensitivity results

  1. Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lindzen, Richard [M.I.T.

    2011-11-09

    Warming observed thus far is entirely consistent with low climate sensitivity. However, the result is ambiguous because the sources of climate change are numerous and poorly specified. Model predictions of substantial warming aredependent on positive feedbacks associated with upper level water vapor and clouds, but models are notably inadequate in dealing with clouds and the impacts of clouds and water vapor are intimately intertwined. Various approaches to measuring sensitivity based on the physics of the feedbacks will be described. The results thus far point to negative feedbacks. Problems with these approaches as well as problems with the concept of climate sensitivity will be described.

  2. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

    International Nuclear Information System (INIS)

    Govindasamy, B.; Thompson, S.; Mirin, A.; Wickett, M.; Caldeira, K.; Delire, C.

    2005-01-01

    Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO 2 content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO 2 emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO 2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO 2 content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K

  3. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  4. Climate and climate change sensitivity to model configuration in the Canadian RCM over North America

    Energy Technology Data Exchange (ETDEWEB)

    De Elia, Ramon [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada); Centre ESCER, Univ. du Quebec a Montreal (Canada); Cote, Helene [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada)

    2010-06-15

    Climate simulations performed with Regional Climate Models (RCMs) have been found to show sensitivity to parameter settings. The origin, consequences and interpretations of this sensitivity are varied, but it is generally accepted that sensitivity studies are very important for a better understanding and a more cautious manipulation of RCM results. In this work we present sensitivity experiments performed on the simulated climate produced by the Canadian Regional Climate Model (CRCM). In addition to climate sensitivity to parameter variation, we analyse the impact of the sensitivity on the climate change signal simulated by the CRCM. These studies are performed on 30-year long simulated present and future seasonal climates, and we have analysed the effect of seven kinds of configuration modifications: CRCM initial conditions, lateral boundary condition (LBC), nesting update interval, driving Global Climate Model (GCM), driving GCM member, large-scale spectral nudging, CRCM version, and domain size. Results show that large changes in both the driving model and the CRCM physics seem to be the main sources of sensitivity for the simulated climate and the climate change. Their effects dominate those of configuration issues, such as the use or not of large-scale nudging, domain size, or LBC update interval. Results suggest that in most cases, differences between simulated climates for different CRCM configurations are not transferred to the estimated climate change signal: in general, these tend to cancel each other out. (orig.)

  5. Report of the workshop on Climate Sensitivity

    International Nuclear Information System (INIS)

    2004-01-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO 2 doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions, and transient

  6. Inferring climate sensitivity from volcanic events

    Energy Technology Data Exchange (ETDEWEB)

    Boer, G.J. [Environment Canada, University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); Stowasser, M.; Hamilton, K. [University of Hawaii, International Pacific Research Centre, Honolulu, HI (United States)

    2007-04-15

    The possibility of estimating the equilibrium climate sensitivity of the earth-system from observations following explosive volcanic eruptions is assessed in the context of a perfect model study. Two modern climate models (the CCCma CGCM3 and the NCAR CCSM2) with different equilibrium climate sensitivities are employed in the investigation. The models are perturbed with the same transient volcano-like forcing and the responses analysed to infer climate sensitivities. For volcano-like forcing the global mean surface temperature responses of the two models are very similar, despite their differing equilibrium climate sensitivities, indicating that climate sensitivity cannot be inferred from the temperature record alone even if the forcing is known. Equilibrium climate sensitivities can be reasonably determined only if both the forcing and the change in heat storage in the system are known very accurately. The geographic patterns of clear-sky atmosphere/surface and cloud feedbacks are similar for both the transient volcano-like and near-equilibrium constant forcing simulations showing that, to a considerable extent, the same feedback processes are invoked, and determine the climate sensitivity, in both cases. (orig.)

  7. Report of the workshop on Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO{sub 2} doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions, and

  8. Report of the workshop on Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO{sub 2} doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions

  9. Climate sensitivity of marine energy

    International Nuclear Information System (INIS)

    Harrison, G.P.; Wallace, A.R.

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversion: where the resource is constrained, production and economic performance may suffer; alternatively, stormier climates may create survival issues. Here, a relatively simple sensitivity study is used to quantify how changes in mean wind speed - as a proxy for wider climate change - influence wind and wave energy production and economics. (author)

  10. Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  11. Lessons on climate sensitivity from past climate changes

    NARCIS (Netherlands)

    von der Heydt, A.S.; Dijkstra, H.A.; van de Wal, R.S.W.; Caballero, R.; Crucifix, M.; Foster, G.L.; Huber, M.; Kohler, P.; Rohling, E.; Valdes, P.J.; Ashwin, P.; Bathiany, S.; Berends, T.; van Bree, L.G.J.; Ditlevsen, P.; Ghil, M.; Haywood, A.; Katzav, J.K.; Lohmann, G.; Lohmann, J.; Lucarini, V.; Marzocchi, A.; Palike, H.; Ruvalcaba Baroni, I.; Simon, D.; Sluijs, A.; Stap, L.B.; Tantet, A.; Viebahn, J.; Ziegler, M.

    2016-01-01

    Over the last decade, our understanding of climate sensitivity has improved considerably. The climate system shows variability on many timescales, is subject to non-stationary forcing and it is most likely out of equilibrium with the changes in the radiative forcing. Slow and fast feedbacks

  12. Sensitivity of streamflow to climate change in California

    Science.gov (United States)

    Grantham, T.; Carlisle, D.; Wolock, D.; McCabe, G. J.; Wieczorek, M.; Howard, J.

    2015-12-01

    Trends of decreasing snowpack and increasing risk of drought are looming challenges for California water resource management. Increasing vulnerability of the state's natural water supplies threatens California's social-economic vitality and the health of its freshwater ecosystems. Despite growing awareness of potential climate change impacts, robust management adaptation has been hindered by substantial uncertainty in future climate predictions for the region. Down-scaled global climate model (GCM) projections uniformly suggest future warming of the region, but projections are highly variable with respect to the direction and magnitude of change in regional precipitation. Here we examine the sensitivity of California surface water supplies to climate variation independently of GCMs. We use a statistical approach to construct predictive models of monthly streamflow based on historical climate and river basin features. We then propagate an ensemble of synthetic climate simulations through the models to assess potential streamflow responses to changes in temperature and precipitation in different months and regions of the state. We also consider the range of streamflow change predicted by bias-corrected downscaled GCMs. Our results indicate that the streamflow in the xeric and coastal mountain regions of California is more sensitive to changes in precipitation than temperature, whereas streamflow in the interior mountain region responds strongly to changes in both temperature and precipitation. Mean climate projections for 2025-2075 from GCM ensembles are highly variable, indicating streamflow changes of -50% to +150% relative to baseline (1980-2010) for most months and regions. By quantifying the sensitivity of streamflow to climate change, rather than attempting to predict future hydrologic conditions based on uncertain GCM projections, these results should be more informative to water managers seeking to assess, and potentially reduce, the vulnerability of surface

  13. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.

    2014-12-01

    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  14. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    Science.gov (United States)

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  15. Climate sensitivity of DSSAT under different agriculture practice scenarios in China

    Science.gov (United States)

    Xia, L.; Robock, A.

    2014-12-01

    Crop yields are sensitive to both agricultural practice and climate changes. Under different agricultural practice scenarios, crop yield may have different climate sensitivities. Since it is important to understand how future climate changes affect agriculture productivity and what the potential adaptation strategies would be to compensate for possible negative impacts on crop production, we performed experiments to study climate sensitivity under different agricultural practice scenarios for rice, maize and wheat in the top four production provinces in China using the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. The agricultural practice scenarios include four categories: different amounts of nitrogen fertilizer or no nitrogen stress; irrigation turned on or off, or no water stress; all possible seeds in the DSSAT cultivar data base; and different planting dates. For the climate sensitivity test, the control climate is from 1998 to 2007, and we individually modify four climate variables: daily maximum and minimum temperature by +2 °C and -2 °C, daily precipitation by +20% and -20%, and daily solar radiation by + 20% and -20%. With more nitrogen fertilizer applied, crops are more sensitive to temperature changes as well as precipitation changes because of their release from nitrogen limitation. With irrigation turned on, crop yield sensitivity to temperature decreases in most of the regions depending on the amount of the local precipitation, since more water is available and soil temperature varies less with higher soil moisture. Those results indicate that there could be possible agriculture adaptation strategies under certain future climate scenarios. For example, increasing nitrogen fertilizer usage by a certain amount might compensate for the negative impact on crop yield from climate changes. However, since crops are more sensitive to climate changes when there is more nitrogen fertilizer applied, if the climate changes are

  16. Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation

    Science.gov (United States)

    Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.

    2018-01-01

    Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the

  17. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.; Held, Isaac M.; Stenchikov, Georgiy L.; Zeng, Fanrong; Horowitz, Larry W.

    2014-01-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  18. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  19. Sensitivity of wave energy to climate change

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Wave energy will have a key role in meeting renewable energy targets en route to a low carbon economy. However, in common with other renewables, it may be sensitive to changes in climate resulting from rising carbon emissions. Changes in wind patterns are widely anticipated and this will ultimately alter wave regimes. Indeed, evidence indicates that wave heights have been changing over the last 40 years, although there is no proven link to global warming. Changes in the wave climate will impa...

  20. Thermodynamics of climate change: generalized sensitivities

    Directory of Open Access Journals (Sweden)

    V. Lucarini

    2010-10-01

    Full Text Available Using a recent theoretical approach, we study how global warming impacts the thermodynamics of the climate system by performing experiments with a simplified yet Earth-like climate model. The intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy production, and the degree of irreversibility of the system change monotonically with the CO2 concentration. Moreover, these quantities feature an approximately linear behaviour with respect to the logarithm of the CO2 concentration in a relatively wide range. These generalized sensitivities suggest that the climate becomes less efficient, more irreversible, and features higher entropy production as it becomes warmer, with changes in the latent heat fluxes playing a predominant role. These results may be of help for explaining recent findings obtained with state of the art climate models regarding how increases in CO2 concentration impact the vertical stratification of the tropical and extratropical atmosphere and the position of the storm tracks.

  1. Sensitivity of water resources in the Delaware River basin to climate variability and change

    Science.gov (United States)

    Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.

    1994-01-01

    Because of the greenhouse effect, projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climate change; and presents the results of sensitivity analyses of how climate change might affect water resources in the Delaware River basin. Sensitivity analyses suggest that potentially serious shortfalls of certain water resources in the basin could result if some scenarios for climate change come true . The results of model simulations of the basin streamflow demonstrate the difficulty in distinguishing the effects that climate change versus natural climate variability have on streamflow and water supply . The future direction of basin changes in most water resources, furthermore, cannot be precisely determined because of uncertainty in current projections of regional temperature and precipitation . This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant . The sensitivity analyses could be useful in developing contingency plans for evaluating and responding to changes, should they occur.

  2. Deep time evidence for climate sensitivity increase with warming

    DEFF Research Database (Denmark)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto

    2016-01-01

    warming analogue. We obtain constrained estimates of CO2 and climate sensitivity before and during the PETM and of the PETM carbon input amount and nature. Sensitivity increased from 3.3-5.6 to 3.7-6.5K (Kelvin) into the PETM. When taken together with Last Glacial Maximum and modern estimates, this result...... world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8Ma ago, a possible future...

  3. Objectively combining AR5 instrumental period and paleoclimate climate sensitivity evidence

    Science.gov (United States)

    Lewis, Nicholas; Grünwald, Peter

    2018-03-01

    Combining instrumental period evidence regarding equilibrium climate sensitivity with largely independent paleoclimate proxy evidence should enable a more constrained sensitivity estimate to be obtained. Previous, subjective Bayesian approaches involved selection of a prior probability distribution reflecting the investigators' beliefs about climate sensitivity. Here a recently developed approach employing two different statistical methods—objective Bayesian and frequentist likelihood-ratio—is used to combine instrumental period and paleoclimate evidence based on data presented and assessments made in the IPCC Fifth Assessment Report. Probabilistic estimates from each source of evidence are represented by posterior probability density functions (PDFs) of physically-appropriate form that can be uniquely factored into a likelihood function and a noninformative prior distribution. The three-parameter form is shown accurately to fit a wide range of estimated climate sensitivity PDFs. The likelihood functions relating to the probabilistic estimates from the two sources are multiplicatively combined and a prior is derived that is noninformative for inference from the combined evidence. A posterior PDF that incorporates the evidence from both sources is produced using a single-step approach, which avoids the order-dependency that would arise if Bayesian updating were used. Results are compared with an alternative approach using the frequentist signed root likelihood ratio method. Results from these two methods are effectively identical, and provide a 5-95% range for climate sensitivity of 1.1-4.05 K (median 1.87 K).

  4. Separating sensitivity from exposure in assessing extinction risk from climate change.

    Science.gov (United States)

    Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M

    2014-11-04

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.

  5. Implications for Climate Sensitivity from the Response to Individual Forcings

    Science.gov (United States)

    Marvel, Kate; Schmidt, Gavin A.; Miller, Ron L.; Nazarenko, Larissa

    2015-01-01

    Climate sensitivity to doubled CO2 is a widely-used metric of the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that riseat 1 per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational datasets have been used to constrain these values, including temperature trends over the recent past 16, inferences from paleo-climate and process-based constraints from the modern satellite eras. However, as the IPCC recently reported different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upward compared to previous studies, improving the consistency with independent constraints.

  6. Characterizing the Sensitivity of Groundwater Storage to Climate variation in the Indus Basin

    Science.gov (United States)

    Huang, L.; Sabo, J. L.

    2017-12-01

    Indus Basin represents an extensive groundwater aquifer facing the challenge of effective management of limited water resources. Groundwater storage is one of the most important variables of water balance, yet its sensitivity to climate change has rarely been explored. To better estimate present and future groundwater storage and its sensitivity to climate change in the Indus Basin, we analyzed groundwater recharge/discharge and their historical evolution in this basin. Several methods are applied to specify the aquifer system including: water level change and storativity estimates, gravity estimates (GRACE), flow model (MODFLOW), water budget analysis and extrapolation. In addition, all of the socioeconomic and engineering aspects are represented in the hydrological system through the change of temporal and spatial distributions of recharge and discharge (e.g., land use, crop structure, water allocation, etc.). Our results demonstrate that the direct impacts of climate change will result in unevenly distributed but increasing groundwater storage in the short term through groundwater recharge. In contrast, long term groundwater storage will decrease as a result of combined indirect and direct impacts of climate change (e.g. recharge/discharge and human activities). The sensitivity of groundwater storage to climate variation is characterized by topography, aquifer specifics and land use. Furthermore, by comparing possible outcomes of different human interventions scenarios, our study reveals human activities play an important role in affecting the sensitivity of groundwater storage to climate variation. Over all, this study presents the feasibility and value of using integrated hydrological methods to support sustainable water resource management under climate change.

  7. Climate Change Sensitivity of Multi-Species Afforestation in Semi-Arid Benin

    Directory of Open Access Journals (Sweden)

    Florent Noulèkoun

    2018-06-01

    Full Text Available The early growth stage is critical in the response of trees to climate change and variability. It is not clear, however, what climate metrics are best to define the early-growth sensitivity in assessing adaptation strategies of young forests to climate change. Using a combination of field experiments and modelling, we assessed the climate sensitivity of two promising afforestation species, Jatropha curcas L. and Moringa oleifera Lam., by analyzing their predicted climate–growth relationships in the initial two years after planting on degraded cropland in the semi-arid zone of Benin. The process-based WaNuLCAS model (version 4.3, World Agroforestry Centre, Bogor, Indonesia was used to simulate aboveground biomass growth for each year in the climate record (1981–2016, either as the first or as the second year of tree growth. Linear mixed models related the annual biomass growth to climate indicators, and climate sensitivity indices quantified climate–growth relationships. In the first year, the length of dry spells had the strongest effect on tree growth. In the following year, the annual water deficit and length of dry season became the strongest predictors. Simulated rooting depths greater than those observed in the experiments enhanced biomass growth under extreme dry conditions and reduced sapling sensitivity to drought. Projected increases in aridity implied significant growth reduction, but a multi-species approach to afforestation using species that are able to develop deep-penetrating roots should increase the resilience of young forests to climate change. The results illustrate that process-based modelling, combined with field experiments, can be effective in assessing the climate–growth relationships of tree species.

  8. Climate stability and sensitivity in some simple conceptual models

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J. Ray [University College Dublin, Meteorology and Climate Centre, School of Mathematical Sciences, Dublin (Ireland)

    2012-02-15

    A theoretical investigation of climate stability and sensitivity is carried out using three simple linearized models based on the top-of-the-atmosphere energy budget. The simplest is the zero-dimensional model (ZDM) commonly used as a conceptual basis for climate sensitivity and feedback studies. The others are two-zone models with tropics and extratropics of equal area; in the first of these (Model A), the dynamical heat transport (DHT) between the zones is implicit, in the second (Model B) it is explicitly parameterized. It is found that the stability and sensitivity properties of the ZDM and Model A are very similar, both depending only on the global-mean radiative response coefficient and the global-mean forcing. The corresponding properties of Model B are more complex, depending asymmetrically on the separate tropical and extratropical values of these quantities, as well as on the DHT coefficient. Adopting Model B as a benchmark, conditions are found under which the validity of the ZDM and Model A as climate sensitivity models holds. It is shown that parameter ranges of physical interest exist for which such validity may not hold. The 2 x CO{sub 2} sensitivities of the simple models are studied and compared. Possible implications of the results for sensitivities derived from GCMs and palaeoclimate data are suggested. Sensitivities for more general scenarios that include negative forcing in the tropics (due to aerosols, inadvertent or geoengineered) are also studied. Some unexpected outcomes are found in this case. These include the possibility of a negative global-mean temperature response to a positive global-mean forcing, and vice versa. (orig.)

  9. A Data-Driven Assessment of the Sensitivity of Global Ecosystems to Climate Anomalies

    Science.gov (United States)

    Miralles, D. G.; Papagiannopoulou, C.; Demuzere, M.; Decubber, S.; Waegeman, W.; Verhoest, N.; Dorigo, W.

    2017-12-01

    Vegetation is a central player in the climate system, constraining atmospheric conditions through a series of feedbacks. This fundamental role highlights the importance of understanding regional drivers of ecological sensitivity and the response of vegetation to climatic changes. While nutrient availability and short-term disturbances can be crucial for vegetation at various spatiotemporal scales, natural vegetation dynamics are overall driven by climate. At monthly scales, the interactions between vegetation and climate become complex: some vegetation types react preferentially to specific climatic changes, with different levels of intensity, resilience and lagged response. For our current Earth System Models (ESMs) being able to capture this complexity is crucial but extremely challenging. This adds uncertainty to our projections of future climate and the fate of global ecosystems. Here, following a Granger causality framework based on a non-linear random forest predictive model, we exploit the current wealth of satellite data records to uncover the main climatic drivers of monthly vegetation variability globally. Results based on three decades of satellite data indicate that water availability is the most dominant factor driving vegetation in over 60% of the vegetated land. This overall dependency of ecosystems on water availability is larger than previously reported, partly owed to the ability of our machine-learning framework to disentangle the co-linearites between climatic drivers, and to quantify non-linear impacts of climate on vegetation. Our observation-based results are then used to benchmark ESMs on their representation of vegetation sensitivity to climate and climatic extremes. Our findings indicate that the sensitivity of vegetation to climatic anomalies is ill-reproduced by some widely-used ESMs.

  10. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    Science.gov (United States)

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  11. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    Science.gov (United States)

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records.

    Science.gov (United States)

    Martínez-Botí, M A; Foster, G L; Chalk, T B; Rohling, E J; Sexton, P F; Lunt, D J; Pancost, R D; Badger, M P S; Schmidt, D N

    2015-02-05

    Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.

  13. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records

    Science.gov (United States)

    Martínez-Botí, M. A.; Foster, G. L.; Chalk, T. B.; Rohling, E. J.; Sexton, P. F.; Lunt, D. J.; Pancost, R. D.; Badger, M. P. S.; Schmidt, D. N.

    2015-02-01

    Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.

  14. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina; Kirkinen, Johanna; Savolainen, Ilkka

    2006-06-15

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  15. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Kirkinen, Johanna; Savolainen, Ilkka

    2006-06-01

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  16. Cumulus Microphysics and Climate Sensitivity.

    Science.gov (United States)

    del Genio, Anthony D.; Kovari, William; Yao, Mao-Sung; Jonas, Jeffrey

    2005-07-01

    Precipitation processes in convective storms are potentially a major regulator of cloud feedback. An unresolved issue is how the partitioning of convective condensate between precipitation-size particles that fall out of updrafts and smaller particles that are detrained to form anvil clouds will change as the climate warms. Tropical Rainfall Measuring Mission (TRMM) observations of tropical oceanic convective storms indicate higher precipitation efficiency at warmer sea surface temperature (SST) but also suggest that cumulus anvil sizes, albedos, and ice water paths become insensitive to warming at high temperatures. International Satellite Cloud Climatology Project (ISCCP) data show that instantaneous cirrus and deep convective cloud fractions are positively correlated and increase with SST except at the highest temperatures, but are sensitive to variations in large-scale vertical velocity. A simple conceptual model based on a Marshall-Palmer drop size distribution, empirical terminal velocity-particle size relationships, and assumed cumulus updraft speeds reproduces the observed tendency for detrained condensate to approach a limiting value at high SST. These results suggest that the climatic behavior of observed tropical convective clouds is intermediate between the extremes required to support the thermostat and adaptive iris hypotheses.

  17. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Huang, Bohua; Schneider, Edwin K. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Hou, Yu-Tai; Yang, Fanglin [NCEP/NWS/NOAA, Environmental Modeling Center, Camp Springs, MD (United States); Wang, Wanqiu [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2011-05-15

    In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics. (orig.)

  18. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    Science.gov (United States)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  19. Reconstructing Holocene climate using a climate model: Model strategy and preliminary results

    Science.gov (United States)

    Haberkorn, K.; Blender, R.; Lunkeit, F.; Fraedrich, K.

    2009-04-01

    An Earth system model of intermediate complexity (Planet Simulator; PlaSim) is used to reconstruct Holocene climate based on proxy data. The Planet Simulator is a user friendly general circulation model (GCM) suitable for palaeoclimate research. Its easy handling and the modular structure allow for fast and problem dependent simulations. The spectral model is based on the moist primitive equations conserving momentum, mass, energy and moisture. Besides the atmospheric part, a mixed layer-ocean with sea ice and a land surface with biosphere are included. The present-day climate of PlaSim, based on an AMIP II control-run (T21/10L resolution), shows reasonable agreement with ERA-40 reanalysis data. Combining PlaSim with a socio-technological model (GLUES; DFG priority project INTERDYNAMIK) provides improved knowledge on the shift from hunting-gathering to agropastoral subsistence societies. This is achieved by a data assimilation approach, incorporating proxy time series into PlaSim to initialize palaeoclimate simulations during the Holocene. For this, the following strategy is applied: The sensitivities of the terrestrial PlaSim climate are determined with respect to sea surface temperature (SST) anomalies. Here, the focus is the impact of regionally varying SST both in the tropics and the Northern Hemisphere mid-latitudes. The inverse of these sensitivities is used to determine the SST conditions necessary for the nudging of land and coastal proxy climates. Preliminary results indicate the potential, the uncertainty and the limitations of the method.

  20. Climate of the last millennium: a sensitivity study

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Cedric [Royal Meterological Inst. of Belgium, Brussels (Belgium); Loutre, Marie-France; Crucifix, Michel; Berger, Andre [Univ. catholique de Louvain, Louvain la-neuve (Belgium). Inst. d' Astronomie et de Geophysique G. Lemaitre

    2002-05-01

    Seventy-one sensitivity experiments have been performed using a two-dimensional sector-averaged global climate model to assess the potential impact of six different factors on the last millennium climate and in particular on the surface air temperature evolution. Both natural (i.e. solar and volcanism) and anthropogenically-induced (i.e. deforestation, additional greenhouse gases, and tropospheric aerosol burden) climate forcings have been considered. Comparisons of climate reconstructions with model results indicate that all the investigated forcings are needed to simulate the surface air temperature evolution. Due to uncertainties in historical climate forcings and temperature reconstructions, the relative importance of a particular forcing in the explanation of the recorded temperature variance is largely function of the forcing time series used. Nevertheless, our results indicate that whatever the historical solar and volcanic reconstructions may be, these externally driven natural climate forcings are unable to give climate responses comparable in magnitude and time to the late-2Oth-century temperature warming while for earlier periods combination of solar and volcanic forcings can explain the Little Ice Age and the Medieval Warm Period. Only the greenhouse gas forcing allows the model to simulate an accelerated warming rate during the last three decades. The best guess simulation (largest similarity with the reconstruction) for the period starting 1850 AD requires however to include anthropogenic sulphate forcing as well as the impact of deforestation to constrain the magnitude of the greenhouse gas twentieth century warming to better fit the observation. On the contrary, prior to 1850 AD mid-latitude land clearance tends to reinforce the Little Ice age in our simulations.

  1. Sensitivity of Distributions of Climate System Properties to Surface Temperature Datasets

    Science.gov (United States)

    Libardoni, A. G.; Forest, C. E.

    2011-12-01

    Predictions of climate change from models depend strongly on the representation of climate system properties emerging from the processes and feedbacks in the models. The quality of any model prediction can be evaluated by determining how well its output reproduces the observed climate system. With this evaluation, the reliability of climate projections derived from the model and provided for policy makers is assessed and quantified. In this study, surface temperature, upper-air temperature, and ocean heat content data are used to constrain the distributions of the parameters that define three climate system properties in the MIT Integrated Global Systems Model: climate sensitivity, the rate of ocean heat uptake into the deep ocean, and net anthropogenic aerosol forcing. In particular, we explore the sensitivity of the distributions to the surface temperature dataset used to estimate the likelihood of model output given the observed climate records. In total, five different reconstructions of past surface temperatures are used and the resulting parameter distribution functions differ from each other. Differences in estimates of climate sensitivity mode and mean are as great as 1 K between the datasets, with an overall range of 1.2 to 5.3 K using the 5-95 confidence intervals. Ocean effective diffusivity is poorly constrained regardless of which dataset is used. All distributions show broad distributions and only three show signs of a distribution mode. When a mode is present, they tend to be for low diffusivity values. Distributions for the net aerosol forcing show similar shapes and cluster into two groups that are shifted by approximately 0.1 watts per square meter. However, the overall spread of forcing values from the 5-95 confidence interval, -0.19 to -0.83 watts per square meter, is small compared to other uncertainties in climate forcings. Transient climate response estimates derived from these distributions range between 0.87 and 2.41 K. Similar to the

  2. Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Goelzer, H.; Huybrechts, P. [Vrije Universiteit Brussel, Earth System Sciences and Departement Geografie, Brussels (Belgium); Loutre, M.F.; Goosse, H.; Fichefet, T. [Universite Catholique de Louvain, Georges Lemaitre Centre for Earth and Climate Research (TECLIM), Earth and Life Institute, Louvain-la-Neuve (Belgium); Mouchet, A. [Universite de Liege, Laboratoire de Physique Atmospherique et Planetaire, Liege (Belgium)

    2011-09-15

    We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2 x CO{sub 2} warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model's sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model's temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea-air interface, driven by freshening of the surface ocean and amplified by sea-ice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model's climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses. (orig.)

  3. Climate change in Germany. Vulnerability and adaption of climate sensitive sectors; Klimawandel in Deutschland. Vulnerabilitaet und Anpassungsstrategien klimasensitiver Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Zebisch, Marc; Grothmann, Torsten; Schroeter, Dagmar; Hasse, Clemens; Fritsch, Uta; Cramer, Wolfgang [Potsdam Institut fuer Klimaforschung, Potsdam (Germany)

    2005-08-15

    The objectives of this study were the following: documentation of existing knowledge on global change (and particularly climate change) in Germany and to analysis of its current and potential future impacts on seven climate-sensitive sectors (water management, agriculture, forestry, biodiversity/nature conservation, health, tourism and transport).; the evaluation of the present degree of adaptation and the adaptive capacity of these climate-sensitive sectors to global change; conclusions on the vulnerability to global change of sectors and regions in Germany by considering potential global change impacts, degrees of adaptation and adaptive capacity; and the discussion of the results of the study with decision-makers from government, administration, economy and society, in order to develop a basis for the development of strategies of adaptation to global change in Germany.

  4. Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tian [Pacific Northwest National Laboratory, Richland, Washington; Voisin, Nathalie [Pacific Northwest National Laboratory, Richland, Washington; Leng, Guoyong [Pacific Northwest National Laboratory, Richland, Washington; Huang, Maoyi [Pacific Northwest National Laboratory, Richland, Washington; Kraucunas, Ian [Pacific Northwest National Laboratory, Richland, Washington

    2018-03-01

    Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-induced alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.

  5. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    International Nuclear Information System (INIS)

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-01-01

    Due to increasing atmospheric CO 2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO 2 and those which involve CO 2 -induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO 2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO 2 -induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO 2 -induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change. (letters)

  6. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence

    Directory of Open Access Journals (Sweden)

    Edlund Stefan

    2012-09-01

    Full Text Available Abstract Background The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. Methods This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data. The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation’s Spatiotemporal Epidemiological Modeller (STEM. Results Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166–2

  7. Determination of a lower bound on Earth's climate sensitivity

    Directory of Open Access Journals (Sweden)

    STEPHEN E. Schwartz

    2013-09-01

    Full Text Available Transient and equilibrium sensitivity of Earth's climate has been calculated using global temperature, forcing and heating rate data for the period 1970–2010. We have assumed increased long-wave radiative forcing in the period due to the increase of the long-lived greenhouse gases. By assuming the change in aerosol forcing in the period to be zero, we calculate what we consider to be lower bounds to these sensitivities, as the magnitude of the negative aerosol forcing is unlikely to have diminished in this period. The radiation imbalance necessary to calculate equilibrium sensitivity is estimated from the rate of ocean heat accumulation as 0.37±0.03 W m−2 (all uncertainty estimates are 1−σ. With these data, we obtain best estimates for transient climate sensitivity 0.39±0.07 K (W m−2−1 and equilibrium climate sensitivity 0.54±0.14 K (W m−2−1, equivalent to 1.5±0.3 and 2.0±0.5 K (3.7 W m−2−1, respectively. The latter quantity is equal to the lower bound of the ‘likely’ range for this quantity given by the 2007 IPCC Assessment Report. The uncertainty attached to the lower-bound equilibrium sensitivity permits us to state, within the assumptions of this analysis, that the equilibrium sensitivity is greater than 0.31 K (W m−2−1, equivalent to 1.16 K (3.7 W m−2−1, at the 95% confidence level.

  8. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.

    Science.gov (United States)

    Cox, Peter M; Pearson, David; Booth, Ben B; Friedlingstein, Pierre; Huntingford, Chris; Jones, Chris D; Luke, Catherine M

    2013-02-21

    The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.

  9. Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials

    International Nuclear Information System (INIS)

    Berntsen, T.K.; Fuglestvedt, J.S.; Joshi, M.M.; Shine, K.P.; Hauglustaine, D.A.; Li, L.

    2005-01-01

    The response of climate to ozone perturbations caused by regional emissions of NO x or CO has been studied through a sequence of model simulations. Changes C and OH concentrations due to emission perturbations in Europe and southeast Asia have been calculated with two global 3-D chemical tracer models(CTMs; LMDzINCA and Oslo-CTM2). The radiative transfer codes of three general circulation models (GCMs; ECHAM4, UREAD and LMD) have been used to calculate the radiative forcing of the O 3 perturbations, and for a subset of the cases full GCM simulations have been performed with ECHAM4 and UREAD. The results have been aggregated to a global number in two ways: first, through integrating the global-mean radiative forcing of a sustained step change in emissions, and second through a modified concept (SGWP*) which includes possible differences in the climate sensitivity of O 3 , CH 4 and CO 2 changes. In terms of change in global tropospheric O 3 burden the two CTMs differ by less than 30%. Both CTMs show a higher north/south gradient in the sensitivity to changes in NO x emission than for CO. We are not able to conclude whether real O 3 perturbations in general have a different climate sensitivity from CO 2 . However, in both GCMs high-latitude emission perturbations lead to climate perturbations with higher (10-30%) climate sensitivities. The calculated SGWP*, for a 100 yr time horizon, are negative for three of the four CTM/GCM combinations for European emissions (-9.6 to +6.9), while for the Asian emissions the SGWP* (H=100) is always positive (+2.9 to +25) indicating a warming. For CO the SGWP* values (3.8 and 4.4 for European and Asian emissions respectively, with only the Oslo-CTM2/ECHAM4 model combination) are less regionally dependent. Our results support the view that for NO x , regionally different weighting factors for the emissions are necessary. For CO the results are more robust and one global number may be acceptable

  10. Tuning the climate sensitivity of a global model to match 20th Century warming

    Science.gov (United States)

    Mauritsen, T.; Roeckner, E.

    2015-12-01

    A climate models ability to reproduce observed historical warming is sometimes viewed as a measure of quality. Yet, for practical reasons historical warming cannot be considered a purely empirical result of the modelling efforts because the desired result is known in advance and so is a potential target of tuning. Here we explain how the latest edition of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1.2) atmospheric model (ECHAM6.3) had its climate sensitivity systematically tuned to about 3 K; the MPI model to be used during CMIP6. This was deliberately done in order to improve the match to observed 20th Century warming over the previous model generation (MPI-ESM, ECHAM6.1) which warmed too much and had a sensitivity of 3.5 K. In the process we identified several controls on model cloud feedback that confirm recently proposed hypotheses concerning trade-wind cumulus and high-latitude mixed-phase clouds. We then evaluate the model fidelity with centennial global warming and discuss the relative importance of climate sensitivity, forcing and ocean heat uptake efficiency in determining the response as well as possible systematic biases. The activity of targeting historical warming during model development is polarizing the modeling community with 35 percent of modelers stating that 20th Century warming was rated very important to decisive, whereas 30 percent would not consider it at all. Likewise, opinions diverge as to which measures are legitimate means for improving the model match to observed warming. These results are from a survey conducted in conjunction with the first WCRP Workshop on Model Tuning in fall 2014 answered by 23 modelers. We argue that tuning or constructing models to match observed warming to some extent is practically unavoidable, and as such, in many cases might as well be done explicitly. For modeling groups that have the capability to tune both their aerosol forcing and climate sensitivity there is now a unique

  11. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S.A.

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... of multi-decadal time series of annual shrub growth provide an underused resource to explore climate–growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and 42,000 annual growth records from 1,821 individuals. Our analyses...... demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern...

  12. Responses of the ocean carbon cycle to climate change: Results from an earth system climate model simulation

    Institute of Scientific and Technical Information of China (English)

    WANG Shuang-Jing; CAO Long; LI Na

    2014-01-01

    Based on simulations using the University of Victoria’s Earth System Climate Model, we analyzed the responses of the ocean carbon cycle to increasing atmospheric CO2 levels and climate change from 1800 to 2500 following the RCP 8.5 scenario and its extension. Compared to simulations without climate change, the simulation with a climate sensitivity of 3.0 K shows that in 2100, due to increased atmospheric CO2 concentrations, the simulated sea surface temperature increases by 2.7 K, the intensity of the North Atlantic deep water formation reduces by4.5 Sv, and the oceanic uptake of anthropogenic CO2 decreases by 0.8 Pg C. Climate change is also found to have a large effect on the North Atlantic’s ocean column inventory of anthropogenic CO2. Between the years 1800 and 2500, compared with the simulation with no climate change, the simulation with climate change causes a reduction in the total anthropogenic CO2 column inventory over the entire ocean and in North Atlantic by 23.1% and 32.0%, respectively. A set of simulations with climate sensitivity variations from 0.5 K to 4.5 K show that with greater climate sensitivity climate change would have a greater effect in reducing the ocean’s ability to absorb CO2 from the atmosphere.

  13. Issues in Establishing Climate Sensitivity in Recent Studies

    Directory of Open Access Journals (Sweden)

    John T. Fasullo

    2011-09-01

    Full Text Available Numerous attempts have been made to constrain climate sensitivity with observations [1-10] (with [6] as LC09, [8] as SB11. While all of these attempts contain various caveats and sources of uncertainty, some efforts have been shown to contain major errors and are demonstrably incorrect. For example, multiple studies [11-13] separately addressed weaknesses in LC09 [6]. The work of Trenberth et al. [13], for instance, demonstrated a basic lack of robustness in the LC09 method that fundamentally undermined their results. Minor changes in that study’s subjective assumptions yielded major changes in its main conclusions. Moreover, Trenberth et al. [13] criticized the interpretation of El Niño-Southern Oscillation (ENSO as an analogue for exploring the forced response of the climate system. In addition, as many cloud variations on monthly time scales result from internal atmospheric variability, such as the Madden-Julian Oscillation, cloud variability is not a deterministic response to surface temperatures. Nevertheless, many of the problems in LC09 [6] have been perpetuated, and Dessler [10] has pointed out similar issues with two more recent such attempts [7,8]. Here we briefly summarize more generally some of the pitfalls and issues involved in developing observational constraints on climate feedbacks. [...

  14. The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change

    International Nuclear Information System (INIS)

    Meehl, G.A.

    1990-01-01

    Results are presented from a global coupled ocean-atmosphere general circulation climate model developed at the National Center for Atmospheric Research. The atmospheric part of the coupled model is a global spectral (R15, 4.5 degree latitude by 7.5 degree longitude, 9 layers in the vertical) general circulation model. The ocean is coarse-grid (5 degree latitude by 5 degree longitude, 4 layers in the vertical) global general circulation model. The coupled model includes a simple thermodynamic sea-ice model. Due mainly to inherent limitations in the ocean model, the coupled model simulates sea surface temperatures that are too low in the tropics and too high in the extratropics in the mean. In spite of these limitations, the coupled model simulates active interannual variability of the global climate system involving signals in the tropical Pacific that resemble, in some respects, the observed Southern Oscillation. These signals in the tropics are associated with teleconnections to the extratropics of both hemispheres. The implications of this model-simulated interannual variability of the coupled system relating to climate sensitivity and climate change due to an increase of atmospheric carbon dioxide are discussed

  15. The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change

    International Nuclear Information System (INIS)

    Meehl, G.A.

    1991-01-01

    Results are presented from a global coupled ocean-atmosphere general circulation climate model developed at the National Center for Atmospheric Research. The atmospheric part of the coupled model is a global spectral (R15, 4.5 degree latitude by 7.5 degree longitude, 9 layers in the vertical) general circulation model. The ocean is coarse-grid (5 degree latitude by 5 degree longitude, 4 layers in the vertical) global general circulation model. The coupled model includes a simple thermodynamic sea-ice model. Due mainly to inherent limitations in the ocean model, the coupled model simulates sea surface temperatures that are too low in the tropics and too high in the extratropics in the mean. In spite of these limitations, the coupled model simulates active interannual variability of the global climate system involving signals in the tropical Pacific that resemble, in some respects, the observed Southern Oscillation. These signals in the tropics are associated with teleconnections to the extratropics of both hemispheres. The implications of this model-simulated interannual variability of the coupled system relating to climate sensitivity and climate change due to an increase of atmospheric carbon dioxide are discussed. 25 refs.; 9 figs

  16. The influence of the albedo-temperature feedback on climate sensitivity

    NARCIS (Netherlands)

    Bintanja, R.; Oerlemans, J.

    1995-01-01

    A vertically integrated, zonally averaged energy-balance climate model coupled to a two-dimensional ocean model with prescribed overturning pattern is employed to assess the seasonally and latitudinally varying response of the climate system to changes in radiative forcing. Since the sensitivity

  17. Climate change sensitivity of multi-species afforestation in semi-arid Benin

    NARCIS (Netherlands)

    Noulèkoun, Florent; Khamzina, Asia; Naab, Jesse B.; Khasanah, N.; Noordwijk, van Meine; Lamers, John P.A.

    2018-01-01

    The early growth stage is critical in the response of trees to climate change and variability. It is not clear, however, what climate metrics are best to define the early-growth sensitivity in assessing adaptation strategies of young forests to climate change. Using a combination of field

  18. Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance

    Directory of Open Access Journals (Sweden)

    B. Lin

    2010-02-01

    Full Text Available Large climate feedback uncertainties limit the accuracy in predicting the response of the Earth's climate to the increase of CO2 concentration within the atmosphere. This study explores a potential to reduce uncertainties in climate sensitivity estimations using energy balance analysis, especially top-of-atmosphere (TOA radiation imbalance. The time-scales studied generally cover from decade to century, that is, middle-range climate sensitivity is considered, which is directly related to the climate issue caused by atmospheric CO2 change. The significant difference between current analysis and previous energy balance models is that the current study targets at the boundary condition problem instead of solving the initial condition problem. Additionally, climate system memory and deep ocean heat transport are considered. The climate feedbacks are obtained based on the constraints of the TOA radiation imbalance and surface temperature measurements of the present climate. In this study, the TOA imbalance value of 0.85 W/m2 is used. Note that this imbalance value has large uncertainties. Based on this value, a positive climate feedback with a feedback coefficient ranging from −1.3 to −1.0 W/m2/K is found. The range of feedback coefficient is determined by climate system memory. The longer the memory, the stronger the positive feedback. The estimated time constant of the climate is large (70~120 years mainly owing to the deep ocean heat transport, implying that the system may be not in an equilibrium state under the external forcing during the industrial era. For the doubled-CO2 climate (or 3.7 W/m2 forcing, the estimated global warming would be 3.1 K if the current estimate of 0.85 W/m2 TOA net radiative heating could be confirmed. With accurate long-term measurements of TOA radiation, the analysis method suggested by this study provides a great potential in the

  19. Assessing climate-sensitive ecosystems in the southeastern United States

    Science.gov (United States)

    Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew J.; White, Rickie; Collazo, Jaime

    2016-08-11

    Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing

  20. A piecewise modeling approach for climate sensitivity studies: Tests with a shallow-water model

    Science.gov (United States)

    Shao, Aimei; Qiu, Chongjian; Niu, Guo-Yue

    2015-10-01

    In model-based climate sensitivity studies, model errors may grow during continuous long-term integrations in both the "reference" and "perturbed" states and hence the climate sensitivity (defined as the difference between the two states). To reduce the errors, we propose a piecewise modeling approach that splits the continuous long-term simulation into subintervals of sequential short-term simulations, and updates the modeled states through re-initialization at the end of each subinterval. In the re-initialization processes, this approach updates the reference state with analysis data and updates the perturbed states with the sum of analysis data and the difference between the perturbed and the reference states, thereby improving the credibility of the modeled climate sensitivity. We conducted a series of experiments with a shallow-water model to evaluate the advantages of the piecewise approach over the conventional continuous modeling approach. We then investigated the impacts of analysis data error and subinterval length used in the piecewise approach on the simulations of the reference and perturbed states as well as the resulting climate sensitivity. The experiments show that the piecewise approach reduces the errors produced by the conventional continuous modeling approach, more effectively when the analysis data error becomes smaller and the subinterval length is shorter. In addition, we employed a nudging assimilation technique to solve possible spin-up problems caused by re-initializations by using analysis data that contain inconsistent errors between mass and velocity. The nudging technique can effectively diminish the spin-up problem, resulting in a higher modeling skill.

  1. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    Science.gov (United States)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  2. Sensitivity of the Eocene climate to CO2 and orbital variability

    Science.gov (United States)

    Keery, John S.; Holden, Philip B.; Edwards, Neil R.

    2018-02-01

    The early Eocene, from about 56 Ma, with high atmospheric CO2 levels, offers an analogue for the response of the Earth's climate system to anthropogenic fossil fuel burning. In this study, we present an ensemble of 50 Earth system model runs with an early Eocene palaeogeography and variation in the forcing values of atmospheric CO2 and the Earth's orbital parameters. Relationships between simple summary metrics of model outputs and the forcing parameters are identified by linear modelling, providing estimates of the relative magnitudes of the effects of atmospheric CO2 and each of the orbital parameters on important climatic features, including tropical-polar temperature difference, ocean-land temperature contrast, Asian, African and South (S.) American monsoon rains, and climate sensitivity. Our results indicate that although CO2 exerts a dominant control on most of the climatic features examined in this study, the orbital parameters also strongly influence important components of the ocean-atmosphere system in a greenhouse Earth. In our ensemble, atmospheric CO2 spans the range 280-3000 ppm, and this variation accounts for over 90 % of the effects on mean air temperature, southern winter high-latitude ocean-land temperature contrast and northern winter tropical-polar temperature difference. However, the variation of precession accounts for over 80 % of the influence of the forcing parameters on the Asian and African monsoon rainfall, and obliquity variation accounts for over 65 % of the effects on winter ocean-land temperature contrast in high northern latitudes and northern summer tropical-polar temperature difference. Our results indicate a bimodal climate sensitivity, with values of 4.36 and 2.54 °C, dependent on low or high states of atmospheric CO2 concentration, respectively, with a threshold at approximately 1000 ppm in this model, and due to a saturated vegetation-albedo feedback. Our method gives a quantitative ranking of the influence of each of the

  3. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2017-09-01

    Full Text Available Observations and climate model simulations consistently show a higher climate sensitivity of land surfaces compared to ocean surfaces. Here we show that this difference in temperature sensitivity can be explained by the different means by which the diurnal variation in solar radiation is buffered. While ocean surfaces buffer the diurnal variations by heat storage changes below the surface, land surfaces buffer it mostly by heat storage changes above the surface in the lower atmosphere that are reflected in the diurnal growth of a convective boundary layer. Storage changes below the surface allow the ocean surface–atmosphere system to maintain turbulent fluxes over day and night, while the land surface–atmosphere system maintains turbulent fluxes only during the daytime hours, when the surface is heated by absorption of solar radiation. This shorter duration of turbulent fluxes on land results in a greater sensitivity of the land surface–atmosphere system to changes in the greenhouse forcing because nighttime temperatures are shaped by radiative exchange only, which are more sensitive to changes in greenhouse forcing. We use a simple, analytic energy balance model of the surface–atmosphere system in which turbulent fluxes are constrained by the maximum power limit to estimate the effects of these different means to buffer the diurnal cycle on the resulting temperature sensitivities. The model predicts that land surfaces have a 50 % greater climate sensitivity than ocean surfaces, and that the nighttime temperatures on land increase about twice as much as daytime temperatures because of the absence of turbulent fluxes at night. Both predictions compare very well with observations and CMIP5 climate model simulations. Hence, the greater climate sensitivity of land surfaces can be explained by its buffering of diurnal variations in solar radiation in the lower atmosphere.

  4. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs.

    Science.gov (United States)

    Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane

    2017-08-01

    Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key

  5. Sensitivity of health sector indicators' response to climate change in Ghana.

    Science.gov (United States)

    Dovie, Delali B K; Dzodzomenyo, Mawuli; Ogunseitan, Oladele A

    2017-01-01

    There is accumulating evidence that the emerging burden of global climate change threatens the fidelity of routine indicators for disease detection and management of risks to public health. The threat partially reflects the conservative character of the health sector and the reluctance to adopt new indicators, despite the growing awareness that existing environmental health indicators were developed to respond to risks that may no longer be relevant, and are too simplistic to also act as indicators for newer global-scale risk factors. This study sought to understand the scope of existing health indicators, while aiming to discover new indicators for building resilience against three climate sensitive diseases (cerebro spinal meningitis, malaria and diarrhea). Therefore, new potential indicators derived from human and biophysical origins were developed to complement existing health indicators, thereby creating climate-sensitive battery of robust composite indices of resilience in health planning. Using Ghana's health sector as a case study systematic international literature review, national expert consultation, and focus group outcomes yielded insights into the relevance, sensitivity and impacts of 45 indicators in 11 categories in responding to climate change. In total, 65% of the indicators were sensitive to health impacts of climate change; 24% acted directly; 31% synergistically; and 45% indirectly, with indicator relevance strongly associated with type of health response. Epidemiological indicators (e.g. morbidity) and health demographic indicators (e.g. population structure) require adjustments with external indicators (e.g. biophysical, policy) to be resilient to climate change. Therefore, selective integration of social and ecological indicators with existing public health indicators improves the fidelity of the health sector to adopt more robust planning of interdependent systems to build resilience. The study highlights growing uncertainties in

  6. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Lin Bing; Min Qilong; Sun Wenbo; Hu Yongxiang; Fan, Tai-Fang

    2011-01-01

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  7. Climate change sensitivity index for Pacific salmon habitat in southeast Alaska.

    Directory of Open Access Journals (Sweden)

    Colin S Shanley

    Full Text Available Global climate change may become one of the most pressing challenges to Pacific Salmon conservation and management for southeast Alaska in the 21st Century. Predicted hydrologic change associated with climate change will likely challenge the ability of specific stocks to adapt to new flow regimes and resulting shifts in spawning and rearing habitats. Current research suggests egg-to-fry survival may be one of the most important freshwater limiting factors in Pacific Salmon's northern range due to more frequent flooding events predicted to scour eggs from mobile spawning substrates. A watershed-scale hydroclimatic sensitivity index was developed to map this hypothesis with an historical stream gauge station dataset and monthly multiple regression-based discharge models. The relative change from present to future watershed conditions predicted for the spawning and incubation period (September to March was quantified using an ensemble global climate model average (ECHAM5, HadCM3, and CGCM3.1 and three global greenhouse gas emission scenarios (B1, A1B, and A2 projected to the year 2080. The models showed the region's diverse physiography and climatology resulted in a relatively predictable pattern of change: northern mainland and steeper, snow-fed mountainous watersheds exhibited the greatest increases in discharge, an earlier spring melt, and a transition into rain-fed hydrologic patterns. Predicted streamflow increases for all watersheds ranged from approximately 1-fold to 3-fold for the spawning and incubation period, with increased peak flows in the spring and fall. The hydroclimatic sensitivity index was then combined with an index of currently mapped salmon habitat and species diversity to develop a research and conservation priority matrix, highlighting potentially vulnerable to resilient high-value watersheds. The resulting matrix and observed trends are put forth as a framework to prioritize long-term monitoring plans, mitigation

  8. Disentangling Aerosol Cooling and Greenhouse Warming to Reveal Earth's Climate Sensitivity

    Science.gov (United States)

    Storelvmo, Trude; Leirvik, Thomas; Phillips, Petter; Lohmann, Ulrike; Wild, Martin

    2015-04-01

    Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present a study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.

  9. Sensitivity of intermittent streams to climate variations in the United States

    Science.gov (United States)

    Eng, K.

    2015-12-01

    There is growing interest in the effects of climate change on streamflows because of the potential negative effects on aquatic biota and water supplies. Previous studies of climate controls on flows have primarily focused on perennial streams, and few studies have examined the effect of climate variability on intermittent streams. Our objectives in this study were to (1) identify regions showing similar patterns of intermittency, and (2) evaluate the sensitivity of intermittent streams to historical variability in climate in the United States. This study was carried out at 265 intermittent streams by evaluating: (1) correlations among time series of flow metrics (number of zero-flow events, the average of the central 50% and largest 10% of flows) with precipitation (magnitudes, durations and intensity) and temperature, and (2) decadal changes in the seasonality and long-term trends of these flow metrics. Results identified five distinct seasonal patterns of flow intermittency: fall, fall-to-winter, non-seasonal, summer, and summer-to-winter intermittent streams. In addition, strong associations between the low-flow metrics and historical climate variability were found. However, the lack of trends in historical variations in precipitation results in no significant seasonal shifts or decade-to-decade trends in the low-flow metrics over the period of record (1950 to 2013).

  10. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    Science.gov (United States)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data

  11. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    Science.gov (United States)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  12. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity

    Science.gov (United States)

    Frey, William R.; Kay, Jennifer E.

    2018-04-01

    Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.

  13. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  14. Quantifying PM2.5-Meteorology Sensitivities in a Global Climate Model

    Science.gov (United States)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.

    2016-01-01

    Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 micro-g/cu m3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 micro-g/cu m (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 micro-g/cu m for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10e50

  15. Sensitivity of intermittent streams to climate variations in the USA

    Science.gov (United States)

    Eng, Kenny; Wolock, David M.; Dettinger, Mike

    2015-01-01

    There is a great deal of interest in the literature on streamflow changes caused by climate change because of the potential negative effects on aquatic biota and water supplies. Most previous studies have primarily focused on perennial streams, and there have been only a few studies examining the effect of climate variability on intermittent streams. Our objectives in this study were to (1) identify regions of similar zero-flow behavior, and (2) evaluate the sensitivity of intermittent streams to historical variability in climate in the United States. This study was carried out at 265 intermittent streams by evaluating: (1) correlations among time series of flow metrics (number of zero-flow events, the average of the central 50% and largest 10% of flows) with climate (magnitudes, durations and intensity), and (2) decadal changes in the seasonality and long-term trends of these flow metrics. Results identified five distinct seasonality patterns in the zero-flow events. In addition, strong associations between the low-flow metrics and historical changes in climate were found. The decadal analysis suggested no significant seasonal shifts or decade-to-decade trends in the low-flow metrics. The lack of trends or changes in seasonality is likely due to unchanged long-term patterns in precipitation over the time period examined.

  16. Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities

    Science.gov (United States)

    Mateus, M. C.; Tullos, D. D.

    2013-12-01

    In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.

  17. Sensitivity of climate mitigation strategies to natural disturbances

    International Nuclear Information System (INIS)

    Le Page, Y; Hurtt, G; Thomson, A M; Bond-Lamberty, B; Patel, P; Wise, M; Calvin, K; Kyle, P; Clarke, L; Edmonds, J; Janetos, A

    2013-01-01

    The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon-efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because of the potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and the global economy. An understanding of the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies. (letter)

  18. Sensitivity of Climate to Changes in NDVI

    Science.gov (United States)

    Bounoua, L.; Collatz, G. J.; Los, S. O.; Sellers, P. J.; Dazlich, D. A.; Tucker, C. J.; Randall, D. A.

    1999-01-01

    The sensitivity of global and regional climate to changes in vegetation density is investigated using a coupled biosphere-atmosphere model. The magnitude of the vegetation changes and their spatial distribution are based on natural decadal variability of the normalized difference vegetation index (ndvi). Different scenarios using maximum and minimum vegetation cover were derived from satellite records spanning the period 1982-1990. Albedo decreased in the northern latitudes and increased in the tropics with increased ndvi. The increase in vegetation density revealed that the vegetation's physiological response was constrained by the limits of the available water resources. The difference between the maximum and minimum vegetation scenarios resulted in a 46% increase in absorbed visible solar radiation and a similar increase in gross photosynthetic C02 uptake on a global annual basis. This caused the canopy transpiration and interception fluxes to increase, and reduced those from the soil. The redistribution of the surface energy fluxes substantially reduced the Bowen ratio during the growing season, resulting in cooler and moister near-surface climate, except when soil moisture was limiting. Important effects of increased vegetation on climate are : (1) A cooling of about 1.8 K in the northern latitudes during the growing season and a slight warming during the winter, which is primarily due to the masking of high albedo of snow by a denser canopy. and (2) A year round cooling of 0.8 K in the tropics. These results suggest that increases in vegetation density could partially compensate for parallel increases in greenhouse warming . Increasing vegetation density globally caused both evapotranspiration and precipitation to increase. Evapotranspiration, however increased more than precipitation resulting in a global soil-water deficit of about 15 %. A spectral analysis on the simulated results showed that changes in the state of vegetation could affect the low

  19. Estimating option values of solar radiation management assuming that climate sensitivity is uncertain.

    Science.gov (United States)

    Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa

    2016-05-24

    Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM's actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM's side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990-2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion.

  20. Sensitivity of Water Scarcity Events to ENSO-Driven Climate Variability at the Global Scale

    Science.gov (United States)

    Veldkamp, T. I. E.; Eisner, S.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño- Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4% of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6% (CTA: consumption-to-availability ratio) and 41.1% (WCI: water crowding index) of the global population, whilst only 11.4% (CTA) and 15.9% (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity

  1. Community vulnerability to climate change in the context of other exposure-sensitivities in Kugluktuk, Nunavut

    Directory of Open Access Journals (Sweden)

    Laura Tozer

    2011-07-01

    Full Text Available Climate change in the Canadian north is, and will be, managed by communities that are already experiencing social, political, economic and other environmental changes. Hence, there is a need to understand vulnerability to climate change in the context of multiple exposure-sensitivities at the community level. This article responds to this perceived knowledge need based on a case study of the community of Kugluktuk in Nunavut, Canada. An established approach for vulnerability assessment is used to identify current climatic and non-climatic exposure-sensitivities along with their associated contemporary adaptation strategies. This assessment of current vulnerability is used as a basis to consider Kugluktuk's possible vulnerability to climatic change in the future. Current climate-related exposure-sensitivities in Kugluktuk relate primarily to subsistence harvesting and community infrastructure. Thinner and less stable ice conditions and unpredictable weather patterns are making travel and harvesting more dangerous and some community infrastructure is sensitive to permafrost melt and extreme weather events (e.g., flash floods. The ability of individuals and households to adapt to these and other climatic exposure-sensitivities is influenced by non-climatic factors that condition adaptive capacity including substance abuse, the erosion of traditional knowledge and youth suicide. These and other non-climatic factors often underpin adaptive capacity to deal with and adapt to changing conditions and must be considered in an assessment of vulnerability. This research argues that Northern communities are challenged by multiple exposure-sensitivities—beyond just those posed by climate—and effective adaptation to climate change requires consideration if not resolution of socio-economic and other issues in communities.

  2. Runoff sensitivity to climate change in the Nile River Basin

    Science.gov (United States)

    Hasan, Emad; Tarhule, Aondover; Kirstetter, Pierre-Emmanuel; Clark, Race; Hong, Yang

    2018-06-01

    In data scarce basins, such as the Nile River Basin (NRB) in Africa, constraints related to data availability, quality, and access often complicate attempts to estimate runoff sensitivity using conventional methods. In this paper, we show that by integrating the concept of the aridity index (AI) (derived from the Budyko curve) and climate elasticity, we can obtain the first order response of the runoff sensitivity using minimal data input and modeling expertise or experience. The concept of runoff elasticity relies on the fact that the energy available for evapotranspiration plays a major role in determining whether the precipitation received within a drainage basin generates runoff. The approach does not account for human impacts on runoff modification and or diversions. By making use of freely available gauge-corrected satellite data for precipitation, temperature, runoff, and potential evapotranspiration, we derived the sensitivity indicator (β) to determine the runoff response to changes in precipitation and temperature for four climatic zones in the NRB, namely, tropical, subtropical, semiarid and arid zones. The proposed sensitivity indicator can be partitioned into different elasticity components i.e: precipitation (εp), potential evapotranspiration (εETp), temperature (εT) and the total elasticity (εtot) . These elasticities allow robust quantification of the runoff response to the potential changes in precipitation and temperature with a high degree of accuracy. Results indicate that the tropical zone is energy-constrained with low sensitivity, (β 1.0) . The subtropical-highland zone moves between energy-limited to water-limited conditions during periods of wet and dry spells with varying sensitivity. The semiarid and arid zones are water limited, with high sensitivity, (β > 1.0) . The calculated runoff elasticities show that a 10% decrease in precipitation leads to a decrease in runoff of between 19% in the tropical zone and 30% in the arid zones

  3. Short ensembles: An Efficient Method for Discerning Climate-relevant Sensitivities in Atmospheric General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Hui; Rasch, Philip J.; Zhang, Kai; Qian, Yun; Yan, Huiping; Zhao, Chun

    2014-09-08

    This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.

  4. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    B. Leterme

    2012-08-01

    Full Text Available The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from −42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain, considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from −69% to −14% compared to the present-day climate.

  5. Influence of watershed topographic and socio-economic attributes on the climate sensitivity of global river water quality

    Science.gov (United States)

    Khan, Afed U.; Jiang, Jiping; Wang, Peng; Zheng, Yi

    2017-10-01

    Surface waters exhibit regionalization due to various climatic conditions and anthropogenic activities. Here we assess the impact of topographic and socio-economic factors on the climate sensitivity of surface water quality, estimated using an elasticity approach (climate elasticity of water quality (CEWQ)), and identify potential risks of instability in different regions and climatic conditions. Large global datasets were used for 12 main water quality parameters from 43 water quality monitoring stations located at large major rivers. The results demonstrated that precipitation elasticity shows higher sensitivity to topographic and socio-economic determinants as compared to temperature elasticity. In tropical climate class (A), gross domestic product (GDP) played an important role in stabilizing the CEWQ. In temperate climate class (C), GDP played the same role in stability, while the runoff coefficient, slope, and population density fuelled the risk of instability. The results implied that watersheds with lower runoff coefficient, thick population density, over fertilization and manure application face a higher risk of instability. We discuss the socio-economic and topographic factors that cause instability of CEWQ parameters and conclude with some suggestions for watershed managers to bring sustainability in freshwater bodies.

  6. Variation in ploidy level and phenology can result in large and unexpected differences in demography and climatic sensitivity between closely related ferns.

    NARCIS (Netherlands)

    Groot, de G.A.; Zuidema, P.A.; Groot, H.; During, H.J.

    2012-01-01

    • Premise of the study: Current environmental changes may affect the dynamics and viability of plant populations. This environmental sensitivity may differ between species of different ploidy level because polyploidization can influence life history traits. We compared the demography and climatic

  7. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  8. What Climate Sensitivity Index Is Most Useful for Projections?

    Science.gov (United States)

    Grose, Michael R.; Gregory, Jonathan; Colman, Robert; Andrews, Timothy

    2018-02-01

    Transient climate response (TCR), transient response at 140 years (T140), and equilibrium climate sensitivity (ECS) indices are intended as benchmarks for comparing the magnitude of climate response projected by climate models. It is generally assumed that TCR or T140 would explain more variability between models than ECS for temperature change over the 21st century, since this timescale is the realm of transient climate change. Here we find that TCR explains more variability across Coupled Model Intercomparison Project phase 5 than ECS for global temperature change since preindustrial, for 50 or 100 year global trends up to the present, and for projected change under representative concentration pathways in regions of delayed warming such as the Southern Ocean. However, unexpectedly, we find that ECS correlates higher than TCR for projected change from the present in the global mean and in most regions. This higher correlation does not relate to aerosol forcing, and the physical cause requires further investigation.

  9. Deriving user-informed climate information from climate model ensemble results

    Science.gov (United States)

    Huebener, Heike; Hoffmann, Peter; Keuler, Klaus; Pfeifer, Susanne; Ramthun, Hans; Spekat, Arne; Steger, Christian; Warrach-Sagi, Kirsten

    2017-07-01

    Communication between providers and users of climate model simulation results still needs to be improved. In the German regional climate modeling project ReKliEs-De a midterm user workshop was conducted to allow the intended users of the project results to assess the preliminary results and to streamline the final project results to their needs. The user feedback highlighted, in particular, the still considerable gap between climate research output and user-tailored input for climate impact research. Two major requests from the user community addressed the selection of sub-ensembles and some condensed, easy to understand information on the strengths and weaknesses of the climate models involved in the project.

  10. Energy partitioning at treeline forest and tundra sites and its sensitivity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, P.M. [Trent Univ., Peterborough, ON (Canada); Rouse, W.R. [McMaster Univ., Hamilton, ON (Canada)

    1995-12-31

    A study was conducted to examine the inter-annual variability in energy fluxes of treeline tundra and forest and to investigate the sensitivity of forest and tundra energy balances to climatic changes. A five year record of energy balance data from contiguous wetland tundra and subarctic forest sites near Churchill, Manitoba was analyzed. The data included snow free periods only. Wind direction was used as an analogue for changing climatic conditions where onshore winds are cooler and moister than offshore winds. Sensible and latent heat fluxes at both sites varied significantly between onshore and offshore wind regimes. The differences between onshore and offshore fluxes at the tundra site were larger than for the forest. The tundra-to-forest Bowen ratios decreased with increasing vapour pressure deficit and increasing air temperature. Results suggest that energy partitioning in the wetland tundra is more sensitive to climate change than in the treeline forests. 22 refs., 1 tab., 6 figs.

  11. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    Science.gov (United States)

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of

  12. Economics of climate change : sensitivity analysis of social cost of carbon

    OpenAIRE

    Torniainen, Sami

    2016-01-01

    Social cost of carbon (SCC) is the key concept in the economics of climate change. It measures the economic cost of climate impacts. SCC has influence on how beneficial it is to prevent climate change: if the value of SCC increases, investments to low-carbon technology become more attractive and profitable. This paper examines the sensitivity of two important assumptions that affect to SCC: the choice of a discount rate and time horizon. Using the integrated assessment model, ...

  13. Disentangling Greenhouse Warming and Aerosol Cooling to Reveal Earth's Transient Climate Sensitivity

    Science.gov (United States)

    Storelvmo, T.

    2015-12-01

    Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present an observation-based study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.

  14. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    International Nuclear Information System (INIS)

    Adelman, D.D.; Stansbury, J.

    1997-01-01

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions

  15. Allowable CO2 concentrations under the United Nations Framework Convention on Climate Change as a function of the climate sensitivity probability distribution function

    International Nuclear Information System (INIS)

    Harvey, L D Danny

    2007-01-01

    Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilization of greenhouse gas (GHG) concentrations at levels that prevent dangerous anthropogenic interference (DAI) in the climate system. Until recently, the consensus viewpoint was that the climate sensitivity (the global mean equilibrium warming for a doubling of atmospheric CO 2 concentration) was 'likely' to fall between 1.5 and 4.5 K. However, a number of recent studies have generated probability distribution functions (pdfs) for climate sensitivity with the 95th percentile of the expected climate sensitivity as large as 10 K, while some studies suggest that the climate sensitivity is likely to fall in the lower half of the long-standing 1.5-4.5 K range. This paper examines the allowable CO 2 concentration as a function of the 95th percentile of the climate sensitivity pdf (ranging from 2 to 8 K) and for the following additional assumptions: (i) the 50th percentile for the pdf of the minimum sustained global mean warming that causes unacceptable harm equal to 1.5 or 2.5 K; and (ii) 1%, 5% or 10% allowable risks of unacceptable harm. For a 1% risk tolerance and the more stringent harm-threshold pdf, the allowable CO 2 concentration ranges from 323 to 268 ppmv as the 95th percentile of the climate sensitivity pdf increases from 2 to 8 K, while for a 10% risk tolerance and the less stringent harm-threshold pdf, the allowable CO 2 concentration ranges from 531 to 305 ppmv. In both cases it is assumed that non-CO 2 GHG radiative forcing can be reduced to half of its present value, otherwise; the allowable CO 2 concentration is even smaller. Accounting for the fact that the CO 2 concentration will gradually fall if emissions are reduced to zero, and that peak realized warming will then be less than the peak equilibrium warming (related to peak radiative forcing) allows the CO 2 concentration to peak at 10-40 ppmv higher than the limiting values given above for a climate

  16. Diagnosis and Quantification of Climatic Sensitivity of Carbon Fluxes in Ensemble Global Ecosystem Models

    Science.gov (United States)

    Wang, W.; Hashimoto, H.; Milesi, C.; Nemani, R. R.; Myneni, R.

    2011-12-01

    Terrestrial ecosystem models are primary scientific tools to extrapolate our understanding of ecosystem functioning from point observations to global scales as well as from the past climatic conditions into the future. However, no model is nearly perfect and there are often considerable structural uncertainties existing between different models. Ensemble model experiments thus become a mainstream approach in evaluating the current status of global carbon cycle and predicting its future changes. A key task in such applications is to quantify the sensitivity of the simulated carbon fluxes to climate variations and changes. Here we develop a systematic framework to address this question solely by analyzing the inputs and the outputs from the models. The principle of our approach is to assume the long-term (~30 years) average of the inputs/outputs as a quasi-equlibrium of the climate-vegetation system while treat the anomalies of carbon fluxes as responses to climatic disturbances. In this way, the corresponding relationships can be largely linearized and analyzed using conventional time-series techniques. This method is used to characterize three major aspects of the vegetation models that are mostly important to global carbon cycle, namely the primary production, the biomass dynamics, and the ecosystem respiration. We apply this analytical framework to quantify the climatic sensitivity of an ensemble of models including CASA, Biome-BGC, LPJ as well as several other DGVMs from previous studies, all driven by the CRU-NCEP climate dataset. The detailed analysis results are reported in this study.

  17. Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations

    Science.gov (United States)

    Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.

    2018-02-01

    An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.

  18. Variations in the Sensitivity of Shrub Growth to Climate Change along Arctic Environmental and Biotic Gradients

    Science.gov (United States)

    Beck, P. S. A.; Myers-Smith, I. H.; Elmendorf, S.; Georges, D.

    2015-12-01

    Despite evidence of rapid shrub expansion at many Arctic sites and the profound effects this has on ecosystem structure, biogeochemical cycling, and land-atmosphere feedbacks in the Arctic, the drivers of shrub growth remain poorly understood. The compilation of 41,576 annual shrub growth measurements made around the Arctic, allowed for the first systematic evaluation of the climate sensitivity of Arctic shrub growth, i.e. the strength of the relationship between annual shrub growth and monthly climate variables. The growth measurements were taken on 1821 plants of 25 species at 37 arctic and alpine sites, either as annual ring widths or as stem increments. We evaluated climate sensitivity of shrub growth for each genus-by-site combination in this data set based on the performance and parameters of linear mixed models that used CRU TS3.21 climate data as predictors of shrub growth between 1950 and 2010. 76% of genus-by-site combinations showed climate sensitive growth, but climate-growth relationships varied with soil moisture, species canopy height, and geographic position within the species ranges. Shrubs growing at sites with more soil moisture showed greater climate sensitivity, suggesting that water availability might limit shrub growth if continued warming isn't matched by a steady increase in soil moisture. Tall shrub species growing at their northern range limit were particularly climate sensitive causing climate sensitivity of shrubs to peak at the transition between Low and High Arctic, where carbon storage in permafrost is greatest. Local and regional studies have documented matching spatial and temporal patterns in dendrochronological measurements and satellite observations of vegetation indices both in boreal and Arctic regions. Yet the circumarctic comparison of patterns in dendrochronological and remote sensing data sets yielded poor levels of agreement. In much of the Arctic, steep environmental gradients generate fine spatial patterns of vegetation

  19. The importance of mixed-phase clouds for climate sensitivity in the global aerosol-climate model ECHAM6-HAM2

    OpenAIRE

    Lohmann, Ulrike; Neubauer, David

    2018-01-01

    Clouds are important in the climate system because of their large influence on the radiation budget. On the one hand, they scatter solar radiation and with that cool the climate. On the other hand, they absorb and re-emit terrestrial radiation, which causes a warming. How clouds change in a warmer climate is one of the largest uncertainties for the equilibrium climate sensitivity (ECS). While a large spread in the cloud feedback arises from low-level clouds, it was recently shown that also mi...

  20. Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States

    Science.gov (United States)

    Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.

    2013-12-01

    The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.

  1. Sensitivity of intermittent streams to climate variations in the western United States

    Science.gov (United States)

    Eng, K.; Wolock, D.; Dettinger, M. D.

    2014-12-01

    There is a great deal of interest in streamflow changes caused by climate change because of the potential negative effects on aquatic biota and water supplies. Most previous studies have focused on perennial streams, and only a few studies have examined the effect of climate variability on intermittent streams. Our objective in this study was to evaluate the sensitivity of intermittent streams to historical variability in climate in the semi-arid regions of the western United States. This study was carried out at 45 intermittent streams that had a minimum of 45 years of daily-streamgage record by evaluating: (1) correlations among time series of flow metrics (number of zero-flow events, the average of the central 50% and largest 10% of flows) with climate, and (2) decadal changes in the seasonality and long-term trends of these flow metrics. Results showed strong associations between the low-flow metrics and historical changes in climate. The decadal analysis, in contrast, suggested no significant seasonal shifts or decade-to-decade trends in the low-flow metrics. The lack of trends or changes in seasonality is likely due to unchanged long-term patterns in precipitation over the time period examined.

  2. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest

    Science.gov (United States)

    Charles Luce; Brian Staab; Marc Kramer; Seth Wenger; Dan Isaak; Callie McConnell

    2014-01-01

    Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates...

  3. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.

    Science.gov (United States)

    Anbar, A D; Yung, Y L; Chavez, F P

    1996-03-01

    perturbations to temperature or productivity can modify atmospheric CH3Br. Therefore atmospheric CH3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH3Br variations can be larger than those resulting from small (+/- 25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH3Br production. Better understanding of the biological term is especially important to assess the importance of non-anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change.

  4. Growing sensitivity of maize to water scarcity under climate change.

    Science.gov (United States)

    Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-25

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  5. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    NARCIS (Netherlands)

    Tsyganov, A.N.; Aerts, R.; Nijs, I.; Cornelissen, J.H.C.; Beyens, L.

    2012-01-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming,

  6. Semiarid watershed response in central New Mexico and its sensitivity to climate variability and change

    Directory of Open Access Journals (Sweden)

    E. R. Vivoni

    2009-06-01

    Full Text Available Hydrologic processes in the semiarid regions of the Southwest United States are considered to be highly susceptible to variations in temperature and precipitation characteristics due to the effects of climate change. Relatively little is known about the potential impacts of climate change on the basin hydrologic response, namely streamflow, evapotranspiration and recharge, in the region. In this study, we present the development and application of a continuous, semi-distributed watershed model for climate change studies in semiarid basins of the Southwest US. Our objective is to capture hydrologic processes in large watersheds, while accounting for the spatial and temporal variations of climate forcing and basin properties in a simple fashion. We apply the model to the Río Salado basin in central New Mexico since it exhibits both a winter and summer precipitation regime and has a historical streamflow record for model testing purposes. Subsequently, we use a sequence of climate change scenarios that capture observed trends for winter and summer precipitation, as well as their interaction with higher temperatures, to perform long-term ensemble simulations of the basin response. Results of the modeling exercise indicate that precipitation uncertainty is amplified in the hydrologic response, in particular for processes that depend on a soil saturation threshold. We obtained substantially different hydrologic sensitivities for winter and summer precipitation ensembles, indicating a greater sensitivity to more intense summer storms as compared to more frequent winter events. In addition, the impact of changes in precipitation characteristics overwhelmed the effects of increased temperature in the study basin. Nevertheless, combined trends in precipitation and temperature yield a more sensitive hydrologic response throughout the year.

  7. Large-Scale Features of Pliocene Climate: Results from the Pliocene Model Intercomparison Project

    Science.gov (United States)

    Haywood, A. M.; Hill, D.J.; Dolan, A. M.; Otto-Bliesner, B. L.; Bragg, F.; Chan, W.-L.; Chandler, M. A.; Contoux, C.; Dowsett, H. J.; Jost, A.; hide

    2013-01-01

    Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied.Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-mode data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.

  8. Sensitivity of Hydrologic Response to Climate Model Debiasing Procedures

    Science.gov (United States)

    Channell, K.; Gronewold, A.; Rood, R. B.; Xiao, C.; Lofgren, B. M.; Hunter, T.

    2017-12-01

    Climate change is already having a profound impact on the global hydrologic cycle. In the Laurentian Great Lakes, changes in long-term evaporation and precipitation can lead to rapid water level fluctuations in the lakes, as evidenced by unprecedented change in water levels seen in the last two decades. These fluctuations often have an adverse impact on the region's human, environmental, and economic well-being, making accurate long-term water level projections invaluable to regional water resources management planning. Here we use hydrological components from a downscaled climate model (GFDL-CM3/WRF), to obtain future water supplies for the Great Lakes. We then apply a suite of bias correction procedures before propagating these water supplies through a routing model to produce lake water levels. Results using conventional bias correction methods suggest that water levels will decline by several feet in the coming century. However, methods that reflect the seasonal water cycle and explicitly debias individual hydrological components (overlake precipitation, overlake evaporation, runoff) imply that future water levels may be closer to their historical average. This discrepancy between debiased results indicates that water level forecasts are highly influenced by the bias correction method, a source of sensitivity that is commonly overlooked. Debiasing, however, does not remedy misrepresentation of the underlying physical processes in the climate model that produce these biases and contribute uncertainty to the hydrological projections. This uncertainty coupled with the differences in water level forecasts from varying bias correction methods are important for water management and long term planning in the Great Lakes region.

  9. Increased sensitivity to climate change in disturbed ecosystems

    DEFF Research Database (Denmark)

    Kroël-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel

    2015-01-01

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relatio......Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports...... this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem...

  10. Climate sensitivity of marine energy

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversi...

  11. Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation

    Science.gov (United States)

    Quetin, G. R.; Swann, A. L. S.

    2017-12-01

    Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to

  12. The ice-core record - Climate sensitivity and future greenhouse warming

    Science.gov (United States)

    Lorius, C.; Raynaud, D.; Jouzel, J.; Hansen, J.; Le Treut, H.

    1990-01-01

    The prediction of future greenhouse-gas-warming depends critically on the sensitivity of earth's climate to increasing atmospheric concentrations of these gases. Data from cores drilled in polar ice sheets show a remarkable correlation between past glacial-interglacial temperature changes and the inferred atmospheric concentration of gases such as carbon dioxide and methane. These and other palaeoclimate data are used to assess the role of greenhouse gases in explaining past global climate change, and the validity of models predicting the effect of increasing concentrations of such gases in the atmosphere.

  13. Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model

    Directory of Open Access Journals (Sweden)

    M. Kageyama

    2009-09-01

    Full Text Available Paleorecords from distant locations on the globe show rapid and large amplitude climate variations during the last glacial period. Here we study the global climatic response to different states of the Atlantic Meridional Overturning Circulation (AMOC as a potential explanation for these climate variations and their possible connections. We analyse three glacial simulations obtained with an atmosphere-ocean coupled general circulation model and characterised by different AMOC strengths (18, 15 and 2 Sv resulting from successive ~0.1 Sv freshwater perturbations in the North Atlantic. These AMOC states suggest the existence of a freshwater threshold for which the AMOC collapses. A weak (18 to 15 Sv AMOC decrease results in a North Atlantic and European cooling. This cooling is not homogeneous, with even a slight warming over the Norwegian Sea. Convection in this area is active in both experiments, but surprisingly stronger in the 15 Sv simulation, which appears to be related to interactions with the atmospheric circulation and sea-ice cover. Far from the North Atlantic, the climatic response is not significant. The climate differences for an AMOC collapse (15 to 2 Sv are much larger and of global extent. The timing of the climate response to this AMOC collapse suggests teleconnection mechanisms. Our analyses focus on the North Atlantic and surrounding regions, the tropical Atlantic and the Indian monsoon region. The North Atlantic cooling associated with the AMOC collapse induces a cyclonic atmospheric circulation anomaly centred over this region, which modulates the eastward advection of cold air over the Eurasian continent. This can explain why the cooling is not as strong over western Europe as over the North Atlantic. In the Tropics, the southward shift of the Inter-Tropical Convergence Zone appears to be strongest over the Atlantic and Eastern Pacific and results from an adjustment of the atmospheric and oceanic heat transports. Finally, the

  14. Sensitivity of climate models: Comparison of simulated and observed patterns for past climates

    International Nuclear Information System (INIS)

    Prell, W.L.; Webb, T. III.

    1992-08-01

    Predicting the potential climatic effects of increased concentrations of atmospheric carbon dioxide requires the continuing development of climate models. Confidence in the predictions will be much enhanced once the models are thoroughly tested in terms of their ability to simulate climates that differ significantly from today's climate. As one index of the magnitude of past climate change, the global mean temperature increase during the past 18,000 years is similar to that predicted for carbon dioxide--doubling. Simulating the climatic changes of the past 18,000 years, as well as the warmer-than-present climate of 6000 years ago and the climate of the last interglacial, around 126,000 years ago, provides an excellent opportunity to test the models that are being used in global climate change research. During the past several years, we have used paleoclimatic data to test the accuracy of the National Center for Atmospheric Research, Community Climate Model, Version 0, after changing its boundary conditions to those appropriate for past climates. We have assembled regional and near-global paleoclimatic data sets of pollen, lake level, and marine plankton data and calibrated many of the data in terms of climatic variables. We have also developed methods that permit direct quantitative comparisons between the data and model results. Our research has shown that comparing the model results with the data is an evolutionary process, because the models, the data, and the methods for comparison are continually being improved. During 1992, we have completed new modeling experiments, further analyzed previous model experiments, compiled new paleodata, made new comparisons between data and model results, and participated in workshops on paleoclimatic modeling

  15. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  16. On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures

    Directory of Open Access Journals (Sweden)

    D. Chandan

    2018-06-01

    Full Text Available We present results from our investigation into the physical mechanisms through which the mid-Pliocene, with a pCO2 of only  ∼  400 ppmv, could have supported the same magnitude of global warmth as has been projected for the climate at the end of the 21st century when pCO2 is expected to be 3 times higher. These mechanisms allow us to understand the warming in terms of changes to the radiative properties of the surface, the clouds, greenhouse gases, and changes to the meridional heat transport. We find that two-thirds of the warming pervasive during the mid-Pliocene, compared to the preindustrial, could be attributed to the reduction in the planetary emissivity owing to the higher concentrations of the greenhouse gases CO2 and water vapor, and the remaining one-third to the reduction in planetary albedo. We also find that changes to the orography and the pCO2 are the leading causes of the warming with each contributing in roughly equal parts to a total of 87 % of the warming and changes to the polar ice sheets responsible for the remaining warming. Furthermore, we provide a mid-Pliocene perspective on ongoing efforts to understand the climate system's sensitivity at various timescales and using multiple lines of evidence. The similarities in the boundary conditions between the mid-Pliocene and the present day, together with the globally elevated temperatures, make the mid-Pliocene an ideal paleo time period from which to derive inferences of climate sensitivity and assess the impacts of various timescale-dependent feedback processes. We assess a hierarchy of climate sensitivities of increasing complexity in order to explore the response of the climate over a very large range of timescales. The picture that emerges is as follows: on the short timescale, owing to the influence of fast feedback processes, the climate sensitivity is 3.25 °C per doubling of CO2; sensitivity increases to 4.16 °C per doubling of CO2 on an intermediate

  17. Potential Sensitivity of Québec's Breeding Birds to Climate Change

    Directory of Open Access Journals (Sweden)

    Jean-Luc DesGranges

    2010-12-01

    Full Text Available We examined the relationship between climatic factors and the distribution of breeding birds in southern Québec, Canada to identify the species whose distribution renders them potentially sensitive to climate change in the study area. We determined the degree of association between the distribution of 65 breeding bird species (601 presence-absence squares of the Atlas of the Breeding Birds of Québec and climate variables (212 climatological stations in operation for at least 20 years over the period 1953-1984 by statistically correcting for the effects of several factors that are correlated with bird distribution. Factors considered were the nature and scale of land cover patterns that included vegetation types and landscape characterization, geographical coordinates, and elevation. Canonical Correspondence Analysis (CCA was used to investigate the effect of climatic variables on breeding bird distribution. Independent variables accounted for a total of 29.1% of the variation in the species matrix. A very large portion of the variance explained by climate variables was shared with spatial variables, reflecting the relationships among latitude, longitude, elevation, and climate. After correcting for the effect of land cover variables, climatic variables still explained 11.4% of the variation in the species matrix, with temperature, i.e., warmer summers and milder winters, having a greater influence than precipitation, i.e., wetter summers. Of the 65 species, 14 appeared to be particularly climate-sensitive. Eight are insectivorous neotropical migrants and six species are at the northern limit of their range in the study area. The opposite is largely true for the eight others; they are practically absent from the southern part of the study area, except for the Dark-eyed Junco (Junco hyemalis, which is widespread there. The White-breasted Nuthatch (Sitta carolinensis is the only resident species that seemed responsive to climatic variables, i

  18. Using Impact-Relevant Sensitivities to Efficiently Evaluate and Select Climate Change Scenarios

    Science.gov (United States)

    Vano, J. A.; Kim, J. B.; Rupp, D. E.; Mote, P.

    2014-12-01

    We outline an efficient approach to help researchers and natural resource managers more effectively use global climate model information in their long-term planning. The approach provides an estimate of the magnitude of change of a particular impact (e.g., summertime streamflow) from a large ensemble of climate change projections prior to detailed analysis. These estimates provide both qualitative information as an end unto itself (e.g., the distribution of future changes between emissions scenarios for the specific impact) and a judicious, defensible evaluation structure that can be used to qualitatively select a sub-set of climate models for further analysis. More specifically, the evaluation identifies global climate model scenarios that both (1) span the range of possible futures for the variable/s most important to the impact under investigation, and (2) come from global climate models that adequately simulate historical climate, providing plausible results for the future climate in the region of interest. To identify how an ecosystem process responds to projected future changes, we methodically sample, using a simple sensitivity analysis, how an impact variable (e.g., streamflow magnitude, vegetation carbon) responds locally to projected regional temperature and precipitation changes. We demonstrate our technique over the Pacific Northwest, focusing on two types of impacts each in three distinct geographic settings: (a) changes in streamflow magnitudes in critical seasons for water management in the Willamette, Yakima, and Upper Columbia River basins; and (b) changes in annual vegetation carbon in the Oregon and Washington Coast Ranges, Western Cascades, and Columbia Basin ecoregions.

  19. Sensitivity of sediment magnetic records to climate change during Holocene for the northern South China Sea

    Science.gov (United States)

    Ouyang, Tingping; Li, Mingkun; Zhao, Xiang; Zhu, Zhaoyu; Tian, Chengjing; Qiu, Yan; Peng, Xuechao; Hu, Qiao

    2016-05-01

    Magnetic property has been proved to be a sensitive proxy to climate change for both terrestrial and marine sediments. Based on the schedule frame established by AMS 14C dating of foraminifera, detail magnetic analyses were performed for core PC24 sediments at sampling intervals of 2 cm to discuss magnetic sensitivity of marine sediment to climate during Holocene for the northern South China Sea. The results indicated that: 1) Concentration dependent magnetic parameters are positive corresponding to variation of temperature. The frequency dependent susceptibility coefficient basically reflected the variation in humidity; 2) XARM/SIRM was more sensitive to detrital magnetite particles and SIRM/X was more effective to biogenic magnetite particles. Variations of XARM/SIRM and SIRM/X are corresponding to precipitation and temperature, respectively; 3) the Holocene Megathermal in the study area was identified as 7.5-3.4 cal. ka BP. The warmest stage of Holocene for the study area should be during 6.1 to 3.9 cal. ka BP; 4) The 8 ka cold event was characterized as cold and dry during 8.55 to 8.25 cal. ka BP; 5) During early and middle Holocene, the climate combinations were warm dry and cold wet. It turned to warm and wet after 2.7 cal. ka BP.

  20. Sensitivity of sediment magnetic records to climate change during Holocene for the northern South China Sea

    Directory of Open Access Journals (Sweden)

    Tingping eOuyang

    2016-05-01

    Full Text Available Magnetic property has been proved to be a sensitive proxy to climate change for both terrestrial and marine sediments. Based on the schedule frame established by AMS 14C dating of foraminifera, detail magnetic analyses were performed for core PC24 sediments at sampling intervals of 2 cm to discuss magnetic sensitivity of marine sediment to climate during Holocene for the northern South China Sea. The results indicated that: 1 Concentration dependent magnetic parameters are positive corresponding to variation of temperature. The frequency dependent susceptibility coefficient basically reflected the variation in humidity; 2 XARM/SIRM was more sensitive to detrital magnetite particles and SIRM/X was more effective to biogenic magnetite particles. Variations of XARM/SIRM and SIRM/X are corresponding to precipitation and temperature, respectively; 3 the Holocene Megathermal in the study area was identified as 7.5-3.4 cal. ka BP. The warmest stage of Holocene for the study area should be during 6.1 to 3.9 cal. ka BP; 4 The 8 ka cold event was characterized as cold and dry during 8.55 to 8.25 cal. ka BP; 5 During early and middle Holocene, the climate combinations were warm dry and cold wet. It turned to warm and wet after 2.7 cal. ka BP.

  1. Sensitivity of hydrological modeling to meteorological data and implications for climate change studies

    International Nuclear Information System (INIS)

    Roy, L.G.; Roy, R.; Desrochers, G.E.; Vaillancourt, C.; Chartier, I.

    2008-01-01

    There are uncertainties associated with the use of hydrological models. This study aims to analyse one source of uncertainty associated with hydrological modeling, particularly in the context of climate change studies on water resources. Additional intent of this study is to compare the ability of some meteorological data sources, used in conjunction with an hydrological model, to reproduce the hydrologic regime of a watershed. A case study on a watershed of south-western Quebec, Canada using five different sources of meteorological data as input to an offline hydrological model are presented in this paper. Data used came from weather stations, NCEP reanalysis, ERA40 reanalysis and two Canadian Regional Climate Model (CRCM) runs driven by NCEP and ERA40 reanalysis, providing atmospheric driving boundary conditions to this limited-area climate model. To investigate the sensitivity of simulated streamflow to different sources of meteorological data, we first calibrated the hydrological model with each of the meteorological data sets over the 1961-1980 period. The five different sets of parameters of the hydrological model were then used to simulate streamflow of the 1981-2000 validation period with the five meteorological data sets as inputs. The 25 simulated streamflow series have been compared to the observed streamflow of the watershed. The five meteorological data sets do not have the same ability, when used with the hydrological model, to reproduce streamflow. Our results show also that the hydrological model parameters used may have an important influence on results such as water balance, but it is linked with the differences that may have in the characteristics of the meteorological data used. For climate change impacts assessments on water resources, we have found that there is an uncertainty associated with the meteorological data used to calibrate the model. For expected changes on mean annual flows of the Chateauguay River, our results vary from a small

  2. The importance of geomorphic and hydrologic factors in shaping the sensitivity of alpine/subalpine lake volumes to shifts in climate

    Science.gov (United States)

    Mercer, J.; Liefert, D. T.; Shuman, B. N.; Befus, K. M.; Williams, D. G.; Kraushaar, B.

    2017-12-01

    Alpine and subalpine lakes are important components of the hydrologic cycle in mountain ecosystems. These lakes are also highly sensitive to small shifts in temperature and precipitation. Mountain lake volumes and their contributions to mountain hydrology may change in response to even minor declines in snowpack or increases in temperature. However, it is still not clear to what degree non-climatic factors, such as geomorphic setting and lake geometry, play in shaping the sensitivity of high elevation lakes to climate change. We investigated the importance of lake geometry and groundwater connectivity to mountain lakes in the Snowy Range, Wyoming using a combination of hydrophysical and hydrochemical methods, including stable water isotopes, to better understand the role these factors play in controlling lake volume. Water isotope values in open lakes were less sensitive to evaporation compared to those in closed basin lakes. Lake geometry played an important role, with wider, shallower lakes being more sensitive to evaporation over time. Groundwater contributions appear to play only a minor role in buffering volumetric changes to lakes over the growing season. These results confirm that mountain lakes are sensitive to climate factors, but also highlight a significant amount of variability in that sensitivity. This research has implications for water resource managers concerned with downstream water quantity and quality from mountain ecosystems, biologists interested in maintaining aquatic biodiversity, and paleoclimatologists interested in using lake sedimentary information to infer past climate regimes.

  3. A sensitive slope: estimating landscape patterns of forest resilience in a changing climate

    Science.gov (United States)

    Jill F. Johnstone; Eliot J.B. McIntire; Eric J. Pedersen; Gregory King; Michael J.F. Pisaric

    2010-01-01

    Changes in Earth's environment are expected to stimulate changes in the composition and structure of ecosystems, but it is still unclear how the dynamics of these responses will play out over time. In long-lived forest systems, communities of established individuals may be resistant to respond to directional climate change, but may be highly sensitive to climate...

  4. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    Science.gov (United States)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are

  5. Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Frida A.M.; Ekman, Annica M.L.; Rodhe, Henning [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2010-10-15

    The radiative flux perturbations and subsequent temperature responses in relation to the eruption of Mount Pinatubo in 1991 are studied in the ten general circulation models incorporated in the Coupled Model Intercomparison Project, phase 3 (CMIP3), that include a parameterization of volcanic aerosol. Models and observations show decreases in global mean temperature of up to 0.5 K, in response to radiative perturbations of up to 10 W m{sup -2}, averaged over the tropics. The time scale representing the delay between radiative perturbation and temperature response is determined by the slow ocean response, and is estimated to be centered around 4 months in the models. Although the magnitude of the temperature response to a volcanic eruption has previously been used as an indicator of equilibrium climate sensitivity in models, we find these two quantities to be only weakly correlated. This may partly be due to the fact that the size of the volcano-induced radiative perturbation varies among the models. It is found that the magnitude of the modelled radiative perturbation increases with decreasing climate sensitivity, with the exception of one outlying model. Therefore, we scale the temperature perturbation by the radiative perturbation in each model, and use the ratio between the integrated temperature perturbation and the integrated radiative perturbation as a measure of sensitivity to volcanic forcing. This ratio is found to be well correlated with the model climate sensitivity, more sensitive models having a larger ratio. Further, if this correspondence between ''volcanic sensitivity'' and sensitivity to CO{sub 2} forcing is a feature not only among the models, but also of the real climate system, the alleged linear relation can be used to estimate the real climate sensitivity. The observational value of the ratio signifying volcanic sensitivity is hereby estimated to correspond to an equilibrium climate sensitivity, i.e. equilibrium temperature

  6. Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar

    Directory of Open Access Journals (Sweden)

    Sulin Tao

    2016-02-01

    Full Text Available A sensitivity analysis of the responses of crops to the chosen production adaptation options under regional climate change was conducted in this study. Projections of winter wheat production for different sowing dates and cultivars were estimated for a major economic and agricultural province of China from 2021 to 2080 using the World Food Study model (WOFOST under representative concentration pathways (RCPs scenarios. A modeling chain was established and a correction method was proposed to reduce the bias of the resulting model-simulated climate data. The results indicated that adjusting the sowing dates and cultivars could mitigate the influences of climate change on winter wheat production in Jinagsu. The yield gains were projected from the chosen sowing date and cultivar. The following actions are recommended to ensure high and stable yields under future climate changes: (i advance the latest sowing date in some areas of northern Jiangsu; and (ii use heat-tolerant or heat-tolerant and drought-resistant varieties in most areas of Jiangsu rather than the currently used cultivar. Fewer of the common negative effects of using a single climate model occurred when using the sensitivity analysis because our bias correction method was effective for scenario data and because the WOFOST performed well for Jiangsu after calibration.

  7. Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material

    Science.gov (United States)

    Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.

    2015-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

  8. Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?

    Science.gov (United States)

    Rieger, Vanessa S.; Dietmüller, Simone; Ponater, Michael

    2017-10-01

    Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ensure the additivity of feedbacks and to yield a closed forcing-feedback-balance at top of the atmosphere. For a set of CO2-forced simulations, the climate sensitivity changes with increasing forcing. The albedo, cloud and combined water vapour and lapse rate feedback are found to be responsible for the variations in the climate sensitivity. An O3-forced simulation (induced by enhanced NOx and CO surface emissions) causes a smaller efficacy than a CO2-forced simulation with a similar magnitude of forcing. We find that the Planck, albedo and most likely the cloud feedback are responsible for this effect. Reducing the radiative forcing impedes the statistical separability of feedbacks. We additionally discuss formal inconsistencies between the common ways of comparing climate sensitivities and feedbacks. Moreover, methodical recommendations for future work are given.

  9. Sensitivity of climate change in Europe to the Northern Atlantic warming

    Energy Technology Data Exchange (ETDEWEB)

    Timbal, B; Mahfouf, J F; Royer, J F [Centre National de Recherches Meteoroloques, Toulouse (France)

    1996-12-31

    The increase in atmospheric carbon dioxide since the beginning of the industrial revolution has raised the question of its impact on climate. Anthropogenic release of carbon dioxide is an extra source in the complex carbon cycle involving the ocean, the atmosphere and the biosphere. Three-dimensional general circulation models have been used world-wide over the last decade to perform climate research. Complete global change experiments need to couple an atmospheric model with an oceanic one and a thermodynamical and dynamical sea-ice model. Therefore realistic scenarios of greenhouse gas increases can be studied. These computer-time expensive experiments cannot be reproduced as often as necessary. A commonly used approach is to perform time-slice experiments at the equilibrium with an atmospheric GCM forced by Sea Surface Temperature (SST) anomalies. Several sensitivity experiments using higher resolutions or more sophisticated physical parameterisations can be performed. As the resolution increases, one can study the result over special areas of interest, such as Europe

  10. Sensitivity of climate change in Europe to the Northern Atlantic warming

    Energy Technology Data Exchange (ETDEWEB)

    Timbal, B.; Mahfouf, J.F.; Royer, J.F. [Centre National de Recherches Meteoroloques, Toulouse (France)

    1995-12-31

    The increase in atmospheric carbon dioxide since the beginning of the industrial revolution has raised the question of its impact on climate. Anthropogenic release of carbon dioxide is an extra source in the complex carbon cycle involving the ocean, the atmosphere and the biosphere. Three-dimensional general circulation models have been used world-wide over the last decade to perform climate research. Complete global change experiments need to couple an atmospheric model with an oceanic one and a thermodynamical and dynamical sea-ice model. Therefore realistic scenarios of greenhouse gas increases can be studied. These computer-time expensive experiments cannot be reproduced as often as necessary. A commonly used approach is to perform time-slice experiments at the equilibrium with an atmospheric GCM forced by Sea Surface Temperature (SST) anomalies. Several sensitivity experiments using higher resolutions or more sophisticated physical parameterisations can be performed. As the resolution increases, one can study the result over special areas of interest, such as Europe

  11. Chinese insurance agents in "bad barrels": a multilevel analysis of the relationship between ethical leadership, ethical climate and business ethical sensitivity.

    Science.gov (United States)

    Zhang, Na; Zhang, Jian

    2016-01-01

    The moral hazards and poor public image of the insurance industry, arising from insurance agents' unethical behavior, affect both the normal operation of an insurance company and decrease applicants' confidence in the company. Contrarily, these scandals may demonstrate that the organizations were "bad barrels" in which insurance agents' unethical decisions were supported or encouraged by the organization's leadership or climate. The present study brings two organization-level factors (ethical leadership and ethical climate) together and explores the role of ethical climate on the relationship between the ethical leadership and business ethical sensitivity of Chinese insurance agents. Through the multilevel analysis of 502 insurance agents from 56 organizations, it is found that organizational ethical leadership is positively related to the organizational ethical climate; organizational ethical climate is positively related to business ethical sensitivity, and organizational ethical climate fully mediates the relationship between organizational ethical leadership and business ethical sensitivity. Organizational ethical climate plays a completely mediating role in the relationship between organizational ethical leadership and business ethical sensitivity. The integrated model of ethical leadership, ethical climate and business ethical sensitivity makes several contributions to ethics theory, research and management.

  12. Sensitivity of regional climate to global temperature and forcing

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; O’Neill, Brian; Lamarque, Jean-François

    2015-01-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250–1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m −2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway. (letter)

  13. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth.

    Science.gov (United States)

    Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K

    2016-09-01

    Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  14. International Space Science Institute Workshop on Shallow Clouds, Water Vapor, Circulation and Climate Sensitivity

    CERN Document Server

    Winker, David; Bony, Sandrine; Stevens, Bjorn

    2018-01-01

    This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The articles “Observing Convective Aggregation”, “An Observational View of Relationshi...

  15. Climate-sensitive urban design through Envi-Met simulation: case study in Kemayoran, Jakarta

    Science.gov (United States)

    Kusumastuty, K. D.; Poerbo, H. W.; Koerniawan, M. D.

    2018-03-01

    Indonesia as a tropical country which the character of its climate are hot and humid, the outdoor activity applications are often disrupted due to discomfort in thermal conditions. Massive construction of skyscrapers in urban areas are caused by the increase of human population leads to reduced green and infiltration areas that impact to environmental imbalances and triggering microclimate changes with rising air temperatures on the surface. The area that significantly experiences the rise of temperature in the Central Business District (CBD), which has need an analysis to create thermal comfort conditions to improve the ease of outdoor activities by an approach. This study aims to design the Kemayoran CBD through Climate Sensitive Urban Design especially in hot and humid tropical climate area and analyze thermal comfort level and optimal air conditioning in the outdoor area. This research used a quantitative method by generating the design using Climate Sensitive Urban Design principle through Envi-met 4.1 simulation program to find out the value of PMV, air temperature, wind speed and relative humidity conditions. The design area considers the configuration of buildings such as the distance between buildings, the average height, the orientation of the building, and the width of the road.

  16. [Study on sensitivity of climatic factors on influenza A (H1N1) based on classification and regression tree and wavelet analysis].

    Science.gov (United States)

    Xiao, Hong; Lin, Xiao-ling; Dai, Xiang-yu; Gao, Li-dong; Chen, Bi-yun; Zhang, Xi-xing; Zhu, Pei-juan; Tian, Huai-yu

    2012-05-01

    To analyze the periodicity of pandemic influenza A (H1N1) in Changsha in year 2009 and its correlation with sensitive climatic factors. The information of 5439 cases of influenza A (H1N1) and synchronous meteorological data during the period between May 22th and December 31st in year 2009 (223 days in total) in Changsha city were collected. The classification and regression tree (CART) was employed to screen the sensitive climatic factors on influenza A (H1N1); meanwhile, cross wavelet transform and wavelet coherence analysis were applied to assess and compare the periodicity of the pandemic disease and its association with the time-lag phase features of the sensitive climatic factors. The results of CART indicated that the daily minimum temperature and daily absolute humidity were the sensitive climatic factors for the popularity of influenza A (H1N1) in Changsha. The peak of the incidence of influenza A (H1N1) was in the period between October and December (Median (M) = 44.00 cases per day), simultaneously the daily minimum temperature (M = 13°C) and daily absolute humidity (M = 6.69 g/m(3)) were relatively low. The results of wavelet analysis demonstrated that a period of 16 days was found in the epidemic threshold in Changsha, while the daily minimum temperature and daily absolute humidity were the relatively sensitive climatic factors. The number of daily reported patients was statistically relevant to the daily minimum temperature and daily absolute humidity. The frequency domain was mostly in the period of (16 ± 2) days. In the initial stage of the disease (from August 9th and September 8th), a 6-day lag was found between the incidence and the daily minimum temperature. In the peak period of the disease, the daily minimum temperature and daily absolute humidity were negatively relevant to the incidence of the disease. In the pandemic period, the incidence of influenza A (H1N1) showed periodic features; and the sensitive climatic factors did have a "driving

  17. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change

    Science.gov (United States)

    Hunter, S. J.; Goldobin, D. S.; Haywood, A. M.; Ridgwell, A.; Rees, J. G.

    2013-04-01

    The global submarine inventory of methane hydrate is thought to be considerable. The stability of marine hydrates is sensitive to changes in temperature and pressure and once destabilised, hydrates release methane into sediments and ocean and potentially into the atmosphere, creating a positive feedback with climate change. Here we present results from a multi-model study investigating how the methane hydrate inventory dynamically responds to different scenarios of future climate and sea level change. The results indicate that a warming-induced reduction is dominant even when assuming rather extreme rates of sea level rise (up to 20 mm yr-1) under moderate warming scenarios (RCP 4.5). Over the next century modelled hydrate dissociation is focussed in the top ˜100m of Arctic and Subarctic sediments beneath business-as-usual scenario (RCP 8.5), upper estimates of resulting global sea-floor methane fluxes could exceed estimates of natural global fluxes by 2100 (>30-50TgCH4yr-1), although subsequent oxidation in the water column could reduce peak atmospheric release rates to 0.75-1.4 Tg CH4 yr-1.

  18. The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation model

    International Nuclear Information System (INIS)

    Lohmann, U.; Roeckner, E.

    1994-01-01

    Six numerical experiments have been performed with a general circulation model (GCM) to study the influence of high-level cirrus clouds and global sea surface temperature (SST) perturbations on climate and climate sensitivity. The GCM used in this investigation is the third-generation ECHAM3 model developed jointly by the Max-Planck-Institute for Meteorology and the University of Hamburg. It is shown that the model is able to reproduce many features of the observed cloud-radiative forcing with considerable skill, such as the annual mean distribution, the response to seasonal forcing and the response to observed SST variations in the equatorial Pacific. In addition to a reference experiment where the cirrus emissivity is computed as a function of the cloud water content, two sensitivity experiments have been performed in which the cirrus emissivity is either set to zero everywhere above 400 hPa ('transparent cirrus') or set to one ('black cirrus'). These three experiments are repeated identically, except for prescribing a globally uniform SST warming of 4 K. (orig.)

  19. Sensitivity of the French Alps snow cover to the variation of climatic variables

    Directory of Open Access Journals (Sweden)

    E. Martin

    Full Text Available In order to study the sensitivity of snow cover to changes in meteorological variables at a regional scale, a numerical snow model and an analysis system of the meteorological conditions adapted to relief were used. This approach has been successfully tested by comparing simulated and measured snow depth at 37 sites in the French Alps during a ten year data period. Then, the sensitivity of the snow cover to a variation in climatic conditions was tested by two different methods, which led to very similar results. To assess the impact of a particular "doubled CO2" scenario, coherent perturbations were introduced in the input data of the snow model. It was found that although the impact would be very pronounced, it would also be extremely differentiated, dependent on the internal state of the snow cover. The most sensitive areas are the elevations below 2400 m, especially in the southern part of the French Alps.

  20. Emergent constraint on equilibrium climate sensitivity from global temperature variability

    Science.gov (United States)

    Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.

    2018-01-01

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  1. Emergent constraint on equilibrium climate sensitivity from global temperature variability.

    Science.gov (United States)

    Cox, Peter M; Huntingford, Chris; Williamson, Mark S

    2018-01-17

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  2. Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.

    Science.gov (United States)

    Kiehl, Jeffrey T; Shields, Christine A

    2013-10-28

    The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric carbon dioxide reach concentrations of 800-1100 ppmv by 2100, it is of interest to study past climates where atmospheric carbon dioxide was higher than present. This is especially the case given the difficulty of climate models in simulating past warm climates. This study explores the sensitivity of the simulated pre-PETM and PETM periods to change in cloud condensation nuclei (CCN) and microphysical properties of liquid water clouds. Assuming lower levels of CCN for both of these periods leads to significant warming, especially at high latitudes. The study indicates that past differences in cloud properties may be an important factor in accurately simulating past warm climates. Importantly, additional shortwave warming from such a mechanism would imply lower required atmospheric CO2 concentrations for simulated surface temperatures to be in reasonable agreement with proxy data for the Eocene.

  3. A sensitivity study to global desertification in cold and warm climates: results from the IPSL OAGCM model

    Energy Technology Data Exchange (ETDEWEB)

    Alkama, Ramdane [GAME/CNRM, CNRS/Meteo-France, Toulouse (France); Kageyama, Masa; Ramstein, Gilles [LSCE/IPSL UMR CEA-CNRS-UVSQ 8212, Gif sur Yvette (France)

    2012-04-15

    Many simulations have been devoted to study the impact of global desertification on climate, but very few have quantified this impact in very different climate contexts. Here, the climatic impacts of large-scale global desertification in warm (2100 under the SRES A2 scenario forcing), modern and cold (Last Glacial Maximum, 21 thousand years ago) climates are assessed by using the IPSL OAGCM. For each climate, two simulations have been performed, one in which the continents are covered by modern vegetation, the other in which global vegetation is changed to desert i.e. bare soil. The comparison between desert and present vegetation worlds reveals that the prevailing signal in terms of surface energy budget is dominated by the reduction of upward latent heat transfer. Replacing the vegetation by bare soil has similar impacts on surface air temperature South of 20 N in all three climatic contexts, with a warming over tropical forests and a slight cooling over semi-arid and arid areas, and these temperature changes are of the same order of magnitude. North of 20 N, the difference between the temperatures simulated with present day vegetation and in a desert world is mainly due to the change in net radiation related to the modulation of the snow albedo by vegetation, which is obviously absent in the desert world simulations. The enhanced albedo in the desert world simulations induces a large temperature decrease, especially during summer in the cold and modern climatic contexts, whereas the largest difference occurs during winter in the warm climate. This temperature difference requires a larger heat transport to the northern high latitudes. Part of this heat transport increase is achieved through an intensification of the Atlantic Meridional Overturning Circulation. This intensification reduces the sea-ice extent and causes a warming over the North Atlantic and Arctic oceans in the warm climate context. In contrast, the large cooling North of 20 N in both the modern

  4. Sensitivity of the hydrologic cycle in Tana river basin to climate change

    International Nuclear Information System (INIS)

    Mutua, F.M.

    1998-01-01

    The Tana River basin in Kenya has four distinct climates along it's gradient from cool humid in mount Kenya region through arid and semi arid in the lower plains to semi humid coastal climate. From the highlands of mount Kenya to the plateau on the lowlands, the river traverses some sections which have high potential for hydro-electric power generation. The government has constructed water reovirus to collect water for electricity generation. The influence of the reovirus have also caused climate modification. The aim of the study was to investigate the sensitivity of the river flows in the Tana river to climate change. The study indicates that, as long as temperature increment of up to 2 degrees centigrade are accompanied by positive changes (greater than 10%) in rainfall over the basin, then the hydrologic cycle adjust itself accordingly to give a positive response (increased runoff) in terms of the river at the outlet

  5. The Role of Sea Ice in 2 x CO2 Climate Model Sensitivity. Part 2; Hemispheric Dependencies

    Science.gov (United States)

    Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.

    1997-01-01

    How sensitive are doubled CO2 simulations to GCM control-run sea ice thickness and extent? This issue is examined in a series of 10 control-run simulations with different sea ice and corresponding doubled CO2 simulations. Results show that with increased control-run sea ice coverage in the Southern Hemisphere, temperature sensitivity with climate change is enhanced, while there is little effect on temperature sensitivity of (reasonable) variations in control-run sea ice thickness. In the Northern Hemisphere the situation is reversed: sea ice thickness is the key parameter, while (reasonable) variations in control-run sea ice coverage are of less importance. In both cases, the quantity of sea ice that can be removed in the warmer climate is the determining factor. Overall, the Southern Hemisphere sea ice coverage change had a larger impact on global temperature, because Northern Hemisphere sea ice was sufficiently thick to limit its response to doubled CO2, and sea ice changes generally occurred at higher latitudes, reducing the sea ice-albedo feedback. In both these experiments and earlier ones in which sea ice was not allowed to change, the model displayed a sensitivity of -0.02 C global warming per percent change in Southern Hemisphere sea ice coverage.

  6. Efficient climate policies under technology and climate uncertainty

    International Nuclear Information System (INIS)

    Held, Hermann; Kriegler, Elmar; Lessmann, Kai; Edenhofer, Ottmar

    2009-01-01

    This article explores efficient climate policies in terms of investment streams into fossil and renewable energy technologies. The investment decisions maximise social welfare while observing a probabilistic guardrail for global mean temperature rise under uncertain technology and climate parameters. Such a guardrail constitutes a chance constraint, and the resulting optimisation problem is an instance of chance constrained programming, not stochastic programming as often employed. Our analysis of a model of economic growth and endogenous technological change, MIND, suggests that stringent mitigation strategies cannot guarantee a very high probability of limiting warming to 2 o C since preindustrial time under current uncertainty about climate sensitivity and climate response time scale. Achieving the 2 o C temperature target with a probability P* of 75% requires drastic carbon dioxide emission cuts. This holds true even though we have assumed an aggressive mitigation policy on other greenhouse gases from, e.g., the agricultural sector. The emission cuts are deeper than estimated from a deterministic calculation with climate sensitivity fixed at the P* quantile of its marginal probability distribution (3.6 o C). We show that earlier and cumulatively larger investments into the renewable sector are triggered by including uncertainty in the technology and climate response time scale parameters. This comes at an additional GWP loss of 0.3%, resulting in a total loss of 0.8% GWP for observing the chance constraint. We obtained those results with a new numerical scheme to implement constrained welfare optimisation under uncertainty as a chance constrained programming problem in standard optimisation software such as GAMS. The scheme is able to incorporate multivariate non-factorial probability measures such as given by the joint distribution of climate sensitivity and response time. We demonstrate the scheme for the case of a four-dimensional parameter space capturing

  7. Lakes sensitivity to climatic stress – a sociological assessment

    Directory of Open Access Journals (Sweden)

    Lackowska Marta

    2016-12-01

    Full Text Available One of the conditions for effective water resources management in protected areas is local decision makers’ knowledge about potential threats caused by climate changes. Our study, conducted in the UNESCO Biosphere Reserve of Tuchola Forest in Poland, analyses the perception of threats by local stakeholders. Their assessments of the sensitivity of four lakes to the extreme weather events are compared with hydrological studies. The survey shows that the lakes’ varying responses to extreme weather conditions is rarely noticed by ordinary observers. Their perception is usually far from the hydrological facts, which indicates a lack of relevant information or a failure in making it widely accessible and understandable. Moreover, it is rather the human impact, not climate change, which is seen as the biggest threat to the lakes. Insufficient environmental knowledge may hinder the effective protection and management of natural resources, due to bad decisions and lack of the local communities’ support for adaptation and mitigation policies.

  8. Confirmation of ACRU model results for applications in land use and climate change studies

    Directory of Open Access Journals (Sweden)

    G. P. W. Jewitt

    2010-12-01

    Full Text Available The hydrological responses of a catchment are sensitive to, and strongly coupled to, land use and climate, and changes thereof. The hydrological responses to the impacts of changing land use and climate will be the result of complex interactions, where the change in one may moderate or exacerbate the effects of the other. Further difficulties in assessing these interactions are that dominant drivers of the hydrological system may vary at different spatial and temporal scales. To assess these interactions, a process-based hydrological model, sensitive to land use and climate, and changes thereof, needs to be used. For this purpose the daily time step ACRU model was selected. However, to be able to use a hydrological model such as ACRU with confidence its representation of reality must be confirmed by comparing simulated output against observations across a range of climatic conditions. Comparison of simulated against observed streamflow was undertaken in three climatically diverse South African catchments, ranging from the semi-arid, sub-tropical Luvuvhu catchment, to the winter rainfall Upper Breede catchment and the sub-humid Mgeni catchment. Not only do the climates of the catchments differ, but their primary land uses also vary. In the upper areas of the Mgeni catchment commercial plantation forestry is dominant, while in the middle reaches there are significant areas of commercial plantation sugarcane and urban areas, while the lower reaches are dominated by urban areas. The Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas. In the Upper Breede catchment in the Western Cape, commercial orchards and vineyards are the primary land uses. Overall the ACRU model was able to represent the high, low and total flows, with satisfactory Nash-Sutcliffe efficiency indexes obtained for the selected catchments. The study concluded that the ACRU model can be used with confidence to simulate the streamflows

  9. Confirmation of ACRU model results for applications in land use and climate change studies

    Science.gov (United States)

    Warburton, M. L.; Schulze, R. E.; Jewitt, G. P. W.

    2010-12-01

    The hydrological responses of a catchment are sensitive to, and strongly coupled to, land use and climate, and changes thereof. The hydrological responses to the impacts of changing land use and climate will be the result of complex interactions, where the change in one may moderate or exacerbate the effects of the other. Further difficulties in assessing these interactions are that dominant drivers of the hydrological system may vary at different spatial and temporal scales. To assess these interactions, a process-based hydrological model, sensitive to land use and climate, and changes thereof, needs to be used. For this purpose the daily time step ACRU model was selected. However, to be able to use a hydrological model such as ACRU with confidence its representation of reality must be confirmed by comparing simulated output against observations across a range of climatic conditions. Comparison of simulated against observed streamflow was undertaken in three climatically diverse South African catchments, ranging from the semi-arid, sub-tropical Luvuvhu catchment, to the winter rainfall Upper Breede catchment and the sub-humid Mgeni catchment. Not only do the climates of the catchments differ, but their primary land uses also vary. In the upper areas of the Mgeni catchment commercial plantation forestry is dominant, while in the middle reaches there are significant areas of commercial plantation sugarcane and urban areas, while the lower reaches are dominated by urban areas. The Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas. In the Upper Breede catchment in the Western Cape, commercial orchards and vineyards are the primary land uses. Overall the ACRU model was able to represent the high, low and total flows, with satisfactory Nash-Sutcliffe efficiency indexes obtained for the selected catchments. The study concluded that the ACRU model can be used with confidence to simulate the streamflows of the three selected

  10. Cost-Risk Trade-off of Solar Radiation Management and Mitigation under Probabilistic Information on Climate Sensitivity

    Science.gov (United States)

    Khabbazan, Mohammad Mohammadi; Roshan, Elnaz; Held, Hermann

    2017-04-01

    In principle solar radiation management (SRM) offers an option to ameliorate anthropogenic temperature rise. However we cannot expect it to simultaneously compensate for anthropogenic changes in further climate variables in a perfect manner. Here, we ask to what extent a proponent of the 2°C-temperature target would apply SRM in conjunction with mitigation in view of global or regional disparities in precipitation changes. We apply cost-risk analysis (CRA), which is a decision analytic framework that makes a trade-off between the expected welfare-loss from climate policy costs and the climate risks from transgressing a climate target. Here, in both global-scale and 'Giorgi'-regional-scale analyses, we evaluate the optimal mixture of SRM and mitigation under probabilistic information about climate sensitivity. To do so, we generalize CRA for the sake of including not only temperature risk, but also globally aggregated and regionally disaggregated precipitation risks. Social welfare is maximized for the following three valuation scenarios: temperature-risk-only, precipitation-risk-only, and equally weighted both-risks. For now, the Giorgi regions are treated by equal weight. We find that for regionally differentiated precipitation targets, the usage of SRM will be comparably more restricted. In the course of time, a cooling of up to 1.3°C can be attributed to SRM for the latter scenario and for a median climate sensitivity of 3°C (for a global target only, this number reduces by 0.5°C). Our results indicate that although SRM would almost completely substitute for mitigation in the globally aggregated analysis, it only saves 70% to 75% of the welfare-loss compared to a purely mitigation-based analysis (from economic costs and climate risks, approximately 4% in terms of BGE) when considering regional precipitation risks in precipitation-risk-only and both-risks scenarios. It remains to be shown how the inclusion of further risks or different regional weights would

  11. Eocene climate and Arctic paleobathymetry: A tectonic sensitivity study using GISS ModelE-R

    Science.gov (United States)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2009-12-01

    The early Paleogene (65-45 million years ago, Ma) was a ‘greenhouse’ interval with global temperatures warmer than any other time in the last 65 Ma. This period was characterized by high levels of CO2, warm high-latitudes, warm surface-and-deep oceans, and an intensified hydrological cycle. Sediments from the Arctic suggest that the Eocene surface Arctic Ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions remain uncertain. We present equilibrium climate conditions derived from a fully-coupled, water-isotope enabled, general circulation model (GISS ModelE-R) configured for the early Eocene. We also present model-data comparison plots for key climatic variables (SST and δ18O) and analyses of the leading modes of variability in the tropical Pacific and North Atlantic regions. Our tectonic sensitivity study indicates that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the seaways connecting the Arctic to the Atlantic and Tethys. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~6 psu and warming of sea-surface temperatures by 2°C in the North Atlantic and 5-10°C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We also suggest that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates in the Atlantic.

  12. Safety climate and firefighting: Focus group results.

    Science.gov (United States)

    DeJoy, David M; Smith, Todd D; Dyal, Mari-Amanda

    2017-09-01

    Firefighting is a hazardous occupation and there have been numerous calls for fundamental changes in how fire service organizations approach safety and balance safety with other operational priorities. These calls, however, have yielded little systematic research. As part of a larger project to develop and test a model of safety climate for the fire service, focus groups were used to identify potentially important dimensions of safety climate pertinent to firefighting. Analyses revealed nine overarching themes. Competency/professionalism, physical/psychological readiness, and that positive traits sometimes produce negative consequences were themes at the individual level; cohesion and supervisor leadership/support at the workgroup level; and politics/bureaucracy, resources, leadership, and hiring/promotion at the organizational level. A multi-level perspective seems appropriate for examining safety climate in firefighting. Safety climate in firefighting appears to be multi-dimensional and some dimensions prominent in the general safety climate literature also seem relevant to firefighting. These results also suggest that the fire service may be undergoing transitions encompassing mission, personnel, and its fundamental approach to safety and risk. These results help point the way to the development of safety climate measures specific to firefighting and to interventions for improving safety performance. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  13. Beyond exposure, sensitivity and adaptive capacity: A response based ecological framework to assess species climate change vulnerability

    Science.gov (United States)

    Fortini, Lucas B.; Schubert, Olivia

    2017-01-01

    As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By instead defining vulnerability as the degree to which a species is unable to exhibit any of the responses necessary for persistence under climate change (i.e., toleration of projected changes, migration to new climate-compatible areas, enduring in microrefugia, and evolutionary adaptation), we can bring VAs into the realm of ecological science without applying borrowed abstract concepts that have consistently challenged species-centric research and management. This response-based framework to assess species vulnerability to climate change allows better integration of relevant ecological data and past research, yielding results with much clearer implications for conservation and research prioritization.

  14. Thermal sensitivity of cold climate lizards and the importance of distributional ranges.

    Science.gov (United States)

    Bonino, Marcelo F; Moreno Azócar, Débora L; Schulte, James A; Abdala, Cristian S; Cruz, Félix B

    2015-08-01

    One of the fundamental goals in macroecology is to understand the relationship among species' geographic ranges, ecophysiology, and climate; however, the mechanisms underlying the distributional geographic patterns observed remain unknown for most organisms. In the case of ectotherms this is particularly important because the knowledge of these interactions may provide a robust framework for predicting the potential consequences of climate change in these organisms. Here we studied the relationship of thermal sensitivity and thermal tolerance in Patagonian lizards and their geographic ranges, proposing that species with wider distributions have broader plasticity and thermal tolerance. We predicted that lizard thermal physiology is related to the thermal characteristics of the environment. We also explored the presence of trade-offs of some thermal traits and evaluated the potential effects of a predicted scenario of climate change for these species. We examined sixteen species of Liolaemini lizards from Patagonia representing species with different geographic range sizes. We obtained thermal tolerance data and performance curves for each species in laboratory trials. We found evidence supporting the idea that higher physiological plasticity allows species to achieve broader distribution ranges compared to species with restricted distributions. We also found a trade-off between broad levels of plasticity and higher optimum temperatures of performance. Finally, results from contrasting performance curves against the highest environmental temperatures that lizards may face in a future scenario (year 2080) suggest that the activity of species occurring at high latitudes may be unaffected by predicted climatic changes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Sensitivity of the carbon cycle in the Arctic to climate change

    Science.gov (United States)

    McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.; Dallimore, Scott; Guo, Laodong; Hayes, Daniel J.; Heimann, Martin; Lorenson, T.D.; Macdonald, Robie W.; Roulet, Nigel

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon–climate

  16. Climate sensitivity to Arctic seaway restriction during the early Paleogene

    Science.gov (United States)

    Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.

    2009-09-01

    The opening and closing of ocean gateways affects the global distribution of heat, salt, and moisture, potentially driving climatic change on regional to global scales. Between 65 and 45 million years ago (Ma), during the early Paleogene, exchange between the Arctic and global oceans occurred through two narrow and shallow seaways, the Greenland-Norway seaway and the Turgai Strait. Sediments from the Arctic Ocean suggest that, during this interval, the surface ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions in the Paleogene Arctic remain uncertain. Here we show results from an isotope-enabled, atmosphere-ocean general circulation model, which indicate that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the Arctic seaways. We also present modelled estimates of seawater and calcite δ18O for the Paleogene. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~ 6 psu and warming of sea-surface temperatures by 2 °C in the North Atlantic and 5-10 °C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We propose that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates and supports a tectonic trigger hypothesis for the Paleocene Eocene Thermal Maximum (PETM).

  17. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model

    International Nuclear Information System (INIS)

    Shuman, J K; Shugart, H H

    2009-01-01

    Climate warming could strongly influence the structure and composition of the Eurasian boreal forest. Temperature related changes have occurred, including shifts in treelines and changes in regeneration. Dynamic vegetation models are well suited to the further exploration of the impacts that climate change may have on boreal forests. Using the individual-based gap model FAREAST, forest composition and biomass are simulated at over 2000 sites across Eurasia. Biomass output is compared to detailed forest data from a representative sample of Russian forests and a sensitivity analysis is performed to evaluate the impact that elevated temperatures and modified precipitation will have on forest biomass and composition in Eurasia. Correlations between model and forest inventory biomass are strong for several boreal tree species. A significant relationship is shown between altered precipitation and biomass. This analysis showed that a modest increase in temperature of 2 deg. C across 200 years had no significant effect on biomass; however further exploration with increased warming reflective of values measured within Siberia, or at an increased rate, are warranted. Overall, FAREAST accurately simulates forest biomass and composition at sites throughout a large geographic area with widely varying climatic conditions and produces reasonable biomass responses to simulated climatic shifts. These results indicate that this model is robust and useful in making predictions regarding the effect of future climate change on boreal forest structure across Eurasia.

  18. Marine low cloud sensitivity to an idealized climate change : The CGILS LES intercomparison

    NARCIS (Netherlands)

    Blossey, P.N.; Bretherton, C.S.; Zhang, M.; Cheng, A.; Endo, S.; Heus, T.; Liu, Y.; Lock, A.P.; De Roode, S.R.; Xu, K.M.

    2013-01-01

    Subtropical marine low cloud sensitivity to an idealized climate change is compared in six large-eddy simulation (LES) models as part of CGILS. July cloud cover is simulated at three locations over the subtropical northeast Pacific Ocean, which are typified by cold sea surface temperatures (SSTs)

  19. The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity

    Science.gov (United States)

    Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; Singh, Hansi A.

    2018-01-01

    The temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity and weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.

  20. Sensitivity of marine systems to climate and fishing: Concepts, issues and management responses

    DEFF Research Database (Denmark)

    Perry, Ian; Cury, Philippe; Brander, Keith

    2010-01-01

    forcing. Fishing is unlikely to alter the sensitivities of individual finfish and invertebrates to climate forcing. It will remove individuals with specific characteristics from the gene pool, thereby affecting structure and function at higher levels of organisation. Fishing leads to a loss of older age......Modern fisheries research and management must understand and take account of the interactions between climate and fishing, rather than try to disentangle their effects and address each separately. These interactions are significant drivers of change in exploited marine systems and have...... but will be manifest as the accumulation of the interactions between fishing and climate variability — unless threshold limits are exceeded. Marine resource managers need to develop approaches which maintain the resilience of individuals, populations, communities and ecosystems to the combined and interacting effects...

  1. Condensation of long-term wave climates for the fatigue design of hydrodynamically sensitive offshore wind turbine support structures

    DEFF Research Database (Denmark)

    Passon, Patrik; Branner, Kim

    2016-01-01

    important for hydrodynamically sensitive structures since the applied met-ocean parameters have a non-linear influence on calculated fatigue design loads. The present article introduces a new wave lumping method for condensation of the wave climate. The novelty is predominantly based on refined equivalence......Cost-efficient and reliable fatigue designs of offshore wind turbine support structures require an adequate representation of the site-specific wind–wave joint distribution. Establishment of this wind–wave joint distribution for design load calculation purposes requires typically a correlation...... of the marginal wind and wave distribution. This is achieved by condensation of the site-specific wave climate in terms of wave period or wave height lumping, subsequently used as input for a correlation with the corresponding wind climate. The quality of this resulting wind–wave correlation is especially...

  2. Significant mean and extreme climate sensitivity of Norway spruce and silver fir at mid-elevation mesic sites in the Alps.

    Directory of Open Access Journals (Sweden)

    Marco Carrer

    Full Text Available Climate forcing is the major abiotic driver for forest ecosystem functioning and thus significantly affects the role of forests within the global carbon cycle and related ecosystem services. Annual radial increments of trees are probably the most valuable source of information to link tree growth and climate at long-term time scales, and have been used in a wide variety of investigations worldwide. However, especially in mountainous areas, tree-ring studies have focused on extreme environments where the climate sensitivity is perhaps greatest but are necessarily a biased representation of the forests within a region. We used tree-ring analyses to study two of the most important tree species growing in the Alps: Norway spruce (Picea abies and silver fir (Abies alba. We developed tree-ring chronologies from 13 mesic mid-elevation sites (203 trees and then compared them to monthly temperature and precipitation data for the period 1846-1995. Correlation functions, principal component analysis and fuzzy C-means clustering were applied to 1 assess the climate/growth relationships and their stationarity and consistency over time, and 2 extract common modes of variability in the species responses to mean and extreme climate variability. Our results highlight a clear, time-stable, and species-specific response to mean climate conditions. However, during the previous-year's growing season, which shows the strongest correlations, the primary difference between species is in their response to extreme events, not mean conditions. Mesic sites at mid-altitude are commonly underrepresented in tree-ring research; we showed that strong climatic controls of growth may exist even in those areas. Extreme climatic events may play a key role in defining the species-specific responses on climatic sensitivity and, with a global change perspective, specific divergent responses are likely to occur even where current conditions are less limited.

  3. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

    Science.gov (United States)

    Hansen, Kaj M.; Christensen, Jesper H.; Brandt, Jørgen

    2015-01-01

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition. PMID:26378551

  4. Short ensembles: an efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models

    Directory of Open Access Journals (Sweden)

    H. Wan

    2014-09-01

    Full Text Available This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model, version 5. In the first example, the method is used to characterize sensitivities of the simulated clouds to time-step length. Results show that 3-day ensembles of 20 to 50 members are sufficient to reproduce the main signals revealed by traditional 5-year simulations. A nudging technique is applied to an additional set of simulations to help understand the contribution of physics–dynamics interaction to the detected time-step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol life cycle are perturbed simultaneously in order to find out which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. It turns out that 12-member ensembles of 10-day simulations are able to reveal the same sensitivities as seen in 4-year simulations performed in a previous study. In both cases, the ensemble method reduces the total computational time by a factor of about 15, and the turnaround time by a factor of several hundred. The efficiency of the method makes it particularly useful for the development of

  5. Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California.

    Science.gov (United States)

    Sarah. Jovan

    2008-01-01

    Lichens are highly valued ecological indicators known for their sensitivity to a wide variety of environmental stressors like air quality and climate change. This report summarizes baseline results from the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Lichen Community Indicator covering the first full cycle of data collection (...

  6. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  7. Tropical interannual variability in a global coupled GCM: Sensitivity to mean climate state

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A.M. [Bureau of Meterology Research Centre, Melbourne, Victoria (Australia)

    1995-04-01

    A global coupled ocean-atmosphere-sea ice general circulation model is used to study interannual variability in the Tropics. Flux correction is used to control the mean climate of the coupled system, and in one configuration of the coupled model, interannual variability in the tropical Pacific is dominated by westward moving anomalies. Through a series of experiments in which the equatorial ocean wave speeds and ocean-atmosphere coupling strength are varied, it is demonstrated that these westward moving disturbances are probably some manifestation of what Neelin describes as an {open_quotes}SST mode.{close_quotes} By modifying the flux correction procedure, the mean climate of the coupled model can be changed. A fairly modest change in the mean climate is all that is required to excite eastward moving anomalies in place of the westward moving SST modes found previously. The apparent sensitivity of the nature of tropical interannual variability to the mean climate state in a coupled general circulation model such as that used here suggests that caution is advisable if we try to use such models to answer questions relating to changes in ENSO-like variability associated with global climate change. 41 refs., 23 figs., 1 tab.

  8. Assessing flood risk at the global scale: model setup, results, and sensitivity

    International Nuclear Information System (INIS)

    Ward, Philip J; Jongman, Brenden; Weiland, Frederiek Sperna; Winsemius, Hessel C; Bouwman, Arno; Ligtvoet, Willem; Van Beek, Rens; Bierkens, Marc F P

    2013-01-01

    Globally, economic losses from flooding exceeded $19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP ($1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures. (letter)

  9. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    Science.gov (United States)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2018-06-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional

  10. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    Science.gov (United States)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2017-08-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional

  11. Criteria for the prioritization of public health interventions for climate-sensitive vector-borne diseases in Quebec.

    Directory of Open Access Journals (Sweden)

    Valerie Hongoh

    Full Text Available Prioritizing resources for optimal responses to an ever growing list of existing and emerging infectious diseases represents an important challenge to public health. In the context of climate change, there is increasing anticipated variability in the occurrence of infectious diseases, notably climate-sensitive vector-borne diseases. An essential step in prioritizing efforts is to identify what considerations and concerns to take into account to guide decisions and thus set disease priorities. This study was designed to perform a comprehensive review of criteria for vector-borne disease prioritization, assess their applicability in a context of climate change with a diverse cross-section of stakeholders in order to produce a baseline list of considerations to use in this decision-making context. Differences in stakeholder choices were examined with regards to prioritization of these criteria for research, surveillance and disease prevention and control objectives. A preliminary list of criteria was identified following a review of the literature. Discussions with stakeholders were held to consolidate and validate this list of criteria and examine their effects on disease prioritization. After this validation phase, a total of 21 criteria were retained. A pilot vector-borne disease prioritization exercise was conducted using PROMETHEE to examine the effects of the retained criteria on prioritization in different intervention domains. Overall, concerns expressed by stakeholders for prioritization were well aligned with categories of criteria identified in previous prioritization studies. Weighting by category was consistent between stakeholders overall, though some significant differences were found between public health and non-public health stakeholders. From this exercise, a general model for climate-sensitive vector-borne disease prioritization has been developed that can be used as a starting point for further public health prioritization

  12. Criteria for the prioritization of public health interventions for climate-sensitive vector-borne diseases in Quebec.

    Science.gov (United States)

    Hongoh, Valerie; Gosselin, Pierre; Michel, Pascal; Ravel, André; Waaub, Jean-Philippe; Campagna, Céline; Samoura, Karim

    2017-01-01

    Prioritizing resources for optimal responses to an ever growing list of existing and emerging infectious diseases represents an important challenge to public health. In the context of climate change, there is increasing anticipated variability in the occurrence of infectious diseases, notably climate-sensitive vector-borne diseases. An essential step in prioritizing efforts is to identify what considerations and concerns to take into account to guide decisions and thus set disease priorities. This study was designed to perform a comprehensive review of criteria for vector-borne disease prioritization, assess their applicability in a context of climate change with a diverse cross-section of stakeholders in order to produce a baseline list of considerations to use in this decision-making context. Differences in stakeholder choices were examined with regards to prioritization of these criteria for research, surveillance and disease prevention and control objectives. A preliminary list of criteria was identified following a review of the literature. Discussions with stakeholders were held to consolidate and validate this list of criteria and examine their effects on disease prioritization. After this validation phase, a total of 21 criteria were retained. A pilot vector-borne disease prioritization exercise was conducted using PROMETHEE to examine the effects of the retained criteria on prioritization in different intervention domains. Overall, concerns expressed by stakeholders for prioritization were well aligned with categories of criteria identified in previous prioritization studies. Weighting by category was consistent between stakeholders overall, though some significant differences were found between public health and non-public health stakeholders. From this exercise, a general model for climate-sensitive vector-borne disease prioritization has been developed that can be used as a starting point for further public health prioritization exercises relating to

  13. Climatic and basin factors affecting the flood frequency curve: PART I – A simple sensitivity analysis based on the continuous simulation approach

    Directory of Open Access Journals (Sweden)

    A. M. Hashemi

    2000-01-01

    Full Text Available Regionalized and at-site flood frequency curves exhibit considerable variability in their shapes, but the factors controlling the variability (other than sampling effects are not well understood. An application of the Monte Carlo simulation-based derived distribution approach is presented in this two-part paper to explore the influence of climate, described by simulated rainfall and evapotranspiration time series, and basin factors on the flood frequency curve (ffc. The sensitivity analysis conducted in the paper should not be interpreted as reflecting possible climate changes, but the results can provide an indication of the changes to which the flood frequency curve might be sensitive. A single site Neyman Scott point process model of rainfall, with convective and stratiform cells (Cowpertwait, 1994; 1995, has been employed to generate synthetic rainfall inputs to a rainfall runoff model. The time series of the potential evapotranspiration (ETp demand has been represented through an AR(n model with seasonal component, while a simplified version of the ARNO rainfall-runoff model (Todini, 1996 has been employed to simulate the continuous discharge time series. All these models have been parameterised in a realistic manner using observed data and results from previous applications, to obtain ‘reference’ parameter sets for a synthetic case study. Subsequently, perturbations to the model parameters have been made one-at-a-time and the sensitivities of the generated annual maximum rainfall and flood frequency curves (unstandardised, and standardised by the mean have been assessed. Overall, the sensitivity analysis described in this paper suggests that the soil moisture regime, and, in particular, the probability distribution of soil moisture content at the storm arrival time, can be considered as a unifying link between the perturbations to the several parameters and their effects on the standardised and unstandardised ffcs, thus revealing the

  14. Runoff and Evapotranspiration Sensitivities to a Changing Climate in the Western U.S.

    Science.gov (United States)

    Gao, M.; Xiao, M.; Lettenmaier, D. P.

    2017-12-01

    Climate change is likely to alter streamflow seasonal patterns, affect water availability, and otherwise pose challenges to water resources management. It is therefore important to understand how streamflow will respond to changes in climate. Previous studies have mostly focused on runoff sensitivity to precipitation (P) and temperature change, but runoff sensitivity to potential evapotranspiration (PET) is less well understood. In order to investigate how variations in precipitation and PET influence runoff, we conducted both statistical and model-based analyses of 84 near-natural basins in California, Oregon, and Washington. We obtained meteorological forcing data at 1/16 degree spatial resolution for each basin from the University of Washington/UCLA Experimental Surface Water Monitor, and observed runoff data from USGS. For the statistical method, we applied three estimators of the precipitation elasticity of runoff from previous studies. We also estimated the PET elasticity of runoff, using Penman-Monteith reference ET as a surrogate for PET. For the modelling method, we implemented the Sacramento Soil Moisture Accounting (SAC-SMA) Model, where PET is an explicit input. We performed experiments in which we changed P and PET by 1% individually to examine their effects on runoff, from which we computed the P and PET elasticities. We explore the spatial patterns in the elasticities of runoff and their relationships with basin characteristics and climatology. We also evaluate how well the statistical and model-based results meet the complementary relationship posited by Dooge (based on the Budyko Hypothesis) that the precipitation and PET elasticities of annual runoff should sum to one.

  15. Uncertainty, Sensitivity Analysis, and Causal Identification in the Arctic using a Perturbed Parameter Ensemble of the HiLAT Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth Clare [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urrego Blanco, Jorge Rolando [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urban, Nathan Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-12

    Coupled climate models have a large number of input parameters that can affect output uncertainty. We conducted a sensitivity analysis of sea ice proper:es and Arc:c related climate variables to 5 parameters in the HiLAT climate model: air-ocean turbulent exchange parameter (C), conversion of water vapor to clouds (cldfrc_rhminl) and of ice crystals to snow (micro_mg_dcs), snow thermal conduc:vity (ksno), and maximum snow grain size (rsnw_mlt). We used an elementary effect (EE) approach to rank their importance for output uncertainty. EE is an extension of one-at-a-time sensitivity analyses, but it is more efficient in sampling multi-dimensional parameter spaces. We looked for emerging relationships among climate variables across the model ensemble, and used causal discovery algorithms to establish potential pathways for those relationships.

  16. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    Science.gov (United States)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  17. Sensitivity of pine flatwoods hydrology to climate change and forest management in Florida, USA

    Science.gov (United States)

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Nicholas B. Comerford

    2009-01-01

    Pine flatwoods (a mixture of cypress wetlands and managed pine uplands) is an important ecosystem in the southeastern U.S. However, long-term hydrologic impacts of forest management and climate change on this heterogeneous landscape are not well understood. Therefore, this study examined the sensitivity of cypress-pine flatwoods...

  18. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania

    Science.gov (United States)

    Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Quenol, Hervé; Sfîcă, Lucian; Foss, Chris

    2018-02-01

    Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area's historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area's climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.

  19. Validating predictions from climate envelope models

    Science.gov (United States)

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  20. Validating predictions from climate envelope models.

    Directory of Open Access Journals (Sweden)

    James I Watling

    Full Text Available Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species' distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967-1971 (t1 and evaluated using occurrence data from 1998-2002 (t2. Model sensitivity (the ability to correctly classify species presences was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on

  1. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought.

    Science.gov (United States)

    D'Orangeville, Loïc; Maxwell, Justin; Kneeshaw, Daniel; Pederson, Neil; Duchesne, Louis; Logan, Travis; Houle, Daniel; Arseneault, Dominique; Beier, Colin M; Bishop, Daniel A; Druckenbrod, Daniel; Fraver, Shawn; Girard, François; Halman, Joshua; Hansen, Chris; Hart, Justin L; Hartmann, Henrik; Kaye, Margot; Leblanc, David; Manzoni, Stefano; Ouimet, Rock; Rayback, Shelly; Rollinson, Christine R; Phillips, Richard P

    2018-02-20

    Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad-scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors-the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)-are stronger drivers of drought sensitivity than soil and stand characteristics. Drought-induced reductions in tree growth were greatest when the droughts occurred during early-season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ 50 ) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early-season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors. © 2018 John Wiley & Sons Ltd.

  2. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    Science.gov (United States)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  3. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland.

    Science.gov (United States)

    Weedon, James T; Kowalchuk, George A; Aerts, Rien; Freriks, Stef; Röling, Wilfred F M; van Bodegom, Peter M

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50-100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12-15% of variance explained) > temporal variation (7-11%) > climate treatment (4-9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates-evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.

  4. Sensitivity of Climate Change Detection and Attribution to the Characterization of Internal Climate Variability

    KAUST Repository

    Imbers, Jara; Lopez, Ana; Huntingford, Chris; Allen, Myles

    2014-01-01

    The Intergovernmental Panel on Climate Change's (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.

  5. Sensitivity of Climate Change Detection and Attribution to the Characterization of Internal Climate Variability

    KAUST Repository

    Imbers, Jara

    2014-05-01

    The Intergovernmental Panel on Climate Change\\'s (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.

  6. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S. [Univ. of Lethbridge, Dept. of Geography, Lethbridge, Alberta (Canada)

    2008-06-15

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter {mu} {+-} 1{sigma}), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha{sup -1}{center_dot}year{sup -1}. This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat

  7. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    International Nuclear Information System (INIS)

    Xu, S.; Peddle, D.R.; Coburn, C.A.; Kienzle, S.

    2008-01-01

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter μ ± 1σ), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha -1 ·year -1 . This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat boreal forests, was shown to be

  8. Preliminary review of adaptation options for climate-sensitive ecosystems and resources. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research

    Science.gov (United States)

    Baron, Jill S.; Griffith, Brad; Joyce, Linda A.; Kareiva, Peter; Keller, Brian D.; Palmer, Margaret A.; Peterson, Charles H.; Scott, J. Michael; Julius, Susan Herrod; West, Jordan M.

    2008-01-01

    Climate variables are key determinants of geographic distributions and biophysical characteristics of ecosystems, communities, and species. Climate change is therefore affecting many species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue into the future regardless of emissions mitigation, strategies for protecting climate-sensitive ecosystems through management will be increasingly important. While there will always be uncertainties associated with the future path of climate change, the response of ecosystems to climate impacts, and the effects of management, it is both possible and essential for adaptation to proceed using the best available science. This report provides a preliminary review of adaptation options for climate-sensitive ecosystems and resources in the United States. The term “adaptation” in this document refers to adjustments in human social systems (e.g., management) in response to climate stimuli and their effects. Since management always occurs in the context of desired ecosystem conditions or natural resource management goals, it is instructive to examine particular goals and processes used by different organizations to fulfill their objectives. Such an examination allows for discussion of specific adaptation options as well as potential barriers and opportunities for implementation. Using this approach, this report presents a series of chapters on the following selected management systems: National Forests, National Parks, National Wildlife Refuges, Wild and Scenic Rivers, National Estuaries, and Marine Protected Areas. For these chapters, the authors draw on the literature, their own expert opinion, and expert workshops composed of resource management scientists and representatives of managing agencies. The information drawn from across these chapters is then analyzed to develop the key synthetic messages presented below.

  9. Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model

    Science.gov (United States)

    Romanou, A.; Romanski, J.; Gregg, W. W.

    2014-01-01

    Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which

  10. Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2011-08-01

    Full Text Available Due to its effects on the atmospheric lifetime of methane, the burdens of tropospheric ozone and growth of secondary organic aerosol, isoprene is central among the biogenic compounds that need to be taken into account for assessment of anthropogenic air pollution-climate change interactions. Lack of process-understanding regarding leaf isoprene production as well as of suitable observations to constrain and evaluate regional or global simulation results add large uncertainties to past, present and future emissions estimates. Focusing on contemporary climate conditions, we compare three global isoprene models that differ in their representation of vegetation and isoprene emission algorithm. We specifically aim to investigate the between- and within model variation that is introduced by varying some of the models' main features, and to determine which spatial and/or temporal features are robust between models and different experimental set-ups. In their individual standard configurations, the models broadly agree with respect to the chief isoprene sources and emission seasonality, with maximum monthly emission rates around 20–25 Tg C, when averaged by 30-degree latitudinal bands. They also indicate relatively small (approximately 5 to 10 % around the mean interannual variability of total global emissions. The models are sensitive to changes in one or more of their main model components and drivers (e.g., underlying vegetation fields, climate input which can yield increases or decreases in total annual emissions of cumulatively by more than 30 %. Varying drivers also strongly alters the seasonal emission pattern. The variable response needs to be interpreted in view of the vegetation emission capacities, as well as diverging absolute and regional distribution of light, radiation and temperature, but the direction of the simulated emission changes was not as uniform as anticipated. Our results highlight the need for modellers to evaluate their

  11. Socio-climatic Exposure of an Afghan Poppy Farmer

    Science.gov (United States)

    Mankin, J. S.; Diffenbaugh, N. S.

    2011-12-01

    Many posit that climate impacts from anthropogenic greenhouse gas emissions will have consequences for the natural and agricultural systems on which humans rely for food, energy, and livelihoods, and therefore, on stability and human security. However, many of the potential mechanisms of action in climate impacts and human systems response, as well as the differential vulnerabilities of such systems, remain underexplored and unquantified. Here I present two initial steps necessary to characterize and quantify the consequences of climate change for farmer livelihood in Afghanistan, given both climate impacts and farmer vulnerabilities. The first is a conceptual model mapping the potential relationships between Afghanistan's climate, the winter agricultural season, and the country's political economy of violence and instability. The second is a utility-based decision model for assessing farmer response sensitivity to various climate impacts based on crop sensitivities. A farmer's winter planting decision can be modeled roughly as a tradeoff between cultivating the two crops that dominate the winter growing season-opium poppy (a climate tolerant cash crop) and wheat (a climatically vulnerable crop grown for household consumption). Early sensitivity analysis results suggest that wheat yield dominates farmer decision making variability; however, such initial results may dependent on the relative parameter ranges of wheat and poppy yields. Importantly though, the variance in Afghanistan's winter harvest yields of poppy and wheat is tightly linked to household livelihood and thus, is indirectly connected to the wider instability and insecurity within the country. This initial analysis motivates my focused research on the sensitivity of these crops to climate variability in order to project farmer well-being and decision sensitivity in a warmer world.

  12. Climate engineering and the risk of rapid climate change

    International Nuclear Information System (INIS)

    Ross, Andrew; Damon Matthews, H

    2009-01-01

    Recent research has highlighted risks associated with the use of climate engineering as a method of stabilizing global temperatures, including the possibility of rapid climate warming in the case of abrupt removal of engineered radiative forcing. In this study, we have used a simple climate model to estimate the likely range of temperature changes associated with implementation and removal of climate engineering. In the absence of climate engineering, maximum annual rates of warming ranged from 0.015 to 0.07 deg. C/year, depending on the model's climate sensitivity. Climate engineering resulted in much higher rates of warming, with the temperature change in the year following the removal of climate engineering ranging from 0.13 to 0.76 deg. C. High rates of temperature change were sustained for two decades following the removal of climate engineering; rates of change of 0.5 (0.3,0.1) deg. C/decade were exceeded over a 20 year period with 15% (75%, 100%) likelihood. Many ecosystems could be negatively affected by these rates of temperature change; our results suggest that climate engineering in the absence of deep emissions cuts could arguably constitute increased risk of dangerous anthropogenic interference in the climate system under the criteria laid out in the United Nations Framework Convention on Climate Change.

  13. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review.

    Science.gov (United States)

    Garratt, J. R.

    1993-03-01

    Aspects of the land-surface and boundary-layer treatments in some 20 or so atmospheric general circulation models (GCMS) are summarized. In only a small fraction of these have significant sensitivity studies been carried out and published. Predominantly, the sensitivity studies focus upon the parameterization of land-surface processes and specification of land-surface properties-the most important of these include albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. For example, results from numerous studies give an average decrease in continental precipitation of 1 mm day1 in response to an average albedo increase of 0.13. Few conclusive studies have been carried out on the impact of a gross roughness-length change-the primary study included an important statistical assessment of the impact upon the mean July climate around the globe of a decreased continental roughness (by three orders of magnitude). For example, such a decrease reduced the precipitation over Amazonia by 1 to 2 mm day1.The inclusion of a canopy scheme in a GCM ensures the combined impacts of roughness (canopies tend to be rougher than bare soil), albedo (canopies tend to be less reflective than bare soil), and soil-moisture availability (canopies prevent the near-surface soil region from drying out and can access the deep soil moisture) upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. The results of four such studies show that replacing tropical forest with a degraded pasture results in decreased evaporation ( 1 mm day1) and precipitation (1-2 mm day1), and increased near-surface air temperatures (2 K).Sensitivity studies as a whole suggest the need for a

  14. Vulnerability of the global terrestrial ecosystems to climate change.

    Science.gov (United States)

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Science.gov (United States)

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  16. Use of traditional medicines to cope with climate-sensitive diseases in a resource poor setting in Bangladesh.

    Science.gov (United States)

    Haque, Md Aminul; Louis, Valérie R; Phalkey, Revati; Sauerborn, Rainer

    2014-02-25

    This study aims to explore the use of traditional medicines to cope with climate sensitive diseases in areas vulnerable to climate change. We assessed the extent to which traditional or alternative medicines were used for the treatment of the climate sensitive diseases by villagers as part of their health-coping strategies. The study deployed a mixed-method research design to know the health-coping strategies of the people in a resource-poor setting.A cross sectional study was conducted from September 2010 to March 2011 among 450 households selected randomly in the districts of Rajshahi and Khulna, Bangladesh. The elder males or females of each household were interviewed. For qualitative methods, twelve focus group discussions (six with females and six with males) and fifteen key informant interviews were conducted by the research team, using interview guidelines on the use of traditional medicine. Univariate analysis showed that the use of traditional medicines has increased among community members of all socio-economic and demographic backgrounds. Due to the increased incidence of disease and sickness respondents had to increase the use of their cultural means to cope with adverse health situations. A systematic collection of knowledge on the use of traditional medicines to cope with climate-sensitive diseases can help the adaptation of communities vulnerable to climate change. In addition it can be instrumental in creating a directory of traditional medicine components used for specific diseases and highlight the effectiveness and relevance of traditional medicines as health-coping strategies. This may be useful for policymakers, researchers, and development partners to adapt existing health care policy in resource-limited contexts. It may also encourage WHO, national and international institutions, such as pharmaceutical companies, to carry out research investigating the effectiveness of these traditional medicines and integrate them with modern medicine

  17. Potential Influence of Climate Change on the Acid-Sensitivity of High-Elevation Lakes in the Georgia Basin, British Columbia

    Directory of Open Access Journals (Sweden)

    Donna Strang

    2015-01-01

    Full Text Available Global climate models predict increased temperature and precipitation in the Georgia Basin, British Colmbia; however, little is known about the impacts on high-elevation regions. In the current study, fifty-four high-elevation lakes (754–2005 m a.s.l. were studied to investigate the potential influence of climate change on surface water acid-sensitivity. Redundancy analysis indicated that the concentration of nitrate, dissolved organic carbon, and associated metals was significantly influenced by climate parameters. Furthermore, these components differed significantly between biogeoclimatic zones. Modelled soil base cation weathering for a subset of the study lakes (n=11 was predicted to increase by 9% per 1°C increase in temperature. Changes in temperature and precipitation may potentially decrease the pH of surface waters owing to changes in anthropogenic deposition and organic acid production. In contrast, increased soil base cation weathering may increase the critical load (of acidity of high-elevation lakes. Ultimately, the determining factor will be whether enhanced base cation weathering is sufficient to buffer changes in natural and anthropogenic acidity. Mountain and high-elevation regions are considered early warning systems to climate change; as such, future monitoring is imperative to assess the potential ramifications of climate change on the hydrochemistry and acid-sensitivity of these surface waters.

  18. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Sarah E Null

    Full Text Available This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  19. Climate catastrophes

    Science.gov (United States)

    Budyko, Mikhail

    1999-05-01

    Climate catastrophes, which many times occurred in the geological past, caused the extinction of large or small populations of animals and plants. Changes in the terrestrial and marine biota caused by the catastrophic climate changes undoubtedly resulted in considerable fluctuations in global carbon cycle and atmospheric gas composition. Primarily, carbon dioxide and other greenhouse gas contents were affected. The study of these catastrophes allows a conclusion that climate system is very sensitive to relatively small changes in climate-forcing factors (transparency of the atmosphere, changes in large glaciations, etc.). It is important to take this conclusion into account while estimating the possible consequences of now occurring anthropogenic warming caused by the increase in greenhouse gas concentration in the atmosphere.

  20. Sensitivity of the Regional Climate in the Middle East and North Africa to Volcanic Perturbations

    KAUST Repository

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy L.; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-01-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/NCEP Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model (HiRAM). A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  1. Sensitivity of the Regional Climate in the Middle East and North Africa to Volcanic Perturbations

    KAUST Repository

    Dogar, Muhammad Mubashar

    2017-07-27

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/NCEP Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory\\'s High-Resolution Atmospheric Model (HiRAM). A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  2. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations

    Science.gov (United States)

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-08-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/National Centers for Environmental Prediction Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model. A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon, and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  3. Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record

    Science.gov (United States)

    Karlsson, Karl-Göran; Håkansson, Nina

    2018-02-01

    The sensitivity in detecting thin clouds of the cloud screening method being used in the CM SAF cloud, albedo and surface radiation data set from AVHRR data (CLARA-A2) cloud climate data record (CDR) has been evaluated using cloud information from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite. The sensitivity, including its global variation, has been studied based on collocations of Advanced Very High Resolution Radiometer (AVHRR) and CALIOP measurements over a 10-year period (2006-2015). The cloud detection sensitivity has been defined as the minimum cloud optical thickness for which 50 % of clouds could be detected, with the global average sensitivity estimated to be 0.225. After using this value to reduce the CALIOP cloud mask (i.e. clouds with optical thickness below this threshold were interpreted as cloud-free cases), cloudiness results were found to be basically unbiased over most of the globe except over the polar regions where a considerable underestimation of cloudiness could be seen during the polar winter. The overall probability of detecting clouds in the polar winter could be as low as 50 % over the highest and coldest parts of Greenland and Antarctica, showing that a large fraction of optically thick clouds also remains undetected here. The study included an in-depth analysis of the probability of detecting a cloud as a function of the vertically integrated cloud optical thickness as well as of the cloud's geographical position. Best results were achieved over oceanic surfaces at mid- to high latitudes where at least 50 % of all clouds with an optical thickness down to a value of 0.075 were detected. Corresponding cloud detection sensitivities over land surfaces outside of the polar regions were generally larger than 0.2 with maximum values of approximately 0.5 over the Sahara and the Arabian Peninsula. For polar land surfaces the values were close to 1 or higher with maximum values of 4.5 for the parts

  4. 32 questions concerning climate change (results of a questionnaire)

    Energy Technology Data Exchange (ETDEWEB)

    Auer, I; Boehm, R [Central Inst. for Meteorology and Geodynamics, Vienna (Austria); Steinacker, R [Vienna Univ. (Austria).Inst. for Meteorology and Geophysics

    1996-12-31

    The intention of the inquiry was to investigate the opinion within the scientific community about climate change questions that are believed to be already well solved in the public opinion. 32 questions were formulated that deal with 12 main assumptions about the existence, the predictability and the impacts of climate changes due to an artificially enhanced greenhouse effect. The possibilities to answer reached from `sure yes`, over `guess yes`, `not answerable or no opinion` to `guess no` and `sure no`. There were additional questions about the way the answers were gained: `by own research`, `by studying scientific literature or discussion with colleagues` and `by mass media consumption`. In the following some of the key assumptions about climate change topics will be discussed as the predictability of future evolution of climate by climate models and the detectability of an artificially enhanced greenhouse effect in climate time series. The other assumptions can be shown here only in the form of a comprehensive overview. In a very comprehensive form the results of the inquiry could be described in the following: A weak majority of climatologists believe today`s climate models to be able to describe a greenhouse gas induced climate change in global scale - much less in regional scale and not in local scale. A majority of climatologists believe an anthropogenic greenhouse gas forced climate and its impacts to be developing in the future but not already at present. The shape of the opinion spectra is in most cases far from that of a scientifically solved problem - a lot of work still has to be done

  5. 32 questions concerning climate change (results of a questionnaire)

    Energy Technology Data Exchange (ETDEWEB)

    Auer, I.; Boehm, R. [Central Inst. for Meteorology and Geodynamics, Vienna (Austria); Steinacker, R. [Vienna Univ. (Austria).Inst. for Meteorology and Geophysics

    1995-12-31

    The intention of the inquiry was to investigate the opinion within the scientific community about climate change questions that are believed to be already well solved in the public opinion. 32 questions were formulated that deal with 12 main assumptions about the existence, the predictability and the impacts of climate changes due to an artificially enhanced greenhouse effect. The possibilities to answer reached from `sure yes`, over `guess yes`, `not answerable or no opinion` to `guess no` and `sure no`. There were additional questions about the way the answers were gained: `by own research`, `by studying scientific literature or discussion with colleagues` and `by mass media consumption`. In the following some of the key assumptions about climate change topics will be discussed as the predictability of future evolution of climate by climate models and the detectability of an artificially enhanced greenhouse effect in climate time series. The other assumptions can be shown here only in the form of a comprehensive overview. In a very comprehensive form the results of the inquiry could be described in the following: A weak majority of climatologists believe today`s climate models to be able to describe a greenhouse gas induced climate change in global scale - much less in regional scale and not in local scale. A majority of climatologists believe an anthropogenic greenhouse gas forced climate and its impacts to be developing in the future but not already at present. The shape of the opinion spectra is in most cases far from that of a scientifically solved problem - a lot of work still has to be done

  6. Climate change sensitivity of the African ivory nut palm, Hyphaena petersiana Klotzsch ex Mart. (arecaceae) - a keystone species in SE Africa

    DEFF Research Database (Denmark)

    Overgaard, Anne Blach; Svenning, J.-C.; Balslev, Henrik

    2009-01-01

    the climate sensitivity of the key-stone palm species Hyphaene petersiana (African ivory nut palm) in southern Africa. We tested the relative roles of climate vs. non-climatic range-controls and found that climate had a clear effect on the range of H. petersiana and that especially water-related variables......Africa is the most vulnerable continent to future climate change. Profound changes are projected for southwestern Africa with increased drying, notably with delayed onset of the rainy season in September-November, and temperature increases in all seasons. The projected climate changes combined...... species by humans and livestock are likely to exacerbate the negative effect of future climate changes on its populations, especially, given the expected human population increase in Africa....

  7. Assessing confidence in management adaptation approaches for climate-sensitive ecosystems

    International Nuclear Information System (INIS)

    West, J M; Julius, S H; Weaver, C P

    2012-01-01

    A number of options are available for adapting ecosystem management to improve resilience in the face of climatic changes. However, uncertainty exists as to the effectiveness of these options. A report prepared for the US Climate Change Science Program reviewed adaptation options for a range of federally managed systems in the United States. The report included a qualitative uncertainty analysis of conceptual approaches to adaptation derived from the review. The approaches included reducing anthropogenic stressors, protecting key ecosystem features, maintaining representation, replicating, restoring, identifying refugia and relocating organisms. The results showed that the expert teams had the greatest scientific confidence in adaptation options that reduce anthropogenic stresses. Confidence in other approaches was lower because of gaps in understanding of ecosystem function, climate change impacts on ecosystems, and management effectiveness. This letter discusses insights gained from the confidence exercise and proposes strategies for improving future assessments of confidence for management adaptations to climate change. (letter)

  8. Climate change and nutrition: creating a climate for nutrition security.

    Science.gov (United States)

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  9. PATMOS-x Cloud Climate Record Trend Sensitivity to Reanalysis Products

    Directory of Open Access Journals (Sweden)

    Michael J. Foster

    2016-05-01

    Full Text Available Continuous satellite-derived cloud records now extend over three decades, and are increasingly used for climate applications. Certain applications, such as trend detection, require a clear understanding of uncertainty as it relates to establishing statistical significance. The use of reanalysis products as sources of ancillary data could be construed as one such source of uncertainty, as there has been discussion regarding the suitability of reanalysis products for trend detection. Here we use three reanalysis products: Climate Forecast System Reanalysis (CFSR, Modern Era Retrospective Analysis for Research and Applications (MERRA and European Center for Medium range Weather Forecasting (ECMWF ERA-Interim (ERA-I as sources of ancillary data for the Pathfinder Atmospheres Extended/Advanced Very High Resolution Radiometer (PATMOS-x/AVHRR Satellite Cloud Climate Data Record (CDR, and perform inter-comparisons to determine how sensitive the climatology is to choice of ancillary data source. We find differences among reanalysis fields required for PATMOS-x processing, which translate to small but not insignificant differences in retrievals of cloud fraction, cloud top height and cloud optical depth. The retrieval variability due to choice of reanalysis product is on the order of one third the size of the retrieval uncertainty, making it a potentially significant factor in trend detection. Cloud fraction trends were impacted the most by choice of reanalysis while cloud optical depth trends were impacted the least. Metrics used to determine the skill of the reanalysis products for use as ancillary data found no clear best choice for use in PATMOS-x. We conclude use of reanalysis products as ancillary data in the PATMOS-x/AVHRR Cloud CDR do not preclude its use for trend detection, but for that application uncertainty in reanalysis fields should be better represented in the PATMOS-x retrieval uncertainty.

  10. Interdependency in Multimodel Climate Projections: Component Replication and Result Similarity

    Science.gov (United States)

    Boé, Julien

    2018-03-01

    Multimodel ensembles are the main way to deal with model uncertainties in climate projections. However, the interdependencies between models that often share entire components make it difficult to combine their results in a satisfactory way. In this study, how the replication of components (atmosphere, ocean, land, and sea ice) between climate models impacts the proximity of their results is quantified precisely, in terms of climatological means and future changes. A clear relationship exists between the number of components shared by climate models and the proximity of their results. Even the impact of a single shared component is generally visible. These conclusions are true at both the global and regional scales. Given available data, it cannot be robustly concluded that some components are more important than others. Those results provide ways to estimate model interdependencies a priori rather than a posteriori based on their results, in order to define independence weights.

  11. Watershed sensitivity and hydrologic response to high-resolution climate model

    Science.gov (United States)

    Troin, M.; Caya, D.

    2012-12-01

    Global climate models (GCMs) are fundamental research tools to assess climate change impacts on water resources. Regional climate models (RCMs) are complementary to GCMs. The added benefit of RCMs for hydrological applications is still not well understood because watersheds respond differently to RCM experiments. It is expected that the new generation of RCMs improve the representation of climate processes making it more attractive for impact studies. Given the cost of RCMs, it is ascertain to identify whether high-resolution RCMs allow offering more details than what is simulated in GCMs or RCMs with coarser resolution to address impacts on water resources. This study aims to assess the added value of RCM with emphasis on using high-resolution climate models. More specifically is how the hydrological cycle is represented when the resolution in climate models is increased (45 vs 200km; 15 vs 45km). We used simulations from the Canadian RCM (CRCM) driven by reanalyses integrated on high-resolution domains (45 and 15km) and CRCM driven by multiple members of two GCMs (the Canadian CGCM3; the German ECHAM5) with a horizontal resolution of 45 km. CRCM data and data from their host GCMs are compared to observation over 1971-2000. Precipitation and temperature from CRCM and GCMs' simulations are inputted into the hydrological SWAT model to simulate streamflow in watersheds for the historical period. The selected watersheds are two basins in Quebec (QC) and one basin in British Columbia (BC), Canada. CRCM-45km driven by GCMs performs well in representing precipitation but shows a cold bias of 3.3°C. Such bias in temperature is more significant for the BC basin (4.5°C) due to the Rocky Mountains. For the CRCM-45km/GCM combination (CGCM3 or ECHAM5), comparable skills in reproducing the observed climate are identified even though CGCM3 analyzed alone provides more accurate indication of climatology in the basins than ECHAM5. When we compared to GCMs results, CRCM-45km

  12. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  13. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  14. After the Data: Taking Action on ClimateQUAL® Results

    Directory of Open Access Journals (Sweden)

    Elizabeth Uzelac

    2013-06-01

    Full Text Available Objective – This paper discusses the actions taken by the staff development and training (SD&T team at the Sheridan Libraries and Johns Hopkins University Museums in response to results of a ClimateQUAL survey.Methods – The team administered the ClimateQUAL Organizational Climate and Diversity Assessment in March 2009 to the 150 staff members of the museums and libraries, and 80% responded. To get at the root of some of the results, the team conducted 23 focus group sessions over the course of two months. In each 90-minute session, 8 open-ended questions were used to probe the staff’s thoughts on the survey results and elicit concrete suggestions for moving forward. Participants were asked to discuss their personal experiences with six areas of concern: procedural justice, distributive justice, structural facilitation of teamwork, psychological safety, communication, and leadership. One year after the original ClimateQUAL survey, the team administered a one-question follow-up survey.Results – The team analyzed and coded the notes taken during the focus group sessions and developed three discrete written summaries for each session: a brief summary of themes, a list of specific actionable suggestions, and a general description of specific scenarios aired in the sessions. From these analyses, the team developed two types of recommendations: quick tactical actions and long-term strategic recommendations. Strategic recommendations were developed in three main areas: fostering a sense of global ownership of organizational issues, improving organizational communication, and improving leadership and facilitation of teamwork. With these recommendations, the team charged managers to take broad ownership of a plan for individual actions. The results of the one-year follow-up survey were mixed. Staff perceived positive change in communication, but indicated that the areas of procedural and distributive justice, psychological safety, and transparency

  15. Investigating Impacts of Climate Change on Irrigation Water Demands and Its Resulting Consequences on Groundwater Using CMIP5 Models.

    Science.gov (United States)

    Goodarzi, Mustafa; Abedi-Koupai, Jahangir; Heidarpour, Manouchehr

    2018-04-15

    In this study, the impacts of climate change on crop water requirements and irrigation water requirements on the regional cropping pattern were evaluated using two climate change scenarios and combinations of 20 GCM models. Different models including CROPWAT, MODFLOW, and statistical models were used to evaluate the climate change impacts. The results showed that in the future period (2017 to 2046) the temperature in all months of the year will increase at all stations. The average annual precipitation decline in Isfahan, Tiran, Flavarjan, and Lenj stations for RCP 4.5 and RCP 8.5 scenarios are 18.6 and 27.6%, 15.2 and 18%, 22.5 and 31.5%, and 10.5 and 12.1%, respectively. The average increase in the evapotranspiration for RCP 4.5 and RCP 8.5 scenarios are about 2.5 and 4.1%, respectively. The irrigation water demands increases considerably and for some crops, on average 18%. Among the existing crops in the cropping pattern, barley, cumin, onion, wheat, and forage crops are more sensitive and their water demand will increase significantly. Results indicate that climate change could have a significant impact on water resources consumption. By considering irrigation efficiency in the region, climate change impacts will result in about 35 to 50 million m 3 /year, over-extraction from the aquifer. This additional exploitation causes an extra drop of 0.4 to 0.8 m in groundwater table per year in the aquifer. Therefore, with regard to the critical condition of the aquifer, management and preventive measures to deal with climate change in the future is absolutely necessary. © 2018, National Ground Water Association.

  16. Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty

    Science.gov (United States)

    Schleussner, Carl-Friedrich; Deryng, Delphine; Müller, Christoph; Elliott, Joshua; Saeed, Fahad; Folberth, Christian; Liu, Wenfeng; Wang, Xuhui; Pugh, Thomas A. M.; Thiery, Wim; Seneviratne, Sonia I.; Rogelj, Joeri

    2018-06-01

    Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO2 fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO2 levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO2 forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO2 concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.

  17. A local scale assessment of the climate change sensitivity of snow in Pyrenean ski resorts

    Science.gov (United States)

    Pesado, Cristina; Pons, Marc; Vilella, Marc; López-Moreno, Juan Ignacio

    2016-04-01

    The Pyrenees host one of the largest ski area in Europe after the Alps that encompasses the mountain area of the south of France, the north of Spain and the small country of Andorra. In this region, winter tourism is one of the main source of income and driving force of local development on these mountain communities. However, this activity was identified as one of the most vulnerable to a future climate change due to the projected decrease of natural snow and snowmaking capacity. However, within the same ski resorts different areas showed to have a very different vulnerability within the same resort based on the geographic features of the area and the technical management of the slopes. Different areas inside a same ski resort could have very different vulnerability to future climate change based on aspect, steepness or elevation. Furthermore, the technical management of ski resorts, such as snowmaking and grooming were identified to have a significant impact on the response of the snowpack in a warmer climate. In this line, two different ski resorts were deeply analyzed taken into account both local geographical features as well as the effect of the technical management of the runs. Principal Component Analysis was used to classify the main areas of the resort based on the geographic features (elevation, aspect and steepness) and identify the main representative areas with different local features. Snow energy and mass balance was simulated in the different representative areas using the Cold Regions Hydrological Model (CRHM) assuming different magnitudes of climate warming (increases of 2°C and 4°C in the mean winter temperature) both in natural conditions and assuming technical management of the slopes. Theses first results showed the different sensitivity and vulnerability to climate changes based on the local geography of the resort and the management of the ski runs, showing the importance to include these variables when analyzing the local vulnerability

  18. Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment

    Science.gov (United States)

    Wang, Guiling

    2005-12-01

    This study examines the impact of greenhouse gas warming on soil moisture based on predictions of 15 global climate models by comparing the after-stabilization climate in the SRESA1b experiment with the pre-industrial control climate. The models are consistent in predicting summer dryness and winter wetness in only part of the northern middle and high latitudes. Slightly over half of the models predict year-round wetness in central Eurasia and/or year-round dryness in Siberia and mid-latitude Northeast Asia. One explanation is offered that relates such lack of seasonality to the carryover effect of soil moisture storage from season to season. In the tropics and subtropics, a decrease of soil moisture is the dominant response. The models are especially consistent in predicting drier soil over the southwest North America, Central America, the Mediterranean, Australia, and the South Africa in all seasons, and over much of the Amazon and West Africa in the June July August (JJA) season and the Asian monsoon region in the December January February (DJF) season. Since the only major areas of future wetness predicted with a high level of model consistency are part of the northern middle and high latitudes during the non-growing season, it is suggested that greenhouse gas warming will cause a worldwide agricultural drought. Over regions where there is considerable consistency among the analyzed models in predicting the sign of soil moisture changes, there is a wide range of magnitudes of the soil moisture response, indicating a high degree of model dependency in terrestrial hydrological sensitivity. A major part of the inter-model differences in the sensitivity of soil moisture response are attributable to differences in land surface parameterization.

  19. Designing ecological climate change impact assessments to reflect key climatic drivers.

    Science.gov (United States)

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  20. Complementarity among climate related energy sources: Sensitivity study to climate characteristics across Europe

    Science.gov (United States)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Raynaud, Damien; Borga, Marco; Vautard, Robert

    2015-04-01

    Climate related energy sources like solar-power, wind-power and hydro-power are important contributors to the transitions to a low-carbon economy. Past studies, mainly based on solar and wind powers, showed that the power from such energy sources fluctuates in time and space following their driving climatic variables. However, when combining different energy sources together, their intermittent feature is smoothed, resulting to lower time variability of the produced power and to lower storage capacity required for balancing. In this study, we consider solar, wind and hydro energy sources in a 100% renewable Europe using a set of 12 regions following two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine wind and solar irradiance data from the Weather Research and Forecasting Model (Vautard et al., 2014), temperature data from the European Climate Assessment & Dataset (Haylock et al., 2008) and runoff from the Global Runoff Data Center (GRDC, 1999) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 30 years. The use of this set of 12 regions across Europe allows integrating knowledge about time and space variability for each different energy sources. We then assess the optimal share of each energy sources, aiming to decrease the time variability of the regional energy balance at different time scales as well as the energy storage required for balancing within each region. We also evaluate how energy transport among regions contributes for smoothing out both the energy balance and the storage requirement. The strengths of this study are i) to handle with run-of-the-river hydro power in addition to wind and solar energy sources and ii) to carry out this analysis

  1. The Impact of Subsidies on the Prevalence of Climate-Sensitive Residential Buildings in Malaysia

    Directory of Open Access Journals (Sweden)

    David T. Tan

    2017-12-01

    Full Text Available Dependence on air-conditioning (AC for residential cooling and ventilation is a health and sustainability challenge. In hot temperatures, climate-sensitive buildings (CSB can complement and/or substitute for AC usage in achieving thermal comfort. Many countries facing such conditions—particularly in tropical climates—are developing quickly, with rising populations and income creating demand for new housing and AC. This presents a window for adoption of CSB but could also result in long term lock-in of AC-dependent buildings. Here, a simple system dynamics model is used to explore the potential and limitations of subsidies to affect futures of housing stock and night-time AC usage in Malaysia. The effectiveness of subsidies in achieving high uptake of CSB and resulting health benefits is highly dependent on homebuyer willingness to pay (WTP. A detailed understanding of WTP in the Malaysian context and factors that can shift WTP is necessary to determine if CSB subsidies can be a good policy mechanism for achieving CSB uptake.

  2. Climate effects of a hypothetical regional nuclear war: Sensitivity to emission duration and particle composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Lindvall, Jenny; Ekman, Annica M. L.; Svensson, Gunilla

    2016-11-01

    Here, we use a coupled atmospheric-ocean-aerosol model to investigate the plume development and climate effects of the smoke generated by fires following a regional nuclear war between emerging third-world nuclear powers. We simulate a standard scenario where 5 Tg of black carbon (BC) is emitted over 1 day in the upper troposphere-lower stratosphere. However, it is likely that the emissions from the fires ignited by bomb detonations include a substantial amount of particulate organic matter (POM) and that they last more than 1 day. We therefore test the sensitivity of the aerosol plume and climate system to the BC/POM ratio (1:3, 1:9) and to the emission length (1 day, 1 week, 1 month). We find that in general, an emission length of 1 month substantially reduces the cooling compared to the 1-day case, whereas taking into account POM emissions notably increases the cooling and the reduction of precipitation associated with the nuclear war during the first year following the detonation. Accounting for POM emissions increases the particle size in the short-emission-length scenarios (1 day/1 week), reducing the residence time of the injected particle. While the initial cooling is more intense when including POM emission, the long-lasting effects, while still large, may be less extreme compared to the BC-only case. Our study highlights that the emission altitude reached by the plume is sensitive to both the particle type emitted by the fires and the emission duration. Consequently, the climate effects of a nuclear war are strongly dependent on these parameters.

  3. Experimental results on RPC neutron sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Altieri, S.; Baratti, V.; Barnaba, O.; Belli, G.; Bruno, G.; Colaleo, A.; De Vecchi, C.; Guida, R. E-mail: roberto.guida@pv.infn.it; Iaselli, G.; Imbres, E.; Loddo, F.; Maggi, M.; Marangelli, B.; Musitelli, G.; Nardo, R.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Ratti, S.; Riccardi, C.; Romano, F.; Torre, P.; Vicini, A.; Vitulo, P

    2003-08-01

    RPC neutron sensitivity has been studied during two tests done with different neutrons energies. In the first test, neutrons from spontaneous fission events of {sup 252}Cf were used (average energy 2 MeV); while in the second test neutrons were produced using a 50 MeV deuteron beam on a 1 cm thick beryllium target (average energy 20 MeV). Preliminary results show that the neutron sensitivity in double gap mode is (0.52{+-}0.03)x10{sup -3} at about 2 MeV and (5.3{+-}0.5)x10{sup -3} at about 20 MeV.

  4. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  5. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes

    International Nuclear Information System (INIS)

    Liu Guo; Liu Hongyan; Yin Yi

    2013-01-01

    Extremes in climate have significant impacts on ecosystems and are expected to increase under future climate change. Extremes in vegetation could capture such impacts and indicate the vulnerability of ecosystems, but currently have not received a global long-term assessment. In this study, a robust method has been developed to detect significant extremes (low values) in biweekly time series of global normalized difference vegetation index (NDVI) from 1982 to 2006 and thus to acquire a global pattern of vegetation extreme frequency. This pattern coincides with vegetation vulnerability patterns suggested by earlier studies using different methods over different time spans, indicating a consistent mechanism of regulation. Vegetation extremes were found to aggregate in Amazonia and in the semi-arid and semi-humid regions in low and middle latitudes, while they seldom occurred in high latitudes. Among the environmental variables studied, extreme low precipitation has the highest slope against extreme vegetation. For the eight biomes analyzed, these slopes are highest in temperate broadleaf forest and temperate grassland, suggesting a higher sensitivity in these environments. The results presented here contradict the hypothesis that vegetation in water-limited semi-arid and semi-humid regions might be adapted to drought and suggest that vegetation in these regions (especially temperate broadleaf forest and temperate grassland) is highly prone to vegetation extreme events under more severe precipitation extremes. It is also suggested here that more attention be paid to precipitation-induced vegetation changes than to temperature-induced events. (letter)

  6. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    Science.gov (United States)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  7. Drought sensitivity changes over the last century at the North American savanna-forest boundary

    Science.gov (United States)

    Heilman, K.; McLachlan, J. S.

    2017-12-01

    Future environmental changes can affect the sensitivity of tree growth to climate. Theses changes are of particular concern at biome boundaries where tree distribution could shift as a result of changes in both drought and drought sensitivity. One such region is the North American savanna-forest boundary, where increased CO2 and droughts could alter savanna and forest ecosystem distributions in two contrasting ways: 1). More severe droughts may increase drought sensitivity, favoring open savanna ecosystems or, 2). Increases in water use efficiency resulting from higher atmospheric CO2 may decrease drought sensitivity, promoting forest expansion. This study sought to understand whether the past 100 years of climate and CO2 changes have impacted regional tree growth-climate sensitivity. To test for these climate sensitivity changes, we measured the sensitivity of Quercus spp. radial growth to Palmer Drought Severity Index (PDSI). Tree growth sensitivity to climate can vary according to many factors, including: stand structure, available moisture, and tree age. To control for these factors, we sampled tree growth-climate responses at sites in both open and closed forests, and at both low and high annual precipitation. Within each site, we compared growth responses to climate between trees established under high CO2 conditions after 1950 (high CO2 young), and tree established before 1950 under low CO2 levels (low CO2 young). At most sites, low CO2 young have a higher drought sensitivity than higher CO2 young. These changes in the sensitivity to drought are consistent with CO2 enhancement of water use efficiency. Furthermore, these differences in drought sensitivity are higher at sites with high temperature and low precipitation, suggesting that the alleviation of drought is more likely in hot and dry regions. Thus, if CO2 enhancement is indeed occurring in these systems, lower growth sensitivity to drought in hot and dry regions could favor increased forest growth. If

  8. Novel Methods to Explore Building Energy Sensitivity to Climate and Heat Waves Using PNNL's BEND Model

    Science.gov (United States)

    Burleyson, C. D.; Voisin, N.; Taylor, T.; Xie, Y.; Kraucunas, I.

    2017-12-01

    The DOE's Pacific Northwest National Laboratory (PNNL) has been developing the Building ENergy Demand (BEND) model to simulate energy usage in residential and commercial buildings responding to changes in weather, climate, population, and building technologies. At its core, BEND is a mechanism to aggregate EnergyPlus simulations of a large number of individual buildings with a diversity of characteristics over large spatial scales. We have completed a series of experiments to explore methods to calibrate the BEND model, measure its ability to capture interannual variability in energy demand due to weather using simulations of two distinct weather years, and understand the sensitivity to the number and location of weather stations used to force the model. The use of weather from "representative cities" reduces computational costs, but often fails to capture spatial heterogeneity that may be important for simulations aimed at understanding how building stocks respond to a changing climate (Fig. 1). We quantify the potential reduction in temperature and load biases from using an increasing number of weather stations across the western U.S., ranging from 8 to roughly 150. Using 8 stations results in an average absolute summertime temperature bias of 4.0°C. The mean absolute bias drops to 1.5°C using all available stations. Temperature biases of this magnitude translate to absolute summertime mean simulated load biases as high as 13.8%. Additionally, using only 8 representative weather stations can lead to a 20-40% bias of peak building loads under heat wave or cold snap conditions, a significant error for capacity expansion planners who may rely on these types of simulations. This analysis suggests that using 4 stations per climate zone may be sufficient for most purposes. Our novel approach, which requires no new EnergyPlus simulations, could be useful to other researchers designing or calibrating aggregate building model simulations - particularly those looking at

  9. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  10. Sensitivity of very small glaciers in the Swiss Alps to future climate change

    Directory of Open Access Journals (Sweden)

    Matthias eHuss

    2016-04-01

    Full Text Available Very small glaciers (<0.5 km2 account for more than 80% of the total number of glaciers in mid- to low-latitude mountain ranges. Although their total area and volume is small compared to larger glaciers, they are a relevant component of the cryosphere, contributing to landscape formation, local hydrology and sea-level rise. Worldwide glacier monitoring mostly focuses on medium-sized to large glaciers leaving us with a limited understanding of the response of dwarf glaciers to climate change. In this study, we present a comprehensive modeling framework to assess past and future changes of very small glaciers at the mountain-range scale. Among other processes our model accounts for snow redistribution, changes in glacier geometry and the time-varying effect of supraglacial debris. It computes the mass balance distribution, the englacial temperature regime and proglacial runoff. The evolution of 1,133 individual glaciers in the Swiss Alps is modeled in detail until 2060 based on new distributed data sets. Our results indicate that 52% of all very small glaciers in Switzerland will completely disappear within the next 25 years. However, a few avalanche-fed glaciers at low elevation might be able to survive even substantial atmospheric warming. We find highly variable sensitivities of very small glaciers to air temperature change, with gently-sloping, low-elevation, and debris-covered glaciers being most sensitive.

  11. Generating evidence on gender sensitive climate-smart agriculture ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Specifically, it is important to understand how gender dynamics influence ... for CSA to buffer or mitigate the negative effects of climate change, promote equality, ... long-term climate action to reduce social inequality, promote greater gender ...

  12. Spatial variability in sensitivity of reference crop ET to accuracy of climate data in the Texas High Plains

    Science.gov (United States)

    A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...

  13. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?

    Science.gov (United States)

    McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M; Botham, Marc S; Franco, Aldina M A

    2017-01-01

    There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37-year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life-history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life-history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  14. Identifying a key physical factor sensitive to the performance of Madden-Julian oscillation simulation in climate models

    Science.gov (United States)

    Kim, Go-Un; Seo, Kyong-Hwan

    2018-01-01

    A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.

  15. Phenological sensitivity to climate across taxa and trophic levels

    DEFF Research Database (Denmark)

    Thackeray, Stephen J.; Henrys, Peter; Hemming, Deborah

    2016-01-01

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate...

  16. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-01-01

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  17. Climate variability and climate change vulnerability and adaptation. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, N.; Cirillo, R.R. [Argonne National Lab., IL (United States); Dixon, R.K. [U.S. Country Studies Program, Washington, DC (United States)] [and others

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  18. Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain

    Science.gov (United States)

    Bucchignani, E.; Cattaneo, L.; Panitz, H.-J.; Mercogliano, P.

    2016-02-01

    The results of a sensitivity work based on ERA-Interim driven COSMO-CLM simulations over the Middle East-North Africa (CORDEX-MENA) domain are presented. All simulations were performed at 0.44° spatial resolution. The purpose of this study was to ascertain model performances with respect to changes in physical and tuning parameters which are mainly related to surface, convection, radiation and cloud parameterizations. Evaluation was performed for the whole CORDEX-MENA region and six sub-regions, comparing a set of 26 COSMO-CLM runs against a combination of available ground observations, satellite products and reanalysis data to assess temperature, precipitation, cloud cover and mean sea level pressure. The model proved to be very sensitive to changes in physical parameters. The optimized configuration allows COSMO-CLM to improve the simulated main climate features of this area. Its main characteristics consist in the new parameterization of albedo, based on Moderate Resolution Imaging Spectroradiometer data, and the new parameterization of aerosol, based on NASA-GISS AOD distributions. When applying this configuration, Mean Absolute Error values for the considered variables are as follows: about 1.2 °C for temperature, about 15 mm/month for precipitation, about 9 % for total cloud cover, and about 0.6 hPa for mean sea level pressure.

  19. Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe.

    Science.gov (United States)

    Khansaritoreh, Elmira; Dulamsuren, Choimaa; Klinge, Michael; Ariunbaatar, Tumurbaatar; Bat-Enerel, Banzragch; Batsaikhan, Ganbaatar; Ganbaatar, Kherlenchimeg; Saindovdon, Davaadorj; Yeruult, Yolk; Tsogtbaatar, Jamsran; Tuya, Daramragchaa; Leuschner, Christoph; Hauck, Markus

    2017-09-01

    Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland-dominated forest-steppe area and small forest patches in a grassland-dominated area. We found increasing climate sensitivity and decreasing first-order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland-dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland-dominated area, the increase was much greater than in the forest-dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure. © 2017 John Wiley & Sons Ltd.

  20. Modelling Interglacial Climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Anker

    the impact of a changing sea ice cover. The first part focusses on the last interglacial climate (125,000 years before present) which was characterized by substantial warming at high northern latitudes due to an increased insolation during summer. The simulations reveal that the oceanic changes dominate......Past warm climate states could potentially provide information on future global warming. The past warming was driven by changed insolation rather than an increased greenhouse effect, and thus the warm climate states are expected to be different. Nonetheless, the response of the climate system......, with maximum warming occurring in winter. The three scenarios all affect the climate beyond the Arctic, especially the mid-latitude circulation which is sensitive to the location of the ice loss. Together, the results presented in this thesis illustrate that the changes in the Arctic sea ice cover...

  1. Sensitivity of the Greenland Ice Sheet to Interglacial Climate Forcing: MIS 5e Versus MIS 11

    Science.gov (United States)

    Rachmayani, Rima; Prange, Matthias; Lunt, Daniel J.; Stone, Emma J.; Schulz, Michael

    2017-11-01

    The Greenland Ice Sheet (GrIS) is thought to have contributed substantially to high global sea levels during the interglacials of Marine Isotope Stage (MIS) 5e and 11. Geological evidence suggests that the mass loss of the GrIS was greater during the peak interglacial of MIS 11 than MIS 5e, despite a weaker boreal summer insolation. We address this conundrum by using the three-dimensional thermomechanical ice sheet model Glimmer forced by Community Climate System Model version 3 output for MIS 5e and MIS 11 interglacial time slices. Our results suggest a stronger sensitivity of the GrIS to MIS 11 climate forcing than to MIS 5e forcing. Besides stronger greenhouse gas radiative forcing, the greater MIS 11 GrIS mass loss relative to MIS 5e is attributed to a larger oceanic heat transport toward high latitudes by a stronger Atlantic meridional overturning circulation. The vigorous MIS 11 ocean overturning, in turn, is related to a stronger wind-driven salt transport from low to high latitudes promoting North Atlantic Deep Water formation. The orbital insolation forcing, which causes the ocean current anomalies, is discussed.

  2. Mind the rate. Why rate global climate change matters, and how much

    International Nuclear Information System (INIS)

    Ambrosi, Ph.

    2006-01-01

    To assess climate policies in a cost-efficiency framework with constraints on the magnitude and rate of global climate change we have built RESPONSE, an optimal control integrated assessment model. Our results show that the uncertainty about climate sensitivity leads to significant short-term mitigation efforts all the more as the arrival of information regarding this parameter is belated. There exists thus a high opportunity cost to know before 2030 the true value of this parameter, which is not totally granted so far. Given this uncertainty, a +2 deg C objective could lead to rather stringent policy recommendations for the coming decades and might prove unacceptable. Furthermore, the uncertainty about climate sensitivity magnifies the influence of the rate constraint on short-term decision, leading to rather stringent policy recommendations for the coming decades. This result is particularly robust to the choice of discount rate and to the beliefs of the decision-maker about climate sensitivity. We finally show that the uncertainty about the rate constraint is even more important for short-term decision than the uncertainty about climate sensitivity or magnitude of warming. This means that the critical rate of climate change, i.e. a transient characteristic of climate risks, matters much more than the long-term objective of climate policy, i.e. the critical magnitude of climate change. Therefore, research should be aimed at better characterising climate change risks in view to help decision-makers in agreeing on a safe guardrail to limit the rate of global warming. (author)

  3. Water sensitive design as a means of adaptation for climate change and urbanisation

    International Nuclear Information System (INIS)

    Semadeni-Davies, Annette

    2007-01-01

    Full text: Full text: This presentation uses urban drainage to show how climate change impact assessments should also consider changes in resource management, land-use and technology. Although the work was carried out in Sweden (Semadeni-Davies 2004; 2007 a, b), the findings are relevant for Australia and New Zealand as these countries are currently moving away from pipe stormwater networks towards open water systems. Urban areas are characterised by high peak flows and fast response times. A central issue here is that there has been a paradigm shift in urban water management, particularly in new developments where the stormwater system is fast becoming a landscape feature. The shift is part of a worldwide trend called water sensitive design (WSD) or low impact design (LID). Ponds, wetlands, infiltration trenches, and porous paving are common examples of WSD elements intended to reduce peak stormwater and contaminant transport while maintaining low flows. Even in city centres where land values are at a premium, there has been an interest in retro-fitting for WSD. It is important for those interested in the impacts of climate change on urban areas to know this background information, as WSD may offer a means of adapting to climate change. However, there is a major stumbling block - the output from regional climate models is currently not at a sufficient spatial or temporal resolution to assess theimpact on urban drainage as the processes operate on a scale of minutes and metres (Shilling 1991). The disparity in resolution is also problematic for the design of future-proofed urban water systems as this requires information on rainfall intensity and frequency. To illustrate the effect of WSD, the potential impacts of climate change and urbanisation on flow were assessed both separately and together using DHI software (MIKE SHE, MOUSE) for Helsingborg in two related studies for combined and separate sewers. The Swedish regional climate model developed at the Rossby

  4. Climate risk index for Italy

    Science.gov (United States)

    Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-06-01

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  5. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    Science.gov (United States)

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.

  6. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    Science.gov (United States)

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.

  7. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  8. Climate Change: The Physical Basis and Latest Results

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the...

  9. Vulnerability of sandy coasts to climate change and anthropic pressures: methodology and preliminary results

    Science.gov (United States)

    Idier, D.; Poumadère, M.; Vinchon, C.; Romieu, E.; Oliveros, C.

    2009-04-01

    the few prediction of wave conditions available for the future deal mainly with the significant wave height, and not so much with the wave direction or period. To compensate this lack of knowledge, a sensitivity study is done to get information on the possible changes within the next decades (2030). It consists in studying the influence of a modification in the characteristics of the present day forcing conditions(like waves) within a reasonable magnitude order. 4) The anthropic pressure is taken into account as a modulator of the physical vulnerability. In each context, participative techniques are used to involve representatives of the main stakeholder groups into decision-making simulations. The scenario of a storm in 2030 is adopted to provide structured interactions during the workshop. Along with socio-economic projections, this simulation relies upon a fictive journal article written on the basis of the model outputs. These methodological choices aim at better understanding how decisions are made by stake holders dealing with risks and scientific uncertainty. Some applied results on the study sites will be presented at the EGU. ACKNOWLEDGEMENTS The VULSACO project is financially supported by the ANR (French National Research Agency) within the Vulnérabilité-Milieux-Climat programm.

  10. Circulation and oxygen cycling in the Mediterranean Sea: Sensitivity to future climate change

    Science.gov (United States)

    Powley, Helen R.; Krom, Michael D.; Van Cappellen, Philippe

    2016-11-01

    Climate change is expected to increase temperatures and decrease precipitation in the Mediterranean Sea (MS) basin, causing substantial changes in the thermohaline circulation (THC) of both the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS). The exact nature of future circulation changes remains highly uncertain, however, with forecasts varying from a weakening to a strengthening of the THC. Here we assess the sensitivity of dissolved oxygen (O2) distributions in the WMS and EMS to THC changes using a mass balance model, which represents the exchanges of O2 between surface, intermediate, and deep water reservoirs, and through the Straits of Sicily and Gibraltar. Perturbations spanning the ranges in O2 solubility, aerobic respiration kinetics, and THC changes projected for the year 2100 are imposed to the O2 model. In all scenarios tested, the entire MS remains fully oxygenated after 100 years; depending on the THC regime, average deep water O2 concentrations fall in the ranges 151-205 and 160-219 µM in the WMS and EMS, respectively. On longer timescales (>1000 years), the scenario with the largest (>74%) decline in deep water formation rate leads to deep water hypoxia in the EMS but, even then, the WMS deep water remains oxygenated. In addition, a weakening of THC may result in a negative feedback on O2 consumption as supply of labile dissolved organic carbon to deep water decreases. Thus, it appears unlikely that climate-driven changes in THC will cause severe O2 depletion of the deep water masses of the MS in the foreseeable future.

  11. A piecewise-integration method for simulating the influence of external forcing on climate

    Institute of Scientific and Technical Information of China (English)

    Zhifu Zhang; Chongjian Qiu; Chenghai Wang

    2008-01-01

    Climate drift occurs in most general circulation models (GCMs) as a result of incomplete physical and numerical representation of the complex climate system,which may cause large uncertainty in sensitivity experiments evaluating climate response to changes in external forcing.To solve this problem,we propose a piecewise-integration method to reduce the systematic error in climate sensitivity studies.The observations are firstly assimilated into a numerical model by using the dynamic relaxation technique to relax to the current state of atmosphere,and then the assimilated fields are continuously used to reinitialize the simulation to reduce the error of climate simulation.When the numerical model is integrated with changed external forcing,the results can be split into two parts,background and perturbation fields,and the background is the state before the external forcing is changed.The piecewise-integration method is used to continuously reinitialize the model with the assimilated field,instead of the background.Therefore,the simulation error of the model with the external forcing can be reduced.In this way,the accuracy of climate sensitivity experiments is greatly improved.Tests with a simple low-order spectral model show that this approach can significantly reduce the uncertainty of climate sensitivity experiments.

  12. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    Science.gov (United States)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  13. Sensitivity of wetland hydrology to external climate forcing in central Florida

    Science.gov (United States)

    Lammertsma, Emmy I.; Donders, Timme H.; Pearce, Christof; Cremer, Holger; Gaiser, Evelyn E.; Wagner-Cremer, Friederike

    2015-11-01

    Available proxy records from the Florida peninsula give a varying view on hydrological changes during the late Holocene. Here we evaluate the consistency and sensitivity of local wetland records in relation to hydrological changes over the past 5 ka based on pollen and diatom proxies from peat cores in Highlands Hammock State Park, central Florida. Around 5 cal ka BP, a dynamic floodplain environment is present. Subsequently, a wetland forest establishes, followed by a change to persistent wet conditions between 2.5 and 2.0 ka. Long hydroperiods remain despite gradual succession and basin infilling with maximum wet conditions between 1.3 and 1.0 ka. The wet phase and subsequent strong drying over the last millennium, as indicated by shifts in both pollen and diatom assemblages, can be linked to the early Medieval Warm Period and Little Ice Age, respectively, driven by regionally higher sea-surface temperatures and a temporary northward migration of the Intertropical Convergence Zone. Changes during the 20th century are the result of constructions intended to protect the Highlands Hammock State Park from wildfires. The multiple cores and proxies allow distinguishing local and regional hydrological changes. The peat records reflect relatively subtle climatic changes that are not evident from regional pollen records from lakes.

  14. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  15. How Teachers' Beliefs About Climate Change Influence Their Instruction and Resulting Student Outcomes

    Science.gov (United States)

    Nation, M.; Feldman, A.; Smith, G.

    2017-12-01

    The purpose of the study was to understand the relationship between teachers' beliefs and understandings of climate change and their instructional practices to determine if and how they impact student outcomes. Limited research has been done in the area of teacher beliefs on climate change, their instruction, and resulting student outcomes. This study contributes to the greater understanding of teachers' beliefs and impact on climate change curriculum implementation. The study utilized a mixed methods approach to data collection and analysis. Data were collected in the form of classroom observations, surveys, and interviews from teachers and students participating in the study over a four-month period. Qualitative and quantitative findings were analyzed through thematic coding and descriptive analysis and compared in an effort to triangulate findings. The results of the study suggest teachers and students believe climate change is occurring and humans are largely to blame. Personal beliefs are important when teaching controversial topics, such as climate change, but participants maintained neutrality within their instruction of the topic, as not to appear biased or influence students' decisions about climate change, and avoid political controversy in the classroom. Overall, the study found teachers' level of understandings and beliefs about climate change had little impact on their instruction and resulting student outcomes. Based on the findings, simply adding climate change to the existing science curriculum is not sufficient for teachers or students. Teachers need to be better prepared about effective pedagogical practices of the content in order to effectively teach a climate-centered curriculum. The barriers that exist for the inclusion of teachers' personal beliefs need to be removed in order for teachers to assert their own personal beliefs about climate change within their classroom instruction. Administrators and stakeholders need to support science

  16. Reasons for the variability of the climate sensitivity parameter regarding spatially inhomogeneous ozone perturbation; Ursachen der Variabilitaet des Klimasensitivitaetsparameters fuer raeumlich inhomogene Ozonstoerungen

    Energy Technology Data Exchange (ETDEWEB)

    Stuber, N.

    2003-07-01

    A reduction of anthropogenic greenhouse gas emissions is a condition precedent for implementing the framework convention on climate change. ''Metrics'' allow for a comparison of different emissions with regard to their potential effects on global climate and, hence, are a prerequisite for political decisions. Currently ''radiative forcing'' is the most common metric: Global, annual mean radiative forcing resulting from some perturbation of the climate system is proportional to equilibrium surface temperature response. The coefficient of proportionality, {lambda}, is called the ''climate sensitivity parameter''. However, several studies have indicated that for spatially inhomogeneous perturbations {lambda} can no longer be regarded as a constant. This doctoral thesis examines the reasons for the non-linear relationship between radiative forcing and climate response. The response to several idealized ozone perturbations has been analysed. The equilibrium response of some radiatively relevant parameters features a characteristic signature, implying that the respective feedback mechanisms act quite differently in the various experiments. Accordingly, equality of radiative forcing is not sufficient to guarantee comparability of the gross effect of all feedback mechanisms. Analysis shows that the variability of {lambda} is largely due to the very different strength of stratospheric water vapor and sea-ice albedo feedback for the various experiments. (orig.)

  17. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    Science.gov (United States)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  18. Chaotic Attractor Crisis and Climate Sensitivity: a Transfer Operator Approach

    Science.gov (United States)

    Tantet, A.; Lucarini, V.; Lunkeit, F.; Dijkstra, H. A.

    2015-12-01

    The rough response to a smooth parameter change of some non-chaotic climate models, such as the warm to snowball-Earth transition in energy balance models due to the ice-albedo feedback, can be studied in the framework of bifurcation theory, in particular by analysing the Lyapunov spectrum of fixed points or periodic orbits. However, bifurcation theory is of little help to study the destruction of a chaotic attractor which can occur in high-dimensional General Circulation Models (GCM). Yet, one would expect critical slowing down to occur before the crisis, since, as the system becomes susceptible to the physical instability mechanism responsible for the crisis, it turns out to be less and less resilient to exogenous perturbations and to spontaneous fluctuations due to other types of instabilities on the attractor. The statistical physics framework, extended to nonequilibrium systems, is particularly well suited for the study of global properties of chaotic and stochastic systems. In particular, the semigroup of transfer operators governs the evolution of distributions in phase space and its spectrum characterises both the relaxation rate of distributions to a statistical steady-state and the stability of this steady-state to perturbations. If critical slowing down indeed occurs in the approach to an attractor crisis, the gap in the spectrum of the semigroup of transfer operators is expected to shrink. We show that the chaotic attractor crisis due to the ice-albedo feedback and resulting in a transition from a warm to a snowball-Earth in the Planet Simulator (PlaSim), a GCM of intermediate complexity, is associated with critical slowing down, as observed by the slower decay of correlations before the crisis (cf. left panel). In addition, we demonstrate that this critical slowing down can be traced back to the shrinkage of the gap between the leading eigenvalues of coarse-grained approximations of the transfer operators and that these eigenvalues capture the

  19. Thinning increases climatic resilience of red pine

    Science.gov (United States)

    Magruder, Matthew; Chhin, Sophan; Palik, Brian; Bradford, John B.

    2013-01-01

    Forest management techniques such as intermediate stand-tending practices (e.g., thinning) can promote climatic resiliency in forest stands by moderating tree competition. Residual trees gain increased access to environmental resources (i.e., soil moisture, light), which in turn has the potential to buffer trees from stressful climatic conditions. The influences of climate (temperature and precipitation) and forest management (thinning method and intensity) on the productivity of red pine (Pinus resinosa Ait.) in Michigan were examined to assess whether repeated thinning treatments were able to increase climatic resiliency (i.e., maintaining productivity and reduced sensitivity to climatic stress). The cumulative productivity of each thinning treatment was determined, and it was found that thinning from below to a residual basal area of 14 m2·ha−1 produced the largest average tree size but also the second lowest overall biomass per acre. On the other hand, the uncut control and the thinning from above to a residual basal area of 28 m2·ha−1 produced the smallest average tree size but also the greatest overall biomass per acre. Dendrochronological methods were used to quantify sensitivity of annual radial growth to monthly and seasonal climatic factors for each thinning treatment type. Climatic sensitivity was influenced by thinning method (i.e., thinning from below decreased sensitivity to climatic stress more than thinning from above) and by thinning intensity (i.e., more intense thinning led to a lower climatic sensitivity). Overall, thinning from below to a residual basal area of 21 m2·ha−1 represented a potentially beneficial compromise to maximize tree size, biomass per acre, and reduced sensitivity to climatic stress, and, thus, the highest level of climatic resilience.

  20. Climate change and CO2 emission reductions

    International Nuclear Information System (INIS)

    Ha Duong, M.; Campos, A.S.

    2007-04-01

    This paper presents the results of an opinion poll performed on a representative sample of 1000 persons about their sensitivity to climate change and to environment protection, their knowledge about technologies which are useful for environment protection, their opinion about geological CO 2 sequestration, and technologies to be developed to struggle against climate warming

  1. Annual mean sea level and its sensitivity to wind climate

    Science.gov (United States)

    Gerkema, Theo; Duran Matute, Matias

    2017-04-01

    the west-east component of the net wind energy vector, with some further improvement if one also includes the south-north component and annual mean atmospheric pressure. Knowledge of these local correlations can then be used to correct values of annual mean sea for these atmospheric effects. This halves the margin of error (expressed as 95%-confidence interval) for linear trends in a 20-year sea level record. The sensitivity on wind direction has a regional variability, even on a small scale like the Dutch Wadden Sea. Model results illustrate the detailed spatial patterns in inter-annual variability of annual mean sea level. This study also implies that climatic changes in wind direction, or in the strength of winds from a specific direction, may affect local annual mean sea level quite significantly.

  2. School climate, peer victimization, and academic achievement: results from a multi-informant study.

    Science.gov (United States)

    Wang, Weijun; Vaillancourt, Tracy; Brittain, Heather L; McDougall, Patricia; Krygsman, Amanda; Smith, David; Cunningham, Charles E; Haltigan, J D; Hymel, Shelley

    2014-09-01

    School-level school climate was examined in relation to self-reported peer victimization and teacher-rated academic achievement (grade point average; GPA). Participants included a sample of 1,023 fifth-grade children nested within 50 schools. Associations between peer victimization, school climate, and GPA were examined using multilevel modeling, with school climate as a contextual variable. Boys and girls reported no differences in victimization by their peers, although boys had lower GPAs than girls. Peer victimization was related to lower GPA and to a poorer perception of school climate (individual-level), which was also associated with lower GPA. Results of multilevel analyses revealed that peer victimization was again negatively associated with GPA, and that lower school-level climate was associated with lower GPA. Although no moderating effects of school-level school climate or sex were observed, the relation between peer victimization and GPA remained significant after taking into account (a) school-level climate scores, (b) individual variability in school-climate scores, and (c) several covariates--ethnicity, absenteeism, household income, parental education, percentage of minority students, type of school, and bullying perpetration. These findings underscore the importance of a positive school climate for academic success and viewing school climate as a fundamental collective school outcome. Results also speak to the importance of viewing peer victimization as being harmfully linked to students' academic performance. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  4. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?

    Science.gov (United States)

    Sagoo, Navjit; Valdes, Paul; Flecker, Rachel; Gregoire, Lauren J

    2013-10-28

    Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4.

  5. The behaviour of long-lived redox sensitive radionuclides in soil-plant system during the process of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Semioshkina, N.; Staudt, C.; Kaiser, C. [Helmhotz Zetrum Muenchen (Germany); Proehl, G. [International Atomic Energy Agency - IAEA (International Atomic Energy Agency (IAEA)); Noseck, U.; Fahrenholz, C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit - GRS (Germany)

    2014-07-01

    One important aspect of climate changes for the long-term safety assessment of radioactive waste repositories is its impact on exposure pathways for humans in the future, which are dependent on the environmental characteristics mentioned. It is conceivable that effects or processes occurring during climate changes lead to an increased accumulation and/or release of radionuclides in the biosphere resulting in higher doses compared to that calculated for discrete climate states. In order to shed light on this question key processes are identified which might lead to such an increased accumulation and/or release of radionuclides. The transition from one climate to another can cause changes in the physicochemical composition of radionuclides: some of them may become more available for plant uptake and due to this, their activity concentration in the plants increases. Other radionuclides maybe stronger bound to soil and their activity concentration in plants decreases. Such changes might also cause remobilization of radionuclides from localised areas with contaminated sediments, their re-suspension and transfer to the surrounding areas. A suitable illustration of the processes related to the changes of the redox potential is the examination of a dry lake or fen bed for agricultural purposes as pasture or ameliorated pasture. In these cases the accumulation of radionuclides in the lake or fen sediment is followed by their release and increasing mobility after agricultural processing of the dry bed of lake or fen. Ploughing of the soil leads to increased supply of oxygen to previous anoxic soil layers causing an increase in redox potential. The presented model describes a scenario, where the land is initially very humid and very low Eh-values cause high sorption and accumulation of radionuclides in soil particles. Then this land is dried out, the redox potential increases and redox sensitive radionuclides change their speciation and their behaviour. Such processes might

  6. Political Differences in Past, Present, and Future Life Satisfaction: Republicans Are More Sensitive than Democrats to Political Climate

    Science.gov (United States)

    Mandel, David R.; Omorogbe, Philip

    2014-01-01

    Previous research finds that Republicans report being happier or more satisfied with their lives than Democrats. Using representative American samples from 2002, 2005, 2007, 2009, and 2010, we tested a Person × Situation interactionist account in which political affiliation (Democrat, Republican) and political climate (favorable when the president in office is of the same party) are proposed to affect past, present, and anticipated future life satisfaction. Meta-analyses of related tests of key hypotheses confirmed that (a) life satisfaction was greater when the political climate was favorable rather than unfavorable and (b) Republicans were more sensitive to political climate than Democrats. As predicted, Republicans also were more politically polarized than Democrats. Taken together, the findings indicate that, compared to Democrats, Republicans are more apt to self-identify in political terms, and core aspects of their subjective well-being are more easily affected by the outcome of political events. PMID:24901253

  7. Quantitative Study of Green Area for Climate Sensitive Terraced Housing Area Design in Malaysia

    International Nuclear Information System (INIS)

    Yeo, O T S; Saito, K; Said, I

    2014-01-01

    Neighbourhood plays a significant role in peoples' daily lives. Nowadays, terraced housing is common in Malaysia, and green areas in the neighborhood are not used to their maximum. The aim of the research is to quantify the types of green area that are most efficient for cooling the environment for thermal comfort and mitigation of Urban Heat Island. Spatial and environmental inputs are manipulated for the simulation using Geographic Information System (GIS) integrated with computational microclimate simulation. The outcome of this research is a climate sensitive housing environment model framework on the green area to solve the problem of Urban Heat Island

  8. Climate projections FAQ

    Science.gov (United States)

    A.E. Daniels; J.F. Morrison; L.A. Joyce; N.L. Crookston; S.C. Chen; S.G. McNulty

    2012-01-01

    Climate scenarios offer one way to identify and examine the land management challenges posed by climate change. Selecting projections, however, requires careful consideration of the natural resources under study, and where and how they are sensitive to climate. Selection also depends on the robustness of different projections for the resources and geographic area of...

  9. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium

    Science.gov (United States)

    Van Uytven, E.; Willems, P.

    2018-03-01

    Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.

  10. Attributing the effects of climate on phenology change suggests high sensitivity in coastal zones

    Science.gov (United States)

    Seyednasrollah, B.; Clark, J. S.

    2015-12-01

    The impact of climate change on spring phenology depends on many variables that cannot be separated using current models. Phenology can influence carbon sequestration, plant nutrition, forest health, and species distributions. Leaf phenology is sensitive to changes of environmental factors, including climate, species composition, latitude, and solar radiation. The many variables and their interactions frustrate efforts to attribute variation to climate change. We developed a Bayesian framework to quantify the influence of environment on the speed of forest green-up. This study presents a state-space hierarchical model to infer and predict change in forest greenness over time using satellite observations and ground measurements. The framework accommodates both observation and process errors and it allows for main effects of variables and their interactions. We used daily spaceborne remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify temporal variability in the enhanced vegetation index (EVI) along a habitat gradient in the Southeastern United States. The ground measurements of meteorological parameters are obtained from study sites located in the Appalachian Mountains, the Piedmont and the Atlantic Coastal Plain between years 2000 and 2015. Results suggest that warming accelerates spring green-up in the Coastal Plain to a greater degree than in the Piedmont and Appalachian. In other words, regardless of variation in the timing of spring onset, the rate of greenness in non-coastal zones decreases with increasing temperature and hence with time over the spring transitional period. However, in coastal zones, as air temperature increases, leaf expansion becomes faster. This may indicate relative vulnerability to warming in non-coastal regions where moisture could be a limiting factor, whereas high temperatures in regions close to the coast enhance forest physiological activities. Model predictions agree with the remotely

  11. Increase in flood risk resulting from climate change in a developed urban watershed - the role of storm temporal patterns

    Science.gov (United States)

    Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish

    2018-03-01

    The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional

  12. Multi-scale enhancement of climate prediction over land by improving the model sensitivity to vegetation variability

    Science.gov (United States)

    Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.

    2017-12-01

    Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in

  13. The Geographic Climate Information System Project (GEOCLIMA): Overview and preliminary results

    Science.gov (United States)

    Feidas, H.; Zanis, P.; Melas, D.; Vaitis, M.; Anadranistakis, E.; Symeonidis, P.; Pantelopoulos, S.

    2012-04-01

    The project GEOCLIMA aims at developing an integrated Geographic Information System (GIS) allowing the user to manage, analyze and visualize the information which is directly or indirectly related to climate and its future projections in Greece. The main components of the project are: a) collection and homogenization of climate and environmental related information, b) estimation of future climate change based on existing regional climate model (RCM) simulations as well as a supplementary high resolution (10 km x 10 km) simulation over the period 1961-2100 using RegCM3, c) compilation of an integrated uniform geographic database, and d) mapping of climate data, creation of digital thematic maps, and development of the integrated web GIS application. This paper provides an overview of the ongoing research efforts and preliminary results of the project. First, the trends in the annual and seasonal time series of precipitation and air temperature observations for all available stations in Greece are assessed. Then the set-up of the high resolution RCM simulation (10 km x 10 km) is discussed with respect to the selected convective scheme. Finally, the relationship of climatic variables with geophysical features over Greece such as altitude, location, distance from the sea, slope, aspect, distance from climatic barriers, land cover etc) is investigated, to support climate mapping. The research has been co-financed by the European Union (European Regional Development Fund) and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the National Strategic Reference Framework (NSRF) - Research Funding Program COOPERATION 2009.

  14. Multiple predictor smoothing methods for sensitivity analysis: Example results

    International Nuclear Information System (INIS)

    Storlie, Curtis B.; Helton, Jon C.

    2008-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described in the first part of this presentation: (i) locally weighted regression (LOESS), (ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression. In this, the second and concluding part of the presentation, the indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  15. Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming

    Science.gov (United States)

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.

    2018-01-01

    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  16. The observed sensitivity of the global hydrological cycle to changes in surface temperature

    International Nuclear Information System (INIS)

    Arkin, Phillip A; Janowiak, John; Smith, Thomas M; Sapiano, Mathew R P

    2010-01-01

    Climate models project large changes in global surface temperature in coming decades that are expected to be accompanied by significant changes in the global hydrological cycle. Validation of model simulations is essential to support their use in decision making, but observing the elements of the hydrological cycle is challenging, and model-independent global data sets exist only for precipitation. We compute the sensitivity of the global hydrological cycle to changes in surface temperature using available global precipitation data sets and compare the results against the sensitivities derived from model simulations of 20th century climate. The implications of the results for the global climate observing system are discussed.

  17. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Science.gov (United States)

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  18. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    Directory of Open Access Journals (Sweden)

    Jing Peng

    Full Text Available Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5, we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet. The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  19. Assessing the impact of aviation on climate

    Directory of Open Access Journals (Sweden)

    Karen Marais

    2008-04-01

    Full Text Available We present an assessment of the marginal climate impacts of new aviation activities. We use impulse response functions derived from carbon-cycle and atmospheric models to estimate changes in surface temperature for various aviation impacts (CO2, NOx on methane, NOx on ozone, sulfates, soot, and contrails/induced cirrus. We use different damage functions and discount rates to explore health, welfare and ecological costs for a range of assumptions and scenarios. Since uncertainty is high regarding many aviation effects, we explicitly capture some uncertainty by representing several model parameters as probabilistic distributions. The uncertainties are then propagated using Monte Carlo analysis to derive estimates for the impact of these uncertainties on the marginal future climate impacts. Our goal is to provide a framework that will communicate the potential impacts of aviation on climate change under different scenarios and assumptions, and that will allow decision-makers to compare these potential impacts to other aviation environmental impacts. We present results to describe the influence of parametric uncertainties, scenarios, and assumptions for valuation on the expected marginal future costs of aviation impacts. Estimates of the change in global average surface temperature due to aviation are most sensitive to changes in climate sensitivity, the radiative forcing attributed to short-lived effects (in particular those related to contrails and aviation-induced cirrus, and the choice of emissions scenario. Estimates of marginal future costs of aviation are most sensitive to assumptions regarding the discount rate, followed by assumptions regarding climate sensitivity, and the choice of emissions scenario.

  20. Engaging Scientists and Users in Climate Change Research and Results

    Science.gov (United States)

    Cloyd, E. T.; Reeves, K.; Shimamoto, M. M.; Zerbonne, S.

    2016-12-01

    The U.S. Global Change Research Program has a mandate to "consult with actual and potential users of the results of the program" in developing products that will support learning about and responding to climate change. USGCRP has sought to engage stakeholders throughout the development and dissemination of key products, such as the Third National Climate Assessment (NCA3, 2014) and the Climate and Health Assessment (CHA, 2016), in the strategic planning processes leading to the National Global Change Research Plan (2012) and Update to the Strategic Plan (2016), and through regular postings to social media that highlight research results and opportunities for engagement. Overall, USGCRP seeks to promote dialogue between scientific experts, stakeholders, and decision makers about information needs in regions or sectors, the potential impacts of climate change, and possible responses. This presentation will describe how USGCRP has implemented various stakeholder engagement measures during the planning, development, and release of products such as NCA3 and CHA. Through repeated opportunities for stakeholder input, USGCRP has promoted process transparency and inclusiveness in the framing of assessments and other products. In addition, USGCRP has supported scientists' engagement with a range of audiences and potential collaborators through a variety of mechanisms, including community-based meetings, deliberative forums, and identification of non-Federal speaking and knowledge co-production opportunities. We will discuss key lessons learned and successful approaches for engaging users as well as opportunities and challenges for future engagement.

  1. Weak Hydrological Sensitivity to Temperature Change over Land, Independent of Climate Forcing

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Forster, P. M.; Hodnebrog, O.; Andrews, T.; Boucher, O.; Faluvegi, G.; Flaeschner, D.; Kasoar, M.; Kharin, V.; hide

    2018-01-01

    We present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from ten climate models, we show how modeled global mean precipitation increases by 2-3% per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature-driven (slow) ocean HS of 3-5%/K, while the slow land HS is only 0-2%/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. We identify a particular need for model investigations and observational constraints on convective precipitation in the Arctic, and large-scale precipitation around the Equator.

  2. Modeling Uncertainty in Climate Change: A Multi-Model Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth; Nordhaus, William; Anthoff, David; Blanford, Geoffrey J.; Bosetti, Valentina; Christensen, Peter; McJeon, Haewon C.; Reilly, J. M.; Sztorc, Paul

    2015-10-01

    The economics of climate change involves a vast array of uncertainties, complicating both the analysis and development of climate policy. This study presents the results of the first comprehensive study of uncertainty in climate change using multiple integrated assessment models. The study looks at model and parametric uncertainties for population, total factor productivity, and climate sensitivity and estimates the pdfs of key output variables, including CO2 concentrations, temperature, damages, and the social cost of carbon (SCC). One key finding is that parametric uncertainty is more important than uncertainty in model structure. Our resulting pdfs also provide insight on tail events.

  3. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Key uncertainties in climate change policy: Results from ICAM-2

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to: inform decision makers about the likely outcome of policy initiatives; and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.0. This model includes demographics, economic activities, emissions, atmospheric chemistry, climate change, sea level rise and other impact modules and the numerous associated feedbacks. The model has over 700 objects of which over 1/3 are uncertain. These have been grouped into seven different classes of uncertain items. The impact of uncertainties in each of these items can be considered individually or in combinations with the others. In this paper we demonstrate the relative contribution of various sources of uncertainty to different outcomes in the model. The analysis shows that climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. Extreme uncertainties in indirect aerosol forcing and behavioral response to climate change (adaptation) were characterized by using bounding analyses; the results suggest that these extreme uncertainties can dominate the choice of policy outcomes.

  5. Future flooding impacts on transportation infrastructure and traffic patterns resulting from climate change.

    Science.gov (United States)

    2011-11-01

    "This study investigated potential impacts of climate change on travel disruption resulting from road closures in two urban watersheds in the : Portland metropolitan area. We used ensemble climate change scenarios, a hydrologic model, stream channel ...

  6. Quantifying the increasing sensitivity of power systems to climate variability

    Science.gov (United States)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  7. Cocoa farming households' vulnerability to climate variability in Ekiti ...

    African Journals Online (AJOL)

    Rural livelihoods in south western Nigeria are at risk to climate variability on the short run and climate change on the long run. This subjects agro ecological niches to high sensitivity and exposure thus reducing the adaptive capacity. Vulnerability results and the cocoa farming households, the major contributors to the ...

  8. Assessing the sensitivity of the North Atlantic Ocean circulation to freshwater perturbation in various glacial climate states

    Energy Technology Data Exchange (ETDEWEB)

    Meerbeeck, Cedric J. van; Renssen, Hans [VU University Amsterdam, Section Climate Change and Landscape Dynamics, Department of Earth Sciences, Amsterdam (Netherlands); Roche, Didier M. [VU University Amsterdam, Section Climate Change and Landscape Dynamics, Department of Earth Sciences, Amsterdam (Netherlands); Laboratoire CEA/INSU-CNRS/UVSQ, Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Gif sur Yvette (France)

    2011-11-15

    A striking characteristic of glacial climate in the North Atlantic region is the recurrence of abrupt shifts between cold stadials and mild interstadials. These shifts have been associated with abrupt changes in Atlantic Meridional Overturning Circulation (AMOC) mode, possibly in response to glacial meltwater perturbations. However, it is poorly understood why they were more clearly expressed during Marine Isotope Stage 3 (MIS3, {proportional_to}60-27 ka BP) than during Termination 1 (T1, {proportional_to}18-10 ka BP) and especially around the Last Glacial Maximum (LGM, {proportional_to}23-19 ka BP). One clue may reside in varying climate forcings, making MIS3 and T1 generally milder than LGM. To investigate this idea, we evaluate in a climate model how ice sheet size, atmospheric greenhouse gas concentration and orbital insolation changes between 56 ka BP (=56k), 21k and 12.5k affect the glacial AMOC response to additional freshwater forcing. We have performed three ensemble simulations with the earth system model LOVECLIM using those forcings. We find that the AMOC mode in the mild glacial climate type (56k and 12.5k), with deep convection in the Labrador Sea and the Nordic Seas, is more sensitive to a constant 0.15 Sv freshwater forcing than in the cold type (21k), with deep convection mainly south of Greenland and Iceland. The initial AMOC weakening in response to freshwater forcing is larger in the mild type due to an early shutdown of Labrador Sea deep convection, which is completely absent in the 21k simulation. This causes a larger fraction of the freshwater anomaly to remain at surface in the mild type compared to the cold type. After 200 years, a weak AMOC is established in both climate types, as further freshening is compensated by an anomalous salt advection from the (sub-)tropical North Atlantic. However, the slightly fresher sea surface in the mild type facilitates further weakening of the AMOC, which occurs when a surface buoyancy threshold (-0.6 kg

  9. Drought-induced legacy effects in wood growth across the Eastern and Midwestern U.S. are mediated by site climate, tree age, and drought sensitivity

    Science.gov (United States)

    Kannenberg, S.; Maxwell, J. T.; Pederson, N.; D'Orangeville, L.; Phillips, R.

    2017-12-01

    While it is widely known that drought reduces carbon (C) uptake in temperate forests, tree growth can also remain stagnant post-drought despite favorable climatic conditions. While such "legacy effects" are well established, the degree to which these effects depend on species identity or variability in site conditions is poorly quantified. We sought to uncover how site, species, climate, and tree age interact to affect the presence and magnitude of legacy effects in temperate trees following drought. To do this, we assembled dendrochronological records of 18 common species across 94 sites in Eastern and Midwestern U.S. forests and quantified drought-induced changes in wood growth in the year of the drought (hereafter "drought sensitivity") and the years after the drought (i.e., legacy effects). We predicted that species particularly prone to hydraulic damage (e.g., oaks) would have the least drought sensitivity yet experience larger legacy effects, and that this effect would be exacerbated at arid sites. Across all species and sites, wood growth was reduced by 14% in the year of the drought and by 7% post-drought. Surprisingly, legacy effects were smaller for oak species and larger across species known to be more drought sensitive (e.g. tulip poplar, maple, birch). As a result, we observed a positive relationship between a species' drought sensitivity and that species' legacy effect. These legacy effects were similar in size across a range of drought severities. Surprisingly, legacy effects were smaller in more arid sites - contrary to previous investigations in dryland ecosystems - perhaps indicating the role of adaptation in mediating a tree's recovery from drought. In addition, many species actually decreased the size of their legacy effects as they aged, despite no change in drought responses. Our results run contrary to our predictions, as species with the greatest drought sensitivity had the least ability to recover, and that younger mesic forests- not arid

  10. The impact of climate change on Canadian peatlands

    International Nuclear Information System (INIS)

    Tarnocai, C.

    2009-01-01

    This paper discussed the sensitivity of Canadian peatlands to climate change, with particular emphasis on the carbon dynamics, water regime changes and the contribution of peatlands to atmospheric greenhouse gases. Peatlands cover 12 per cent of the Canadian landscape, with most occurring in the boreal and subarctic regions. In total, the peatlands contain nearly 147 Gt of soil organic carbon, or about 56 per cent of the organic carbon stored in all Canadian soils. A peatland sensitivity model that was used to determine the effect of climate warming on peatlands revealed that about 60 per cent of the boreal and subarctic regions and 56 per cent of the organic carbon mass in all Canadian peatlands will be severely to extremely severely affected by climate change, and at an accelerated rate than ever before. Climate change predictions suggest that the greatest effects of climate warming on Canadian peatlands will occur in areas with perennially frozen peat. The major concern in these areas is that the melting of the frozen peat will result in waterlogged conditions. In contrast, drying of non-permafrost peatlands will result in a higher frequency and extent of wildfires. As a result of these changes, large amounts of carbon in the forms of carbon dioxide (CO 2 ) and methane (CH 4 ) will be released into the atmosphere from these peatlands, which will further accelerate climate warming. 43 refs., 2 tabs., 7 figs.

  11. A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasai, Takahiro

    2006-01-01

    This study addressed how different climate data sets influence simulations of the global terrestrial carbon cycle. For the period 1982-2001, we compared the results of simulations based on three climate data sets (NCEP/NCAR, NCEP/DOE AMIP-II and ERA40) employed in meteorological, ecological and biogeochemical studies and two different models (BEAMS and Sim-CYCLE). The models differed in their parameterizations of photosynthetic and phenological processes but used the same surface climate (e.g. shortwave radiation, temperature and precipitation), vegetation, soil and topography data. The three data sets give different climatic conditions, especially for shortwave radiation, in terms of long-term means, linear trends and interannual variability. Consequently, the simulation results for global net primary productivity varied by 16%-43% only from differences in the climate data sets, especially in these regions where the shortwave radiation data differed markedly: differences in the climate data set can strongly influence simulation results. The differences among the climate data set and between the two models resulted in slightly different spatial distribution and interannual variability in the net ecosystem carbon budget. To minimize uncertainty, we should pay attention to the specific climate data used. We recommend developing an accurate standard climate data set for simulation studies

  12. Computer experiments with a coarse-grid hydrodynamic climate model

    International Nuclear Information System (INIS)

    Stenchikov, G.L.

    1990-01-01

    A climate model is developed on the basis of the two-level Mintz-Arakawa general circulation model of the atmosphere and a bulk model of the upper layer of the ocean. A detailed model of the spectral transport of shortwave and longwave radiation is used to investigate the radiative effects of greenhouse gases. The radiative fluxes are calculated at the boundaries of five layers, each with a pressure thickness of about 200 mb. The results of the climate sensitivity calculations for mean-annual and perpetual seasonal regimes are discussed. The CCAS (Computer Center of the Academy of Sciences) climate model is used to investigate the climatic effects of anthropogenic changes of the optical properties of the atmosphere due to increasing CO 2 content and aerosol pollution, and to calculate the sensitivity to changes of land surface albedo and humidity

  13. Micro climate Simulation in new Town `Hashtgerd' using downscaled climate data

    Science.gov (United States)

    Sodoudi, S.

    2010-12-01

    One of the objectives of climatological part of project Young Cities ‘Developing Energy-Efficient Urban Fabric in the Tehran-Karaj Region’ is to simulate the micro climate (with 1m resolution) in 35ha of new town Hashtgerd, which is located 65 km far from mega city Tehran. The Project aims are developing, implementing and evaluating building and planning schemes and technologies which allow to plan and build sustainable, energy-efficient and climate sensible form mass housing settlements in arid and semi-arid regions (energy-efficient fabric). Climate sensitive form also means designing and planning for climate change and its related effects for Hashtgerd New Town. By configuration of buildings and open spaces according to solar radiation, wind and vegetation, climate sensitive urban form can create outdoor thermal comfort. To simulate the climate on small spatial scales, the micro climate model Envi-met has been used to simulate the micro climate in 35 ha. The Eulerian model ENVI-met is a micro-scale climate model which gives information about the influence of architecture and buildings as well as vegetation and green area on the micro climate up to 1 m resolution. Envi-met has been run with information from topography, downscaled climate data with neuro-fuzzy method, meteorological measurements, building height and different vegetation variants (low and high number of trees) The first results were compared with each other and show In semi-arid climates the protection from solar radiation is of major importance. This can be achieved by implementation of vegetation and geometry of buildings. Due to the geographical location and related sun’s orbit the degree of shading in this area is rather low. Technical construction such awnings have to be implemented. A second important factor is wind. The design follows the idea to block the prevailing winds from west and northwest as well as the hot and dusty winds in summer time from the southeast but at the same time

  14. Climate and vegetation changes around the Atlantic Ocean resulting from changes in the meridional overturning circulation during deglaciation

    Science.gov (United States)

    Handiani, D.; Paul, A.; Dupont, L.

    2012-07-01

    The Bølling-Allerød (BA, starting ~ 14.5 ka BP) is one of the most pronounced abrupt warming periods recorded in ice and pollen proxies. The leading explanation of the cause of this warming is a sudden increase in the rate of deepwater formation in the North Atlantic Ocean and the resulting effect on the heat transport by the Atlantic Meridional Overturning Circulation (AMOC). In this study, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) to run simulations, in which a freshwater perturbation initiated a BA-like warming period. We found that under present climate conditions, the AMOC intensified when freshwater was added to the Southern Ocean. However, under Heinrich event 1 (HE1, ~ 16 ka BP) climate conditions, the AMOC only intensified when freshwater was extracted from the North Atlantic Ocean, possibly corresponding to an increase in evaporation or a decrease in precipitation in this region. The intensified AMOC led to a warming in the North Atlantic Ocean and a cooling in the South Atlantic Ocean, resembling the bipolar seesaw pattern typical of the last glacial period. In addition to the physical response, we also studied the simulated vegetation response around the Atlantic Ocean region. Corresponding with the bipolar seesaw hypothesis, the rainbelt associated with the Intertropical Convergence Zone (ITCZ) shifted northward and affected the vegetation pattern in the tropics. The most sensitive vegetation area was found in tropical Africa, where grass cover increased and tree cover decreased under dry climate conditions. An equal but opposite response to the collapse and recovery of the AMOC implied that the change in vegetation cover was transient and robust to an abrupt climate change such as during the BA period, which is also supported by paleovegetation data. The results are in agreement with paleovegetation records from Western tropical Africa, which also show a reduction in forest cover during this time period. Further

  15. Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns

    Directory of Open Access Journals (Sweden)

    S. Hettiarachchi

    2018-03-01

    Full Text Available The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA Atlas 14 intensity–duration–frequency (IDF relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1 How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2 Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081–2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results

  16. Mean versus extreme climate in the Mediterranean region and its sensitivity to future global warming conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paeth, H.; Hense, A. [Meteorological Inst., Univ. Bonn (Germany)

    2005-06-01

    The Mediterranean region (MTR) has been supposed to be very sensitive to changes in land surface and atmospheric greenhouse-gas (GHG) concentrations. Particularly, an intensification of climate extremes may be associated with severe socio-economic implications. Here, we present an analysis of climate mean and extreme conditions in this subtropical area based on regional climate model experiments, simulating the present-day and possible future climate. The analysis of extreme values (EVs) is based on the assumption that the extremes of daily precipitation and near-surface temperature are well fitted by the Generalized Pareto distribution (GPD). Return values of extreme daily events are determined using the method of L-moments. Particular emphasis is laid on the evaluation of the return values with respect to the uncertainty range of the estimate as derived from a Monte Carlo sampling approach. During the most recent 25 years the MTR has become dryer in spring but more humid especially in the western part in autumn and winter. At the same time, the whole region has been subject to a substantial warming. The strongest rainfall extremes are simulated in autumn over the Mediterranean Sea around Italy. Temperature extremes are most pronounced over the land masses, especially over northern Africa. Given the large uncertainty of the EV estimate, only 1-year return values are further analysed. During recent decades, statistically significant changes in extremes are only found for temperature. Future climate conditions may come along with a decrease in mean and extreme precipitation during the cold season, whereas an intensification of the hydrological cycle is predicted in summer and autumn. Temperature is predominantly affected over the Iberian Peninsula and the eastern part of the MTR. In many grid boxes, the signals are blurred out due to the large amount of uncertainty in the EV estimate. Thus, a careful analysis is required when making inferences about the future

  17. Climate change - An uncertainty factor in risk analysis of contaminated land

    International Nuclear Information System (INIS)

    Augustsson, Anna; Filipsson, Monika; Oberg, Tomas; Bergbaeck, Bo

    2011-01-01

    Metals frequently occur at contaminated sites, where their potential toxicity and persistence require risk assessments that consider possible long-term changes. Changes in climate are likely to affect the speciation, mobility, and risks associated with metals. This paper provides an example of how the climate effect can be inserted in a commonly used exposure model, and how the exposure then changes compared to present conditions. The comparison was made for cadmium (Cd) exposure to 4-year-old children at a highly contaminated iron and steel works site in southeastern Sweden. Both deterministic and probabilistic approaches (through probability bounds analysis, PBA) were used in the exposure assessment. Potential climate-sensitive variables were determined by a literature review. Although only six of the total 39 model variables were assumed to be sensitive to a change in climate (groundwater infiltration, hydraulic conductivity, soil moisture, soil:water distribution, and two bioconcentration factors), the total exposure was clearly affected. For example, by altering the climate-sensitive variables in the order of 15% to 20%, the deterministic estimate of exposure increased by 27%. Similarly, the PBA estimate of the reasonable maximum exposure (RME, defined as the upper bound of the 95th percentile) increased by almost 20%. This means that sites where the exposure in present conditions is determined to be slightly below guideline values may in the future exceed these guidelines, and risk management decisions could thus be affected. The PBA, however, showed that there is also a possibility of lower exposure levels, which means that the changes assumed for the climate-sensitive variables increase the total uncertainty in the probabilistic calculations. This highlights the importance of considering climate as a factor in the characterization of input data to exposure assessments at contaminated sites. The variable with the strongest influence on the result was the

  18. Sensitivity of precipitation to parameter values in the community atmosphere model version 5

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Gardar; Lucas, Donald; Qian, Yun; Swiler, Laura Painton; Wildey, Timothy Michael

    2014-03-01

    One objective of the Climate Science for a Sustainable Energy Future (CSSEF) program is to develop the capability to thoroughly test and understand the uncertainties in the overall climate model and its components as they are being developed. The focus on uncertainties involves sensitivity analysis: the capability to determine which input parameters have a major influence on the output responses of interest. This report presents some initial sensitivity analysis results performed by Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and Pacific Northwest National Laboratory (PNNL). In the 2011-2012 timeframe, these laboratories worked in collaboration to perform sensitivity analyses of a set of CAM5, 2° runs, where the response metrics of interest were precipitation metrics. The three labs performed their sensitivity analysis (SA) studies separately and then compared results. Overall, the results were quite consistent with each other although the methods used were different. This exercise provided a robustness check of the global sensitivity analysis metrics and identified some strongly influential parameters.

  19. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

    Science.gov (United States)

    Battisti, R.; Sentelhas, P. C.; Boote, K. J.

    2017-12-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.

  20. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

    Science.gov (United States)

    Battisti, R.; Sentelhas, P. C.; Boote, K. J.

    2018-05-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha-1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.

  1. Climatic Sensitivity of a Mixed Forest Association of White Spruce and Trembling Aspen at Their Southern Range Limit

    Directory of Open Access Journals (Sweden)

    Sophan Chhin

    2016-10-01

    Full Text Available Climatic sensitivity of white spruce (Picea glauca (Moench Voss was examined growing in association with trembling aspen (Populus tremuloides Michx. at their southern limit of distribution in a transitional ecotone between the southern boreal forest and northern prairie region. The study was carried out in the Spruce Woods Provincial Park (SWPP located in southwestern Manitoba, Canada. The dry regional climate restricted trembling aspen growth during the growing season via moisture deficiency and temperature induced drought stress. Warm, mild winters also negatively affected radial growth of trembling aspen. Growth of white spruce was moderated by conditions within the aspen stands as radial growth patterns showed low variability from year to year, a low common growth signal, and a stronger response to temperature than to precipitation. Nonetheless, the dry regional climate still restricted growth of white spruce during the growing season via temperature induced drought stress. The findings of the study for white spruce support the stress gradient hypothesis in which facilitative interactions between tree species are expected under harsher environmental conditions.

  2. Assessing the sensitivity of avian species abundance to land cover and climate

    Science.gov (United States)

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  3. Climate vs grapevine pests and diseases worldwide: the first results of a global survey

    Directory of Open Access Journals (Sweden)

    Benjamin Bois

    2017-05-01

    Methods and results: Based on the answer of respondent about the main reported diseases/pests in their region, a severity index was calculated. Each region was geolocalised and data were compared to the WorldClim gridded climate database to document the range of climate conditions (growing season temperature and rainfall associated to the main diseases/pests. The potential climatic-induced changes of grapevine disease and pest geography by 2050 are assessed using agro-climate projections from the ARPEGE CNRM model, using the RCP 4.5 scenario. The preliminary results allow to determine the distribution of diseases as function of agroclimatic indicators. Conclusion: While the distribution of diseases differs according to the region of the world, the current analysis suggests that mildews remain the major phytosanitary threat in most of the regions. Powdery mildew, trunk diseases and viruses were reported in extremely diverse climatic conditions, including intermediate and wet regions.  Significance and impact of the study: This paper present an original methodology to address the relationship between grapevine disease and pest occurrences and climate. Such documentation is scarce in the current literature. Further analysis is currently being performed, including additional survey answers, climate indices and supplementary data collected (spatial extension, frequency of treatments… to better depict the challenges of grapevine phytosanitary management in a changing climate.

  4. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    Science.gov (United States)

    Carroll, Allyson L; Sillett, Stephen C; Kramer, Russell D

    2014-01-01

    Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have

  5. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    Directory of Open Access Journals (Sweden)

    Allyson L Carroll

    Full Text Available Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood

  6. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal.

    Science.gov (United States)

    Waterhouse, Matthew D; P Erb, Liesl; Beever, Erik A; Russello, Michael A

    2018-04-25

    The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well-documented. Adaptation to new climatic conditions offers a potential long-term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate-associated extirpations and range-wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space-for-time design and restriction site-associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype-environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high-elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low-elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally-restricted, thermally-sensitive species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Climate threats on growth of rear-edge European beech peripheral populations in Spain

    Science.gov (United States)

    Dorado-Liñán, I.; Akhmetzyanov, L.; Menzel, A.

    2017-12-01

    European beech ( Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.

  8. Choice of baseline climate data impacts projected species' responses to climate change.

    Science.gov (United States)

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley

  9. Climate Services to Improve Public Health

    Science.gov (United States)

    Jancloes, Michel; Thomson, Madeleine; Costa, María Máñez; Hewitt, Chris; Corvalan, Carlos; Dinku, Tufa; Lowe, Rachel; Hayden, Mary

    2014-01-01

    A high level expert panel discussed how climate and health services could best collaborate to improve public health. This was on the agenda of the recent Third International Climate Services Conference, held in Montego Bay, Jamaica, 4–6 December 2013. Issues and challenges concerning a demand led approach to serve the health sector needs, were identified and analysed. Important recommendations emerged to ensure that innovative collaboration between climate and health services assist decision-making processes and the management of climate-sensitive health risk. Key recommendations included: a move from risk assessment towards risk management; the engagement of the public health community with both the climate sector and development sectors, whose decisions impact on health, particularly the most vulnerable; to increase operational research on the use of policy-relevant climate information to manage climate- sensitive health risks; and to develop in-country capacities to improve local knowledge (including collection of epidemiological, climate and socio-economic data), along with institutional interaction with policy makers. PMID:24776719

  10. Climatic vulnerability of the world’s freshwater and marine fishes

    Science.gov (United States)

    Comte, Lise; Olden, Julian D.

    2017-10-01

    Climate change is a mounting threat to biological diversity, compromising ecosystem structure and function, and undermining the delivery of essential services worldwide. As the magnitude and speed of climate change accelerates, greater understanding of the taxonomy and geography of climatic vulnerability is critical to guide effective conservation action. However, many uncertainties remain regarding the degree and variability of climatic risk within entire clades and across vast ecosystem boundaries. Here we integrate physiological estimates of thermal sensitivity for 2,960 ray-finned fishes with future climatic exposure, and demonstrate that global patterns of vulnerability differ substantially between freshwater and marine realms. Our results suggest that climatic vulnerability for freshwater faunas will be predominantly determined by elevated levels of climatic exposure predicted for the Northern Hemisphere, whereas marine faunas in the tropics will be the most at risk, reflecting their higher intrinsic sensitivity. Spatial overlap between areas of high physiological risk and high human impacts, together with evidence of low past rates of evolution in upper thermal tolerance, highlights the urgency of global conservation actions and policy initiatives if harmful climate effects on the world’s fishes are to be mitigated in the future.

  11. The Economic Value of Climate Science

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.

    2012-12-01

    While demonstrating the economic value of science is challenging, it can be more direct for some Earth observations. For example, suppose a climate science mission can yield decisive information on climate change within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) provides a standard for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, stipulating uncertainty in climate sensitivity, using discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate response (DICE Optimal), and a strong response (Stern). To illustrate results, suppose that we would switch from BAU to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain also depends on our Earth observations, their accuracy, and their completeness. The resolving power of a climate observing system cannot exceed climate system natural variability. All climate observations add noise to natural variability caused by observing limitations, including calibration errors and space/time sampling uncertainty. The basic concept is that more accurate observations can advance the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems

  12. Climate change sensitivity of the African ivory nut palm, Hyphaene petersiana Klotzsch ex Mart. (Arecaceae) - a keystone species in SE Africa

    International Nuclear Information System (INIS)

    Blach-Overgaard, A; Svenning, J-C; Balslev, H

    2009-01-01

    Africa is the most vulnerable continent to future climate change. Profound changes are projected for southwestern Africa with increased drying, notably with delayed onset of the rainy season in September-November, and temperature increases in all seasons. The projected climate changes combined with land-use changes are thought to constitute the main threats to biodiversity in the 21st century. To be able to predict the potential impact on biodiversity, it is crucial to achieve a better insight into the controls of contemporary species ranges. Using species distribution modeling, we assessed the climate sensitivity of the key-stone palm species Hyphaene petersiana (African ivory nut palm) in southern Africa. We tested the relative roles of climate vs. non-climatic range-controls and found that climate had a clear effect on the range of H. petersiana and that especially water-related variables (annual precipitation and precipitation driest quarter) were of high importance. Nevertheless, latitude was the overall most dominant variable, reflecting spatial constraints on the continental-scale distribution. Of the remaining non-climatic factors, soil type and human influence were as important as the climatic factors. A future decrease in annual precipitation below 400 mm and hydrological changes towards drier conditions could cause a dramatic decline in H. petersiana populations, while the influence of temperature changes is less clear. The ongoing, unsustainable utilization pressures on this palm species by humans and livestock are likely to exacerbate the negative effect of future climate changes on its populations, especially, given the expected human population increase in Africa.

  13. Predicting Climate-sensitive Infectious Diseases: Development of a Federal Science Plan and the Path Forward

    Science.gov (United States)

    Trtanj, J.; Balbus, J. M.; Brown, C.; Shimamoto, M. M.

    2017-12-01

    The transmission and spread of infectious diseases, especially vector-borne diseases, water-borne diseases and zoonosis, are influenced by short and long-term climate factors, in conjunction with numerous other drivers. Public health interventions, including vaccination, vector control programs, and outreach campaigns could be made more effective if the geographic range and timing of increased disease risk could be more accurately targeted, and high risk areas and populations identified. While some progress has been made in predictive modeling for transmission of these diseases using climate and weather data as inputs, they often still start after the first case appears, the skill of those models remains limited, and their use by public health officials infrequent. And further, predictions with lead times of weeks, months or seasons are even rarer, yet the value of acting early holds the potential to save more lives, reduce cost and enhance both economic and national security. Information on high-risk populations and areas for infectious diseases is also potentially useful for the federal defense and intelligence communities as well. The US Global Change Research Program, through its Interagency Group on Climate Change and Human Health (CCHHG), has put together a science plan that pulls together federal scientists and programs working on predictive modeling of climate-sensitive diseases, and draws on academic and other partners. Through a series of webinars and an in-person workshop, the CCHHG has convened key federal and academic stakeholders to assess the current state of science and develop an integrated science plan to identify data and observation systems needs as well as a targeted research agenda for enhancing predictive modeling. This presentation will summarize the findings from this effort and engage AGU members on plans and next steps to improve predictive modeling for infectious diseases.

  14. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M.J.; Senior, C.A.; Sexton, D.M.H.; Ingram, W.J.; Williams, K.D.; Ringer, M.A. [Hadley Centre for Climate Prediction and Research, Met Office, Exeter (United Kingdom); McAvaney, B.J.; Colman, R. [Bureau of Meteorology Research Centre (BMRC), Melbourne (Australia); Soden, B.J. [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Miami, FL (United States); Gudgel, R.; Knutson, T. [Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ (United States); Emori, S.; Ogura, T. [National Institute for Environmental Studies (NIES), Tsukuba (Japan); Tsushima, Y. [Japan Agency for Marine-Earth Science and Technology, Frontier Research Center for Global Change (FRCGC), Kanagawa (Japan); Andronova, N. [University of Michigan, Department of Atmospheric, Oceanic and Space Sciences, Ann Arbor, MI (United States); Li, B. [University of Illinois at Urbana-Champaign (UIUC), Department of Atmospheric Sciences, Urbana, IL (United States); Musat, I.; Bony, S. [Institut Pierre Simon Laplace (IPSL), Paris (France); Taylor, K.E. [Program for Climate Model Diagnosis and Intercomparison (PCMDI), Livermore, CA (United States)

    2006-07-15

    Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO{sub 2} doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level

  15. Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects

    OpenAIRE

    Petzold, A.; Lauer, P.; Fritsche, U.; Hasselbach, J.; Lichtenstern, M.; Schlager, H.; Fleischer, F.

    2011-01-01

    The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fue...

  16. Sensitivity Analysis of FEAST-Metal Fuel Performance Code: Initial Results

    International Nuclear Information System (INIS)

    Edelmann, Paul Guy; Williams, Brian J.; Unal, Cetin; Yacout, Abdellatif

    2012-01-01

    This memo documents the completion of the LANL milestone, M3FT-12LA0202041, describing methodologies and initial results using FEAST-Metal. The FEAST-Metal code calculations for this work are being conducted at LANL in support of on-going activities related to sensitivity analysis of fuel performance codes. The objective is to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. This report summarizes our preliminary results for the sensitivity analysis using 6 calibration datasets for metallic fuel developed at ANL for EBR-II experiments. Sensitivity ranking methodology was deployed to narrow down the selected parameters for the current study. There are approximately 84 calibration parameters in the FEAST-Metal code, of which 32 were ultimately used in Phase II of this study. Preliminary results of this sensitivity analysis led to the following ranking of FEAST models for future calibration and improvements: fuel conductivity, fission gas transport/release, fuel creep, and precipitation kinetics. More validation data is needed to validate calibrated parameter distributions for future uncertainty quantification studies with FEAST-Metal. Results of this study also served to point out some code deficiencies and possible errors, and these are being investigated in order to determine root causes and to improve upon the existing code models.

  17. Results of an Institutional LGBT Climate Survey at an Academic Medical Center.

    Science.gov (United States)

    Chester, Sean D; Ehrenfeld, Jesse M; Eckstrand, Kristen L

    2014-12-01

    The purpose of this study was to characterize the climate and culture experienced by lesbian, gay, bisexual, and transgender (LGBT) employees and students at one large academic medical center. An anonymous, online institutional climate survey was used to assess the attitudes and experiences of LGBT employees and students. There were 42 LGBT and 14 non-LGBT survey participants. Results revealed that a surprisingly large percentage of LGBT individuals experienced pressure to remain "closeted" and were harassed despite medical center policies of non-discrimination. Continuing training, inclusive policies and practices, and the development of mechanisms to address LGBT-specific harassment are necessary for improving institutional climate.

  18. Drought-sensitivity of fine dust in the US Southwest: Implications for air quality and public health under future climate change

    Science.gov (United States)

    Achakulwisut, P.; Mickley, L. J.; Anenberg, S. C.

    2018-05-01

    We investigate the present-day sensitivity of fine dust levels in the US Southwest to regional drought conditions and use the observed relationships to assess future changes in fine dust levels and associated health impacts under climate change. Empirical Orthogonal Function analysis reveals that the most dominant mode of fine dust interannual variability for each season consists of a pattern of large-scale co-variability across the Southwest. This mode is strongly correlated to the Standardized Precipitation-Evapotranspiration Index (SPEI) accumulated over 1–6 months in local and surrounding regions spanning the major North American deserts. Across the seasons, a unit decrease in the 2 month SPEI averaged over the US Southwest and northern Mexico is significantly associated with increases in Southwest fine dust of 0.22–0.43 μg m‑3. We apply these sensitivities to statistically downscaled meteorological output from 22 climate models following two Representative Concentration Pathways (RCPs), and project future increases in seasonal mean fine dust of 0.04–0.10 μg m‑3 (5%–8%) under RCP2.6 and 0.15–0.55 μg m‑3 (26%–46%) under RCP8.5 relative to the present-day (2076–2095 vs. 1996–2015). Combined with the same projections of future population and baseline incidence rates, annual premature mortality attributable to fine dust exposure could increase by 140 (24%) deaths under RCP2.6 and 750 (130%) deaths under RCP8.5 for adults aged ≥30 years, and annual hospitalizations due to cardiovascular and respiratory illnesses could increase by 170 (59%) admissions under RCP2.6 and 860 (300%) admissions under RCP8.5 for adults aged ≥65 years in the Southwest relative to the present-day. Our results highlight a climate penalty that has important socioeconomic and policy implications for the US Southwest but is not yet widely recognized.

  19. The Inter-Annual Variability Analysis of Carbon Exchange in Low Artic Fen Uncovers The Climate Sensitivity And The Uncertainties Around Net Ecosystem Exchange Partitioning

    Science.gov (United States)

    Blanco, E. L.; Lund, M.; Williams, M. D.; Christensen, T. R.; Tamstorf, M. P.

    2015-12-01

    An improvement in our process-based understanding of CO2 exchanges in the Arctic, and their climate sensitivity, is critical for examining the role of tundra ecosystems in changing climates. Arctic organic carbon storage has seen increased attention in recent years due to large potential for carbon releases following thaw. Our knowledge about the exact scale and sensitivity for a phase-change of these C stocks are, however, limited. Minor variations in Gross Primary Production (GPP) and Ecosystem Respiration (Reco) driven by changes in the climate can lead to either C sink or C source states, which likely will impact the overall C cycle of the ecosystem. Eddy covariance data is usually used to partition Net Ecosystem Exchange (NEE) into GPP and Reco achieved by flux separation algorithms. However, different partitioning approaches lead to different estimates. as well as undefined uncertainties. The main objectives of this study are to use model-data fusion approaches to (1) determine the inter-annual variability in C source/sink strength for an Arctic fen, and attribute such variations to GPP vs Reco, (2) investigate the climate sensitivity of these processes and (3) explore the uncertainties in NEE partitioning. The intention is to elaborate on the information gathered in an existing catchment area under an extensive cross-disciplinary ecological monitoring program in low Arctic West Greenland, established under the auspices of the Greenland Ecosystem Monitoring (GEM) program. The use of such a thorough long-term (7 years) dataset applied to the exploration in inter-annual variability of carbon exchange, related driving factors and NEE partition uncertainties provides a novel input into our understanding about land-atmosphere CO2 exchange.

  20. Potential future impacts of climatic change on the Great Plains

    International Nuclear Information System (INIS)

    Smit, B.

    1991-01-01

    A synopsis is provided of approaches to impact studies in the Great Plains, findings from studies of future impacts are summarized, and opportunities for enhancing understanding of future impacts are discussed. Potential impacts of climate change on agriculture, water resources, forestry, recreation/tourism, and energy are summarized. Impact analyses need to look more rigorously at variability in climate, the probabilities of various climatic conditions, and the sensitivity of social and economic activities to climatic variability. Most economic impact studies have assumed no adaptive behavior on the part of economic decision makers. Credible impact assessments require an improved understanding of the sensitivity and adaptability of sectors to climatic conditions, particularly variability. The energy sector in the Great Plains region is likely to be more sensitive to political developments in the Middle East than to climatic variability and change. Speculation and analysis of climate impacts have focused on supply conditions and demands, yet the sector is more keenly sensitive to policy implications of climatic change, such as the potential for fossil fuel taxes or other legislative or pricing constraints. 28 refs

  1. Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework.

    Science.gov (United States)

    Banwell, Nicola; Rutherford, Shannon; Mackey, Brendan; Street, Roger; Chu, Cordia

    2018-03-16

    Disasters and climate change have significant implications for human health worldwide. Both climate change and the climate-sensitive hazards that result in disasters, are discussed in terms of direct and indirect impacts on health. A growing body of literature has argued for the need to link disaster risk reduction and climate change adaptation. However, there is limited articulation of the commonalities between these health impacts. Understanding the shared risk pathways is an important starting point for developing joint strategies for adapting to, and reducing, health risks. Therefore, this article discusses the common aspects of direct and indirect health risks of climate change and climate-sensitive disasters. Based on this discussion a theoretical framework is presented for understanding these commonalities. As such, this article hopes to extend the current health impact frameworks and provide a platform for further research exploring opportunities for linked adaptation and risk reduction strategies.

  2. Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework

    Science.gov (United States)

    Banwell, Nicola; Rutherford, Shannon; Mackey, Brendan; Street, Roger; Chu, Cordia

    2018-01-01

    Disasters and climate change have significant implications for human health worldwide. Both climate change and the climate-sensitive hazards that result in disasters, are discussed in terms of direct and indirect impacts on health. A growing body of literature has argued for the need to link disaster risk reduction and climate change adaptation. However, there is limited articulation of the commonalities between these health impacts. Understanding the shared risk pathways is an important starting point for developing joint strategies for adapting to, and reducing, health risks. Therefore, this article discusses the common aspects of direct and indirect health risks of climate change and climate-sensitive disasters. Based on this discussion a theoretical framework is presented for understanding these commonalities. As such, this article hopes to extend the current health impact frameworks and provide a platform for further research exploring opportunities for linked adaptation and risk reduction strategies. PMID:29547592

  3. Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework

    Directory of Open Access Journals (Sweden)

    Nicola Banwell

    2018-03-01

    Full Text Available Disasters and climate change have significant implications for human health worldwide. Both climate change and the climate-sensitive hazards that result in disasters, are discussed in terms of direct and indirect impacts on health. A growing body of literature has argued for the need to link disaster risk reduction and climate change adaptation. However, there is limited articulation of the commonalities between these health impacts. Understanding the shared risk pathways is an important starting point for developing joint strategies for adapting to, and reducing, health risks. Therefore, this article discusses the common aspects of direct and indirect health risks of climate change and climate-sensitive disasters. Based on this discussion a theoretical framework is presented for understanding these commonalities. As such, this article hopes to extend the current health impact frameworks and provide a platform for further research exploring opportunities for linked adaptation and risk reduction strategies.

  4. Impact of the choice of the precipitation reference data set on climate model selection and the resulting climate change signal

    Science.gov (United States)

    Gampe, D.; Ludwig, R.

    2017-12-01

    Regional Climate Models (RCMs) that downscale General Circulation Models (GCMs) are the primary tool to project future climate and serve as input to many impact models to assess the related changes and impacts under such climate conditions. Such RCMs are made available through the Coordinated Regional climate Downscaling Experiment (CORDEX). The ensemble of models provides a range of possible future climate changes around the ensemble mean climate change signal. The model outputs however are prone to biases compared to regional observations. A bias correction of these deviations is a crucial step in the impact modelling chain to allow the reproduction of historic conditions of i.e. river discharge. However, the detection and quantification of model biases are highly dependent on the selected regional reference data set. Additionally, in practice due to computational constraints it is usually not feasible to consider the entire ensembles of climate simulations with all members as input for impact models which provide information to support decision-making. Although more and more studies focus on model selection based on the preservation of the climate model spread, a selection based on validity, i.e. the representation of the historic conditions is still a widely applied approach. In this study, several available reference data sets for precipitation are selected to detect the model bias for the reference period 1989 - 2008 over the alpine catchment of the Adige River located in Northern Italy. The reference data sets originate from various sources, such as station data or reanalysis. These data sets are remapped to the common RCM grid at 0.11° resolution and several indicators, such as dry and wet spells, extreme precipitation and general climatology, are calculate to evaluate the capability of the RCMs to produce the historical conditions. The resulting RCM spread is compared against the spread of the reference data set to determine the related uncertainties and

  5. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    Science.gov (United States)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  6. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    Science.gov (United States)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  7. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America.

    Science.gov (United States)

    Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C

    2017-07-01

    Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the

  8. Colorado River basin sensitivity to disturbance impacts

    Science.gov (United States)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing

  9. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  10. Rural Nevada and climate change: vulnerability, beliefs, and risk perception.

    Science.gov (United States)

    Safi, Ahmad Saleh; Smith, William James; Liu, Zhnongwei

    2012-06-01

    In this article, we present the results of a study investigating the influence of vulnerability to climate change as a function of physical vulnerability, sensitivity, and adaptive capacity on climate change risk perception. In 2008/2009, we surveyed Nevada ranchers and farmers to assess their climate change-related beliefs, and risk perceptions, political orientations, and socioeconomic characteristics. Ranchers' and farmers' sensitivity to climate change was measured through estimating the proportion of their household income originating from highly scarce water-dependent agriculture to the total income. Adaptive capacity was measured as a combination of the Social Status Index and the Poverty Index. Utilizing water availability and use, and population distribution GIS databases; we assessed water resource vulnerability in Nevada by zip code as an indicator of physical vulnerability to climate change. We performed correlation tests and multiple regression analyses to examine the impact of vulnerability and its three distinct components on risk perception. We find that vulnerability is not a significant determinant of risk perception. Physical vulnerability alone also does not impact risk perception. Both sensitivity and adaptive capacity increase risk perception. While age is not a significant determinant of it, gender plays an important role in shaping risk perception. Yet, general beliefs such as political orientations and climate change-specific beliefs such as believing in the anthropogenic causes of climate change and connecting the locally observed impacts (in this case drought) to climate change are the most prominent determinants of risk perception. © 2012 Society for Risk Analysis.

  11. Climate-society feedbacks and the avoidance of dangerous climate change

    Science.gov (United States)

    Jarvis, A. J.; Leedal, D. T.; Hewitt, C. N.

    2012-09-01

    The growth in anthropogenic CO2 emissions experienced since the onset of the Industrial Revolution is the most important disturbance operating on the Earth's climate system. To avoid dangerous climate change, future greenhouse-gas emissions will have to deviate from business-as-usual trajectories. This implies that feedback links need to exist between climate change and societal actions. Here, we show that, consciously or otherwise, these feedbacks can be represented by linking global mean temperature change to the growth dynamics of CO2 emissions. We show that the global growth of new renewable sources of energy post-1990 represents a climate-society feedback of ~0.25%yr-1 per degree increase in global mean temperature. We also show that to fulfil the outcomes negotiated in Durban in 2011, society will have to become ~ 50 times more responsive to global mean temperature change than it has been since 1990. If global energy use continues to grow as it has done historically then this would result in amplification of the long-term endogenous rate of decarbonization from -0.6%yr-1 to ~-13%yr-1. It is apparent that modest levels of feedback sensitivity pay large dividends in avoiding climate change but that the marginal return on this effort diminishes rapidly as the required feedback strength increases.

  12. Modeling key processes causing climate change and variability

    Energy Technology Data Exchange (ETDEWEB)

    Henriksson, S.

    2013-09-01

    Greenhouse gas warming, internal climate variability and aerosol climate effects are studied and the importance to understand these key processes and being able to separate their influence on the climate is discussed. Aerosol-climate model ECHAM5-HAM and the COSMOS millennium model consisting of atmospheric, ocean and carbon cycle and land-use models are applied and results compared to measurements. Topics at focus are climate sensitivity, quasiperiodic variability with a period of 50-80 years and variability at other timescales, climate effects due to aerosols over India and climate effects of northern hemisphere mid- and high-latitude volcanic eruptions. The main findings of this work are (1) pointing out the remaining challenges in reducing climate sensitivity uncertainty from observational evidence, (2) estimates for the amplitude of a 50-80 year quasiperiodic oscillation in global mean temperature ranging from 0.03 K to 0.17 K and for its phase progression as well as the synchronising effect of external forcing, (3) identifying a power law shape S(f) {proportional_to} f-{alpha} for the spectrum of global mean temperature with {alpha} {approx} 0.8 between multidecadal and El Nino timescales with a smaller exponent in modelled climate without external forcing, (4) separating aerosol properties and climate effects in India by season and location (5) the more efficient dispersion of secondary sulfate aerosols than primary carbonaceous aerosols in the simulations, (6) an increase in monsoon rainfall in northern India due to aerosol light absorption and a probably larger decrease due to aerosol dimming effects and (7) an estimate of mean maximum cooling of 0.19 K due to larger northern hemisphere mid- and high-latitude volcanic eruptions. The results could be applied or useful in better isolating the human-caused climate change signal, in studying the processes further and in more detail, in decadal climate prediction, in model evaluation and in emission policy

  13. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil.

    Science.gov (United States)

    Battisti, R; Sentelhas, P C; Boote, K J

    2018-05-01

    Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO 2 ] (380, 480, 580, 680, and 780 ppm), rainfall (- 30, - 15, 0, + 15, and + 30%), and solar radiation (- 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha -1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from - 15 to + 15%, whereas [CO 2 ] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO 2 .

  14. National Forest management options in response to climate change

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    2009-01-01

    The effect of climate change on ecosystem structure, function, and services will depend on the ecosystem's degree of sensitivity to climate change, the natural ability of plants and animals to adapt, and the availability of effective management options. Sensitivity to climate change is a function of ecosystem health and environmental stresses such as air pollution...

  15. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Björk; Anne D. Bjorkman; Terry V. Callaghan; [and others] NO-VALUE; William Gould; Joel Mercado

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty...

  16. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    Science.gov (United States)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  17. Regional climate model sensitivity to domain size

    Science.gov (United States)

    Leduc, Martin; Laprise, René

    2009-05-01

    Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the “perfect model” approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 × 100 grid points). The permanent “spatial spin-up” corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere.

  18. Regional climate model sensitivity to domain size

    Energy Technology Data Exchange (ETDEWEB)

    Leduc, Martin [Universite du Quebec a Montreal, Canadian Regional Climate Modelling and Diagnostics (CRCMD) Network, ESCER Centre, Montreal (Canada); UQAM/Ouranos, Montreal, QC (Canada); Laprise, Rene [Universite du Quebec a Montreal, Canadian Regional Climate Modelling and Diagnostics (CRCMD) Network, ESCER Centre, Montreal (Canada)

    2009-05-15

    Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the ''perfect model'' approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 x 100 grid points). The permanent ''spatial spin-up'' corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere. (orig.)

  19. Ion climate and radon concentration

    International Nuclear Information System (INIS)

    Busbarna, L.

    1981-01-01

    Characteristic values of radon concentration in natural ion climate and in open air were compared and the effect of artificially produced negative ion excess on the radon concentration of air was studied. The results show that the radon concentration measurable at the rise of negative ion excess is smaller than that in the case of natural equilibrium. This effect can be utilized lowering the background of the scintillation chambers, thus increasing their sensitivity. The negative ions of the artificial ion climate lower radon concentration in closed space. The question arises whether only the ion climate is responsible for the effects on the organism and on the nervous system or the radon concentration of the air also contributes to them. (author)

  20. Climate change impacts on hydrology and water resources

    Directory of Open Access Journals (Sweden)

    Fred Fokko Hattermann

    2015-04-01

    Full Text Available Aim of our study is to quantify the impacts of climate change on hydrology in the large river basins in Germany (Rhine, Elbe, Danube, Weser and Ems and thereby giving the range of impact uncertainty created by the most recent regional climate projections. The study shows mainly results for the A1B SRES (Special Report on Emission Scenario scenario by comparing the reference period 1981–2010 and the scenario periods 2031–2060 and 2061–2090 and using climate projections of a combination of 4 Global Climate Models (GCMs and 12 Regional Climate Models (RCMs as climate driver. The outcome is compared against impacts driven by a more recent RCP (Representative Emission Pathways scenario by using data of a statistical RCM. The results indicate that more robust conclusions can be drawn for some river basins, especially the Rhine and Danube basins, while diversity of results leads to higher uncertainty in the other river basins. The results also show that hydrology is very sensitive to changes in climate and effects of a general increase in precipitation can even be over-compensated by an increase in evapotranspiration. The decrease of runoff in late summer shown in most results can be an indicator for more pronounced droughts under scenario conditions.

  1. Incorporating Fundamentals of Climate Monitoring into Climate Indicators at the National Climatic Data Center

    Science.gov (United States)

    Arndt, D. S.

    2014-12-01

    In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.

  2. Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technological, and socioeconomic futures in a regional integrated-assessment model

    International Nuclear Information System (INIS)

    Scott, Michael J.; Daly, Don S.; Zhou, Yuyu; Rice, Jennie S.; Patel, Pralit L.; McJeon, Haewon C.; Page Kyle, G.; Kim, Son H.; Eom, Jiyong

    2014-01-01

    Improving the energy efficiency of building stock, commercial equipment, and household appliances can have a major positive impact on energy use, carbon emissions, and building services. Sub-national regions such as the U.S. states wish to increase energy efficiency, reduce carbon emissions, or adapt to climate change. Evaluating sub-national policies to reduce energy use and emissions is difficult because of the large uncertainties in socioeconomic factors, technology performance and cost, and energy and climate policies. Climate change itself may undercut such policies. However, assessing all of the uncertainties of large-scale energy and climate models by performing thousands of model runs can be a significant modeling effort with its accompanying computational burden. By applying fractional–factorial methods to the GCAM-USA 50-state integrated-assessment model in the context of a particular policy question, this paper demonstrates how a decision-focused sensitivity analysis strategy can greatly reduce computational burden in the presence of uncertainty and reveal the important drivers for decisions and more detailed uncertainty analysis. - Highlights: • We evaluate building energy codes and standards for climate mitigation. • We use an integrated assessment model and fractional factorial methods. • Decision criteria are energy use, CO2 emitted, and building service cost. • We demonstrate sensitivity analysis for three states. • We identify key variables to propagate with Monte Carlo or surrogate models

  3. Climatically sensitive tree-ring chronologies from Crimea, Ukraine

    Science.gov (United States)

    Solomina, O.; Davi, N.; D Arrigo, R.

    2003-04-01

    Several tree species in Crimea can reach ages of 1000 years or more (Crimea..., 1999), including Taxus baccata L., Arbutus andrachne L., Quercus pubescens Willd, Quercus petraea (Mattuschka) Liebl., Quercus robur L., Juniperus excelsa M.B., and Pistacia mutica Fisch.et Mey. In September 2002, we collected samples from several long-lived tree sites described in the literature (Vulf, 1948, Ivanenko, 1951, Ena, 1983, Podgorniy, 1990), located in the mountains of Central Crimea (Sokolinoye, Chufut-Kale, Chelter) and on the coast of the Black Sea (Ai-Todor, Kharaks, Ai-Petri). The trees sampled generally had 300-350 rings. At Ai-Todor, most oaks, junipers, and pistachio showed decay. However, enough samples of oak, juniper and pine were collected to build three chronologies with good replication over the last 350 years. Long meteorological records (for Sevastopol since 1821, Ai-Petri and Yalta since the 1880's) as well as detailed historical data on extreme climatic events since 1687 (summarized by Borisov 1956) are available for this area and can be used to calibrate and verify the tree growth/climate models. Resulting dendroclimatic reconstructions will be the first from this region. The tree-ring time-series may also be used for archaeological dating of historical wood from several medieval fortresses, towns and palaces. In turn, the archaeological wood could be used to extend the tree-ring time series. Stalactites and stalagmites (Dubliansky, 1977) found in numerous caves, as well as 4000-years old laminated lake sediments (Shostakovich, 1934) are also potentially important sources of paleoclimatic information in the area.

  4. Land-atmosphere interactions and climate change: Recent results and new perspectives (Invited)

    Science.gov (United States)

    Seneviratne, S. I.; Davin, E. L.; Greve, P.; Gudmundsson, L.; Guillod, B.; Hirschi, M.; Mittelbach, H.; Mueller, B.; Mystakidis, S.; Orlowsky, B.; Orth, R.; Wilhelm, M.

    2013-12-01

    Land-atmosphere interactions play a key role in the climate system. In particular, soil moisture-climate interactions have been shown to affect the occurrence of extreme events in both present and future (e.g. Seneviratne et al. 2006, 2010). This presentation will provide an overview on recent results highlighting the impact of soil moisture-temperature feedbacks on hot extremes (e.g. Hirschi et al. 2010, Mueller and Seneviratne 2012, Seneviratne et al. 2013). Furthermore, it will also address new findings in the area of soil moisture-precipitation and land albedo-climate feedbacks (Guillod et al. 2013, Davin et al. 2013). The representation of these feedbacks in current climate models will be discussed, based on analyses of CMIP5 simulations. We will especially highlight systematic biases found in some key relationships underlying these feedbacks (e.g. Mueller and Seneviratne 2013). Finally, we will address the question of terrestrial climate engineering through targeted modifications of the land surface. References: Davin, E.L., S.I. Seneviratne, P. Ciais, A. Olioso, and T. Wang, 2013: Preferential cooling of hot extremes from cropland albedo management. Submitted. Guillod, B., et al., 2013: Land surface controls on afternoon precipitation diagnosed from observational data: Uncertainties, confounding factors and the possible role of interception storage. Manuscript in preparation. Hirschi, M., S.I. Seneviratne, V. Alexandrov, F. Boberg, C. Boroneant, O.B. Christensen, H. Formayer, B. Orlowsky, and P. Stepanek, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4, 17-21, doi:10.1038/ngeo1032. Mueller, B., and S.I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences, 109 (31), 12398-12403, doi: 10.1073/pnas.1204330109. Mueller, B., and S.I. Seneviratne 2013: Systematic land climate and evapotranspiration biases in CMIP5

  5. Techniques for sensitivity analysis of SYVAC results

    International Nuclear Information System (INIS)

    Prust, J.O.

    1985-05-01

    Sensitivity analysis techniques may be required to examine the sensitivity of SYVAC model predictions to the input parameter values, the subjective probability distributions assigned to the input parameters and to the relationship between dose and the probability of fatal cancers plus serious hereditary disease in the first two generations of offspring of a member of the critical group. This report mainly considers techniques for determining the sensitivity of dose and risk to the variable input parameters. The performance of a sensitivity analysis technique may be improved by decomposing the model and data into subsets for analysis, making use of existing information on sensitivity and concentrating sampling in regions the parameter space that generates high doses or risks. A number of sensitivity analysis techniques are reviewed for their application to the SYVAC model including four techniques tested in an earlier study by CAP Scientific for the SYVAC project. This report recommends the development now of a method for evaluating the derivative of dose and parameter value and extending the Kruskal-Wallis technique to test for interactions between parameters. It is also recommended that the sensitivity of the output of each sub-model of SYVAC to input parameter values should be examined. (author)

  6. New perspectives for European climate services: HORIZON2020

    Science.gov (United States)

    Bruning, Claus; Tilche, Andrea

    2014-05-01

    The developing of new end-to-end climate services was one of the core priorities of 7th Framework for Research and Technological Development of the European Commission and will become one of the key strategic priorities of Societal Challenge 5 of HORIZON2020 (the new EU Framework Programme for Research and Innovation 2014-2020). Results should increase the competitiveness of European businesses, and the ability of regional and national authorities to make effective decisions in climate-sensitive sectors. In parallel, the production of new tailored climate information should strengthen the resilience of the European society to climate change. In this perspective the strategy to support and foster the underpinning science for climate services in HORIZON2020 will be presented.

  7. Too hot to trot? evaluating the effects of wildfire on patterns of occupancy and abundance for a climate-sensitive habitat-specialist

    Science.gov (United States)

    Varner, Johanna; Lambert, Mallory S.; Horns, Joshua J.; Laverty, Sean; Dizney, Laurie; Beever, Erik; Dearing, M. Denise

    2015-01-01

    Wildfires are increasing in frequency and severity as a result of climate change in many ecosystems; however, effects of altered disturbance regimes on wildlife remain poorly quantified. Here, we leverage an unexpected opportunity to investigate how fire affects the occupancy and abundance of a climate-sensitive habitat specialist, the American pika (Ochotona princeps). We determine the effects of a fire on microclimates within talus and explore habitat factors promoting persistence and abundance in fire-affected habitat. During the fire, temperatures in talus interstices remained below 19°C, suggesting that animals could have survived in situ. Within 2 years, pikas were widely distributed throughout burned areas and did not appear to be physiologically stressed at severely burned sites. Furthermore, pika densities were better predicted by topographic variables known to affect this species than by metrics of fire severity. This widespread distribution may reflect quick vegetation recovery and the fact that the fire did not alter the talus microclimates in the following years. Together, these results highlight the value of talus as a thermal refuge for small animals during and after fire. They also underscore the importance of further study in individual species’ responses to typical and altered disturbance regimes.

  8. Sensitivity properties of a biosphere model based on BATS and a statistical-dynamical climate model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T. (Yale Univ., New Haven, CT (United States))

    1994-06-01

    A biosphere model based on the Biosphere-Atmosphere Transfer Scheme (BATS) and the Saltzman-Vernekar (SV) statistical-dynamical climate model is developed. Some equations of BATS are adopted either intact or with modifications, some are conceptually modified, and still others are replaced with equations of the SV model. The model is designed so that it can be run independently as long as the parameters related to the physiology and physiognomy of the vegetation, the atmospheric conditions, solar radiation, and soil conditions are given. With this stand-alone biosphere model, a series of sensitivity investigations, particularly the model sensitivity to fractional area of vegetation cover, soil surface water availability, and solar radiation for different types of vegetation, were conducted as a first step. These numerical experiments indicate that the presence of a vegetation cover greatly enhances the exchanges of momentum, water vapor, and energy between the atmosphere and the surface of the earth. An interesting result is that a dense and thick vegetation cover tends to serve as an environment conditioner or, more specifically, a thermostat and a humidistat, since the soil surface temperature, foliage temperature, and temperature and vapor pressure of air within the foliage are practically insensitive to variation of soil surface water availability and even solar radiation within a wide range. An attempt is also made to simulate the gradual deterioration of environment accompanying gradual degradation of a tropical forest to grasslands. Comparison with field data shows that this model can realistically simulate the land surface processes involving biospheric variations. 46 refs., 10 figs., 6 tabs.

  9. Analysis of winter climate simulations performed with ARPEGE-Climat (T63) in the framework of PROVOST

    Energy Technology Data Exchange (ETDEWEB)

    Parey, S.; Dichampt-Martineu, Ch.; Caneill, J.Y. [Electricite de France, 78 - Chatou (France). Research Branch, Environment

    1997-12-01

    The interest of EDF for seasonal forecasting is a consequence of the high sensitivity of electricity consumption to temperature, especially during the winter season. That is why the Research branch of EDF is involved in the PROVOST project (PRediction Of climate Variations On Seasonal and inter-annual Timescales). Two sets of simulations are studied. The first one was calculated apart from the PROVOST experiments with the LMD model covering the 1970 to 1992 winters with eleven simulations per winter. The second one was calculated at EDF in the framework of PROVOST with ARPEGE-Climat model, covering the 1979 to 1994 winters (nine simulations per winter). The probabilistic formulation of climatic scenarios in function of the seasonal simulations with ARPEGE-Climat gives good results if the monthly mean temperature is taken into account. (R.P.) 3 refs.

  10. The role of eddy transports in climate change

    International Nuclear Information System (INIS)

    Stone, P.H.

    1994-01-01

    Large-scale atmospheric eddies are the dominant transport mechanisms in mid and high latitudes. Thus, climate models must simulate these eddies, their effects, and their feedbacks accurately. Getting the feedbacks right is particularly important since it is the feedbacks which affect climate sensitivity. Observational studies of these feedbacks are hindered by the lack of actual climate changes for which good data is available, and by the lack of data on vertical heat fluxes. General circulation model (GCM) studies are hindered by errors in GCM simulations of transports in the current climate; the dependence of GCM results on uncertain subgrid scale parameterizations; and large computational requirements. A more promising approach for learning about eddy feedbacks and how they can be modelled is process model studies. So far these studies have only looked at the feedback between eddy sensible heat fluxes arising from baroclinic instability and the temperature structure. The results indicate that there is a very strong negative feedback between eddy fluxes and temperature structure, both meridional and vertical, with the fluxes themselves being sensitive to small changes in temperature structure. These studies need to be extended to higher vertical resolution, and to include the effects of moisture, stationary eddies, and coupling to the oceans

  11. Climate change and decline in abundance of brown trout. Is there a link? Results from Switzerland; Klimawandel und Bachforellenrueckgang. Gibt es einen Zusammenhang? Resultate aus der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt-Holm, Patricia [Basel Univ. (CH). Mensch-Gesellschaft-Umwelt (MGU)

    2009-04-15

    Background, aim, and scope: In response to a 60% decrease in brown trout catch between 1980 and 2000, a Swiss-wide search was initiated to investigate possible causes. The project, named 'Fischnetz' (fishing net), investigated 12 hypotheses. One of those suggested a detrimental effect of global climate change. I report here which parameters changed and what the possible consequences for native brown trout are. Materials and methods: The literature is critically analysed and results are synthesised to show the interactions between different climatic factors and their effects on fish. Results In the last 25 years, an increase in temperature by approximately 1 C was indicated in the rivers of Switzerland. This is associated with an earlier emergence of trout from the gravel. Warming results in an upward shift of the preferred thermal habitats. Furthermore, an increase in the clinical outbreak of the Proliferative Kidney Disease PKD (for which a temperature of 15 C for more than 2-4 weeks is necessary) can be recorded. The precipitation pattern changed and an intensification of high floods in winter results in higher erosion. This can in turn lead to an increased level of fine sediments which may affect health of juvenile brown trout and is assumed to reduce reproduction success. Discussion: The consequences of climate change are discussed in concert with other anthropogenic factors. Storage reservoirs, as well as water withdrawal (and return of heated water, respectively) affect temperature profiles and sediment load. Fragmentation, channelization and straightening of rivers accelerate clogging and restrain fish from upward migration and evacuation to more suitable habitats. Conclusions: With increasing temperatures a downsizing of habitats of cold-water fish species, as well as an increase of diseases which are temperature sensitive, is assumed. Recommendations and perspectives: Mitigation measures which lead to a morphological improvement of river systems

  12. What is the role of historical anthropogenically-induced land-cover change on the surface climate of West Africa? Results from the LUCID intercomparison project

    Science.gov (United States)

    Souleymane, S.

    2015-12-01

    West Africa has been highlighted as a hot spot of land surface-atmosphere interactions. This study analyses the outputs of the project Land-Use and Climate, IDentification of Robust Impacts (LUCID) over West Africa. LUCID used seven atmosphere-land models with a common experimental design to explore the impacts of Land Use induced Land Cover Change (LULCC) that are robust and consistent across the climate models. Focusing the analysis on Sahel and Guinea, this study shows that, even though the seven climate models use the same atmospheric and land cover forcing, there are significant differences of West African Monsoon variability across the climate models. The magnitude of that variability differs significantly from model to model resulting two major "features": (1) atmosphere dynamics models; (2) how the land-surface functioning is parameterized in the Land surface Model, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index (LAI) in the flux calculations and how strongly the surface is coupled to the atmosphere. The major role that the models'sensitivity to land-cover perturbations plays in the resulting climate impacts of LULCC has been analysed in this study. The climate models show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC induced cooling is directed by decreases in net shortwave radiation that reduced the available energy (QA) (related to changes in land-cover properties other than albedo, such as LAI and surface roughness), which decreases during most part of the year. The biophysical impacts of LULCC were compared to the impact of elevated greenhouse gases resulting changes in sea surface temperatures and sea ice extent (CO2SST). The results show that the surface cooling (related a decrease in QA) induced by the biophysical effects of LULCC are insignificant compared to surface warming (related an

  13. Regionalization of climate model results for the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Kauker, F.

    1999-07-01

    A dynamical downscaling is presented that allows an estimation of potential effects of climate change on the North Sea. Therefore, the ocean general circulation model OPYC is adapted for application on a shelf by adding a lateral boundary formulation and a tide model. In this set-up the model is forced, first, with data from the ECMWF reanalysis for model validation and the study of the natural variability, and, second, with data from climate change experiments to estimate the effects of climate change on the North Sea. (orig.)

  14. Signs of climate change in Nordic nature

    DEFF Research Database (Denmark)

    Mikkelsen, Maria; Jensen, Trine Susanne; Normander, Bo

    on population size and range of the polar bear, for example, are scarce, whereas data on the pollen season are extensive. Each indicator is evaluated using a number of quality criteria, including sensitivity to climate change, policy relevance and methodology. Although the indicator framework presented here has......Not only is the Earth's climate changing, our natural world is also being affected by the impact of rising temperatures and changes in climatic conditions. In order to track climate-related changes in Nordic ecosystems, we have identified a number of climate change sensitive indicators. We present...... a catalogue of 14 indicator-based signs that demonstrate the impact of climate change on terrestrial, marine and freshwater ecosystems in the different bio-geographical zones of the Nordic region. The indicators have been identified using a systematic and quality, criteria based approach to discern and select...

  15. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    International Nuclear Information System (INIS)

    Wang, Bing; Liang, Xiao-Jie; Zhang, Hao; Wang, Lu; Wei, Yi-Ming

    2014-01-01

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey forecasting model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emission Scenarios and results from PRECIS (Providing Regional Climate projections for Impacts Studies) model. The most important result found in this research is the increasing hydropower vulnerability of the poorest regions and the main hydropower generation provinces of China to climate change. Other main empirical results reveal that the impacts of climate change on the supply of hydropower generation in China will be noteworthy for the society. Different scenarios have different effects on hydropower generation, of which A2 scenario (pessimistic, high emission) has the largest. Meanwhile, the impacts of climate change on hydropower generation of every province are distinctly different, of which the Southwest part has the higher vulnerability than the average level while the central part lower. - Highlights: • The hydropower vulnerability will be enlarged with the rapid increase of hydropower capacity. • Modeling the vulnerability of hydropower in different scenarios and different provinces. • The increasing hydropower vulnerability of the poorest regions to climate change. • The increasing hydropower vulnerability of the main hydropower generation provinces. • Rainfall pattern caused by climate change would be the reason for the increasing vulnerability

  16. A Energy Balance Analysis of the Climate Sensitivity to Variations in the Rate of Upwelling in the World Oceans.

    Science.gov (United States)

    Morantine, Michael Creighton

    -scale to be the source of the dynamic interaction responsible for this abrupt climatic event. The process employed in the dimension reduction used in the formulation of lower-order EBM's will be illustrated through the development of the equations, pointing out the inherent assumptions which must be made when developing one- and two-dimensional models as they are required. One -, two- and three-dimensional energy balance models will be analyzed and the results of climate sensitivity to upwelling variations will be presented graphically for each case.

  17. From inferential statistics to climate knowledge

    OpenAIRE

    H. N. Maia, A.; Meinke, H.

    2006-01-01

    International audience; Climate variability and change are risk factors for climate sensitive activities such as agriculture. Managing these risks requires "climate knowledge", i.e. a sound understanding of causes and consequences of climate variability and knowledge of potential management options that are suitable in light of the climatic risks posed. Often such information about prognostic variables (e.g. yield, rainfall, run-off) is provided in probabilistic terms (e.g. via cumulative dis...

  18. Implications of climate change (global warming) for the healthcare system.

    Science.gov (United States)

    Raffa, R B; Eltoukhy, N S; Raffa, K F

    2012-10-01

    Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.

  19. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    Planton, S.; Deque, M.; Chauvin, F.; Terray, L.

    2008-01-01

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  20. The effects of climate stability on northern temperate forests

    DEFF Research Database (Denmark)

    Ma, Ziyu

    2016-01-01

    a small subset of phylogenetic lineages. For current climate change, I examined the broad-scale dynamics of climate-sensitive boreal forest on a decadal time scale. Using global remote sensing data and machine learning, I tested for associations between spatial patterns of tree cover change with possible...... drivers, i.e., climate anomalies, permafrost, fire, and human activities from years 2000 to 2010. The results showed tree cover change links to fire prevalence and rising temperature in permafrost zones, suggesting impacts of permafrost thawing on large-scale tree cover dynamics in the boreal zone...

  1. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data

    Science.gov (United States)

    Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin

    2018-04-01

    The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.

  2. CONTRIBUTION OF SATELLITE-BORN INFORMATION TO CLIMATE SCIENCE

    Directory of Open Access Journals (Sweden)

    MIKA J.

    2015-03-01

    Full Text Available Observed climate processes play important role in understanding the ongoing changes in the climate system. Our paper intends to present this cross-section of climate science illustrated by selected satellite images and diagrams in four parts. (i. Technical possibilities of the observations are briefly surveyed first. Many satellite platforms and devices started working in the 1980 and 1990s, definitely for climate purposes. (ii. Climate forcing factors and their radiation effects are comprehended, including direct observation of solar irradiance and volcanic aerosol concentration allowing us to compare natural factors to the anthropogenic ones. (iii. Detection of changes in the Earth climate system follows next, including the atmosphere, the oceans and the cryosphere, as well. (iv. Finally, satellite-born results in validation of climate models are presented in three aspects: reconstruction of present climate, validation of simulated changes and investigation of feedback mechanisms driving climate sensitivity to the external forcing factors. The above possibilities of using satellite information in climate science are mostly illustrated by key figures of the IPCC AR5 Report (2013.

  3. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    Science.gov (United States)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  4. Some GCM simulation results on present and possible future climate in northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, J [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    The Intergovernmental Panel on Climate Change initiated in 1993 a project entitled `Evaluation of Regional Climate Simulations`. The two basic aims of this project were to assess the skill of current general circulation models (GCMs) in simulating present climate at a regional level and to intercompare the regional response of various GCMs to increased greenhouse gas concentrations. The public data base established for the comparison included simulation results from several modelling centres, but most of the data were available in the form of time-averaged seasonal means only, and important quantities like precipitation were totally lacking in many cases. This presentation summarizes the intercomparison results for surface air temperature and sea level pressure in northern Europe. The quality of the control simulations and the response of the models to increased CO{sub 2} are addressed in both winter (December-February) and summer (June-August)

  5. Some GCM simulation results on present and possible future climate in northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1995-12-31

    The Intergovernmental Panel on Climate Change initiated in 1993 a project entitled `Evaluation of Regional Climate Simulations`. The two basic aims of this project were to assess the skill of current general circulation models (GCMs) in simulating present climate at a regional level and to intercompare the regional response of various GCMs to increased greenhouse gas concentrations. The public data base established for the comparison included simulation results from several modelling centres, but most of the data were available in the form of time-averaged seasonal means only, and important quantities like precipitation were totally lacking in many cases. This presentation summarizes the intercomparison results for surface air temperature and sea level pressure in northern Europe. The quality of the control simulations and the response of the models to increased CO{sub 2} are addressed in both winter (December-February) and summer (June-August)

  6. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    Science.gov (United States)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  7. Climate change risks and conservation implications for a threatened small-range mammal species.

    Science.gov (United States)

    Morueta-Holme, Naia; Fløjgaard, Camilla; Svenning, Jens-Christian

    2010-04-29

    Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus), which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070-2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be highly vulnerable to a warming climate and highlight the fact that assisted migration has

  8. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036, Rende (CS) (Italy); Vecchio, Antonio, E-mail: tommaso.alberti@unical.it, E-mail: tommasoalberti89@gmail.com [LESIA—Observatoire de Paris, PSL Research University, 5 place Jules Janssen, F-92190, Meudon (France)

    2017-07-20

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  9. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    International Nuclear Information System (INIS)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio; Vecchio, Antonio

    2017-01-01

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  10. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  11. The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity

    Science.gov (United States)

    Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn

    2018-04-01

    Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.

  12. Possible climate change over Eurasia under different emission scenarios

    Science.gov (United States)

    Sokolov, A. P.; Monier, E.; Gao, X.

    2012-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  13. Search Results | Page 68 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Results 671 - 680 of 8531 ... Climate change and sea level rise affects Canada''s most sensitive ... Multicriteria decision evaluation of adaptation strategies for ... Assessment and validation of the sea level rise threat to Grande Riviere, Trinidad.

  14. State-Dependence of the Climate Sensitivity in Earth System Models of Intermediate Complexity

    Science.gov (United States)

    Pfister, Patrik L.; Stocker, Thomas F.

    2017-10-01

    Growing evidence from general circulation models (GCMs) indicates that the equilibrium climate sensitivity (ECS) depends on the magnitude of forcing, which is commonly referred to as state-dependence. We present a comprehensive assessment of ECS state-dependence in Earth system models of intermediate complexity (EMICs) by analyzing millennial simulations with sustained 2×CO2 and 4×CO2 forcings. We compare different extrapolation methods and show that ECS is smaller in the higher-forcing scenario in 12 out of 15 EMICs, in contrast to the opposite behavior reported from GCMs. In one such EMIC, the Bern3D-LPX model, this state-dependence is mainly due to the weakening sea ice-albedo feedback in the Southern Ocean, which depends on model configuration. Due to ocean-mixing adjustments, state-dependence is only detected hundreds of years after the abrupt forcing, highlighting the need for long model integrations. Adjustments to feedback parametrizations of EMICs may be necessary if GCM intercomparisons confirm an opposite state-dependence.

  15. Assessing the impact of climatic change in cold regions

    Energy Technology Data Exchange (ETDEWEB)

    Parry, M L; Carter, T R [eds.

    1984-01-01

    The report describes the use of models to predict the consequences of global warming in particular (cold) regions. The workshop focused on two related issues: (a) the current sensitivity of ecosystems and farming systems to climatic variability, and (b) the range of impacts likely for certain changes of climate. This report addresses four broad themes: (1) the nature of the research problem; (2) methods of evaluating sensitivity to climatic variability; (3) methods of measuring the impact of climate change; and (4) how these methods might be refined. (ACR)

  16. Economic Value of an Advanced Climate Observing System

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.

    2013-12-01

    Scientific missions increasingly need to show the monetary value of knowledge advances in budget-constrained environments. For example, suppose a climate science mission promises to yield decisive information on the rate of human caused global warming within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) creates a standard yardstick for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, setting uncertainty in climate sensitivity to a truncated Roe and Baker (2007) distribution, setting discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate mitigation response DICE Optimal, and a strong response scenario (Stern). To illustrate results, suppose that we are on the BAU emissions scenario, and that we would switch to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on the uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain that it happens depends, in addition, on our Earth observations, their accuracy, and their completeness. The basic concept is that more accurate observations can shorten the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems, exceeds the NPV of the system costs. Our results (Cooke et al. 2013

  17. Micro Climate Simulation in new Town 'Hashtgerd'

    Science.gov (United States)

    Sodoudi, S.; Langer, I.; Cubasch, U.

    2012-04-01

    One of the objectives of climatological part of project Young Cities 'Developing Energy-Efficient Urban Fabric in the Tehran-Karaj Region' is to simulate the micro climate (with 1m resolution) in 35ha of new town Hashtgerd, which is located 65 km far from mega city Tehran. The Project aims are developing, implementing and evaluating building and planning schemes and technologies which allow to plan and build sustainable, energy-efficient and climate sensible form mass housing settlements in arid and semi-arid regions ("energy-efficient fabric"). Climate sensitive form also means designing and planning for climate change and its related effects for Hashtgerd New Town. By configuration of buildings and open spaces according to solar radiation, wind and vegetation, climate sensitive urban form can create outdoor thermal comfort. To simulate the climate on small spatial scales, the micro climate model Envi-met has been used to simulate the micro climate in 35 ha. The Eulerian model ENVI-met is a micro-scale climate model which gives information about the influence of architecture and buildings as well as vegetation and green area on the micro climate up to 1 m resolution. Envi-met has been run with information from topography, downscaled climate data with neuro-fuzzy method, meteorological measurements, building height and different vegetation variants (low and high number of trees) Through the optimal Urban Design and Planning for the 35ha area the microclimate results shows, that with vegetation the microclimate in streets will be change: • 2 m temperature is decreased by about 2 K • relative humidity increase by about 10 % • soil temperature is decreased by about 3 K • wind speed is decreased by about 60% The style of buildings allows free movement of air, which is of high importance for fresh air supply. The increase of inbuilt areas in 35 ha reduces the heat island effect through cooling caused by vegetation and increase of air humidity which caused by

  18. Operationalizing analysis of micro-level climate change vulnerability and adaptive capacity

    DEFF Research Database (Denmark)

    Jiao, Xi; Moinuddin, Hasan

    2016-01-01

    This paper explores vulnerability and adaptive capacity of rural communities in Southern Laos, where households are highly dependent on climate-sensitive natural resources and vulnerable to seasonal weather fluctuations. The speed and magnitude of climate-induced changes may seriously challenge...... their ability to adapt. Participatory group discussions and 271 household surveys in three villages highlight the current level of vulnerability and adaptive capacity towards climatic variability and risks. This paper visualizes three dimensions of the vulnerability framework at two levels using the Community...... Climate Vulnerability Index and household climate vulnerability cube. Results show that not only poor households are most at risk from climate change challenges, but also those better-off households highly dependent on specialized agricultural production are locally exposed to climate change risks...

  19. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    Science.gov (United States)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  20. Risk management perspective for climate service development - Results from a study on Finnish organizations

    Science.gov (United States)

    Harjanne, Atte; Haavisto, Riina; Tuomenvirta, Heikki; Gregow, Hilppa

    2017-10-01

    Weather, climate and climate change can cause significant risks to businesses and public administration. However, understanding these processes can also create opportunities. Information can help to manage these risks and opportunities, but in order to do so, it must be in line with how risk management and decision making works. To better understand how climate risks and opportunities are reflected in different organizational processes and what types of information is needed and used, we conducted a study on the perceptions and management of weather and climate risks in Finnish organizations and on their use of weather and climate information. In addition, we collected feedback on how the existing climate information tools should be developed. Data on climate risk management was collected in an online survey and in one full-day workshop. The survey was aimed to the Finnish public and private organizations who use weather and climate data and altogether 118 responses were collected. The workshop consisted of two parts: weather and climate risk management processes in general and the development of the current information tools to further address user needs.We found that climate risk management in organizations is quite diverse and often de-centralized and that external experts are considered the most useful sources of information. Consequently, users emphasize the need for networks of expertise and sector-specific information tools. Creating such services requires input and information sharing from the user side as well. Better temporal and spatial accuracy is naturally asked for, but users also stressed the need for transparency when it comes to communicating uncertainties, and the availability and up-to-datedness of information. Our results illustrate that weather and climate risks compete and blend in with other risks and changes perceived by the organizations and supporting information is sought from different types of sources. Thus the design and evaluation of

  1. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    OpenAIRE

    Angelen, J. H.; Lenaerts, J. T. M.; Lhermitte, S.; Fettweis, X.; Kuipers Munneke, P.; Broeke, M. R.; Meijgaard, E.; Smeets, C. J. P. P.

    2012-01-01

    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6%) at the K-transect (west Greenland) for the period 2004–2009 is...

  2. Risk Communication and Climate Justice Planning: A Case of Michigan’s Huron River Watershed

    Directory of Open Access Journals (Sweden)

    Chingwen Cheng

    2017-10-01

    Full Text Available Communicating climate risks is crucial when engaging the public to support climate action planning and addressing climate justice. How does evidence-based communication influence local residents’ risk perception and potential behavior change in support of climate planning? Built upon our previous study of Climate Justice maps illustrating high scores of both social and ecological vulnerability in Michigan’s Huron River watershed, USA, a quasi-experiment was conducted to examine the effects of Climate Justice mapping intervention on residents’ perceptions and preparedness for climate change associated hazards in Michigan. Two groups were compared: residents in Climate Justice areas with high social and ecological vulnerability scores in the watershed (n=76 and residents in comparison areas in Michigan (n=69. Measurements for risk perception include perceived exposure, sensitivity, and adaptability to hazards. Results indicate that risk information has a significant effect on perceived sensitivity and level of preparedness for future climate extremes among participants living in Climate Justice areas. Findings highlight the value of integrating scientific risk assessment information in risk communication to align calculated and perceived risks. This study suggests effective risk communication can influence local support of climate action plans and implementation of strategies that address climate justice and achieve social sustainability in local communities.

  3. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    Science.gov (United States)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  4. Climate Change Impacts on Central China and Adaptation Measures

    Institute of Scientific and Technical Information of China (English)

    REN Yong-Jian; CUI Jiang-Xue; WAN Su-Qin; LIU Min; CHEN Zheng-Hong; LIAO Yu-Fang; WANG Ji-Jun

    2013-01-01

    In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the scenario A1B, it is reported that temperature, precipitation, days of heat waves and extreme precipitation intensity will increase at respective rates of 0.38◦C per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.

  5. Linking glacial and future climates through an ensemble of GCM simulations

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2007-01-01

    Full Text Available In this paper we explore the relationships between the modelled climate of the Last Glacial Maximum (LGM and that for doubled atmospheric carbon dioxide compared to the pre-industrial climate by analysing the output from an ensemble of runs from the MIROC3.2 GCM. Our results lend support to the idea in other recent work that the Antarctic is a useful place to look for historical data which can be used to validate models used for climate forecasting of future greenhouse gas induced climate changes, at local, regional and global scales. Good results may also be obtainable using tropical temperatures, particularly those over the ocean. While the greater area in the tropics makes them an attractive area for seeking data, polar amplification of temperature changes may mean that the Antarctic provides a clearer signal relative to the uncertainties in data and model results. Our result for Greenland is not so strong, possibly due to difficulties in accurately modelling the sea ice extent. The MIROC3.2 model shows an asymmetry in climate sensitivity calculated by decreasing rather than increasing the greenhouse gases, with 80% of the ensemble having a weaker cooling than warming. This asymmetry, if confirmed by other studies would mean that direct estimates of climate sensitivity from the LGM are likely to be underestimated by the order of half a degree. Our suspicion is, however, that this result may be highly model dependent. Analysis of the parameters varied in the model suggest the asymmetrical response may be linked to the ice in the clouds, which is therefore indicated as an important area for future research.

  6. Improved Analysis of Earth System Models and Observations using Simple Climate Models

    Science.gov (United States)

    Nadiga, B. T.; Urban, N. M.

    2016-12-01

    Earth system models (ESM) are the most comprehensive tools we have to study climate change and develop climate projections. However, the computational infrastructure required and the cost incurred in running such ESMs precludes direct use of such models in conjunction with a wide variety of tools that can further our understanding of climate. Here we are referring to tools that range from dynamical systems tools that give insight into underlying flow structure and topology to tools that come from various applied mathematical and statistical techniques and are central to quantifying stability, sensitivity, uncertainty and predictability to machine learning tools that are now being rapidly developed or improved. Our approach to facilitate the use of such models is to analyze output of ESM experiments (cf. CMIP) using a range of simpler models that consider integral balances of important quantities such as mass and/or energy in a Bayesian framework.We highlight the use of this approach in the context of the uptake of heat by the world oceans in the ongoing global warming. Indeed, since in excess of 90% of the anomalous radiative forcing due greenhouse gas emissions is sequestered in the world oceans, the nature of ocean heat uptake crucially determines the surface warming that is realized (cf. climate sensitivity). Nevertheless, ESMs themselves are never run long enough to directly assess climate sensitivity. So, we consider a range of models based on integral balances--balances that have to be realized in all first-principles based models of the climate system including the most detailed state-of-the art climate simulations. The models range from simple models of energy balance to those that consider dynamically important ocean processes such as the conveyor-belt circulation (Meridional Overturning Circulation, MOC), North Atlantic Deep Water (NADW) formation, Antarctic Circumpolar Current (ACC) and eddy mixing. Results from Bayesian analysis of such models using

  7. Strategiesfor AgriculturalAdaptationto Climate Changein Kogi State ...

    African Journals Online (AJOL)

    Agribotix GCS 068

    Strategies for Agricultural Adaptation to Climate Change in Kogi State, ... increased food production to manage climate variability and increasing ... sensitivity of a system is subject to both ecological and socio-economic conditions and influences the scale to which a system will be affected adversely or otherwise by climate ...

  8. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    Science.gov (United States)

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  9. Climate change and amphibians

    Science.gov (United States)

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  10. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  11. Engaging farmers on climate risk through targeted integration of bio-economic modelling and seasonal climate forecasts

    NARCIS (Netherlands)

    Nidumolu, U.B.; Lubbers, M.; Kanellopoulos, A.; Ittersum, van M.K.; Kadiyala, D.M.; Sreenivas, G.

    2016-01-01

    Seasonal climate forecasts (SCFs) can be used to identify appropriate risk management strategies and to reduce the sensitivity of rural industries and communities to climate risk. However, these forecasts have low utility among farmers in agricultural decision making, unless translated into a

  12. The relationship between team climate and interprofessional collaboration: Preliminary results of a mixed methods study.

    Science.gov (United States)

    Agreli, Heloise F; Peduzzi, Marina; Bailey, Christopher

    2017-03-01

    Relational and organisational factors are key elements of interprofessional collaboration (IPC) and team climate. Few studies have explored the relationship between IPC and team climate. This article presents a study that aimed to explore IPC in primary healthcare teams and understand how the assessment of team climate may provide insights into IPC. A mixed methods study design was adopted. In Stage 1 of the study, team climate was assessed using the Team Climate Inventory with 159 professionals in 18 interprofessional teams based in São Paulo, Brazil. In Stage 2, data were collected through in-depth interviews with a sample of team members who participated in the first stage of the study. Results from Stage 1 provided an overview of factors relevant to teamwork, which in turn informed our exploration of the relationship between team climate and IPC. Preliminary findings from Stage 2 indicated that teams with a more positive team climate (in particular, greater participative safety) also reported more effective communication and mutual support. In conclusion, team climate provided insights into IPC, especially regarding aspects of communication and interaction in teams. Further research will provide a better understanding of differences and areas of overlap between team climate and IPC. It will potentially contribute for an innovative theoretical approach to explore interprofessional work in primary care settings.

  13. Climate Modeling and Causal Identification for Sea Ice Predictability

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth Clare [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urrego Blanco, Jorge Rolando [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urban, Nathan Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-12

    This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments in which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.

  14. Amazon collapse in the next century: exploring the sensitivity to climate and model formulation uncertainties

    Science.gov (United States)

    Booth, B.; Collins, M.; Harris, G.; Chris, H.; Jones, C.

    2007-12-01

    A number of recent studies have highlighted the risk of abrupt dieback of the Amazon Rain Forest as the result of climate changes over the next century. The recent 2005 Amazon drought brought wider acceptance of the idea that that climate drivers will play a significant role in future rain forest stability, yet that stability is still subject to considerable degree of uncertainty. We present a study which seeks to explore some of the underlying uncertainties both in the climate drivers of dieback and in the terrestrial land surface formulation used in GCMs. We adopt a perturbed physics approach which forms part of a wider project which is covered in an accompanying abstract submitted to the multi-model ensembles session. We first couple the same interactive land surface model to a number of different versions of the Hadley Centre atmosphere-ocean model that exhibit a wide range of different physical climate responses in the future. The rainforest extent is shown to collapse in all model cases but the timing of the collapse is dependent on the magnitude of the climate drivers. In the second part, we explore uncertainties in the terrestrial land surface model using the perturbed physics ensemble approach, perturbing uncertain parameters which have an important role in the vegetation and soil response. Contrasting the two approaches enables a greater understanding of the relative importance of climatic and land surface model uncertainties in Amazon dieback.

  15. Adaptation to climate change. Key terms

    International Nuclear Information System (INIS)

    Levina, E.; Tirpak, D.

    2006-05-01

    Adaptation has become an important issue in international and domestic discussions on climate change. Numerous terms and concepts have come into common usage as a result of IPCC reports, discussions in the context of the UNFCCC and dialogs by the climate community at large. This paper examines the key adaptation terms and concepts used by the climate change community and other institutions. Conflicts and contradictions are noted with the aim of sensitizing different bodies to the differences, but particularly the Parties to the Convention and experts participating in the IPCC. Given the need to promote a common understanding among various stakeholders and the potential financial implications of various definitions, it appears important for the IPCC and the UNFCCC to work toward common definitions, at least for a core set of terms and concepts

  16. US Drought-Heat Wave Relationships in Past Versus Current Climates

    Science.gov (United States)

    Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.

    2017-12-01

    This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.

  17. Climate-growth relationships of Abies spectabilis in a central Himalayan treeline ecotone

    Science.gov (United States)

    Schwab, Niels; Kaczka, Ryszard J.; Schickhoff, Udo

    2017-04-01

    Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. The large spectrum of responses is not fully understood. In the framework of investigating the sensitivity and response of a near-natural treeline ecotone in Rolwaling Himal, Nepal, to climate warming we present results from dendroclimatological analyses of Abies spectabilis (Himalayan Fir) increment cores. Tree ring width was measured and cross-dated. After standardization, the chronology was correlated with temperature and precipitation variables. Preliminary results point to positive correlations with autumn temperature and precipitation. We will present improved climate-growth relationships. The resulting climate - tree growth relationships may be used as an indication of future growth patterns and treeline dynamics under climate change conditions.

  18. Climate policy uncertainty and investment risk

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-21

    Our climate is changing. This is certain. Less certain, however, is the timing and magnitude of climate change, and the cost of transition to a low-carbon world. Therefore, many policies and programmes are still at a formative stage, and policy uncertainty is very high. This book identifies how climate change policy uncertainty may affect investment behaviour in the power sector. For power companies, where capital stock is intensive and long-lived, those risks rank among the biggest and can create an incentive to delay investment. Our analysis results show that the risk premiums of climate change uncertainty can add 40% of construction costs of the plant for power investors, and 10% of price surcharges for the electricity end-users. This publication tells what can be done in policy design to reduce these costs. Incorporating the results of quantitative analysis, this publication also shows the sensitivity of different power sector investment decisions to different risks. It compares the effects of climate policy uncertainty with energy market uncertainty, showing the relative importance of these sources of risk for different technologies in different market types. Drawing on extensive consultation with power companies and financial investors, it also assesses the implications for policy makers, allowing the key messages to be transferred into policy designs. This book is a useful tool for governments to improve climate policy mechanisms and create more certainty for power investors.

  19. Effects of runoff sensitivity and catchment characteristics on regional actual evapotranspiration trends in the conterminous US

    International Nuclear Information System (INIS)

    Jung, Il Won; Chang, Heejun; Risley, John

    2013-01-01

    An understanding of the role of hydro-climatic and geographic regimes on regional actual evapotranspiration (AET) change is essential to improving our knowledge on predicting water availability in a changing climate. This study investigates the relationship between AET change for a 60 year period (1951–2010) and the runoff sensitivity in 255 undisturbed catchments over the US. The runoff sensitivity to climate change is simply defined as the relative magnitude between runoff and precipitation changes with time. Runoff sensitivity can readily explain the conflicting directions of AET changes under similar precipitation change. Under increasing precipitation, AET decreases when runoff is increasing more rapidly than precipitation based on the water balance. Conversely, AET increases when runoff is decreasing more rapidly than precipitation. This result indicates that runoff sensitivity to climate change is a key factor for understanding regional water availability change at the catchment scale. In addition, a stepwise multiple regression analysis and a geographically weighted regression analysis show that the portion of evergreen forest and the mean elevation of a catchment may play a secondary role in the spatial pattern of the AET change, and the relative importance of such explanatory variables may change over space. (letter)

  20. Climate-driven endemic cholera is modulated by human mobility in a megacity

    Science.gov (United States)

    Perez-Saez, Javier; King, Aaron A.; Rinaldo, Andrea; Yunus, Mohammad; Faruque, Abu S. G.; Pascual, Mercedes

    2017-10-01

    Although a differential sensitivity of cholera dynamics to climate variability has been reported in the spatially heterogeneous megacity of Dhaka, Bangladesh, the specific patterns of spread of the resulting risk within the city remain unclear. We build on an established probabilistic spatial model to investigate the importance and role of human mobility in modulating spatial cholera transmission. Mobility fluxes were inferred using a straightforward and generalizable methodology that relies on mapping population density based on a high resolution urban footprint product, and a parameter-free human mobility model. In accordance with previous findings, we highlight the higher sensitivity to the El Niño Southern Oscillation (ENSO) in the highly populated urban center than in the more rural periphery. More significantly, our results show that cholera risk is largely transmitted from the climate-sensitive core to the periphery of the city, with implications for the planning of control efforts. In addition, including human mobility improves the outbreak prediction performance of the model with an 11 month lead. The interplay between climatic and human mobility factors in cholera transmission is discussed from the perspective of the rapid growth of megacities across the developing world.

  1. Simulated climate change during the last 1,000 years: comparing the ECHO-G general circulation model with the MAGICC simple climate model

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Timothy J.; Briffa, Keith R. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Raper, Sarah C.B. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Manchester Metropolitan University, Dalton Research Institute, Manchester (United Kingdom)

    2006-08-15

    An intercomparison of eight climate simulations, each driven with estimated natural and anthropogenic forcings for the last millennium, indicates that the so-called ''Erik'' simulation of the ECHO-G coupled ocean-atmosphere climate model exhibits atypical behaviour. The ECHO-G simulation has a much stronger cooling trend from 1000 to 1700 and a higher rate of warming since 1800 than the other simulations, with the result that the overall amplitude of millennial-scale temperature variations in the ECHO-G simulation is much greater than in the other models. The MAGICC (Model for the Assessment of Greenhouse-gas-Induced Climate Change) simple climate model is used to investigate possible causes of this atypical behaviour. It is shown that disequilibrium in the initial conditions probably contributes spuriously to the cooling trend in the early centuries of the simulation, and that the omission of tropospheric sulphate aerosol forcing is the likely explanation for the anomalously large recent warming. The simple climate model results are used to adjust the ECHO-G Erik simulation to mitigate these effects, which brings the simulation into better agreement with the other seven models considered here and greatly reduces the overall range of temperature variations during the last millennium simulated by ECHO-G. Smaller inter-model differences remain which can probably be explained by a combination of the particular forcing histories and model sensitivities of each experiment. These have not been investigated here, though we have diagnosed the effective climate sensitivity of ECHO-G to be 2.39{+-}0.11 K for a doubling of CO{sub 2}. (orig.)

  2. Climate impact on BC Hydro's water resources

    International Nuclear Information System (INIS)

    Smith, D.; Rodenhuis, D.

    2008-01-01

    BC Hydro like many other hydro utilities has used the historical record of weather and runoff as the standard description the variability and uncertainty of the key weather drivers for its operation and planning studies. It has been conveniently assumed that this historical record is or has been statistically stationary and therefore is assumed to represent the future characteristics of climatic drivers on our system. This assumption is obviously no longer justifiable. To address the characterisation of future weather, BC Hydro has a multi-year a directed research program with the Pacific Climate Impacts Consortium to evaluate the impacts of climate change on the water resources that BC Hydro manages for hydropower generation and other uses. The objective of this program is to derive climate change adjusted meteorologic and hydrologic sequences suitable for use in system operations and planning studies. These climate-adjusted sequences then can be used to test system sensitivity to climate change scenarios relative to the baseline of the historical record. This paper describes BC Hydro's research program and the results achieved so far. (author)

  3. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    International Nuclear Information System (INIS)

    Kang, Sinkyu; Kimball, John S.; Running, Steven W.

    2006-01-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km 2 portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO 2 , climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO 2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T a ), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 o C for T a and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO 2 , climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  4. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    Science.gov (United States)

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  5. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  6. Butterfly effect: understanding and mitigating the local consequences of climate change impacts

    International Nuclear Information System (INIS)

    Lorenz, Donna

    2007-01-01

    Full text: The Butterfly Effect is the notion that tiny differences in initial conditions are amplified in the evolution of a dynamic system and directly affect the eventual outcome. In 1963 mathematician and meteorologist Edward Lorenz proposed that the flapping of a butterfly's wing would cause a disturbance that becomes exponentially amplified so as to eventually affect large-scale atmospheric motion. This was to illustrate the 'sensitive dependence on initial conditions'; sensitivity also true in affecting the extent of damages experienced as a result of climate change. In a climate change context, The Butterfly Effect suggests the local consequences of climate change impacts will depend on their interaction with the economic, environmental, institutional, technological and demographic attributes unique to a city or region. It is this mix of factors that will determine the extent, both positively and negatively, to which climate change will be experienced locally. For a truly effective climate change response, it is imperative that regional risk assessments and adaptation strategies take into account not only the projected impacts but the full range of flow-on implications of those impacts and their sensitivity factors. Understanding of the sensitivity factors that will amplify or mitigate climate change impacts and implications enables government and business leaders to calculate the likely extent of localised damages if no adaptation is undertaken. This allows industries and communities to evaluate the likely significance of a particular impact and to consider how to adjust or counter the sensitivity factor to build resilience and reduce vulnerability. Thus, it also assists in the local prioritisation of issues and responses. Such a strategic response can also mean the required adaptation measures may be less extensive and thereby require less cost and time to implement. This paper discusses the flow-on implications of Australia's projected climate change

  7. Sensitivity of inferred climate model skill to evaluation decisions: a case study using CMIP5 evapotranspiration

    International Nuclear Information System (INIS)

    Schwalm, Christopher R; Huntinzger, Deborah N; Michalak, Anna M; Fisher, Joshua B; Kimball, John S; Mueller, Brigitte; Zhang, Ke; Zhang Yongqiang

    2013-01-01

    Confrontation of climate models with observationally-based reference datasets is widespread and integral to model development. These comparisons yield skill metrics quantifying the mismatch between simulated and reference values and also involve analyst choices, or meta-parameters, in structuring the analysis. Here, we systematically vary five such meta-parameters (reference dataset, spatial resolution, regridding approach, land mask, and time period) in evaluating evapotranspiration (ET) from eight CMIP5 models in a factorial design that yields 68 700 intercomparisons. The results show that while model–data comparisons can provide some feedback on overall model performance, model ranks are ambiguous and inferred model skill and rank are highly sensitive to the choice of meta-parameters for all models. This suggests that model skill and rank are best represented probabilistically rather than as scalar values. For this case study, the choice of reference dataset is found to have a dominant influence on inferred model skill, even larger than the choice of model itself. This is primarily due to large differences between reference datasets, indicating that further work in developing a community-accepted standard ET reference dataset is crucial in order to decrease ambiguity in model skill. (letter)

  8. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state

    Science.gov (United States)

    Tucker, Colin; Ferrenberg, Scott; Reed, Sasha C.

    2018-01-01

    Arid and semiarid ecosystems make up approximately 41% of Earth’s terrestrial surface and are suggested to regulate the trend and interannual variability of the global terrestrial carbon (C) sink. Biological soil crusts (biocrusts) are common dryland soil surface communities of bryophytes, lichens, and/or cyanobacteria that bind the soil surface together and that may play an important role in regulating the climatic sensitivity of the dryland C cycle. Major uncertainties exist in our understanding of the interacting effects of changing temperature and moisture on CO2 uptake (photosynthesis) and loss (respiration) from biocrust and sub-crust soil, particularly as related to biocrust successional state. Here, we used a mesocosm approach to assess how biocrust successional states related to climate treatments. We subjected bare soil (Bare), early successional lightly pigmented cyanobacterial biocrust (Early), and late successional darkly pigmented moss-lichen biocrust (Late) to either ambient or + 5°C above ambient soil temperature for 84 days. Under ambient temperatures, Late biocrust mesocosms showed frequent net uptake of CO2, whereas Bare soil, Early biocrust, and warmed Late biocrust mesocosms mostly lost CO2 to the atmosphere. The inhibiting effect of warming on CO2 exchange was a result of accelerated drying of biocrust and soil. We used these data to parameterize, via Bayesian methods, a model of ecosystem CO2 fluxes, and evaluated the model with data from an autochamber CO2 system at our field site on the Colorado Plateau in SE Utah. In the context of the field experiment, the data underscore the negative effect of warming on fluxes both biocrust CO2 uptake and loss—which, because biocrusts are a dominant land cover type in this ecosystem, may extend to ecosystem-scale C cycling.

  9. Climate Change and Future Pollen Allergy in Europe.

    Science.gov (United States)

    Lake, Iain R; Jones, Natalia R; Agnew, Maureen; Goodess, Clare M; Giorgi, Filippo; Hamaoui-Laguel, Lynda; Semenov, Mikhail A; Solomon, Fabien; Storkey, Jonathan; Vautard, Robert; Epstein, Michelle M

    2017-03-01

    Globally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans. We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed ( Ambrosia artemisiifolia ) in Europe. A process-based model estimated the change in ragweed's range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose-response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios. Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041-2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results. Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change. Citation: Lake IR

  10. Valuing Precaution in Climate Change Policy Analysis (Invited)

    Science.gov (United States)

    Howarth, R. B.

    2010-12-01

    The U.N. Framework Convention on Climate Change calls for stabilizing greenhouse gas concentrations to prevent “dangerous anthropogenic interference” (DAI) with the global environment. This treaty language emphasizes a precautionary approach to climate change policy in a setting characterized by substantial uncertainty regarding the timing, magnitude, and impacts of climate change. In the economics of climate change, however, analysts often work with deterministic models that assign best-guess values to parameters that are highly uncertain. Such models support a “policy ramp” approach in which only limited steps should be taken to reduce the future growth of greenhouse gas emissions. This presentation will explore how uncertainties related to (a) climate sensitivity and (b) climate-change damages can be satisfactorily addressed in a coupled model of climate-economy dynamics. In this model, capping greenhouse gas concentrations at ~450 ppm of carbon dioxide equivalent provides substantial net benefits by reducing the risk of low-probability, catastrophic impacts. This result formalizes the intuition embodied in the DAI criterion in a manner consistent with rational decision-making under uncertainty.

  11. Sensitivity Analysis of Snow Patterns in Swiss Ski Resorts to Shifts in Temperature, Precipitation and Humidity Under Condition of Climate Change

    Science.gov (United States)

    Uhlmann, B.; Goyette, S.; Beniston, M.

    2008-12-01

    The value of snow as a resource has considerably increased in Swiss mountain regions, in particular in the context of winter tourism. In the perspective of a warming climate, it is thus important to quantify the potential changes in snow amount and duration that could have large repercussions on the economy of ski resorts. Because of the fine spatial variability of snow, the use of a Surface Energy Balance Model (SEBM) is adequate to simulate local snow cover evolution. A perturbation method has been developed to generate plausible future meteorological input data required for SEBM simulations in order to assess the changes in snow cover patterns. Current and future snow depths have also been simulated within the ski areas themselves. The results show a large decrease of the snow depths and duration, even at high elevation in a warmer climate and emphasize the sensitivity of snow to topographical characteristics of the resorts. The study highlights the fact that not only the altitude of a domain but also its exposure, localization inland and slope gradients need to be taken into account when evaluating current and future snow depths. This method enables a precise assessment of the snow pattern over a small area.

  12. Climate change risks and conservation implications for a threatened small-range mammal species.

    Directory of Open Access Journals (Sweden)

    Naia Morueta-Holme

    Full Text Available BACKGROUND: Climate change is already affecting the distributions of many species and may lead to numerous extinctions over the next century. Small-range species are likely to be a special concern, but the extent to which they are sensitive to climate is currently unclear. Species distribution modeling, if carefully implemented, can be used to assess climate sensitivity and potential climate change impacts, even for rare and cryptic species. METHODOLOGY/PRINCIPAL FINDINGS: We used species distribution modeling to assess the climate sensitivity, climate change risks and conservation implications for a threatened small-range mammal species, the Iberian desman (Galemys pyrenaicus, which is a phylogenetically isolated insectivore endemic to south-western Europe. Atlas data on the distribution of G. pyrenaicus was linked to data on climate, topography and human impact using two species distribution modeling algorithms to test hypotheses on the factors that determine the range for this species. Predictive models were developed and projected onto climate scenarios for 2070-2099 to assess climate change risks and conservation possibilities. Mean summer temperature and water balance appeared to be the main factors influencing the distribution of G. pyrenaicus. Climate change was predicted to result in significant reductions of the species' range. However, the severity of these reductions was highly dependent on which predictor was the most important limiting factor. Notably, if mean summer temperature is the main range determinant, G. pyrenaicus is at risk of near total extinction in Spain under the most severe climate change scenario. The range projections for Europe indicate that assisted migration may be a possible long-term conservation strategy for G. pyrenaicus in the face of global warming. CONCLUSIONS/SIGNIFICANCE: Climate change clearly poses a severe threat to this illustrative endemic species. Our findings confirm that endemic species can be

  13. Mapping Drought Sensitivity of Ecosystem Functioning in Mountainous Watersheds: Spatial Heterogeneity and Geological-Geomorphological Control

    Science.gov (United States)

    Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.

    2016-12-01

    Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our

  14. Climate change and amphibians

    OpenAIRE

    Corn, P. S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines i...

  15. Assessment of 6- to 20-Grade Educators' Climate Knowledge and Perceptions: Results from the Climate Stewardship Survey

    Science.gov (United States)

    McNeal, Karen S.; Walker, Scott L.; Rutherford, David

    2014-01-01

    The southeastern United States (SEUS) faces numerous potential impacts from a changing climate; however, the population has been characterized with a predominance of naysayers and few climate policies have been implemented by state governments in the region. As such, public education is an important avenue for achieving a climate literate…

  16. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  17. Climate Change Vulnerability and Resilience: Current Status and Trends for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ibarraran , Maria E.; Malone, Elizabeth L.; Brenkert, Antoinette L.

    2008-12-30

    Climate change alters different localities on the planet in different ways. The impact on each region depends mainly on the degree of vulnerability that natural ecosystems and human-made infrastructure have to changes in climate and extreme meteorological events, as well as on the coping and adaptation capacity towards new environmental conditions. This study assesses the current resilience of Mexico and Mexican states to such changes, as well as how this resilience will look in the future. In recent studies (Moss et al. 2000, Brenkert and Malone 2005, Malone and Brenket 2008, Ibarrarán et al. 2007), the Vulnerability-Resilience Indicators Model (VRIM) is used to integrate a set of proxy variables that determine the resilience of a region to climate change. Resilience, or the ability of a region to respond to climate variations and natural events that result from climate change, is given by its adaptation and coping capacity and its sensitivity. On the one hand, the sensitivity of a region to climate change is assessed, emphasizing its infrastructure, food security, water resources, and the health of the population and regional ecosystems. On the other hand, coping and adaptation capacity is based on the availability of human resources, economic capacity and environmental capacity.

  18. Vulnerabilities of national parks in the American Midwest to climate and land use changes

    Science.gov (United States)

    Stroh, Esther D.; Struckhoff, Matthew A.; Shaver, David; Karstensen, Krista A.

    2016-06-08

    Many national parks in the American Midwest are surrounded by agricultural or urban areas or are in highly fragmented or rapidly changing landscapes. An environmental stressor is a physical, chemical, or biological condition that affects the functioning or productivity of species or ecosystems. Climate change is just one of many stressors on park natural resources; others include urbanization, land use change, air and water pollution, and so on. Understanding and comparing the relative vulnerability of a suite of parks to projected climate and land use changes is important for region-wide planning. A vulnerability assessment of 60 units in the 13-state U.S. National Park Service Midwestern administrative region to climate and land use change used existing data from multiple sources. Assessment included three components: individual park exposure (5 metrics), sensitivity (5 metrics), and constraints to adaptive capacity (8 metrics) under 2 future climate scenarios. The three components were combined into an overall vulnerability score. Metrics were measures of existing or projected conditions within park boundaries, within 10-kilometer buffers surrounding parks, and within ecoregions that contain or intersect them. Data were normalized within the range of values for all assessed parks, resulting in high, medium, and low relative rankings for exposure, sensitivity, constraints to adaptive capacity, and overall vulnerability. Results are consistent with assessments regarding patterns and rates of climate change nationwide but provide greater detail and relative risk for Midwestern parks. Park overall relative vulnerability did not differ between climate scenarios. Rankings for exposure, sensitivity, and constraints to adaptive capacity varied geographically and indicate regional conservation planning opportunities. The most important stressors for the most vulnerable Midwestern parks are those related to sensitivity (intrinsic characteristics of the park) and

  19. Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints

    DEFF Research Database (Denmark)

    Overgaard, Anne Blach; Svenning, J.-C.; Dransfield, John

    2010-01-01

    -climatic environmental predictors, the latter having no discernible effect beyond the climatic control. Hence, at the continental scale, climate constitutes the only strong environmental control of palm species distributions in Africa. With regard to the most important climatic predictors of African palm distributions......, water-related factors were most important for 25 of the 29 species analysed. The strong response of palm distributions to climate in combination with the importance of non-environmental spatial constraints suggests that African palms will be sensitive to future climate changes, but that their ability...

  20. What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy?

    International Nuclear Information System (INIS)

    House, Joanna I; Knorr, Wolfgang; Cornell, Sarah E; Prentice, I Colin; Huntingford, Chris; Cox, Peter M; Harris, Glen R; Jones, Chris D; Lowe, Jason A

    2008-01-01

    Global policy targets for greenhouse gas emissions reductions are being negotiated. The amount of emitted carbon dioxide remaining in the atmosphere is controlled by carbon cycle processes in the ocean and on land. These processes are themselves affected by climate. The resulting 'climate-carbon cycle feedback' has recently been quantified, but the policy implications have not. Using a scheme to emulate the range of state-of-the-art model results for climate feedback strength, including the modelled range of climate sensitivity and other key uncertainties, we analyse recent global targets. The G8 target of a 50% cut in emissions by 2050 leaves CO 2 concentrations rising rapidly, approaching 1000 ppm by 2300. The Stern Review's proposed 25% cut in emissions by 2050, continuing to an 80% cut, does in fact approach stabilization of CO 2 concentration on a policy-relevant (century) timescale, with most models projecting concentrations between 500 and 600 ppm by 2100. However concentrations continue to rise gradually. Long-term stabilization at 550 ppm CO 2 requires cuts in emissions of 81 to 90% by 2300, and more beyond as a portion of the CO 2 emitted persists for centuries to millennia. Reductions of other greenhouse gases cannot compensate for the long-term effects of emitting CO 2 .

  1. The use of the k - {epsilon} turbulence model within the Rossby Centre regional ocean climate model: parameterization development and results

    Energy Technology Data Exchange (ETDEWEB)

    Markus Meier, H.E. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden). Rossby Centre

    2000-09-01

    As mixing plays a dominant role for the physics of an estuary like the Baltic Sea (seasonal heat storage, mixing in channels, deep water mixing), different mixing parameterizations for use in 3D Baltic Sea models are discussed and compared. For this purpose two different OGCMs of the Baltic Sea are utilized. Within the Swedish regional climate modeling program, SWECLIM, a 3D coupled ice-ocean model for the Baltic Sea has been coupled with an improved version of the two-equation k - {epsilon} turbulence model with corrected dissipation term, flux boundary conditions to include the effect of a turbulence enhanced layer due to breaking surface gravity waves and a parameterization for breaking internal waves. Results of multi-year simulations are compared with observations. The seasonal thermocline is simulated satisfactory and erosion of the halocline is avoided. Unsolved problems are discussed. To replace the controversial equation for dissipation the performance of a hierarchy of k-models has been tested and compared with the k - {epsilon} model. In addition, it is shown that the results of the mixing parameterization depend very much on the choice of the ocean model. Finally, the impact of two mixing parameterizations on Baltic Sea climate is investigated. In this case the sensitivity of mean SST, vertical temperature and salinity profiles, ice season and seasonal cycle of heat fluxes is quite large.

  2. Utilization of paleoclimate results to validate projections of a future greenhouse warming

    International Nuclear Information System (INIS)

    Crowley, T.J.

    1990-01-01

    Paleoclimate data provide a rich source of information for testing projections of future greenhouse trends. This paper summarizes the present state-of-the-art as to assessments of two important climate problems. (1) Validation of climate models - The same climate models that have been used to make greenhouse forecasts have also been used for paleoclimate simulations. Comparisons of model results and observations indicate some impressive successes but also some cases where there are significant divergences between models and observations. However, special conditions associated with the impressive successes could lead to a false confidence in the models; disagreements are a topic of greater concern. It remains to be determined whether the disagreements are due to model limitations or uncertainties in geologic data. (2) Role of CO 2 as a significant climate feedback: Paleoclimate studies indicate that the climate system is generally more sensitive than our ability to model it. Addition or subtraction of CO 2 leads to a closer agreement between models and observations. In this respect paleoclimate results in general support the conclusion that CO 2 is an important climate feedback, with the magnitude of the feedback approximately comparable to the sensitivity of present climate models. If the CO 2 projections are correct, comparison of the future warming with past warm periods indicate that there may be no geologic analogs for a future warming; the future greenhouse climate may represent a unique climate realization in earth history

  3. Climate change and runoff in south-western Australia

    Science.gov (United States)

    Silberstein, R. P.; Aryal, S. K.; Durrant, J.; Pearcey, M.; Braccia, M.; Charles, S. P.; Boniecka, L.; Hodgson, G. A.; Bari, M. A.; Viney, N. R.; McFarlane, D. J.

    2012-12-01

    SummaryThis paper presents the results of computer simulations of runoff from 13 major fresh and brackish river basins in south-western Australia (SWA) under climate projections obtained from 15 GCMs with three future global warming scenarios equivalent to global temperature rises of 0.7 °C, 1.0 °C and 1.3 °C by 2030. The objective was to apply an efficient methodology, consistent across a large region, to examine the implications of the best available projections in climate trends for future surface water resources. An ensemble of rainfall-runoff models was calibrated on stream flow data from 1975 to 2007 from 106 gauged catchments distributed throughout the basins of the study area. The sensitivity of runoff to projected changes in mean annual rainfall is examined using the climate 'elasticity' concept. Averaged across the study area, all 15 GCMs project declines in rainfall under all global warming scenarios with a median decline of 8% resulting in a median decline in runoff of 25%. Such uniformity in projections from GCMs is unusual. Over SWA the average annual runoff under the 5th wettest and 5th driest of the 45 projections of the 2030 climate declines by 10 and 42%, respectively. Under the 5th driest projection the runoff decline ranges from 53% in the northern region to 40% in the southern region. Strong regional variations in climate sensitivity are found with the proportional decline in runoff greatest in the northern region and the greatest volumetric declines in the wetter basins in the south. Since the mid 1970s stream flows into the major water supply reservoirs in SWA have declined by more than 50% following a 16% rainfall reduction. This has already had major implications for water resources planning and for the preservation of aquatic and riparian ecosystems in the region. Our results indicate that this reduction in runoff is likely to continue if future climate projections eventuate.

  4. Planning in a climate of change: Choices under uncertainty

    International Nuclear Information System (INIS)

    Etkin, D.

    1993-01-01

    As part of a plan to ensure that potential changes in the Canadian environment as a result of climate change are considered in major projects, the Canadian Climate Centre has developed a set of interim guidelines for consideration of climate change concerns in environmental assessments. One such guideline is to identify the sensitivity of the project to climate variability and change, including increased risks of extreme events. This guideline is discussed in a consideration of different methodologies of assessing possible future impacts, and in an examination of ways to assemble a climate data base. Climatological data sets may be obtained from climate normals, historical or paleoclimate data, global climate models, or spatial analogues. Methodological approaches include selecting the most likely future, selecting a range of scenarios, bounding the problem, or using a probability distribution function. A case study is used for illustration, in which the effects of climate change on a permafrost dyke of a tailings pond at an Arctic mining operation are assessed. 18 refs., 3 figs

  5. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  6. Search Results | Page 87 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Results 861 - 870 of 9601 ... Generating evidence on gender sensitive climate-smart ... A feminist approach to open government: investing in gender equality to drive sustainable development ... by covering the operational costs, including salaries and benefits, ... compared to other essential services like education and health.

  7. Drought risk assessment under climate change is sensitive to methodological choices for the estimation of evaporative demand.

    Science.gov (United States)

    Dewes, Candida F; Rangwala, Imtiaz; Barsugli, Joseph J; Hobbins, Michael T; Kumar, Sanjiv

    2017-01-01

    Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models' expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM, and standardization of time series influence the estimation of E0. These methodological choices yield different assessments of spatio-temporal variability in E0 and different trends in 21st century drought risk. First, we estimate E0 using three widely used E0 formulations: Penman-Monteith; Hargreaves-Samani; and Priestley-Taylor. Our analysis, which primarily focuses on the May-September warm-season period, shows that E0 climatology and its spatial pattern differ substantially between these three formulations. Overall, we find higher magnitudes of E0 and its interannual variability using Penman-Monteith, in particular for regions like the Great Plains and southwestern US where E0 is strongly influenced by variations in wind and relative humidity. When examining projected changes in E0 during the 21st century, there are also large differences among the three formulations, particularly the Penman-Monteith relative to the other two formulations. The 21st century E0 trends, particularly in percent change and standardized anomalies of E0, are found to be sensitive to the long-term mean value and the amplitude of interannual variability, i.e. if the magnitude of E0 and its interannual variability are relatively low for a particular E0 formulation, then the normalized or standardized 21st century trend based on that formulation is amplified

  8. Observations from old forests underestimate climate change effects on tree mortality.

    Science.gov (United States)

    Luo, Yong; Chen, Han Y H

    2013-01-01

    Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.

  9. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sinkyu [Department of Environmental Science, Kangwon National University, Chunchon, Kangwon-do 200-701 (Korea, Republic of); Kimball, John S.; Running, Steven W. [Numerical Terradynamic Simulation Group, Department of Ecosystem and Conservation Sciences, The University of Montana, Missoula, MT 59812 (United States)

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km{sup 2} portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO{sub 2}, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO{sub 2} resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T{sub a}), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 {sup o}C for T{sub a} and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO{sub 2}, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  10. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications

    Science.gov (United States)

    Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; Correa, E.; Currano, E.D.; Erickson, J.M.; Hinojosa, L.F.; Hoganson, J.W.; Iglesias, A.; Jaramillo, C.A.; Johnson, K.R.; Jordan, G.J.; Kraft, N.J.B.; Lovelock, E.C.; Lusk, C.H.; Niinemets, U.; Penuelas, J.; Rapson, G.; Wing, S.L.; Wright, I.J.

    2011-01-01

    Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (??4.0 vs 4.8??C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships. ?? 2011 The Authors. New Phytologist ?? 2011 New Phytologist Trust.

  11. Quantitative assessment of Vulnerability of Forest ecosystem to Climate Change in Korea

    Science.gov (United States)

    Byun, J.; Lee, W.; Choi, S.; Oh, S.; Climate Change Model Team

    2011-12-01

    The purpose of this study was to assess the vulnerability of forest ecosystem to climate change in Korea using outputs of vegetation models(HyTAG and MC1) and socio-ecological indicators. Also it suggested adaptation strategies in forest management through analysis of three vulnerability components: exposure, sensitivity and adaptive capacity. For the model simulation of past years(1971-2000), the climatic data was prepared by the Korea Meteorological Administration(KMA). In addition, for the future simulation, the Fifth-Generation NCAR/Penn State Mesoscale Model(MM5) coupling with atmosphere-ocean circulation model(ECHO-G) provide the future climatic data under the A1B scenarios. HyTAG (Hydrological and Thermal Analogy Groups), korean model of forest distribution on a regional-scale, could show extent of sensitivity and adaptive capacity in connection with changing frequency and changing direction of vegetation. MC1 model could provide variation and direction of NPP(Net Primary Production) and SCS(Soil Carbon Storage). In addition, the sensitivity and adaptation capacity were evaluated for each. Besides indicators from models, many other indicators such as financial affairs and number of officers were included in the vulnerability components. As a result of the vulnerability assessment, south western part and Je-ju island of Korea had relatively high vulnerability. This finding is considered to come from a distinctively adaptative capacity. Using these results, we could propose actions against climate change and develop decision making systems on forest management.

  12. Dynamics of the flood response to slow-fast landscape-climate feedbacks

    Directory of Open Access Journals (Sweden)

    R. A. P. Perdigão

    2015-06-01

    Full Text Available The dynamical evolution of the flood response to landscape-climate feedbacks is evaluated in a joint nonlinear statistical-dynamical approach. For that purpose, a spatiotemporal sensitivity analysis is conducted on hydrological data from 1976–2008 over 804 catchments throughout Austria, and a general, data-independent nonlinear dynamical model is built linking floods with climate (via precipitation, landscape (via elevation and their feedbacks. These involve nonlinear scale interactions, with landform evolution processes taking place at the millennial scale (slow dynamics, and climate adjusting in years to decades (fast dynamics. The results show that floods are more responsive to spatial (regional than to temporal (decadal variability. Catchments from dry lowlands and high wetlands exhibit similarity between the spatial and temporal sensitivities (spatiotemporal symmetry and low landscape-climate codependence, suggesting they are not coevolving significantly. However, intermediate regions show differences between those sensitivities (symmetry breaks and higher landscape-climate codependence, suggesting undergoing coevolution. The break of symmetry is an emergent behaviour from nonlinear feedbacks within the system. A new coevolution index is introduced relating spatiotemporal symmetry with relative characteristic celerities, which need to be taken into account in hydrological space-time trading. Coevolution is expressed here by the interplay between slow and fast dynamics, represented respectively by spatial and temporal characteristics. The dynamical model captures emerging features of the flood dynamics and nonlinear landscape-climate feedbacks, supporting the nonlinear statistical assessment of spatiotemporally asymmetric flood change. Moreover, it enables the dynamical estimation of flood changes in space and time from the given knowledge at different spatiotemporal conditions. This study ultimately brings to light emerging signatures of

  13. Bi-national Great Lakes-St. Lawrence Basin climate change and hydrologic scenarios report

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, B.; Smith, J.V.; Koshida, G.; Mortsch, L.D. [eds.

    1998-09-01

    Climate experts in government, industry and academic institutions have put together a national assessment of how climate change will affect Canadians and their social, biological and economic environment over the next century. This volume documents the impacts and implications of climate change on the Great Lakes-St. Lawrence Basin, and provides an analysis and assessment of various climate and hydrologic scenarios used for the Great Lakes - St. Lawrence Basin Project. As part of the analysis and assessment, results from the Canadian Climate Centre second-generation General Circulation Model and four transposition scenarios for both climate and hydrological resources are reviewed. The objective is to provide an indication of sensitivities and vulnerabilities of the region to climate, with a view to improve adaptation to potential climate changes. 25 tabs., 26 figs. figs.

  14. Forecasting the future risk of Barmah Forest virus disease under climate change scenarios in Queensland, Australia.

    Science.gov (United States)

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

  15. Effects of snow grain non-sphericity on climate simulations: Sensitivity tests with the NorESM model

    Science.gov (United States)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf

    2017-04-01

    Snow grains are non-spherical and generally irregular in shape. Still, in radiative transfer calculations, they are often treated as spheres. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this work, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (≈ 0.78 in the visible region) than in the spherical case (≈ 0.89). Therefore, for a given snow grain size, the use of non-spherical snow grains yields a higher snow broadband albedo, typically by ≈0.03. Consequently, considering the spherical case as the baseline, the use of non-spherical snow grains results in a negative radiative forcing (RF), with a global-mean top-of-the-model value of ≈ -0.22 W m-2. Although this global-mean RF is modest, it has a rather substantial impact on the climate simulated by NoRESM. In particular, the global annual-mean 2-m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further found that the difference between NONSPH and SPH could be largely "tuned away" by adjusting the snow grain size in the NONSPH experiment by ≈ 70%. The impact of snow grain shape on the radiative effect (RE) of absorbing aerosols in snow (black carbon and mineral dust) is also discussed. For an

  16. Climate consoles: Pieces in the puzzle of climate change adaptation

    Directory of Open Access Journals (Sweden)

    Dominique Bachelet

    2017-12-01

    Full Text Available Conservation Biology Institute (CBI has been developing web applications to centralize and serve credible and usable information that allows natural resource managers, as well as the general public, to better understand the challenges posed by on-going environmental change. In particular CBI has designed a series of climate consoles that provide natural resource managers the most recent 5th Climate Model Intercomparison Program (CMIP5 climate projections, landscape intactness, and soil sensitivity for a series of reporting units over the western United States. The publically available web sites were refined based on feedback from a variety of users. In this paper, we describe each of the tools developed as open-source applications and provide details of their infrastructure in the hope they can be used and possibly modified by a wider audience. They were designed to be used as stepping-stones towards planning effective climate change adaptation strategies.

  17. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  18. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    Science.gov (United States)

    Swaminathan, Ashwin; Lucas, Robyn M; Harley, David; McMichael, Anthony J

    2014-11-11

    The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations-particularly for children-to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.

  19. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    Directory of Open Access Journals (Sweden)

    Ashwin Swaminathan

    2014-11-01

    Full Text Available The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations—particularly for children—to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.

  20. Linkages between ocean circulation, heat uptake and transient warming: a sensitivity study

    Science.gov (United States)

    Pfister, Patrik; Stocker, Thomas

    2016-04-01

    Transient global warming due to greenhouse gas radiative forcing is substantially reduced by ocean heat uptake (OHU). However, the fraction of equilibrium warming that is realized in transient climate model simulations differs strongly between models (Frölicher and Paynter 2015). It has been shown that this difference is not only related to the magnitude of OHU, but also to the radiative response the OHU causes, measured by the OHU efficacy (Winton et al., 2010). This efficacy is strongly influenced by the spatial pattern of the OHU and its changes (Rose et al. 2014, Winton et al. 2013), predominantly caused by changes in the Atlantic meridional overturning circulation (AMOC). Even in absence of external greenhouse gas forcing, an AMOC weakening causes a radiative imbalance at the top of the atmosphere (Peltier and Vettoretti, 2014), inducing in a net warming of the Earth System. We investigate linkages between those findings by performing both freshwater and greenhouse gas experiments in an Earth System Model of Intermediate Complexity. To assess the sensitivity of the results to ocean and atmospheric transport as well as climate sensitivity, we use an ensemble of model versions, systematically varying key parameters. We analyze circulation changes and radiative adjustments in conjunction with traditional warming metrics such as the transient climate response and the equilibrium climate sensitivity. This aims to improve the understanding of the influence of ocean circulation and OHU on transient climate change, and of the relevance of different metrics for describing this influence. References: Frölicher, T. L. and D.J. Paynter (2015), Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales, Environ. Res. Lett., 10, 075022 Peltier, W. R., and G. Vettoretti (2014), Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res

  1. Social vulnerability and climate change: synthesis of literature

    Science.gov (United States)

    Kathy Lynn; Katharine MacKendrick; Ellen M. Donoghue

    2011-01-01

    The effects of climate change are expected to be more severe for some segments of society than others because of geographic location, the degree of association with climate-sensitive environments, and unique cultural, economic, or political characteristics of particular landscapes and human populations. Social vulnerability and equity in the context of climate change...

  2. Edge effects resulting from forest fragmentation enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.

    2016-12-01

    Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  3. A dynamic, climate-driven model of Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Joseph Leedale

    2016-03-01

    Full Text Available Outbreaks of Rift Valley fever (RVF in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  4. Future Projection of Ocean Wave Climate: Analysis of SST Impacts on Wave Climate Changes in the Western North Pacific

    OpenAIRE

    Shimura, Tomoya; Mori, Nobuhito; Mase, Hajime

    2015-01-01

    Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of...

  5. Climate effect of ozone changes caused by present and future air traffic

    Energy Technology Data Exchange (ETDEWEB)

    Ponater, M.; Sausen, R.; Feneberg, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1998-08-01

    The potential of aircraft-induced ozone changes to significantly enhance the climate impact of air traffic due to CO{sub 2}-emissions is investigated by means of simulations with an atmospheric general circulation model, coupled to a mixed layer ocean model. Results from several numerical experiments are presented, based on ozone increase patterns for 1992 aviation and on a future scenario for the year 2015. The climate signal is statistically significant for both time slices. Its strength is of comparable magnitude to that arising from aircraft CO{sub 2} emissions, thus meaning a nonnegligible contribution to the total effect. There are indications of a characteristic signature of the aircraft ozone related temperature response pattern, distinctly different from that typically associated with the increase of a well-mixed greenhouse gas. Likewise, the climate sensitivity to nonuniform ozone changes including a strong concentration perturbation at the tropopause appears to he higher than the climate sensitivity to uniform changes of a greenhouse gas. In a hierarchy of experiments based on an aircraft-related ozone perturbation with fixed structure (but increasing amplitude), the climate signal depends in a nonlinear way from the radiative forcing. (orig.) 44 refs.

  6. Costing the impact of climate change on tourism in Europe: results of the PESETA project. Climatic Change

    NARCIS (Netherlands)

    Amelung, B.; Moreno, A.

    2012-01-01

    Climate change might lead to large shifts in tourist flows, with large economic implications. This article simulates the effect of future climate change by the 2080s on outdoor international tourism expenditure within Europe. The assessment is based on the statistical relationship between bed nights

  7. Climate-mediated competition in a high-elevation salamander community

    Science.gov (United States)

    Dallalio, Eric A.; Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    The distribution of the federally endangered Shenandoah Salamander (Plethodon shenandoah) is presumed to be limited by competition with the Red-backed Salamander (Plethodon cinereus). In particular, the current distribution of P. shenandoah is understood to be restricted to warmer and drier habitats because of interspecific interactions. These habitats may be particularly sensitive to climate change, though the influence of competition may also be affected by temperature and relative humidity. We investigated the response of P. shenandoah to competition with P. cinereus under four climate scenarios in 3-dimensional mesocosms. The results suggest that, although climate change may alleviate competitive pressure from P. cinereus, warmer temperatures may also significantly influence the persistence of the species across its known range.

  8. Decadal climate prediction (project GCEP).

    Science.gov (United States)

    Haines, Keith; Hermanson, Leon; Liu, Chunlei; Putt, Debbie; Sutton, Rowan; Iwi, Alan; Smith, Doug

    2009-03-13

    Decadal prediction uses climate models forced by changing greenhouse gases, as in the International Panel for Climate Change, but unlike longer range predictions they also require initialization with observations of the current climate. In particular, the upper-ocean heat content and circulation have a critical influence. Decadal prediction is still in its infancy and there is an urgent need to understand the important processes that determine predictability on these timescales. We have taken the first Hadley Centre Decadal Prediction System (DePreSys) and implemented it on several NERC institute compute clusters in order to study a wider range of initial condition impacts on decadal forecasting, eventually including the state of the land and cryosphere. The eScience methods are used to manage submission and output from the many ensemble model runs required to assess predictive skill. Early results suggest initial condition skill may extend for several years, even over land areas, but this depends sensitively on the definition used to measure skill, and alternatives are presented. The Grid for Coupled Ensemble Prediction (GCEP) system will allow the UK academic community to contribute to international experiments being planned to explore decadal climate predictability.

  9. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brunsell, Nathaniel [Univ. of Kansas, Lawrence, KS (United States); Mechem, David [Univ. of Kansas, Lawrence, KS (United States); Ma, Chunsheng [Wichita State Univ., KS (United States)

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the

  10. Assessing the vulnerability of economic sectors to climate variability to improve the usability of seasonal to decadal climate forecasts in Europe - a preliminary concept

    Science.gov (United States)

    Funk, Daniel

    2015-04-01

    Climate variability poses major challenges for decision-makers in climate-sensitive sectors. Seasonal to decadal (S2D) forecasts provide potential value for management decisions especially in the context of climate change where information from present or past climatology loses significance. However, usable and decision-relevant tailored climate forecasts are still sparse for Europe and successful examples of application require elaborate and individual producer-user interaction. The assessment of sector-specific vulnerabilities to critical climate conditions at specific temporal scale will be a great step forward to increase the usability and efficiency of climate forecasts. A concept for a sector-specific vulnerability assessment (VA) to climate variability is presented. The focus of this VA is on the provision of usable vulnerability information which can be directly incorporated in decision-making processes. This is done by developing sector-specific climate-impact-decision-pathways and the identification of their specific time frames using data from both bottom-up and top-down approaches. The structure of common VA's for climate change related issues is adopted which envisages the determination of exposure, sensitivity and coping capacity. However, the application of the common vulnerability components within the context of climate service application poses some fundamental considerations: Exposure - the effect of climate events on the system of concern may be modified and delayed due to interconnected systems (e.g. catchment). The critical time-frame of a climate event or event sequence is dependent on system-internal thresholds and initial conditions. But also on decision-making processes which require specific lead times of climate information to initiate respective coping measures. Sensitivity - in organizational systems climate may pose only one of many factors relevant for decision making. The scope of "sensitivity" in this concept comprises both the

  11. Tropical-extratropical climate interaction as revealed in idealized coupled climate model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haijun [Peking University, Department of Atmospheric Science and Laboratory for Severe Storm and Flood Disasters, School of Physics, Beijing (China); Liu, Zhengyu [University of Wisconsin-Madison, Center for Climatic Research and Department of the Atmospheric and Oceanic Sciences, Madison, WI (United States)

    2005-06-01

    Tropical-extratropical climate interactions are studied by idealized experiments with a prescribed 2 C SST anomaly at different latitude bands in a coupled climate model. Instead of focusing on intrinsic climate variability, this work investigates the mean climate adjustment to remote external forcing. The extratropical impact on tropical climate can be as strong as the tropical impact on extratropical climate, with the remote sea surface temperature (SST) response being about half the magnitude of the imposed SST change in the forcing region. The equatorward impact of extratropical climate is accomplished by both the atmospheric bridge and the oceanic tunnel. About two-thirds of the tropical SST change comes from the atmospheric bridge, while the remaining one-third comes from the oceanic tunnel. The equatorial SST increase is first driven by the reduced latent heat flux and the weakened poleward surface Ekman transport, and then enhanced by the decrease in subtropical cells' strength and the equatorward subduction of warm anomalies. In contrast, the poleward impact of tropical climate is accomplished mainly by the atmospheric bridge, which is responsible for extratropical temperature changes in both the surface and subsurface. Sensitivity experiments also show the dominant role of the Southern Hemisphere oceans in the tropical climate change. (orig.)

  12. Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate

    International Nuclear Information System (INIS)

    Singh, Ramkishore; Lazarus, I.J.; Kishore, V.V.N.

    2016-01-01

    Highlights: • Various alternatives of glazing and venetian blind were simulated for office space. • Daylighting and energy performances were assessed for each alternative. • Large uncertainties were estimated in the energy consumptions and UDI values. • Glazing design parameters were prioritised by performing sensitivity analysis. • WWR, glazing type, blind orientation and slat angle were identified top in priority. - Abstract: Fenestration has become an integral part of the buildings and has a significant impact on the energy and indoor visual performances. Inappropriate design of the fenestration component may lead to low energy efficiency and visual discomfort as a result of high solar and thermal heat gains, excessive daylight and direct sunlight. External venetian blind has been identified as one of the effective shading devices for controlling the heat gains and daylight through fenestration. This study explores uncertainty and sensitivity analyses to identify and prioritize the most influencing parameters for designing glazed components that include external shading devices for office buildings. The study was performed for hot-dry climate of Jodhpur (Latitude 26° 180′N, longitude 73° 010′E) using EnergyPlus, a whole building energy simulation tool providing a large number of inputs for eight façade orientations. A total 150 and 845 data points (for each orientation) for input variables were generated using Hyper Cubic Sampling and extended FAST methods for uncertainty and sensitivity analyses respectively. Results indicated a large uncertainty in the lighting, HVAC, source energy consumptions and useful daylight illuminance (UDI). The estimated coefficients of variation were highest (up to 106%) for UDI, followed by lighting energy (up to 45%) and HVAC energy use (around 33%). The sensitivity analysis identified window to wall ratio, glazing type, blind type (orientation of slats) and slat angle as highly influencing factors for energy and

  13. Climate Change Vulnerability Assessment for Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  14. Uncertainty in water resources availability in the Okavango River basin as a result of climate change

    Directory of Open Access Journals (Sweden)

    D. A. Hughes

    2011-03-01

    Full Text Available This paper assesses the hydrological response to scenarios of climate change in the Okavango River catchment in Southern Africa. Climate scenarios are constructed representing different changes in global mean temperature from an ensemble of 7 climate models assessed in the IPCC AR4. The results show a substantial change in mean flow associated with a global warming of 2 °C. However, there is considerable uncertainty in the sign and magnitude of the projected changes between different climate models, implying that the ensemble mean is not an appropriate generalised indicator of impact. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation. There is also a clear need to evaluate the physical mechanisms associated with the model projected changes in this region. The implications for water resource management policy are considered.

  15. Mapping climate change in European temperature distributions

    OpenAIRE

    Stainforth, David A.; Chapman, Sandra C.; Watkins, Nicholas W.

    2014-01-01

    Climate change poses challenges for decision makers across society, not just in preparing for the climate of the future but even when planning for the climate of the present day. When making climate sensitive decisions, policy makers and adaptation planners would benefit from information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days) and thresholds (e.g. days above 28 ° C), not just mean changes. Here, we translate observations of weather into observatio...

  16. Mapping climate change in European temperature distributions

    OpenAIRE

    Stainforth, David A; Chapman, Sandra C; Watkins, Nicholas W

    2013-01-01

    Climate change poses challenges for decision makers across society, not just in preparing for the climate of the future but even when planning for the climate of the present day. When making climate sensitive decisions, policy makers and adaptation planners would benefit from information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days) and thresholds (e.g. days above 28 ° C), not just mean changes. Here, we translate observations of weather into observatio...

  17. Civil conflict sensitivity to growing-season drought

    OpenAIRE

    von Uexkull, Nina; Croicu, Mihai; Fjelde, Hanne; Buhaug, Halvard

    2016-01-01

    Understanding the conflict potential of drought is critical for dealing effectively with the societal implications of climate change. Using new georeferenced ethnicity and conflict data for Asia and Africa since 1989, we present an actor-oriented analysis of growing-season drought and conflict involvement among ethnic groups. Results from naive models common in previous research suggest that drought generally has little impact. However, context-sensitive models accounting for the groups’ leve...

  18. Impact of climate changes on management plans for the St. Francois and Aylmer reservoirs : preliminary results

    International Nuclear Information System (INIS)

    Turcotte, R.; Fortin, L.G.; Pugin, S.; Cyr, J.F.; Picard, F.; Poirier, C.; Lacombe, P.

    2004-01-01

    Dams used for flood control, water supply, recreational activities and hydroelectricity in the province of Quebec are managed by the Centre d'Expertise Hydrique du Quebec (CEHQ). This paper addressed the issue of global warming and the changes that may occur in the hydrological regime within the next decades in response to predicted changes in climate. As a result of the changes in hydrological regime, there is a risk of losing the equilibrium between various objectives, identifiable through water management plans. The CEHQ is conducting a pilot study for the Saint-Francois and Aylmer reservoirs in order to develop a method to evaluate the adaptability of current management plans to climate change. The project is based on potential climate change scenarios as well as on deterministic and distributed hydrological models. Daily time steps are used to evaluate the hydrological impacts of climate change. CEHQ has developed a model that simulates the use of current management plans. The model makes it possible to evaluate and compare the occurrences where stream flows and water levels exceed critical values. The effectiveness of the management plans in both current and climate change scenarios can thereby be evaluated. Preliminary results suggest a possible increase in flood risk and fewer low water level occurrences. 18 refs., 4 tabs., 12 figs

  19. Assessing the Role of Climate Change in Malaria Transmission in Africa

    Directory of Open Access Journals (Sweden)

    E. T. Ngarakana-Gwasira

    2016-01-01

    Full Text Available The sensitivity of vector borne diseases like malaria to climate continues to raise considerable concern over the implications of climate change on future disease dynamics. The problem of malaria vectors shifting from their traditional locations to invade new zones is of important concern. A mathematical model incorporating rainfall and temperature is constructed to study the transmission dynamics of malaria. The reproduction number obtained is applied to gridded temperature and rainfall datasets for baseline climate and future climate with aid of GIS. As a result of climate change, malaria burden is likely to increase in the tropics, the highland regions, and East Africa and along the northern limit of falciparum malaria. Falciparum malaria will spread into the African highlands; however it is likely to die out at the southern limit of the disease.

  20. Climate change due to greenhouse effects in China as simulated by a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.J.; Zhao, Z.C.; Ding, Y.H.; Huang, R.H.; Giorgi, F. [National Climate Centre, Beijing (China)

    2001-07-01

    Impacts of greenhouse effects (2 x CO{sub 2}) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 x CO{sub 2}) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 x CO{sub 2} showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO{sub 2} doubling.

  1. Contributions of changes in climatology and perturbation and the resulting nonlinearity to regional climate change.

    Science.gov (United States)

    Adachi, Sachiho A; Nishizawa, Seiya; Yoshida, Ryuji; Yamaura, Tsuyoshi; Ando, Kazuto; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Tomita, Hirofumi

    2017-12-20

    Future changes in large-scale climatology and perturbation may have different impacts on regional climate change. It is important to understand the impacts of climatology and perturbation in terms of both thermodynamic and dynamic changes. Although many studies have investigated the influence of climatology changes on regional climate, the significance of perturbation changes is still debated. The nonlinear effect of these two changes is also unknown. We propose a systematic procedure that extracts the influences of three factors: changes in climatology, changes in perturbation and the resulting nonlinear effect. We then demonstrate the usefulness of the procedure, applying it to future changes in precipitation. All three factors have the same degree of influence, especially for extreme rainfall events. Thus, regional climate assessments should consider not only the climatology change but also the perturbation change and their nonlinearity. This procedure can advance interpretations of future regional climates.

  2. CALIPSO at Four: Results and Progress

    Science.gov (United States)

    Winker, Dave; Hu, Yong; Pitts, Mike; Tackett, Jason; Kittaka, Chieko; Liu, Zhaoyan; Vaughan, Mark

    2010-01-01

    Aerosols and clouds play important roles in Earth?s climate system, but limitations in our ability to observe them globally limit our understanding of the climate system and our ability to model it. The CALIPSO satellite was developed to provide new capabilities to observe aerosol and cloud from space. CALIPSO carries the first polarization-sensitive lidar to fly in space, which has now provided a four-year record of global aerosol and cloud profiles. This paper briefly summarizes the status of the CALIPSO mission, describes some of the results from CALIPSO, and presents highlights of recent improvements in data products.

  3. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    Science.gov (United States)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i

  4. Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA

    Science.gov (United States)

    Heather T. Root; Bruce. McCune; Sarah. Jovan

    2014-01-01

    Because of their unique physiology, lichen communities are highly sensitive to climatic conditions,making them ideal bioindicators for climate change. Southeast and south-central Alaska host diverse and abundant lichen communities and are faced with a more rapidly changing climate than many more southerly latitudes. We develop sensitive lichen-based indicators for...

  5. Farmer response to climatic and agricultural market drivers: characteristic time scales and sensitivities

    Science.gov (United States)

    Wurster, P. M.; Maneta, M. P.; Vicente-Serrano, S. M.; Beguería, S.; Silverman, N. L.; Holden, Z.

    2017-12-01

    Agriculture in the intermountain western United States is dominated by extensive farming and ranching, mostly reliant on rainfed crops and therefore very exposed to precipitation shortfalls. It is also poorly diversified, dominated by five or six major grain crops, which makes it vulnerable to changes in agricultural markets. The economy of the region is very reliant on this type of agriculture, making the entire economy vulnerable to climatic and market fluctuations. Western agriculture is also of significant importance for national food security. Resource managers in the region are increasingly concerned with the impacts that more frequent and severe droughts, or the collapse of crop prices, may have on producers and food production. Effective resource management requires an understanding not only of the regional impact of adverse climatic and market events, but also of which geographic areas are most vulnerable, and why. Unfortunately, few studies exist that look into how farmers in different geographic areas respond to climate and market drivers. In this study we analyze the influence of precipitation and crop price anomalies on crop production, and map the characteristic time scale of these anomalies that correlate best with production anomalies for the 56 counties of Montana, U.S.A. We conduct this analysis using the standardized precipitation index (SPI), and defining a standardized crop value index (SCVI) and a standardized crop production index (SCPI). We use 38 years of data to calculate precipitation anomalies at monthly time scales and annual data to calculate crop price and production anomalies. The standardization of the indices allows for straightforward comparison of the relative influence of climatic and market fluctuations on production anomalies. We apply our methodology to winter wheat, spring durum wheat, barley, alfalfa, and beets which are the most valuable crops produced in the state. Results from this study show that precipitation anomalies

  6. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    Science.gov (United States)

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  7. Meteorological modes of variability for fine particulate matter (PM2.5 air quality in the United States: implications for PM2.5 sensitivity to climate change

    Directory of Open Access Journals (Sweden)

    J. A. Fisher

    2012-03-01

    Full Text Available We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ~1000 sites (~200 sites for PM2.5 components and compared to results from the GEOS-Chem chemical transport model (CTM. All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40% of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign, with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos when diagnosing

  8. The North American Regional Climate Change Assessment Program (NARCCAP): Status and results

    Science.gov (United States)

    Arritt, R.

    2009-04-01

    NARCCAP is an international program that is generating projections of climate change for the U.S., Canada, and northern Mexico at decision-relevant regional scales. NARCCAP uses multiple limited-area regional climate models (RCMs) nested within multiple atmosphere-ocean general circulation models (AOGCMs). The use of multiple regional and global models allows us to investigate the uncertainty in model responses to future emissions (here, the A2 SRES scenario). The project also includes global time-slice experiments at the same discretization (50 km) using the GFDL atmospheric model (AM2.1) and the NCAR atmospheric model (CAM3). Phase I of the experiment uses the regional models nested within reanalysis in order to establish uncertainty attributable to the RCMs themselves. Phase II of the project then nests the RCMs within results from the current and future runs of the AOGCMs to explore the cascade of uncertainty from the global to the regional models. Phase I has been completed and the results to be shown include findings that spectral nudging is beneficial in some regions but not in others. Phase II is nearing completion and some preliminary results will be shown.

  9. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2008-03-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.

  10. Adaptation to different climates results in divergent phenotypic ...

    Indian Academy of Sciences (India)

    The phenotypic plasticity of wing size and wing shape of Zaprionus indianus was ... C) in two natural populations living under different climates, equatorial and ... size and shape in an invasive drosophilid. J. Genet. 87, 209–217]. Introduction.

  11. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Science.gov (United States)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  12. Economic impacts of climate change in the U.S

    International Nuclear Information System (INIS)

    Neumann, J.

    1997-01-01

    Results of a long-term research project funded by EPRI to study the economic impacts of climate change in the U.S. were described. In 1992, Industrial Economics Inc., began an assessment of the impact of climate change in key natural resource sectors. A wide range of uniform climate scenarios were used to assess sensitivity across different temperature and precipitation gradients. Estimates were developed for the 2060 economy, using dynamic models to understand what was happening along the transient. It was projected that the greatest impact of climate change would be on the agricultural sector because of projected gains in productivity, mainly due to increased precipitation. Similar scenarios were developed for the economic impact of climate change on timber and coastal structures, including the loss of value of coastal property. Key limitations of the study, and future directions in research (e.g. extending the study to health and non-market impacts, including other developed and developing countries) were also outlined

  13. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Science.gov (United States)

    Rummukainen, M.; Räisänen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willén, U.; Hansson, U.; Jones, C.

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results.

  14. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M.; Raeisaenen, J.; Bringfelt, B.; Ullerstig, A.; Omstedt, A.; Willen, U.; Hansson, U.; Jones, C. [Rossby Centre, Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2001-03-01

    This work presents a regional climate model, the Rossby Centre regional Atmospheric model (RCA1), recently developed from the High Resolution Limited Area Model (HIRLAM). The changes in the HIRLAM parametrizations, necessary for climate-length integrations, are described. A regional Baltic Sea ocean model and a modeling system for the Nordic inland lake systems have been coupled with RCA1. The coupled system has been used to downscale 10-year time slices from two different general circulation model (GCM) simulations to provide high-resolution regional interpretation of large-scale modeling. A selection of the results from the control runs, i.e. the present-day climate simulations, are presented: large-scale free atmospheric fields, the surface temperature and precipitation results and results for the on-line simulated regional ocean and lake surface climates. The regional model modifies the surface climate description compared to the GCM simulations, but it is also substantially affected by the biases in the GCM simulations. The regional model also improves the representation of the regional ocean and the inland lakes, compared to the GCM results. (orig.)

  15. Engaging Chicago residents in climate change action: Results from Rapid Ethnographic Inquiry

    Science.gov (United States)

    Lynne M. Westphal; Jennifer. Hirsch

    2010-01-01

    Addressing climate change requires action at all levels of society, from neighborhood to international levels. Using Rapid Ethnography rooted in Asset Based Community Development theory, we investigated climate-friendly attitudes and behaviors in two Chicago neighborhoods in order to assist the City with implementation of its Climate Action Plan. Our research suggests...

  16. Water and Fisheries: The Sensitivity of Water Supply in the Tana River Basin to Climate Change

    International Nuclear Information System (INIS)

    Inima, A.K.

    1998-01-01

    Wether climatic change would cause water supply in the dry areas of the earth to diminish or not is a major question. The main objective of this study was to determine wether the water supply in the Tana river Basin of Kenya would diminish in quality as a result of climate change. The Tana River Basin is the immense economic importance to Kenya and is the lifeline of Kenya's electricity supply, accounting for about 70% of the country's electricity supply. The basin houses about 30% of the country's population and 38% of the total irrigable land. A diminished water supply in this content would, therefore, hamper the economic development of the country.Kenya receives, on average, an annual rainfall of 600 mm, and hence classified as arid to semi-arid. This makes it vulnerable to adverse effects of climate change

  17. Energy policies avoiding a tipping point in the climate system

    International Nuclear Information System (INIS)

    Bahn, Olivier; Edwards, Neil R.; Knutti, Reto; Stocker, Thomas F.

    2011-01-01

    Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems. - Research Highlights: → Preserving the THC may require a fast and strong greenhouse gas emission reduction. → This could be achieved through strong changes in the energy mix. → Similar results would apply to any climate system tipping points.

  18. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    Science.gov (United States)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest

  19. Climate SPHINX: High-resolution present-day and future climate simulations with an improved representation of small-scale variability

    Science.gov (United States)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim

    2016-04-01

    The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).

  20. Agricultural climate impacts assessment for economic modeling and decision support

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    mitigation level of 3.7 W/m2, as well as consideration of different levels of climate sensitivity (2, 3, 4.5 and 6oC) and different initial conditions for addressing uncertainty. Since the CMIP 3 and CMIP5 protocols did not include this mitigation level or consider alternative levels of climate sensitivity, additional climate projections were required. These two cases will be discussed to illustrate some of the trade-offs made in development of methodologies for climate impact assessments that are intended for a specific user or audience, and oriented towards addressing a specific topic of interest and providing useable results. This involvement of stakeholders from the design phase of climate impacts methodology serves to both define the appropriate method for the question at hand and also to engage and inform the stakeholders of the myriad options and uncertainties associated with different methodology choices. This type of engagement should benefit decision making in the long run through greater stakeholder understanding of the science of future climate model projections, scenarios, the climate impacts sector models and the types of outputs that can be generated by each along with the respective uncertainties at each step of the climate impacts assessment process.

  1. Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California.

    Science.gov (United States)

    Baker, Nameer R; Khalili, Banafshe; Martiny, Jennifer B H; Allison, Steven D

    2018-06-01

    Microbial decomposers mediate the return of CO 2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities. © 2018 by the Ecological Society of America.

  2. Predicting the Response of Electricity Load to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colman, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kalendra, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  3. On the Baltic Sea Response to Climate Change: Model Implications

    International Nuclear Information System (INIS)

    Omstedt, Anders; Leppaeranta, Matti

    1999-01-01

    The sensitivity of the Baltic Sea to climate change is reviewed on the basis of recent model studies. In general, the presently available models indicate that the Baltic Sea is a most sensitive system to climate change, particularly in air temperature, wind, fresh water inflow and the barotropic forcing in the entrance area. Available scenarios for ice conditions and climate warming around year 2100 show 2-3 months' shortening of the ice season in the Bothnian Bay and about 0.4 m decrease in the maximum annual ice thickness. Corresponding scenarios for climate cooling show 1-2 months' longer ice season in the Bothnian Bay and 0.2 - 0.5 m increase in the maximum annual ice thickness

  4. Forecasting the future risk of Barmah Forest virus disease under climate change scenarios in Queensland, Australia.

    Directory of Open Access Journals (Sweden)

    Suchithra Naish

    Full Text Available BACKGROUND: Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV disease under climate change scenarios in Queensland, Australia. METHODS/PRINCIPAL FINDINGS: We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall, socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. CONCLUSIONS/SIGNIFICANCE: We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

  5. Agriculture in a changing climate: impacts and adaptation

    NARCIS (Netherlands)

    Reilly, J.; Baethgen, W.; Chege, F.E.; Geijn, van de S.C.; Lin Erda,; Iglesias, A.; Kenny, G.; Patterson, D.; Rogasik, J.; Rötter, R.; Rosenzweig, C.; Sombroek, W.; Westbrook, J.; Bachelet, D.; Brklacich, M.; Dämmgen, U.; Howden, M.

    1996-01-01

    This chapter deals with sensitivities, adaptive capacity and vulnerability of agriculture to climate change. It covers: the direct and indirect effects of changes in climate and atmospheric constituents on crop yield, soils, agricultural pests, and livestock; estimates of yield and production

  6. Variability in soybean yield in Brazil stemming from the interaction of heterogeneous management and climate variability

    Science.gov (United States)

    Cohn, A.; Bragança, A.; Jeffries, G. R.

    2017-12-01

    An increasing share of global agricultural production can be found in the humid tropics. Therefore, an improved understanding of the mechanisms governing variability in the output of tropical agricultural systems is of increasing importance for food security including through climate change adaptation. Yet, the long window over which many tropical crops can be sown, the diversity of crop varieties and management practices combine to challenge inference into climate risk to cropping output in analyses of tropical crop-climate sensitivity employing administrative data. In this paper, we leverage a newly developed spatially explicit dataset of soybean yields in Brazil to combat this problem. The dataset was built by training a model of remotely-sensed vegetation index data and land cover classification data using a rich in situ dataset of soybean yield and management variables collected over the period 2006 to 2016. The dataset contains soybean yields by plant date, cropping frequency, and maturity group for each 5km grid cell in Brazil. We model variation in these yields using an approach enabling the estimation of the influence of management factors on the sensitivity of soybean yields to variability in: cumulative solar radiation, extreme degree days, growing degree days, flooding rain in the harvest period, and dry spells in the rainy season. We find strong variation in climate sensitivity by management class. Planting date and maturity group each explained a great deal more variation in yield sensitivity than did cropping frequency. Brazil collects comparatively fine spatial resolution yield data. But, our attempt to replicate our results using administrative soy yield data revealed substantially lesser crop-climate sensitivity; suggesting that previous analyses employing administrative data may have underestimated climate risk to tropical soy production.

  7. Designing the Climate Observing System of the Future

    Science.gov (United States)

    Weatherhead, Elizabeth C.; Wielicki, Bruce A.; Ramaswamy, V.; Abbott, Mark; Ackerman, Thomas P.; Atlas, Robert; Brasseur, Guy; Bruhwiler, Lori; Busalacchi, Antonio J.; Butler, James H.; Clack, Christopher T. M.; Cooke, Roger; Cucurull, Lidia; Davis, Sean M.; English, Jason M.; Fahey, David W.; Fine, Steven S.; Lazo, Jeffrey K.; Liang, Shunlin; Loeb, Norman G.; Rignot, Eric; Soden, Brian; Stanitski, Diane; Stephens, Graeme; Tapley, Byron D.; Thompson, Anne M.; Trenberth, Kevin E.; Wuebbles, Donald

    2018-01-01

    Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs.

  8. Disentangling Modern Fire-Climate-Vegetation Relationships across the Boreal Forest Biome

    Science.gov (United States)

    Young, A. M.; Boschetti, L.; Duffy, P.; Hu, F.; Higuera, P.

    2015-12-01

    Fire regimes differ between Eurasian and North American boreal forests, due in part to differences in climate and the dominant forest types. While North American boreal forests are dominated by stand-replacing fires, much of the Eurasian boreal forest is characterized by lower intensity surface fires. These different fire regimes have important consequences for continental-scale biogeochemical cycling and surface-energy fluxes1. Here, we use generalized linear models (GLM) and boosted regression trees (BRT) to explore the relative importance of vegetation, annual climatic factors, and their interactions in determining annual fire occurrence across Eurasian and North American boreal forests. We use remotely sensed burned area (MCD64A1), land cover (MCD12Q1), and observed climate data (CRU) from 2002-2012 at 0.25° spatial resolution to quantify these relationships at annual temporal scales and continental spatial scales. The spatial distribution of boreal fire occurrence was well explained with climate and vegetation variables, with similarities and differences in fire-climate-vegetation relationships between Eurasia and North America. For example, while GLMs indicate vegetation is a significant factor determining fire occurrence in both continents, the effect of climate differed. Spring temperature and precipitation are significant factors explaining fire occurrence in Eurasia, but no climate variables were significant for explaining fire occurrence in North America. BRTs complement this analysis, highlighting climatic thresholds to fire occurrence in both continents. The nature of these thresholds can vary among vegetation types, even within each continent, further implying regional sensitivity to climate-induced shifts in wildfire activity. To build on these results and better understand regional sensitivity of northern-high latitude fire regimes, future work will explore these relationships in forest-tundra and arctic tundra ecosystems, and apply historical

  9. [Evolution of maize climate productivity and its response to climate change in Heilongjiang Province, China.

    Science.gov (United States)

    Li, Xiu Fen; Zhao, Hui Ying; Zhu, Hai Xia; Wang, Ping; Wang, Qiu Jing; Wang, Ming; Li, Yu Guang

    2016-08-01

    Under the background of climate change, revealing the change trend and spatial diffe-rence of maize climate productivity in-depth and understanding the regularity of maize climatic resources utilization can provide scientific basis for the macro-decision of agricultural production in Heilongjiang Province. Based on the 1981-2014 meteorological data of 72 weather stations and the corresponding maize yield data in Heilongjiang Province, by the methods of step by step revisal, spatial interpolation and linear trend analysis, this paper studied the photosynthetic productivity (PP), light-temperature productivity (LTP), and climatic productivity (CP) of spring maize, and their temporal and spatial variation characteristics, main influencing factors and light energy utilization efficiency, and evaluated the maize climate productivities under different climate scenarios in the future. The results showed that during the study period, the mean PP, LTP and CP in Heilongjiang Province were 26558, 19953, 18742 kg·hm -2 , respectively. Maize PP, LTP and CP were high in plains and low in mountains, and gradually decreased from southwest to northeast. PP, LTP and CP presented significantly increasing trends, and the increase rates were 378, 723 and 560 kg·hm -2 ·(10 a) -1 , respectively. The increase of radiation and temperature had positive effect on maize production in Heilongjiang Province. The potential productivity of maize presented significant response to climate change. The decrease of solar radiation led to the decline of PP in western Songnen Plain, but the increased temperature compensated the negative effect of solar radiation, so the downward trend of LTP was slowed. The response to climate warming was particularly evident in North and East, and LTP was significantly increased, which was sensitive to the change of precipitation in southwest of Songnen Plain and part of Sanjiang Plain. The average ratio of maize actual yield to its climate productivity was only 24

  10. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity.

    Science.gov (United States)

    Matías, Luis; Linares, Juan C; Sánchez-Miranda, Ángela; Jump, Alistair S

    2017-10-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change

  11. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

    Science.gov (United States)

    Stocker, Benjamin D.; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri; Prentice, Iain Colin

    2013-07-01

    Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4-0.5°C by AD 2300; on top of 0.8-1.0°C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22-27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

  12. Self-perceived weather sensitivity and joint pain in older people with osteoarthritis in six European countries: results from the European Project on OSteoArthritis (EPOSA).

    Science.gov (United States)

    Timmermans, Erik J; van der Pas, Suzan; Schaap, Laura A; Sánchez-Martínez, Mercedes; Zambon, Sabina; Peter, Richard; Pedersen, Nancy L; Dennison, Elaine M; Denkinger, Michael; Castell, Maria Victoria; Siviero, Paola; Herbolsheimer, Florian; Edwards, Mark H; Otero, Angel; Deeg, Dorly J H

    2014-03-05

    People with osteoarthritis (OA) frequently report that their joint pain is influenced by weather conditions. This study aimed to examine whether there are differences in perceived joint pain between older people with OA who reported to be weather-sensitive versus those who did not in six European countries with different climates and to identify characteristics of older persons with OA that are most predictive of perceived weather sensitivity. Baseline data from the European Project on OSteoArthritis (EPOSA) were used. ACR classification criteria were used to determine OA. Participants with OA were asked about their perception of weather as influencing their pain. Using a two-week follow-up pain calendar, average self-reported joint pain was assessed (range: 0 (no pain)-10 (greatest pain intensity)). Linear regression analyses, logistic regression analyses and an independent t-test were used. Analyses were adjusted for several confounders. The majority of participants with OA (67.2%) perceived the weather as affecting their pain. Weather-sensitive participants reported more pain than non-weather-sensitive participants (M = 4.1, SD = 2.4 versus M = 3.1, SD = 2.4; p weather sensitivity and joint pain remained present (B = 0.37, p = 0.03). Logistic regression analyses revealed that women and more anxious people were more likely to report weather sensitivity. Older people with OA from Southern Europe were more likely to indicate themselves as weather-sensitive persons than those from Northern Europe. Weather (in)stability may have a greater impact on joint structures and pain perception in people from Southern Europe. The results emphasize the importance of considering weather sensitivity in daily life of older people with OA and may help to identify weather-sensitive older people with OA.

  13. Review of the recent carbon dioxide-climate controversy

    International Nuclear Information System (INIS)

    Luther, F.M.; Cess, R.D.

    1992-01-01

    Model calculations of the climatic impact of the increasing atmospheric carbon dioxide (CO 2 ) concentration consistently suggest that a doubling of the CO 2 concentration would lead to a warming of global average surface air temperatures by as much as several degrees Celsius. In this appendix, this controversy about the effect of CO 2 on climate is reviewed. Because the surface energy balance approach to estimating climate sensitivity has been the source of much of the controversy, a review of this approach is presented. It is shown that prior applications of this approach violate the law of conservation of energy (the first law of thermodynamics); therefore, these results are incorrect. Empirical data indicating the relationship between atmospheric emittance and surface vapor pressure and surface air temperature are shown to be consistent with climate model calculations. Consequently, it is not the experimental data that are the basis of the controversy, but rather the analysis and interpretation of these data

  14. Regional Energy Demand Responses To Climate Change. Methodology And Application To The Commonwealth Of Massachusetts

    International Nuclear Information System (INIS)

    Amato, A.D.; Ruth, M.; Kirshen, P.; Horwitz, J.

    2005-01-01

    Climate is a major determinant of energy demand. Changes in climate may alter energy demand as well as energy demand patterns. This study investigates the implications of climate change for energy demand under the hypothesis that impacts are scale dependent due to region-specific climatic variables, infrastructure, socioeconomic, and energy use profiles. In this analysis we explore regional energy demand responses to climate change by assessing temperature-sensitive energy demand in the Commonwealth of Massachusetts. The study employs a two-step estimation and modeling procedure. The first step evaluates the historic temperature sensitivity of residential and commercial demand for electricity and heating fuels, using a degree-day methodology. We find that when controlling for socioeconomic factors, degree-day variables have significant explanatory power in describing historic changes in residential and commercial energy demands. In the second step, we assess potential future energy demand responses to scenarios of climate change. Model results are based on alternative climate scenarios that were specifically derived for the region on the basis of local climatological data, coupled with regional information from available global climate models. We find notable changes with respect to overall energy consumption by, and energy mix of the residential and commercial sectors in the region. On the basis of our findings, we identify several methodological issues relevant to the development of climate change impact assessments of energy demand

  15. Regional Energy Demand Responses To Climate Change. Methodology And Application To The Commonwealth Of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Amato, A.D.; Ruth, M. [Environmental Policy Program, School of Public Policy, University of Maryland, 3139 Van Munching Hall, College Park, MD (United States); Kirshen, P. [Department of Civil and Environmental Engineering, Tufts University, Anderson Hall, Medford, MA (United States); Horwitz, J. [Climatological Database Consultant, Binary Systems Software, Newton, MA (United States)

    2005-07-01

    Climate is a major determinant of energy demand. Changes in climate may alter energy demand as well as energy demand patterns. This study investigates the implications of climate change for energy demand under the hypothesis that impacts are scale dependent due to region-specific climatic variables, infrastructure, socioeconomic, and energy use profiles. In this analysis we explore regional energy demand responses to climate change by assessing temperature-sensitive energy demand in the Commonwealth of Massachusetts. The study employs a two-step estimation and modeling procedure. The first step evaluates the historic temperature sensitivity of residential and commercial demand for electricity and heating fuels, using a degree-day methodology. We find that when controlling for socioeconomic factors, degree-day variables have significant explanatory power in describing historic changes in residential and commercial energy demands. In the second step, we assess potential future energy demand responses to scenarios of climate change. Model results are based on alternative climate scenarios that were specifically derived for the region on the basis of local climatological data, coupled with regional information from available global climate models. We find notable changes with respect to overall energy consumption by, and energy mix of the residential and commercial sectors in the region. On the basis of our findings, we identify several methodological issues relevant to the development of climate change impact assessments of energy demand.

  16. Site-specific climate analysis elucidates revegetation challenges for post-mining landscapes in eastern Australia

    Directory of Open Access Journals (Sweden)

    P. Audet

    2013-10-01

    Full Text Available In eastern Australia, the availability of water is critical for the successful rehabilitation of post-mining landscapes and climatic characteristics of this diverse geographical region are closely defined by factors such as erratic rainfall and periods of drought and flooding. Despite this, specific metrics of climate patterning are seldom incorporated into the initial design of current post-mining land rehabilitation strategies. Our study proposes that a few common rainfall parameters can be combined and rated using arbitrary rainfall thresholds to characterise bioregional climate sensitivity relevant to the rehabilitation these landscapes. This approach included assessments of annual rainfall depth, average recurrence interval of prolonged low intensity rainfall, average recurrence intervals of short or prolonged high intensity events, median period without rain (or water-deficit and standard deviation for this period in order to address climatic factors such as total water availability, seasonality and intensity – which were selected as potential proxies of both short- and long-term biological sensitivity to climate within the context of post-disturbance ecological development and recovery. Following our survey of available climate data, we derived site "climate sensitivity" indexes and compared the performance of 9 ongoing mine sites: Weipa, Mt. Isa and Cloncurry, Eromanga, Kidston, the Bowen Basin (Curragh, Tarong, North Stradbroke Island, and the Newnes Plateau. The sites were then ranked from most-to-least sensitive and compared with natural bioregional patterns of vegetation density using mean NDVI. It was determined that regular rainfall and relatively short periods of water-deficit were key characteristics of sites having less sensitivity to climate – as found among the relatively more temperate inland mining locations. Whereas, high rainfall variability, frequently occurring high intensity events, and (or prolonged seasonal

  17. Site-specific climate analysis elucidates revegetation challenges for post-mining landscapes in eastern Australia

    Science.gov (United States)

    Audet, P.; Arnold, S.; Lechner, A. M.; Baumgartl, T.

    2013-10-01

    In eastern Australia, the availability of water is critical for the successful rehabilitation of post-mining landscapes and climatic characteristics of this diverse geographical region are closely defined by factors such as erratic rainfall and periods of drought and flooding. Despite this, specific metrics of climate patterning are seldom incorporated into the initial design of current post-mining land rehabilitation strategies. Our study proposes that a few common rainfall parameters can be combined and rated using arbitrary rainfall thresholds to characterise bioregional climate sensitivity relevant to the rehabilitation these landscapes. This approach included assessments of annual rainfall depth, average recurrence interval of prolonged low intensity rainfall, average recurrence intervals of short or prolonged high intensity events, median period without rain (or water-deficit) and standard deviation for this period in order to address climatic factors such as total water availability, seasonality and intensity - which were selected as potential proxies of both short- and long-term biological sensitivity to climate within the context of post-disturbance ecological development and recovery. Following our survey of available climate data, we derived site "climate sensitivity" indexes and compared the performance of 9 ongoing mine sites: Weipa, Mt. Isa and Cloncurry, Eromanga, Kidston, the Bowen Basin (Curragh), Tarong, North Stradbroke Island, and the Newnes Plateau. The sites were then ranked from most-to-least sensitive and compared with natural bioregional patterns of vegetation density using mean NDVI. It was determined that regular rainfall and relatively short periods of water-deficit were key characteristics of sites having less sensitivity to climate - as found among the relatively more temperate inland mining locations. Whereas, high rainfall variability, frequently occurring high intensity events, and (or) prolonged seasonal drought were primary

  18. Sensitivity of glaciation in the arid subtropical Andes to changes in temperature, precipitation, and solar radiation

    Science.gov (United States)

    Vargo, L. J.; Galewsky, J.; Rupper, S.; Ward, D. J.

    2018-04-01

    The subtropical Andes (18.5-27 °S) have been glaciated in the past, but are presently glacier-free. We use idealized model experiments to quantify glacier sensitivity to changes in climate in order to investigate the climatic drivers of past glaciations. We quantify the equilibrium line altitude (ELA) sensitivity (the change in ELA per change in climate) to temperature, precipitation, and shortwave radiation for three distinct climatic regions in the subtropical Andes. We find that in the western cordillera, where conditions are hyper-arid with the highest solar radiation on Earth, ELA sensitivity is as high as 34 m per % increase in precipitation, and 70 m per % decrease in shortwave radiation. This is compared with the eastern cordillera, where precipitation is the highest of the three regions, and ELA sensitivity is only 10 m per % increase in precipitation, and 25 m per % decrease in shortwave radiation. The high ELA sensitivity to shortwave radiation highlights the influence of radiation on mass balance of high elevation and low-latitude glaciers. We also consider these quantified ELA sensitivities in context of previously dated glacial deposits from the regions. Our results suggest that glaciation of the humid eastern cordillera was driven primarily by lower temperatures, while glaciations of the arid Altiplano and western cordillera were also influenced by increases in precipitation and decreases in shortwave radiation. Using paleoclimate records from the timing of glaciation, we find that glaciation of the hyper-arid western cordillera can be explained by precipitation increases of 90-160% (1.9-2.6× higher than modern), in conjunction with associated decreases in shortwave radiation of 7-12% and in temperature of 3.5 °C.

  19. Research on Climate and Dengue in Malaysia: A Systematic Review

    OpenAIRE

    Hii, Yien Ling; Zaki, Rafdzah Ahmad; Aghamohammadi, Nasrin; Rockl?v, Joacim

    2016-01-01

    Background & Objectives Dengue is a climate-sensitive infectious disease. Climate-based dengue early warning may be a simple, low-cost, and effective tool for enhancing surveillance and control. Scientific studies on climate and dengue in local context form the basis for advancing the development of a climate-based early warning system. This study aims to review the current status of scientific studies in climate and dengue and the prospect or challenges of such research on a climate-based de...

  20. Predicting vulnerabilities of North American shorebirds to climate change.

    Directory of Open Access Journals (Sweden)

    Hector Galbraith

    Full Text Available Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90% taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.