WorldWideScience

Sample records for climate sensitivity results

  1. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

    OpenAIRE

    Govindasamy, B.; Thompson, S; Mirin, A.; Wickett, M.; Caldeira, K.; C. Delire

    2011-01-01

    Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO2content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 sc...

  2. Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model

    Energy Technology Data Exchange (ETDEWEB)

    Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

    2004-04-01

    Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

  3. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina; Kirkinen, Johanna; Savolainen, Ilkka

    2006-06-15

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  4. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    International Nuclear Information System (INIS)

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  5. Climate sensitivity in the Anthropocene

    Directory of Open Access Journals (Sweden)

    M. Previdi

    2011-09-01

    Full Text Available Understanding the sensitivity of Earth's climate to an imposed external forcing is one of the great challenges in science and a critical component of efforts to avoid dangerous anthropogenic interference with the climate system. Climate sensitivity (or equilibrium global surface warming to a doubling of atmospheric CO2 has long been estimated to be about 3 °C, considering only fast climate feedbacks associated with increases in water vapor, decreases in sea ice, and changes in clouds. However, evidence from Earth's history suggests that slower surface albedo feedbacks due to vegetation change and melting of Greenland and Antarctica can come into play on the timescales of interest to humans, which could increase the sensitivity to significantly higher values, as much as 6 °C. Even higher sensitivity may result as present-day land and ocean carbon sinks begin to lose their ability to sequester anthropogenic CO2 in the coming decades. The evolving view of climate sensitivity in the Anthropocene is therefore one in which a wider array of Earth system feedbacks are recognized as important. Since these feedbacks are overwhelmingly positive, the sensitivity is likely to be higher than has traditionally been assumed.

  6. Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model

    Directory of Open Access Journals (Sweden)

    M. Kageyama

    2009-03-01

    Full Text Available Numerous records from the North Atlantic and the surrounding continents have shown rapid and large amplitude climate variability during the last glacial period. This variability has often been associated to changes in the Atlantic Meridional Overturning Circulation (AMOC. Rapid climate change on the same time scales has also been reconstructed for sites far away from the North Atlantic, such as the tropical Atlantic, the East Pacific and Asia. The mechanisms explaining these climatic responses to the state of the AMOC are far from being completely understood, especially in a glacial context. Here we study three glacial simulations characterised by different AMOC strengths: 18, 15 and 2 Sv. With these simulations, we analyse the global climate sensitivity to a weak (18 to 15 Sv and a strong (15 to 2 Sv decrease in the AMOC strength.

    A weak decrease in the AMOC is associated, in our model simulations, to the classical North Atlantic and European cooling, but this cooling is not homogeneous over this region. We investigate the reasons for a lesser cooling (or even slight warming in some cases over the Norwegian Sea and Northwestern Europe. It appears that the convection site in this area is active in both simulations, but that convection is unexpectedly stronger in the 15 Sv simulation. Due to the large variability of the atmosphere, it is difficult to definitely establish what is the origin of this climatic difference, but it appears that the atmospheric circulation anomaly helps sustaining the activity of this convection sites. Far from the North Atlantic, the climatic response is of small amplitude, the only significant change appearing in summer over the tropical Atlantic, where the Inter-Tropical Convergence Zone (ITCZ shifts southward.

    The climate differences between the 15 Sv and 2 Sv simulations are much larger and our analyses focus on three areas: the North Atlantic and surrounding regions, the Tropics and the Indian

  7. Ringberg15: Earth's Climate Sensitivities

    Science.gov (United States)

    Stevens, Bjorn; Abe-Ouchi, Ayako; Bony, Sandrine; Hegerl, Gabi; Schmidt, Gavin; Sherwood, Steven; Webb, Mark

    2015-01-01

    To assess gaps in understanding of Earth's climate sensitivities a workshop was organised under the auspices of the WCRP (World Climate Research Programme) Grand Science Challenge on Clouds, Circulation and Climate Sensitivity (Ringberg15). The workshop took place in March 2015 and gathered together over thirty experts from around the world for one week. Attendees each gave short presentations and participated in moderated discussions of specific questions related to understanding Earth's climate sensitivities. Most of the time was focused on understanding of the equilibrium climate sensitivity, defined as the equilibrium near-surface warming associated with a doubling of atmospheric carbon dioxide. The workshop produced nine recommendations, many of them focusing on specific research avenues that could be exploited to advance understanding of climate sensitivity. Many of these dealt, in one fashion or another, with the need to more sharply focus research on identifying and testing story lines for a high (larger than 4 degrees Kelvin) or low (less than 2 degrees Kelvin) equilibrium climate sensitivity. Additionally, a subset of model intercomparison projects (CFMIP (Cloud Feedback Model Intercomparison Project), PMIP (Palaeoclimate Modelling Intercomparison Project), PDRMIP (Precipitation Driver and Response Model Intercomparison Project), RFMIP (Radiative Forcing Model Intercomparison Project) and VolMIP (Volcanic Forcings Model Intercomparison Project)) that have been proposed for inclusion within CMIP were identified as being central to resolving important issues raised at the workshop; for this reason modelling groups were strongly encouraged to participate in these projects. Finally the workshop participants encouraged the WCRP to initiate and support an assessment process lead by the Grand Science Challenge on Clouds, Circulation and Climate Sensitivity on the topic of Earth's Climate Sensitivities, culminating in a report that will be published in 2019

  8. Climate Sensitivity in the Anthropocene

    Science.gov (United States)

    Previdi, M.; Liepert, B. G.; Peteet, Dorothy M.; Hansen, J.; Beerling, D. J.; Broccoli, A. J.; Frolking, S.; Galloway, J. N.; Heimann, M.; LeQuere, C.; Levitus, S.; Ramaswamy, V.

    2014-01-01

    Climate sensitivity in its most basic form is defined as the equilibrium change in global surface temperature that occurs in response to a climate forcing, or externally imposed perturbation of the planetary energy balance. Within this general definition, several specific forms of climate sensitivity exist that differ in terms of the types of climate feedbacks they include. Based on evidence from Earth's history, we suggest here that the relevant form of climate sensitivity in the Anthropocene (e.g. from which to base future greenhouse gas (GHG) stabilization targets) is the Earth system sensitivity including fast feedbacks from changes in water vapour, natural aerosols, clouds and sea ice, slower surface albedo feedbacks from changes in continental ice sheets and vegetation, and climate-GHG feedbacks from changes in natural (land and ocean) carbon sinks. Traditionally, only fast feedbacks have been considered (with the other feedbacks either ignored or treated as forcing), which has led to estimates of the climate sensitivity for doubled CO2 concentrations of about 3 C. The 2×CO2 Earth system sensitivity is higher than this, being approx. 4-6 C if the ice sheet/vegetation albedo feedback is included in addition to the fast feedbacks, and higher still if climate-GHG feedbacks are also included. The inclusion of climate-GHG feedbacks due to changes in the natural carbon sinks has the advantage of more directly linking anthropogenic GHG emissions with the ensuing global temperature increase, thus providing a truer indication of the climate sensitivity to human perturbations. The Earth system climate sensitivity is difficult to quantify due to the lack of palaeo-analogues for the present-day anthropogenic forcing, and the fact that ice sheet and climate-GHG feedbacks have yet to become globally significant in the Anthropocene. Furthermore, current models are unable to adequately simulate the physics of ice sheet decay and certain aspects of the natural carbon and

  9. Report of the workshop on Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO{sub 2} doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions

  10. Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model

    Directory of Open Access Journals (Sweden)

    M. Kageyama

    2009-09-01

    Full Text Available Paleorecords from distant locations on the globe show rapid and large amplitude climate variations during the last glacial period. Here we study the global climatic response to different states of the Atlantic Meridional Overturning Circulation (AMOC as a potential explanation for these climate variations and their possible connections. We analyse three glacial simulations obtained with an atmosphere-ocean coupled general circulation model and characterised by different AMOC strengths (18, 15 and 2 Sv resulting from successive ~0.1 Sv freshwater perturbations in the North Atlantic. These AMOC states suggest the existence of a freshwater threshold for which the AMOC collapses. A weak (18 to 15 Sv AMOC decrease results in a North Atlantic and European cooling. This cooling is not homogeneous, with even a slight warming over the Norwegian Sea. Convection in this area is active in both experiments, but surprisingly stronger in the 15 Sv simulation, which appears to be related to interactions with the atmospheric circulation and sea-ice cover. Far from the North Atlantic, the climatic response is not significant. The climate differences for an AMOC collapse (15 to 2 Sv are much larger and of global extent. The timing of the climate response to this AMOC collapse suggests teleconnection mechanisms. Our analyses focus on the North Atlantic and surrounding regions, the tropical Atlantic and the Indian monsoon region. The North Atlantic cooling associated with the AMOC collapse induces a cyclonic atmospheric circulation anomaly centred over this region, which modulates the eastward advection of cold air over the Eurasian continent. This can explain why the cooling is not as strong over western Europe as over the North Atlantic. In the Tropics, the southward shift of the Inter-Tropical Convergence Zone appears to be strongest over the Atlantic and Eastern Pacific and results from an adjustment of the atmospheric and oceanic heat transports. Finally, the

  11. Inhomogeneous Forcing and Transient Climate Sensitivity

    Science.gov (United States)

    Shindell, Drew T.

    2014-01-01

    Understanding climate sensitivity is critical to projecting climate change in response to a given forcing scenario. Recent analyses have suggested that transient climate sensitivity is at the low end of the present model range taking into account the reduced warming rates during the past 10-15 years during which forcing has increased markedly. In contrast, comparisons of modelled feedback processes with observations indicate that the most realistic models have higher sensitivities. Here I analyse results from recent climate modelling intercomparison projects to demonstrate that transient climate sensitivity to historical aerosols and ozone is substantially greater than the transient climate sensitivity to CO2. This enhanced sensitivity is primarily caused by more of the forcing being located at Northern Hemisphere middle to high latitudes where it triggers more rapid land responses and stronger feedbacks. I find that accounting for this enhancement largely reconciles the two sets of results, and I conclude that the lowest end of the range of transient climate response to CO2 in present models and assessments (less than 1.3 C) is very unlikely.

  12. Glacial climate sensitivity to different states of the Atlantic Meridional overturning circulation : results from the IPSL model

    OpenAIRE

    Kageyama, M.; J. Mignot; D. Swingedouw; Marzin, C.; Alkama, R.; O. Marti

    2009-01-01

    Numerous records from the North Atlantic and the surrounding continents have shown rapid and large amplitude climate variability during the last glacial period. This variability has often been associated to changes in the Atlantic Meridional Overturning Circulation (AMOC). Rapid climate change on the same time scales has also been reconstructed for sites far away from the North Atlantic, such as the tropical Atlantic, the East Pacific and Asia. The mechanisms explaining these climatic respons...

  13. A sensitivity study to global desertification in cold and warm climates: results from the IPSL OAGCM model

    Energy Technology Data Exchange (ETDEWEB)

    Alkama, Ramdane [GAME/CNRM, CNRS/Meteo-France, Toulouse (France); Kageyama, Masa; Ramstein, Gilles [LSCE/IPSL UMR CEA-CNRS-UVSQ 8212, Gif sur Yvette (France)

    2012-04-15

    Many simulations have been devoted to study the impact of global desertification on climate, but very few have quantified this impact in very different climate contexts. Here, the climatic impacts of large-scale global desertification in warm (2100 under the SRES A2 scenario forcing), modern and cold (Last Glacial Maximum, 21 thousand years ago) climates are assessed by using the IPSL OAGCM. For each climate, two simulations have been performed, one in which the continents are covered by modern vegetation, the other in which global vegetation is changed to desert i.e. bare soil. The comparison between desert and present vegetation worlds reveals that the prevailing signal in terms of surface energy budget is dominated by the reduction of upward latent heat transfer. Replacing the vegetation by bare soil has similar impacts on surface air temperature South of 20 N in all three climatic contexts, with a warming over tropical forests and a slight cooling over semi-arid and arid areas, and these temperature changes are of the same order of magnitude. North of 20 N, the difference between the temperatures simulated with present day vegetation and in a desert world is mainly due to the change in net radiation related to the modulation of the snow albedo by vegetation, which is obviously absent in the desert world simulations. The enhanced albedo in the desert world simulations induces a large temperature decrease, especially during summer in the cold and modern climatic contexts, whereas the largest difference occurs during winter in the warm climate. This temperature difference requires a larger heat transport to the northern high latitudes. Part of this heat transport increase is achieved through an intensification of the Atlantic Meridional Overturning Circulation. This intensification reduces the sea-ice extent and causes a warming over the North Atlantic and Arctic oceans in the warm climate context. In contrast, the large cooling North of 20 N in both the modern

  14. Report of the workshop on Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO{sub 2} doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions

  15. Report of the workshop on Climate Sensitivity

    International Nuclear Information System (INIS)

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO2 doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions, and transient

  16. Interactions Between Mineral Surfaces, Substrates, Enzymes, and Microbes Result in Hysteretic Temperature Sensitivities and Microbial Carbon Use Efficiencies and Weaker Predicted Carbon-Climate Feedbacks

    Science.gov (United States)

    Riley, W. J.; Tang, J.

    2014-12-01

    We hypothesize that the large observed variability in decomposition temperature sensitivity and carbon use efficiency arises from interactions between temperature, microbial biogeochemistry, and mineral surface sorptive reactions. To test this hypothesis, we developed a numerical model that integrates the Dynamic Energy Budget concept for microbial physiology, microbial trait-based community structure and competition, process-specific thermodynamically ­­based temperature sensitivity, a non-linear mineral sorption isotherm, and enzyme dynamics. We show, because mineral surfaces interact with substrates, enzymes, and microbes, both temperature sensitivity and microbial carbon use efficiency are hysteretic and highly variable. Further, by mimicking the traditional approach to interpreting soil incubation observations, we demonstrate that the conventional labile and recalcitrant substrate characterization for temperature sensitivity is flawed. In a 4 K temperature perturbation experiment, our fully dynamic model predicted more variable but weaker carbon-climate feedbacks than did the static temperature sensitivity and carbon use efficiency model when forced with yearly, daily, and hourly variable temperatures. These results imply that current earth system models likely over-estimate the response of soil carbon stocks to global warming.

  17. Chemical feedbacks in climate sensitivity studies

    Science.gov (United States)

    Dietmüller, Simone; Ponater, Michael; Sausen, Robert

    2013-04-01

    both as radiative forcing and radiative feedback. The comparison to CO2-perturbation experiments shows, that the variation of the perturbation type induces different feedback processes resulting in a different influence on climate sensitivity.

  18. Climate sensitivity estimated from the past 450,000 years

    Science.gov (United States)

    Snyder, C.

    2010-12-01

    The risks of future climate change depend upon the sensitivity of the Earth system to greenhouse gases emissions. However, the upper limit of climate sensitivity has proven particularly difficult to constrain. Here we reconstruct climate sensitivity using a probabilistic framework and paleoclimate records from the past 450kyr, including new reconstructions of radiative forcing from changes in ice sheets, sea level, vegetation, and dust. From this analysis, we estimate climate sensitivity is 4.1K (2.1K-6.6K, 95% interval), a result that is surprisingly stable over the past 450kyr. Although our paleoclimate based results significantly constrain the upper tail of climate sensitivity, we estimate a 36% chance that climate sensitivity is higher than all of the IPCC 2007 climate models. These results have important implications for climate impact assessments and climate policy. A comparison of reconstructions of global average surface temperature (GAST) and global average radiative forcing (GARF) over the past 450kyr. GAST median is a red line, and GAST 95% interval is grey shading. GARF median is a cyan line, and GARF 95% interval is blue shading. Empirically estimated frequency distribution for partial climate sensitivity from the past 450kyr. The rectangles show the frequency of estimates drawn from the full ensembles, and the black line shows the empirically-estimated frequency distribution. The green diamonds show the 19 global climate models summarized in the 2007 IPCC report. The purple bar shows IPCC’s “likely” (66-90% probability) range for partial CS.

  19. Climate Sensitivity in the Geologic Past

    Science.gov (United States)

    Royer, Dana L.

    2016-06-01

    The response of temperature to CO2 change (climate sensitivity) in the geologic past may help inform future climate predictions. Proxies for CO2 and temperature generally imply high climate sensitivities: ≥3 K per CO2 doubling during ice-free times (fast-feedback sensitivity) and ≥6 K during times with land ice (Earth-system sensitivity). Climate models commonly underpredict the magnitude of climate change and have fast-feedback sensitivities close to 3 K. A better characterization of feedbacks in warm worlds raises climate sensitivity to values more in line with proxies and produces climate simulations that better fit geologic evidence. As CO2 builds in our atmosphere, we should expect both slow (e.g., land ice) and fast (e.g., vegetation, clouds) feedbacks to elevate the long-term temperature response over that predicted from the canonical fast-feedback value of 3 K. Because temperatures will not decline for centuries to millennia, climate sensitivities that integrate slower processes have relevance for current climate policy.

  20. A method for screening climate change-sensitive infectious diseases.

    Science.gov (United States)

    Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin

    2015-01-01

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change. PMID:25594780

  1. A Method for Screening Climate Change-Sensitive Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Yunjing Wang

    2015-01-01

    Full Text Available Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment, systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change.

  2. Deep time evidence for climate sensitivity increase with warming

    Science.gov (United States)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto; Pepke Pedersen, Jens Olaf

    2016-06-01

    Future global warming from anthropogenic greenhouse gas emissions will depend on climate feedbacks, the effect of which is expressed by climate sensitivity, the warming for a doubling of atmospheric CO2 content. It is not clear how feedbacks, sensitivity, and temperature will evolve in our warming world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8 Ma ago, a possible future warming analogue. We obtain constrained estimates of CO2 and climate sensitivity before and during the PETM and of the PETM carbon input amount and nature. Sensitivity increased from 3.3-5.6 to 3.7-6.5 K (Kelvin) into the PETM. When taken together with Last Glacial Maximum and modern estimates, this result indicates climate sensitivity increase with global warming.

  3. Thermodynamics of climate change: generalized sensitivities

    Directory of Open Access Journals (Sweden)

    V. Lucarini

    2010-10-01

    Full Text Available Using a recent theoretical approach, we study how global warming impacts the thermodynamics of the climate system by performing experiments with a simplified yet Earth-like climate model. The intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy production, and the degree of irreversibility of the system change monotonically with the CO2 concentration. Moreover, these quantities feature an approximately linear behaviour with respect to the logarithm of the CO2 concentration in a relatively wide range. These generalized sensitivities suggest that the climate becomes less efficient, more irreversible, and features higher entropy production as it becomes warmer, with changes in the latent heat fluxes playing a predominant role. These results may be of help for explaining recent findings obtained with state of the art climate models regarding how increases in CO2 concentration impact the vertical stratification of the tropical and extratropical atmosphere and the position of the storm tracks.

  4. The Earth's Equilibrium Climate Sensitivity and Thermal Inertia

    CERN Document Server

    Royce, B S H

    2013-01-01

    The Earth's equilibrium climate sensitivity has received much attention because of its relevance and importance for global warming policymaking. This paper focuses on the Earth's \\emph{thermal inertia time scale} which has received relatively little attention. The difference between the observed transient climate sensitivity and the equilibrium climate sensitivity is shown to be proportional to the thermal inertia time scale, and the numerical value of the proportionality factor is determined using recent observational data. Many useful policymaking insights can be extracted from the resulting empirical quantitative relation.

  5. Thermodynamics of climate change: generalized sensitivities

    Directory of Open Access Journals (Sweden)

    V. Lucarini

    2010-02-01

    Full Text Available Using a recent theoretical approach, we study how the impact of global warming of the thermodynamics of the climate system by performing experiments with a simplified yet Earth-like climate model. In addition to the globally averaged surface temperature, the intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy production and the degree of irreversibility of the system are linear with the logarithm of the CO2 concentration. These generalized sensitivities suggest that the climate becomes less efficient, more irreversible, and features higher entropy production as it becomes warmer.

  6. Climate sensitivity, sea level and atmospheric carbon dioxide

    OpenAIRE

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise paleoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity 3 +/- 1{\\deg}C for 4 W/m2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, bu...

  7. A new framework for climate sensitivity and prediction

    CERN Document Server

    Ragone, Francesco; Lunkeit, Frank

    2014-01-01

    The sensitivity of the climate system to increasing CO2 concentration and the response at decadal time scales are still major factors of uncertainty for the assessment of the long and short term effects of anthropogenic climate change. Here we demonstrate that it is possible to use Ruelle's response theory to predict the impact of an arbitrary CO2 forcing scenario on the global surface temperature of a general circulation model. Response theory puts the concept of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of predictability at different time scales. Conceptually, our results show that climate change assessment is a well defined problem from a physical and mathematical point of view. Practically, our results show that considering one single CO2 forcing scenario is enough to construct operators able to predict the response of climatic observables to any other CO2 forcing scenario, without the need to perform additional numerical simulations, thus paving the way for red...

  8. Climate sensitivity of Abrahamsenbreen (northern Spitsbergen)

    Science.gov (United States)

    Oerlemans, Johannes; Van Pelt, Ward

    2014-05-01

    The climate sensitivity of Abrahamsenbreen, a 20 km long surge-type glacier in northern Spitsbergen, is studied with a simple glacier model. A scheme to describe the surges is included, which makes it possible to account for the effect of surges on the total mass budget of the glacier. A climate reconstruction back to 1300 AD, based on ice-core data from Lomonosovfonna and climate records from Longyearbyen, is used to drive the model. The model is calibrated by requesting that it produces the correct late-Holocene maximum glacier length and simulates the observed magnitude of the 1978-surge. We make a comparison of the glacier evolution with and without regular surges. The main effect of a surge is to lower the mean surface elevation and to increase the ablation area, thereby causing a negative perturbation of the mass budget. When the surging mechanism is switched off, long-term mean glacier length increases by typically 10%. Abrahamsenbreen is strongly out of balance with the current climate. If climatic conditions will remain as they were for the period 1989-2010, the glacier will ultimately shrink to a length of 8 km (but this will take hundreds of years). For a climate change scenario involving a 2 m per year rise of the equilibrium line from now onwards, we predict that in the year 2100 Abrahamsenbreen will be about 14 km long. Because of the very small bed slope, Abrahamsenbreen is sensitive to small perturbations in the equilibrium-line altitude E. For a decrease of E of only 60 m, the glacier would steadily grow into the Woodfjorddalen until after 2000 years it would reach the Woodfjord and calving could slow down the advance. Our study once more underlines the extreme sensitivity of the large and gently sloping Svalbard glaciers to climate change.

  9. Blue Nile Runoff Sensitivity to Climate Change

    OpenAIRE

    Nawaz, NR; Bellerby, T; Sayed, M. (collab.); Elshamy, M

    2010-01-01

    This study describes implementation of hydrological climate change impact assessment tool utilising a combination of statistical spatiotemporal downscaling and an operational hydrological model known as the Nile Forecasting System. A spatial rainfall generator was used to produce high-resolution (daily, 20km) gridded rainfall data required by the distributed hydrological model from monthly GCM outputs. The combined system was used to assess the sensitivity of upper Blue Nile flows at Diem flo...

  10. Climate sensitivity to cloud optical properties

    OpenAIRE

    Hu, Y.; Stamnes, K.

    2011-01-01

    A radiative–convective model was developed to investigate the sensitivity of climate to cloud optical properties and the related feedback processes. This model demonstrates that the Earth's surface temperature increases with cloud optical depth when the clouds are very thin but decreases with cloud optical depth when the cloud shortwave (solar) radiative forcing is larger than the cloud longwave (terrestrial) radiative forcing. When clouds are included in the model, the magnitude of the green...

  11. Ecological sensitivity: a biospheric view of climate change

    OpenAIRE

    Bergengren, Jon C.; Waliser, Duane E.; Yung, Yuk L.

    2011-01-01

    Climate change is often characterized in terms of climate sensitivity, the globally averaged temperature rise associated with a doubling of the atmospheric CO2 (equivalent) concentration. In this study, we develop and apply two new ecological sensitivity metrics, analogs of climate sensitivity, to investigate the potential degree of plant community changes over the next three centuries. We use ten climate simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report,...

  12. Sensitivity of Mediterranean groundwater resources to potential climate futures

    Science.gov (United States)

    Hartmann, Andreas; Gleeson, Tom; Wagener, Thorsten

    2014-05-01

    A large fraction of the Mediterranean water supply originates from karst aquifers that evolved through the dissolution of carbonate rock. Climate simulations indicate that the Mediterranean will experience a strong increase in temperature and a significant decrease in precipitation within the next 100 years. To be prepared, policy-makers need quantitative and reliable estimates of potential changes to karst water resources. In this study we present the result of a very first attempt to quantify karst water resources over the whole Mediterranean region. Instead of considering groundwater volumes, we consider the flux of water into the aquifer, called groundwater recharge, as a useful indicator for groundwater sustainability. We developed a process-based karst recharge model that is driven by large-scale meteorological observations or downscaled climate scenarios. Using a new metric for quantifying the sensitivity of recharge to climatic changes (termed recharge elasticity) we can explore the sensitivity of Mediterranean karstic groundwater resources to future climatic boundary conditions.

  13. Increased sensitivity to climate change in disturbed ecosystems

    DEFF Research Database (Denmark)

    Kroël-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel;

    2015-01-01

    relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem......, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering...... from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change....

  14. Sensitivity of streamflow to climate change in California

    Science.gov (United States)

    Grantham, T.; Carlisle, D.; Wolock, D.; McCabe, G. J.; Wieczorek, M.; Howard, J.

    2015-12-01

    Trends of decreasing snowpack and increasing risk of drought are looming challenges for California water resource management. Increasing vulnerability of the state's natural water supplies threatens California's social-economic vitality and the health of its freshwater ecosystems. Despite growing awareness of potential climate change impacts, robust management adaptation has been hindered by substantial uncertainty in future climate predictions for the region. Down-scaled global climate model (GCM) projections uniformly suggest future warming of the region, but projections are highly variable with respect to the direction and magnitude of change in regional precipitation. Here we examine the sensitivity of California surface water supplies to climate variation independently of GCMs. We use a statistical approach to construct predictive models of monthly streamflow based on historical climate and river basin features. We then propagate an ensemble of synthetic climate simulations through the models to assess potential streamflow responses to changes in temperature and precipitation in different months and regions of the state. We also consider the range of streamflow change predicted by bias-corrected downscaled GCMs. Our results indicate that the streamflow in the xeric and coastal mountain regions of California is more sensitive to changes in precipitation than temperature, whereas streamflow in the interior mountain region responds strongly to changes in both temperature and precipitation. Mean climate projections for 2025-2075 from GCM ensembles are highly variable, indicating streamflow changes of -50% to +150% relative to baseline (1980-2010) for most months and regions. By quantifying the sensitivity of streamflow to climate change, rather than attempting to predict future hydrologic conditions based on uncertain GCM projections, these results should be more informative to water managers seeking to assess, and potentially reduce, the vulnerability of surface

  15. Sensitivity of subalpine tree seedlings and alpine plants to natural and manipulated climate variation: Initial results from an Alpine Treeline Warming Experiment (Invited)

    Science.gov (United States)

    Kueppers, L. M.

    2010-12-01

    Niche models and paleoecological studies indicate that future climate change will alter the geographic distributions of plant species. Changes in temperature, snowmelt timing, or moisture conditions at one edge of a species’ range may have different consequences for recruitment, carbon exchange, phenology, and survival than changes at another edge. Similarly, local genetic adaptation may constrain species and community responses to climate change. We have established a new experiment to investigate potential shifts in the distribution of subalpine tree species, and the alpine species they might replace. We are asking how tree species recruitment and alpine species growth and reproduction vary within their current ranges, and in response to temperature and soil moisture manipulations. We are also examining whether genetic provenance and ecosystem processes constrain tree seedling and alpine herb responses. Our Alpine Treeline Warming Experiment is located across three sites at Niwot Ridge, CO, ranging from near the lower limit of subalpine forest to alpine tundra. We use infrared heaters to raise growing season surface soil temperatures by 4-5°C, and to lengthen the growing season. The warming treatment is crossed with a soil moisture manipulation to distinguish effects due to higher temperatures from those due to drier soil. Each plot is a common garden sown with high and low elevation provenances of limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii). We established an additional set of experimental plots to examine treatment effects on alpine species phenology, growth and reproduction. Under ambient conditions in 2009, tree seedling germination rate, lifespan, and first season survival was higher within the species’ current range than in the alpine, and for Engelmann spruce, was higher at the low elevation limit than the high elevation limit. Source population (low vs. high elevation) was a significant factor explaining natural variation in

  16. Phenological sensitivity to climate across taxa and trophic levels

    DEFF Research Database (Denmark)

    Thackeray, Stephen J.; Henrys, Peter; Hemming, Deborah;

    2016-01-01

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate...... groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing...... Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic...

  17. Climate Sensitivity, Sea Level, and Atmospheric CO2

    CERN Document Server

    Hansen, James; Russell, Gary; Kharecha, Pushker

    2012-01-01

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Pleistocene climate oscillations imply a fast-feedback climate sensitivity 3 {\\pm} 1 {\\deg}C for 4 W/m2 CO2 forcing for the average of climate states between the Holocene and Last Glacial Maximum (LGM), the error estimate being large and partly subjective because of continuing uncertainty about LGM global surface climate. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify total Earth system sensitivity. Ice sheet response time is poorly defined, but we suggest that hysteresis and slow response in current ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state-dependence of climate sensitivity, finding a strong increase in sensitivity when global temperature reaches early Cenozoic and higher levels, as increased water vapor eliminates the tropopause. It follows that...

  18. The Southeast Asia Regional Climate Downscaling (SEACLID) / CORDEX Southeast Asia Project and The Results of Its Sensitivity Experiments of RegCM4 Cumulus and Ocean Fluxes Parameterization Schemes on Temperature and Extremes.

    Science.gov (United States)

    Tangang, Fredolin; Juneng, Liew; Cruz, Faye; Narisma, Gemma; Dado, Julie; Van, Tan-Phan; Ngo-Duc, Thanh; Trinh-Tuan, Long; Nguyen-Xuan, Thanh; Santisirisomboon, Jerasorn; Singhruck, Patama; Gunawan, Dodo; Aldrian, Edvin

    2015-04-01

    The Southeast Asia (SEA) region is one of the more vulnerable regions to the impacts of climate change because of the large population exposed to climate-related hazards, mostly living in countries with low adaptive capabilities. In order to adequately prepare and adapt to these future climate change impacts, it is therefore crucial for high-resolution climate projections to be available for this region. The Southeast Asia Regional Climate Downscaling/CORDEX Southeast Asia (SEACLID/CORDEX-SEA) project aims to provide these projections through a collaborative effort in regional climate downscaling. As a first step, model simulations with the 4th version of Regional Climate Model system (RegCM4) developed by International Centre for Theoretical Physics (ICTP) were performed for the SEA domain (80°E-145°E; 15°S-40°N) at 36 km spatial resolution, to determine an optimal configuration of the model for the region. Using the ECMWF ERA Interim data as boundary condition, a total of 18 sensitivity experiments were done with different cumulus parameterization and ocean flux schemes for the period of 1989-2008. In this study, the model's performance in simulating mean temperature is evaluated against APHRODITE, a gridded observed temperature dataset. Initial results showed that RegCM4 tends to enhance the cold bias from the boundary forcing. There is also a consistent cold bias among all simulations over the Tibetan plateau and Indochina, especially during the boreal winter. Consequently, simulations had the smallest biases during boreal summer. The correlation of the model with the observed data is high over the northern half of the region, in contrast with the low correlation over the southern half, which may be due to uncertainties in the APHRODITE dataset over this region. Consistent with the spatial analysis, the analysis of the regional means indicates an overall better performance of the MIT Emanuel scheme, in terms of seasonality and spatial distribution. The

  19. The Earth's Equilibrium Climate Sensitivity and Thermal Inertia

    OpenAIRE

    Royce, B.S.H.; Lam, S H

    2013-01-01

    The Earth's equilibrium climate sensitivity has received much attention because of its relevance and importance for global warming policymaking. This paper focuses on the Earth's \\emph{thermal inertia time scale} which has received relatively little attention. The difference between the observed transient climate sensitivity and the equilibrium climate sensitivity is shown to be proportional to the thermal inertia time scale, and the numerical value of the proportionality factor is determined...

  20. Climate stability and sensitivity in some simple conceptual models

    Science.gov (United States)

    Bates, J. Ray

    2012-02-01

    A theoretical investigation of climate stability and sensitivity is carried out using three simple linearized models based on the top-of-the-atmosphere energy budget. The simplest is the zero-dimensional model (ZDM) commonly used as a conceptual basis for climate sensitivity and feedback studies. The others are two-zone models with tropics and extratropics of equal area; in the first of these (Model A), the dynamical heat transport (DHT) between the zones is implicit, in the second (Model B) it is explicitly parameterized. It is found that the stability and sensitivity properties of the ZDM and Model A are very similar, both depending only on the global-mean radiative response coefficient and the global-mean forcing. The corresponding properties of Model B are more complex, depending asymmetrically on the separate tropical and extratropical values of these quantities, as well as on the DHT coefficient. Adopting Model B as a benchmark, conditions are found under which the validity of the ZDM and Model A as climate sensitivity models holds. It is shown that parameter ranges of physical interest exist for which such validity may not hold. The 2 × CO2 sensitivities of the simple models are studied and compared. Possible implications of the results for sensitivities derived from GCMs and palaeoclimate data are suggested. Sensitivities for more general scenarios that include negative forcing in the tropics (due to aerosols, inadvertent or geoengineered) are also studied. Some unexpected outcomes are found in this case. These include the possibility of a negative global-mean temperature response to a positive global-mean forcing, and vice versa.

  1. Deep time evidence for climate sensitivity increase with warming

    DEFF Research Database (Denmark)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto;

    2016-01-01

    Future global warming from anthropogenic greenhouse gas emissions will depend on climate feedbacks, the effect of which is expressed by climate sensitivity, the warming for a doubling of atmospheric CO2 content. It is not clear how feedbacks, sensitivity, and temperature will evolve in our warming...... world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8Ma ago, a possible future...... indicates climate sensitivity increase with global warming....

  2. A Method for Screening Climate Change-Sensitive Infectious Diseases

    OpenAIRE

    Yunjing Wang; Yuhan Rao; Xiaoxu Wu; Hainan Zhao; Jin Chen

    2015-01-01

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify ...

  3. Robust increase in equilibrium climate sensitivity under global warming

    OpenAIRE

    Meraner, Katharina; Mauritsen, Thorsten; Voigt, Aiko

    2013-01-01

    International audience Equilibrium climate sensitivity (ECS) is a widely accepted measure of Earth's susceptibility to radiative forcing. While ECS is often assumed to be constant to a first order of approximation, recent studies suggested that ECS might depend on the climate state. Here it is shown that the latest generation of climate models consistently exhibits an increasing ECS in warmer climates due to a strengthening of the water-vapor feedback with increasing surface temperatures. ...

  4. Sensitivity of Regional Climate to Deforestation in the Amazon Basin

    Science.gov (United States)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1994-01-01

    The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.

  5. Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  6. Assessing climate-sensitive ecosystems in the southeastern United States

    Science.gov (United States)

    Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew; White, Rickie; Collazo, Jaime

    2016-01-01

    Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing

  7. Phenological sensitivity to climate across taxa and trophic levels.

    Science.gov (United States)

    Thackeray, Stephen J; Henrys, Peter A; Hemming, Deborah; Bell, James R; Botham, Marc S; Burthe, Sarah; Helaouet, Pierre; Johns, David G; Jones, Ian D; Leech, David I; Mackay, Eleanor B; Massimino, Dario; Atkinson, Sian; Bacon, Philip J; Brereton, Tom M; Carvalho, Laurence; Clutton-Brock, Tim H; Duck, Callan; Edwards, Martin; Elliott, J Malcolm; Hall, Stephen J G; Harrington, Richard; Pearce-Higgins, James W; Høye, Toke T; Kruuk, Loeske E B; Pemberton, Josephine M; Sparks, Tim H; Thompson, Paul M; White, Ian; Winfield, Ian J; Wanless, Sarah

    2016-07-14

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average). PMID:27362222

  8. A Direct Estimate of Climate Sensitivity from Atmospheric Structure

    Science.gov (United States)

    Lacis, A. A.

    2014-12-01

    The nominal equilibrium climate sensitivity of about 3°C for doubled CO2 is obtained from direct climate model calculations and from simulations of the historical surface temperature record. A similar value of equilibrium climate sensitivity has been inferred from the geological ice core record. A further independent estimate of climate sensitivity can be derived directly from the atmospheric temperature, cloud, and absorbing gas structure. Attribution of individual contributions to the terrestrial greenhouse effect by individual atmospheric constituents shows that water vapor and clouds account for about 75% of the total greenhouse effect, while CO2 and the other minor non-condensing green house gases account for the remaining 25%. It is generally understood that water vapor and cloud contributions to the greenhouse effect arise as feedback effects, and that the non-condensing greenhouse gas contribution can be identified as the radiative forcing component. From this alone, a climate feedback sensitivity of f = 4, or about 5°C for doubled CO2 can be inferred. Accounting further for the negative temperature lapse rate feedback that is not directly included in the attribution analysis, and allowing for a residual non-condensing component of the water vapor feedback, brings the equilibrium climate sensitivity that is inferred from atmospheric structural analysis to the 3°C range for doubled CO2, in good agreement with the equilibrium climate sensitivity that is obtained from comparisons to historical and geological global temperature changes.

  9. Feedbacks, climate sensitivity, and the limits of linear models

    Science.gov (United States)

    Rugenstein, M.; Knutti, R.

    2015-12-01

    The term "feedback" is used ubiquitously in climate research, but implies varied meanings in different contexts. From a specific process that locally affects a quantity, to a formal framework that attempts to determine a global response to a forcing, researchers use this term to separate, simplify, and quantify parts of the complex Earth system. We combine large (>120 member) ensemble GCM and EMIC step forcing simulations over a broad range of forcing levels with a historical and educational perspective to organize existing ideas around feedbacks and linear forcing-feedback models. With a new method overcoming internal variability and initial condition problems we quantify the non-constancy of the climate feedback parameter. Our results suggest a strong state- and forcing-dependency of feedbacks, which is not considered appropriately in many studies. A non-constant feedback factor likely explains some of the differences in estimates of equilibrium climate sensitivity from different methods and types of data. We discuss implications for the definition of the forcing term and its various adjustments. Clarifying the value and applicability of the linear forcing feedback framework and a better quantification of feedbacks on various timescales and spatial scales remains a high priority in order to better understand past and predict future changes in the climate system.

  10. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  11. Reducing Climate-Sensitive Disease Risks

    OpenAIRE

    World Bank

    2014-01-01

    Disease risks to humans, animals, and plants are determined by interconnected environmental variables that affect incidence, transmission, and outbreak. Climate change affects many of the environmental variables that lead to disease. Regardless of the species involved, the impacts can ultimately affect the health, livelihood, and economic security of humans. The objective of this World Ban...

  12. Issues in Establishing Climate Sensitivity in Recent Studies

    Directory of Open Access Journals (Sweden)

    John T. Fasullo

    2011-09-01

    Full Text Available Numerous attempts have been made to constrain climate sensitivity with observations [1-10] (with [6] as LC09, [8] as SB11. While all of these attempts contain various caveats and sources of uncertainty, some efforts have been shown to contain major errors and are demonstrably incorrect. For example, multiple studies [11-13] separately addressed weaknesses in LC09 [6]. The work of Trenberth et al. [13], for instance, demonstrated a basic lack of robustness in the LC09 method that fundamentally undermined their results. Minor changes in that study’s subjective assumptions yielded major changes in its main conclusions. Moreover, Trenberth et al. [13] criticized the interpretation of El Niño-Southern Oscillation (ENSO as an analogue for exploring the forced response of the climate system. In addition, as many cloud variations on monthly time scales result from internal atmospheric variability, such as the Madden-Julian Oscillation, cloud variability is not a deterministic response to surface temperatures. Nevertheless, many of the problems in LC09 [6] have been perpetuated, and Dessler [10] has pointed out similar issues with two more recent such attempts [7,8]. Here we briefly summarize more generally some of the pitfalls and issues involved in developing observational constraints on climate feedbacks. [...

  13. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    Science.gov (United States)

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum. PMID:23918402

  14. A new framework for climate sensitivity and prediction: a modelling perspective

    Science.gov (United States)

    Ragone, Francesco; Lucarini, Valerio; Lunkeit, Frank

    2016-03-01

    The sensitivity of climate models to increasing CO2 concentration and the climate response at decadal time-scales are still major factors of uncertainty for the assessment of the long and short term effects of anthropogenic climate change. While the relative slow progress on these issues is partly due to the inherent inaccuracies of numerical climate models, this also hints at the need for stronger theoretical foundations to the problem of studying climate sensitivity and performing climate change predictions with numerical models. Here we demonstrate that it is possible to use Ruelle's response theory to predict the impact of an arbitrary CO2 forcing scenario on the global surface temperature of a general circulation model. Response theory puts the concept of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of predictability at different time-scales. Conceptually, these results show that performing climate change experiments with general circulation models is a well defined problem from a physical and mathematical point of view. Practically, these results show that considering one single CO2 forcing scenario is enough to construct operators able to predict the response of climatic observables to any other CO2 forcing scenario, without the need to perform additional numerical simulations. We also introduce a general relationship between climate sensitivity and climate response at different time scales, thus providing an explicit definition of the inertia of the system at different time scales. This technique allows also for studying systematically, for a large variety of forcing scenarios, the time horizon at which the climate change signal (in an ensemble sense) becomes statistically significant. While what we report here refers to the linear response, the general theory allows for treating nonlinear effects as well. These results pave the way for redesigning and interpreting climate change experiments from a radically new

  15. On the state dependency of fast feedback processes in (paleo) climate sensitivity

    NARCIS (Netherlands)

    Von Der Heydt, A. S.; Köhler, P.; Van De Wal, R. S W; Dijkstra, H. A.

    2014-01-01

    Paleo data have been frequently used to determine the equilibrium (Charney) climate sensitivity Sa, and - if slow feedback processes (e.g., land-ice albedo) are adequately taken into account - they indicate a similar range as estimates based on instrumental data and climate model results. Many studi

  16. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    Science.gov (United States)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  17. Sensitivity of annual and seasonal reference crop evapotranspiration to principal climatic variables

    Indian Academy of Sciences (India)

    G T Patle; D K Singh

    2015-06-01

    Reference evapotranspiration (ET0) represents the evaporative demand of the atmosphere and depends on climatic parameters such as radiation, air temperature, humidity, and wind speed. Relative role of climatic parameter of ET0 varies from one climate to another and within the climate, and depends on the location and time. Sensitivity analysis was conducted and sensitivity coefficients were determined to evaluate the impact of principal climatic parameters on ET0 in Karnal district of India. Mean monthly ET0 and yearly ET0 from 1981 to 2011 were estimated from FAO-56 Penman–Monteith equation using the daily climate data collected from Central Soil Salinity Research Institute, Karnal. Results showed that seasonal and annual ET0 were most sensitive to maximum temperature followed by sunshine hours. However, wind speed, relative humidity, and minimum temperature had varying effect on mean ET0. After maximum temperature and sunshine hours, ET0 was more sensitive to wind speed followed by relative humidity and minimum temperature in summer. In monsoon, after maximum temperature and sunshine hours, ET0 was more sensitive to minimum temperature followed by relative humidity and wind speed. However, in winter, after maximum temperature and sunshine hours, ET0 was more sensitive to relative humidity followed by wind speed and minimum temperature. The study suggests that the climate variability would affect reference ET0; however, its impact on ET0 would be different for different parameters.

  18. Sensitivity of annual and seasonal reference crop evapotranspiration to principal climatic variables

    Science.gov (United States)

    Patle, G. T.; Singh, D. K.

    2015-06-01

    Reference evapotranspiration (ET0) represents the evaporative demand of the atmosphere and depends on climatic parameters such as radiation, air temperature, humidity, and wind speed. Relative role of climatic parameter of ET0 varies from one climate to another and within the climate, and depends on the location and time. Sensitivity analysis was conducted and sensitivity coefficients were determined to evaluate the impact of principal climatic parameters on ET0 in Karnal district of India. Mean monthly ET0 and yearly ET0 from 1981 to 2011 were estimated from FAO-56 Penman-Monteith equation using the daily climate data collected from Central Soil Salinity Research Institute, Karnal. Results showed that seasonal and annual ET0 were most sensitive to maximum temperature followed by sunshine hours. However, wind speed, relative humidity, and minimum temperature had varying effect on mean ET0. After maximum temperature and sunshine hours, ET0 was more sensitive to wind speed followed by relative humidity and minimum temperature in summer. In monsoon, after maximum temperature and sunshine hours, ET0 was more sensitive to minimum temperature followed by relative humidity and wind speed. However, in winter, after maximum temperature and sunshine hours, ET0 was more sensitive to relative humidity followed by wind speed and minimum temperature. The study suggests that the climate variability would affect reference ET0; however, its impact on ET0 would be different for different parameters.

  19. Growing sensitivity of maize to water scarcity under climate change

    OpenAIRE

    Qingfeng Meng; Xinping Chen; Lobell, David B; Zhenling Cui; Yi Zhang; Haishun Yang; Fusuo Zhang

    2016-01-01

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that moder...

  20. Implications of recent multimodel attribution studies for climate sensitivity

    Science.gov (United States)

    Lewis, Nicholas

    2016-03-01

    Equilibrium climate sensitivity (ECS) is inferred from estimates of instrumental-period warming attributable solely to greenhouse gases (AW), as derived in two recent multi-model detection and attribution (D&A) studies that apply optimal fingerprint methods with high spatial resolution to 3D global climate model simulations. This approach minimises the key uncertainty regarding aerosol forcing without relying on low-dimensional models. The "observed" AW distributions from the D&A studies together with an observationally-based estimate of effective planetary heat capacity (EHC) are applied as observational constraints in (AW, EHC) space. By varying two key parameters—ECS and effective ocean diffusivity—in an energy balance model forced solely by greenhouse gases, an invertible map from the bivariate model parameter space to (AW, EHC) space is generated. Inversion of the constrained (AW, EHC) space through a transformation of variables allows unique recovery of the observationally-constrained joint distribution for the two model parameters, from which the marginal distribution of ECS can readily be derived. The method is extended to provide estimated distributions for transient climate response (TCR). The AW distributions from the two D&A studies produce almost identical results. Combining the two sets of results provides best estimates (5-95 % ranges) of 1.66 (0.7-3.2) K for ECS and 1.37 (0.65-2.2) K for TCR, in line with those from several recent studies based on observed warming from all causes but with tighter uncertainty ranges than for some of those studies. Almost identical results are obtained from application of an alternative profile likelihood statistical methodology.

  1. Sensitivity of global terrestrial ecosystems to climate variability.

    Science.gov (United States)

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being. PMID:26886790

  2. Sensitivity of global terrestrial ecosystems to climate variability

    Science.gov (United States)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  3. Local Climate Sensitivity of the Three Gorges Dam

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Norman L.; Jin, Jiming; Tsang, Chin-Fu

    2005-02-18

    Two simulations, control and land use change, were performed for an eight week period (2 April-16 May 1990) to determine the net sensitivity of the local climate around the Three Gorges Dam. The analysis indicates that the large reservoir acts as a potential evaporating surface that decreases the surface temperature, cools the lower atmosphere, decreasing upward motion, and increasing sinking air mass. Such sinking results in low level moisture divergence, decreasing cloudiness, and increasing net downward radiation, which increases the surface temperature. However, results indicate that evaporative cooling dominates radiative warming in this initial study. The strong evaporation also supplies moisture to the atmosphere, suggesting an increase in precipitation, but the sinking moist air diverges away from the TGD region with no net change in precipitation. This numerical study represents an initial methodology for quantification of the impact of the Three Gorges Dam on the local climate and a more comprehensive, fine-scale set of multi-season simulations with additional observational data is needed for a more complete analysis.

  4. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  5. Empirical Estimates of Global Climate Sensitivity: An Assessment of Strategies Using a Coupled GCM

    Institute of Scientific and Technical Information of China (English)

    ZHU Weijun; Kevin HAMILTON

    2008-01-01

    A control integration with the normal solar constant and one with it increased by 2.5% in the National Center for Atmospheric Research (NCAR) coupled atmosphere-ocean Climate System Model were conducted to see how well the actual realized global warming could be predicted just by analysis of the control results. This is a test, within a model context, of proposals that have been advanced to use knowledge of the present day climate to make "empirical" estimates of global climate sensitivity. The scaling of the top-of-the-atmosphere infrared flux and the planetary albedo as functions of surface temperature was inferred by examining four different temporal and geographical variations of the control simulations. Each of these inferences greatly overestimates the climate sensitivity of the model, largely because of the behavior of the cloud albedo. In each inference the control results suggest that cloudiness and albedo decrease with increasing surface temperature. However, the experiment with the increased solar constant actually has higher albedo and more cloudiness at most latitudes. The increased albedo is a strong negative feedback, and this helps account for the rather weak sensitivity of the climate in the NCAR model. To the extent that these model results apply to the real world, they suggest empirical evaluation of the scaling of global-mean radiative properties with surface temperature in the present day climate provides little useful guidance for estimates of the actual climate sensitivity to global changes.

  6. Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity

    Science.gov (United States)

    Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.

    2016-07-01

    The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.

  7. A geohydrologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA

    Directory of Open Access Journals (Sweden)

    M. Safeeq

    2014-03-01

    Full Text Available Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most assessments of the impacts of a changing climate to streamflow make use of downscaled temperature and precipitation projections from General Circulation Models (GCMs. Projected climate simulations from these GCMs are often too coarse for planning purposes, as they do not capture smaller scale topographic controls and other important watershed processes. This uncertainty is further amplified when downscaled climate predictions are coupled to macroscale hydrologic models that fail to capture streamflow contributions from deep groundwater. Deep aquifers play an important role in mediating streamflow response to climate change, and groundwater needs to be explicitly incorporated into sensitivity assessments. Here we develop and apply an analytical framework for characterizing summer streamflow sensitivity to a change in the timing and magnitude of recharge in a spatially-explicit fashion. Two patterns emerge from this analysis: first, areas with high streamflow sensitivity also have higher summer streamflows as compared to low sensitivity areas. Second, the level of sensitivity and spatial extent of highly sensitive areas diminishes over time as the summer progresses. Results of this analysis point to a robust, practical, and scalable approach that can help assess risk at the landscape scale, complement the downscaling approach, be applied to any climate scenario of interest, and provide a framework to assist land and water managers adapt to an uncertain and potentially challenging future.

  8. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    Science.gov (United States)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  9. Sensitivity and Thresholds of Ecosystems to Abrupt Climate Change

    Science.gov (United States)

    Peteet, D. M.; Peteet, D. M.

    2001-12-01

    Rapid vegetational change is a hallmark of past abrupt climate change, as evidenced from Younger Dryas records in Europe, eastern North America, and the Pacific North American rim. The potential response of future ecosystems to abrupt climate change is targeted, with a focus on particular changes in the hydrological cycle. The vulnerability of ecosystems is notable when particular shifts cross thresholds of precipitation and temperature, as many plants and animals are adapted to specific climatic "windows". Significant forest species compositional changes occur at ecotonal boundaries, which are often the first locations to record a climatic response. Historical forest declines have been linked to stress, and even Pleistocene extinctions have been associated with human interaction at times of rapid climatic shifts. Environmental extremes are risky for reproductive stages, and result in nonlinearities. The role of humans in association with abrupt climate change suggests that many ecosystems may cross thresholds from which they will find it difficult to recover. Sectors particularly vulnerable will be reviewed.

  10. Sensitivity of water resources in the Delaware River basin to climate variability and change

    Science.gov (United States)

    Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.

    1993-01-01

    Because of the "greenhouse effect," projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climatic change, and presents the results of sensitivity-analysis studies of the potential effects of climate change on water resources in the Delaware River basin. On the basis of sensitivity analyses, potentially serious shortfalls of certain water resources in the basin could result if some climatic-change scenarios become true. The results of basin streamflow-model simulations in this study demonstrate the difficulty in distinguishing effects of climatic change on streamflow and water supply from effects of natural variability in current climate. The future direction of basin changes in most water resources, furthermore, cannot be determined precisely because of uncertainty in current projections of regional temperature and precipitation. This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant. The sensitivity analyses could be useful in developing contingency plans on how to evaluate and respond to changes, should they occur.

  11. Climate sensitivity to Arctic seaway restriction during the early Paleogene

    Science.gov (United States)

    Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.

    2009-09-01

    The opening and closing of ocean gateways affects the global distribution of heat, salt, and moisture, potentially driving climatic change on regional to global scales. Between 65 and 45 million years ago (Ma), during the early Paleogene, exchange between the Arctic and global oceans occurred through two narrow and shallow seaways, the Greenland-Norway seaway and the Turgai Strait. Sediments from the Arctic Ocean suggest that, during this interval, the surface ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions in the Paleogene Arctic remain uncertain. Here we show results from an isotope-enabled, atmosphere-ocean general circulation model, which indicate that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the Arctic seaways. We also present modelled estimates of seawater and calcite δ18O for the Paleogene. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~ 6 psu and warming of sea-surface temperatures by 2 °C in the North Atlantic and 5-10 °C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We propose that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates and supports a tectonic trigger hypothesis for the Paleocene Eocene Thermal Maximum (PETM).

  12. Landscape heterogeneity modulates forest sensitivity to climate

    Science.gov (United States)

    Jencso, Kelsey; Hu, Jia; Hoylman, Zachary

    2015-04-01

    Elevation dependent snowmelt magnitude and timing strongly influences net ecosystem productivity in forested mountain watersheds. However, previous work has provided little insight into how internal watershed topography and organization may modulate plant available water and forest growth across elevation gradients. We collected 800 tree cores from four coniferous tree species across a range of elevation, topographic positions and aspects in the Lubrecht Experimental Forest, Montana, USA. We compared the annual basal area increment growth rate to precipitation and temperature from a 60-year SNOTEL data record, groundwater and soil moisture data in sideslope and hollow positions, and topographic indices derived from a LiDAR digital elevation model. At the watershed scale, we evaluated the relationships between topographic indices, LiDAR derived estimates of basal area and seasonal patterns of the Landsat derived Enhanced Vegetation Index. Preliminary results indicate strong relationships between the rates of annual basal growth and the topographic wetness index (TWI), with differing slopes dependent on tree species (P. menziesii R2 = 0.66-0.71, P. ponderosa R2 = 0.87, L. occidentalis R2 = 0.71) and elevation. Generally, trees located in wetter landscape positions (higher TWI) exhibited greater annual growth per unit of precipitation relative to trees located in drier landscape positions (lower TWI). Similarly, watershed scale analysis of LiDAR derived biomass and seasonal greenness indicates differential growth response due to local convergence and divergence across elevation and insolation gradients. These observations suggest that topographically driven water redistribution patterns may modulate the effects of large scale gradients in precipitation and temperature, thereby creating hotspots for conifer productivity in semiarid watersheds.

  13. Climate sensitivity of DSSAT under different agriculture practice scenarios in China

    Science.gov (United States)

    Xia, L.; Robock, A.

    2014-12-01

    Crop yields are sensitive to both agricultural practice and climate changes. Under different agricultural practice scenarios, crop yield may have different climate sensitivities. Since it is important to understand how future climate changes affect agriculture productivity and what the potential adaptation strategies would be to compensate for possible negative impacts on crop production, we performed experiments to study climate sensitivity under different agricultural practice scenarios for rice, maize and wheat in the top four production provinces in China using the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. The agricultural practice scenarios include four categories: different amounts of nitrogen fertilizer or no nitrogen stress; irrigation turned on or off, or no water stress; all possible seeds in the DSSAT cultivar data base; and different planting dates. For the climate sensitivity test, the control climate is from 1998 to 2007, and we individually modify four climate variables: daily maximum and minimum temperature by +2 °C and -2 °C, daily precipitation by +20% and -20%, and daily solar radiation by + 20% and -20%. With more nitrogen fertilizer applied, crops are more sensitive to temperature changes as well as precipitation changes because of their release from nitrogen limitation. With irrigation turned on, crop yield sensitivity to temperature decreases in most of the regions depending on the amount of the local precipitation, since more water is available and soil temperature varies less with higher soil moisture. Those results indicate that there could be possible agriculture adaptation strategies under certain future climate scenarios. For example, increasing nitrogen fertilizer usage by a certain amount might compensate for the negative impact on crop yield from climate changes. However, since crops are more sensitive to climate changes when there is more nitrogen fertilizer applied, if the climate changes are

  14. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  15. Techniques for sensitivity analysis of SYVAC results

    International Nuclear Information System (INIS)

    Sensitivity analysis techniques may be required to examine the sensitivity of SYVAC model predictions to the input parameter values, the subjective probability distributions assigned to the input parameters and to the relationship between dose and the probability of fatal cancers plus serious hereditary disease in the first two generations of offspring of a member of the critical group. This report mainly considers techniques for determining the sensitivity of dose and risk to the variable input parameters. The performance of a sensitivity analysis technique may be improved by decomposing the model and data into subsets for analysis, making use of existing information on sensitivity and concentrating sampling in regions the parameter space that generates high doses or risks. A number of sensitivity analysis techniques are reviewed for their application to the SYVAC model including four techniques tested in an earlier study by CAP Scientific for the SYVAC project. This report recommends the development now of a method for evaluating the derivative of dose and parameter value and extending the Kruskal-Wallis technique to test for interactions between parameters. It is also recommended that the sensitivity of the output of each sub-model of SYVAC to input parameter values should be examined. (author)

  16. Determination of a lower bound on Earth's climate sensitivity

    Directory of Open Access Journals (Sweden)

    STEPHEN E. Schwartz

    2013-09-01

    Full Text Available Transient and equilibrium sensitivity of Earth's climate has been calculated using global temperature, forcing and heating rate data for the period 1970–2010. We have assumed increased long-wave radiative forcing in the period due to the increase of the long-lived greenhouse gases. By assuming the change in aerosol forcing in the period to be zero, we calculate what we consider to be lower bounds to these sensitivities, as the magnitude of the negative aerosol forcing is unlikely to have diminished in this period. The radiation imbalance necessary to calculate equilibrium sensitivity is estimated from the rate of ocean heat accumulation as 0.37±0.03 W m−2 (all uncertainty estimates are 1−σ. With these data, we obtain best estimates for transient climate sensitivity 0.39±0.07 K (W m−2−1 and equilibrium climate sensitivity 0.54±0.14 K (W m−2−1, equivalent to 1.5±0.3 and 2.0±0.5 K (3.7 W m−2−1, respectively. The latter quantity is equal to the lower bound of the ‘likely’ range for this quantity given by the 2007 IPCC Assessment Report. The uncertainty attached to the lower-bound equilibrium sensitivity permits us to state, within the assumptions of this analysis, that the equilibrium sensitivity is greater than 0.31 K (W m−2−1, equivalent to 1.16 K (3.7 W m−2−1, at the 95% confidence level.

  17. Government communication about climate change : survey results

    OpenAIRE

    Sustainable Development Commission

    2009-01-01

    A project designed to help strengthen the way the government communicates about climate change. It hopes to support the development of a new a set of messages that will help build public support for effective action.

  18. Climate change in Germany. Vulnerability and adaption of climate sensitive sectors; Klimawandel in Deutschland. Vulnerabilitaet und Anpassungsstrategien klimasensitiver Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Zebisch, Marc; Grothmann, Torsten; Schroeter, Dagmar; Hasse, Clemens; Fritsch, Uta; Cramer, Wolfgang [Potsdam Institut fuer Klimaforschung, Potsdam (Germany)

    2005-08-15

    The objectives of this study were the following: documentation of existing knowledge on global change (and particularly climate change) in Germany and to analysis of its current and potential future impacts on seven climate-sensitive sectors (water management, agriculture, forestry, biodiversity/nature conservation, health, tourism and transport).; the evaluation of the present degree of adaptation and the adaptive capacity of these climate-sensitive sectors to global change; conclusions on the vulnerability to global change of sectors and regions in Germany by considering potential global change impacts, degrees of adaptation and adaptive capacity; and the discussion of the results of the study with decision-makers from government, administration, economy and society, in order to develop a basis for the development of strategies of adaptation to global change in Germany.

  19. Earth's Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    Science.gov (United States)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; Rodhe, Henning

    2014-12-01

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content. This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO2 given in AR5, 1.5-4.5 K/(3.7 W m-2) exceeds the range inferred from the assessed likely range of forcing, 1.2-2.9 K/(3.7 W m-2), where 3.7 W m-2 denotes the forcing for doubled CO2. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.

  20. Increased sensitivity to climate change in disturbed ecosystems

    OpenAIRE

    Kröel-Dulay, G.; Ransijn, J.; I. K. Schmidt; Beier, C.; De Angelis, P.; G. de Dato; Dukes, J.S.; Emmett, B.; Estiarte, M; Garadnai, J.; Kongstad, J; Kovacs Lang, E.; Larsen, K. S.; Liberati, D.; R. Ogaya

    2015-01-01

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experim...

  1. Ultra-sensitive Alpine lakes and climate change

    OpenAIRE

    Schmidt, Roland; Kamenik, Christian; Thompson, Roy

    2005-01-01

    Global warming is one of the major issues with which mankind is being confronted, having vital ecological and economic consequences. Ice-cover, snow-cover and water temperatures in alpine catchments are controlled by air temperatures, and so are very susceptible to shifts in climate. Local factors such as wind exposure, shading, and snow patches that persist during cold summers can, however, modify the sensitivities of the relationships to air temperature. Thermistors exposed in 45 mountain l...

  2. Comment on "Climate sensitivity in the Anthropocene" by Previdi et al. (2011)

    OpenAIRE

    Schwartz, S. E.

    2012-01-01

    Attention is called to several inconsistencies and errors in the definition and interpretation of quantities relating to climate sensitivity and feedbacks in the discussions paper "Climate sensitivity in the Anthropocene" by Previdi et al. (2011).

  3. Comment on "Climate sensitivity in the Anthropocene" by Previdi et al. (2011

    Directory of Open Access Journals (Sweden)

    S. E. Schwartz

    2012-02-01

    Full Text Available Attention is called to several inconsistencies and errors in the definition and interpretation of quantities relating to climate sensitivity and feedbacks in the discussions paper "Climate sensitivity in the Anthropocene" by Previdi et al. (2011.

  4. Foliar temperature acclimation reduces simulated carbon sensitivity to climate

    Science.gov (United States)

    Smith, Nicholas G.; Malyshev, Sergey L.; Shevliakova, Elena; Kattge, Jens; Dukes, Jeffrey S.

    2016-04-01

    Plant photosynthesis and respiration are the largest carbon fluxes between the terrestrial biosphere and the atmosphere, and their parameterizations represent large sources of uncertainty in projections of land carbon uptake in Earth system models (ESMs). The incorporation of temperature acclimation of photosynthesis and foliar respiration, commonly observed processes, into ESMs has been proposed as a way to reduce this uncertainty. Here we show that, across 15 flux tower sites spanning multiple biomes at various locations worldwide (10° S-67° N), acclimation parameterizations improve a model's ability to reproduce observed net ecosystem exchange of CO2. This improvement is most notable in tropical biomes, where photosynthetic acclimation increased model performance by 36%. The consequences of acclimation for simulated terrestrial carbon uptake depend on the process, region and time period evaluated. Globally, including acclimation has a net effect of increasing carbon assimilation and storage, an effect that diminishes with time, but persists well into the future. Our results suggest that land models omitting foliar temperature acclimation are likely to overestimate the temperature sensitivity of terrestrial carbon exchange, thus biasing projections of future carbon storage and estimates of policy indicators such as the transient climate response to cumulative carbon emissions.

  5. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions

    OpenAIRE

    Zeebe, Richard E.

    2013-01-01

    Climate sensitivity measures the response of Earth’s surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth’s climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually consid...

  6. Study on the Sensitivity and Vulnerability of Wheat to Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    SUN Fang; YANG Xiu; LIN Er-da; JU Hui; XIONG Wei

    2005-01-01

    Based on B2 climate change scenario produced by PRECIS (providing regional climates for impacts studies), which was developed by the UK Hadley Center, and the wheat yield data outputted by CERES-wheat model, the sensitivity and vulnerability of wheat production to the future climate change in China were studied through analyzing the yield variation using the GIS (geographical information system) techniques. Results showed that, by the 2070s, there will be three negative sensitive areas of rain-fed wheat, i.e., northeastern China, the region of the middle and lower reaches of the Yangtze River, and part of the Loess Plateau. Irrigated wheat is generally sensitive to the future climate change for most areas of China, with a lower sensitive degree and a distribution of sensitive areas similar to the rain-fed wheat. For the irrigated wheat, northeast and northwest of China are strongly negative sensitive, while the middle and lower reaches of the Yangtze River, the coastal areas of southern China and the southwest of China, are moderately negative sensitive to the climate change. With the appropriate adaptation to the climate change, the rain-fed wheat in most regions of China will not be vulnerable and even has a yield increase, while the irrigated wheat will still have a larger vulnerable area (occupying about 2/3 of its total area in China), with the highly vulnerable regions distributed in northeastern China and northwestern China, and the medium and light vulnerable areas distributed along the middle and lower reaches of the Yangtze River,Yunnan and Guizhou provinces.

  7. Climate change and voltinism in Californian insect pest species: sensitivity to location, scenario and climate model choice.

    Science.gov (United States)

    Ziter, Carly; Robinson, Emily A; Newman, Jonathan A

    2012-09-01

    Experimental studies of the impact of climatic change are hampered by their inability to consider multiple climate change scenarios and indeed often consider no more than simple climate sensitivity such as a uniform increase in temperature. Modelling efforts offer the ability to consider a much wider range of realistic climate projections and are therefore useful, in particular, for estimating the sensitivity of impact predictions to differences in geographical location, and choice of climate change scenario and climate model projections. In this study, we used well-established degree-day models to predict the voltinism of 13 agronomically important pests in California, USA. We ran these models using the projections from three Atmosphere-Ocean Coupled Global Circulation Models (AOCGCMs or GCMs), in conjunction with the SRES scenarios. We ran these for two locations representing northern and southern California. We did this for both the 2050s and 2090s. We used anova to partition the variation in the resulting voltinism among time period, climate change scenario, GCM and geographical location. For these 13 pest species, the choice of climate model explained an average of 42% of the total variation in voltinism, far more than did geographical location (33%), time period (17%) or scenario (1%). The remaining 7% of the variation was explained by various interactions, of which the location by GCM interaction was the strongest (5%). Regardless of these sources of uncertainty, a robust conclusion from our work is that all 13 pest species are likely to experience increases in the number of generations that they complete each year. Such increased voltinism is likely to have significant consequences for crop protection and production. PMID:24501055

  8. Sensitivity of regional climate to global temperature and forcing

    International Nuclear Information System (INIS)

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250–1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m−2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway. (letter)

  9. Sensitivity of regional climate to global temperature and forcing

    Science.gov (United States)

    Tebaldi, Claudia; O'Neill, Brian; Lamarque, Jean-François

    2015-07-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250-1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m-2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway.

  10. Analysis of Evapotranspiration Model Sensitivity to Climate and Vegetation Parameters With Dependence

    Science.gov (United States)

    Levy, M. C.

    2013-12-01

    ; Saltelli, 2002) to assess the sensitivity of a PM ET model to both climate and vegetation input variables, and the first applied use of a Sobol' SA analogue method (Kucherenko et al., 2012) developed for correlated input variables. This study finds that without accounting for correlated input variables, PM ET is not sensitive to vegetation variables relative to climate variables. However, accounting for input variable dependence yields different results. In an arid climate example, first order (individual variable) sensitivities are higher, total (variable interaction) sensitivities are lower, and climate and vegetation variables are more closely ranked in terms of their total sensitivities. Because Sobol' type SAs are used to evaluate environmental models broadly, and environmental variables are in many cases correlated, this study provides an example of how not accounting for all model input variables and their correlation can result in inaccurate estimates of the sensitivity of models to their parameters. This research illustrates the importance of accounting for parameter dependence when a SA is being used for parameterization and calibration guidance, and/or assessments of the sensitivity of model outputs to changes in environmental inputs. The latter is particularly relevant for climate change studies.

  11. Growing sensitivity of maize to water scarcity under climate change

    Science.gov (United States)

    Meng, Qingfeng; Chen, Xinping; Lobell, David B.; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-01

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  12. Sensitivity of climate models: Comparison of simulated and observed patterns for past climates

    International Nuclear Information System (INIS)

    Predicting the potential climatic effects of increased concentrations of atmospheric carbon dioxide requires the continuing development of climate models. Confidence in the predictions will be much enhanced once the models are thoroughly tested in terms of their ability to simulate climates that differ significantly from today's climate. As one index of the magnitude of past climate change, the global mean temperature increase during the past 18,000 years is similar to that predicted for carbon dioxide--doubling. Simulating the climatic changes of the past 18,000 years, as well as the warmer-than-present climate of 6000 years ago and the climate of the last interglacial, around 126,000 years ago, provides an excellent opportunity to test the models that are being used in global climate change research. During the past several years, we have used paleoclimatic data to test the accuracy of the National Center for Atmospheric Research, Community Climate Model, Version 0, after changing its boundary conditions to those appropriate for past climates. We have assembled regional and near-global paleoclimatic data sets of pollen, lake level, and marine plankton data and calibrated many of the data in terms of climatic variables. We have also developed methods that permit direct quantitative comparisons between the data and model results. Our research has shown that comparing the model results with the data is an evolutionary process, because the models, the data, and the methods for comparison are continually being improved. During 1992, we have completed new modeling experiments, further analyzed previous model experiments, compiled new paleodata, made new comparisons between data and model results, and participated in workshops on paleoclimatic modeling

  13. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    B. Leterme

    2012-08-01

    Full Text Available The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from −42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain, considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from −69% to −14% compared to the present-day climate.

  14. Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D

    Science.gov (United States)

    Leterme, B.; Mallants, D.; Jacques, D.

    2012-08-01

    The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from -42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain), considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra) climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from -69% to -14% compared to the present-day climate.

  15. Chaotic Attractor Crisis and Climate Sensitivity: a Transfer Operator Approach

    Science.gov (United States)

    Tantet, A.; Lucarini, V.; Lunkeit, F.; Dijkstra, H. A.

    2015-12-01

    The rough response to a smooth parameter change of some non-chaotic climate models, such as the warm to snowball-Earth transition in energy balance models due to the ice-albedo feedback, can be studied in the framework of bifurcation theory, in particular by analysing the Lyapunov spectrum of fixed points or periodic orbits. However, bifurcation theory is of little help to study the destruction of a chaotic attractor which can occur in high-dimensional General Circulation Models (GCM). Yet, one would expect critical slowing down to occur before the crisis, since, as the system becomes susceptible to the physical instability mechanism responsible for the crisis, it turns out to be less and less resilient to exogenous perturbations and to spontaneous fluctuations due to other types of instabilities on the attractor. The statistical physics framework, extended to nonequilibrium systems, is particularly well suited for the study of global properties of chaotic and stochastic systems. In particular, the semigroup of transfer operators governs the evolution of distributions in phase space and its spectrum characterises both the relaxation rate of distributions to a statistical steady-state and the stability of this steady-state to perturbations. If critical slowing down indeed occurs in the approach to an attractor crisis, the gap in the spectrum of the semigroup of transfer operators is expected to shrink. We show that the chaotic attractor crisis due to the ice-albedo feedback and resulting in a transition from a warm to a snowball-Earth in the Planet Simulator (PlaSim), a GCM of intermediate complexity, is associated with critical slowing down, as observed by the slower decay of correlations before the crisis (cf. left panel). In addition, we demonstrate that this critical slowing down can be traced back to the shrinkage of the gap between the leading eigenvalues of coarse-grained approximations of the transfer operators and that these eigenvalues capture the

  16. Sensitivity analysis of a forest gap model concerning current and future climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Lasch, P.; Suckow, F.; Buerger, G.; Lindner, M.

    1998-07-01

    The ability of a forest gap model to simulate the effects of climate variability and extreme events depends on the temporal resolution of the weather data that are used and the internal processing of these data for growth, regeneration and mortality. The climatological driving forces of most current gap models are based on monthly means of weather data and their standard deviations, and long-term monthly means are used for calculating yearly aggregated response functions for ecological processes. In this study, the results of sensitivity analyses using the forest gap model FORSKA{sub -}P and involving climate data of different resolutions, from long-term monthly means to daily time series, including extreme events, are presented for the current climate and for a climate change scenario. The model was applied at two sites with differing soil conditions in the federal state of Brandenburg, Germany. The sensitivity of the model concerning climate variations and different climate input resolutions is analysed and evaluated. The climate variability used for the model investigations affected the behaviour of the model substantially. (orig.)

  17. On the state dependency of fast feedback processes in (palaeo) climate sensitivity

    CERN Document Server

    von der Heydt, Anna S; van de Wal, Roderik S W; Dijkstra, Henk A

    2014-01-01

    The equilibrium (Charney) climate sensitivity is the equilibrium change in Earth's global mean surface temperature due to a radiative forcing associated with a doubling of the atmospheric CO$_2$ concentration. Palaeo data have been frequently used to determine this value, and - if slow feedback processes (e.g. land-ice albedo) are adequately taken into account - they indicate a similar range as estimates based on climate model results. In most studies it is implicitly assumed that the (fast) feedback processes are independent of the background climate state, e.g., are equally strong during warm and cold periods. Here we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model for interpretation. By applying a new method which explicitly considers the background climate state we calculate a specific climate sensitivity of 0.59-1.15 K(Wm$^{-2}$)$^{-1}$ corresponding to a warming of 2.2 to 4.3 K for a CO$_2$ doubling at a 6...

  18. Sensitivity of the reference evapotranspiration to key climatic variables in Shandong Province, China

    Science.gov (United States)

    Yang, Jialin; Liu, Chaoshun; Zhou, Cong

    2015-09-01

    The aim of this work was to predict responses of reference evapotranspiration (ETo) to perturbations of four climatic variables in Shandong province, China. For this purpose, ETo was estimated based on the FAO-56 Penman-Monteith equation, a non-dimensional relative sensitivity coefficient was employed. Climatic variables (i.e., daily air temperature, sunshine duration, wind speed and daily relative humidity) at 12 meteorological stations covering whole area (1960 to 2013) were collected firstly and used for the analysis. Results showed that ETo had positive sensitivities to air temperature, sunshine duration and wind speed, opposite to what were observed to relative humidity. The sensitivity of climatic parameters to ETo showed a decreasing trend: relative humidity> >sunshine duration>wind speed > air temperature. The sensitivity coefficients of different factors varied in time and space. From 1960 to 2013, the sensitivity coefficient of sunshine duration (Sn) showed a downward trend at a rate of (-4.3e-4)/a. The sensitivity coefficient of wind speed (SWS) and relative humidity (SRH) increased at a rate of (3.9e-4)/a and (1.9e-3)/a respectively, while the sensitivity coefficient of air temperature (ST) waved with a tiny decrease trend. The values of ST and Sn in southern were larger than in northern region. The values of SWS in southern and northeast region were smaller than that in the northern area. SRH in the central region was lower than other area, opposite to what were observed in coastal areas.

  19. Catchment sensitivity to changing climate conditions: the importance of landscape characteristic

    Science.gov (United States)

    Teutschbein, C.; Karlsen, R.; Grabs, T.; Laudon, H.; Bishop, K. H.

    2014-12-01

    The scientific literature is full of studies analyzing future climate change impacts on hydrology with focus on individual catchments. However, we recently found that hydrologic behavior and specific discharge vary considerably even in neighboring and rather similar catchments under current climate conditions and that these variations are related to landscape characteristics. Therefore we hypothesize that these landscape characteristics also play a fundamental role for the sensitivity of a catchment to changing climate conditions. We analyzed the hydrological response of 14 neighboring catchments in Northern Sweden with slightly different topography, land cover, size and geology. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV light model. Climate projections were based on 14 regional climate models (ENSEMBLES EU project) and bias-corrected with a distribution-mapping approach. Our simulations revealed that future spring flood peaks will occur much earlier and decrease by 13 to 32 %, whereas winter base flows will increase slightly. These changes are somewhat expected and mainly triggered by a projected increase in winter temperature, which leads to less snow accumulation on the ground. However, these values also highlight that there is a large variability amongst the catchments in their hydrological response to the same future climate conditions. For example, spring flood peaks in catchments without wetlands decrease by only 13 to 15 %, whereas catchments with wetlands show a spring flood peak reduction of 20 to 32 %. In addition to wetlands, we also identified lakes, peat soils and higher elevations as factors that seem to cause a stronger hydrological response to the climate change signal, whereas catchments dominated by forests, steeper slopes and till soils seem to be less strongly affected by a changing climate. Therefore, our results suggest that the sensitivity of catchments to future climate conditions is strongly linked to

  20. Learning about equilibrium climate sensitivity and transient climate response from observations

    Science.gov (United States)

    Johansson, D. J.; O'Neill, B. C.; Tebaldi, C.; Häggström, O.

    2013-12-01

    One key uncertainty within the science of climate change pertains to the Equilibrium Climate Sensitivity (ECS). Several studies using instrumental observations to estimate ECS have found shifts in the Probability Distribution Function (PDF) towards lower values when including observations over the last decade. Identifying the reasons behind shifting PDFs - in the hope of making the best interpretation and use of them - points to the crucial and wider issue of how we should learn from observations, in particular observations accumulating over time. If our underlying geophysical model or our statistical model does not fully capture the climate variability and the warming signal we could expect periods when we appear to learn but when we do not (Oppenheimer et al, 2008). This highlights the importance of using several different model structures when estimating PDFs from observations and the importance of analyzing how the PDFs change as the observational time series get longer. By analyzing how the PDFs change over time and by offering explanations for those changes one should be better equipped to draw conclusions on what can be learnt from the analysis. In this presentation we analyze how the PDFs for ECS and Transient Climate Response (TCR) change as the observational record accumulates. We use a land-ocean resolved Upwelling Diffusion Energy Balance Model (UDEBM) together with a Bayesian Markov Chain Monte Carlo approach. Radiative forcing time series since 1765 are used together with land and ocean surface temperature observations (CRUTEM4 and HadSST3) as well as observations on ocean heat content to constrain parameters in the UDEBM. Our preliminary results show that with observations up to 1991 (starting in 1856) the PDFs is relatively well constrained in comparison with the prior assumptions. The most like values are 3.0°C and 1.9°C for ECS and TCR, respectively. The corresponding 5-95% intervals are 2.1-6.9°C and 1.5-2.9°C. This can be compared to the

  1. Climate sensitivity of allergenic taxa in Central Europe associated with new climate change related forces.

    Science.gov (United States)

    Deák, Aron József; Makra, László; Matyasovszky, István; Csépe, Zoltán; Muladi, Beáta

    2013-01-01

    The aim of the study was to analyse trends of the pollen season with its duration, start and end dates, as well as trends of the annual total pollen count and annual peak pollen concentration for the Szeged agglomeration in Southern Hungary. The data set covered an 11-year period (1997-2007) that included eight taxa and seven daily climate variables. Trend analysis was performed on both annual and daily bases. Trend analysis on a daily basis is a new approach that provides information on the annual cycles of the trends. To quantify the strength of the relationship between the annual cycle of the slope of a pollen concentration trend and the annual cycles of the slopes of the climate variable trends, an association measure and a multiple association measure are introduced. Individual taxa were sorted into three categories according to their climate sensitivities. These were compared with two novel climate change-related forces, namely risk potential and expansion potential due to the climate change. The total annual pollen counts indicated significant trends for 4 taxa and 3 of these 4 trends increased on a daily basis. At the same time, significant changes were detected for the pollen season characteristics of three taxa. The association measures performed well when compared to the climate change-related forces. Significant changes in pollen season characteristics were also in accordance with the risk potential and expansion potential due to the climate change. A novel procedure was applied to separate the effects of the past and current weather conditions that influence the current Ambrosia pollen concentrations. The potential effect of land use changes on pollen release of the given taxa was also discussed using the CORINE Land Cover Database. PMID:23178762

  2. Sensitivity of collective action to uncertainty about climate tipping points

    Science.gov (United States)

    Barrett, Scott; Dannenberg, Astrid

    2014-01-01

    Despite more than two decades of diplomatic effort, concentrations of greenhouse gases continue to trend upwards, creating the risk that we may someday cross a threshold for `dangerous' climate change. Although climate thresholds are very uncertain, new research is trying to devise `early warning signals' of an approaching tipping point. This research offers a tantalizing promise: whereas collective action fails when threshold uncertainty is large, reductions in this uncertainty may bring about the behavioural change needed to avert a climate `catastrophe'. Here we present the results of an experiment, rooted in a game-theoretic model, showing that behaviour differs markedly either side of a dividing line for threshold uncertainty. On one side of the dividing line, where threshold uncertainty is relatively large, free riding proves irresistible and trust illusive, making it virtually inevitable that the tipping point will be crossed. On the other side, where threshold uncertainty is small, the incentive to coordinate is strong and trust more robust, often leading the players to avoid crossing the tipping point. Our results show that uncertainty must be reduced to this `good' side of the dividing line to stimulate the behavioural shift needed to avoid `dangerous' climate change.

  3. Climate change impacts on vegetation of the San Francisco Area: evaluating sensitivity of change across an ensemble of future climates (Invited)

    Science.gov (United States)

    Ackerly, D.; Cornwell, W.; Weiss, S. B.; Branciforte, B.; Sandel, B.; Flint, L. E.; Flint, A. L.

    2013-12-01

    Climate change is expected to profoundly impact terrestrial vegetation. We present a model of the projected impacts of climate change on the distribution of vegetation types in the San Francisco Bay Area using a novel application of multinomial logistic regression. Model projections are evaluated over a wide range of possible future climates, drawn from CMIP3 and CMIP5 ensembles. Evaluation of results across the entire ensemble of future climates provides the sensitivity of vegetation to changing climate, without having to choose specific future climate scenarios. Sensitivity is highly variable across the Bay Area. The single best predictor appears to be the location, in climate space, of each vegetation patch relative to the warm or dry edge of the corresponding climate envelope. It is critical to consider the equilibrium assumption underlying this, and related, modeling of vegetation impacts. The model projections are best interpreted as the long-term expected response to a particular degree of climate change, but they do not provide insight into how fast this equilibrium will be achieved or the transient states that may occur in response to rapid climate change. We combine model results with a literature survey of ecological mechanisms of vegetation change to better understand the challenges raised by disequilibrium dynamics.

  4. Glacier Sensitivity to Climate Change in the Monsoonal Himalaya: Past, Present, and Future

    Science.gov (United States)

    Rupper, S.; Maurer, J.; Schaefer, J. M.; Cook, E. R.; Putnam, A. E.; Krusic, P.; Smith, R. G.

    2013-12-01

    Glaciers are particularly sensitive to climate change, making them vulnerable elements of the environment. Of potential concern for societies is the rapid glacier retreat of Himalayan glaciers. However, the temporally short and spatially sparse instrumental records of climate, and arguably shorter and sparser glacier records, make it extremely difficult to quantify glacier sensitivity to climatic change or to place recent glacier changes into a longer, historical context. Here we address many of these issues by quantifying the glacier-climate sensitivity in the Bhutanese Himalaya over the past 800 years using a combination of remote sensing data, paleoclimate data, glacier modeling, and glacial geochronology. Bhutan is chosen for two key reasons. First, Bhutan exemplifies an area where little data on glacier changes are available and where it is logistically difficult to obtain field-based studies, a common problem for many regions of the Himalayas. Thus the methods developed here will be directly applicable to other regions. Second, glaciers in Bhutan, just as neighboring glaciers in India, Nepal, and Southwest China, sit in the bulls-eye of high snow accumulation glaciers. Sensitivity tests using a surface energy- and mass-balance model show that high accumulation regions are extremely temperature-sensitive. Therefore, Bhutan's glaciers form a highly suitable natural laboratory to investigate glacier sensitivity and response to temperature change in the monsoonal Himalaya. In this study, we map Bhutan glacierized area and volume changes over the past forty years, and show significant changes and rapid retreat of these glaciers over this period of time. In addition, we map the former glacier extents for key glacierized regions of Bhutan, and produce a 10Be chronology for glacier fluctuations for one region. Finally, we model the glacierized changes over the past 800 years using Bhutan tree-ring temperature reconstructions as climate input. Our results show that

  5. US Climate Sensitivity Simulated with the NCEP Regional Spectral Model

    International Nuclear Information System (INIS)

    10-year continuous U.S. climate simulations were conducted with the Regional Spectral Model (RSM) using boundary conditions from the National Centers for Environmental Prediction/Dept. of Energy reanalyses and the global PCM (Parallel Climate Model) simulations for present day (1986-1996) and future (2040-2050) CO2 concentrations (about a 36% increased CO2). In order to examine the influence of physical parameterization differences as well as grid-resolution, fine resolution RSM simulations (50 km) were compared to coarse resolution (180 and 250 km) RSM simulations, which had resolutions comparable to the T62 reanalysis and PCM simulations. During the winter, the fine resolution RSM simulations provided more realistic detail over the western mountains. During the summer, large differences between the RSM and driving PCM simulations were found. Our results with present CO2 suggest that most of the differences between the regional climate model simulations and the climate simulations driven by the global model used to drive the regional climate model were not due to the finer resolution of the regional climate model but to the different treatment of the physical processes in the two models, especially when the subgrid scale physics was important, like during summer. Compared to the coarse resolution RSM simulation results, on the other hand, the fine resolution RSM simulations did show improved simulation skills especially when a good boundary condition such as the reanalysis was used to drive the RSM. Under increased CO2, the driving PCM and downscaled RSM simulations exhibited warming over all vertical layers and all regions. Both the RSM and PCM had increased precipitation during the winter, but during the summer, the PCM simulation had an overall precipitation increase mainly due to increased subgrid scale convective activity, whereas the RSM simulations exhibited precipitation decreases and the resulting RSM soil moisture became dryer, especially in the U

  6. A scenario neutral approach to assess low flow sensitivity to climate change

    Science.gov (United States)

    Sauquet, Eric; Prudhomme, Christel

    2015-04-01

    Most impact studies of climate change on river flow regime are performed following top-down approaches, where changes in hydrological characteristics are obtained from rainfall-runoff models forced by downscaled projections provided by GCMs. However, such approaches are not always considered robust enough to bridge the gap between climate research and stake holders needs to develop relevant adaptation strategy (Wilby et al., 2014). Alternatively, 'bottom-up' approaches can be applied to climate change impact studies on water resources to assess the intrinsic vulnerability of the catchments and ultimately help to prioritize adaptation actions for areas highly sensitive to small deviations from the present-day climate conditions. A general framework combining the scenario-neutral methodology developed by Prudhomme et al. (2010) and climate elasticity analyses (Sankarasubramanian et al., 2001) is presented and applied to measure the vulnerability of low flows and droughts on a large dataset of more than 400 French gauged basins. The different steps involved in the suggested framework are: - Calibration of the GR5J rainfall runoff model (Pushpalatha et al., 2011) against observations, - Identification of the main climate factors influencing low flows, - Definition of the sensitivity domain for precipitation (P), temperature (T) and potential evapotranspiration (PE) scenarios consistent with most recent climate change projections, - Derivation of the response surface describing changes in low flow and drought regime in terms of severity, duration and seasonality (Catalogne, 2012), - Uncertainty assessment. Results are the basis for a classification of river basins according to their sensitivity at national scale and for discussions on adaptation requirements with stakeholders. Catalogne C (2012) Amélioration des méthodes de prédétermination des débits de référence d'étiage en sites peu ou pas jaugés. PHD thesis, Université Joseph Fourier, Grenoble, 285 pp

  7. Spatiotemporal flood sensitivity to annual precipitation: Evidence for landscape-climate coevolution

    Science.gov (United States)

    Perdigão, Rui A. P.; Blöschl, Günter

    2014-07-01

    This study investigates the sensitivity of floods to annual precipitation in space and time and evaluates quantitative signs of landscape-climate coevolution. For that purpose, a spatiotemporal sensitivity analysis is performed at regional scale using data from 804 catchments in Austria from 1976 to 2008. Results show that flood peaks are more responsive to spatial (regional) than to temporal (decadal) variability. Space-wise a 10% increase in precipitation leads to a 23% increase in flood peaks in Austria, whereas time-wise a 10% increase in precipitation leads to an increase of just 6% in flood peaks. Catchments from dry lowlands and high wetlands exhibit similarity between the spatial and temporal sensitivities (spatiotemporal symmetry) and low landscape-climate codependence. This suggests that such regions are not coevolving significantly. However, intermediate regions show differences between those sensitivities (symmetry breaks) and higher landscape-climate codependence, suggesting undergoing coevolution. A new coevolution index is then proposed relating spatiotemporal symmetry with relative characteristic celerities. The descriptive assessment of coevolution is complemented by a simple dynamical model of landscape-climate coevolution, in which landform evolution processes take place at the millennial scale (slow dynamics), and climate adjusts in years to decades (fast dynamics). Coevolution is expressed by the interplay between slow and fast dynamics, represented, respectively, by spatial and temporal characteristics. The model captures key features of the joint landscape-climate distribution, supporting the descriptive assessment. This paper ultimately brings to light that coevolution needs to be taken into account through characteristic celerities in space-time trading of regional hydrology.

  8. Hydrologic sensitivity of Indian sub-continental river basins to climate change

    Science.gov (United States)

    Mishra, Vimal; Lilhare, Rajtantra

    2016-04-01

    Climate change may pose profound implications for hydrologic processes in Indian sub-continental river basins. Using downscaled and bias corrected future climate projections and the Soil Water Assessment Tool (SWAT), we show that a majority of the Indian sub-continental river basins are projected to shift towards warmer and wetter climate in the future. During the monsoon (June to September) season, under the representative concentration pathways (RCP) 4.5 (8.5), the ensemble mean air temperature is projected to increase by more than 0.5 (0.8), 1.0 (2.0), and 1.5 (3.5) °C in the Near (2010-2039), Mid (2040-2069), and End (2070-2099) term climate, respectively. Moreover, the sub-continental river basins may face an increase of 3-5 °C in the post-monsoon season under the projected future climate. While there is a large intermodel uncertainty, robust increases in precipitation are projected in many sub-continental river basins under the projected future climate especially in the Mid and End term climate. A sensitivity analysis for the Ganges and Godavari river basins shows that surface runoff is more sensitive to change in precipitation and temperature than that of evapotranspiration (ET). An intensification of the hydrologic cycle in the Indian sub-continental basins is evident in the projected future climate. For instance, for Mid and End term climate, ET is projected to increase up to 10% for the majority of the river basins under both RCP 4.5 and 8.5 scenarios. During the monsoon season, ensemble mean surface runoff is projected to increase more than 40% in 11 (15) basins under the RCP 4.5 (8.5) scenarios by the end of the 21st century. Moreover, streamflow is projected to increase more than 40% in 8 (9) basins during the monsoon season under the RCP 4.5 (8.5) scenarios. Results show that water availability in the sub-continental river basins is more sensitive towards changes in the monsoon season precipitation rather than air temperature. While in the majority

  9. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    Energy Technology Data Exchange (ETDEWEB)

    Adelman, D.D. [Water Resources Engineer, Lincoln, NE (United States); Stansbury, J. [Univ. of Nebraska-Lincoln, Omaha, NE (United States)

    1997-12-31

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions.

  10. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    International Nuclear Information System (INIS)

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions

  11. Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method

    Science.gov (United States)

    Zhu, Xun; Yee, Jeng-Hwa; Cai, Ming; Swartz, William H.; Coy, Lawrence; Aquila, Valentina; Talaat, Elsayed R.

    2014-01-01

    We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.

  12. A framework for evaluating regional hydrologic sensitivity to climate change using archetypal watershed modeling

    Directory of Open Access Journals (Sweden)

    S. R. Lopez

    2012-12-01

    Full Text Available The current study focuses on the development of a regional framework to evaluate hydrologic and sediment sensitivity due to predicted future climate variability using developed archetypal watersheds. The developed archetypes are quasi-synthetic watersheds that integrate observed regional physiographic features (i.e., geomorphology, land cover patterns, etc. with synthetic derivation of basin and reach networks. Each of the three regional archetypes (urban, vegetated and mixed land covers simulates satisfactory hydrologic and sediment behavior compared to historical observations (flow and sediment prior to the climate sensitivity analysis. Climate scenarios considered increasing temperature estimated from the IPCC and precipitation variability based on historical observations and expectations. Archetypal watersheds are modeled using the Environmental Protection Agency's Hydrologic Simulation Program–Fortran model (EPA HSPF and relative changes to streamflow and sediment flux are evaluated. Results indicate that the variability and extent of vegetation play a key role in watershed sensitivity to predicted climate change. Temperature increase alone causes a decrease in annual flow and an increase in sediment flux within the vegetated archetypal watershed only, and these effects are partially mitigated by the presence of impervious surfaces within the urban and mixed archetypal watersheds. Depending on extent of precipitation variability, urban and moderately urban systems can expect the largest alteration to flow regimes where high flow events are expected to become more frequent. As a result, enhanced wash-off of suspended-sediments from available pervious surfaces is expected.

  13. Inconsistencies and Fallacies: IPCC 20th Century Simulations, Multi-Model Ensembles and Climate Sensitivity

    Science.gov (United States)

    Rogers, N. L.

    2009-12-01

    The IPCC used an experiment that had approximately 20 different climate models fit the temperature history of the 20th century. A remarkably good and convincing fit was obtained by combining selected models into a multi-model ensemble. This may be seen in figure 9.5 of the AR4 Scientific Basis report. The fallacy is that each modeling group used different forcings, effectively simulating a different imaginary planet. Since the IPCC models differ by more than 2-1 in climate sensitivity it would be quite amazing if they could all agree on temperature in the late 20th century when CO2 was rapidly increasing. Allowing each model to be excited by different forcings effectively makes the model be a rather complicated curve fitting program. If one accepts that the models are being used to do curve fitting then the supposedly better results obtained by averaging multiple models is easily explainable as the reduction of error that results from averaging approximations to a function with uncorrelated errors. Finally the late 20th century temperature rise is too small for a 3 degree climate sensitivity for doubling of CO2 and the explanations for the warming shortfall that rely on aerosol cooling or ocean warming are easily refuted.There may be alternative explanations for the shortfall or it may be that climate sensitivity is much lower than projected by the IPCC.

  14. Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators

    Science.gov (United States)

    Schickhoff, U.; Bobrowski, M.; Böhner, J.; Bürzle, B.; Chaudhary, R. P.; Gerlitz, L.; Heyken, H.; Lange, J.; Müller, M.; Scholten, T.; Schwab, N.; Wedegärtner, R.

    2014-10-01

    Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. The inconsistency of findings suggests distinct differences in the sensitivity of global treelines to recent climate change. It is still unclear where Himalayan treeline ecotones are located along the response gradient from rapid dynamics to apparently complete inertia. This paper reviews the current state of knowledge regarding sensitivity and response of Himalayan treelines to climate warming, based on extensive field observations, published results in the widely scattered literature, and novel data from ongoing research of the present authors. Several sensitivity indicators such as treeline type, treeline form, seed-based regeneration, and growth patterns are evaluated. Since most Himalayan treelines are anthropogenically depressed, observed advances are largely the result of land use change. Near-natural treelines are usually krummholz treelines which are relatively unresponsive. Nevertheless, intense recruitment of treeline trees suggests a great potential for future treeline advance. Competitive abilities of seedlings within krummholz thickets and dwarf scrub heaths will be a major source of variation in treeline dynamics. Tree growth-climate relationships show mature treeline trees to be responsive to temperature change, in particular in winter and pre-monsoon seasons. High pre-monsoon temperature trends will most likely drive tree growth performance in W and central Himalaya. Ecological niche modelling suggests that bioclimatic conditions for a range expansion of treeline trees will be created during coming decades.

  15. Ultra-sensitive Alpine lakes and climate change

    Directory of Open Access Journals (Sweden)

    Roland SCHMIDT

    2005-08-01

    Full Text Available Global warming is one of the major issues with which mankind is being confronted, having vital ecological and economic consequences. Ice-cover, snow-cover and water temperatures in alpine catchments are controlled by air temperatures, and so are very susceptible to shifts in climate. Local factors such as wind exposure, shading, and snow patches that persist during cold summers can, however, modify the sensitivities of the relationships to air temperature. Thermistors exposed in 45 mountain lakes of the central Austrian Alps (Niedere Tauern measured water temperatures during 1998 – 2003 at two or four hourly intervals. Degree-day and exponential smoothing models tuned with this data suggest we can anticipate extremely large temperature rises in some of the Niedere Tauern lakes in the coming century. Lakes at around 1500 to 2000 m altitude are found to be ultra-sensitive as they lie in the elevation range where changes in both ice-cover and snow-cover duration will be particularly pronounced. In the more extreme cases, our impact models predict a summer-epilimnion water-temperature rise of over 10 degrees. One example of a lake most at risk to future climate change is Moaralmsee. This lake is located at 1825 m a.s.l. on the northern slopes of the Niedere Tauern; its water temperature is likely to rise by 12 degrees. The projected water discharge, ice-cover duration and water temperature changes for the Tauern catchments in the coming century far exceed the variations experienced at any stage during the last ten thousand years.

  16. State-dependence of climate sensitivity: attractor constraints and palaeoclimate regimes

    CERN Document Server

    von der Heydt, Anna S

    2016-01-01

    Equilibrium climate sensitivity is a frequently used measure to predict long-term climate change. However, both climate models and observational data suggest a rather large uncertainty on climate sensitivity (CS). The reasons for this include: the climate has a strong internal variability on many time scales, it is subject to a non-stationary forcing and it is, on many timescales, out of equilibrium with the changes in the radiative forcing. Palaeo records of past climate variations give insight into how the climate system responds to various forcings although care must be taken of the slow feedback processes before comparing palaeo CS estimates with model estimates. In addition, the fast feedback processes can change their relative strength and time scales over time. Consequently, another reason for the large uncertainty on palaeo climate sensitivity may be the fact that it is strongly state-dependent. Using a conceptual climate model, we explore how CS can be estimated from unperturbed and perturbed model t...

  17. A study of the sensitivity of ENSO to the mean climate

    Directory of Open Access Journals (Sweden)

    T. Toniazzo

    2006-01-01

    Full Text Available We study the dependence of the simulated ENSO on the mean simulated climate in the HadCM3 GCM and attempt to understand its relation with results from intermediate-complexity models (ICMs. Our aim is to bridge an existing gap between results from complex GCMs and from more readily understandable ICMs, and thereby to improve our process-based prediction skills of the potential sensitivity of observed ENSO properties (amplitude, frequency and pattern to climate change. Although there is a suggestion that surface ENSO processes are dominating the response in HadCM3, our work also shows that the complex changes in simulated climate can have contrasting effects on the ENSO and the net result may not be robust.

  18. Thermal tolerance and climate warming sensitivity in tropical snails.

    Science.gov (United States)

    Marshall, David J; Rezende, Enrico L; Baharuddin, Nursalwa; Choi, Francis; Helmuth, Brian

    2015-12-01

    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions

  19. Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium.

    Science.gov (United States)

    Kimberly, David A; Salice, Christopher J

    2014-07-01

    The Intergovernmental Panel on Climate Change projects that global climate change will have significant impacts on environmental conditions including potential effects on sensitivity of organisms to environmental contaminants. The objective of this study was to test the climate-induced toxicant sensitivity (CITS) hypothesis in which acclimation to altered climate parameters increases toxicant sensitivity. Adult Physa pomilia snails were acclimated to a near optimal 22 °C or a high-normal 28 °C for 28 days. After 28 days, snails from each temperature group were challenged with either low (150 μg/L) or high (300 μg/L) cadmium at each temperature (28 or 22 °C). In contrast to the CITS hypothesis, we found that acclimation temperature did not have a strong influence on cadmium sensitivity except at the high cadmium test concentration where snails acclimated to 28 °C were more cadmium tolerant. However, snails that experienced a switch in temperature for the cadmium challenge, regardless of the switch direction, were the most sensitive to cadmium. Within the snails that were switched between temperatures, snails acclimated at 28 °C and then exposed to high cadmium at 22 °C exhibited significantly greater mortality than those snails acclimated to 22 °C and then exposed to cadmium at 28 °C. Our results point to the importance of temperature variability in increasing toxicant sensitivity but also suggest a potentially complex cost of temperature acclimation. Broadly, the type of temporal stressor exposures we simulated may reduce overall plasticity in responses to stress ultimately rendering populations more vulnerable to adverse effects. PMID:24623389

  20. An efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models

    Science.gov (United States)

    Wan, H.; Rasch, P. J.; Zhang, K.; Qian, Y.; Yan, H.; Zhao, C.

    2014-04-01

    This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.

  1. Catchment Sensitivity to Changing Climate Conditions: The Importance of Landscape Characteristics

    Science.gov (United States)

    Teutschbein, Claudia; Karlsen, Reinert; Grabs, Thomas; Laudon, Hjalmar; Bishop, Kevin

    2015-04-01

    The scientific literature is full of studies analyzing future climate change impacts on hydrology with focus on individual catchments. We recently found, however, that hydrologic behavior and specific discharge vary considerably even in neighboring and rather similar catchments under current climate conditions and that these variations are related to landscape characteristics. Therefore we hypothesize that these landscape characteristics also play a fundamental role for the sensitivity of a catchment to changing climate conditions. We analyzed the hydrological response of 14 partially nested catchments in Northern Sweden with slightly different topography, land cover, size and geology. Current (1981-2010) and future (2061-2090) streamflows were simulated with the hydrological model HBV light based on 15 regional climate model projections that were bias-corrected with a distribution-mapping approach. Our simulations revealed that - in a future climate- the total annual streamflow will be higher, spring flood peaks will occur earlier and decrease considerably, whereas winter base flows will more than double. These changes are somewhat expected and mainly triggered by a projected increase in winter temperature, which leads to less snow accumulation on the ground. However, our results also show that there is a large variability amongst these catchments in their hydrological response to the same future climate conditions. We identified wetlands, lakes, peat soils and higher elevations as factors that had a stronger effect on spring floods, whereas catchments dominated by forests, steeper slopes and till soils showed stronger responses in winter base flows and total annual streamflow. Therefore, our results suggest that the sensitivity of catchments to future climate conditions is strongly linked to landscape characteristics and also depends on the streamflow characteristic as well as season analyzed.

  2. Relative contributions of the uncertainty in climate sensitivity and rate of the heat uptake by the ocean in the uncertainty of the projected climate change

    Science.gov (United States)

    Sokolov, A. P.; Monier, E.; Forest, C. E.

    2013-12-01

    Climate sensitivity and rate of the heat uptake by the deep ocean are two main characteristics of the Climate System defining its response to a prescribed external forcing. We study relative contributions of the uncertainty in these two characteristics by means of numerical simulations with the MIT Earth System Model (MESM) of intermediate complexity. The MESM consists of a 2D (zonally averaged) atmospheric model coupled to an anomaly diffusing ocean model. Probability distributions for climate sensitivity and rate of oceanic heat uptake are obtained using available data on radiative forcing and temperature changes over 20th century. The results from three 400-member ensembles of long-term (years 1860 to 3000) climate simulations for the IPCC RCP6.0 forcing scenario will be presented. The values of climate sensitivity and rate of oceanic heat uptake, used in the first ensemble, were chosen by sampling their joint probability distribution. In the other two ensembles uncertainty in only one characteristic was taken into account, while the median value was used for the other. Results show that contribution of the uncertainty in climate sensitivity and rate of heat uptake by the deep ocean into the overall uncertainty in projected surface warming and sea level rise is time dependent. Contribution of the uncertainty in rate of heat uptake into uncertainty in the projected surface air temperature increase is rather similar to that of the uncertainty in climate sensitivity while forcing is increasing, but it becomes significantly smaller after forcing is stabilized. The magnitude of surface warming at the end of 30th century is defined almost exclusively by the climate sensitivity distribution. In contrast, uncertainty in the heat uptake has a noticeable effect on projected sea level rise for the whole period of simulations.

  3. Regional Glacier Sensitivity to Climate Change in the Monsoonal Himalaya: Implications for Water Resources

    Science.gov (United States)

    Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Tsering, K.; Rinzin, T.; Dorji, C.; Johnson, E. S.; Cook, E. R.

    2014-12-01

    The rapid retreat of many glaciers in the monsoonal Himalaya is of potential societal concern. However, the retreat pattern in the region has been very heterogeneous, likely due in part to the inherent heterogeneity of climate and glaciers within the region. Assessing the impacts of glacier change on water resources, hydroelectric power, and hazard potential requires a detailed understanding of this potentially complex spatial pattern of glacier sensitivity to climate change. Here we quantify glacier surface-mass balance and meltwater flux across the entire glacierized region of the Bhutanese watershed using a full surface-energy and -mass balance model validated with field data. We then test the sensitivity of the glaciers to climatic change and compare the results to a thirty-year record of glacier volume changes. Bhutan is chosen because it (1) sits in the bulls-eye of the monsoon, (2) has >600 glaciers that exhibit the extreme glacier heterogeneity typical of the Himalayas, and (3) faces many of the economic and hazard challenges associated with glacier changes in the Himalaya. Therefore, the methods and results from this study should be broadly applicable to other regions of the monsoonal Himalaya. Our modeling results show a complex spatial pattern of glacier sensitivity to changes in climate across the Bhutanese Himalaya. However, our results also show that 90% of the total meltwater flux, and that these glaciers are uniformly the glaciers most sensitive to changes in temperature (and less sensitive to other climate variables). We compare these results to a thirty-year record of glacier volume changes over the same region. In particular, we extract DEMs and orthorectified imagery from 1976 historical spy satellite images and 2006 ASTER images. DEM differencing shows that the glaciers that have changed most over the past thirty years also have the highest modeled temperature sensitivity. These results suggest that, despite the complex glacier heterogeneity in

  4. Sensitivity of Pliocene climate simulations in MRI-CGCM2.3 to respective boundary conditions

    Science.gov (United States)

    Kamae, Youichi; Yoshida, Kohei; Ueda, Hiroaki

    2016-08-01

    Accumulations of global proxy data are essential steps for improving reliability of climate model simulations for the Pliocene warming climate. In the Pliocene Model Intercomparison Project phase 2 (PlioMIP2), a part project of the Paleoclimate Modelling Intercomparison Project phase 4, boundary forcing data have been updated from the PlioMIP phase 1 due to recent advances in understanding of oceanic, terrestrial and cryospheric aspects of the Pliocene palaeoenvironment. In this study, sensitivities of Pliocene climate simulations to the newly archived boundary conditions are evaluated by a set of simulations using an atmosphere-ocean coupled general circulation model, MRI-CGCM2.3. The simulated Pliocene climate is warmer than pre-industrial conditions for 2.4 °C in global mean, corresponding to 0.6 °C warmer than the PlioMIP1 simulation by the identical climate model. Revised orography, lakes, and shrunk ice sheets compared with the PlioMIP1 lead to local and remote influences including snow and sea ice albedo feedback, and poleward heat transport due to the atmosphere and ocean that result in additional warming over middle and high latitudes. The amplified higher-latitude warming is supported qualitatively by the proxy evidences, but is still underestimated quantitatively. Physical processes responsible for the global and regional climate changes should be further addressed in future studies under systematic intermodel and data-model comparison frameworks.

  5. Intraseasonal Variations in Tropical Energy Balance: Relevance to Climate Sensitivity?

    Science.gov (United States)

    Robertson, Franklin R.; Ramey, Holly S.; Roberts, Jason B.

    2011-01-01

    maintenance on these time scales. However, water vapor and hydrologic scaling relationships for this mode of variability cast doubt on the utility of ISO variations as proxies for climate sensitivity response to external radiatively forced (e.g. greenhouse gas-induced) climate change.

  6. Sensitivity of Climate Change Detection and Attribution to the Characterization of Internal Climate Variability

    KAUST Repository

    Imbers, Jara

    2014-05-01

    The Intergovernmental Panel on Climate Change\\'s (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.

  7. Re-Evaluating Sources of Inter-Model Spread in Climate Sensitivity

    Science.gov (United States)

    Caldwell, P.; Zelinka, M. D.; Taylor, K. E.

    2014-12-01

    Determining which feedbacks are responsible for the large spread in model predictions of global warming allows us to better focus our research towards reducing this spread. This study shows that there is no unique way to partition temperature change into components associated with individual feedbacks. Alarmingly, different partitioning approaches lead to conflicting conclusions about which processes are important in driving inter-model spread in climate sensitivity. Moreover, covariances between feedbacks is found to play an important yet largely ignored role in determining inter-model spread in climate response. We find, however, that the feedback definition of Held and Shell (2012), which assumes a fixed relative humidity for the baseline climate response, produces results that are more consistent across partitioning methods and are less dominated by covariance terms.

  8. Uncertainty and sensitivity analysis of the retrieved essential climate variables from remotely sensed observations

    Science.gov (United States)

    Djepa, Vera; Badii, Atta

    2016-04-01

    The sensitivity of weather and climate system to sea ice thickness (SIT), Sea Ice Draft (SID) and Snow Depth (SD) in the Arctic is recognized from various studies. Decrease in SIT will affect atmospheric circulation, temperature, precipitation and wind speed in the Arctic and beyond. Ice thermodynamics and dynamic properties depend strongly on sea Ice Density (ID) and SD. SIT, SID, ID and SD are sensitive to environmental changes in the Polar region and impact the climate system. For accurate forecast of climate change, sea ice mass balance, ocean circulation and sea- atmosphere interactions it is required to have long term records of SIT, SID, SD and ID with errors and uncertainty analyses. The SID, SIT, ID and freeboard (F) have been retrieved from Radar Altimeter (RA) (on board ENVISAT) and IceBridge Laser Altimeter (LA) and validated, using over 10 years -collocated observations of SID and SD in the Arctic, provided from the European Space Agency (ESA CCI sea ice ECV project). Improved algorithms to retrieve SIT from LA and RA have been derived, applying statistical analysis. The snow depth is obtained from AMSR-E/Aqua and NASA IceBridge Snow Depth radar. The sea ice properties of pancake ice have been retrieved from ENVISAT/Synthetic Aperture Radar (ASAR). The uncertainties of the retrieved climate variables have been analysed and the impact of snow depth and sea ice density on retrieved SIT has been estimated. The sensitivity analysis illustrates the impact of uncertainties of input climate variables (ID and SD) on accuracy of the retrieved output variables (SIT and SID). The developed methodology of uncertainty and sensitivity analysis is essential for assessment of the impact of environmental variables on climate change and better understanding of the relationship between input and output variables. The uncertainty analysis quantifies the uncertainties of the model results and the sensitivity analysis evaluates the contribution of each input variable to

  9. Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale

    Science.gov (United States)

    Veldkamp, T. I. E.; Eisner, S.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2015-10-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño-Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4 % of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6 % (CTA: consumption-to-availability ratio) and 41.1 % (WCI: water crowding index) of the global population, whilst only 11.4 % (CTA) and 15.9 % (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and

  10. Sensitivity of Water Scarcity Events to ENSO-Driven Climate Variability at the Global Scale

    Science.gov (United States)

    Veldkamp, T. I. E.; Eisner, S.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño- Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4% of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6% (CTA: consumption-to-availability ratio) and 41.1% (WCI: water crowding index) of the global population, whilst only 11.4% (CTA) and 15.9% (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity

  11. Reference evapotranspiration change and its sensitivity to climate variables in southwest China

    Science.gov (United States)

    Liu, Tiegang; Li, Longguo; Lai, Jianbin; Liu, Chao; Zhuang, Wenhua

    2016-08-01

    Reference evapotranspiration (ET0) is the key factor for hydrologic water balance, irrigation scheduling, and water resources planning. Based on Food and Agriculture Organization (FAO) Penman-Monteith method and the climate variables of 57 meteorological stations from 1960 to 2010 in southwest China, the spatial and temporal distributions of ET0 were analyzed by using Mann-Kendall test and Sen's slope estimator. Sensitivity coefficient was used to analyze the sensitivities of ET0 to four climate variables, and the key climate variables attributed to ET0 change were determined. Result showed that there was a slight downward trend of ET0 from 1960 to 2010 and spatially increasing trend from northeast to southwest in annual time scale. Results also showed that ET0 had relatively higher sensitivity to wind speed and mean air temperature, and wind speed was the dominant variable for change of ET0 in southwest China. The inverse relationship between increasing air temperature and decreasing evaporation, "evaporation paradox," existed in southwest China, and the negative contribution of wind speed to the changes of ET0 offset the positive contribution of air temperature.

  12. Reference evapotranspiration change and its sensitivity to climate variables in southwest China

    Science.gov (United States)

    Liu, Tiegang; Li, Longguo; Lai, Jianbin; Liu, Chao; Zhuang, Wenhua

    2015-06-01

    Reference evapotranspiration (ET0) is the key factor for hydrologic water balance, irrigation scheduling, and water resources planning. Based on Food and Agriculture Organization (FAO) Penman-Monteith method and the climate variables of 57 meteorological stations from 1960 to 2010 in southwest China, the spatial and temporal distributions of ET0 were analyzed by using Mann-Kendall test and Sen's slope estimator. Sensitivity coefficient was used to analyze the sensitivities of ET0 to four climate variables, and the key climate variables attributed to ET0 change were determined. Result showed that there was a slight downward trend of ET0 from 1960 to 2010 and spatially increasing trend from northeast to southwest in annual time scale. Results also showed that ET0 had relatively higher sensitivity to wind speed and mean air temperature, and wind speed was the dominant variable for change of ET0 in southwest China. The inverse relationship between increasing air temperature and decreasing evaporation, "evaporation paradox," existed in southwest China, and the negative contribution of wind speed to the changes of ET0 offset the positive contribution of air temperature.

  13. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2015-11-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat (Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  14. A piecewise modeling approach for climate sensitivity studies: Tests with a shallow-water model

    Science.gov (United States)

    Shao, Aimei; Qiu, Chongjian; Niu, Guo-Yue

    2015-10-01

    In model-based climate sensitivity studies, model errors may grow during continuous long-term integrations in both the "reference" and "perturbed" states and hence the climate sensitivity (defined as the difference between the two states). To reduce the errors, we propose a piecewise modeling approach that splits the continuous long-term simulation into subintervals of sequential short-term simulations, and updates the modeled states through re-initialization at the end of each subinterval. In the re-initialization processes, this approach updates the reference state with analysis data and updates the perturbed states with the sum of analysis data and the difference between the perturbed and the reference states, thereby improving the credibility of the modeled climate sensitivity. We conducted a series of experiments with a shallow-water model to evaluate the advantages of the piecewise approach over the conventional continuous modeling approach. We then investigated the impacts of analysis data error and subinterval length used in the piecewise approach on the simulations of the reference and perturbed states as well as the resulting climate sensitivity. The experiments show that the piecewise approach reduces the errors produced by the conventional continuous modeling approach, more effectively when the analysis data error becomes smaller and the subinterval length is shorter. In addition, we employed a nudging assimilation technique to solve possible spin-up problems caused by re-initializations by using analysis data that contain inconsistent errors between mass and velocity. The nudging technique can effectively diminish the spin-up problem, resulting in a higher modeling skill.

  15. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  16. The implications for climate sensitivity of AR5 forcing and heat uptake estimates

    Science.gov (United States)

    Lewis, Nicholas; Curry, Judith A.

    2015-08-01

    Energy budget estimates of equilibrium climate sensitivity (ECS) and transient climate response (TCR) are derived using the comprehensive 1750-2011 time series and the uncertainty ranges for forcing components provided in the Intergovernmental Panel on Climate Change Fifth Assessment Working Group I Report, along with its estimates of heat accumulation in the climate system. The resulting estimates are less dependent on global climate models and allow more realistically for forcing uncertainties than similar estimates based on forcings diagnosed from simulations by such models. Base and final periods are selected that have well matched volcanic activity and influence from internal variability. Using 1859-1882 for the base period and 1995-2011 for the final period, thus avoiding major volcanic activity, median estimates are derived for ECS of 1.64 K and for TCR of 1.33 K. ECS 17-83 and 5-95 % uncertainty ranges are 1.25-2.45 and 1.05-4.05 K; the corresponding TCR ranges are 1.05-1.80 and 0.90-2.50 K. Results using alternative well-matched base and final periods provide similar best estimates but give wider uncertainty ranges, principally reflecting smaller changes in average forcing. Uncertainty in aerosol forcing is the dominant contribution to the ECS and TCR uncertainty ranges.

  17. 32 questions concerning climate change (results of a questionnaire)

    Energy Technology Data Exchange (ETDEWEB)

    Auer, I.; Boehm, R. [Central Inst. for Meteorology and Geodynamics, Vienna (Austria); Steinacker, R. [Vienna Univ. (Austria).Inst. for Meteorology and Geophysics

    1995-12-31

    The intention of the inquiry was to investigate the opinion within the scientific community about climate change questions that are believed to be already well solved in the public opinion. 32 questions were formulated that deal with 12 main assumptions about the existence, the predictability and the impacts of climate changes due to an artificially enhanced greenhouse effect. The possibilities to answer reached from `sure yes`, over `guess yes`, `not answerable or no opinion` to `guess no` and `sure no`. There were additional questions about the way the answers were gained: `by own research`, `by studying scientific literature or discussion with colleagues` and `by mass media consumption`. In the following some of the key assumptions about climate change topics will be discussed as the predictability of future evolution of climate by climate models and the detectability of an artificially enhanced greenhouse effect in climate time series. The other assumptions can be shown here only in the form of a comprehensive overview. In a very comprehensive form the results of the inquiry could be described in the following: A weak majority of climatologists believe today`s climate models to be able to describe a greenhouse gas induced climate change in global scale - much less in regional scale and not in local scale. A majority of climatologists believe an anthropogenic greenhouse gas forced climate and its impacts to be developing in the future but not already at present. The shape of the opinion spectra is in most cases far from that of a scientifically solved problem - a lot of work still has to be done

  18. Semiarid watershed response in central New Mexico and its sensitivity to climate variability and change

    Directory of Open Access Journals (Sweden)

    E. R. Vivoni

    2009-06-01

    Full Text Available Hydrologic processes in the semiarid regions of the Southwest United States are considered to be highly susceptible to variations in temperature and precipitation characteristics due to the effects of climate change. Relatively little is known about the potential impacts of climate change on the basin hydrologic response, namely streamflow, evapotranspiration and recharge, in the region. In this study, we present the development and application of a continuous, semi-distributed watershed model for climate change studies in semiarid basins of the Southwest US. Our objective is to capture hydrologic processes in large watersheds, while accounting for the spatial and temporal variations of climate forcing and basin properties in a simple fashion. We apply the model to the Río Salado basin in central New Mexico since it exhibits both a winter and summer precipitation regime and has a historical streamflow record for model testing purposes. Subsequently, we use a sequence of climate change scenarios that capture observed trends for winter and summer precipitation, as well as their interaction with higher temperatures, to perform long-term ensemble simulations of the basin response. Results of the modeling exercise indicate that precipitation uncertainty is amplified in the hydrologic response, in particular for processes that depend on a soil saturation threshold. We obtained substantially different hydrologic sensitivities for winter and summer precipitation ensembles, indicating a greater sensitivity to more intense summer storms as compared to more frequent winter events. In addition, the impact of changes in precipitation characteristics overwhelmed the effects of increased temperature in the study basin. Nevertheless, combined trends in precipitation and temperature yield a more sensitive hydrologic response throughout the year.

  19. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies

    Science.gov (United States)

    Oliver, Tom H.; Marshall, Harry H.; Morecroft, Mike D.; Brereton, Tom; Prudhomme, Christel; Huntingford, Chris

    2015-10-01

    Climate change is expected to increase the frequency of some climatic extremes. These may have drastic impacts on biodiversity, particularly if meteorological thresholds are crossed, leading to population collapses. Should this occur repeatedly, populations may be unable to recover, resulting in local extinctions. Comprehensive time series data on butterflies in Great Britain provide a rare opportunity to quantify population responses to both past severe drought and the interaction with habitat area and fragmentation. Here, we combine this knowledge with future projections from multiple climate models, for different Representative Concentration Pathways (RCPs), and for simultaneous modelled responses to different landscape characteristics. Under RCP8.5, which is associated with `business as usual’ emissions, widespread drought-sensitive butterfly population extinctions could occur as early as 2050. However, by managing landscapes and particularly reducing habitat fragmentation, the probability of persistence until mid-century improves from around zero to between 6 and 42% (95% confidence interval). Achieving persistence with a greater than 50% chance and right through to 2100 is possible only under both low climate change (RCP2.6) and semi-natural habitat restoration. Our data show that, for these drought-sensitive butterflies, persistence is achieved more effectively by restoring semi-natural landscapes to reduce fragmentation, rather than simply focusing on increasing habitat area, but this will only be successful in combination with substantial emission reductions.

  20. The Sensitivity of Earth's Climate History To Changes In The Rates of Biological And Geological Evolution

    Science.gov (United States)

    Waltham, D.

    2014-12-01

    The faint young Sun paradox (early Earth had surface liquid water despite solar luminosity 70% of the modern value) implies that our planet's albedo has increased through time and/or greenhouse warming has fallen. The obvious explanation is that negative feedback processes stabilized temperatures. However, the limited temperature data available does not exhibit the expected residual temperature rise and, at least for the Phanerozoic, estimates of climate sensitivity exceed the Planck sensitivity (the zero net-feedback value). The alternate explanation is that biological and geological evolution have tended to cool Earth through time hence countering solar-driven warming. The coincidence that Earth-evolution has roughly cancelled Solar-evolution can then be explained as an emergent property of a complex system (the Gaia hypothesis) or the result of the unavoidable observational bias that Earth's climate history must be compatible with our existence (the anthropic principle). Here, I use a simple climate model to investigate the sensitivity of Earth's climate to changes in the rate of Earth-evolution. Earth-evolution is represented by an effective emissivity which has an intrinsic variation through time (due to continental growth, the evolution of cyanobacteria, orbital fluctuations etc) plus a linear feedback term which enhances emissivity variations. An important feature of this model is a predicted maximum in the radiated-flux versus temperature function. If the increasing solar flux through time had exceeded this value then runaway warming would have occurred. For the best-guess temperature history and climate sensitivity, the Earth has always been within a few percent of this maximum. There is no obvious Gaian explanation for this flux-coincidence but the anthropic principle naturally explains it: If the rate of biological/geological evolution is naturally slow then Earth is a fortunate outlier which evolved just fast enough to avoid solar-induced over

  1. Assessment of future scenarios for wind erosion sensitivity changes based on ALADIN and REMO regional climate model simulation data

    Science.gov (United States)

    Mezősi, Gábor; Blanka, Viktória; Bata, Teodóra; Ladányi, Zsuzsanna; Kemény, Gábor; Meyer, Burghard C.

    2016-07-01

    The changes in rate and pattern of wind erosion sensitivity due to climate change were investigated for 2021-2050 and 2071-2100 compared to the reference period (1961-1990) in Hungary. The sensitivities of the main influencing factors (soil texture, vegetation cover and climate factor) were evaluated by fuzzy method and a combined wind erosion sensitivity map was compiled. The climate factor, as the driving factor of the changes, was assessed based on observed data for the reference period, while REMO and ALADIN regional climate model simulation data for the future periods. The changes in wind erosion sensitivity were evaluated on potentially affected agricultural land use types, and hot spot areas were allocated. Based on the results, 5-6% of the total agricultural areas were high sensitive areas in the reference period. In the 21st century slight or moderate changes of wind erosion sensitivity can be expected, and mostly `pastures', `complex cultivation patterns', and `land principally occupied by agriculture with significant areas of natural vegetation' are affected. The applied combination of multi-indicator approach and fuzzy analysis provides novelty in the field of land sensitivity assessment. The method is suitable for regional scale analysis of wind erosion sensitivity changes and supports regional planning by allocating priority areas where changes in agro-technics or land use have to be considered.

  2. The sensitivity of agricultural impacts assessment to climate data and scenario methodologies

    Science.gov (United States)

    Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Assessments of climate change impacts on the agricultural sector are crucially important from the farm- to global levels. While impacts assessments have made wide and creative use of data products, climate models, and methods for downscaling and scenario generation, this variety also hinders our ability to compare impacts from one study to other assessments. The unique nature of many impacts assessments is especially problematic when evaluating the impacts of climate change on large agricultural regions and global production; a crucial scale in understanding the economic impacts and market influence on food security and land use. This presentation examines the influence of methodological choices on agricultural impacts assessment by describing results from several projects. First, the utility of a wide variety of global and regional observational data products are compared for an agricultural system in the Florida Panhandle to determine the influence of observational uncertainties, reanalysis products, remotely sensed information, and downscaled models on impacts assessment. Second, the role of future climate scenarios is isolated by running the same Panhandle station with scenarios generated through a variety of generation methods with a focus on downscaling methodologies and the climate statistics allowed to change. Finally, an ensemble of weather generators are compared across an ensemble of wheat models in a variety of major agricultural regions, isolating important sensitivities in the crop models and corresponding strengths and weaknesses in the weather generators.

  3. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model

    International Nuclear Information System (INIS)

    Climate warming could strongly influence the structure and composition of the Eurasian boreal forest. Temperature related changes have occurred, including shifts in treelines and changes in regeneration. Dynamic vegetation models are well suited to the further exploration of the impacts that climate change may have on boreal forests. Using the individual-based gap model FAREAST, forest composition and biomass are simulated at over 2000 sites across Eurasia. Biomass output is compared to detailed forest data from a representative sample of Russian forests and a sensitivity analysis is performed to evaluate the impact that elevated temperatures and modified precipitation will have on forest biomass and composition in Eurasia. Correlations between model and forest inventory biomass are strong for several boreal tree species. A significant relationship is shown between altered precipitation and biomass. This analysis showed that a modest increase in temperature of 2 deg. C across 200 years had no significant effect on biomass; however further exploration with increased warming reflective of values measured within Siberia, or at an increased rate, are warranted. Overall, FAREAST accurately simulates forest biomass and composition at sites throughout a large geographic area with widely varying climatic conditions and produces reasonable biomass responses to simulated climatic shifts. These results indicate that this model is robust and useful in making predictions regarding the effect of future climate change on boreal forest structure across Eurasia.

  4. Estimating option values of solar radiation management assuming that climate sensitivity is uncertain.

    Science.gov (United States)

    Arino, Yosuke; Akimoto, Keigo; Sano, Fuminori; Homma, Takashi; Oda, Junichiro; Tomoda, Toshimasa

    2016-05-24

    Although solar radiation management (SRM) might play a role as an emergency geoengineering measure, its potential risks remain uncertain, and hence there are ethical and governance issues in the face of SRM's actual deployment. By using an integrated assessment model, we first present one possible methodology for evaluating the value arising from retaining an SRM option given the uncertainty of climate sensitivity, and also examine sensitivities of the option value to SRM's side effects (damages). Reflecting the governance challenges on immediate SRM deployment, we assume scenarios in which SRM could only be deployed with a limited degree of cooling (0.5 °C) only after 2050, when climate sensitivity uncertainty is assumed to be resolved and only when the sensitivity is found to be high (T2x = 4 °C). We conduct a cost-effectiveness analysis with constraining temperature rise as the objective. The SRM option value is originated from its rapid cooling capability that would alleviate the mitigation requirement under climate sensitivity uncertainty and thereby reduce mitigation costs. According to our estimates, the option value during 1990-2049 for a +2.4 °C target (the lowest temperature target level for which there were feasible solutions in this model study) relative to preindustrial levels were in the range between $2.5 and $5.9 trillion, taking into account the maximum level of side effects shown in the existing literature. The result indicates that lower limits of the option values for temperature targets below +2.4 °C would be greater than $2.5 trillion. PMID:27162346

  5. Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators

    Directory of Open Access Journals (Sweden)

    U. Schickhoff

    2014-10-01

    Full Text Available Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. The inconsistency of findings suggests distinct differences in the sensitivity of global treelines to recent climate change. It is still unclear where Himalayan treeline ecotones are located along the response gradient from rapid dynamics to apparently complete inertia. This paper reviews the current state of knowledge regarding sensitivity and response of Himalayan treelines to climate warming, based on extensive field observations, published results in the widely scattered literature, and novel data from ongoing research of the present authors. Several sensitivity indicators such as treeline type, treeline form, seed-based regeneration, and growth patterns are evaluated. Since most Himalayan treelines are anthropogenically depressed, observed advances are largely the result of land use change. Near-natural treelines are usually krummholz treelines which are relatively unresponsive. Nevertheless, intense recruitment of treeline trees suggests a great potential for future treeline advance. Competitive abilities of seedlings within krummholz thickets and dwarf scrub heaths will be a major source of variation in treeline dynamics. Tree growth-climate relationships show mature treeline trees to be responsive to temperature change, in particular in winter and pre-monsoon seasons. High pre-monsoon temperature trends will most likely drive tree growth performance in W and central Himalaya. Ecological niche modelling suggests that bioclimatic conditions for a range expansion of treeline trees will be created during coming decades.

  6. Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results

    Science.gov (United States)

    Salzmann, Nadine; NöTzli, Jeannette; Hauck, Christian; Gruber, Stephan; Hoelzle, Martin; Haeberli, Wilfried

    2007-06-01

    Climate change can have severe impacts on the high-mountain cryosphere, such as instabilities in rock walls induced by thawing permafrost. Relating climate change scenarios produced from global climate models (GCMs) and regional climate models (RCMs) to complex high-mountain environments is a challenging task. The qualitative and quantitative impact of changes in climatic conditions on local to microscale ground surface temperature (GST) and the ground thermal regime is not readily apparent. This study assesses a possible range of changes in the GST (ΔGST) in complex mountain topography. To account for uncertainties associated with RCM output, a set of 12 different scenario climate time series (including 10 RCM-based and 2 incremental scenarios) was applied to the topography and energy balance (TEBAL) model to simulate average ΔGST for 36 different topographic situations. Variability of the simulated ΔGST is related primarily to the emission scenarios, the RCM, and the approach used to apply RCM results to the impact model. In terms of topography, significant influence on GST simulation was shown by aspect because it modifies the received amount of solar radiation at the surface. North faces showed higher sensitivity to the applied climate scenarios, while uncertainties are higher for south faces. On the basis of the results of this study, use of RCM-based scenarios is recommended for mountain permafrost impact studies, as opposed to incremental scenarios.

  7. Climate sensitivity uncertainty and the necessity to transform global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Zwaan, Bob van der [Energy research Centre of the Netherlands (ECN), Policies Studies Department, P.O. Box 37154, 1030 AD Amsterdam (Netherlands) and Harvard University, John F. Kennedy School of Government, 79 J.F.K. Street, Cambridge, MA 02138 (United States)]. E-mail: vanderzwaan@ecn.nl; Gerlagh, Reyer [Vrije Universiteit Amsterdam, Institute for Environmental Studies (IVM), De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)

    2006-11-15

    This paper analyses the policy relevance of the dominant uncertainty in our current scientific understanding of the terrestrial climate system, and provides further evidence for the need to radically transform-this century-our global energy supply infrastructure, given the global average temperature increase as a result of anthropogenic carbon dioxide (CO{sub 2}) emissions. We investigate the effect on required CO{sub 2} emission reduction efforts, both in terms of how much and when, of our present uncertain knowledge of the climate sensitivity to a doubling of the atmospheric CO{sub 2} concentration. We use a top-down integrated assessment model in which there are two competing energy sources, fossil and non-fossil. Technological change is represented endogenously through learning curves, and modest but non-zero demand exists for the relatively expensive carbon-free energy resource. We find that during the forthcoming two decades the relative roles of carbon-free energy and energy savings are similar, while in the long run the importance of carbon-free energy deployment becomes predominant, independent of the assumed climate sensitivity, but dependent on some of our model's characteristic features. We also find that, in the absence of the realisation of drastic energy efficiencies or a massive deployment of carbon capture and storage technologies, non-carbon energy resources should provide 10-30% and 80-90% of total energy supply, in 2020 and 2100, respectively. Finally, we observe that in our model the timing of the emissions reduction effort is nearly linear and close to independent of either the climate sensitivity or policy target.

  8. Glacier sensitivity to climate change in the Nepalese Himalaya quantified using higher-order modelling

    Science.gov (United States)

    Rowan, A. V.; Egholm, D. L.; Glasser, N. F.; Quincey, D. J.

    2013-12-01

    variables: (1) simple elevation-dependent rates for accumulation and ablation with empirical values for melt along a flow line beneath supraglacial debris; (2) climate-elevation relationships derived from local automatic weather stations in the Khumbu valley; and (3) 3-D surface energy balance calculations using regional meteorological data. Once we have described glacier-climate sensitivities in the Khumbu Himal, we will use these results to predict the likely magnitude and timescales of glacier mass loss under IPCC future climate change scenarios, and quantify the uncertainties associated with these predictions. Future work will consider: how glacier hydrology modifies variations in ice dynamics; how the spatial distribution of supraglacial debris modifies glacier balance sensitivity; how rock debris is transported within and on these glaciers; and how rates of rock debris delivery from hillslopes affects glacier balance and dynamics. Fieldwork in Nepal is planned for 2014 to collect data from debris-covered Khumbu Glacier with which to validate our numerical model.

  9. Short ensembles: an efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models

    Science.gov (United States)

    Wan, H.; Rasch, P. J.; Zhang, K.; Qian, Y.; Yan, H.; Zhao, C.

    2014-09-01

    This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model, version 5. In the first example, the method is used to characterize sensitivities of the simulated clouds to time-step length. Results show that 3-day ensembles of 20 to 50 members are sufficient to reproduce the main signals revealed by traditional 5-year simulations. A nudging technique is applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time-step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol life cycle are perturbed simultaneously in order to find out which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. It turns out that 12-member ensembles of 10-day simulations are able to reveal the same sensitivities as seen in 4-year simulations performed in a previous study. In both cases, the ensemble method reduces the total computational time by a factor of about 15, and the turnaround time by a factor of several hundred. The efficiency of the method makes it particularly useful for the development of high

  10. Potential evaporation estimation through an unstressed surface energy balance and its sensitivity to climate change

    Directory of Open Access Journals (Sweden)

    A. Barella-Ortiz

    2013-06-01

    Full Text Available Potential evaporation (ETP is a basic input for hydrological and agronomic models, as well as a key variable in most actual evaporation estimations. It has been approached through several diffusive and energy balance methods, out of which the Penman–Monteith equation is recommended as the standard one. In order to deal with the diffusive approach, ETP must be estimated at a sub-diurnal frequency, as currently done in land surface models (LSM. This study presents an improved method, developed in the ORCHIDEE LSM, which consists in estimating ETP through an unstressed surface energy balance (USEB method. The results confirm the quality of the estimation which is currently implemented in the model (Milly, 1992. ETP has also been estimated using a reference equation (computed at a daily time step provided by the Food and Agriculture Organization (FAO. First, a comparison for a reference period under current climate conditions, shows that both formulations differ, specially in arid areas. However, they supply similar values when FAO's assumption of neutral stability conditions is relaxed, by replacing FAO's aerodynamic resistance by the model's one. Furthermore, if the vapour pressure deficit (VPD estimated for FAO's equation, is substituted by ORCHIDEE's VPD or its humidity gradient, the daily mean estimate is further improved. In a second step, ETP's sensitivity to climate change is assessed comparing trends in both formulations for the 21st Century. It is found that the USEB method shows a higher sensitivity. Both VPD and the model's humidity gradient, as well as the aerodynamic resistance have been identified as key parameters in governing ETP trends. Finally, the sensitivity study is extended to three empirical approximations based on temperature, net radiation and mass transfer (Hargreaves, Priestley–Taylor and Rohwer, respectively. The sensitivity of these methods is compared to the USEB method's one to test if simplified equations are

  11. Climate change sensitivity index for Pacific salmon habitat in southeast Alaska.

    Directory of Open Access Journals (Sweden)

    Colin S Shanley

    Full Text Available Global climate change may become one of the most pressing challenges to Pacific Salmon conservation and management for southeast Alaska in the 21st Century. Predicted hydrologic change associated with climate change will likely challenge the ability of specific stocks to adapt to new flow regimes and resulting shifts in spawning and rearing habitats. Current research suggests egg-to-fry survival may be one of the most important freshwater limiting factors in Pacific Salmon's northern range due to more frequent flooding events predicted to scour eggs from mobile spawning substrates. A watershed-scale hydroclimatic sensitivity index was developed to map this hypothesis with an historical stream gauge station dataset and monthly multiple regression-based discharge models. The relative change from present to future watershed conditions predicted for the spawning and incubation period (September to March was quantified using an ensemble global climate model average (ECHAM5, HadCM3, and CGCM3.1 and three global greenhouse gas emission scenarios (B1, A1B, and A2 projected to the year 2080. The models showed the region's diverse physiography and climatology resulted in a relatively predictable pattern of change: northern mainland and steeper, snow-fed mountainous watersheds exhibited the greatest increases in discharge, an earlier spring melt, and a transition into rain-fed hydrologic patterns. Predicted streamflow increases for all watersheds ranged from approximately 1-fold to 3-fold for the spawning and incubation period, with increased peak flows in the spring and fall. The hydroclimatic sensitivity index was then combined with an index of currently mapped salmon habitat and species diversity to develop a research and conservation priority matrix, highlighting potentially vulnerable to resilient high-value watersheds. The resulting matrix and observed trends are put forth as a framework to prioritize long-term monitoring plans, mitigation

  12. Climate change information supporting adaptation in forestry and agriculture - results and challenges

    Science.gov (United States)

    Gálos, Borbála; Czimber, Kornél; Gribovszki, Zoltán; Bidló, András; Csáki, Péter; Kalicz, Péter; Haensler, Andreas; Jacob, Daniela; Mátyás, Csaba

    2015-04-01

    Recurrent droughts of the last decades have led to severe impacts in forestry and agriculture in the sensitive and vulnerable low-elevation regions of Southeast Europe. Observed impacts are very likely to occur with increasing probability under projected climate conditions throughout the 21st century. In order to suggest options for adaptation and mitigation, a GIS-based Decision Support System is under development in the frame of the joint EU-national research project "Agroclimate". Impact assessments and adaptation support services are based on the simulation results of 12 regional climate models (www.ensembles-eu.org) using the A1B emission scenario until 2100. The development of the Decision Support System requires the balancing of available climatic information and required data for research and economically relevant projection needs of the end users. Here, concrete examples of the development process will be shown for the stepwise analysis and comparison of the followings: 1. Provided climate services: • projected tendencies of temperature and precipitation means and extremes until the end of the 21st century, spread of the simulation results. 2. Required information for climate impact research: • types and characteristics of climate input data, • methods and functions for deriving possible climate change impacts in forestry and agriculture (e.g. on species distribution, growth, production, yield, soil water retention, ground water table, runoff, erosion, evapotranspiration and other ecosystem services and soil properties). 3. Required climate information from the end users' side for developing adaption strategies in the affected sectors: • types of climate indicators, • possible range of the expected impacts (in magnitude and probability). 4. Gaps between climate services and the needs of impact researchers and end users (e.g. spatial and temporal scales, interpretation techniques). Experiences of supporting climate change adaptation in forestry

  13. Components of Population Vulnerability and Their Relationship With Climate-Sensitive Health Threats.

    Science.gov (United States)

    English, P B; Richardson, M J

    2016-03-01

    Climate change is increasingly being framed as risks that will impact the poorest and most vulnerable communities among us. This has led to more efforts to estimate climate change risks across populations and in the context of human health and health equity. We describe the public health dimensions of climate vulnerability-exposure, population sensitivity, and adaptive capacity-and explore how these dimensions can modify population health impacts and their distribution. An overview of health disparities associated with specific climate risks is presented, and we offer potential solutions grounded in equitable urban development and improved characterization of climate vulnerabilities. PMID:26800675

  14. Permafrost model sensitivity to seasonal climatic changes and extreme events in mountainous regions

    International Nuclear Information System (INIS)

    Climate models project considerable ranges and uncertainties in future climatic changes. To assess the potential impacts of climatic changes on mountain permafrost within these ranges of uncertainty, this study presents a sensitivity analysis using a permafrost process model combined with climate input based on delta-change approaches. Delta values comprise a multitude of coupled air temperature and precipitation changes to analyse long-term, seasonal and seasonal extreme changes on a typical low-ice content mountain permafrost location in the Swiss Alps. The results show that seasonal changes in autumn (SON) have the largest impact on the near-surface permafrost thermal regime in the model, and lowest impacts in winter (DJF). For most of the variability, snow cover duration and timing are the most important factors, whereas maximum snow height only plays a secondary role unless maximum snow heights are very small. At least for the low-ice content site of this study, extreme events have only short-term effects and have less impact on permafrost than long-term air temperature trends. (letter)

  15. Thermal sensitivity of cold climate lizards and the importance of distributional ranges.

    Science.gov (United States)

    Bonino, Marcelo F; Moreno Azócar, Débora L; Schulte, James A; Abdala, Cristian S; Cruz, Félix B

    2015-08-01

    One of the fundamental goals in macroecology is to understand the relationship among species' geographic ranges, ecophysiology, and climate; however, the mechanisms underlying the distributional geographic patterns observed remain unknown for most organisms. In the case of ectotherms this is particularly important because the knowledge of these interactions may provide a robust framework for predicting the potential consequences of climate change in these organisms. Here we studied the relationship of thermal sensitivity and thermal tolerance in Patagonian lizards and their geographic ranges, proposing that species with wider distributions have broader plasticity and thermal tolerance. We predicted that lizard thermal physiology is related to the thermal characteristics of the environment. We also explored the presence of trade-offs of some thermal traits and evaluated the potential effects of a predicted scenario of climate change for these species. We examined sixteen species of Liolaemini lizards from Patagonia representing species with different geographic range sizes. We obtained thermal tolerance data and performance curves for each species in laboratory trials. We found evidence supporting the idea that higher physiological plasticity allows species to achieve broader distribution ranges compared to species with restricted distributions. We also found a trade-off between broad levels of plasticity and higher optimum temperatures of performance. Finally, results from contrasting performance curves against the highest environmental temperatures that lizards may face in a future scenario (year 2080) suggest that the activity of species occurring at high latitudes may be unaffected by predicted climatic changes. PMID:26066005

  16. A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change

    International Nuclear Information System (INIS)

    By the end of this century, mean annual temperatures in the Northeastern United States are expected to warm by 3–5 °C, which will have significant impacts on the structure and function of temperate forests in this region. To improve understanding of these impacts, we exploited two recent climate anomalies to explore how the springtime phenology of Northeastern temperate deciduous forests will respond to future climate warming. Specifically, springtime temperatures in 2010 and 2012 were the warmest on record in the Northeastern United States, with temperatures that were roughly equivalent to the lower end of warming scenarios that are projected for this region decades from now. Climate conditions in these two years therefore provide a unique empirical basis, that complements model-based studies, for improving understanding of how northeastern temperate forest phenology will change in the future. To perform our investigation, we analyzed near surface air temperatures from the United States Historical Climatology Network, time series of satellite-derived vegetation indices from NASA’s Moderate Resolution Imaging Spectroradiometer, and in situ phenological observations. Our study region encompassed the northern third of the eastern temperate forest ecoregion, extending from Pennsylvania to Canada. Springtime temperatures in 2010 and 2012 were nearly 3 °C warmer than long-term average temperatures from 1971–2000 over the region, leading to median anomalies of more than 100 growing degree days. In response, satellite and ground observations show that leaf emergence occurred up to two weeks earlier than normal, but with significant sensitivity to the specific timing of thermal forcing. These results are important for two reasons. First, they provide an empirical demonstration of the sensitivity of springtime phenology in northeastern temperate forests to future climate change that supports and complements model-based predictions. Second, our results show that

  17. Complementarity among climate related energy sources: Sensitivity study to climate characteristics across Europe

    Science.gov (United States)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Raynaud, Damien; Borga, Marco; Vautard, Robert

    2015-04-01

    Climate related energy sources like solar-power, wind-power and hydro-power are important contributors to the transitions to a low-carbon economy. Past studies, mainly based on solar and wind powers, showed that the power from such energy sources fluctuates in time and space following their driving climatic variables. However, when combining different energy sources together, their intermittent feature is smoothed, resulting to lower time variability of the produced power and to lower storage capacity required for balancing. In this study, we consider solar, wind and hydro energy sources in a 100% renewable Europe using a set of 12 regions following two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine wind and solar irradiance data from the Weather Research and Forecasting Model (Vautard et al., 2014), temperature data from the European Climate Assessment & Dataset (Haylock et al., 2008) and runoff from the Global Runoff Data Center (GRDC, 1999) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 30 years. The use of this set of 12 regions across Europe allows integrating knowledge about time and space variability for each different energy sources. We then assess the optimal share of each energy sources, aiming to decrease the time variability of the regional energy balance at different time scales as well as the energy storage required for balancing within each region. We also evaluate how energy transport among regions contributes for smoothing out both the energy balance and the storage requirement. The strengths of this study are i) to handle with run-of-the-river hydro power in addition to wind and solar energy sources and ii) to carry out this analysis

  18. Possible (water sensitive) mitigation strategies for the urban climate in a regional climate modelling context

    OpenAIRE

    Demuzere, Matthias; Coutts, Andrew; Van Lipzig, Nicole

    2012-01-01

    Urban climate models provide a useful tool for assessing the impacts of urban land surface modification on urban climates. It provides a mechanism for trialling different scenarios for urban heat island mitigation. Only recently, urban land surfaces have been included in global and regional climate models. Often they represent a trade-off between the complexity of the biophysical processes of the urban canopy layer and the computational demands in order to be workable on regional climate time...

  19. Socio-economic implications of climate change: Canadian climate impacts program study results

    International Nuclear Information System (INIS)

    A review is presented of results of the Canadian Climate Impacts Program series of studies examining the socio-economic impacts of climate change. In the Great Lakes basin, climate change may impact on numerous economic sectors. Lower lake levels could result in increased dredging of ports and channels or reduced cargo loads. Lower lake levels added to increased use of water could result in a loss of 4,165 GWh of power generation for the Canadian hydro-electric generating stations on the Great Lakes. A warmer climate may lead to crop failures in the agricultural heartlands of Ontario, as the advantages of higher temperature may be offset by moisture stress. The downhill ski industry may be decimated in southern Ontario. Rising sea levels may cause increased risk of storm surges and river flooding in the coastal areas of Canada. A warmer climate would probably be beneficial to aquaculture and allow longer inshore fishing seasons. Costs to oil and gas exploration due to sea ice and icebergs would be practically eliminated. Results for the Praire provinces were mixed: one study concluded that impacts would be minimal while another predicted a moderate reduction in spring wheat potential. 24 refs., 1 fig

  20. Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities

    Science.gov (United States)

    Mateus, M. C.; Tullos, D. D.

    2013-12-01

    In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.

  1. Sensitivity of climate simulations to radiative effects of tropical anvil structure

    OpenAIRE

    Zender, Charles S.; Kiehl, J. T.

    1997-01-01

    Climate sensitivity to the representation of tropical anvil is investigated in a version of the National Center for Atmospheric Research Community Climate Model. Common features of tropical anvil generation and structure, consistent with observations and cloud resolving models, are incorporated into a simple prognostic anvil parameterization. These features include anvil convective origin, vertical profile, phase, areal extent, and life span. Two numerical climate integrations are forced by 1...

  2. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    International Nuclear Information System (INIS)

    Due to increasing atmospheric CO2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO2 and those which involve CO2-induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change. (letters)

  3. The effects of climate sensitivity and carbon cycle interactions on mitigation policy stringency

    Science.gov (United States)

    Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect o...

  4. Sensitivity and response time of natural systems to climatic change in the late quaternary

    Science.gov (United States)

    Wright, H. E.

    Although the leading theory for the cause of climatic change — the Milankovitch perturbations in insolation — indicates variable rates of change at different latitudes, any discussion of the sensitivity and response time of different natural systems is most practical when the climatic change is considered to be relatively abrupt and global rather than gradual and regional. The oxygen-isotope record in glacial ice should have the swiftest response time, but the stratigraphic record in ice sheets at particular localities may be obscured or confused if the glacier flow is irregular. The oxygen-isotope stratigraphy of ocean sediment cores is a sensitive reflection primarily of contemporaneous ice volume, and to a lesser extent ocean temperature. Ocean temperature, however, is recorded more specifically by microfossils in ocean sediments and may reflect global insolation directly, except that in the North Atlantic the influence of glacial meltwater and various feedbacks may override the insolation factor. The differential lags in the response of isotopes and faunas to insolational change are apparent in the ocean sediment stratigraphy. Ice sheets themselves at their terminus may respond to climatic change only slowly if a change in snow accumulation is the factor, because of the time involved in building a thickness sufficient for flow to great distances, but if wastage near the margin is the factor then the response may be more rapid. Some glaciers, however, may advance rapidly without regard to climatic change, as in the case of surging, or they may retreat just as rapidly if they terminate in deep water, through iceberg formation. World sea level is depressed with glacial growth and thus reflects the volume of ice sheets, but isostatic changes in the crust complicate the sea level response not only locally beneath the ice load but elsewhere as well. The pluvial lakes of the American Southwest, correlated in their high levels with intervals of glaciation, show a

  5. Dryland feedbacks to climatic change: Results from a climate manipulation experiment on the Colorado Plateau

    Science.gov (United States)

    Reed, S.; Belnap, J.; Ferrenberg, S.; Wertin, T. M.; Darrouzet-Nardi, A.; Tucker, C.; Rutherford, W. A.

    2015-12-01

    Arid and semiarid ecosystems cover ~40% of Earth's terrestrial surface and make up ~35% of the U.S., yet we know surprisingly little about how climate change will affect these widespread landscapes. Like many dryland regions, the Colorado Plateau in the southwestern U.S. is predicted to experience climate change as elevated temperature and altered timing and amount of annual precipitation. We are using a long-term (>10 yr) factorial warming and supplemental rainfall experiment on the Colorado Plateau to explore how predicted changes in climate will affect vascular plant and biological soil crust community composition, biogeochemical cycling, and energy balance (biocrusts are a surface soil community of moss, lichen, and cyanobacteria that can make up as much as 70% of the living cover in drylands). While some of the responses we have observed were expected, many of the results are surprising. For example, we documented biocrust community composition shifts in response to altered climate that were significantly faster and more dramatic than considered likely for these soil communities that typically change over decadal and centennial timescales. Further, while we continue to observe important climate change effects on carbon cycling - including reduced net photosynthesis in vascular plants, increased CO2 losses from biocrust soils during some seasons, and changes to the interactions between water and carbon cycles - we have also found marked treatment effects on the albedo and spectral signatures of dryland soils. In addition to demonstrating the effects of these treatments, the strong relationships we observed in our experiments between biota and climate provide a quantitative framework for improving our representation of dryland responses to climate change. In this talk we will cover a range of datasets that, taken together, show: (1) large climate-driven changes to dryland biogeochemical cycling may be the result of both effects on existing communities, as well

  6. Mediterranean Cyclones in a changing climate. First statistical results

    Science.gov (United States)

    Tous, M.; Genoves, A.; Campins, J.; Picornell, M. A.; Jansa, A.; Mizuta, R.

    2009-09-01

    (1.5 degrees lat-lon) outputs of the JMA-GSM climate general circulation model. Preliminary results are here presented. Two different periods have been analysed. The first period, covering 1979-2002 has been compared with the previously computed ERA-40 climatology of cyclones. Results agree reasonably well with those obtained from ERA-40, providing confidence to the current climate simulation of JMA-GSM. Once validated the model from the perspective of cyclonic climatology under current climate conditions, the same procedure is applied to a scenario period (2075-2099) to investigate possible changes in cyclonic activity linked to climate change.

  7. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H; Elmendorf, Sarah C; Beck, Pieter SA;

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting of...... multi-decadal time series of annual shrub growth provide an underused resource to explore climate–growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and 42,000 annual growth records from 1,821 individuals. Our analyses...

  8. Sensitivity of the CCM climate to enhanced cloud absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kiehl, J. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States)

    1995-09-01

    Recent indications suggest that clouds may be absorbing more solar radiation than was previously thought. This research investigates some of the evidence for this hypothesis; potential physical mechanisms are briefly discussed as well. The climatic implications of the enhanced absorption are investigated using the NCAR Community Climate Model (CCM). It is found that the model`s heat budget in the tropical warm pool agrees more closely with observations when enhanced absorption is included. On the whole, the addition of enhanced absorption improves the model`s performance in the tropics and degrades it in the extra-tropics. 3 figs.

  9. Lidar studies on climate sensitivity characteristics of tropical cirrus clouds

    Science.gov (United States)

    Motty, G. S.; Jayeshlal, G. S.; Satyanarayana, Malladi; Mahadevan Pillai, V. P.

    2016-05-01

    The cirrus clouds play an important role in the Earth's radiation budget due to their high frequency of occurrence, non-spherical ice crystal formations, and variability in the scattering/absorption characteristics. Mostly, the tropical cirrus clouds are considered as greenhouse modulators. Thus the parameterization of tropical cirrus clouds in terms of the micro- physical properties and the corresponding radiative effects are highly important for the climate studies. For characterizing the radiative properties of cirrus clouds, which depend on the size, shape and number of the ice crystals, the knowledge of extinction coefficient (σ) and optical depth (τ) are necessary. The σ provides information needed for understanding the influence of the scatterers on the radiative budget whereas the τ gives an indication on the composition and thickness of the cloud. Extensive research on the tropical cirrus clouds has been carried out by using a ground based and satellite based lidar systems. In this work, the characteristics of tropical cirrus cloud derived by using the data from the ground based lidar system over the tropical site Gadanki [13.5°N, 79.2°E], India during 2010 are presented. Some of the results are compared with those obtained by us from satellite based CALIOP lidar observations of the CALIPSO mission. It is observed that there is a strong dependence of the some of the physical properties such as occurrence height, cloud temperature and the geometrical thickness on the microphysical parameters in terms of extinction coefficient and optical depth. The correlation of both the σ and τ with temperature is also observed.

  10. Hydroclimatology of the Nile: results from a regional climate model

    Science.gov (United States)

    Mohamed, Y. A.; van den Hurk, B. J. J. M.; Savenije, H. H. G.; Bastiaanssen, W. G. M.

    2005-09-01

    This paper presents the result of the regional coupled climatic and hydrologic model of the Nile Basin. For the first time the interaction between the climatic processes and the hydrological processes on the land surface have been fully coupled. The hydrological model is driven by the rainfall and the energy available for evaporation generated in the climate model, and the runoff generated in the catchment is again routed over the wetlands of the Nile to supply moisture for atmospheric feedback. The results obtained are quite satisfactory given the extremely low runoff coefficients in the catchment. The paper presents the validation results over the sub-basins: Blue Nile, White Nile, Atbara river, the Sudd swamps, and the Main Nile for the period 1995 to 2000. Observational datasets were used to evaluate the model results including radiation, precipitation, runoff and evaporation data. The evaporation data were derived from satellite images over a major part of the Upper Nile. Limitations in both the observational data and the model are discussed. It is concluded that the model provides a sound representation of the regional water cycle over the Nile. The sources of atmospheric moisture to the basin, and location of convergence/divergence fields could be accurately illustrated. The model is used to describe the regional water cycle in the Nile basin in terms of atmospheric fluxes, land surface fluxes and land surface-climate feedbacks. The monthly moisture recycling ratio (i.e. locally generated/total precipitation) over the Nile varies between 8 and 14%, with an annual mean of 11%, which implies that 89% of the Nile water resources originates from outside the basin physical boundaries. The monthly precipitation efficiency varies between 12 and 53%, and the annual mean is 28%. The mean annual result of the Nile regional water cycle is compared to that of the Amazon and the Mississippi basins.

  11. Hydroclimatology of the Nile: results from a regional climate model

    Directory of Open Access Journals (Sweden)

    Y. A. Mohamed

    2005-01-01

    Full Text Available This paper presents the result of the regional coupled climatic and hydrologic model of the Nile Basin. For the first time the interaction between the climatic processes and the hydrological processes on the land surface have been fully coupled. The hydrological model is driven by the rainfall and the energy available for evaporation generated in the climate model, and the runoff generated in the catchment is again routed over the wetlands of the Nile to supply moisture for atmospheric feedback. The results obtained are quite satisfactory given the extremely low runoff coefficients in the catchment. The paper presents the validation results over the sub-basins: Blue Nile, White Nile, Atbara river, the Sudd swamps, and the Main Nile for the period 1995 to 2000. Observational datasets were used to evaluate the model results including radiation, precipitation, runoff and evaporation data. The evaporation data were derived from satellite images over a major part of the Upper Nile. Limitations in both the observational data and the model are discussed. It is concluded that the model provides a sound representation of the regional water cycle over the Nile. The sources of atmospheric moisture to the basin, and location of convergence/divergence fields could be accurately illustrated. The model is used to describe the regional water cycle in the Nile basin in terms of atmospheric fluxes, land surface fluxes and land surface-climate feedbacks. The monthly moisture recycling ratio (i.e. locally generated/total precipitation over the Nile varies between 8 and 14%, with an annual mean of 11%, which implies that 89% of the Nile water resources originates from outside the basin physical boundaries. The monthly precipitation efficiency varies between 12 and 53%, and the annual mean is 28%. The mean annual result of the Nile regional water cycle is compared to that of the Amazon and the Mississippi basins.

  12. Community vulnerability to climate change in the context of other exposure-sensitivities in Kugluktuk, Nunavut

    Directory of Open Access Journals (Sweden)

    Laura Tozer

    2011-07-01

    Full Text Available Climate change in the Canadian north is, and will be, managed by communities that are already experiencing social, political, economic and other environmental changes. Hence, there is a need to understand vulnerability to climate change in the context of multiple exposure-sensitivities at the community level. This article responds to this perceived knowledge need based on a case study of the community of Kugluktuk in Nunavut, Canada. An established approach for vulnerability assessment is used to identify current climatic and non-climatic exposure-sensitivities along with their associated contemporary adaptation strategies. This assessment of current vulnerability is used as a basis to consider Kugluktuk's possible vulnerability to climatic change in the future. Current climate-related exposure-sensitivities in Kugluktuk relate primarily to subsistence harvesting and community infrastructure. Thinner and less stable ice conditions and unpredictable weather patterns are making travel and harvesting more dangerous and some community infrastructure is sensitive to permafrost melt and extreme weather events (e.g., flash floods. The ability of individuals and households to adapt to these and other climatic exposure-sensitivities is influenced by non-climatic factors that condition adaptive capacity including substance abuse, the erosion of traditional knowledge and youth suicide. These and other non-climatic factors often underpin adaptive capacity to deal with and adapt to changing conditions and must be considered in an assessment of vulnerability. This research argues that Northern communities are challenged by multiple exposure-sensitivities—beyond just those posed by climate—and effective adaptation to climate change requires consideration if not resolution of socio-economic and other issues in communities.

  13. Hydroclimatology of the Nile: results from a regional climate model

    Directory of Open Access Journals (Sweden)

    Y. A. Mohamed

    2005-02-01

    Full Text Available This paper is the result of the first regional coupled climatic and hydrologic model of the Nile. For the first time the interaction between the climatic processes and the hydrological processes on the land surface have been fully coupled. The hydrological model is driven by the rainfall and the energy available for evaporation generated in the climate model, and the runoff generated in the catchment is again routed over the wetlands of the Nile to supply moisture for atmospheric feedback. The results obtained are surprisingly accurate given the extremely low runoff coefficients in the catchment.

    The paper presents model results over the sub-basins: Blue Nile, White Nile, Atbara river and the Main Nile for the period 1995 to 2000, but focuses on the Sudd swamp. Limitations in both the observational data and the model are discussed. It is concluded that the model provides a sound representation of the regional water cycle over the Nile. The model is used to describe the regional water cycle in the Nile basin in terms of atmospheric fluxes, land surface fluxes and land surface-climate feedbacks. The monthly moisture recycling ratio (i.e. locally generated/total precipitation over the Nile varies between 8 and 14%, with an annual mean of 11%, which implies that 89% of the Nile water resources originates from outside the basin physical boundaries. The monthly precipitation efficiency varies between 12 and 53%, and the annual mean is 28%. The mean annual result of the Nile regional water cycle is compared to that of the Amazon and the Mississippi basins.

  14. Global climate change: An introduction and results from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    OpenAIRE

    Seth, Anji

    2007-01-01

    This presentation gives summary of the results of the Intergovernmental Panel on Climate Change (IPCC) Working Group I (WG1) Fourth Assessment Report (AR4): The physical science basis for climate change. It begins with a history of the theory of global climate change, followed by the important concepts surrounding global climate change: the greenhouse effect and carbon cycle and how the climate has changed throughout the earth's history. It then discusses the IPCC's assessment reports, focusi...

  15. Sensitivity of the Runoff Characteristics of Small Alpine Catchments to Climate Change

    Science.gov (United States)

    Meißl, Gertraud; Klebinder, Klaus; Formayer, Herbert; Kerl, Florian; Schöberl, Friedrich; Geitner, Clemens; Markart, Gerhard; Kohl, Bernhard; Nadeem, Imran; Leidinger, David; Bronstert, Axel; Bürger, Gerd

    2016-04-01

    Floods and debris flows in small torrent catchments (< 10 km²) arise from a combination of critical antecedent system state conditions and mostly convective precipitation events with high precipitation intensities. Thus climate change may influence the magnitude-frequency-relationship of extreme events twofold, by a modification of the occurrence probabilities of critical system state conditions and by a change of precipitation characteristics. In order to study these effects, we investigated three small Alpine catchments in different altitudes (400 - 1100 m a.s.l.; 900 - 2000 m a.s.l.; 1900 - 3000 m a.s.l.) in Western Austria within the project SeRAC-CC (Sensitivity of the Runoff Characteristics of Small Alpine Catchments to Climate Change, funded by the Austrian Climate and Energy fund, Austrian Climate Research Programme). We used spatially and temporally downscaled and bias corrected climate projections (three A1B-scenarios) to drive a precipitation-runoff-model and to simulate future system state conditions and runoff behaviour of the study catchments. To ensure process-orientated parameter calibration, we conducted intensive field work, especially sprinkling experiments, in order to analyse runoff processes at different site characteristics and hydrological system state conditions. Hydrological modelling showed that the number of days with critical antecedent soil moisture content will be significantly reduced to about 60% or even less in summer for all investigated catchments and climate scenarios. The other seasons show no clear trends and partly differing results between the three runs driven by the three climate scenarios used. Sprinkling experiments (rain intensity 100 mm/h) revealed different sensitivities to antecedent soil moisture content depending on land use: a) sites showing a significantly higher level of surface runoff in case of wet conditions (here especially pastured sites), b) sites, where surface runoff starts earlier at wet conditions

  16. A simple water-energy balance framework to predict the sensitivity of streamflow to climate change

    Directory of Open Access Journals (Sweden)

    M. Renner

    2011-09-01

    Full Text Available Long term average change in streamflow is a major concern in hydrology and water resources management. Some simple analytical methods exist for the assessment of the sensitivity of streamflow to climatic variations. These are based on the Budyko hypothesis, which assumes that long term average streamflow can be predicted by climate conditions, namely by annual average precipitation and evaporative demand. Recently, Tomer and Schilling (2009 presented an ecohydrological concept to distinguish between effects of climate change and basin characteristics change on streamflow. We provide a theoretical foundation of this concept by showing that it is based on a coupled consideration of the water and energy balance. The concept uses a special condition that the sum of the ratio of annual actual evapotranspiration to precipitation and the ratio of actual to potential evapotranspiration is constant, even when climate conditions are changing.

    Here we apply this assumption and derive analytical solutions to the problem of streamflow sensitivity on climate. We show how climate sensitivity is influenced by different climatic conditions and the actual hydrological response of a basin. Finally, the properties and implications of the new method are compared with established Budyko sensitivity methods.

  17. After the Data: Taking Action on ClimateQUAL® Results

    Directory of Open Access Journals (Sweden)

    Elizabeth Uzelac

    2013-06-01

    Full Text Available Objective – This paper discusses the actions taken by the staff development and training (SD&T team at the Sheridan Libraries and Johns Hopkins University Museums in response to results of a ClimateQUAL survey.Methods – The team administered the ClimateQUAL Organizational Climate and Diversity Assessment in March 2009 to the 150 staff members of the museums and libraries, and 80% responded. To get at the root of some of the results, the team conducted 23 focus group sessions over the course of two months. In each 90-minute session, 8 open-ended questions were used to probe the staff’s thoughts on the survey results and elicit concrete suggestions for moving forward. Participants were asked to discuss their personal experiences with six areas of concern: procedural justice, distributive justice, structural facilitation of teamwork, psychological safety, communication, and leadership. One year after the original ClimateQUAL survey, the team administered a one-question follow-up survey.Results – The team analyzed and coded the notes taken during the focus group sessions and developed three discrete written summaries for each session: a brief summary of themes, a list of specific actionable suggestions, and a general description of specific scenarios aired in the sessions. From these analyses, the team developed two types of recommendations: quick tactical actions and long-term strategic recommendations. Strategic recommendations were developed in three main areas: fostering a sense of global ownership of organizational issues, improving organizational communication, and improving leadership and facilitation of teamwork. With these recommendations, the team charged managers to take broad ownership of a plan for individual actions. The results of the one-year follow-up survey were mixed. Staff perceived positive change in communication, but indicated that the areas of procedural and distributive justice, psychological safety, and transparency

  18. Large diurnal temperature range increases bird sensitivity to climate change

    OpenAIRE

    Michael Briga; Simon Verhulst

    2015-01-01

    Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days), we show that mortality rate increases almost two-fold per 1°C increase in diurnal temperature range (DTR). Interestingly, the DTR effect differed between two groups with low versus high experimenta...

  19. Ontogeny influences sensitivity to climate change stressors in an endangered fish.

    Science.gov (United States)

    Komoroske, L M; Connon, R E; Lindberg, J; Cheng, B S; Castillo, G; Hasenbein, M; Fangue, N A

    2014-01-01

    Coastal ecosystems are among the most human-impacted habitats globally, and their management is often critically linked to recovery of declining native species. In the San Francisco Estuary, the Delta Smelt (Hypomesus transpacificus) is an endemic, endangered fish strongly tied to Californian conservation planning. The complex life history of Delta Smelt combined with dynamic seasonal and spatial abiotic conditions result in dissimilar environments experienced among ontogenetic stages, which may yield stage-specific susceptibility to abiotic stressors. Climate change is forecasted to increase San Francisco Estuary water temperature and salinity; therefore, understanding the influences of ontogeny and phenotypic plasticity on tolerance to these critical environmental parameters is particularly important for Delta Smelt and other San Francisco Estuary fishes. We assessed thermal and salinity limits in several ontogenetic stages and acclimation states of Delta Smelt, and paired these data with environmental data to evaluate sensitivity to climate-change stressors. Thermal tolerance decreased among successive stages, with larval fish exhibiting the highest tolerance and post-spawning adults having the lowest. Delta Smelt had limited capacity to increase tolerance through thermal acclimation, and comparisons with field temperature data revealed that juvenile tolerance limits are the closest to current environmental conditions, which may make this stage especially susceptible to future climate warming. Maximal water temperatures observed in situ exceeded tolerance limits of juveniles and adults. Although these temperature events are currently rare, if they increase in frequency as predicted, it could result in habitat loss at these locations despite other favourable conditions for Delta Smelt. In contrast, Delta Smelt tolerated salinities spanning the range of expected environmental conditions for each ontogenetic stage, but salinity did impact survival in juvenile and

  20. Eocene climate and Arctic paleobathymetry: A tectonic sensitivity study using GISS ModelE-R

    Science.gov (United States)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2009-12-01

    The early Paleogene (65-45 million years ago, Ma) was a ‘greenhouse’ interval with global temperatures warmer than any other time in the last 65 Ma. This period was characterized by high levels of CO2, warm high-latitudes, warm surface-and-deep oceans, and an intensified hydrological cycle. Sediments from the Arctic suggest that the Eocene surface Arctic Ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions remain uncertain. We present equilibrium climate conditions derived from a fully-coupled, water-isotope enabled, general circulation model (GISS ModelE-R) configured for the early Eocene. We also present model-data comparison plots for key climatic variables (SST and δ18O) and analyses of the leading modes of variability in the tropical Pacific and North Atlantic regions. Our tectonic sensitivity study indicates that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the seaways connecting the Arctic to the Atlantic and Tethys. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~6 psu and warming of sea-surface temperatures by 2°C in the North Atlantic and 5-10°C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We also suggest that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates in the Atlantic.

  1. The sensitivity of global ozone predictions to dry deposition schemes and their response to climate change

    Science.gov (United States)

    Centoni, Federico; Stevenson, David; Fowler, David; Nemitz, Eiko; Coyle, Mhairi

    2015-04-01

    Concentrations of ozone at the surface are strongly affected by deposition to the surface. Deposition processes are very sensitive to temperature and relative humidity at the surface and are expected to respond to global change, with implications for both air quality and ecosystem services. Many studies have shown that ozone stomatal uptake by vegetation typically accounts for 40-60% of total deposition on average and the other part which occurs through non-stomatal pathways is not constant. Flux measurements show that non-stomatal removal increases with temperature and under wet conditions. There are large uncertainties in parameterising the non-stomatal ozone deposition term in climate chemistry models and model predictions vary greatly. In addition, different model treatments of dry deposition constitute a source of inter-model variability in surface ozone predictions. The main features of the original Unified Model-UK Chemistry and Aerosols (UM-UKCA) dry deposition scheme and the Zhang et al. 2003 scheme, which introduces in UM-UKCA a more developed non-stomatal deposition approach, are presented. This study also estimates the relative contributions of ozone flux via stomatal and non-stomatal uptakes at the global scale, and explores the sensitivity of simulated surface ozone and ozone deposition flux by implementing different non-stomatal parameterization terms. With a view to exploring the potential influence of future climate, we present results showing the effects of variations in some meteorological parameters on present day (2000) global ozone predictions. In particular, this study revealed that the implementation of a more mechanistic representation of the non-stomatal deposition in UM-UKCA model along with a decreased stomatal uptake due to the effect of blocking under wet conditions, accounted for a substantial reduction of ozone fluxes to broadleaf trees in the tropics with an increase of annual mean surface ozone. On the contrary, a large increase of

  2. Modelling the sensitivity of life history traits to climate change in a temporary pool crustacean.

    Science.gov (United States)

    Pinceel, Tom; Vanschoenwinkel, Bram; Brendonck, Luc; Buschke, Falko

    2016-01-01

    Temporary pool inhabitants face altered inundation regimes under climate change. While their exposure to these changes has received considerable attention, few studies have investigated their sensitivity or adaptability. Here, we use zooplankton as a model to explore how decreasing hydroperiods affect extinction risks and assess whether changes in life history traits could promote persistence. For this, we construct a three-stage matrix population model parameterised with realistic life-history values for the fairy shrimp Branchipodopsis wolfi from pools with varying hydroperiods. Our results suggest that extinction risks increase drastically once the median hydroperiod drops below a critical threshold. Although changes in life-history parameters could potentially compensate for this risk, the relative importance of each trait for population growth depends on the median hydroperiod. For example, survival of dormant eggs seemed to be most important when hydroperiods were short while the survival of freshly laid eggs and adult individuals were more important in longer-lived pools. Overall, this study demonstrates that zooplankton species are sensitive to climate change and that the adaptive capacity of organisms from temporary pools with dissimilar hydrology hinges on selection of different life history traits. PMID:27404276

  3. Ocean Biological Pump Sensitivities and Implications for Climate Change Impacts

    Science.gov (United States)

    Romanou, Anastasia

    2013-01-01

    The ocean is one of the principal reservoirs of CO2, a greenhouse gas, and therefore plays a crucial role in regulating Earth's climate. Currently, the ocean sequesters about a third of anthropogenic CO2 emissions, mitigating the human impact on climate. At the same time, the deeper ocean represents the largest carbon pool in the Earth System and processes that describe the transfer of carbon from the surface of the ocean to depth are intimately linked to the effectiveness of carbon sequestration.The ocean biological pump (OBP), which involves several biogeochemical processes, is a major pathway for transfer of carbon from the surface mixed layer into the ocean interior. About 75 of the carbon vertical gradient is due to the carbon pump with only 25 attributed to the solubility pump. However, the relative importance and role of the two pumps is poorly constrained. OBP is further divided to the organic carbon pump (soft tissue pump) and the carbonate pump, with the former exporting about 10 times more carbon than the latter through processes like remineralization.Major uncertainties about OBP, and hence in the carbon uptake and sequestration, stem from uncertainties in processes involved in OBP such as particulate organicinorganic carbon sinkingsettling, remineralization, microbial degradation of DOC and uptakegrowth rate changes of the ocean biology. The deep ocean is a major sink of atmospheric CO2 in scales of hundreds to thousands of years, but how the export efficiency (i.e. the fraction of total carbon fixation at the surface that is transported at depth) is affected by climate change remains largely undetermined. These processes affect the ocean chemistry (alkalinity, pH, DIC, particulate and dissolved organic carbon) as well as the ecology (biodiversity, functional groups and their interactions) in the ocean. It is important to have a rigorous, quantitative understanding of the uncertainties involved in the observational measurements, the models and the

  4. Sensitivity analysis of climatic parameters for sky classification

    Science.gov (United States)

    Li, D. H. W.; Tang, H. L.; Cheung, K. L.; Lee, E. W. M.; Cheng, C. C. K.

    2011-10-01

    Climatic variables are frequently used as weighting factors to indicate the degree of clearness for interpreting sky patterns. However, such important parameters are not always widely available and their criteria to define a sky condition are not clear-cut. In addition, certain variables may be more effective than the others in terms of sky identification. This paper studies the capability of various daylight parameters, namely zenith luminance, global, direct-beam and sky-diffuse illuminance, and solar altitude for categorizing the 15 International Commission on Illumination (CIE) standard skies. A new form of artificial neural networks called probabilistic neural network (PNN) which is a powerful technique for pattern recognition was used for the analysis. The findings suggested that the PNN is an appropriate tool when a number of climatic parameters of various criteria for differentiating sky standards are employed, and the ratio of zenith luminance to diffuse illuminance ( L z/ D v) and solar altitude ( α s) are respectively the most and the least significant input parameters for discriminating between the 15 CIE skies.

  5. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    Science.gov (United States)

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-04-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.

  6. MAAP thermal-hydraulic qualification sensitivity study results

    International Nuclear Information System (INIS)

    Several sensitivity studies have been performed with both the boiling water reactor (BWR) and pressurized water reactor (PWR) modular accident analysis program (MAAP) codes to test the important phenomena previously identified. These phenomena were listed as critical flow, level tracking, flashing, condensation, boiling and critical heat flux. This paper will summarize the study and provide insights into the findings from the study. For PWRs, Catawba was chosen as the reference plant. For BWRs, Peach Bottom was chosen as the reference plant. A series of studies were performed which encompass all of the phenomena of interest. The paper summarizes the relationship of the studies to the important phenomena. The first study varied the break area specifically to examine uncertainties in the critical flow model. In the process however, this affected a sensitivity to level tracking and flashing in the PWR case where the system depressurizes to saturation, and to level tracking and boiling in the BWR case where the system stays near the SRV setpoint pressure. Similarly, the primary phenomena investigated for each of the sensitivity studies is listed with the resulting secondary effects which are important to the variation considered

  7. Evaluation of water-energy balance frameworks to predict the sensitivity of streamflow to climate change

    Directory of Open Access Journals (Sweden)

    M. Renner

    2012-05-01

    Full Text Available Long term average change in streamflow is a major concern in hydrology and water resources management. Some simple analytical methods exist for the assessment of the sensitivity of streamflow to climatic variations. These are based on the Budyko hypothesis, which assumes that long term average streamflow can be predicted by climate conditions, namely by annual average precipitation and evaporative demand. Recently, Tomer and Schilling (2009 presented an ecohydrological concept to distinguish between effects of climate change and basin characteristics change on streamflow. We relate the concept to a coupled consideration of the water and energy balance. We show that the concept is equivalent to the assumption that the sum of the ratio of annual actual evapotranspiration to precipitation and the ratio of actual to potential evapotranspiration is constant, even when climate conditions are changing.

    Here, we use this assumption to derive analytical solutions to the problem of streamflow sensitivity to climate. We show how, according to this assumption, climate sensitivity would be influenced by different climatic conditions and the actual hydrological response of a basin. Finally, the properties and implications of the method are compared with established Budyko sensitivity methods and illustrated by three case studies. It appears that the largest differences between both approaches occur under limiting conditions. Specifically, the sensitivity framework based on the ecohydrological concept does not adhere to the water and energy limits, while the Budyko approach accounts for limiting conditions by increasing the sensitivity of streamflow to a catchment parameter encoding basin characteristics. Our findings do not support any application of the ecohydrological concept under conditions close to the water or energy limits, instead we suggest a correction based on the Budyko framework.

  8. A Revised Sensitivity Model for Cassini INMS: Results at Titan

    Science.gov (United States)

    Teolis, B. D.; Niemann, H. B.; Waite, J. H.; Gell, D. A.; Perryman, R. S.; Kasprzak, W. T.; Mandt, K. E.; Yelle, R. V.; Lee, A. Y.; Pelletier, F. J.; Miller, G. P.; Young, D. T.; Bell, J. M.; Magee, B. A.; Patrick, E. L.; Grimes, J.; Fletcher, G. G.; Vuitton, V.

    2015-07-01

    Cassini Ion Neutral Mass Spectrometer (INMS) measurements from roughly a hundred Titan encounters over the Cassini mission yield neutral and ion densities systematically lower, by factors approximately 2 to 3, than estimates from several other spacecraft systems, including the Attitude and Articulation Control System, and Navigation system. In this paper we present a new INMS instrument sensitivity model, obtained by re-analyzing (1) the capture and transmission of neutral gas through the instrument, and (2) the detector gain reduction during pre-launch testing. By correcting for an under-estimation of gas leakage out of the instrument into space by the original calibration model, and adjusting for the gain change, the new model brings INMS densities into much closer agreement with the other Cassini systems. Accordingly, the INMS ion densities are revised upward by a constant detector sensitivity correction factor of 1.55±21 %, while the neutral sensitivities have a complex instrument pointing direction dependence, due (mostly) to the effect of the INMS vent and antechamber-to-closed source tube. In the special case of on-ram pointing the neutral densities are revised upward by a constant factor of 2.2±23 %. The corrected neutral and ion sensitivities given here are applicable to all previously published INMS results at Titan, Enceladus and elsewhere in the Saturn system. The new model gives reliable densities at high ram angles, in some cases above 90 degrees, thereby expanding the list of Titan flybys from which INMS densities may be extracted. We apply the model to obtain accurate densities from several off-ram Titan flybys which gave unusual neutral density vs. altitude profiles, or unreasonably high densities, with the original calibration.

  9. Sensitivity of hydrological modeling to meteorological data and implications for climate change studies

    International Nuclear Information System (INIS)

    There are uncertainties associated with the use of hydrological models. This study aims to analyse one source of uncertainty associated with hydrological modeling, particularly in the context of climate change studies on water resources. Additional intent of this study is to compare the ability of some meteorological data sources, used in conjunction with an hydrological model, to reproduce the hydrologic regime of a watershed. A case study on a watershed of south-western Quebec, Canada using five different sources of meteorological data as input to an offline hydrological model are presented in this paper. Data used came from weather stations, NCEP reanalysis, ERA40 reanalysis and two Canadian Regional Climate Model (CRCM) runs driven by NCEP and ERA40 reanalysis, providing atmospheric driving boundary conditions to this limited-area climate model. To investigate the sensitivity of simulated streamflow to different sources of meteorological data, we first calibrated the hydrological model with each of the meteorological data sets over the 1961-1980 period. The five different sets of parameters of the hydrological model were then used to simulate streamflow of the 1981-2000 validation period with the five meteorological data sets as inputs. The 25 simulated streamflow series have been compared to the observed streamflow of the watershed. The five meteorological data sets do not have the same ability, when used with the hydrological model, to reproduce streamflow. Our results show also that the hydrological model parameters used may have an important influence on results such as water balance, but it is linked with the differences that may have in the characteristics of the meteorological data used. For climate change impacts assessments on water resources, we have found that there is an uncertainty associated with the meteorological data used to calibrate the model. For expected changes on mean annual flows of the Chateauguay River, our results vary from a small

  10. Sensitivity of the reference evapotranspiration to key climatic variables during the growing season in the Ejina oasis northwest China.

    Science.gov (United States)

    Hou, Lan-Gong; Zou, Song-Bing; Xiao, Hong-Lang; Yang, Yong-Gang

    2013-01-01

    The standardized FAO56 Penman-Monteith model, which has been the most reasonable method in both humid and arid climatic conditions, provides reference evapotranspiration (ETo) estimates for planning and efficient use of agricultural water resources. And sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration. In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETo to perturbations of four climatic variables in the Ejina oasis northwest China. A 20-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration in the Ejina oasis was used in the analysis. Results have shown that daily sensitivity coefficients exhibited large fluctuations during the growing season, and shortwave radiation was the most sensitive variable in general for the Ejina oasis, followed by air temperature, wind speed and relative humidity. According to this study, the response of ETo can be preferably predicted under perturbation of air temperature, wind speed, relative humidity and shortwave radiation by their sensitivity coefficients. PMID:24701387

  11. Community vulnerability to climate change in the context of other exposure-sensitivities in Kugluktuk, Nunavut

    OpenAIRE

    Prno, Jason; Bradshaw, Ben; Wandel, Johanna; Pearce, Tristan; Smit, Barry; Tozer, Laura

    2011-01-01

    Climate change in the Canadian north is, and will be, managed by communities that are already experiencing social, political, economic and other environmental changes. Hence, there is a need to understand vulnerability to climate change in the context of multiple exposure-sensitivities at the community level. This paper responds to this perceived knowledge need based on a case study of the community of Kugluktuk in Nunavut, Canada. An established approach for vulnerability assessment is used ...

  12. Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar

    Directory of Open Access Journals (Sweden)

    Sulin Tao

    2016-02-01

    Full Text Available A sensitivity analysis of the responses of crops to the chosen production adaptation options under regional climate change was conducted in this study. Projections of winter wheat production for different sowing dates and cultivars were estimated for a major economic and agricultural province of China from 2021 to 2080 using the World Food Study model (WOFOST under representative concentration pathways (RCPs scenarios. A modeling chain was established and a correction method was proposed to reduce the bias of the resulting model-simulated climate data. The results indicated that adjusting the sowing dates and cultivars could mitigate the influences of climate change on winter wheat production in Jinagsu. The yield gains were projected from the chosen sowing date and cultivar. The following actions are recommended to ensure high and stable yields under future climate changes: (i advance the latest sowing date in some areas of northern Jiangsu; and (ii use heat-tolerant or heat-tolerant and drought-resistant varieties in most areas of Jiangsu rather than the currently used cultivar. Fewer of the common negative effects of using a single climate model occurred when using the sensitivity analysis because our bias correction method was effective for scenario data and because the WOFOST performed well for Jiangsu after calibration.

  13. Climate Change: The Physical Basis and Latest Results

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The 2007 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concludes: "Warming in the climate system is unequivocal." Without the contribution of Physics to climate science over many decades, such a statement would not have been possible. Experimental physics enables us to read climate archives such as polar ice cores and so provides the context for the current changes. For example, today the concentration of CO2 in the atmosphere, the second most important greenhouse gas, is 28% higher than any time during the last 800,000 years. Classical fluid mechanics and numerical mathematics are the basis of climate models from which estimates of future climate change are obtained. But major instabilities and surprises in the Earth System are still unknown. These are also to be considered when the climatic consequences of proposals for geo-engineering are estimated. Only Physics will permit us to further improve our understanding in order to provide the foundation for policy decisions facing the...

  14. Streamflow sensitivity to climate and land cover changes: Meki River, Ethiopia

    Directory of Open Access Journals (Sweden)

    D. Legesse

    2010-11-01

    Full Text Available Impacts of climate and land cover changes on streamflow were assessed using a hydrological modeling. The precipitation runoff modeling system of the US Geological Survey was modified in order to consider wetlands as a separate hydrological response unit. Initial model parameters were obtained from a previously modeled adjacent catchment and subsequent calibration and validation were carried out. The model calibration and validation periods were divided into three. The calibration period was a five years period (1981–1986. The validation period was divided into two: validation 1 (1986–1991 and validation 2 (1996–2002. Model performance was evaluated by using joint plots of daily and monthly observed and simulated runoff hydrographs and different coefficients of efficiency. The model coefficients of efficiency were 0.71 for the calibration period and 0.69 and 0.66 for validation periods 1 and 2, respectively. A "delta-change" method was used to formulate climatic scenarios. One land cover change scenario was also used to assess the likely impacts of these changes on the runoff. The results of the scenario analysis showed that the basin is more sensitive to increase in rainfall (+80% for +20% than to a decrease (−62% for −20%. The rainfall elasticity is 4:1 for a 20% increase in rainfall while it is 3:1 for a 20% reduction. A 1.5°c increase in temperature resulted in a 6% increase in potential evapotranspiration and 13% decrease in streamflow. This indicates that the watershed is more elastic to rainfall increase than temperature. The proposed land cover scenario of converting areas between 2000 to 3000 m a.s.l. to woodland also resulted in a significant decrease in streamflow (11.8%. The study showed that properly calibrated and validated models could help understand likely impacts of climate and land cover changes on catchment water balance.

  15. Climate change and the Portuguese precipitation: ENSEMBLES regional climate models results

    Science.gov (United States)

    Soares, Pedro M. M.; Cardoso, Rita M.; Ferreira, João Jacinto; Miranda, Pedro M. A.

    2015-10-01

    In Portugal, the precipitation regimes present one of the highest volumes of extreme precipitation occurrence in Europe, and one of the largest mean precipitation spatial gradient (annual observed values above 2,500 mm in the NW and under 400 mm in the SE). Moreover, southern Europe is one of the most vulnerable regions in the world to climate change. In the ENSEMBLES framework many climate change assessment studies were performed, but none focused on Portuguese precipitation. An extensive evaluation and ranking of the RCMs results addressing the representation of mean precipitation and frequency distributions was performed through the computation of statistical errors and frequency distribution scores. With these results, an ensemble was constructed; giving the same weight to mean precipitation and distribution model skills. This ensemble reveals a good ability to describe the precipitation regime in Portugal, and enables the evaluation of the eventual impact of climate change on Portuguese precipitation according to the A1B scenario. The mean seasonal precipitation is expected to decrease substantially in all seasons, excluding winter. This reduction is statistically significant; it spans from less than 20 % in the north to 40 % in the south in the intermediate seasons, and is above 50 % in the largest portion of mainland in summer. At a basin level the precipitation diminishes in all months for all the basins with exception of December. Total precipitation PDFs reveal an important decrease of the contribution from low to moderate/high precipitation bins, and a striking rise for days with extreme rainfall, up to 30 %.

  16. Photosynthesis sensitivity to climate change in land surface models

    Science.gov (United States)

    Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo

    2016-04-01

    Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.

  17. The sensitivity of current and future forest managers to climate-induced changes in ecological processes.

    Science.gov (United States)

    Seidl, Rupert; Aggestam, Filip; Rammer, Werner; Blennow, Kristina; Wolfslehner, Bernhard

    2016-05-01

    Climate vulnerability of managed forest ecosystems is not only determined by ecological processes but also influenced by the adaptive capacity of forest managers. To better understand adaptive behaviour, we conducted a questionnaire study among current and future forest managers (i.e. active managers and forestry students) in Austria. We found widespread belief in climate change (94.7 % of respondents), and no significant difference between current and future managers. Based on intended responses to climate-induced ecosystem changes, we distinguished four groups: highly sensitive managers (27.7 %), those mainly sensitive to changes in growth and regeneration processes (46.7 %), managers primarily sensitive to regeneration changes (11.2 %), and insensitive managers (14.4 %). Experiences and beliefs with regard to disturbance-related tree mortality were found to particularly influence a manager's sensitivity to climate change. Our findings underline the importance of the social dimension of climate change adaptation, and suggest potentially strong adaptive feedbacks between ecosystems and their managers. PMID:26695393

  18. Methane Emissions From Western Siberian Wetlands: Heterogeneity and Sensitivity to Climate Change

    Science.gov (United States)

    Bohn, T. J.; Lettenmaier, D. P.; Podest, E.; McDonald, K. C.; Sathulur, K.; Bowling, L. C.; Friborg, T.

    2007-12-01

    Prediction of methane emissions from high-latitude wetlands is important given concerns about their sensitivity to a warming climate. As a basis for prediction of wetland methane emissions at regional scales, we have coupled the Variable Infiltration Capacity macroscale hydrological model (VIC) with the Biosphere-Energy-Transfer- Hydrology terrestrial ecosystem model (BETHY) and a wetland methane emissions model to make large-scale estimates of methane emissions as a function of soil temperature, water table depth, and net primary productivity (NPP), with a parameterization of the sub-grid heterogeneity of the water table depth based on topographic wetness index. Using landcover classifications derived from L-band satellite synthetic aperture radar imagery, we simulated methane emissions for the Chaya River basin in western Siberia, an area that includes the Bakchar Bog, for a retrospective baseline period of 1980-1999, and evaluated their sensitivity to increases in temperature of 0-5 °C and increases in precipitation of 0-15%. The interactions of temperature and precipitation, through their effects on the water table depth, play an important role in determining methane emissions from these wetlands. The balance between these effects varies spatially, and their net effect depends in part on sub- grid topographic heterogeneity. Higher temperatures alone increase methane production in saturated areas, but cause those saturated areas to shrink in extent, resulting in a net reduction in methane emissions. Higher precipitation alone raises water tables and expands the saturated area, resulting in a net increase in methane emissions. Combining a temperature increase of 3 °C and an increase of 10% in precipitation, to represent the climate conditions likely in western Siberia at the end of this century, results in roughly a doubling of annual methane emissions. This work was carried out at the University of Washington, at Purdue University, and at the Jet Propulsion

  19. Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change

    International Nuclear Information System (INIS)

    The prediction of methane emissions from high-latitude wetlands is important given concerns about their sensitivity to a warming climate. As a basis for the prediction of wetland methane emissions at regional scales, we coupled the variable infiltration capacity macroscale hydrological model (VIC) with the biosphere-energy-transfer-hydrology terrestrial ecosystem model (BETHY) and a wetland methane emissions model to make large-scale estimates of methane emissions as a function of soil temperature, water table depth, and net primary productivity (NPP), with a parameterization of the sub-grid heterogeneity of the water table depth based on TOPMODEL. We simulated the methane emissions from a 100 km x 100 km region of western Siberia surrounding the Bakchar Bog, for a retrospective baseline period of 1980-1999 and have evaluated their sensitivity to increases in temperature of 0-5 0C and increases in precipitation of 0-15%. The interactions of temperature and precipitation, through their effects on the water table depth, played an important role in determining methane emissions from these wetlands. The balance between these effects varied spatially, and their net effect depended in part on sub-grid topographic heterogeneity. Higher temperatures alone increased methane production in saturated areas, but caused those saturated areas to shrink in extent, resulting in a net reduction in methane emissions. Higher precipitation alone raised water tables and expanded the saturated area, resulting in a net increase in methane emissions. Combining a temperature increase of 3 deg. C and an increase of 10% in precipitation to represent climate conditions that may pertain in western Siberia at the end of this century resulted in roughly a doubling in annual emissions

  20. Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model

    Science.gov (United States)

    Romanou, A.; Romanski, J.; Gregg, W. W.

    2014-01-01

    Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which

  1. Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance

    Directory of Open Access Journals (Sweden)

    B. Lin

    2010-02-01

    Full Text Available Large climate feedback uncertainties limit the accuracy in predicting the response of the Earth's climate to the increase of CO2 concentration within the atmosphere. This study explores a potential to reduce uncertainties in climate sensitivity estimations using energy balance analysis, especially top-of-atmosphere (TOA radiation imbalance. The time-scales studied generally cover from decade to century, that is, middle-range climate sensitivity is considered, which is directly related to the climate issue caused by atmospheric CO2 change. The significant difference between current analysis and previous energy balance models is that the current study targets at the boundary condition problem instead of solving the initial condition problem. Additionally, climate system memory and deep ocean heat transport are considered. The climate feedbacks are obtained based on the constraints of the TOA radiation imbalance and surface temperature measurements of the present climate. In this study, the TOA imbalance value of 0.85 W/m2 is used. Note that this imbalance value has large uncertainties. Based on this value, a positive climate feedback with a feedback coefficient ranging from −1.3 to −1.0 W/m2/K is found. The range of feedback coefficient is determined by climate system memory. The longer the memory, the stronger the positive feedback. The estimated time constant of the climate is large (70~120 years mainly owing to the deep ocean heat transport, implying that the system may be not in an equilibrium state under the external forcing during the industrial era. For the doubled-CO2 climate (or 3.7 W/m2 forcing, the estimated global warming would be 3.1 K if the current estimate of 0.85 W/m2 TOA net radiative heating could be confirmed. With accurate long-term measurements of TOA radiation, the analysis method suggested by this study provides a great potential in the

  2. Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2011-08-01

    Full Text Available Due to its effects on the atmospheric lifetime of methane, the burdens of tropospheric ozone and growth of secondary organic aerosol, isoprene is central among the biogenic compounds that need to be taken into account for assessment of anthropogenic air pollution-climate change interactions. Lack of process-understanding regarding leaf isoprene production as well as of suitable observations to constrain and evaluate regional or global simulation results add large uncertainties to past, present and future emissions estimates. Focusing on contemporary climate conditions, we compare three global isoprene models that differ in their representation of vegetation and isoprene emission algorithm. We specifically aim to investigate the between- and within model variation that is introduced by varying some of the models' main features, and to determine which spatial and/or temporal features are robust between models and different experimental set-ups. In their individual standard configurations, the models broadly agree with respect to the chief isoprene sources and emission seasonality, with maximum monthly emission rates around 20–25 Tg C, when averaged by 30-degree latitudinal bands. They also indicate relatively small (approximately 5 to 10 % around the mean interannual variability of total global emissions. The models are sensitive to changes in one or more of their main model components and drivers (e.g., underlying vegetation fields, climate input which can yield increases or decreases in total annual emissions of cumulatively by more than 30 %. Varying drivers also strongly alters the seasonal emission pattern. The variable response needs to be interpreted in view of the vegetation emission capacities, as well as diverging absolute and regional distribution of light, radiation and temperature, but the direction of the simulated emission changes was not as uniform as anticipated. Our results highlight the need for modellers to evaluate their

  3. Climatically sensitive 'Arctic': Another scientific frontier for India

    Energy Technology Data Exchange (ETDEWEB)

    Khare, N. [Ministry of Earth Sciences, Goa (India). National Centre for Antarctic and Ocean Research

    2008-01-15

    According to the recent Intergovernmental Panel on Climate Change report, climate change is set to impact every continent and threaten nearly a third of the world's species with extinction. Effects on the earth's weather systems from increasing greenhouse gases will change rainfall pattern, punch-up the power of storms and boost the risk of droughts, flooding and stress on water supplies. Therefore, economic planners are in the quest of predictive models of such climatic change. It has now become a global responsibility to understand the climate change, on both short and long timescales as a global phenomenon, with different parts of the earth responding to the climatic change with a time lead-lag and by different orders of magnitude. Though the exact cause of climatic change on earth is still unknown, the time lead-lag in climatic change in different parts of the earth helps in understanding the role of various regions in triggering (?) or enhancing the climatic change. Deciphering and inter-comparing the climatic history of different geographic regions can help to better understand the possible role of different geographic regions in global climatic variations. The Arctic region is critical for studying global change because it impacts the entire earth system through powerful feedback processes involving the atmosphere, cryosphere, land surface and ocean. The Arctic region will experience the effects of global warming first and will amplify its effects within the earth system. Rapid changes are being observed in the Arctic region, which may be considered as the barometer of global climatic change. The Arctic region and its ecosystem serve an area of active research because it is particularly sensitive to climate change and also because climatically induced environmental changes can induce further changes of global consequence. The Arctic system is not only an amplifier of variability in the global climate, but also of the effects of greenhouse forcings

  4. Sensitivity of ICTP Regional Climate Model (RegCM3) to Initial and Lateral Boundary Conditions

    Science.gov (United States)

    Nadeem, I.; Formayer, H.

    2009-04-01

    Regional climate simulations require lateral boundary conditions. These are typically reanalysis of past observations or alternatively, output from climate general circulation models. Lateral boundary conditions are available at various temporal and spatial resolutions. At present, spatial resolution of reanalysis datasets ranges from few kilometers, for example, regional reanalysis limited to only single continent, to the coarser but global datasets like ECMWF 40 Years Re-Analysis. While these datasets represent reasonable analyses of 3-D atmospheric as well as surface conditions, their resolutions, the physics of the models used to generate them, and the means of assimilating data into them can produce very different results when used as boundary conditions for regional climate models. The sensitivity of ICTP Regional Climate Model (RegCM3) to different lateral boundary conditions was investigated over the Alpine region. The model was run directly at 10km horizontal resolution as well as in one-way double nested mode, with a 30 km grid point spacing mother domain encompassing the Europe and a 10 km grid point spacing nested domain covering the Alpine Region. The simulations spans the one-year period of 1989. The boundary conditions used for various simulations were ECMWF Interim Re-Analysis (ERA-Interim, 0.75° and 1.5° grid spacings, 6-h intervals), the ECMWF 40 Years Re-Analysis (ERA40, 1° and 2.5° grid spacings, 6-h interval) and finally the 2.5°, 6-h NCEP/DOE AMIP-II Reanalysis (Reanalysis-2). Sea Surface Temperature for the simulated periods were obtained from a UK Met Office Global Ocean Surface Temperature (GISST), a set of SST data in monthly 1° area grids. When recently released ERA-Interim Reanalysis, which is based on a recent release of the Integrated Forecasting System (IFS Cy31r2) containing many improvements both in the forecasting model and analysis methodology, was used as lateral and boundary conditions, the simulated precipitation field

  5. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes

    International Nuclear Information System (INIS)

    Extremes in climate have significant impacts on ecosystems and are expected to increase under future climate change. Extremes in vegetation could capture such impacts and indicate the vulnerability of ecosystems, but currently have not received a global long-term assessment. In this study, a robust method has been developed to detect significant extremes (low values) in biweekly time series of global normalized difference vegetation index (NDVI) from 1982 to 2006 and thus to acquire a global pattern of vegetation extreme frequency. This pattern coincides with vegetation vulnerability patterns suggested by earlier studies using different methods over different time spans, indicating a consistent mechanism of regulation. Vegetation extremes were found to aggregate in Amazonia and in the semi-arid and semi-humid regions in low and middle latitudes, while they seldom occurred in high latitudes. Among the environmental variables studied, extreme low precipitation has the highest slope against extreme vegetation. For the eight biomes analyzed, these slopes are highest in temperate broadleaf forest and temperate grassland, suggesting a higher sensitivity in these environments. The results presented here contradict the hypothesis that vegetation in water-limited semi-arid and semi-humid regions might be adapted to drought and suggest that vegetation in these regions (especially temperate broadleaf forest and temperate grassland) is highly prone to vegetation extreme events under more severe precipitation extremes. It is also suggested here that more attention be paid to precipitation-induced vegetation changes than to temperature-induced events. (letter)

  6. Sensitivity of climate change in Europe to the Northern Atlantic warming

    Energy Technology Data Exchange (ETDEWEB)

    Timbal, B.; Mahfouf, J.F.; Royer, J.F. [Centre National de Recherches Meteoroloques, Toulouse (France)

    1995-12-31

    The increase in atmospheric carbon dioxide since the beginning of the industrial revolution has raised the question of its impact on climate. Anthropogenic release of carbon dioxide is an extra source in the complex carbon cycle involving the ocean, the atmosphere and the biosphere. Three-dimensional general circulation models have been used world-wide over the last decade to perform climate research. Complete global change experiments need to couple an atmospheric model with an oceanic one and a thermodynamical and dynamical sea-ice model. Therefore realistic scenarios of greenhouse gas increases can be studied. These computer-time expensive experiments cannot be reproduced as often as necessary. A commonly used approach is to perform time-slice experiments at the equilibrium with an atmospheric GCM forced by Sea Surface Temperature (SST) anomalies. Several sensitivity experiments using higher resolutions or more sophisticated physical parameterisations can be performed. As the resolution increases, one can study the result over special areas of interest, such as Europe

  7. Attributing the effects of climate on phenology change suggests high sensitivity in coastal zones

    Science.gov (United States)

    Seyednasrollah, B.; Clark, J. S.

    2015-12-01

    The impact of climate change on spring phenology depends on many variables that cannot be separated using current models. Phenology can influence carbon sequestration, plant nutrition, forest health, and species distributions. Leaf phenology is sensitive to changes of environmental factors, including climate, species composition, latitude, and solar radiation. The many variables and their interactions frustrate efforts to attribute variation to climate change. We developed a Bayesian framework to quantify the influence of environment on the speed of forest green-up. This study presents a state-space hierarchical model to infer and predict change in forest greenness over time using satellite observations and ground measurements. The framework accommodates both observation and process errors and it allows for main effects of variables and their interactions. We used daily spaceborne remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify temporal variability in the enhanced vegetation index (EVI) along a habitat gradient in the Southeastern United States. The ground measurements of meteorological parameters are obtained from study sites located in the Appalachian Mountains, the Piedmont and the Atlantic Coastal Plain between years 2000 and 2015. Results suggest that warming accelerates spring green-up in the Coastal Plain to a greater degree than in the Piedmont and Appalachian. In other words, regardless of variation in the timing of spring onset, the rate of greenness in non-coastal zones decreases with increasing temperature and hence with time over the spring transitional period. However, in coastal zones, as air temperature increases, leaf expansion becomes faster. This may indicate relative vulnerability to warming in non-coastal regions where moisture could be a limiting factor, whereas high temperatures in regions close to the coast enhance forest physiological activities. Model predictions agree with the remotely

  8. Variation in climate sensitivity and feedback parameters during the historical period

    Science.gov (United States)

    Gregory, J. M.; Andrews, T.

    2016-04-01

    We investigate the climate feedback parameter α (W m-2 K-1) during the historical period (since 1871) in experiments using the HadGEM2 and HadCM3 atmosphere general circulation models (AGCMs) with constant preindustrial atmospheric composition and time-dependent observational sea surface temperature (SST) and sea ice boundary conditions. In both AGCMs, for the historical period as a whole, the effective climate sensitivity is ˜2 K (α≃1.7 W m-2 K-1), and α shows substantial decadal variation caused by the patterns of SST change. Both models agree with the AGCMs of the latest Coupled Model Intercomparison Project in showing a considerably smaller effective climate sensitivity of ˜1.5 K (α = 2.3 ± 0.7 W m-2 K-1), given the time-dependent changes in sea surface conditions observed during 1979-2008, than the corresponding coupled atmosphere-ocean general circulation models (AOGCMs) give under constant quadrupled CO2 concentration. These findings help to relieve the apparent contradiction between the larger values of effective climate sensitivity diagnosed from AOGCMs and the smaller values inferred from historical climate change.

  9. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity

    Science.gov (United States)

    Storelvmo, T.; Leirvik, T.; Lohmann, U.; Phillips, P. C. B.; Wild, M.

    2016-04-01

    Earth’s climate sensitivity has long been subject to heated debate and has spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of its most likely range. Recent observational studies have produced estimates of transient climate sensitivity, that is, the global mean surface temperature increase at the time of CO2 doubling, as low as 1.3 K (refs ,), well below the best estimate produced by global climate models (1.8 K). Here, we present an observation-based study of the time period 1964 to 2010, which does not rely on climate models. The method incorporates observations of greenhouse gas concentrations, temperature and radiation from approximately 1,300 surface sites into an energy balance framework. Statistical methods commonly applied to economic time series are then used to decompose observed temperature trends into components attributable to changes in greenhouse gas concentrations and surface radiation. We find that surface radiation trends, which have been largely explained by changes in atmospheric aerosol loading, caused a cooling that masked approximately one-third of the continental warming due to increasing greenhouse gas concentrations over the past half-century. In consequence, the method yields a higher transient climate sensitivity (2.0 +/- 0.8 K) than other observational studies.

  10. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

    Science.gov (United States)

    Hansen, Kaj M.; Christensen, Jesper H.; Brandt, Jørgen

    2015-01-01

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition. PMID:26378551

  11. Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes.

    Science.gov (United States)

    Palmer, Georgina; Hill, Jane K; Brereton, Tom M; Brooks, David R; Chapman, Jason W; Fox, Richard; Oliver, Tom H; Thomas, Chris D

    2015-10-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population "forcing" (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species' responses to recent climate change may be more predictable than previously recognized. PMID:26601276

  12. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.

    Science.gov (United States)

    Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa

    2016-08-15

    Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative

  13. Sensitivity analysis of modelled responses of vegetation dynamics on the Tibetan Plateau to doubled CO2 and associated climate change

    Science.gov (United States)

    Qiu, Linjing; Liu, Xiaodong

    2016-04-01

    Increases in the atmospheric CO2 concentration affect both the global climate and plant metabolism, particularly for high-altitude ecosystems. Because of the limitations of field experiments, it is difficult to evaluate the responses of vegetation to CO2 increases and separate the effects of CO2 and associated climate change using direct observations at a regional scale. Here, we used the Community Earth System Model (CESM, version 1.0.4) to examine these effects. Initiated from bare ground, we simulated the vegetation composition and productivity under two CO2 concentrations (367 and 734 ppm) and associated climate conditions to separate the comparative contributions of doubled CO2 and CO2-induced climate change to the vegetation dynamics on the Tibetan Plateau (TP). The results revealed whether the individual effect of doubled CO2 and its induced climate change or their combined effects caused a decrease in the foliage projective cover (FPC) of C3 arctic grass on the TP. Both doubled CO2 and climate change had a positive effect on the FPC of the temperate and tropical tree plant functional types (PFTs) on the TP, but doubled CO2 led to FPC decreases of C4 grass and broadleaf deciduous shrubs, whereas the climate change resulted in FPC decrease in C3 non-arctic grass and boreal needleleaf evergreen trees. Although the combination of the doubled CO2 and associated climate change increased the area-averaged leaf area index (LAI), the effect of doubled CO2 on the LAI increase (95 %) was larger than the effect of CO2-induced climate change (5 %). Similarly, the simulated gross primary productivity (GPP) and net primary productivity (NPP) were primarily sensitive to the doubled CO2, compared with the CO2-induced climate change, which alone increased the regional GPP and NPP by 251.22 and 87.79 g C m-2 year-1, respectively. Regionally, the vegetation response was most noticeable in the south-eastern TP. Although both doubled CO2 and associated climate change had a

  14. Modelled climate sensitivity of the mass balance of Morteratschgletscher and its dependence on albedo parameterization

    NARCIS (Netherlands)

    Klok, E.J.; Oerlemans, J.

    2004-01-01

    This paper presents a study of the climate sensitivity of the mass balance of Morteratschgletscher in Switzerland, estimated from a two-dimensional mass balance model. Since the albedo scheme chosen is often the largest error source in mass balance models, we investigated the impact of using differe

  15. Observational constraints on mixed-phase clouds imply higher climate sensitivity.

    Science.gov (United States)

    Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D

    2016-04-01

    Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback. PMID:27124459

  16. Observational constraints on mixed-phase clouds imply higher climate sensitivity

    Science.gov (United States)

    Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D.

    2016-04-01

    Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.

  17. Sensitivity of Last Glacial Maximum climate to uncertainties in tropical and subtropical ocean temperatures

    Science.gov (United States)

    Hostetler, S.; Pisias, N.; Mix, A.

    2006-01-01

    The faunal and floral gradients that underlie the CLIMAP (1981) sea-surface temperature (SST) reconstructions for the Last Glacial Maximum (LGM) reflect ocean temperature gradients and frontal positions. The transfer functions used to reconstruct SSTs from biologic gradients are biased, however, because at the warmest sites they display inherently low sensitivity in translating fauna to SST and they underestimate SST within the euphotic zones where the pycnocline is strong. Here we assemble available data and apply a statistical approach to adjust for hypothetical biases in the faunal-based SST estimates of LGM temperature. The largest bias adjustments are distributed in the tropics (to address low sensitivity) and subtropics (to address underestimation in the euphotic zones). The resulting SSTs are generally in better agreement than CLIMAP with recent geochemical estimates of glacial-interglacial temperature changes. We conducted a series of model experiments using the GENESIS general atmospheric circulation model to assess the sensitivity of the climate system to our bias-adjusted SSTs. Globally, the new SST field results in a modeled LGM surface-air cooling relative to present of 6.4 ??C (1.9 ??C cooler than that of CLIMAP). Relative to the simulation with CLIMAP SSTs, modeled precipitation over the oceans is reduced by 0.4 mm d-1 (an anomaly -0.4 versus 0.0 mm d-1 for CLIMAP) and increased over land (an anomaly -0.2 versus -0.5 mm d-1 for CLIMAP). Regionally strong responses are induced by changes in SST gradients. Data-model comparisons indicate improvement in agreement relative to CLIMAP, but differences among terrestrial data inferences and simulated moisture and temperature remain. Our SSTs result in positive mass balance over the northern hemisphere ice sheets (primarily through reduced summer ablation), supporting the hypothesis that tropical and subtropical ocean temperatures may have played a role in triggering glacial changes at higher latitudes.

  18. The sensitivity of fluvial flood risk in Irish catchments to the range of IPCC AR4 climate change scenarios

    International Nuclear Information System (INIS)

    In the face of increased flood risk responsible authorities have set out safety margins to incorporate climate change impacts in building robust flood infrastructure. Using the case study of four catchments in Ireland, this study subjects such design allowances to a sensitivity analysis of the uncertainty inherent in estimates of future flood risk. Uncertainty in flood quantiles is quantified using regionalised climate scenarios derived from a large number of GCMs (17), forced with three SRES emissions scenarios. In terms of hydrological response uncertainty within and between hydrological models is assessed using the GLUE framework. Regionalisation is achieved using a change factor method to infer changes in the parameters of a weather generator using monthly output from the GCMs, while flood frequency analysis is conducted using the method of probability weighted moments to fit the Generalised Extreme Value distribution to ∼ 20,000 annual maximia series. Sensitivity results show that for low frequency events, the risk of exceedence of design allowances is greater than for more frequent events, with considerable implications for critical infrastructure. Peak flows for the five return periods assessed were found to be less sensitive to temperature and subsequently to potential evaporation (PET) than to rainfall. The average width of the uncertainty range for changes in flood magnitude is greater for low frequency events than for high frequency events. In all catchments there is a progressive increase in the peak flows associated with the 5, 25, 50 and 100-year return periods when moving from the 2020s to the 2080s. - Highlights: → Sensitivity of fluvial flood risk to climate change is assessed for irish catchments. → Impact of climate change is not as great for flood peaks with smaller return periods. → Flood peaks are significantly less sensitive to PET than to rainfall scenarios. → A progressive increase in the peak flow for irish river catchment when

  19. Sensitivity of water scarcity events to ENSO driven climate variability at the global scale

    OpenAIRE

    T. I. E. Veldkamp; Eisner, S.; Wada, Y.; J. C. J. H. Aerts; P. J. Ward

    2015-01-01

    Globally, freshwater shortage is one of the most important risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and in some regions climate change However, less attention has been paid to the impacts of climate variability on water scarcit...

  20. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii.

    Science.gov (United States)

    Royer, Dana L; McElwain, Jennifer C; Adams, Jonathan M; Wilf, Peter

    2008-01-01

    * Variation in the size and shape (physiognomy) of leaves has long been correlated to climate, and paleobotanists have used these correlations to reconstruct paleo-climate. Most studies focus on site-level means of largely nonoverlapping species sets. The sensitivity of leaf shape to climate within species is poorly known, which limits our general understanding of leaf-climate relationships and the value of intraspecific patterns for paleoclimate reconstructions. * The leaf physiognomy of two species whose native North American ranges span large climatic gradients (Acer rubrum and Quercus kelloggii) was quantified and correlated to mean annual temperature (MAT). Quercus kelloggii was sampled across a wide elevation range, but A. rubrum was sampled in strictly lowland areas. * Within A. rubrum, leaf shape correlates with MAT in a manner that is largely consistent with previous site-level studies; leaves from cold climates are toothier and more highly dissected. By contrast, Q. kelloggii is largely insensitive to MAT; instead, windy conditions with ample plant-available water may explain the preponderance of small teeth at high elevation sites, independent of MAT. * This study highlights the strong correspondence between leaf form and climate within some species, and demonstrates that intraspecific patterns may contribute useful information towards reconstructing paleoclimate. PMID:18507771

  1. Climate sensitivity to tropical land surface changes with coupled versus prescribed SSTs

    Energy Technology Data Exchange (ETDEWEB)

    Voldoire, Aurore; Royer, Jean-Francois [CNRM/GMGEC/UDC, Meteo-France, Toulouse Cedex 1 (France)

    2005-06-01

    Tropical land cover change experiments with fixed sea-surface temperatures (SSTs) and with an interactive ocean are compared to assess the relevance of including the ocean system in sensitivity studies to land surface conditions. The results show that the local response to deforestation is similar with fixed and simulated SSTs. Over Amazonia, all experiments simulate a comparable decrease in precipitation and no change in moisture convergence, implying that there is only a change in local water recycling. Over Africa, the impact on precipitation is not identical for all experiments; however, the signal is smaller than over Amazonia and simulations of more than 50 years would be necessary to statistically discriminate the precipitation change. We observe small but significant changes in SSTs in the coupled simulation in the tropical oceans surrounding the deforested regions. Impacts on mid and high latitudes SSTs are also possible. As remote impacts to deforestation are weak, it has not been possible to establish possible oceanic feedbacks to the atmosphere. Overall, this study indicates that the oceanic feedback to land surface sensitivity studies is of second importance, and that the inclusion of the oceanic system will require ensembles of long climate simulations to properly take into account the low frequency variability of the ocean. (orig.)

  2. Regionalization of climate model results for the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Kauker, F.

    1999-07-01

    A dynamical downscaling is presented that allows an estimation of potential effects of climate change on the North Sea. Therefore, the ocean general circulation model OPYC is adapted for application on a shelf by adding a lateral boundary formulation and a tide model. In this set-up the model is forced, first, with data from the ECMWF reanalysis for model validation and the study of the natural variability, and, second, with data from climate change experiments to estimate the effects of climate change on the North Sea. (orig.)

  3. Seismic hazard analysis. Application of methodology, results, and sensitivity studies

    International Nuclear Information System (INIS)

    As part of the Site Specific Spectra Project, this report seeks to identify the sources of and minimize uncertainty in estimates of seismic hazards in the Eastern United States. Findings are being used by the Nuclear Regulatory Commission to develop a synthesis among various methods that can be used in evaluating seismic hazard at the various plants in the Eastern United States. In this volume, one of a five-volume series, we discuss the application of the probabilistic approach using expert opinion. The seismic hazard is developed at nine sites in the Central and Northeastern United States, and both individual experts' and synthesis results are obtained. We also discuss and evaluate the ground motion models used to develop the seismic hazard at the various sites, analyzing extensive sensitivity studies to determine the important parameters and the significance of uncertainty in them. Comparisons are made between probabilistic and real spectra for a number of Eastern earthquakes. The uncertainty in the real spectra is examined as a function of the key earthquake source parameters. In our opinion, the single most important conclusion of this study is that the use of expert opinion to supplement the sparse data available on Eastern United States earthquakes is a viable approach for determining estimated seismic hazard in this region of the country. (author)

  4. The environmentally sensitive index patch applied to MEDALUS climate quality index

    Science.gov (United States)

    Duro, A.; Piccione, V.; Ragusa, M. A.; Veneziano, V.

    2016-06-01

    The authors continue testing the Environmentally Sensitive Index Patch - ESPI -to the whole region of Sicily for a comprehensive interpretation of the sensitivity of the areas to desertification under the Protocol MEDALUS (MEditerranean Desertification Areas and Land USe). They apply the index ESPI to three scenarios - to the first half of the twentieth century, the second half of the twentieth, the twenty-first century and to their three respective indices of Quality Climate. From the application of ESPI the authors deduce that the improvement of sensitivity to desertification in Sicily, between the first and second half of the last century, is not due to the climate constant deteriorates between the three periods analyzed.

  5. Transformational Leadership and Group Climate : empirical Results from Symphony Orchestras

    OpenAIRE

    Boerner, Sabine; Streit, Christian von

    2005-01-01

    The study investigates the degree to which the conductor s transformational leadership style and a cooperative climate in the orchestra favorably effect the orchestra s artistic quality. The authors study the assertion that the conductor s transformational leadership style promotes the orchestra s artistic quality only if there is a cooperative climate in the orchestra. An empirical study of 208 musicians from 22 professional German symphony orchestras confirms the assumed interaction effect...

  6. Potential Sensitivity of Québec's Breeding Birds to Climate Change

    Directory of Open Access Journals (Sweden)

    Jean-Luc DesGranges

    2010-12-01

    Full Text Available We examined the relationship between climatic factors and the distribution of breeding birds in southern Québec, Canada to identify the species whose distribution renders them potentially sensitive to climate change in the study area. We determined the degree of association between the distribution of 65 breeding bird species (601 presence-absence squares of the Atlas of the Breeding Birds of Québec and climate variables (212 climatological stations in operation for at least 20 years over the period 1953-1984 by statistically correcting for the effects of several factors that are correlated with bird distribution. Factors considered were the nature and scale of land cover patterns that included vegetation types and landscape characterization, geographical coordinates, and elevation. Canonical Correspondence Analysis (CCA was used to investigate the effect of climatic variables on breeding bird distribution. Independent variables accounted for a total of 29.1% of the variation in the species matrix. A very large portion of the variance explained by climate variables was shared with spatial variables, reflecting the relationships among latitude, longitude, elevation, and climate. After correcting for the effect of land cover variables, climatic variables still explained 11.4% of the variation in the species matrix, with temperature, i.e., warmer summers and milder winters, having a greater influence than precipitation, i.e., wetter summers. Of the 65 species, 14 appeared to be particularly climate-sensitive. Eight are insectivorous neotropical migrants and six species are at the northern limit of their range in the study area. The opposite is largely true for the eight others; they are practically absent from the southern part of the study area, except for the Dark-eyed Junco (Junco hyemalis, which is widespread there. The White-breasted Nuthatch (Sitta carolinensis is the only resident species that seemed responsive to climatic variables, i

  7. Sensitivity of the climate simulations to update of Plant Functional Type distributions

    Science.gov (United States)

    Georgievski, Goran; Hagemann, Stefan; Khlystova, Iryna

    2015-04-01

    In the frame of the European Space Agency (ESA) Climate Change Initiative (CCI), a new global land cover (LC) data set is produced. Land cover is classified as one of Essential Climate Variables (ECV), and defined as the physical material at the surface of the earth (for example: trees, grass, bare soil, water). The ESA-CCI-LC product complies with the United Nations Land Cover Classification Scheme (UNLCCS). However, the UNLCCS set of rules is not suitable for climate modelling. Therefore, ESA-CCI-LC categorical classes need to be converted to model specific plant functional types (PFT) distributions. Here we present a conversion method of ESA-CCI-LC classes to PFT fractions and the impact of the new PFT distributions to climate simulations using the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) and its land surface component (JSBACH). The main features of the updated PFT distributions are less trees and more herbaceous types. We conducted SST driven climate simulations with MPI-ESM and offline JSBACH simulations driven by WATCH forcing data based on ERA-Interim (WFDEI) at T63 resolution. These simulations are evaluated for the 1981-2010 period. Sensitivities of the hydrological, energy and carbon cycles are investigated. The following variables are compared between simulations with the new ESA-CCI-LC and the old reference PFT distributions: (i) evapotranspiration and runoff as an indicator of changes in hydrological cycle, (ii) temperature and albedo as an indicator of energy cycle and (iii) gross primary production (GPP) as an indicator of carbon cycle sensitivity. First results indicate increased annual mean albedo in northern extra tropical latitudes and therefore cooling at those latitudes. Furthermore, the annual cycle of albedo is in better agreement with satellite observation (GLOBALBEDO-DHR and GLOBALBEDO-BHR). GPP is slightly decreased in the annual mean, while evapotranspiration shows slight increase in southern tropical latitudes

  8. Use of traditional medicines to cope with climate-sensitive diseases in a resource poor setting in Bangladesh

    OpenAIRE

    Haque, Md Aminul; Louis, Valérie R; Phalkey, Revati; Sauerborn, Rainer

    2014-01-01

    Background This study aims to explore the use of traditional medicines to cope with climate sensitive diseases in areas vulnerable to climate change. We assessed the extent to which traditional or alternative medicines were used for the treatment of the climate sensitive diseases by villagers as part of their health-coping strategies. Methods The study deployed a mixed-method research design to know the health-coping strategies of the people in a resource-poor setting. A cross sectional study...

  9. On the state-dependency of the equilibrium climate sensitivity during the last 5 million years

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2015-07-01

    Full Text Available A still open question is how equilibrium warming in response to increasing radiative forcing – the specific equilibrium climate sensitivity S – is depending on background climate. We here present paleo-data based evidence on the state-dependency of S, by using CO2 proxy data together with 3-D ice-sheet model-based reconstruction of land ice albedo over the last 5 million years (Myr. We find that the land-ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity was in similar approaches not accounted for due to previously more simplistic approximations of land-ice albedo radiative forcing being a linear function of sea level change. Important for the non-linearity between land-ice albedo and sea level is a latitudinal dependency in ice sheet area changes.In our setup, in which the radiative forcing of CO2 and of the land-ice albedo (LI is combined, we find a state-dependency in the calculated specific equilibrium climate sensitivity S[CO2,LI] for most of the Pleistocene (last 2.1 Myr. During Pleistocene intermediate glaciated climates and interglacial periods S[CO2,LI] is on average ∼ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6–5 Myr BP the CO2 data uncertainties prevents a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land-ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP the specific equilibrium climate sensitivity S[CO2,LI] was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state-change in the climate system with the wide appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land-ice albedo radiative forcing, which is important for similar paleo data-based approaches to

  10. Luminescence sensitivity changes in quartz as a result of annealing

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Agersnap Larsen, N.; Mejdahl, V.;

    1995-01-01

    Retrospective dosimetry using optically stimulated luminescence (OSL) on quartz extracted from (for example) bricks needs to account for strong OSL sensitivity changes that are known to occur depending on the previous thermal treatment of the sample. Non-heated quartz exhibits OSL orders of magni......Retrospective dosimetry using optically stimulated luminescence (OSL) on quartz extracted from (for example) bricks needs to account for strong OSL sensitivity changes that are known to occur depending on the previous thermal treatment of the sample. Non-heated quartz exhibits OSL orders...... of magnitude less per unit radiation than that for heated material. The reason these temperature-induced sensitivity changes occur in quartz is presently not well understood. This phenomenon is also seen in the related area of luminescence dating in which sedimentary quartz and quartz from heated...

  11. Global and Regional Climate Responses Solar Radiation Management: Results from a climateprediction.net Geoengineering Experiment

    Science.gov (United States)

    Ricke, Katharine; Allen, Myles; Ingram, William; Keith, David; Granger Morgan, M.

    2010-05-01

    To date modeling studies suggest that, while significant hydrological anomalies could result from the artificial addition of reflecting aerosols in the stratosphere for the purpose of solar radiation management (SRM), even at the regional level such a geoengineered world would bear a much closer resemblance to a low CO2 world, than to an unmodified high CO2 world. These previous modeling studies have generally compared one or two SRM forcing scenarios to various business-as-usual controls. However, such approaches cannot provide much information about regional sensitivities to the levels of SRM that might realistically result. Should engaging in SRM every be seriously contemplated, such regional analysis of a range of realistic scenarios will be an essential input to any process of geopolitical decision-making. Here we present the results from a large-ensemble experiment that used the HadCM3L GCM, implemented through climateprediction.net. The analysis examines 135 globally-uniform stratospheric optical depth modification scenarios designed to stabilize global temperatures under SRES A1B. Scenarios were tested using ten-member subensembles which made small perturbations to initial conditions. All simulations use identical standard settings of model physics parameters and are initiated from historically-forced runs from 1920-2005. A total of 7,331 simulations of the years 2000-2080 were performed for this experiment using computing resources donated by the general public. Our analysis of regional temperature and precipitation anomalies, normalized to account for variability, shows that SRM compensations for anthropogenic greenhouse gas forcing do generally return regional climates closer to their baseline climate states than the no-geoengineering, business-as-usual scenarios. However, we find that the magnitudes and sensitivities of regional responses to this type of activity, as modeled in HadCM3L, are highly variable. As the amount of SRM increases to compensate

  12. Periglacial shallow lakes offer information about climate change. Preliminary results, King George Island

    International Nuclear Information System (INIS)

    South Shetland Islands (northern Antarctic Peninsula) represent one of the worlds areas most affected by the retreat of glaciers due to global warming. As pointed by Ingolfsson, during the last 100 years the climatic development in the western Antarctic Peninsula region has moved from a relatively cold regime to an increasingly warm regime. A large number of evidences indicate that melt water and sediment transport have increased during the past 50 years.The King George Island (KGI) ice cap, its high sensitivity to climate changes, thermal regime, ablation rates, distribution, etc. and its relation with the relative sea level, have been deeply studied and this behavior is generally extensive to the South Shetland Islands ice caps. However, there are not many recent dating studies in this area. Radiometric dating is the main way to quantify (retrospectively) the rates of various geo-hydro environmental processes of interest and further work is necessary to constrain timescales of these processes affected by recent climate changes. The few available dating studies of lacustrine sediments are restricted to lakes of sufficient size and depth, which are not widespread and have a very uneven spatial distribution. On the other hand, there are many small shallow peri glacial lagoons having a better spatial distribution, especially with respect to the fronts of receding glaciers. These lagoons are typically discarded for recent dating studies, due to a number of technical reasons. In this paper, for the first time, we present the preliminary results of a recent radiometric dating (210Pb and 137Cs) from a peri glacial shallow lagoon on Fildes Peninsula (KGI) and discuss the results in the context of the local geology and climatic conditions during the last century.The lagoon is located near the Collins Glacier retreat border and the results indicates that besides the upper sediment layers may be frozen during winter time, the stratigraphic information is still preserved and

  13. The climate regime: Results, causes and the role of Norway

    International Nuclear Information System (INIS)

    About a decade after the Climate Convention, little has been achieved to solve this problem. It is stressed, however, that our knowledge of the problem has increased and today few serious actors would deny the existence of the problem. National and international institutions to deal with it are being established. The main reason why the problem remains unsolved is that it is so much more difficult than most other environmental problems. The political will and ability to handle it has been limited. In the countries that do have reduced emissions, this is mostly not due to climate considerations. Norway is quite representative for many OECD countries. Although they were high in the beginning, ambitions have been reduced over time and are characterized by economical pragmatism rather than high environmental ideals. Norway has implemented more measures than many comparable nations, but this does not substantially reduce the emission of climate gases from the oil- and gas-producing nation Norway

  14. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  15. Measurement results of PCM climate ceilings; Meetresultaten PCM-klimaatplafonds

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, H. [Autarkis, Almere (Netherlands)

    2012-03-15

    The 'universal climate machine' is able to air-condition a building endlessly by itself through self-regulatory control. This is a PCM climate ceiling (PCM refers to Phase Change Materials) in which heat exchange takes place through radiation and free convection, but also through forced convection. [Dutch] De 'universele klimaatmachine' kan zelfregelend een gebouw eindeloos autarkisch klimatiseren. Het gaat hier om een PCM-klimaatplafond (PCM staat voor Phase Change Materials) waarbij de warmteoverdracht plaatsvindt door straling en vrije convectie, maar ook door gedwongen convectie.

  16. Stability and climate sensitivity of seasonal sea ice: a theoretical framework.

    Science.gov (United States)

    Deweaver, E. T.

    2006-12-01

    A simple "toy" model is devised to study the stability and climate sensitivity of oceanic regions which are sea- ice covered in winter but ice free in summer. The premise of the model is that the rates of ice freezing and melting and ice-free mixed layer warming and cooling are determined by external climate forcing, independently of the lengths of the seasons. The system adjusts to changes in external climate forcing through changes in the lengths of the freezing, melting, cooling, and warming seasons. We first examine the stability of the seasonal ice states with respect to perturbations in the start dates of the seasons. Stability can be assessed by considering the ratio of the freezing rate to the melting rate or the ratio of the mixed layer warming and cooling rates. More simply, stability can be assessed by comparing the durations of the freezing and melting seasons or the durations of the warming and cooling seasons. Roughly speaking, the seasonal ice climate is stable if the ice "wants" to melt but the mixed layer "wants" to freeze. To examine the sensitivity of the seasonal ice climate to changes in external climate forcing we construct a 4- by-4 matrix which can be solved for the lengths of the four seasons. The matrix then is reduced to two equations for the lengths of the ice freezing and mixed layer cooling seasons. The lengths of the freezing and cooling seasons can be represented by the intersection of the lines representing the two equations. When the system is stable with respect to initial conditions, a shift to warmer climate forcing causes the intersection of the two lines to move upward and to the left, signifying a transition to a longer ice-free cooling season and a shorter ice-covered freezing season. Finally, we compare the climate sensitivity of two versions of the toy model, one in which the rates are determined entirely by external climate forcing and one in which the lengths of the seasons can influence the rates (a nonlinear

  17. Sensitivity of marine systems to climate and fishing: Concepts, issues and management responses

    DEFF Research Database (Denmark)

    Perry, Ian; Cury, Philippe; Brander, Keith;

    2010-01-01

    but will be manifest as the accumulation of the interactions between fishing and climate variability — unless threshold limits are exceeded. Marine resource managers need to develop approaches which maintain the resilience of individuals, populations, communities and ecosystems to the combined and interacting effects......Modern fisheries research and management must understand and take account of the interactions between climate and fishing, rather than try to disentangle their effects and address each separately. These interactions are significant drivers of change in exploited marine systems and have...... classes, spatial contraction, loss of sub-units, and alteration of life history traits in populations, making them more sensitive to climate variability at interannual to interdecadal scales. Fishing reduces the mean size of individuals and mean trophic level of communities, decreasing their turnover time...

  18. Assessing flood risk at the global scale: model setup, results, and sensitivity

    International Nuclear Information System (INIS)

    Globally, economic losses from flooding exceeded $19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP ($1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures. (letter)

  19. Modelled mass balance of Xibu glacier, Tibetan Plateau: sensitivity to climate change

    OpenAIRE

    Caidong, Caidong; Sorteberg, Asgeir

    2010-01-01

    Due to a lack of in situ measurements, model-based studies of glacier mass balance in the Tibetan Plateau are very limited. An energy-balance model is applied to analyse the mass-balance sensitivity of Xibu glacier, in the Nyainqêntanglha mountain range, to climatic change. A sensitivity calculation shows that a temperature change of ±1°C or a precipitation change of ±35% changes the equilibrium-line altitude (ELA) by 140±125 m. We use a clustering method to link local weather parameter...

  20. Impact of anticipated climate change on recovery from acidification of an acid-sensitive forested catchment

    Czech Academy of Sciences Publication Activity Database

    Hruška, Jakub; Lamačová, Anna; Oulehle, Filip; Krám, Pavel; Farda, Aleš; Chuman, Tomáš

    Volume 1. 1. Brno: Global Change Research Centre, Academy of Sciences of the Czech Republic, v. v. i, 2015 - (Urban, O.; Klem, K.), s. 150-162 ISBN 978-80-87902-14-1 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : climate change * acid-sensitive forested * stream- water chemistry * forest management Subject RIV: EH - Ecology, Behaviour

  1. Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change

    OpenAIRE

    Bohn, T. J; Lettenmaier, D. P.; Sathulur, K.; Bowling, L. C.; Podest, E.; K. C. McDonald; Friborg, T.

    2007-01-01

    The prediction of methane emissions from high-latitude wetlands is important given concerns about their sensitivity to a warming climate. As a basis for the prediction of wetland methane emissions at regional scales, we coupled the variable infiltration capacity macroscale hydrological model (VIC) with the biosphere–energy-transfer–hydrology terrestrial ecosystem model (BETHY) and a wetland methane emissions model to make large-scale estimates of methane emissions as a function of soil temper...

  2. Tropical interannual variability in a global coupled GCM: Sensitivity to mean climate state

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A.M. [Bureau of Meterology Research Centre, Melbourne, Victoria (Australia)

    1995-04-01

    A global coupled ocean-atmosphere-sea ice general circulation model is used to study interannual variability in the Tropics. Flux correction is used to control the mean climate of the coupled system, and in one configuration of the coupled model, interannual variability in the tropical Pacific is dominated by westward moving anomalies. Through a series of experiments in which the equatorial ocean wave speeds and ocean-atmosphere coupling strength are varied, it is demonstrated that these westward moving disturbances are probably some manifestation of what Neelin describes as an {open_quotes}SST mode.{close_quotes} By modifying the flux correction procedure, the mean climate of the coupled model can be changed. A fairly modest change in the mean climate is all that is required to excite eastward moving anomalies in place of the westward moving SST modes found previously. The apparent sensitivity of the nature of tropical interannual variability to the mean climate state in a coupled general circulation model such as that used here suggests that caution is advisable if we try to use such models to answer questions relating to changes in ENSO-like variability associated with global climate change. 41 refs., 23 figs., 1 tab.

  3. Sensitivity properties of a biosphere model based on BATS and a statistical-dynamical climate model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T. (Yale Univ., New Haven, CT (United States))

    1994-06-01

    A biosphere model based on the Biosphere-Atmosphere Transfer Scheme (BATS) and the Saltzman-Vernekar (SV) statistical-dynamical climate model is developed. Some equations of BATS are adopted either intact or with modifications, some are conceptually modified, and still others are replaced with equations of the SV model. The model is designed so that it can be run independently as long as the parameters related to the physiology and physiognomy of the vegetation, the atmospheric conditions, solar radiation, and soil conditions are given. With this stand-alone biosphere model, a series of sensitivity investigations, particularly the model sensitivity to fractional area of vegetation cover, soil surface water availability, and solar radiation for different types of vegetation, were conducted as a first step. These numerical experiments indicate that the presence of a vegetation cover greatly enhances the exchanges of momentum, water vapor, and energy between the atmosphere and the surface of the earth. An interesting result is that a dense and thick vegetation cover tends to serve as an environment conditioner or, more specifically, a thermostat and a humidistat, since the soil surface temperature, foliage temperature, and temperature and vapor pressure of air within the foliage are practically insensitive to variation of soil surface water availability and even solar radiation within a wide range. An attempt is also made to simulate the gradual deterioration of environment accompanying gradual degradation of a tropical forest to grasslands. Comparison with field data shows that this model can realistically simulate the land surface processes involving biospheric variations. 46 refs., 10 figs., 6 tabs.

  4. Sensitivity of inferred climate model skill to evaluation decisions: a case study using CMIP5 evapotranspiration

    International Nuclear Information System (INIS)

    Confrontation of climate models with observationally-based reference datasets is widespread and integral to model development. These comparisons yield skill metrics quantifying the mismatch between simulated and reference values and also involve analyst choices, or meta-parameters, in structuring the analysis. Here, we systematically vary five such meta-parameters (reference dataset, spatial resolution, regridding approach, land mask, and time period) in evaluating evapotranspiration (ET) from eight CMIP5 models in a factorial design that yields 68 700 intercomparisons. The results show that while model–data comparisons can provide some feedback on overall model performance, model ranks are ambiguous and inferred model skill and rank are highly sensitive to the choice of meta-parameters for all models. This suggests that model skill and rank are best represented probabilistically rather than as scalar values. For this case study, the choice of reference dataset is found to have a dominant influence on inferred model skill, even larger than the choice of model itself. This is primarily due to large differences between reference datasets, indicating that further work in developing a community-accepted standard ET reference dataset is crucial in order to decrease ambiguity in model skill. (letter)

  5. Climate of the last glacial maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model

    Directory of Open Access Journals (Sweden)

    D. M. Roche

    2006-11-01

    Full Text Available The Last Glacial Maximum climate is one of the classic benchmarks used both to test the ability of coupled models to simulate climates different from that ot the present-day and to better understand the possible range of mechanisms that could be involved in future climate change. It also bears the advantage of being one of the most well documented periods with respect to palaeoclimatic records, allowing a thorough data-model comparison. We present here an ensemble of Last Glacial Maximum climate simulations obtained with the Earth System model LOVECLIM, including coupled dynamic atmosphere, ocean and vegetation components. The climate obtained using standard parameter values is then compared to available proxy data for the surface ocean, vegetation, oceanic circulation and atmospheric conditions. Interestingly, the oceanic circulation obtained resembles that of the present-day, but with increased overturning rates. As this result is in contradiction with the "classic" palaeoceanographic view, we ran a range of sensitivity experiments to explore the response of the model and the possibilities for other oceanic circulation states. After a critical review of our LGM state with respect to available proxy data, we conclude that the balance between water masses obtained is consistent with the available data although the specific characteristics (temperature, salinity are not in full agreement. The consistency of the simulated state is further reinforced by the fact that the mean surface climate obtained is shown to be generally in agreement with the most recent reconstructions of vegetation and sea surface temperatures, even at regional scales.

  6. Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model

    Directory of Open Access Journals (Sweden)

    D. M. Roche

    2007-01-01

    Full Text Available The Last Glacial Maximum climate is one of the classical benchmarks used both to test the ability of coupled models to simulate climates different from that of the present-day and to better understand the possible range of mechanisms that could be involved in future climate change. It also bears the advantage of being one of the most well documented periods with respect to palaeoclimatic records, allowing a thorough data-model comparison. We present here an ensemble of Last Glacial Maximum climate simulations obtained with the Earth System model LOVECLIM, including coupled dynamic atmosphere, ocean and vegetation components. The climate obtained using standard parameter values is then compared to available proxy data for the surface ocean, vegetation, oceanic circulation and atmospheric conditions. Interestingly, the oceanic circulation obtained resembles that of the present-day, but with increased overturning rates. As this result is in contradiction with the current palaeoceanographic view, we ran a range of sensitivity experiments to explore the response of the model and the possibilities for other oceanic circulation states. After a critical review of our LGM state with respect to available proxy data, we conclude that the oceanic circulation obtained is not inconsistent with ocean circulation proxy data, although the water characteristics (temperature, salinity are not in full agreement with water mass proxy data. The consistency of the simulated state is further reinforced by the fact that the mean surface climate obtained is shown to be generally in agreement with the most recent reconstructions of vegetation and sea surface temperatures, even at regional scales.

  7. Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale

    OpenAIRE

    T. I. E. Veldkamp; S. Eisner; Wada, Y.; J. C. J. H. Aerts; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño–Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales,...

  8. Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale

    OpenAIRE

    T. I. E. Veldkamp; S. Eisner; Wada, Y.; J. C. J. H. Aerts; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño–Southern Oscillation (ENSO) affects patterns of precipitation and drought at global ...

  9. Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The impacts of the spatiotemporal variations of sea ice salinity on sea ice and ocean characteristics have not been studied in detail, as the existing climate models neglect or misrepresent this process. To address this issue, this paper formulated a parameterization with more realistic sea ice salinity budget, and examined the sensitivity of sea ice and ocean simulations to the ice salinity variations and associated salt flux into the ocean using a coupled global climate model. Results show that the inclusion of such a parameterization leads to an increase and thickening of sea ice in the Eurasian Arctic and within the ice pack in the Antarctic circumpolar region, and a weakening of the North Atlantic Deep Water and a strengthening of the Antarctic Bottom Water. The atmospheric responses associated with the ice changes were also discussed.

  10. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  11. Vulnerability of sandy coasts to climate change and anthropic pressures: methodology and preliminary results

    Science.gov (United States)

    Idier, D.; Poumadère, M.; Vinchon, C.; Romieu, E.; Oliveros, C.

    2009-04-01

    the few prediction of wave conditions available for the future deal mainly with the significant wave height, and not so much with the wave direction or period. To compensate this lack of knowledge, a sensitivity study is done to get information on the possible changes within the next decades (2030). It consists in studying the influence of a modification in the characteristics of the present day forcing conditions(like waves) within a reasonable magnitude order. 4) The anthropic pressure is taken into account as a modulator of the physical vulnerability. In each context, participative techniques are used to involve representatives of the main stakeholder groups into decision-making simulations. The scenario of a storm in 2030 is adopted to provide structured interactions during the workshop. Along with socio-economic projections, this simulation relies upon a fictive journal article written on the basis of the model outputs. These methodological choices aim at better understanding how decisions are made by stake holders dealing with risks and scientific uncertainty. Some applied results on the study sites will be presented at the EGU. ACKNOWLEDGEMENTS The VULSACO project is financially supported by the ANR (French National Research Agency) within the Vulnérabilité-Milieux-Climat programm.

  12. Assessing confidence in management adaptation approaches for climate-sensitive ecosystems

    International Nuclear Information System (INIS)

    A number of options are available for adapting ecosystem management to improve resilience in the face of climatic changes. However, uncertainty exists as to the effectiveness of these options. A report prepared for the US Climate Change Science Program reviewed adaptation options for a range of federally managed systems in the United States. The report included a qualitative uncertainty analysis of conceptual approaches to adaptation derived from the review. The approaches included reducing anthropogenic stressors, protecting key ecosystem features, maintaining representation, replicating, restoring, identifying refugia and relocating organisms. The results showed that the expert teams had the greatest scientific confidence in adaptation options that reduce anthropogenic stresses. Confidence in other approaches was lower because of gaps in understanding of ecosystem function, climate change impacts on ecosystems, and management effectiveness. This letter discusses insights gained from the confidence exercise and proposes strategies for improving future assessments of confidence for management adaptations to climate change. (letter)

  13. Diagnosing streamflow trends to understand ecohydrologic sensitivity and feedbacks to climate change in the mountain west

    Science.gov (United States)

    Luce, C.

    2010-12-01

    Shifts in climate may have negative consequences to forest vegetation in the mountains of the western U.S. Given our knowledge of the effects of land management on the hydrologic cycle, there is an expectation for feedbacks to streamflow from vegetation changes as well. Several recent papers reveal historical streamflow declines and increases in interannual variability in the western U.S. Although uncertainty in precipitation representation in GCM's makes the direct connection between streamflow changes and anthropogenic greenhouse gas accumulation unclear, we can gain insights about sensitivity of the ecohydroclimatic system to change by looking more carefully at the declines of the last half-century and their connection to other trends. One theory is that streaflow declines result from increased evapotranspiration caused by increased forest stocking and warmer air temperatures. The relative contribution of transpiration increases versus precipitation decreases is important, because it indicates the degree to which vegetation feedbacks could ameliorate declining streamflows. The distinction is also critical because precipitation trends may reverse while temperature trends are not expected to. Consideration of theoretical and empirical relationships from the Budyko curve and decades of small watershed experiments would suggest that if increased evaporative demand is driving observed streamflow declines, we should expect the greatest declines in wet years. Examination of the trends in dry years versus wet years across 43 stations in the Pacific Northwest, however, suggests that evapotranspiration changes may be small relative to precipitation driven changes. These results are confirmed with observations from a large paired basin with major vegetation changes from wildfire. Contrasting these results with precipitation observations across the region, however, raises difficult questions, including the potential need for more detailed screening for non-stationarity from

  14. Agricultural vulnerability over the Chinese Loess Plateau in response to climate change: Exposure, sensitivity, and adaptive capacity.

    Science.gov (United States)

    Li, Xueling; Philp, Joshua; Cremades, Roger; Roberts, Anna; He, Liang; Li, Longhui; Yu, Qiang

    2016-04-01

    Understanding how the vulnerability of agricultural production to climate change can differ spatially has practical significance to sustainable management of agricultural systems worldwide. Accordingly, this study developed a conceptual framework to assess the agricultural vulnerability of 243 rural counties on the Chinese Loess Plateau. Indicators representing the climate/agriculture interface were selected to describe exposure and sensitivity, while stocks of certain capitals were used to describe adaptive capacity. A vulnerability index for each county was calculated and the spatial distribution was mapped. Results showed that exposure, sensitivity, and adaptive capacity occur independently, with most contributing indicator values concentrated in a narrow range after normalization. Within the 49 most vulnerable counties, which together encompass 81 % of the vulnerability index range, 42 were characterized by high exposure and sensitivity but low adaptive capacity. The most vulnerable area was found to be located in the central northeast-southwest belt of Loess Plateau. Adaptation measures for both ecological restoration and economic development are needed and potential adaptation options need further investigation. PMID:26563383

  15. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project

    Directory of Open Access Journals (Sweden)

    A. M. Haywood

    2012-07-01

    Full Text Available Climate and environments of the mid-Pliocene Warm Period (3.264 to 3.025 Ma have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a co-ordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights the potential for models to underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Sensitivity tests exploring the "known unknowns" in modelling Pliocene climate specifically relevant to the high-latitudes are also essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses. Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS, suggest that ESS is greater than Climate Sensitivity (CS, and that the ratio of ESS to CS is between 1 and 2, with a best estimate of 1.5.

  16. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project

    Directory of Open Access Journals (Sweden)

    A. M. Haywood

    2013-01-01

    Full Text Available Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses. Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS, support previous work suggesting that ESS is greater than Climate Sensitivity (CS, and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.

  17. Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem

    Science.gov (United States)

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Romanovsky, V.E.

    2011-01-01

    In the boreal region, soil organic carbon (OC) dynamics are strongly governed by the interaction between wildfire and permafrost. Using a combination of field measurements, numerical modeling of soil thermal dynamics, and mass-balance modeling of OC dynamics, we tested the sensitivity of soil OC storage to a suite of individual climate factors (air temperature, soil moisture, and snow depth) and fire severity. We also conducted sensitivity analyses to explore the combined effects of fire-soil moisture interactions and snow seasonality on OC storage. OC losses were calculated as the difference in OC stocks after three fire cycles (???500 yr) following a prescribed step-change in climate and/or fire. Across single-factor scenarios, our findings indicate that warmer air temperatures resulted in the largest relative soil OC losses (???5.3 kg C mg-2), whereas dry soil conditions alone (in the absence of wildfire) resulted in the smallest carbon losses (???0.1 kg C mg-2). Increased fire severity resulted in carbon loss of ???3.3 kg C mg-2, whereas changes in snow depth resulted in smaller OC losses (2.1-2.2 kg C mg-2). Across multiple climate factors, we observed larger OC losses than for single-factor scenarios. For instance, high fire severity regime associated with warmer and drier conditions resulted in OC losses of ???6.1 kg C mg-2, whereas a low fire severity regime associated with warmer and wetter conditions resulted in OC losses of ???5.6 kg C mg-2. A longer snow-free season associated with future warming resulted in OC losses of ???5.4 kg C mg-2. Soil climate was the dominant control on soil OC loss, governing the sensitivity of microbial decomposers to fluctuations in temperature and soil moisture; this control, in turn, is governed by interannual changes in active layer depth. Transitional responses of the active layer depth to fire regimes also contributed to OC losses, primarily by determining the proportion of OC into frozen and unfrozen soil layers

  18. Sensitivity of the reference evapotranspiration to key climatic variables during the growing season in the Ejina oasis northwest China

    OpenAIRE

    Hou, Lan-gong; Zou, Song-bing; Xiao, Hong-lang; Yang, Yong-Gang

    2013-01-01

    The standardized FAO56 Penman-Monteith model, which has been the most reasonable method in both humid and arid climatic conditions, provides reference evapotranspiration (ETo) estimates for planning and efficient use of agricultural water resources. And sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration. In this study, a non-dimensional relative sensitivity coefficient was employed to predict respon...

  19. New Distributional Data of Butterflies in the Middle of the Mediterranean Basin: An Area Very Sensitive to Expected Climate Change

    OpenAIRE

    Stefano Scalercio

    2014-01-01

    Butterflies are known to be very sensitive to environmental changes. Species distribution is modified by climate warming with latitudinal and altitudinal range shifts, but also environmental perturbations modify abundance and species composition of communities. Changes can be detected and described when large datasets are available, but unfortunately only for few Mediterranean countries they were created. The butterfly fauna of the Mediterranean Basin is very sensitive to climate warming and ...

  20. Prospects for climate change on three Polynesian outliers in Solomon Islands: Exposure, sensitivity and adaptive capacity

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; May, Wilhelm; Birk, Thomas Ladegaard Kümmel;

    2011-01-01

    This paper discusses future prospects for climate change, impacts and adaptation of three small islands in Solomon Islands. Based on a review of literature a climate change scenario is suggested and with point of departure in a survey of three characteristics of the islands – bio......-physical conditions, economic base and social organization – the exposure, sensitivity and adaptation options of island populations are analyzed. It is argued that the three islands are likely to be very differently affected for reasons related to all three categories of characteristics. Local adaptive capacity...... is likely to be insufficient, especially in the case of Ontong Java (which is an atoll), and economic, social, institutional and political factors, external to the islands, will be of increasing importance....

  1. Water sensitive design as a means of adaptation for climate change and urbanisation

    International Nuclear Information System (INIS)

    Full text: Full text: This presentation uses urban drainage to show how climate change impact assessments should also consider changes in resource management, land-use and technology. Although the work was carried out in Sweden (Semadeni-Davies 2004; 2007 a, b), the findings are relevant for Australia and New Zealand as these countries are currently moving away from pipe stormwater networks towards open water systems. Urban areas are characterised by high peak flows and fast response times. A central issue here is that there has been a paradigm shift in urban water management, particularly in new developments where the stormwater system is fast becoming a landscape feature. The shift is part of a worldwide trend called water sensitive design (WSD) or low impact design (LID). Ponds, wetlands, infiltration trenches, and porous paving are common examples of WSD elements intended to reduce peak stormwater and contaminant transport while maintaining low flows. Even in city centres where land values are at a premium, there has been an interest in retro-fitting for WSD. It is important for those interested in the impacts of climate change on urban areas to know this background information, as WSD may offer a means of adapting to climate change. However, there is a major stumbling block - the output from regional climate models is currently not at a sufficient spatial or temporal resolution to assess theimpact on urban drainage as the processes operate on a scale of minutes and metres (Shilling 1991). The disparity in resolution is also problematic for the design of future-proofed urban water systems as this requires information on rainfall intensity and frequency. To illustrate the effect of WSD, the potential impacts of climate change and urbanisation on flow were assessed both separately and together using DHI software (MIKE SHE, MOUSE) for Helsingborg in two related studies for combined and separate sewers. The Swedish regional climate model developed at the Rossby

  2. Vulnerability and adaptation of ecologically sensitive mangrove habitats to the changing climate

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Kulkarni, V.A.; Verlekar, X.N.

    stream_size 11464 stream_content_type text/plain stream_name Proc_COMPASS_2008_15.pdf.txt stream_source_info Proc_COMPASS_2008_15.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Proceedings... of Conference on Marine Problems and Specific Solutions, COMPASS2008, June 15-18, 2008, Maldives Vulnerability and Adaptation of Ecologically Sensitive Mangrove Habitats to the Changing Climate T. G. Jagtap1, V. A. Kulkarni1, X. N. Verlekar1...

  3. Quantitative Study of Green Area for Climate Sensitive Terraced Housing Area Design in Malaysia

    Science.gov (United States)

    Yeo, O. T. S.; Saito, K.; Said, I.

    2014-02-01

    Neighbourhood plays a significant role in peoples' daily lives. Nowadays, terraced housing is common in Malaysia, and green areas in the neighborhood are not used to their maximum. The aim of the research is to quantify the types of green area that are most efficient for cooling the environment for thermal comfort and mitigation of Urban Heat Island. Spatial and environmental inputs are manipulated for the simulation using Geographic Information System (GIS) integrated with computational microclimate simulation. The outcome of this research is a climate sensitive housing environment model framework on the green area to solve the problem of Urban Heat Island.

  4. Quantitative Study of Green Area for Climate Sensitive Terraced Housing Area Design in Malaysia

    International Nuclear Information System (INIS)

    Neighbourhood plays a significant role in peoples' daily lives. Nowadays, terraced housing is common in Malaysia, and green areas in the neighborhood are not used to their maximum. The aim of the research is to quantify the types of green area that are most efficient for cooling the environment for thermal comfort and mitigation of Urban Heat Island. Spatial and environmental inputs are manipulated for the simulation using Geographic Information System (GIS) integrated with computational microclimate simulation. The outcome of this research is a climate sensitive housing environment model framework on the green area to solve the problem of Urban Heat Island

  5. Geophysical features influence the climate change sensitivity of northern Wisconsin pine and oak forests.

    Science.gov (United States)

    Tweiten, Michael A; Calcote, Randy R; Lynch, Elizabeth A; Hotchkiss, Sara C; Schuurman, Gregor W

    2015-10-01

    Landscape-scale vulnerability assessment from multiple sources, including paleoecological site histories, can inform climate change adaptation. We used an array of lake sediment pollen and charcoal records to determine how soils and landscape factors influenced the variability of forest composition change over the past 2000 years. The forests in this study are located in northwestern Wisconsin on a sandy glacial outwash plain. Soils and local climate vary across the study area. We used the Natural Resource Conservation Service's Soil Survey Geographic soil database and published fire histories to characterize differences in soils and fire history around each lake site. Individual site histories differed in two metrics of past vegetation dynamics: the extent to which white pine (Pinus strobus) increased during the Little Ice Age (LIA) climate period and the volatility in the rate of change between samples at 50-120 yr intervals. Greater increases of white pine during the LIA occurred on sites with less sandy soils (R² = 0.45, P forest compositional change and rate-of-change volatility were associated with higher fire frequency. Over longer (multi-centennial) time frames, forest composition change, especially increased white pine, shifted most in sites with more soil moisture. Our results show that responsiveness of forest composition to climate change was influenced by soils, local climate, and fire. The anticipated climatic changes in the next century will not produce the same community dynamics on the same soil types as in the past, but understanding past dynamics and relationships can help us assess how novel factors and combinations of factors in the future may influence various site types. Our results support climate change adaptation efforts to monitor and conserve the landscape's full range of geophysical features. PMID:26591463

  6. Global sensitivity analysis of the climate-vegetation system to astronomical forcing: an emulator-based approach

    Science.gov (United States)

    Bounceur, N.; Crucifix, M.; Wilkinson, R. D.

    2015-05-01

    A global sensitivity analysis is performed to describe the effects of astronomical forcing on the climate-vegetation system simulated by the model of intermediate complexity LOVECLIM in interglacial conditions. The methodology relies on the estimation of sensitivity measures, using a Gaussian process emulator as a fast surrogate of the climate model, calibrated on a set of well-chosen experiments. The outputs considered are the annual mean temperature and precipitation and the growing degree days (GDD). The experiments were run on two distinct land surface schemes to estimate the importance of vegetation feedbacks on climate variance. This analysis provides a spatial description of the variance due to the factors and their combinations, in the form of "fingerprints" obtained from the covariance indices. The results are broadly consistent with the current under-standing of Earth's climate response to the astronomical forcing. In particular, precession and obliquity are found to contribute in LOVECLIM equally to GDD in the Northern Hemisphere, and the effect of obliquity on the response of Southern Hemisphere temperature dominates precession effects. Precession dominates precipitation changes in subtropical areas. Compared to standard approaches based on a small number of simulations, the methodology presented here allows us to identify more systematically regions susceptible to experiencing rapid climate change in response to the smooth astronomical forcing change. In particular, we find that using interactive vegetation significantly enhances the expected rates of climate change, specifically in the Sahel (up to 50% precipitation change in 1000 years) and in the Canadian Arctic region (up to 3° in 1000 years). None of the tested astronomical configurations were found to induce multiple steady states, but, at low obliquity, we observed the development of an oscillatory pattern that has already been reported in LOVECLIM. Although the mathematics of the analysis are

  7. School climate, peer victimization, and academic achievement: results from a multi-informant study.

    Science.gov (United States)

    Wang, Weijun; Vaillancourt, Tracy; Brittain, Heather L; McDougall, Patricia; Krygsman, Amanda; Smith, David; Cunningham, Charles E; Haltigan, J D; Hymel, Shelley

    2014-09-01

    School-level school climate was examined in relation to self-reported peer victimization and teacher-rated academic achievement (grade point average; GPA). Participants included a sample of 1,023 fifth-grade children nested within 50 schools. Associations between peer victimization, school climate, and GPA were examined using multilevel modeling, with school climate as a contextual variable. Boys and girls reported no differences in victimization by their peers, although boys had lower GPAs than girls. Peer victimization was related to lower GPA and to a poorer perception of school climate (individual-level), which was also associated with lower GPA. Results of multilevel analyses revealed that peer victimization was again negatively associated with GPA, and that lower school-level climate was associated with lower GPA. Although no moderating effects of school-level school climate or sex were observed, the relation between peer victimization and GPA remained significant after taking into account (a) school-level climate scores, (b) individual variability in school-climate scores, and (c) several covariates--ethnicity, absenteeism, household income, parental education, percentage of minority students, type of school, and bullying perpetration. These findings underscore the importance of a positive school climate for academic success and viewing school climate as a fundamental collective school outcome. Results also speak to the importance of viewing peer victimization as being harmfully linked to students' academic performance. PMID:25198617

  8. Sensitization to Aeroallergens in Patients with Respiratory Allergies Based on Skin-Prick Test Results

    Directory of Open Access Journals (Sweden)

    G Bejtullahu

    2012-10-01

    Full Text Available Background: The aim of this study was to identify the most common aeroallergens in patients with asthma and rhinitis.Methods: The study enrolled 102 participants including 64 patients with respiratory allergies (among them 15 were clinically diagnosed as asthma patients, 41 with rhinitis, 8 were both and 38 healthy controls. All of participants were subject of skin prick tests (SPT with series of common allergenic extracts. Sera from all participants were tested for total IgE and eosinophil count. To measure airflow limitation and reversibility in asthma patients the pulmonary function testing were carried out.Results: M/F ratio was 1:1.6 in patients and 1:0.7 in control group with mean age 28.88 year (SD 13.16; range 6 – 55year and 20.47 respectively (SD 1.16; range 19-23 year. The most common risk factors in these patients were total IgE more than 100 IU/ml, eosinophils above 4% and positive family history of atopy. Skin prick testing results showed prevalence rates for allergen groups in this manner: house dust mites 81.3 %, pollens 57.8 %, animal dandruff12.5% and moulds 4.9%. Polysensitization was common in 51.6% of all sensitized patients being positive to more than one group of allergens.Conclusion: House dust mites are the main sensitizing allergens among our allergic patients as well as healthy controls. Next in importance, in all participants, are grasses. This pattern of prevalence was expected based on herbal geography, climate and specially lifestyle. It was also compatible with the results from studies carried out in places with the same habitat.

  9. Sensitivity of the carbon cycle in the Arctic to climate change

    Science.gov (United States)

    McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.; Dallimore, Scott; Guo, Laodong; Hayes, Daniel J.; Heimann, Martin; Lorenson, T.D.; Macdonald, Robie W.; Roulet, Nigel

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon–climate

  10. Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale

    NARCIS (Netherlands)

    Veldkamp, T.I.E.; Eisner, S.; Wada, Y.; Aerts, J.C.J.H.; Ward, P.J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consum

  11. Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances

    Science.gov (United States)

    Rossi, Sergio

    2015-07-01

    Species with transcontinental distribution or spread over wide geographical regions develop populations with growth traits genetically adapted to the local climate. The aim of this study was to investigate the ecotypic sensitivity of bud break, a strong adaptive trait, to a changing environment. Six phenological phases of bud break were monitored daily on black spruce [ Picea mariana (Mill.) BSP] seedlings submitted to different temperatures (12, 16 and 20 °C) and photoperiods (14, 18 and 22 h). Six provenances were tested in growth chambers, produced from seeds collected along the whole latitudinal range of the closed boreal forest in Quebec, Canada. Bud break lasted 13.3 days on average and occurred earlier in seedlings from colder sites. The annual temperature of the sites suitably tracked the clinal variation among ecotypes, providing a clear biological explanation for the environmental signal driving the adaptive divergence of populations to the local climate. Increasing temperature induced an earlier bud break according to a non-linear pattern with greater advancements observed between 12 and 16 °C. Photoperiod was significant, but sensitivity analysis indicated that its effect on bud break was marginal with respect to temperature. No interaction of provenance × treatment was observed, demonstrating an ecotypic convergence of the responses to both factors. Changes in the growing conditions could substantially modify the synchronization between bud phenology and climate, thus exposing the developing meristems of black spruce to frost damage. However, similar advancements of bud break could be expected in the different ecotypes subjected to warmer temperatures or longer day lengths.

  12. Icosahedral Shallow Water Model (ICOSWM: results of shallow water test cases and sensitivity to model parameters

    Directory of Open Access Journals (Sweden)

    T. Heinze

    2009-06-01

    Full Text Available The Icosahedral Shallow Water Model (ICOSWM has been a first step in the development of the ICON (acronym for ICOsahedral Nonhydrostatic models. ICON is a joint project of the Max Planck Institute for Meteorology in Hamburg (MPI-M and Deutscher Wetterdienst (DWD for the development of new unified general circulation models for climate modeling and numerical weather forecasting on global or regional domains. A short description of ICOSWM is given. Standard test cases are used to test the performance of ICOSWM. The National Center for Atmospheric Research (NCAR Spectral Transform Shallow Water Model (STSWM has been used as reference for test cases without an analytical solution. The sensitivity of the model results to different model parameters is studied. The kinetic energy spectra are calculated and compared to the STSWM spectra. A comparison to the shallow water version of the current operational model GME at DWD is presented. In the framework of the ICON project an hydrostatic dynamical core has been developed, and a local grid refinement option and a non-hydrostatic dynamical core are under development. The results presented in this paper use the ICOSWM version at the end of 2008 and are a benchmark for the new options implemented in the development of these models.

  13. Sensitivity of a carbon and productivity model to climatic, water, terrain, and biophysical parameters in a Rocky Mountain watershed

    International Nuclear Information System (INIS)

    Net primary productivity (NPP) is a key component of the terrestrial carbon cycle and is important in ecological, watershed, and forest management studies, and more broadly in global climate change research. Determining the relative importance and magnitude of uncertainty of NPP model inputs is important for proper carbon reporting over larger areas and time periods. This paper presents a systematic evaluation of the boreal ecosystem productivity simulator (BEPS) model in mountainous terrain using an established montane forest test site in Kananaskis, Alberta, in the Canadian Rocky Mountains. Model runs were based on forest (land cover, leaf area index (LAI), biomass) and climate-water inputs (solar radiation, temperature, precipitation, humidity, soil water holding capacity) derived from digital elevation model (DEM) derivatives, climate data, geographical information system (GIS) functions, and topographically corrected satellite imagery. Four sensitivity analyses were conducted as a controlled series of experiments involving (i) NPP individual parameter sensitivity for a full growing season, (ii) NPP independent variation tests (parameter μ ± 1σ), (iii) factorial analyses to assess more complex multiple-factor interactions, and (iv) topographic correction. The results, validated against field measurements, showed that modeled NPP was sensitive to most inputs measured in the study area, with LAI and forest type the most important forest input, and solar radiation the most important climate input. Soil available water holding capacity expressed as a function of wetness index was only significant in conjunction with precipitation when both parameters represented a moisture-deficit situation. NPP uncertainty resulting from topographic influence was equivalent to 140 kg C ha-1·year-1. This suggested that topographic correction of model inputs is important for accurate NPP estimation. The BEPS model, designed originally for flat boreal forests, was shown to be

  14. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  15. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone. PMID:24971938

  16. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  17. Regional Climate Model Aladin-Climate - a Tool for Regionalization of Climate Change Estimates in Central Europe: First Results

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan; Metelka, L.; Kliegerová, S.; Sedlák, Pavel; Kyselý, Jan; Mládek, R.; Halenka, T.; Kalvová, J.

    Bratislava: Geophysical Institute of SAS, Slovak Hydrometeorological Institute, Slovak Mining Society, Slovak Meteorological Society, 2001 - (Matejka, F.; Ostrožlík, M.), s. - ISBN 80-85754-10-X. [150 years of the meteorological service in central Europe. Stará Lesná (SK), 09.10.2001-11.10.2001] R&D Projects: GA ČR GA205/01/0804 Institutional research plan: CEZ:AV0Z3042911 Keywords : Regional Climate Model * validation * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology

  18. Using a stochastic hydrological model to study the sensitivity of flood frequency to climate change (France)

    Science.gov (United States)

    Cantet, Philippe; Arnaud, Patrick

    2014-05-01

    The great interest in climate change during the past 20 years has led to a quasi unanimous conclusion for scientists: the Earth's climate is changing (IPCC 2013). It is important to know if this global change could lead to an increase in extreme events in order to prevent hydrological risks. In this work, the analysis of the climate change impact on flood was studied by a chain formed by projections (provided by climate models under SRES scenarios) and a stochastic hydrological model. The National Research Institute of Science and Technology for Environment and Agriculture (Irstea) has developed an original method for flood frequency analysis applied on the whole French territory: the SHYREG method (Arnaud et al., 2008). It generates sequentially a lot of rainfall events at an hourly time step for which a rainfall-runoff transformation is performed. The stochastic rainfall generator has three parameters which are estimated by average, not by extreme, values of daily climatic characteristics. Few parameters enable to run the rainfall-runoff model. These parameters have been regionalized on the whole French territory in order to estimate rainfall/flood quantiles at the spatial resolution of 1 km². The rainfall model shows a good skill in reproducing extreme rainfall frequency (Carreau et al., 2013) and has been already used in a climate change context to detect trends in extreme rainfall (Cantet et al., 2011). (Boé at al., 2006) propose climate projections on France at a 8km horizontal spatial resolution with daily rainfall available for two periods: reference period (1981-2000) and the end of the 21th century (2081-2100) under three SRES scenarios (B1, A1B, A2). The parameters of the rainfall model can be easily estimated for the different periods and scenarios and so, the sensitivity of flood frequency to the climate change can be studied under some hypothesis. First, the performance of the climatic model to reproduce extreme rainfall has been tested throughout

  19. Long-term climate sensitivity of an integrated water supply system: The role of irrigation.

    Science.gov (United States)

    Guyennon, Nicolas; Romano, Emanuele; Portoghese, Ivan

    2016-09-15

    The assessment of the impact of long-term climate variability on water supply systems depends not only on possible variations of the resources availability, but also on the variation of the demand. In this framework, a robust estimation of direct (climate induced) and indirect (anthropogenically induced) effects of climate change is mandatory to design mitigation measures, especially in those regions of the planet where the groundwater equilibrium is strongly perturbed by exploitations for irrigation purposes. The main goal of this contribution is to propose a comprehensive model that integrates distributed crop water requirements with surface and groundwater mass balance, able to consider management rules of the water supply system. The proposed overall model, implemented, calibrated and validated for the case study of the Fortore water supply system (Apulia region, South Italy), permits to simulate the conjunctive use of the water from a surface artificial reservoir and from groundwater. The relative contributions of groundwater recharges and withdrawals to the aquifer stress have been evaluated under different climate perturbations, with emphasis on irrigation practices. Results point out that irrigated agriculture primarily affects groundwater discharge, indicating that ecosystem services connected to river base flow are particularly exposed to climate variation in irrigated areas. Moreover, findings show that the recharge both to surface and to groundwater is mainly affected by drier climate conditions, while hotter conditions have a major impact on the water demand. The non-linearity arising from combined drier and hotter conditions may exacerbate the aquifer stress by exposing it to massive sea-water intrusion. PMID:27161129

  20. A stochastic model for temperature variability and climate sensitivity ranging from months to tens-of-thousands of years

    Science.gov (United States)

    Proistosescu, C.; Huybers, P.

    2012-04-01

    The spectral power of surface temperature variability scales with frequency, approximately following power laws of the form P(ω) ~ω-β. Several regimes can be identified in spectral estimates drawn from both instrumental and proxy records that span monthly to ten-thousand-year timescales. At frequencies above the seasonal cycle the spectrum exhibits red noise behavior (β ~ 2); between annual and centennial frequencies it is shallower (0 < β < 1); and at lower frequencies it again steepens (1 < β < 2). Previous studies have described these power law scalings in both models and observations, and have proposed mechanisms for particular scalings such as stochastic resonance, turbulent transport in the atmosphere, and 1/f diffusion scaling in the ocean. However, these studies focus on single power-law processes without accounting for the existence of several regimes and the transitions between them. Here we propose a physically based model that captures the various scaling regimes though a representation of ocean-atmosphere interactions at higher frequencies and cryosphere-ocean/atmosphere interactions at lower frequencies. More specifically, we posit an energy balance model containing a shallow mixed layer, a diffusively coupled deep ocean, fast atmospheric feedbacks, and a slow feedback attributable to ice-sheet albedo or CO2. When driven by uncorrelated stochastic forcing the model produces a power-law scaling consistent with observations between monthly and ten-thousand-year timescales, which can be understood as resulting from different amplification of radiative perturbations by frequency-dependent feedbacks. An analytical solution based on the system's transfer function is presented in the Fourier domain that exactly describes the origin of these frequency-dependent feedbacks and resulting regimes of power-law scaling. This transfer function constitutes itself in a time scale-dependent climate sensitivity. The frequency structure of the model's sensitivity

  1. Sensitivity of glacier runoff projections to baseline climate data in the Indus River Basin

    Directory of Open Access Journals (Sweden)

    Michele eKoppes

    2015-10-01

    Full Text Available Quantifying the contribution of glacier runoff to water resources is particularly important in regions such High Mountain Asia, where glaciers provide a large percentage of seasonal river discharge and support large populations downstream. In remote areas, direct field measurements of glacier melt rates are difficult to acquire and rarely observed, so hydro-glaciological modeling and remote sensing approaches are needed. Here we present estimates of glacier melt contribution to the Upper Indus watershed over the last 40 years using a suite of seven reanalysis climate datasets that have previously been used in hydrological models for this region, a temperature-index melt model and > 29,000 km2 of ice cover. In particular, we address the uncertainty in estimates of meltwater flux that is introduced by the baseline climate dataset chosen, by comparing the results derived from each. Mean annual glacier melt contribution varies from 8 km3 yr-1 and 169 km3 yr-1, or between 4-78% of the total annual runoff in the Indus, depending on temperature dataset applied. Under projected scenarios of an additional 2-4°C of regional warming by 2100 AD, we find annual meltwater fluxes vary by >200% depending on the baseline climate dataset used and, importantly, span a range of positive and negative trends. Despite significant differences between climate datasets and the resulting spread in meltwater fluxes, the spatial pattern of melt is highly correlated and statistically robust across all datasets. This allows us to conclude with confidence that fewer than 10% of the >20,000 glaciers in the watershed contribute more than 80% of the total glacier runoff to the Indus. These are primarily large, low elevation glaciers in the Karakoram and Hindu Kush. Additional field observations to ground-truth modeled climate data will go far to reduce the uncertainty highlighted here and we suggest that efforts be focused on those glaciers identified to be most significant to

  2. Sensitivity of worst-case strom surge considering influence of climate change

    Science.gov (United States)

    Takayabu, Izuru; Hibino, Kenshi; Sasaki, Hidetaka; Shiogama, Hideo; Mori, Nobuhito; Shibutani, Yoko; Takemi, Tetsuya

    2016-04-01

    There are two standpoints when assessing risk caused by climate change. One is how to prevent disaster. For this purpose, we get probabilistic information of meteorological elements, from enough number of ensemble simulations. Another one is to consider disaster mitigation. For this purpose, we have to use very high resolution sophisticated model to represent a worst case event in detail. If we could use enough computer resources to drive many ensemble runs with very high resolution model, we can handle these all themes in one time. However resources are unfortunately limited in most cases, and we have to select the resolution or the number of simulations if we design the experiment. Applying PGWD (Pseudo Global Warming Downscaling) method is one solution to analyze a worst case event in detail. Here we introduce an example to find climate change influence on the worst case storm-surge, by applying PGWD to a super typhoon Haiyan (Takayabu et al, 2015). 1 km grid WRF model could represent both the intensity and structure of a super typhoon. By adopting PGWD method, we can only estimate the influence of climate change on the development process of the Typhoon. Instead, the changes in genesis could not be estimated. Finally, we drove SU-WAT model (which includes shallow water equation model) to get the signal of storm surge height. The result indicates that the height of the storm surge increased up to 20% owing to these 150 years climate change.

  3. Dual Heuristics for Assessment of Hydrologic Sensitivities to Climate Change in Watersheds of the Lower Colorado Basin

    Science.gov (United States)

    Murphy, K. W.; Murphy, B. S.; Ellis, A. W.

    2014-12-01

    Uncertainties surrounding potential impacts of climate change on water resources can be reduced in part by an accurate understanding of a watershed's hydrologic response to shifts in temperature and precipitation. This has typically been pursued by computationally-intensive land surface modeling involving complex parameterizations. A viable and more efficient alternative lies in two heuristics: temperature sensitivity and precipitation elasticity of runoff. Their comprehensive descriptions are vital for watersheds with distinct seasons, low runoff efficiencies, large coefficients of variation, and highly skewed distributions - such as for the Salt and Verde Rivers of the arid lower Colorado River Basin. Long data records together with an amplified temperature response of these watersheds relative to global trends enable a thorough exploration of temperature sensitivity and precipitation elasticity grounded in observational data. Regression analyses and kriging methods have been employed in this study to develop these seasonal heuristics. While results align with expectations at the mean, trends were revealed across key variables, posing important stream flow implications depending on relative position within the distributions. Winter temperature sensitivity is nearly indistinguishable at low evapotranspiration response, while it is significant in summer with overland flow impairment. It is lessened by an active monsoon season, which also dilutes loss contributions at reservoirs. Precipitation elasticity of runoff is often assumed to be approximately 2.0, but this study revealed higher values in winter and lower ones in summer, with smaller elasticity when approaching the base flow level and in the upper range of runoff efficiency. Descriptive algorithms have been derived that can be readily applied to distribution functions with any climate change assumption to assess stream flow impact and water resource sustainability for the region.

  4. Enhanced sensitivity of a mountain bog to climate change as a delayed effect of road construction

    Directory of Open Access Journals (Sweden)

    P. von Sengbusch

    2015-01-01

    Full Text Available Trees of Pinus rotundata (bog pine characterise many bogs in the mid-altitude mountains of central Europe (Switzerland, East and South Germany, Czech Republic. The research described here focuses on recent changes in the growth of bog pine on the Ennersbacher Moor, a mountain mire in the Black Forest (south-west Germany. An increase in the cover of bog pine is usually caused by drainage and subsequent drawdown of the water table. However, this bog has not been drained or directly disturbed in any other way. One possible explanation is that a road constructed in 1983 along one margin of the bog has diverted part of its water supply. Even though the road was designed to conduct potentially salt-contaminated drainage water away from the bog, its construction did not cause an immediate vegetation response in the 1980s and 1990s. Therefore, I hypothesise that it enhanced the sensitivity of the bog to climatic stress, predisposing it to a succession that was eventually triggered by a series of drought years in 2009–2011. Data collected near the centre of the bog over the period 1998–2014 indicate not only a distinct change in the relationship between height and trunk circumference of the trees, but also an increase of dwarf shrub cover and changes in the composition of Sphagnum communities. Although the pH of near-surface water may have increased slightly over this period, pH and EC values remain within typical ranges for raised bogs in the Black Forest. Examination of peat profiles reveals that the peat is more highly humified now than it was in 2002, and water table records from 2012–2014 show a greater amplitude of fluctuation than water table data collected in 1998–2001. Even though its mean level is only 105 mm below the ground surface, the water table is now observed to fall rapidly to depths of at least 350 mm during both wet and dry summers. Mapping surface (mesotopography and flow lines from the adjacent slope shows that the

  5. Precipitation extremes over La Plata Basin - Review and new results from observations and climate simulations

    Science.gov (United States)

    Cavalcanti, I. F. A.; Carril, A. F.; Penalba, O. C.; Grimm, A. M.; Menéndez, C. G.; Sanchez, E.; Cherchi, A.; Sörensson, A.; Robledo, F.; Rivera, J.; Pántano, V.; Bettolli, L. M.; Zaninelli, P.; Zamboni, L.; Tedeschi, R. G.; Dominguez, M.; Ruscica, R.; Flach, R.

    2015-04-01

    Monthly and daily precipitation extremes over La Plata Basin (LPB) are analyzed in the framework of the CLARIS-LPB Project. A review of the studies developed during the project and results of additional research are presented and discussed. Specific aspects of analysis are focused on large-scale versus local processes impacts on the intensity and frequency of precipitation extremes over LPB, and on the assessment of specific wet and dry spell indices and their changed characteristics in future climate scenarios. The analysis is shown for both available observations of precipitation in the region and ad-hoc global and regional models experiments. The Pacific, Indian and Atlantic Oceans can all impact precipitation intensity and frequency over LPB. In particular, considering the Pacific sector, different types of ENSO events (i.e. canonical vs Modoki or East vs Central) have different influences. Moreover, model projections indicate an increase in the frequency of precipitation extremes over LPB during El Niño and La Ninã events in future climate. Local forcings can also be important for precipitation extremes. Here, the feedbacks between soil moisture and extreme precipitation in LPB are discussed based on hydric conditions in the region and model sensitivity experiments. Concerning droughts, it was found that they were more frequent in the western than in the eastern sector of LPB during the period of 1962-2008. On the other hand, observations and model experiments agree in that the monthly wet extremes were more frequent than the dry extremes in the northern and southern LPB sectors during the period 1979-2001, with higher frequency in the south.

  6. Evaporation-limited tropical temperatures as a constraint on climate sensitivity

    International Nuclear Information System (INIS)

    Studies of paleoclimate and modern observations indicate that evaporative effects limit thermal response in equatorial regions. We develop a latitude-resolved, steady-state energy balance model which incorporates the effect of an evaporative constraint on the variation of equatorial temperature with solar luminosity. For a diffusive model of surface heat transport the constraint requires the diffusion coefficient to vary with insolation. We find that the movement of the iceline with insolation is four times larger than in standard energy balance models with a constant thermal diffusion coefficient. This is a consequence of the global energy blanace which forces temperature changes to occur at high latitudes when they are evaporatively buffered at the equator. Nonlinear temperature-ice albedo feedback at high latitudes then amplifies the response leading to greater sensitivity in the vicnity of current climate

  7. Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.

    Directory of Open Access Journals (Sweden)

    Allyson L Carroll

    Full Text Available Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood

  8. PATMOS-x Cloud Climate Record Trend Sensitivity to Reanalysis Products

    Directory of Open Access Journals (Sweden)

    Michael J. Foster

    2016-05-01

    Full Text Available Continuous satellite-derived cloud records now extend over three decades, and are increasingly used for climate applications. Certain applications, such as trend detection, require a clear understanding of uncertainty as it relates to establishing statistical significance. The use of reanalysis products as sources of ancillary data could be construed as one such source of uncertainty, as there has been discussion regarding the suitability of reanalysis products for trend detection. Here we use three reanalysis products: Climate Forecast System Reanalysis (CFSR, Modern Era Retrospective Analysis for Research and Applications (MERRA and European Center for Medium range Weather Forecasting (ECMWF ERA-Interim (ERA-I as sources of ancillary data for the Pathfinder Atmospheres Extended/Advanced Very High Resolution Radiometer (PATMOS-x/AVHRR Satellite Cloud Climate Data Record (CDR, and perform inter-comparisons to determine how sensitive the climatology is to choice of ancillary data source. We find differences among reanalysis fields required for PATMOS-x processing, which translate to small but not insignificant differences in retrievals of cloud fraction, cloud top height and cloud optical depth. The retrieval variability due to choice of reanalysis product is on the order of one third the size of the retrieval uncertainty, making it a potentially significant factor in trend detection. Cloud fraction trends were impacted the most by choice of reanalysis while cloud optical depth trends were impacted the least. Metrics used to determine the skill of the reanalysis products for use as ancillary data found no clear best choice for use in PATMOS-x. We conclude use of reanalysis products as ancillary data in the PATMOS-x/AVHRR Cloud CDR do not preclude its use for trend detection, but for that application uncertainty in reanalysis fields should be better represented in the PATMOS-x retrieval uncertainty.

  9. VEMAP vs VINCERA: A DGVM sensitivity to differences in climate scenarios

    Science.gov (United States)

    Bachelet, D.; Lenihan, J.; Drapek, R.; Neilson, R.

    2008-11-01

    The MC1 DGVM has been used in two international model comparison projects, VEMAP (Vegetation Ecosystem Modeling and Analysis Project) and VINCERA (Vulnerability and Impacts of North American forests to Climate Change: Ecosystem Responses and Adaptation). The latest version of MC1 was run on both VINCERA and VEMAP climate and soil input data to document how a change in the inputs can affect model outcome. We compared simulation results under the two sets of future climate scenarios and reported on how the different inputs can affect vegetation distribution and carbon budget projections. Under all future scenarios, the interior West becomes woodier as warmer temperatures and available moisture allow trees to get established in grasslands areas. Concurrently, warmer and drier weather causes the eastern deciduous and mixed forests to shift to a more open canopy woodland or savanna type while boreal forests disappear almost entirely from the Great Lakes area by the end of the 21st century. While under VEMAP scenarios the model simulated large increases in carbon storage in a future woodier West, the drier VINCERA scenarios accounted for large carbon losses in the east and only moderate gains in the West. But under all future climate scenarios, the total area burned by wildfires increased especially in C4 grasslands under all scenarios and in dry woodlands under VINCERA scenarios. The model simulated non-agricultural lands in the conterminous United States as a source of carbon in the 21st century under the VINCERA future climate scenarios but not VEMAP. However, the magnitude of this carbon source to the atmosphere could be greatly reduced if the CO 2 growth enhancement factor built in the model was enhanced but evidence that all mature forests across the entire country will respond positively to increased atmospheric CO2 is still lacking.

  10. Equilibrium climate sensitivity in light of observations over the warming hiatus

    Science.gov (United States)

    Johansson, Daniel J. A.; O'Neill, Brian C.; Tebaldi, Claudia; Häggström, Olle

    2015-05-01

    A key uncertainty in projecting future climate change is the magnitude of equilibrium climate sensitivity (ECS), that is, the eventual increase in global annual average surface temperature in response to a doubling of atmospheric CO2 concentration. The lower bound of the likely range for ECS given in the IPCC Fifth Assessment Report (AR5; refs , ) was revised downwards to 1.5 °C, from 2 °C in its previous report, mainly as an effect of considering observations over the warming hiatus--the period of slowdown of global average temperature increase since the early 2000s. Here we analyse how estimates of ECS change as observations accumulate over time and estimate the contribution of potential causes to the hiatus. We find that including observations over the hiatus reduces the most likely value for ECS from 2.8 °C to 2.5 °C, but that the lower bound of the 90% range remains stable around 2 °C. We also find that the hiatus is primarily attributable to El Niño/Southern Oscillation-related variability and reduced solar forcing.

  11. The Geographic Climate Information System Project (GEOCLIMA): Overview and preliminary results

    Science.gov (United States)

    Feidas, H.; Zanis, P.; Melas, D.; Vaitis, M.; Anadranistakis, E.; Symeonidis, P.; Pantelopoulos, S.

    2012-04-01

    The project GEOCLIMA aims at developing an integrated Geographic Information System (GIS) allowing the user to manage, analyze and visualize the information which is directly or indirectly related to climate and its future projections in Greece. The main components of the project are: a) collection and homogenization of climate and environmental related information, b) estimation of future climate change based on existing regional climate model (RCM) simulations as well as a supplementary high resolution (10 km x 10 km) simulation over the period 1961-2100 using RegCM3, c) compilation of an integrated uniform geographic database, and d) mapping of climate data, creation of digital thematic maps, and development of the integrated web GIS application. This paper provides an overview of the ongoing research efforts and preliminary results of the project. First, the trends in the annual and seasonal time series of precipitation and air temperature observations for all available stations in Greece are assessed. Then the set-up of the high resolution RCM simulation (10 km x 10 km) is discussed with respect to the selected convective scheme. Finally, the relationship of climatic variables with geophysical features over Greece such as altitude, location, distance from the sea, slope, aspect, distance from climatic barriers, land cover etc) is investigated, to support climate mapping. The research has been co-financed by the European Union (European Regional Development Fund) and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the National Strategic Reference Framework (NSRF) - Research Funding Program COOPERATION 2009.

  12. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    International Nuclear Information System (INIS)

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey forecasting model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emission Scenarios and results from PRECIS (Providing Regional Climate projections for Impacts Studies) model. The most important result found in this research is the increasing hydropower vulnerability of the poorest regions and the main hydropower generation provinces of China to climate change. Other main empirical results reveal that the impacts of climate change on the supply of hydropower generation in China will be noteworthy for the society. Different scenarios have different effects on hydropower generation, of which A2 scenario (pessimistic, high emission) has the largest. Meanwhile, the impacts of climate change on hydropower generation of every province are distinctly different, of which the Southwest part has the higher vulnerability than the average level while the central part lower. - Highlights: • The hydropower vulnerability will be enlarged with the rapid increase of hydropower capacity. • Modeling the vulnerability of hydropower in different scenarios and different provinces. • The increasing hydropower vulnerability of the poorest regions to climate change. • The increasing hydropower vulnerability of the main hydropower generation provinces. • Rainfall pattern caused by climate change would be the reason for the increasing vulnerability

  13. Results of an Institutional LGBT Climate Survey at an Academic Medical Center.

    Science.gov (United States)

    Chester, Sean D; Ehrenfeld, Jesse M; Eckstrand, Kristen L

    2014-12-01

    The purpose of this study was to characterize the climate and culture experienced by lesbian, gay, bisexual, and transgender (LGBT) employees and students at one large academic medical center. An anonymous, online institutional climate survey was used to assess the attitudes and experiences of LGBT employees and students. There were 42 LGBT and 14 non-LGBT survey participants. Results revealed that a surprisingly large percentage of LGBT individuals experienced pressure to remain "closeted" and were harassed despite medical center policies of non-discrimination. Continuing training, inclusive policies and practices, and the development of mechanisms to address LGBT-specific harassment are necessary for improving institutional climate. PMID:26789861

  14. Results of an integrated structure-control law design sensitivity analysis

    Science.gov (United States)

    Gilbert, Michael G.

    1988-01-01

    Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.

  15. Climate-forced air-quality modeling at the urban scale: sensitivity to model resolution, emissions and meteorology

    Science.gov (United States)

    Markakis, K.; Valari, M.; Perrussel, O.; Sanchez, O.; Honore, C.

    2015-07-01

    While previous research helped to identify and prioritize the sources of error in air-quality modeling due to anthropogenic emissions and spatial scale effects, our knowledge is limited on how these uncertainties affect climate-forced air-quality assessments. Using as reference a 10-year model simulation over the greater Paris (France) area at 4 km resolution and anthropogenic emissions from a 1 km resolution bottom-up inventory, through several tests we estimate the sensitivity of modeled ozone and PM2.5 concentrations to different potentially influential factors with a particular interest over the urban areas. These factors include the model horizontal and vertical resolution, the meteorological input from a climate model and its resolution, the use of a top-down emission inventory, the resolution of the emissions input and the post-processing coefficients used to derive the temporal, vertical and chemical split of emissions. We show that urban ozone displays moderate sensitivity to the resolution of emissions (~ 8 %), the post-processing method (6.5 %) and the horizontal resolution of the air-quality model (~ 5 %), while annual PM2.5 levels are particularly sensitive to changes in their primary emissions (~ 32 %) and the resolution of the emission inventory (~ 24 %). The air-quality model horizontal and vertical resolution have little effect on model predictions for the specific study domain. In the case of modeled ozone concentrations, the implementation of refined input data results in a consistent decrease (from 2.5 up to 8.3 %), mainly due to inhibition of the titration rate by nitrogen oxides. Such consistency is not observed for PM2.5. In contrast this consistency is not observed for PM2.5. In addition we use the results of these sensitivities to explain and quantify the discrepancy between a coarse (~ 50 km) and a fine (4 km) resolution simulation over the urban area. We show that the ozone bias of the coarse run (+9 ppb) is reduced by ~ 40 % by adopting

  16. The sensitivity of NPP to climate controls in northern China estimated by CLM model coupled with RS and GIS technology

    Science.gov (United States)

    Gao, Zhiqiang; Gao, Wei; Slusser, James R.; Pan, Xiaoling; Ma, Yingjun

    2003-07-01

    The continuing rise in atmospheric CO2 is considered as a main cause of the future changes in global climate. Predicted climate changes include an increase in mean annual air temperature and alterations in precipitation pattern and cloud cover. Net primary productivity (NPP) measures products of major economic and social importance, such as agricultural crop yield and forest production. It is important to understand the response of vegetation to the possible climate changes. While the Global NPP is hard to be measured directly, its global spatial and temporal dynamics can be investigated by a combination of ecosystem process modeling and monitoring by remote sensing (RS). NPP has been linked to climatic patterns by approaches ranging from simple correlations to sophisticated simulation models. This study was conducted in a range where the productivity and climate exist along an east-west transect in northern China. We used modified Common Land Surface Model (CLM) to simulate the NPP combined with satellite data and assessed the response of NPP under different climate change controls with different land surface vegetation types in study areas. The feasibility of the CLM model was tested and parameterized based on the ecological characteristics. The response of NPP to increased temperature was more sensitive to the doubled CO2 climate because the temperature is the limited factor to vegetation growth in study areas. The responses of NPP to different climate controls were also influenced by different vegetation types and ecological characteristics.

  17. Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios; Matzarakis, Andreas

    2016-01-01

    Potential evapotranspiration (PET) is one of the most critical parameters in the research on agro-ecological systems. The computational methods for the estimation of PET vary in data demands from very simple (empirically based), requiring only information based on air temperatures, to complex ones (more physically based) that require data on radiation, relative humidity, wind speed, etc. The current research is focused on three study areas in Greece that face different climatic conditions due to their location. Twelve PET formulae were used, analyzed and inter-compared in terms of their sensitivity regarding their input coefficients for the Ardas River basin in north-eastern Greece, Sperchios River basin in Central Greece and Geropotamos River basin in South Greece. The aim was to compare all the methods and conclude to which empirical PET method(s) better represent the PET results in each area and thus should be adopted and used each time and which factors influence the results in each case. The results indicated that for the areas that face Mediterranean climatic conditions, the most appropriate method for the estimation of PET was the temperature-based, Hamon's second version (PETHam2). Furthermore, the PETHam2 was able to estimate PET almost similarly to the average results of the 12 equations. For the Ardas River basin, the results indicated that both PETHam2 and PETHam1 can be used to estimate PET satisfactorily. Moreover, the temperature-based equations have proven to produce better results, followed by the radiation-based equations. Finally, PETASCE, which is the most commonly used PET equation, can also be applied occasionally in order to provide satisfactory results.

  18. Sensitivity of lake ice regimes to climate change in the nordic region

    Directory of Open Access Journals (Sweden)

    S. Gebre

    2013-03-01

    Full Text Available A one-dimensional process-based multi-year lake ice model, MyLake, was used to simulate lake ice phenology and annual maximum lake ice thickness for the Nordic region comprising Fennoscandia and the Baltic countries. The model was first tested and validated using observational meteorological forcing on a candidate lake (Lake Atnsjøen and using downscaled ERA-40 reanalysis data set. To simulate ice conditions for the contemporary period of 1961–2000, the model was driven by gridded meteorological forcings from ERA-40 global reanalysis data downscaled to a 25 km resolution using the Rossby Center Regional Climate Model (RCA. The model was then forced with two future climate scenarios from the RCA driven by two different GCMs based on the SRES A1B emissions scenario. The two climate scenarios correspond to two future time periods namely the 2050s (2041–2070 and the 2080s (2071–2100. To take into account the influence of lake morphometry, simulations were carried out for four different hypothetical lake depths (5 m, 10 m, 20 m, 40 m placed at each of the 3708 grid cells. Based on a comparison of the mean predictions in the future 30 yr periods with the control (1961–1990 period, ice cover durations in the region will be shortened by 1 to 11 weeks in 2041–2070, and 3 to 14 weeks in 2071–2100. Annual maximum lake ice thickness, on the other hand, will be reduced by a margin of up to 60 cm by 2041–2070 and up to 70 cm by 2071–2100. The simulated changes in lake ice characteristics revealed that the changes are less dependent on lake depths though there are slight differences. The results of this study provide a~regional perspective of anticipated changes in lake ice regimes due to climate warming across the study area by the middle and end of this century.

  19. Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada

    Science.gov (United States)

    Allen, D. M.; Mackie, D. C.; Wei, M.

    The Grand Forks aquifer, located in south-central British Columbia, Canada was used as a case study area for modeling the sensitivity of an aquifer to changes in recharge and river stage consistent with projected climate-change scenarios for the region. Results suggest that variations in recharge to the aquifer under the different climate-change scenarios, modeled under steady-state conditions, have a much smaller impact on the groundwater system than changes in river-stage elevation of the Kettle and Granby Rivers, which flow through the valley. All simulations showed relatively small changes in the overall configuration of the water table and general direction of groundwater flow. High-recharge and low-recharge simulations resulted in approximately a +0.05 m increase and a -0.025 m decrease, respectively, in water-table elevations throughout the aquifer. Simulated changes in river-stage elevation, to reflect higher-than-peak-flow levels (by 20 and 50%), resulted in average changes in the water-table elevation of 2.72 and 3.45 m, respectively. Simulated changes in river-stage elevation, to reflect lower-than-baseflow levels (by 20 and 50%), resulted in average changes in the water-table elevation of -0.48 and -2.10 m, respectively. Current observed water-table elevations in the valley are consistent with an average river-stage elevation (between current baseflow and peak-flow stages). L'aquifère de Grand Forks, situé en Colombie britannique (Canada), a été utilisé comme zone d'étude pour modéliser la sensibilité d'un aquifère à des modifications de la recharge et du niveau de la rivière, correspondant à des scénarios envisagés de changement climatique dans cette région. Les résultats font apparaître que les variations de recharge de l'aquifère pour différents scénarios de changement climatique, modélisées pour des conditions de régime permanent, ont un impact sur le système aquifère beaucoup plus faible que les changements du niveau des

  20. The sensitivity of southeastern United States climate to varying irrigation vigor

    Science.gov (United States)

    Selman, Christopher; Misra, Vasubandhu

    2016-07-01

    Four regional climate model runs centered on the Southeast United States (SEUS) assuming a crop growing season of May through October are irrigated at 25% (IRR25), 50% (IRR50), 75% (IRR75), and 100% (IRR100) of the root zone porosity to assess the sensitivity of the SEUS climate to irrigation. A fifth run, assuming no irrigation (CTL), is used as the basis for comparison. Across all IRR runs, it is found that there is a general reduction in seasonal mean precipitation over the irrigated cells relative to CTL. This manifests as an increase in dry (0-1 mm/d) days and reduction in > 1 mm/d rainfall events. A comparative moisture budget reveals that area-averaged precipitation over the irrigated cells displays a reduction in precipitation and runoff in IRR100 with a weaker reduction in IRR25. This is despite an increase in vertically integrated moisture convergence and local evaporation. We find that irrigation increases the lower atmospheric stability, which in turn reduces the convective rainfall over the irrigated areas. Seasonally averaged temperatures reduce over irrigated areas, with the intensity of the reduction increasing with irrigation vigor. This is largely attributed to a repartitioning of sensible heat flux into latent heat flux. There is also, however, a small increase of heat flow to deeper soil layers. Precipitation ahead of transient cold fronts is also reduced by irrigation as they pass over irrigated cells, owing to the increased stability in the lower troposphere. The intensity of this precipitation reduction becomes more intense as irrigation vigor increases. Lastly, heat waves in the SEUS are reduced in intensity over irrigated cells.

  1. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  2. Wind climate estimation using WRF model output: method and model sensitivities over the sea

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Vincent, Claire Louise; Peña, Alfredo;

    2015-01-01

    around 100m are smaller than 3.2% at offshore sites, except for those that are affected by the wake of a wind farm or the coastline. These biases are smaller than those obtained by using winds directly from the reanalysis. We study the sensitivity of the WRF-simulated wind climatology to various model...... setup parameters. The results of the year-long sensitivity simulations show that the long-term mean wind speed simulated by the WRF model offshore in the region studied is quite insensitive to the global reanalysis, the number of vertical levels, and the horizontal resolution of the sea surface...

  3. Precipitation-climate sensitivity to initial conditions in an atmospheric general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Covey, C., LLNL

    1997-03-01

    Atmospheric climate, in contrast to weather, is traditionally considered to be determined by boundary conditions such as sea surface temperature (SST). To test this hypothesis, we examined annual mean precipitation from an ensemble of 20 general circulation model (GCM) simulations. Ensemble members were forced with identical 10-year series of SST and sea ice, but they began with slightly differing initial conditions. A surprisingly small proportion of the variance in the output is attributable to the effects of boundary forcing. This result-and similar evidence from smaller ensembles of other GCM simulations-implies that long-term precipitation variations are mostly unpredictable, even if SST forecasts are `perfect.`

  4. Radiative forcing and feedback by forests in warm climates - a sensitivity study

    Science.gov (United States)

    Port, Ulrike; Claussen, Martin; Brovkin, Victor

    2016-07-01

    We evaluate the radiative forcing of forests and the feedbacks triggered by forests in a warm, basically ice-free climate and in a cool climate with permanent high-latitude ice cover using the Max Planck Institute for Meteorology Earth System Model. As a paradigm for a warm climate, we choose the early Eocene, some 54 to 52 million years ago, and for the cool climate, the pre-industrial climate, respectively. To isolate first-order effects, we compare idealised simulations in which all continents are covered either by dense forests or by deserts with either bright or dark soil. In comparison with desert continents covered by bright soil, forested continents warm the planet for the early Eocene climate and for pre-industrial conditions. The warming can be attributed to different feedback processes, though. The lapse-rate and water-vapour feedback is stronger for the early Eocene climate than for the pre-industrial climate, but strong and negative cloud-related feedbacks nearly outweigh the positive lapse-rate and water-vapour feedback for the early Eocene climate. Subsequently, global mean warming by forests is weaker for the early Eocene climate than for pre-industrial conditions. Sea-ice related feedbacks are weak for the almost ice-free climate of the early Eocene, thereby leading to a weaker high-latitude warming by forests than for pre-industrial conditions. When the land is covered with dark soils, and hence, albedo differences between forests and soil are small, forests cool the early Eocene climate more than the pre-industrial climate because the lapse-rate and water-vapour feedbacks are stronger for the early Eocene climate. Cloud-related feedbacks are equally strong in both climates. We conclude that radiative forcing by forests varies little with the climate state, while most subsequent feedbacks depend on the climate state.

  5. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    Directory of Open Access Journals (Sweden)

    González Paula LM

    2009-07-01

    Full Text Available Abstract Background Oligoryzomys longicaudatus (colilargo is the rodent responsible for hantavirus pulmonary syndrome (HPS in Argentine Patagonia. In past decades (1967–1998, trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent

  6. The role of sea ice in 2 x CO2 climate model sensitivity. Part 1: The total influence of sea ice thickness and extent

    Science.gov (United States)

    Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.

    1995-01-01

    As a first step in investigating the effects of sea ice changes on the climate sensitivity to doubled atmospheric CO2, the authors use a standard simple sea ice model while varying the sea ice distributions and thicknesses in the control run. Thinner ice amplifies the atmospheric temperature senstivity in these experiments by about 15% (to a warming of 4.8 C), because it is easier for the thinner ice to be removed as the climate warms. Thus, its impact on sensitivity is similar to that of greater sea ice extent in the control run, which provides more opportunity for sea ice reduction. An experiment with sea ice not allowed to change between the control and doubled CO2 simulations illustrates that the total effect of sea ice on surface air temperature changes, including cloud cover and water vapor feedbacks that arise in response to sea ice variations, amounts to 37% of the temperature sensitivity to the CO2 doubling, accounting for 1.56 C of the 4.17 C global warming. This is about four times larger than the sea ice impact when no feedbacks are allowed. The different experiments produce a range of results for southern high latitudes with the hydrologic budget over Antarctica implying sea level increases of varying magnitude or no change. These results highlight the importance of properly constraining the sea ice response to climate perturbations, necessitating the use of more realistic sea ice and ocean models.

  7. 中国冰川系统对气候变化响应的敏感性分析%Sensitivity analysis of glacier systems to climate warming in China

    Institute of Scientific and Technical Information of China (English)

    王欣; 谢自楚; 李巧媛; 王淑红; 程磊

    2008-01-01

    Data of 44 glacier systems in China used in this paper were obtained from Chinese Glacier Inventories and the meteorological data were got from Meteorological Atlas of Plateau of west China. Based on the statistical analysis and functional model simulation results of the 44 glacier systems in China, the glacier systems were divided into extremely-sensitive glacier system, semi-sensitive glacier system, extremely-steady glacier system and semi-steady glacier system in terms of glacier system's level of water-energy exchange, rising gradient of the equilibrium line altitudes and retreating rate of area to climate warming, their median size and vertical span distribution, and their runoff characteristics to climate warming. Furthermore,the functional model of glacier system to climate warming was applied in this paper to predict the average variation trends of the 4 types of glacier systems, which indicate that different sensitivity types of glacier systems respond to the climate warming differently.

  8. Assessing the sensitivity of avian species abundance to land cover and climate

    Science.gov (United States)

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R., III; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  9. Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects

    OpenAIRE

    Petzold, A.; Lauer, P.; Fritsche, U.; Hasselbach, J.; M. Lichtenstern; Schlager, H.; Fleischer, F.

    2011-01-01

    The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fue...

  10. Multi-year Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM_NCC). Part Ⅰ: Sensitivity Study

    Institute of Scientific and Technical Information of China (English)

    DING Yihui; SHI Xueli; LIU Yiming; LIU Yan; LI Qingquan; QIAN Yongfu; MIAO Manqian; ZHAI Guoqing; GAO Kun

    2006-01-01

    A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process parameterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.

  11. Assessment of Potential Yield andClimate Change Sensitivity of Peanut Crop in Cagayan Valley, Philippines using DSSAT Simulation Model

    Science.gov (United States)

    Balderama, O. F.

    2013-12-01

    Peanut is a major upland crop in Cagayan Valley and a leguminous crop that requires less water and therefore, considered an important crop in improving productivity of upland and rainfed areas. However, little information is available on the potential productivity of the crop and analysis on the production constraints including climate change sensitivity. This study was aimed to determine yield potential and production constraints of peanut crop in Cagayan Valley through the use of Decision Support System for Agrotechnology Transfer (DSSAT) simulation modeling; analyze yield gaps between simulated and actual yield levels and to provide decision support to further optimize peanut production under climate change condition. Site of experiment for model calibration and validation was located on-station at Isabela State University, Echague, Isabela. Rainfall and other climatic variables were monitored using a HOBO weather station (Automatic Weather Station) which is strategically installed inside experimental zone.The inputs required to run the CSM model include information on soil and weather conditions, crop management practices and cultivar specific genetic coefficients. In the first step,a model calibration was conducted to determine the cultivar coefficients for certain peanut cultivar that are normally grown in Cagayan Valley. Crop growth and yield simulation modeling was undertaken using the Decision Support System for Agro-Technology Transfer (DSSAT) for small seeded peanut (Pn9). An evaluation of the CSM-CROPGRO-peanut model was performed with data sets from peanut experiment conducted from December 2011 to April 2012. The model was evaluated in the estimation of potential yield of peanut under rainfed condition and low-nitrogen application. Yield potential for peanut limited only by temperature and solar radiation and no-water and nutrient stress, ranged from 3274 to 4805 kg per hectare for six planting dates (October 1, October 15, November 1, November 15

  12. Some GCM simulation results on present and possible future climate in northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1995-12-31

    The Intergovernmental Panel on Climate Change initiated in 1993 a project entitled `Evaluation of Regional Climate Simulations`. The two basic aims of this project were to assess the skill of current general circulation models (GCMs) in simulating present climate at a regional level and to intercompare the regional response of various GCMs to increased greenhouse gas concentrations. The public data base established for the comparison included simulation results from several modelling centres, but most of the data were available in the form of time-averaged seasonal means only, and important quantities like precipitation were totally lacking in many cases. This presentation summarizes the intercomparison results for surface air temperature and sea level pressure in northern Europe. The quality of the control simulations and the response of the models to increased CO{sub 2} are addressed in both winter (December-February) and summer (June-August)

  13. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

    OpenAIRE

    Kaj M. Hansen; Jesper H. Christensen; Jørgen Brandt

    2015-01-01

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Da...

  14. Climate and vegetation changes around the Atlantic Ocean resulting from changes in the meridional overturning circulation during deglaciation

    Directory of Open Access Journals (Sweden)

    D. Handiani

    2012-07-01

    Full Text Available The Bølling-Allerød (BA, starting ~ 14.5 ka BP is one of the most pronounced abrupt warming periods recorded in ice and pollen proxies. The leading explanation of the cause of this warming is a sudden increase in the rate of deepwater formation in the North Atlantic Ocean and the resulting effect on the heat transport by the Atlantic Meridional Overturning Circulation (AMOC. In this study, we used the University of Victoria (UVic Earth System-Climate Model (ESCM to run simulations, in which a freshwater perturbation initiated a BA-like warming period. We found that under present climate conditions, the AMOC intensified when freshwater was added to the Southern Ocean. However, under Heinrich event 1 (HE1, ~ 16 ka BP climate conditions, the AMOC only intensified when freshwater was extracted from the North Atlantic Ocean, possibly corresponding to an increase in evaporation or a decrease in precipitation in this region. The intensified AMOC led to a warming in the North Atlantic Ocean and a cooling in the South Atlantic Ocean, resembling the bipolar seesaw pattern typical of the last glacial period.

    In addition to the physical response, we also studied the simulated vegetation response around the Atlantic Ocean region. Corresponding with the bipolar seesaw hypothesis, the rainbelt associated with the Intertropical Convergence Zone (ITCZ shifted northward and affected the vegetation pattern in the tropics. The most sensitive vegetation area was found in tropical Africa, where grass cover increased and tree cover decreased under dry climate conditions. An equal but opposite response to the collapse and recovery of the AMOC implied that the change in vegetation cover was transient and robust to an abrupt climate change such as during the BA period, which is also supported by paleovegetation data. The results are in agreement with paleovegetation records from Western tropical Africa, which also show a reduction in forest cover during this

  15. The North American Regional Climate Change Assessment Program (NARCCAP): Status and results

    Science.gov (United States)

    Gutowski, W. J.

    2009-12-01

    NARCCAP is a multi-institutional program that is investigating systematically the uncertainties in regional scale simulations of contemporary climate and projections of future climate. NARCCAP is supported by multiple federal agencies. NARCCAP is producing an ensemble of high-resolution climate-change scenarios by nesting multiple RCMs in reanalyses and multiple atmosphere-ocean GCM simulations of contemporary and future-scenario climates. The RCM domains cover the contiguous U.S., northern Mexico, and most of Canada. The simulation suite also includes time-slice, high resolution GCMs that use sea-surface temperatures from parent atmosphere-ocean GCMs. The baseline resolution of the RCMs and time-slice GCMs is 50 km. Simulations use three sources of boundary conditions: National Centers for Environmental Prediction (NCEP)/Department of Energy (DOE) AMIP-II Reanalysis, GCMs simulating contemporary climate and GCMs using the A2 SRES emission scenario for the twenty-first century. Simulations cover 1979-2004 and 2038-2060, with the first 3 years discarded for spin-up. The resulting RCM and time-slice simulations offer opportunity for extensive analysis of RCM simulations as well as a basis for multiple high-resolution climate scenarios for climate change impacts assessments. Geophysical statisticians are developing measures of uncertainty from the ensemble. To enable very high-resolution simulations of specific regions, both RCM and high-resolution time-slice simulations are saving output needed for further downscaling. All output is publically available to the climate analysis and the climate impacts assessment community, through an archiving and data-distribution plan. Some initial results show that the models closely reproduce ENSO-related precipitation variations in coastal California, where the correlation between the simulated and observed monthly time series exceeds 0.94 for all models. The strong El Nino events of 1982-83 and 1997-98 are well reproduced for

  16. Sensitivity of Structural Results to Initial Configurations and Quench Algorithms of Lead Silicate Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hemesath, Eric R.; Corrales, Louis R.

    2005-06-15

    The sensitivity of resulting structures to starting configurations and quench algorithms were characterized using molecular dynamics (MD) simulations. The classical potential model introduced by Damodaran, Rao, and Rao (DRR) Phys. Chem. Glasses 31, 212 (1990) for lead silicate glass was used. Glasses were prepared using five distinct initial configurations and four glass forming algorithms. In previous MD work of bulk lead silicate glasses the ability of this potential model to provide good structural results were established by comparing to experimental results. Here the sensitivity of the results to the simulation methodology and the persistence of clustering with attention to details of molecular structure are determined.

  17. Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM Version 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Wu, Tongwen; Huang, Anning; Fang, Yongjie

    2015-07-15

    In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increased precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

  18. AB084. Docetaxel therapy for hormone-sensitive prostate cancer—single center result

    OpenAIRE

    Shao, Qiang; Du, Yuan; Zhang, Fengbo; Tian, Ye

    2015-01-01

    Background Androgen-deprivation therapy (ADT) has been the treatment for metastatic prostate cancer for more 75 years. We assessed whether concomitant treatment with ADT added to docetaxel would result in patients newly-diagnosed metastatic hormone-sensitive prostate cancer for longer overall survival. Methods and Materials Since August 2014, 14 patients with metastatic, hormone-sensitive prostate cancer received ADT plus docetaxel (at a dose of 75 mg per square meter of body-surface area eve...

  19. Climatic and basin factors affecting the flood frequency curve: PART I – A simple sensitivity analysis based on the continuous simulation approach

    Directory of Open Access Journals (Sweden)

    A. M. Hashemi

    2000-01-01

    Full Text Available Regionalized and at-site flood frequency curves exhibit considerable variability in their shapes, but the factors controlling the variability (other than sampling effects are not well understood. An application of the Monte Carlo simulation-based derived distribution approach is presented in this two-part paper to explore the influence of climate, described by simulated rainfall and evapotranspiration time series, and basin factors on the flood frequency curve (ffc. The sensitivity analysis conducted in the paper should not be interpreted as reflecting possible climate changes, but the results can provide an indication of the changes to which the flood frequency curve might be sensitive. A single site Neyman Scott point process model of rainfall, with convective and stratiform cells (Cowpertwait, 1994; 1995, has been employed to generate synthetic rainfall inputs to a rainfall runoff model. The time series of the potential evapotranspiration (ETp demand has been represented through an AR(n model with seasonal component, while a simplified version of the ARNO rainfall-runoff model (Todini, 1996 has been employed to simulate the continuous discharge time series. All these models have been parameterised in a realistic manner using observed data and results from previous applications, to obtain ‘reference’ parameter sets for a synthetic case study. Subsequently, perturbations to the model parameters have been made one-at-a-time and the sensitivities of the generated annual maximum rainfall and flood frequency curves (unstandardised, and standardised by the mean have been assessed. Overall, the sensitivity analysis described in this paper suggests that the soil moisture regime, and, in particular, the probability distribution of soil moisture content at the storm arrival time, can be considered as a unifying link between the perturbations to the several parameters and their effects on the standardised and unstandardised ffcs, thus revealing the

  20. A new coupled ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions

    Directory of Open Access Journals (Sweden)

    J. G. Fyke

    2011-03-01

    Full Text Available The need to better understand long-term climate/ice sheet feedback loops is motivating efforts to couple ice sheet models into Earth System models which are capable of long-timescale simulations. In this paper we describe a coupled model that consists of the University of Victoria Earth System Climate Model (UVic ESCM and the Pennsylvania State University Ice model (PSUI. The climate model generates a surface mass balance (SMB field via a sub-gridded surface energy/moisture balance model that resolves narrow ice sheet ablation zones. The ice model returns revised elevation, surface albedo and ice area fields, plus coastal fluxes of heat and moisture. An arbitrary number of ice sheets can be simulated, each on their own high-resolution grid and each capable of synchronous or asynchronous coupling with the overlying climate model. The model is designed to conserve global heat and moisture. In the process of improving model performance we developed a procedure to account for modelled surface air temperature (SAT biases within the energy/moisture balance surface model and improved the UVic ESCM snow surface scheme through addition of variable albedos and refreezing over the ice sheet.

    A number of simulations for late Holocene, Last Glacial Maximum (LGM, and Eemian climate boundary conditions were carried out to explore the sensitivity of the coupled model and identify model configurations that best represented these climate states. The modelled SAT bias was found to play a significant role in long-term ice sheet evolution, as was the effect of refreezing meltwater and surface albedo. The bias-corrected model was able to reasonably capture important aspects of the Antarctic and Greenland ice sheets, including modern SMB and ice distribution. The simulated northern Greenland ice sheet was found to be prone to ice margin retreat at radiative forcings corresponding closely to those of the Eemian or the present-day.

  1. A new coupled ice sheet-climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions

    Directory of Open Access Journals (Sweden)

    J. G. Fyke

    2010-08-01

    Full Text Available The need to better understand long-term climate/ice sheet feedback loops is motivating efforts to couple ice sheet models into Earth System models which are capable of long-timescale simulations. In this paper we describe a coupled model, that consists of the University of Victoria Earth System Climate Model (UVic ESCM and the Pennsylvania State University Ice model (PSUI. The climate model generates a surface mass balance (SMB field via a sub-gridded surface energy/moisture balance model that resolves narrow ice sheet ablation zones. The ice model returns revised elevation, surface albedo and ice area fields, plus coastal fluxes of heat and moisture. An arbitrary number of ice sheets can be simulated, each on their own high-resolution grid and each capable of synchronous or asynchronous coupling with the overlying climate model. The model is designed to conserve global heat and moisture. In the process of improving model performance we developed a procedure to account for modelled surface air temperature (SAT biases within the energy/moisture balance surface model and improved the UVic ESCM snow surface scheme through addition of variable albedos and refreezing over the ice sheet.

    A number of simulations for late Holocene, Last Glacial Maximum (LGM, and Eemian climate boundary conditions were carried out to explore the sensitivity of the coupled model and identify model configurations that best represented these climate states. The modelled SAT bias was found to play a significant role in long-term ice sheet evolution, as was the effect of refreezing meltwater and surface albedo. The bias-corrected model was able to reasonably capture important aspects of the Antarctic and Greenland ice sheets, including modern SMB and ice distribution. The simulated northern Greenland ice sheet was found to be prone to ice margin retreat at radiative forcings corresponding closely to those of the Eemian or the present-day.

  2. A new coupled ice sheet-climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions

    Science.gov (United States)

    Fyke, J. G.; Weaver, A. J.; Pollard, D.; Eby, M.; Carter, L.; Mackintosh, A.

    2010-08-01

    The need to better understand long-term climate/ice sheet feedback loops is motivating efforts to couple ice sheet models into Earth System models which are capable of long-timescale simulations. In this paper we describe a coupled model, that consists of the University of Victoria Earth System Climate Model (UVic ESCM) and the Pennsylvania State University Ice model (PSUI). The climate model generates a surface mass balance (SMB) field via a sub-gridded surface energy/moisture balance model that resolves narrow ice sheet ablation zones. The ice model returns revised elevation, surface albedo and ice area fields, plus coastal fluxes of heat and moisture. An arbitrary number of ice sheets can be simulated, each on their own high-resolution grid and each capable of synchronous or asynchronous coupling with the overlying climate model. The model is designed to conserve global heat and moisture. In the process of improving model performance we developed a procedure to account for modelled surface air temperature (SAT) biases within the energy/moisture balance surface model and improved the UVic ESCM snow surface scheme through addition of variable albedos and refreezing over the ice sheet. A number of simulations for late Holocene, Last Glacial Maximum (LGM), and Eemian climate boundary conditions were carried out to explore the sensitivity of the coupled model and identify model configurations that best represented these climate states. The modelled SAT bias was found to play a significant role in long-term ice sheet evolution, as was the effect of refreezing meltwater and surface albedo. The bias-corrected model was able to reasonably capture important aspects of the Antarctic and Greenland ice sheets, including modern SMB and ice distribution. The simulated northern Greenland ice sheet was found to be prone to ice margin retreat at radiative forcings corresponding closely to those of the Eemian or the present-day.

  3. A new coupled ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions

    Science.gov (United States)

    Fyke, J. G.; Weaver, A. J.; Pollard, D.; Eby, M.; Carter, L.; Mackintosh, A.

    2011-03-01

    The need to better understand long-term climate/ice sheet feedback loops is motivating efforts to couple ice sheet models into Earth System models which are capable of long-timescale simulations. In this paper we describe a coupled model that consists of the University of Victoria Earth System Climate Model (UVic ESCM) and the Pennsylvania State University Ice model (PSUI). The climate model generates a surface mass balance (SMB) field via a sub-gridded surface energy/moisture balance model that resolves narrow ice sheet ablation zones. The ice model returns revised elevation, surface albedo and ice area fields, plus coastal fluxes of heat and moisture. An arbitrary number of ice sheets can be simulated, each on their own high-resolution grid and each capable of synchronous or asynchronous coupling with the overlying climate model. The model is designed to conserve global heat and moisture. In the process of improving model performance we developed a procedure to account for modelled surface air temperature (SAT) biases within the energy/moisture balance surface model and improved the UVic ESCM snow surface scheme through addition of variable albedos and refreezing over the ice sheet. A number of simulations for late Holocene, Last Glacial Maximum (LGM), and Eemian climate boundary conditions were carried out to explore the sensitivity of the coupled model and identify model configurations that best represented these climate states. The modelled SAT bias was found to play a significant role in long-term ice sheet evolution, as was the effect of refreezing meltwater and surface albedo. The bias-corrected model was able to reasonably capture important aspects of the Antarctic and Greenland ice sheets, including modern SMB and ice distribution. The simulated northern Greenland ice sheet was found to be prone to ice margin retreat at radiative forcings corresponding closely to those of the Eemian or the present-day.

  4. Flood sensitivity of the Bavarian Alpine Foreland since the late Middle Ages in the context of internal and external climate forcing factors

    Science.gov (United States)

    Böhm, O.; Jacobeit, J.; Glaser, R.; Wetzel, K.-F.

    2015-12-01

    This paper describes the flood sensitivity of the Bavarian part of the Alpine Foreland of Germany and addresses different questions concerning climate variability and flood frequencies, from the 14th century until today. The focal point of the paper is the flood frequency of the superordinate spatial unit of the Bavarian Foreland. Based on written historical sources, the flood history of the Alpine Foreland of Germany can be reconstructed back to the 14th century. One major result is the occurrence of "flood-rich" and "flood-poor" episodes in almost cyclical sequences. Flood-rich periods, before the 16th century based on limited available data, were recorded in the periods 1300-1335, 1370-1450, 1470-1525, 1555-1590, 1615-1665, 1730-1780, 1820-1870, and 1910-1955 as well as in a ninth period beginning in 1980. The flood-rich periods are characterized by longer flood duration. Most of the flood-rich and flood-poor periods (in particular the beginning and the end of them) can be connected to changes in natural climate variability. These include changing sunspot numbers (as a measure of solar activity), so-called Little Ice Age type events (LIATEs) as well as changes in the North Atlantic Oscillation (NAO). Climate signals from external forcing factors, which could be used to explain the changing flood frequencies in the Bavarian Alpine Foreland, end in 1930. Relationships within the climate system such as the correlation of flood frequencies with the NAO have changed during the transition from the post Little Ice Age period to the Modern Climate Optimum around 1930. Natural climate variability might have been overlaid by anthropogenic climate change.

  5. Sensitivity of tropospheric chemical composition to halogen-radical chemistry using a fully coupled size-resolved multiphase chemistry/global climate system – Part 1: Halogen distributions, aerosol composition, and sensitivity of climate-relevant gases

    Directory of Open Access Journals (Sweden)

    M. S. Long

    2013-03-01

    Full Text Available Observations and model studies suggest a significant but highly non-linear role for halogens, primarily Cl and Br, in multiphase atmospheric processes relevant to tropospheric chemistry and composition, aerosol evolution, radiative transfer, weather, and climate. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was tested using a size-resolved multiphase coupled chemistry/global climate model (National Center for Atmospheric Research's Community Atmosphere Model (CAM; v3.6.33. Simulation results showed strong meridional and vertical gradients in Cl and Br species. The simulation reproduced most available observations with reasonable confidence permitting the formulation of potential mechanisms for several previously unexplained halogen phenomena including the enrichment of Br− in submicron aerosol, and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile Br mixing ratios were generally high in the troposphere. Br in the stratosphere was lower than observed due to the lack of long-lived organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrated a significant temporal and spatial sensitivity of primary atmospheric oxidants (O3, HOx, NOx, CH4, and non-methane hydrocarbons (NMHC's to halogen cycling. Simulated O3 and NOx were globally lower (65% and 35%, respectively, less in the planetary boundary layer based on median values in simulations that included halogens. Globally, little impact was seen in SO2 and non-sea-salt SO42− processing due to halogens. Significant regional differences were evident: the lifetime of nss-SO42− was extended downwind of large sources of SO2. The burden and lifetime of DMS (and its oxidation products were lower by a factor of 5 in simulations that included halogens, versus those without

  6. What Lies beneath Seemingly Positive Campus Climate Results: Institutional Sexism, Racism, and Male Hostility toward Equity Initiatives and Liberal Bias

    Science.gov (United States)

    Vaccaro, Annemarie

    2010-01-01

    This article presents qualitative results from a campus climate study at one predominately white university. Data analysis uncovered "what lies beneath" a seemingly positive campus climate. Gender differences in survey responses suggest that men and women experienced the climate in vastly different ways. Additionally, lack of deep diversity…

  7. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types.

    Directory of Open Access Journals (Sweden)

    Alison Jones

    Full Text Available One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change.

  8. Testing the Climate Sensitivity of Mountain Hemlock (Tsuga mertensiana (Bong.) Carr.) Near the Southern Limit of Its Range

    Science.gov (United States)

    Appleton, S.; St George, S.

    2014-12-01

    This study investigates the climate sensitivity of mountain hemlock (Tsuga mertensiana (Bong.) Carr.) near the southern limit of its range, tests the stability of its climate-tree relations over the last few decades, and explores its potential as a hydroclimatic proxy for Crater Lake National Park. We collected tree cores at seven locations around the caldera rim, focusing on hemlock growing at higher elevations (2000-2400 masl). The median length of all ring-width series is 283 years, and the oldest hemlock sample extends back to C.E. 1450. Several types of anatomical anomalies, including frost rings, traumatic resin ducts, false rings, and light late-wood bands were observed within the specimens, the most common feature being a false ring in C.E. 1810. Each set of standardized ring-width measurements has a strong common signal, with between-tree correlations (r-bar) ranging from 0.31 to 0.49. Preliminary analysis suggests hemlock growth across the park is strongly and inversely related to total cool-season precipitation, and is also influenced positively (albeit more weakly) by mean summer temperature. Most sites are significantly and negatively correlated with total December-to-February precipitation (r = -0.41) and total precipitation from December to August (r = -0.48). Compared to other ring-width records exhibiting similar negative responses to winter precipitation, these hemlocks appear to track that specific signal quite clearly and, as a result, these data may be suitable to reconstruct past changes in cool-season moisture in Crater Lake National Park and across the broader southern Cascades.

  9. Winter climate affects long-term trends in stream water nitrate in acid-sensitive catchments in southern Norway

    Directory of Open Access Journals (Sweden)

    H. A. de Wit

    2008-03-01

    Full Text Available Controls of stream water NO3 in mountainous and forested catchments are not thoroughly understood. Long-term trends in stream water NO3 are positive, neutral and negative, often apparently independent of trends in N deposition. Here, time series of NO3 in four small acid-sensitive catchments in southern Norway were analysed in order to identify likely drivers of long-term changes in NO3. In two sites, stream water NO3 export declined ca 50% over a period of 25 years while in the other sites NO3 export increased with roughly 20%. Discharge and N deposition alone were poor predictors of these trends. The most distinct trends in NO3 were found in winter and spring. Empirical models explained between 45% and 61% of the variation in weekly concentrations of NO3, and described both upward and downward seasonal trends tolerably well. Key explaining variables were snow depth, discharge, temperature and N deposition. All catchments showed reductions in snow depth and increases in winter discharge. In two inland catchments, located in moderate N deposition areas, these climatic changes appeared to drive the distinct decreases in winter and spring concentrations and fluxes of NO3. In a coast-near mountainous catchment in a low N deposition area, these climatic changes appeared to have the opposite effect, i.e. lead to increases in especially winter NO3. This suggests that the effect of a reduced snow pack may result in both decreased and increased catchment N leaching depending on interactions with N deposition, soil temperature regime and winter discharge.

  10. Winter climate affects long-term trends in stream water nitrate in acid-sensitive catchments in southern Norway

    Directory of Open Access Journals (Sweden)

    H. A. de Wit

    2007-09-01

    Full Text Available Controls of stream water NO3 in mountainous and forested catchments are not thoroughly understood. Long-term trends in stream water NO3 are positive, neutral and negative, often apparently independent of trends in N deposition. Here, time series of NO3 in four small acid-sensitive catchments in southern Norway were analysed in order to identify likely drivers of long-term changes in NO3. In two sites, stream water NO3 export declined ca 50% over a period of 25 years while in the other sites NO3 export increased with roughly 20%. Discharge and N deposition alone were poor predictors of these trends. The most distinct trends in NO3 were found in winter and spring. Empirical models explained between 45% and 61% of the variation in weekly concentrations of NO3, and described both upward and downward seasonal trends tolerably well. Key explaining variables were snow depth, discharge, temperature and N deposition. All catchments showed reductions in snow depth and increases in winter discharge. In two inland catchments, located in moderate N deposition areas, these climatic changes appeared to drive the distinct decreases in winter and spring concentrations and fluxes of NO3. In a coast-near mountainous catchment in a low N deposition area, these climatic changes appeared to have the opposite effect, i.e. lead to increases in especially winter NO3. This suggests that the effect of a reduced snow pack may result in both decreased and increased catchment N leaching depending on interactions with N deposition, soil temperature regime and winter discharge.

  11. Greenland Ice Sheet influence on Last Interglacial climate: global sensitivity studies performed with an atmosphere–ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. Pfeiffer

    2015-03-01

    Full Text Available During the Last Interglacial (LIG, 130–115 kiloyear before present, the northern high latitudes experienced higher temperatures than those of the late Holocene with a notably lower Greenland Ice Sheet (GIS. However, the impact of a reduced GIS on the global climate has not yet been well constrained. In this study, we quantify the contribution of the GIS to LIG warmth by performing various sensitivity studies, employing the Community Earth System Models (COSMOS, with a focus on height and extent of the GIS. In order to asses the effects of insolation changes over time and for a comparison of LIG climate with the current interglacial, we perform transient simulations covering the whole LIG and Holocene. We analyze surface air temperature (SAT and separate the contribution of different forcings to LIG warmth. The strong Northern Hemisphere warming is mainly caused by increased summer insolation. Reducing the height and extent of the GIS leads to a warming of several degrees Celcius in the northern and southern high latitudes during local winter. In order to evaluate the performance of our LIG simulations, we additionally compare the simulated SAT anomalies with marine and terrestrial proxy-based LIG temperature anomalies. Our model results are in good agreement with proxy records with respect to the pattern, but underestimate the reconstructed temperatures. We are able to reduce the mismatch between model and data by taking into account the potential seasonal bias of the proxy record and the uncertainties in the dating of the proxy records for the LIG thermal maximum. The seasonal bias and the uncertainty of the timing are estimated from our own transient model simulations. We note however that our LIG simulations are not able to reproduce the full magnitude of temperature changes indicated by the proxies, suggesting a potential misinterpretation of the proxy records or deficits of our model.

  12. Analysis of vegetation distribution in Interior Alaska and sensitivity to climate change using a logistic regression approach

    Science.gov (United States)

    Calef, M.P.; McGuire, A.D.; Epstein, H.E.; Rupp, T.S.; Shugart, H.H.

    2005-01-01

    Aim: To understand drivers of vegetation type distribution and sensitivity to climate change. Location: Interior Alaska. Methods: A logistic regression model was developed that predicts the potential equilibrium distribution of four major vegetation types: tundra, deciduous forest, black spruce forest and white spruce forest based on elevation, aspect, slope, drainage type, fire interval, average growing season temperature and total growing season precipitation. The model was run in three consecutive steps. The hierarchical logistic regression model was used to evaluate how scenarios of changes in temperature, precipitation and fire interval may influence the distribution of the four major vegetation types found in this region. Results: At the first step, tundra was distinguished from forest, which was mostly driven by elevation, precipitation and south to north aspect. At the second step, forest was separated into deciduous and spruce forest, a distinction that was primarily driven by fire interval and elevation. At the third step, the identification of black vs. white spruce was driven mainly by fire interval and elevation. The model was verified for Interior Alaska, the region used to develop the model, where it predicted vegetation distribution among the steps with an accuracy of 60-83%. When the model was independently validated for north-west Canada, it predicted vegetation distribution among the steps with an accuracy of 53-85%. Black spruce remains the dominant vegetation type under all scenarios, potentially expanding most under warming coupled with increasing fire interval. White spruce is clearly limited by moisture once average growing season temperatures exceeded a critical limit (+2 ??C). Deciduous forests expand their range the most when any two of the following scenarios are combined: decreasing fire interval, warming and increasing precipitation. Tundra can be replaced by forest under warming but expands under precipitation increase. Main

  13. Projected impact of climate change in the North and Baltic Sea. Results from dynamical downscaling of global CMIP climate scenarios

    Science.gov (United States)

    Gröger, Matthias; Maier-Reimer, Ernst; Mikolajewicz, Uwe; Sein, Dmitry

    2013-04-01

    Climate models have predicted strongest climate change impact for the mid/high lattiude areas. Despite their importance, shelves seas (which are supposed to account for more than 20% of global marine primary production and for up to 50% of total marine carbon uptake) are not adequately resolved in climate models. In this study, the global ocean general circulation and biogeochemistry model MPIOM/HAMOCC has been setup with an enhanced resolution over the NW European shelf (~10 km in the southern North Sea). For a realistic representation of atmosphere-ocean interactions the regional model REMO has been implemented. Thus, this model configuration allows a physically consistent simulation of climate signal propagation from the North Atlantic over the North Sea into the Baltic Sea since it interactively simulates mass and energy fluxes between the three basins. The results indicate substantial changes in hydrographic and biological conditions for the end of the 21st Century. A freshening by about 0.75 psu together with a surface warming of ~2.0 K and associated circulation changes in and outside the North Sea reduce biological production on the NW European shelf by ~35%. This reduction is twice as strong as the reduction in the open ocean. The underlying mechanism is a spatially well confined stratification feedback along the shelf break and the continental slope which reduces the winter mixed layer by locally more than 200 m compared to current conditions. As a consequence winter nutrient supply from the deep Atlantic declines between 40 and 50%. In addition to this, the volume transport of water and salt into the North Sea will slightly reduce (~10%) during summer. At the end of the 21st Century the North Sea appears nearly decoupled from the deep Atlantic. The projected decline in biological productivity and subsequent decrease of phytoplankton (by averaged 25%) will probably negatively affect the local fish stock in the North Sea. In the Baltic Sea the climate

  14. Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar

    OpenAIRE

    Sulin Tao; Shuanghe Shen; Yuhong Li; Qi Wang; Ping Gao; Isaac Mugume

    2016-01-01

    A sensitivity analysis of the responses of crops to the chosen production adaptation options under regional climate change was conducted in this study. Projections of winter wheat production for different sowing dates and cultivars were estimated for a major economic and agricultural province of China from 2021 to 2080 using the World Food Study model (WOFOST) under representative concentration pathways (RCPs) scenarios. A modeling chain was established and a correction method was proposed to...

  15. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    OpenAIRE

    Angelen, J. H.; Lenaerts, J. T. M.; S. Lhermitte; X. Fettweis; P. Kuipers Munneke; M. R. van den Broeke; van Meijgaard, E.

    2012-01-01

    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6%) at the K-transect (west Greenland) for the period 2004–2009 is...

  16. New results on the influence of climate on the distribution of population and economic activity

    OpenAIRE

    Füssel, Hans-Martin

    2009-01-01

    This paper applies G-Econ+, an updated version of the G-Econ database by Nordhaus, to analyze the influence of climatic and geographic factors on the geographic distribution of population and economic activity. I discuss options for improved treatment of several statistical problems associated with G-Econ, which are not addressed adequately in the original G-Econ analysis. Reanalysis of key results from the original G-Econ analysis corrects some surprising results therein. Extensive sensitivi...

  17. Climate Change Impact on Hydrological Extremes: Preliminary Results from the Polish-Norwegian Project

    Directory of Open Access Journals (Sweden)

    Romanowicz Renata J

    2016-04-01

    Full Text Available This paper presents the background, objectives, and preliminary outcomes from the first year of activities of the Polish–Norwegian project CHIHE (Climate Change Impact on Hydrological Extremes. The project aims to estimate the influence of climate changes on extreme river flows (low and high and to evaluate the impact on the frequency of occurrence of hydrological extremes. Eight “twinned” catchments in Poland and Norway serve as case studies. We present the procedures of the catchment selection applied in Norway and Poland and a database consisting of near-natural ten Polish and eight Norwegian catchments constructed for the purpose of climate impact assessment. Climate projections for selected catchments are described and compared with observations of temperature and precipitation available for the reference period. Future changes based on those projections are analysed and assessed for two periods, the near future (2021–2050 and the far-future (2071–2100. The results indicate increases in precipitation and temperature in the periods and regions studied both in Poland and Norway.

  18. Using a Mechanistic Reactive Transport Model to Represent Soil Organic Matter Dynamics and Climate Sensitivity

    Science.gov (United States)

    Guerry, N.; Riley, W. J.; Maggi, F.; Torn, M. S.; Kleber, M.

    2011-12-01

    substantial uncertainty in how these relationships should be represented. We also developed several other model formulations, including one that represents SOM in pools of varying decomposability, but lacking explicit protection mechanisms. We tested the model against several observational and experimental datasets. An important conclusion of our analysis is that although several of the model structural formulations were able to represent the bulk SOM observations, including 14C vertical profiles, the temperature, moisture, and soil chemistry sensitivity of decomposition varied strongly between each formulation. Finally, we applied the model to design observations that would be required to better constrain process representation and improve predictions of changes in SOM under changing climate.

  19. Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature projections

    Directory of Open Access Journals (Sweden)

    B. L. Kurylyk

    2014-11-01

    Full Text Available Climate change is expected to increase stream temperatures, and the projected warming may alter the spatial extent of habitat for coldwater fish and other aquatic taxa. Recent studies have proposed that stream thermal sensitivities, derived from short term air temperature variations, can be employed to infer future stream warming due to long term climate change. However, this approach does not consider the potential for streambed heat fluxes to increase due to gradual warming of shallow groundwater. The temperature of shallow groundwater is particularly important for the thermal regimes of groundwater-dominated streams and rivers. Also, other recent stream temperature studies have investigated how land surface perturbations, such as wildfires or timber harvesting, can influence stream temperatures by changing surface heat fluxes, but these studies have typically not considered how these surface disturbances can also alter shallow groundwater temperatures and consequent streambed heat fluxes. In this study, several analytical solutions to the one-dimensional unsteady advection–diffusion equation for subsurface heat transport are employed to investigate the timing and magnitude of groundwater warming due to seasonal and long term variability in land surface temperatures. Novel groundwater thermal sensitivity formulae are proposed that accommodate different surface warming scenarios. The thermal sensitivity formulae demonstrate that shallow groundwater will warm in response to climate change and other surface perturbations, but the timing and magnitude of the warming depends on the rate of surface warming, subsurface thermal properties, aquifer depth, and groundwater velocity. The results also emphasize the difference between the thermal sensitivity of shallow groundwater to short term (e.g. seasonal and long term (e.g. multi-decadal land surface temperature variability, and thus demonstrate the limitations of using short term air and water

  20. The use of the k - {epsilon} turbulence model within the Rossby Centre regional ocean climate model: parameterization development and results

    Energy Technology Data Exchange (ETDEWEB)

    Markus Meier, H.E. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden). Rossby Centre

    2000-09-01

    As mixing plays a dominant role for the physics of an estuary like the Baltic Sea (seasonal heat storage, mixing in channels, deep water mixing), different mixing parameterizations for use in 3D Baltic Sea models are discussed and compared. For this purpose two different OGCMs of the Baltic Sea are utilized. Within the Swedish regional climate modeling program, SWECLIM, a 3D coupled ice-ocean model for the Baltic Sea has been coupled with an improved version of the two-equation k - {epsilon} turbulence model with corrected dissipation term, flux boundary conditions to include the effect of a turbulence enhanced layer due to breaking surface gravity waves and a parameterization for breaking internal waves. Results of multi-year simulations are compared with observations. The seasonal thermocline is simulated satisfactory and erosion of the halocline is avoided. Unsolved problems are discussed. To replace the controversial equation for dissipation the performance of a hierarchy of k-models has been tested and compared with the k - {epsilon} model. In addition, it is shown that the results of the mixing parameterization depend very much on the choice of the ocean model. Finally, the impact of two mixing parameterizations on Baltic Sea climate is investigated. In this case the sensitivity of mean SST, vertical temperature and salinity profiles, ice season and seasonal cycle of heat fluxes is quite large.

  1. Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature

    International Nuclear Information System (INIS)

    Carbon-cycle feedbacks have been shown to be very important in predicting climate change over the next century, with a potentially large positive feedback coming from the release of carbon from soils as global temperatures increase. The magnitude of this feedback and whether or not it drives the terrestrial carbon cycle to become a net source of carbon dioxide during the next century depends particularly on the response of soil respiration to temperature. Observed global atmospheric CO2 concentration, and its response to naturally occurring climate anomalies, is used to constrain the behaviour of soil respiration in our coupled climate-carbon-cycle GCM. This constraint is used to quantify some of the uncertainties in predictions of future CO2 levels. The uncertainty is large, emphasizing the importance of carbon-cycle research with respect to future climate change predictions

  2. Sensitivity Analysis of FEAST-Metal Fuel Performance Code: Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, Paul Guy [Los Alamos National Laboratory; Williams, Brian J. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Yacout, Abdellatif [Argonne National Laboratories

    2012-06-27

    This memo documents the completion of the LANL milestone, M3FT-12LA0202041, describing methodologies and initial results using FEAST-Metal. The FEAST-Metal code calculations for this work are being conducted at LANL in support of on-going activities related to sensitivity analysis of fuel performance codes. The objective is to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. This report summarizes our preliminary results for the sensitivity analysis using 6 calibration datasets for metallic fuel developed at ANL for EBR-II experiments. Sensitivity ranking methodology was deployed to narrow down the selected parameters for the current study. There are approximately 84 calibration parameters in the FEAST-Metal code, of which 32 were ultimately used in Phase II of this study. Preliminary results of this sensitivity analysis led to the following ranking of FEAST models for future calibration and improvements: fuel conductivity, fission gas transport/release, fuel creep, and precipitation kinetics. More validation data is needed to validate calibrated parameter distributions for future uncertainty quantification studies with FEAST-Metal. Results of this study also served to point out some code deficiencies and possible errors, and these are being investigated in order to determine root causes and to improve upon the existing code models.

  3. How does fishing alter marine populations and ecosystems sensitivity to climate?

    OpenAIRE

    Planque, B.; Fromentin, J.M.; Cury, Philippe; Drinkwater, K.F.; Jennings, S.; Perry, R.I.; Kifani, S

    2010-01-01

    Evidence has accumulated that climate variability influences the state and functioning of marine ecosystems. At the same time increasing pressure from exploitation and other human activities has been shown to impact exploited and non-exploited species and potentially modify ecosystem structure. There has been a tendency among marine scientists to pose the question as a dichotomy, i.e., whether (1) "natural" climate variability or (2) fishery exploitation bears the primary responsibility for p...

  4. Cloud adjustment and its role in CO 2 radiative forcing and climate sensitivity: a review

    OpenAIRE

    Andrews, T; Gregory, JM; Forster, PM; Webb, MJ

    2012-01-01

    Understanding the role of clouds in climate change remains a considerable challenge. Traditionally, this challenge has been framed in terms of understanding cloud feedback. However, recent work suggests that under increasing levels of atmospheric carbon dioxide, clouds not only amplify or dampen climate change through global feedback processes, but also through rapid (days to weeks) tropospheric temperature and land surface adjustments. In this article, we use the Met Office Hadley Centre cli...

  5. Main results of the OECD best estimate methods, uncertainty and sensitivity evaluation (BEMUSE) programme

    International Nuclear Information System (INIS)

    The BEMUSE (Best Estimate Methods - Uncertainty and Sensitivity Evaluation) Programme - promoted by the Working Group on Analysis and Management of Accidents (WGAMA) and endorsed by the Committee on the Safety of Nuclear Installations (CSNI) - represents an important step towards reliable application of high-quality best-estimate and uncertainty and sensitivity evaluation methods. The methods used in this activity are considered to be mature for application, including licensing processes. Skill, experience and knowledge of the users about the applied suitable computer code as well as the used uncertainty method are important for the quality of the results. (author)

  6. Uncertainty and sensitivity results for pre-waste-emplacement groundwater travel time

    International Nuclear Information System (INIS)

    Uncertainty and sensitivity analyses for pre-waste-emplacement groundwater travel time were conducted. Although preliminary, a number of interesting results were obtained. Uncertainty in the groundwater travel time statistics, as measured by the coefficient of variation, increases and then decreases as the modeled system transitions from matrix-dominated to fracture-dominated flow. The uncertainty analysis also suggests that the median, as opposed to the mean, may be a better indicator of performance with respect to the regulatory criterion. The sensitivity analysis shows a strong correlation between an effective fracture property, fracture porosity, and failure to meet the regulatory pre-waste-emplacement groundwater travel time criterion of 1000 years

  7. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    Science.gov (United States)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  8. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  9. Hydrologic Sensitivities of Upper Indus Basin (North Pakistan) Rivers to Multi-Decadal Climatic Variability

    Science.gov (United States)

    Farhan, S. B.; Zhang, Y.; Ma, Y.; Haifeng, G.; Jilani, R.; Hashmi, D.; Rasul, G.

    2014-12-01

    Thermal inputs play a vital role in the management and seasonal distribution of stream-flows particularly in snow and glacier fed basins, therefore the signatures of the recent climate trends can also be observed in various hydrological variables in those basins. Upper Indus Basin (UIB) is located in the western part of Tibetan Plateau, and most of its flows are dependent on snow- and glacier-melt produced water, thus the analyses of historical stream-flows and climatic indicators in the snow-melt dominated rivers of UIB was carried out, which points towards an advance in the spring flow onset time over the past few decades. Trend results reveal that warm temperature spells in spring have occurred much earlier in recent years, which explains in part the trend in the timing of spring peak stream-flows owing to earlier occurrence of snow melt onset. The observed increase in spring stream-flows and decrease in summer stream-flows suggests a broad shift of snow-melt yield and spring peak flows. These trends are found to be strongest at lower elevations basins where winter temperatures are closer to the melting point, even modest variation in temperatures are capable to enforce large shifts in the basin hydrologic feedback. In addition, it appears that in recent years due to winter and spring warming, more of the precipitation is falling as rain rather than snow particularly in late winter and early spring seasons, consequently it is speculated that this shift in precipitation ratio (snow vs rain) and early warming spells might also affect local (basin-scale) Albedo via early recession and systematic decrease of snow cover area, which tends in lowering Albedo from an increased fraction of snow-free area, which instigate positive feedback on radiative balance that can perhaps causes local-scale heat redistribution, which collectively in turn augmented winter and early spring stream-flows in those basins. These observed hydro-climatological trends over UIB can have

  10. Theoretical predictions of experimental observables sensitive to the symmetry energy: Results of the SMF transport model

    CERN Document Server

    Colonna, Maria; Di Toro, Massimo

    2013-01-01

    In the framework of mean-field based transport approaches, we discuss recent results concerning heavy ion reactions between charge asymmetric systems, from low up to intermediate energies. We focus on isospin sensitive observables, aiming at extracting information on the density dependence of the isovector part of the nuclear effective interaction and of the nuclear symmetry energy. For reactions close to the Coulomb barrier, we explore the structure of collective dipole oscillations, rather sensitive to the low-density behavior of the symmetry energy. In the Fermi energy regime, we investigate the interplay between dissipation mechanisms, fragmentation and isospin effects. At intermediate energies, where regions with higher density and momentum are reached, we discuss collective flows and their sensitivity to the momentum dependence of the isovector interaction channel, which determines the splitting of neutron and proton effective masses. Finally, we also discuss the isospin effect on the possible phase tra...

  11. Climatic water deficit and wildfire: predicting spatial patterns in forest ecosystem sensitivity to warming and earlier spring snowmelt. (Invited)

    Science.gov (United States)

    Westerling, A. L.; Keyser, A.; Milostan, J.

    2013-12-01

    Western U.S. forest wildfire area burned increased significantly in recent decades, with much of the increase in the US Rocky Mountains (Westerling et al 2006). While Westerling et al (2006) noted that interannual variability in aggregate regional forest wildfire has been highly correlated with regional indices of warming and spring snowmelt, our analysis of the hydroclimatic conditions coincident with the occurrence of large forest wildfires in recent decades reveals that sensitivity of wildfire in specific forest areas has been characterized by a narrow range of climatic conditions: long-term average snow-free season of ~2-4 months and relatively high cumulative water-year actual evapotranspiration (AET). These forests have shown large increases in cumulative water year moisture deficit concomitant with large increases in wildfire in recent years with warmer than average temperatures and earlier spring snowmelt. Forests with high AET and snow-free seasons between 4 and 5 months have exhibited significant but more moderate increases in wildfire activity. Mean snow-free season length and cumulative AET may also be predictive of forest wildfire sensitivity to projected warming. Recent climate change impact studies indicate that the same forests where wildfire activity has exhibited the most sensitivity to observed warming in recent decades may continue to exhibit large increases in the next few decades, until reductions in fuel availability and continuity become dominant constraints on the growth of large wildfires (e.g., Westerling et al 2011a, Litschert et al 2012, Westerling et al unpublished data). We also find that similar forests that may have been buffered from recent climate change by elevation or latitude may also show very large increases in wildfire under projected warming. Conversely, warmer, drier forests where recent changes in moisture deficit and fire activity have been more moderate (particularly those with snow-free seasons ~4-5 months), are

  12. Current analogues of future climate indicate the likely response of a sensitive montane tropical avifauna to a warming world.

    Science.gov (United States)

    Anderson, Alexander S; Storlie, Collin J; Shoo, Luke P; Pearson, Richard G; Williams, Stephen E

    2013-01-01

    Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species' environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species' actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species' responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We

  13. Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation

    Science.gov (United States)

    Li, Wenkai; Guo, Weidong; Xue, Yongkang; Fu, Congbin; Qiu, Bo

    2015-12-01

    Land surface processes play an important role in the East Asian Summer Monsoon (EASM) system. Parameterization schemes of land surface processes may cause uncertainties in regional climate model (RCM) studies for the EASM. In this paper, we investigate the sensitivity of a RCM to land surface parameterization (LSP) schemes for long-term simulation of the EASM. The Weather Research and Forecasting (WRF) Model coupled with four different LSP schemes (Noah-MP, CLM4, Pleim-Xiu and SSiB), hereafter referred to as Sim-Noah, Sim-CLM, Sim-PX and Sim-SSiB respectively, have been applied for 22-summer EASM simulations. The 22-summer averaged spatial distributions and strengths of downscaled large-scale circulation, 2-m temperature and precipitation are comprehensively compared with ERA-Interim reanalysis and dense station observations in China. Results show that the downscaling ability of RCM for the EASM is sensitive to LSP schemes. Furthermore, this study confirms that RCM does add more information to the EASM compared to reanalysis that imposes the lateral boundary conditions (LBC) because it provides 2-m temperature and precipitation that are with higher resolution and more realistic compared to LBC. For 2-m temperature and monsoon precipitation, Sim-PX and Sim-SSiB simulations are more consistent with observation than simulations of Sim-Noah and Sim-CLM. To further explore the physical and dynamic mechanisms behind the RCM sensitivity to LSP schemes, differences in the surface energy budget between simulations of Ens-Noah-CLM (ensemble mean averaging Sim-Noah and Sim-CLM) and Ens-PX-SSiB (ensemble mean averaging Sim-PX and Sim-SSiB) are investigated and their subsequent impacts on the atmospheric circulation are analyzed. It is found that the intensity of simulated sensible heat flux over Asian continent in Ens-Noah-CLM is stronger than that in Ens-PX-SSiB, which induces a higher tropospheric temperature in Ens-Noah-CLM than in Ens-PX-SSiB over land. The adaptive

  14. Comment on "Using multiple observationally-based constraints to estimate climate sensitivity" by J. D. Annan and J. C. Hargreaves, Geophys. Res. Lett., 33, L06704, doi:10.1029/2005GL025259, 2006

    Directory of Open Access Journals (Sweden)

    S. V. Henriksson

    2009-10-01

    Full Text Available In their paper from 2006, Annan and Hargreaves present an estimate for the uncertainty of climate sensitivity obtained by using Bayes' theorem to combine information from different sources. In this comment article we critisize two aspects of their reasoning, namely using probability density functions and likelihood functions interchangeably and the assumed independence of evidence from the different sources. The derivation of their result rests on key assumptions, some stated explicitly and some left implicit, which are are unlikely to hold in reality. Thus their study does not convincingly reduce the large uncertainty of climate sensitivity remaining in previous observationally-based studies.

  15. Sensitivity of remote aerosol distributions to representation of cloud-aerosol interactions in a global climate model

    Directory of Open Access Journals (Sweden)

    H. Wang

    2013-01-01

    Full Text Available Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5, have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold increase in the winter (summer months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold

  16. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  17. Sensitivity of ground-water recharge estimates to climate variability and change, Ellensburg Basin, Columbia Plateau, Washington. A contribution of the Regional Aquifer-System Analysis Program. Water Resources Investigation

    International Nuclear Information System (INIS)

    The report presents the results of an investigation to provide insight into the sensitivity of recharge estimates to historical and synthetic climate variability and projected climate change. In the study, the climatic variability in the 87-year Ellensburg historical record (1901-87) was first analyzed, and then ground-water recharge for the Ellensburg basin was simulated using the DPM model for the 22-year period (1956-77) and the 87-year period. Previously, data from three weather stations were used to interpolate daily temperature and precipitation to the cells of the basin (Bauer and Vaccaro, 1990). Because data from only one station were going to be used in the study, the previous results were compared with the results of the 22-year single-station simulation and results using a 22-year synthetic generated climate record. The object of comparing results of the one-station and three-station simulations was not to examine the effects of spatial climate variability. The comparison was done to determine the potential error in the estimated recharge caused by the loss of information on spatial climate variability when using climatological data from only one station. The results of 87-year simulations incorporating projected climatic change derived from three general circulation models were then compared with the 87-year results calculated using the historical record

  18. The Feasibility of Avoiding Future Climate Impacts: Results from the AVOID Programmes

    Science.gov (United States)

    Lowe, J. A.; Warren, R.; Arnell, N.; Buckle, S.

    2014-12-01

    The AVOID programme and its successor, AVOID2, have focused on answering three core questions: how do we characterise potentially dangerous climate change and impacts, which emissions pathways can avoid at least some of these impacts, and how feasible are the future reductions needed to significantly deviate from a business-as-usual future emissions pathway. The first AVOID project succeeded in providing the UK Government with evidence to inform its position on climate change. A key part of the work involved developing a range of global emissions pathways and estimating and understanding the corresponding global impacts. This made use of a combination of complex general circulation models, simple climate models, pattern-scaling and state-of-the art impacts models. The results characterise the range of avoidable impacts across the globe in several key sectors including river and coastal flooding, cooling and heating energy demand, crop productivity and aspects of biodiversity. The avoided impacts between a scenario compatible with a 4ºC global warming and one with a 2ºC global warming were found to be highly sector dependent and avoided fractions typically ranged between 20% and 70%. A further key aspect was characterising the magnitude of the uncertainty involved, which is found to be very large in some impact sectors although the avoided fraction appears a more robust metric. The AVOID2 programme began in 2014 and will provide results in the run up to the Paris CoP in 2015. This includes new post-IPCC 5th assessment evidence to inform the long-term climate goal, a more comprehensive assessment of the uncertainty ranges of feasible emission pathways compatible with the long-term goal and enhanced estimates of global impacts using the latest generation of impact models and scenarios.

  19. Sensitivity of Southwestern US Mountain Ecosystems to Climate Variability: Interactions Among Forest Dieback, Fire, and Erosion

    Science.gov (United States)

    Allen, C. D.

    2004-12-01

    Millions of hectares in the upland landscapes of the Southwestern United States have been affected by forest dieback and severe fire activity since the late 1990s, a period of ongoing severe drought and unusual warmth. Climate regulates physiological plant stress that can directly cause vegetation mortality, and also influences associated insect outbreak dynamics. Climate also interacts with fuel conditions to drive regional fire activity. Current and historic patterns of forest dieback, fire activity, and erosion are described across landscape gradients in Southwestern mountains, particularly the Jemez Mountains of New Mexico. Methods used include inventory and dating of live and dead woody plants to assess demographic changes through time, long-term (since 1991) measurements of ponderosa pine tree-growth at three sites with dendrometer bands, monitoring of herbaceous vegetation along 3 km of permanent transects since 1991, aerial photograph analyses of insect outbreaks and forest dieback and fire activity, and hydrological measurements of runoff and erosion. Similarities and differences in vegetation dieback and regional fire activity patterns between the current drought and the 1950s (when regional drought last affected the Southwest) are explained by changes in climatic and vegetation conditions. The current climate-induced vegetation dieback and pulse of regional fire activity have strong feedbacks with various key ecosystem processes, including water budgets and soil erosion. For example, severe drought and fire both markedly reduce the surface cover of live plants and dead plant materials ("litter"), triggering nonlinear increases in erosion rates once the connectivity of bare soil patches exceeds critical threshold values, particularly during high-intensity summer rainfall events that characterize the Southwestern summer "monsoon". These observations highlight the magnitude, rapidity, and complexity of climate-induced disturbance processes, and provide an

  20. Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results

    OpenAIRE

    Salzmann, N.; Noetzli, J.; C. Hauck; Gruber, S.; M. Hoelzle; Haeberli, W.

    2007-01-01

    Climate change can have severe impacts on the high-mountain cryosphere, such as instabilities in rock walls induced by thawing permafrost. Relating climate change scenarios produced from global climate models (GCMs) and regional climate models (RCMs) to complex high-mountain environments is a challenging task. The qualitative and quantitative impact of changes in climatic conditions on local to microscale ground surface temperature (GST) and the ground thermal regime is not readily apparent. ...

  1. Development of Distributed Research Center for monitoring and projecting regional climatic and environmental changes: first results

    Science.gov (United States)

    Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander

    2016-04-01

    Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and

  2. Climate change and physical disturbance manipulations result in distinct biological soil crust communities.

    Science.gov (United States)

    Steven, Blaire; Kuske, Cheryl R; Gallegos-Graves, La Verne; Reed, Sasha C; Belnap, Jayne

    2015-11-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased Cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands. PMID:26276111

  3. [A Case of Drug-Induced Thrombocytopenia Resulting from Sensitivity to Oxaliplatin].

    Science.gov (United States)

    Masuda, Taiki; Nagai, Kagami; Sanada, Katsuya

    2015-11-01

    A 67-year-old man was diagnosed with pulmonary metastasis from advanced transverse colon cancer. Thus, a local resection was performed. Adjuvant chemotherapy with mFOLFOX6 was started. Sixteen courses were carried out without problems. However, he complained of chills and chest discomfort 2 hours after beginning the 17th course of chemotherapy. Laboratory data showed remarkable thrombocytopenia, and platelet-associated IgG level was high. After administration of steroids and platelet transfusions, the platelet count improved. Therefore, we diagnosed drug-induced thrombocytopenia resulting from sensitivity to oxaliplatin (L-OHP). Since then, sLV5FU2 therapy was started, and the patient received the whole adjuvant chemotherapy without problems. Thrombocytopenia resulting from sensitivity to L-OHP is a relatively rare side effect. We herein report this case with a review of the relevant literature. PMID:26805296

  4. Climate change sensitivity of the African ivory nut palm, Hyphaena petersiana Klotzsch ex Mart. (arecaceae) - a keystone species in SE Africa

    DEFF Research Database (Denmark)

    Overgaard, Anne Blach; Svenning, J.-C.; Balslev, Henrik

    2009-01-01

    climate sensitivity of the key-stone palm species Hyphaene petersiana (African ivory nut palm) in southern Africa. We tested the relative roles of climate vs. non-climatic range-controls and found that climate had a clear effect on the range of H. petersiana and that especially water-related variables......Africa is the most vulnerable continent to future climate change. Profound changes are projected for southwestern Africa with increased drying, notably with delayed onset of the rainy season in September-November, and temperature increases in all seasons. The projected climate changes combined with...... palm species by humans and livestock are likely to exacerbate the negative effect of future climate changes on its populations, especially, given the expected human population increase in Africa....

  5. The effects of climatic change on crop production. Results of a five-year research project

    Energy Technology Data Exchange (ETDEWEB)

    Mela, T.; Carter, T.; Hakala, K.; Kaukoranta, T.; Laurila, H.; Niemi, K.; Saarikko, R.; Tiilikkala, K. [Agricultural Research Centre of Finland, Jokioinen (Finland); Hannukkala, A. [Agricultural Research Centre, Rovaniemi (Finland). Lapland Research Station

    1996-12-31

    The aim of this research project, funded jointly by SILMU and by the Agricultural Research Centre of Finland, was to evaluate the possible effects of changes in climate and carbon dioxide concentration on the growth, development and yield of field crops and on crop pests and diseases in Finland. The study focused on two cereal crops (spring wheat and spring barley), a grass species (meadow fescue), some common pathogens of cereals and potato, insect pests of small fruits and nematode risk of potato and sugar beet. The results of this study indicate the following effects on crop production of the `best guess` climate change anticipated for Finland by 2050: A lengthening of the potential growing season of 3-5 weeks. A northward expansion of about 250-500 km in suitability for cereal production. Increased yields of adapted spring cereals. New, longer-season cultivars would benefit from both higher temperatures and elevated CO{sub 2}. Improved potential for the cultivation of higher-yielding winter sown cereals. Increased grass yields due to a lengthening growing season and increased growth rates, assuming that water and nutrient limitations are minor. However, there is a possibility of reduced winter hardening under higher autumn temperatures and an increased risk of winter damage. Potential for the successful cultivation of new crops like maize in southern Finland. Increased potential for yield losses due to crop pests and diseases under climatic warming. The range of many species is expected to expand northwards, additional generations of some species would develop successfully, and new species may become established in Finland. The research is continuing as part of a new European Community project, and will explore a wider range of crop types, focusing on the effects of climate change on agricultural risk at national scale

  6. Towards understanding the dynamics of environmental sensitivity to climate change: introducing the DESC model

    Science.gov (United States)

    Barkwith, A.; Wang, L.; Jackson, C.; Ellis, M.

    2012-04-01

    The DESC model seeks to explore the interactions that exist between Earth systems at a range of spatio-temporal scales by coupling current landscape evolution modelling technologies to a host of new geo-processing modules. DESC currently uses the well established CAESAR model (Coulthard and Van De Wiel, 2006) as its kernel; a two-dimensional cellular automaton landscape evolution model which has a modular design and great versatility in the range of simulated spatio-temporal scales. Initial research focused on the loose coupling of CAESAR to the groundwater flow model ZOOMQ3D, investigating the role of groundwater on sediment transport at the catchment scale. The Eden Valley (Cumbria, UK) was selected as a test bed for the coupled model and results suggest that although the volume of sediment transport through the catchment is not altered, the distribution of sediment erosion and deposition in the simulation is perturbed by the interplay of baseflow conditions and storm intensity and frequency. In order to reduce processing time, the groundwater module was replaced by a cellular, distributed, coupled surface-subsurface water flow model. The updated hydrological model has decreased data storage needs and a simulation time in the region of two orders of magnitude faster than the original, whilst continuing to calculate a range of hydrological parameters at individual nodes. The surface model was developed by simplifying and improving a single layer soil moisture water balance model (FAO, 1998) to simulate surface runoff and groundwater recharge. Spatially distributed soil types, vegetation types, near surface soil moisture, evapotranspiration, and distributed rainfall are considered in calculating the soil water balance, and a new method was developed to simulate the surface runoff and groundwater recharge. The latter two are based on baseflow indices (for different soil types), ground surface slope and rainfall intensity, and are used to identify excess water where

  7. Respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen.

    OpenAIRE

    Schwarze, J.; Hamelmann, E; Bradley, K L; Takeda, K.; Gelfand, E. W.

    1997-01-01

    Viral respiratory infections can predispose to the development of asthma by mechanisms that are presently undetermined. Using a murine model of respiratory syncytial virus (RSV) infection, acute infection is associated with airway hyperresponsiveness as well as enhanced responses to subsequent sensitization to allergen. We demonstrate that acute viral infection results in increased airway responsiveness to inhaled methacholine and pulmonary neutrophilic and eosinophilic inflammation. This res...

  8. Theoretical predictions of experimental observables sensitive to the symmetry energy: Results of the SMF transport model

    OpenAIRE

    Colonna, Maria; Baran, Virgil; Di Toro, Massimo

    2013-01-01

    In the framework of mean-field based transport approaches, we discuss recent results concerning heavy ion reactions between charge asymmetric systems, from low up to intermediate energies. We focus on isospin sensitive observables, aiming at extracting information on the density dependence of the isovector part of the nuclear effective interaction and of the nuclear symmetry energy. For reactions close to the Coulomb barrier, we explore the structure of collective dipole oscillations, rather ...

  9. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography

    DEFF Research Database (Denmark)

    Wu, Minchao; Knorr, Wolfgang; Thonicke, Kirsten;

    2015-01-01

    model. Applying a range of future projections that combine different scenarios for climate changes, enhanced CO2 concentrations, and population growth, we investigated the individual and combined effects of these drivers on the total area and regions affected by fire in the 21st century. The two models...

  10. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling

    OpenAIRE

    Oerlemans, J.

    1991-01-01

    The sensitivity of the mass balance of the Greenland ice sheet to climate change is studied with an energy-balance model of the ice/snow surface, applied at 200 m elevation intervals for four characteristic regions of the ice sheet. Solar radiation, longwave radiation, turbulent heat fluxes and refreezing of melt water in the snow pack are treated separately. The daily cycle is fully resolved. For the climatology chosen as input (mainly from work by A. Ohmura), the, mean specific balance prod...

  11. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    Science.gov (United States)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  12. Theoretical predictions of experimental observables sensitive to the symmetry energy. Results of the SMF transport model

    Energy Technology Data Exchange (ETDEWEB)

    Colonna, Maria [INFN, Laboratori Nazionali del Sud, Catania (Italy); Baran, Virgil [University of Bucharest, Physics Faculty, Bucharest (Romania); Di Toro, Massimo [INFN, Laboratori Nazionali del Sud, Catania (Italy); University of Catania, Physics-Astronomy Dept., Catania (Italy)

    2014-02-15

    In the framework of mean-field-based transport approaches, we discuss recent results concerning heavy-ion reactions between charge asymmetric systems, from low up to intermediate energies. We focus on isospin sensitive observables, aiming at extracting information on the density dependence of the isovector part of the nuclear effective interaction and of the nuclear symmetry energy. For reactions close to the Coulomb barrier, we explore the structure of collective dipole oscillations, rather sensitive to the low-density behavior of the symmetry energy. In the Fermi energy regime, we investigate the interplay between dissipation mechanisms, fragmentation and isospin effects. At intermediate energies, where regions with higher density and momentum are reached, we discuss collective flows and their sensitivity to the momentum dependence of the isovector interaction channel, which determines the splitting of neutron and proton effective masses. Finally, we also discuss the isospin effect on the possible phase transition from nucleonic matter to quark matter. Results are critically reviewed, also trying to establish a link, when possible, with the outcome of other transport models. (orig.)

  13. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2007-09-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. Predicted changes in dissolved organic carbon induced by reductions in acid deposition or increases in temperature may potentially influence the recovery of surface waters from acidification and may offset the increase in pH resulting from S deposition reductions. However, many climate-induced changes in processes are generally not incorporated in current versions of acidification models. To allow more reliable forecasts, the mechanisms by

  14. Climate and energy efficiency policies: synthesis of France commitments and results

    International Nuclear Information System (INIS)

    After a brief recall of the definitions of energy efficiency, of direct and indirect emissions, of total emissions, and of the main French commitments (first climate plan, energy policy orientations in the POPE law, Grenelle de l'Environnement, national action plan for energy efficiency, Grenelle laws), this document briefly presents the current situation and predictions in terms of energy consumption and greenhouse gas emissions. For different sectors, it presents key measures and evokes actual or expected results. These sectors are: energy production, housing and office building, transports, industry, State and local communities, agriculture and forest, information and education, wastes

  15. Hydrological impact of climate change: A sensitivity study for the netherlands. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Brandsma, T.

    1995-02-20

    The main objective of this study is to obtain boundaries within which the impact of climate change, due to increased greenhouse gas concentrations, will fall for various aspects of the water management system of the Netherlands. The following selection has been made of aspects of the water management system of the Netherlands that will be dealt with in this study: (1) sewer systems; (2) urban groundwater levels; (3) public water supply; (4) agricultural water supply; (5) discharge of polders.

  16. Individualistic sensitivities and exposure to climate change explain variation in species’ distribution and abundance changes

    OpenAIRE

    Palmer, Georgina; Hill, Jane K.; Brereton, Tom M.; Brooks, David R; Chapman, Jason W.; Fox, Richard; Oliver, Tom H.; Thomas, Chris D.

    2015-01-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be...

  17. Simulated sensitivity of the tropical climate to extratropical thermal forcing: tropical SSTs and African land surface

    Science.gov (United States)

    Tous, M.; Zappa, G.; Romero, R.; Shaffrey, L.; Vidale, P. L.

    2015-12-01

    Medicanes or "Mediterranean hurricanes" represent a rare and physically unique type of Mediterranean mesoscale cyclone. There are similarities with tropical cyclones with regard to their development (based on the thermodynamical disequilibrium between the warm sea and the overlying troposphere) and their kinematic and thermodynamical properties (medicanes are intense vortices with a warm core and even a cloud-free eye). Although medicanes are smaller and their wind speeds are lower than in tropical cyclones, the severity of their winds can cause substantial damage to islands and coastal areas. Concern about how human-induced climate change will affect extreme events is increasing. This includes the future impacts on medicanes due to the warming of the Mediterranean waters and the projected changes in regional atmospheric circulation. However, most global climate models do not have high enough spatial resolution to adequately represent small features such as medicanes. In this study, a cyclone tracking algorithm is applied to high resolution global climate model data with a horizontal grid resolution of approximately 25 km over the Mediterranean region. After a validation of the climatology of general Mediterranean mesoscale cyclones, changes in medicanes are determined using climate model experiments with present and future forcing. The magnitude of the changes in the winds, frequency and location of medicanes is assessed. While no significant changes in the total number of Mediterranean mesoscale cyclones are found, medicanes tend to decrease in number but increase in intensity. The model simulation suggests that medicanes tend to form more frequently in the Gulf of Lion-Genoa and South of Sicily.

  18. Climate change effects on shallow lakes: design and preliminary results of a cross-European climate gradient mesocosm experiment

    Czech Academy of Sciences Publication Activity Database

    Landkildehus, F.; Søndergaard, M.; Beklioglu, M.; Adrian, R.; Angeler, D.G.; Hejzlar, Josef; Papastergiadou, E.; Zingel, P.; Çakiroğlu, A.I.; Scharfenberger, U.; Drakare, S.; Nõges, T.; Šorf, Michal; Stefanidis, K.; Tavşanoğlu, Ü.N.; Trigal, C.; Mahdy, A.; Papadaki, C.; Tuvikene, L.; Larsen, S.E.; Kernan, M.; Jeppesen, E.

    2014-01-01

    Roč. 63, č. 2 (2014), s. 71-89. ISSN 1736-602X EU Projects: European Commission(XE) 244121 - REFRESH Institutional support: RVO:60077344 Keywords : climate change * nutrient enrichment * water level effects * macroecology * REFRESH project * macrophytes * metabolism Subject RIV: DA - Hydrology ; Limnology

  19. Climate change impacts on the thermal performance of Portuguese buildings. Results of the SIAM study

    International Nuclear Information System (INIS)

    Results of the first studies specifically dedicated to the impact of climate change on the thermal behaviour of buildings in Portugal are discussed within this paper. A top-down econometric/statistical analysis was attempted in order to correlate fluctuations of temperature and energy consumption in the residential and services sectors, but the results were not conclusive. A bottom-up numerical thermal simulation of representative buildings for various regions of Portugal was more successful. Unlike most studies for northern countries, it is predicted that the energy demand for space conditioning in Portugal would greatly increase by the end of the twenty-first century, assuming fixed characteristics of the building sectors. The heating season is shorter and the heating thermal load reduced (with HadCM3 model scenarios, less 250-410 kWh for residences, less 5-7 kWh/m2 for offices), but these economies are offset by an extended cooling season and large increases of the cooling thermal loads (additional 500-880 kWh for residences, 19-24 kWh/m2 for offices). Higher resolution studies using HadRM data resulted in yet more serious climate change impacts. (Author)

  20. The sensitivity of wet and dry tropical forests to climate change in Bolivia

    Science.gov (United States)

    Seiler, C.; Hutjes, R. W. A.; Kruijt, B.; Hickler, T.

    2015-03-01

    Bolivia's forests contribute to the global carbon and water cycle, as well as to global biodiversity. The survival of these forests may be at risk due to climate change. To explore the associated mechanisms and uncertainties, a regionally adapted dynamic vegetation model was implemented for the Bolivian case, and forced with two contrasting climate change projections. Changes in carbon stocks and fluxes were evaluated, factoring out the individual contributions of atmospheric carbon dioxide ([CO2]), temperature, and precipitation. Impacts ranged from a strong increase to a severe loss of vegetation carbon (cv), depending on differences in climate projections, as well as the physiological response to rising [CO2]. The loss of cv simulated for an extremely dry projection was primarily driven by a reduction in gross primary productivity, and secondarily by enhanced emissions from fires and autotrophic respiration. In the wet forest, less precipitation and higher temperatures equally reduced cv, while in the dry forest, the impact of precipitation was dominating. The temperature-related reduction of cv was mainly due to a decrease in photosynthesis and only to lesser extent because of more autotrophic respiration and less stomatal conductance as a response to an increasing atmospheric evaporative demand. Under an extremely dry projection, tropical dry forests were simulated to virtually disappear, regardless of the potential fertilizing effect of rising [CO2]. This suggests a higher risk for forest loss along the drier southern fringe of the Amazon if annual precipitation will decrease substantially.

  1. Sensitivity of the Colorado Plateau to change: Climate, ecosystems, and society

    Science.gov (United States)

    Schwinning, S.; Belnap, J.; Bowling, David R.; Ehleringer, J.R.

    2008-01-01

    The Colorado Plateau is located in the interior, dry end of two moisture trajectories coming from opposite directions, which have made this region a target for unusual climate fluctuations. A multidecadal drought event some 850 years ago may have eliminated maize cultivation by the first human settlers of the Colorado Plateau, the Fremont and Anasazi people, and contributed to the abandonment of their settlements. Even today, ranching and farming are vulnerable to drought and struggle to persist. The recent use of the Colorado Plateau primarily as rangeland has made this region less tolerant to drought due to unprecedented levels of surface disturbances that destroy biological crusts, reduce soil carbon and nitrogen stocks, and increase rates of soil erosion. The most recent drought of 2002 demonstrated the vulnerability of the Colorado Plateau in its currently depleted state and the associated costs to the local economies. New climate predictions for the southwestern United States include the possibility of a long-term shift to warmer, more arid conditions, punctuated by megadroughts not seen since medieval times. It remains to be seen whether the present-day extractive industries, aided by external subsidies, can persist in a climate regime that apparently exceeded the adaptive capacities of the Colorado Plateau's prehistoric agriculturalists.

  2. Sensitivity of the Atmospheric Response to Warm Pool El Nino Events to Modeled SSTs and Future Climate Forcings

    Science.gov (United States)

    Hurwitz, Margaret M.; Garfinkel, Chaim I.; Newman, Paul A.; Oman, Luke D.

    2013-01-01

    Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. Under present-day climate conditions, WPEN events generate poleward propagating wavetrains and enhance midlatitude planetary wave activity, weakening the stratospheric polar vortices. The late 21st century extratropical atmospheric response to WPEN events is investigated using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), version 2. GEOSCCM simulations are forced by projected late 21st century concentrations of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) and by SSTs and sea ice concentrations from an existing ocean-atmosphere simulation. Despite known ocean-atmosphere model biases, the prescribed SST fields represent a best estimate of the structure of late 21st century WPEN events. The future Arctic vortex response is qualitatively similar to that observed in recent decades but is weaker in late winter. This response reflects the weaker SST forcing in the Nino 3.4 region and subsequently weaker Northern Hemisphere tropospheric teleconnections. The Antarctic stratosphere does not respond to WPEN events in a future climate, reflecting a change in tropospheric teleconnections: The meridional wavetrain weakens while a more zonal wavetrain originates near Australia. Sensitivity simulations show that a strong poleward wavetrain response to WPEN requires a strengthening and southeastward extension of the South Pacific Convergence Zone; this feature is not captured by the late 21st century modeled SSTs. Expected future increases in GHGs and decreases in ODSs do not affect the polar stratospheric responses to WPEN.

  3. Sensitivity of the Tropical Atmospheric Energy Balance to ENSO-Related SST Changes: Comparison of Climate Model Simulations to Observed Responses

    Science.gov (United States)

    Robertson, Franklin R.; Fitzjarrald, Dan; Marshall, Susan; Oglesby, Robert; Roads, John; Arnold, James E. (Technical Monitor)

    2001-01-01

    This paper focuses on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. While this natural perturbation to climate is quite distinct from possible anthropogenic changes in climate, adjustments in the tropical water and energy budgets during ENSO may give insight into feedback processes involving water vapor and cloud feedbacks. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). In a companion paper we have presented observational analyses, based principally on space-based measurements which document systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes. Here we analyze several contemporary climate models run with observed SSTs over recent decades and compare SST-induced changes in radiation, precipitation, evaporation, and energy transport to observational results. Among these are the NASA / NCAR Finite Volume Model, the NCAR Community Climate Model, the NCEP Global Spectral Model, and the NASA NSIPP Model. Key disagreements between model and observational results noted in the recent literature are shown to be due predominantly to observational shortcomings. A reexamination of the Langley 8-Year Surface Radiation Budget data reveals errors in the SST surface longwave emission due to biased SSTs. Subsequent correction allows use of this data set along with ERBE TOA fluxes to infer net atmospheric radiative heating. Further analysis of recent rainfall algorithms provides new estimates for precipitation variability in line with interannual evaporation changes inferred from

  4. An Assessment of the Investment Climate in Botswana, Volume 2. Detailed Results and Econometric Analysis

    OpenAIRE

    World Bank

    2007-01-01

    The objective of the Botswana Investment Climate Assessment (ICA) is to evaluate the investment climate in Botswana in all its operational dimensions and promote policies to strengthen the private sector. The investment climate is made up of the many location specific factors that shape the opportunities and incentives for firms to invest productively, create jobs, and expand. These factor...

  5. Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results

    OpenAIRE

    S. C. B. Raper; Gregory, J. M.; Osborn, T. J.

    2001-01-01

    We demonstrate that a hemispherically averaged upwelling-diffusion energy-balance climate model (UD/EBM) can emulate the surface air temperature change and sea-level rise due to thermal expansion, predicted by the HadCM2 coupled atmosphere-ocean general circulation model, for various scenarios of anthropogenic radiative forcing over 1860-2100. A climate sensitivity of 2.6 oC is assumed, and a representation of the effect of sea-ice retreat on surface air temperature is required. In an extende...

  6. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    Science.gov (United States)

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels. PMID:22044020

  7. Testing the recent snow drought as an analog for climate warming sensitivity of Cascades snowpacks

    Science.gov (United States)

    Cooper, Matthew G.; Nolin, Anne W.; Safeeq, Mohammad

    2016-08-01

    Record low snowpack conditions were observed at Snow Telemetry stations in the Cascades Mountains, USA during the winters of 2014 and 2015. We tested the hypothesis that these winters are analogs for the temperature sensitivity of Cascades snowpacks. In the Oregon Cascades, the 2014 and 2015 winter air temperature anomalies were approximately +2 °C and +4 °C above the climatological mean. We used a spatially distributed snowpack energy balance model to simulate the sensitivity of multiple snowpack metrics to a +2 °C and +4 °C warming and compared our modeled sensitivities to observed values during 2014 and 2015. We found that for each +1 °C warming, modeled basin-mean peak snow water equivalent (SWE) declined by 22%–30%, the date of peak SWE (DPS) advanced by 13 days, the duration of snow cover (DSC) shortened by 31–34 days, and the snow disappearance date (SDD) advanced by 22–25 days. Our hypothesis was not borne out by the observations except in the case of peak SWE; other snow metrics did not resemble predicted values based on modeled sensitivities and thus are not effective analogs of future temperature sensitivities. Rather than just temperature, it appears that the magnitude and phasing of winter precipitation events, such as large, late spring snowfall, controlled the DPS, SDD, and DSC.

  8. Climate - Challenge for technology. Views and results from the CLIMTECH programme. Extended summary

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Ohlstroem, M.; Soimakallio, S.

    2004-07-01

    energy technology markets. The demand for technologies will move towards those technologies that have high efficiencies or which can utilize renewable or low-carbon energy sources and, on the other hand, towards energy-use technologies that have high efficiencies. Tekes, the National Technology Agency of Finland, funded a three-year technology programme (1999-2002) on Technology and Climate Change (CLIMTECH) to investigate the development needs of technologies that can be applied to control greenhouse gas emissions. The programme included both the control of emissions in Finland and the exports of the Finnish technology to limit emissions elsewhere. The time scale for the technologies studied extended beyond the commitment period of the Kyoto Protocol to about 2030. The CLIMTECH Programme had a special role in disseminating information and communicating with technological research and industrial communities. The results of the Programme have been published in numerous technical reports and brochures both in Finnish and in English, which can be downloaded from the web site (www.climtech.vtt.fi) or ordered from Tekes. This booklet is mainly based on the Finnish book 'Climate - Challenge for Technology'. The objective of this booklet is to describe the development of Finnish energy technology and the results of the CLIMTECH Programme in brief.

  9. Different growth sensitivity to climate of the conifer Juniperus thurifera on both sides of the Mediterranean Sea

    Science.gov (United States)

    DeSoto, Lucía; Varino, Filipa; Andrade, José P.; Gouveia, Celia M.; Campelo, Filipe; Trigo, Ricardo M.; Nabais, Cristina

    2014-12-01

    Mediterranean plants cope with cold wet winters and dry hot summers, with a drought gradient from northwest to southeast. Limiting climatic conditions have become more pronounced in the last decades due to the warming trend and rainfall decrease. Juniperus thurifera L., a long-lived conifer tree endemic to the western Mediterranean region, has a disjunct distribution in Europe and Africa, making it a suitable species to study sensitivity to climate in both sides of the Mediterranean Basin. Tree-ring width chronologies were built for three J. thurifera stands at Spain (Europe) and three in Morocco (Africa) and correlated with monthly temperature and precipitation. The temporal stability of climate-growth relationships was assessed using moving correlations; the drought effect on growth was calculated using the monthly standardized precipitation-evapotranspiration index (SPEI) at different temporal scales. In the wettest stands, increasing spring temperature and summer precipitation enhanced growth, while in the driest stands, growth was enhanced by higher spring precipitation and lower summer temperature. The climate-growth correlations shifted during the twentieth century, especially since the 1970s. Particularly noticeable is the recent negative correlation with previous autumn and winter precipitation in the wettest stands of J. thurifera, probably related with an effect of cloud cover or flooding on carbon storage depletion for next year growth. The driest stands were affected by drought at long time scales, while the wettest stands respond to drought at short time scales. This reveals a different strategy to cope with drought conditions, with populations from drier sites able to cope with short periods of water deficit.

  10. Taking a Multi-pronged Approach to Expand the Reach of Climate Research Results

    Science.gov (United States)

    Hauser, R.; Unger, M.; Eastburn, T.; Rockwell, A.; Laursen, K. K.; National CenterAtmospheric Research

    2011-12-01

    Recognizing the importance of tailoring content to a variety of audiences, the National Center for Atmospheric Research (NCAR) takes a multi-pronged approach to expand the reach of climate research results. The center's communications and education and outreach teams leverage Web 1.0 and 2.0 functionality - Google searches, Twitter, Facebook, YouTube - as well as face-to-face interactions and traditional media outlets to ensure climate change messages effectively connect with multiple audiences. Key to these efforts, NCAR seeks to frame messages that emphasize cultural cognition, that is, in a manner that recognizes and resonates with different audiences' values and thus their identities. Among the basic communications approaches NCAR uses to engage the public are one-on-one interactions with the visiting public, which ranges from school children and tourists, to dignitaries and journalists. As an example, the NCAR Journalism Fellowship brings a competitively selected group of internatoinal journalists to NCAR. During a week-long visit and ongoing contact, journalists are provided with a close-up, nuanced view of the science and individuals working on the bigger-picture research that drives climate-related sound bites reported by the press. NCAR provides media training for its scientists, giving them tools and practice in effectively handling interviews for print, Web and radio outlets. The institution hosts public events like "Super Science Saturday," and NCAR staff participate in external activities such as school science fairs, community events and continuing education sessions. In addition to interactive displays that allow the public to "experience" science directly and informally, NCAR develops educational programs and curricula targeted to specific age groups and levels of expertise. We will explore the importance of analogies, images and anecdotes in explaining complicated subjects to such a varied set of audiences, and identify key concepts in simplifying

  11. Effect of various climate databases on the results of dendroclimatic analysis

    Science.gov (United States)

    Sitko, Roman; Vido, Jaroslav; Škvarenina, Jaroslav; Pichler, Viliam; Scheer, Ĺubomír; Škvareninová, Jana; Nalevanková, Paulína

    2016-04-01

    The paper deals with the comparison of the time series drawn from different climate databases. We compared the observed data with the modeled data of monthly and seasonal temperature means and precipitation totals. Reliable and longest available time series of such data represent the basic starting point of dendroclimatic analyses. We evaluated the differences in the growth response of spruce derived using different databases of the considered climatic variables. The stem cores used to derive the cross-correlation function were taken from Hårås locality situated in the boreal zone of the Swedish part of Lapland. We compared the observed records from the nearest weather stations situated 18, 40, 70 and 110 km away from the locality with the interpolated data from four modeled temperature databases and four modeled precipitation databases generated by KNMI Climate Explorer. The spatial resolution of the modeled databases was 0.5° × 0.5° of latitude and longitude or 1° × 1° respectively. The evaluation revealed that in all modeled databases systematic errors of different magnitudes occurred. We also found that the radial increments of spruce correlated more tightly with the temperature than with the precipitation in the area of interest. Hence, in the conditions of the boreal zone, temperature could be a more important factor with regard to tree-ring formation. Because of higher spatial variability seen in precipitation data when compared to temperature data, we conclude that the nearest weather station is the most suitable for dendroclimatic analysis leaning on precipitation. Drawing on these results we recommend that the modeled precipitation and temperature databases examined in our study are used for dendroclimatic analyses within areas featuring a sparse network of weather stations.

  12. The sensitivity of dimethyl sulfide production to simulated climate change in the Eastern Antarctic Southern Ocean

    International Nuclear Information System (INIS)

    Dimethyl sulfide (DMS) is a radiatively active trace gas produced by enzymatic cleavage of its precursor compound, dimethyl sulfoniopropionate (DMSP), which is released by marine phytoplankton in the upper ocean. Once ventilated to the atmosphere, DMS is oxidised to form non-sea-salt sulfate and methane sulfonate (MSA) aerosols, which are a major source of cloud condensation nuclei (CCN) in remote marine air and may thus play a role in climate regulation. Here we simulate the change in DMS flux in the Eastern Antarctic ocean from 1960-2086, corresponding to equivalent CO2 tripling relative to pre-industrial levels. Calibration to contemporary climate conditions was carried out using a genetic algorithm to fit the model to surface chlorophyll from the 4-yr SeaWiFs satellite archive and surface DMS from an existing global database. Following the methodology used previously in the Subantarctic Southern Ocean, we then simulated DMS emissions under enhanced greenhouse conditions by forcing the DMS model with output from a coupled atmospheric-ocean general circulation model (GCM). The GCM was run in transient mode under the IPCC/IS92a radiative forcing scenario. By 2086, the change simulated in annual integrated DMS flux is around 20% in ice-free waters, with a greater increase of 45% in the seasonal ice zone (SIZ). Interestingly, the large increase in flux in the SIZ is not due to higher in situ production but mainly because of a loss of ice cover during summer-autumn and an increase in sea-to-air ventilation of DMS. These proportional changes in areal mean flux (25%) are much higher than previously estimated for the Subantarctic Southern Ocean (5%), and point to the possibility of a significant DMS-climate feedback at high Southern latitudes. Due to the nexus between ice cover and food-web structure, the potential for ecological community shifts under enhanced greenhouse conditions is high, and the implications for DMS production are discussed

  13. Channels and valleys on Mars: Cold climate features formed as a result of a thickening cryosphere

    Science.gov (United States)

    Carr, M.H.

    1996-01-01

    Large flood channels, valley networks, and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment around 3.8Gyr ago, with an inventory of water at the surface equivalent to at least a few hundred meters spread over the whole planet, as compared with 3 km for the Earth. The surface water resided primarily in a porous, kilometers thick, megaregolith created by the high impact rates. At the end of heavy bombardment a rapid decline in erosion rates by a factor of 1000 suggests a major change in the global climate. It is proposed that at this time the climate became similar to today's and that this climate has been maintained throughout the rest of Mars' history. The various drainage features represent an adjustment of the distribution of water to the surface relief inherited from the period of heavy bombardment and to a thickening of the cryosphere as the heat flow declined. The valley networks formed mostly at the end of heavy bombardment when erosion rates were high and climatic conditions permitted an active water cycle. They continued to form after heavy bombardment when the cryosphere started to form by a combination of episodic flooding and mass-wasting aided by the presence of liquid water at shallow depths. As the cryosphere thickened with declining heat flow, water could no longer easily access the surface and the rate of valley formation declined. Hydrostatic pressures built below the cryosphere. Eruptions of groundwater became more catastrophic and massive floods resulted, mainly in upper Hesperian time. Flood sources were preferentially located in low-lying, low-latitude areas where the cryosphere was thin, or near volcanoes where a thinner than typical cryosphere is also expected. Floods caused a drawdown in the global water table so that few formed in the second half of Mars' history. The floodwaters pooled in low-lying areas, mostly in the northern plains. Some of the water may still be present as

  14. Quebec and climate change : 2006-2012 action plan first year results

    International Nuclear Information System (INIS)

    This brochure was released by the Quebec government in order to provide the first year results of the Quebec and Climate Change Action Plan. The plan implemented 24 actions for the reduction of greenhouse gas (GHG) emissions. The measures are expected to reduce emissions by 10 megatonnes by 2012. A federal government grant of $350 million is also being used to reduce GHGs by a further 3.8 megatonnes. A $1.2 billion budget has been financed through a duty levied on fossil fuels. The plan included a comprehensive energy efficiency and new technologies program; programs to encourage marine transport as well as a program to develop innovative public transportation initiatives. The plan also included the creation of an industrial research chair in cellulose ethanol as well as 2 demonstration plants for the production of cellulose ethanol. A program has also been introduced to support municipalities who wish to adopt bylaws prohibiting vehicle idling. A draft regulation has also been prepared concerning the mandatory reporting of releases of contaminants into the atmosphere. The plan will include awareness raising and assistance activities. Funding has also been given to the development of local climate models. It was concluded that the Quebec government is preparing to meet the environmental challenges of the future. 4 figs

  15. Sensitivity of isoprene emissions estimated using MEGAN to the time resolution of input climate data

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2010-02-01

    Full Text Available We evaluate the effect of varying the temporal resolution of the input climate data on isoprene emission estimates generated by the community emissions model MEGAN (Model of Emissions of Gases and Aerosols from Nature. The estimated total global annual emissions of isoprene is reduced from 766 Tg y−1 when using hourly input data to 746 Tg y−1 (a reduction of 3% for daily average input data and 711 Tg y−1 (down 7% for monthly average input data. The impact on a local scale can be more significant with reductions of up to 55% at some locations when using monthly average data compared with using hourly data. If the daily and monthly average temperature data are used without the imposition of a diurnal cycle the global emissions estimates fall by 27–32%, and local annual emissions by up to 77%. A similar pattern emerges if hourly isoprene fluxes are considered. In order to better simulate and predict isoprene emission rates using MEGAN, we show it is necessary to use temperature and radiation data resolved to one hour. Given the importance of land-atmosphere interactions in the Earth system and the low computational cost of the MEGAN algorithms, we recommend that chemistry-climate models and the new generation of Earth system models input biogenic emissions at the highest temporal resolution possible.

  16. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions

    Institute of Scientific and Technical Information of China (English)

    DUAN Anmin; WU Guoxiong; ZHANG Qiong; LIU Yimin

    2006-01-01

    A striking climate warming over the Tibetan Plateau during the last decades has been revealed by many studies, but evidence linking it to human activity is insufficient. By using historical observations, here we show that the in situ climate warming is accompanied by a distinct decreasing trend of the diurnal range of surface air temperature. The ERA40 reanalysis further indicates that there seems to be a coherent warming trend near the tropopause but a cooling trend in the lower stratosphere. Moreover, all these features can be reproduced in two coupled climate models forced by observed CO2 concentration of the 20th century but cannot be produced by the fixed external conditions before the industrial revolution. These suggest that the recent climate warming over the Tibetan Plateau primarily results from the increasing anthropogenic greenhouse gases emissions, and impacts of the increased greenhouse gases emissions upon the climate change in the plateau are probably more serious than the rest of the world.

  17. Geometric sensitivity of random matrix results: consequences for shrinkage estimators of covariance and related statistical methods

    CERN Document Server

    Karoui, Noureddine El

    2011-01-01

    Shrinkage estimators of covariance are an important tool in modern applied and theoretical statistics. They play a key role in regularized estimation problems, such as ridge regression (aka Tykhonov regularization), regularized discriminant analysis and a variety of optimization problems. In this paper, we bring to bear the tools of random matrix theory to understand their behavior, and in particular, that of quadratic forms involving inverses of those estimators, which are important in practice. We use very mild assumptions compared to the usual assumptions made in random matrix theory, requiring only mild conditions on the moments of linear and quadratic forms in our random vectors. In particular, we show that our results apply for instance to log-normal data, which are of interest in financial applications. Our study highlights the relative sensitivity of random matrix results (and their practical consequences) to geometric assumptions which are often implicitly made by random matrix theorists and may not ...

  18. Query sensitive comparative summarization of search results using concept based segmentation

    CERN Document Server

    Chitra, P; Sarukesi, K

    2012-01-01

    Query sensitive summarization aims at providing the users with the summary of the contents of single or multiple web pages based on the search query. This paper proposes a novel idea of generating a comparative summary from a set of URLs from the search result. User selects a set of web page links from the search result produced by search engine. Comparative summary of these selected web sites is generated. This method makes use of HTML DOM tree structure of these web pages. HTML documents are segmented into set of concept blocks. Sentence score of each concept block is computed with respect to the query and feature keywords. The important sentences from the concept blocks of different web pages are extracted to compose the comparative summary on the fly. This system reduces the time and effort required for the user to browse various web sites to compare the information. The comparative summary of the contents would help the users in quick decision making.

  19. Measured Cooling Season Results Relating the Impact of Mechanical Ventilation on Energy, Comfort, and Indoor Air Quality in Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric; Amos, Bryan; McIlvaine, Janet; Chasar, David; Widder, Sarah H.; Fonorow, Ken

    2014-08-22

    Conference Paper for ACEEE Summer Study in Buildings discussing results to date of a project evaluating the impact of ventialtion on energy use, comfort, durability, and cost in the hot humid climate.

  20. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    Science.gov (United States)

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-01-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicate. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found through analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, an understanding of the nature of mPWP Arctic sea ice would be highly beneficial.

  1. Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation

    Science.gov (United States)

    Strandberg, G.; Kjellström, E.; Poska, A.; Wagner, S.; Gaillard, M.-J.; Trondman, A.-K.; Mauri, A.; Davis, B. A. S.; Kaplan, J. O.; Birks, H. J. B.; Bjune, A. E.; Fyfe, R.; Giesecke, T.; Kalnina, L.; Kangur, M.; van der Knaap, W. O.; Kokfelt, U.; Kuneš, P.; Latałowa, M.; Marquer, L.; Mazier, F.; Nielsen, A. B.; Smith, B.; Seppä, H.; Sugita, S.

    2014-03-01

    This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 and ~0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5-1 °C. At ~0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from -1 °C in south-western Europe to +1 °C in eastern

  2. soil organic matter pools and quality are sensitive to global climate change in tropical forests from India

    Science.gov (United States)

    Mani, Shanmugam; Merino, Agustín; García-Oliva, Felipe; Riotte, Jean; Sukumar, Raman

    2016-04-01

    Soil organic carbon (SOC) storage and quality are some of the most important factors determining ecological process in tropical forests, which are especially sensitive to global climate change (GCC). In India, the GCC scenarios expect increasing of drought period and wildfire, which may affect the SOC, and therefore the capacity of forest for C sequestration. The aim of the study was to evaluate the amount of soil C and its quality in the mineral soil across precipitation gradient with different factors (vegetation, pH, soil texture and bedrock composition) for generate SOC predictions under GCC. Six soil samples were collected (top 10 cm depth) from 19 1-ha permanent plots in the Mudumalai Wildlife Sanctuary of southern India, which are characterised by four types of forest vegetation (i.e. dry thorn, dry deciduous, moist deciduous and semi-evergreen forest) distributed along to rainfall gradient. The driest sites are dominated by sandy soils, while the soil clay proportion increased in the wet sites. Total organic C (Leco CN analyser), and the SOM quality was assessed by Differential Scanning Calorimetry (DSC) and Solid-state 13CCP-MAS NMR analyses. Soil organic C was positively correlated with precipitation (R2 = 0.502, psoil clay content (R2 =0.15, psoil sand content (R2=0.308, ppH (R2=0.529, pforest) has the lowest proportion of thermal combustion of recalcitrant organic matter (Q2,375-475 °C) than the other sites (ppH, sand, clay, C and C/N (R2=0.52, p=0.01). Principal component analysis explains 77% of total variance. The sites on the fist component are distributed along the rainfall gradient. These results suggest that the 50% of variance was explained by precipitation and therefore vegetation type. Consequently, the drier sites has a lower C pools with a higher proportion of labile SOC fraction. As a consequence, we expect if the rainfall decreased by GCC could increase SOC mineralization, and therefore reducing the capacity of C sequestration within soil

  3. Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling

    OpenAIRE

    B. L. Kurylyk; MacQuarrie, K. T. B.; D. Caissie; McKenzie, J. M.

    2015-01-01

    Climate change is expected to increase stream temperatures and the projected warming may alter the spatial extent of habitat for cold-water fish and other aquatic taxa. Recent studies have proposed that stream thermal sensitivities, derived from short-term air temperature variations, can be employed to infer future stream warming due to long-term climate change. However, this approach does not consider the potential for streambed heat fluxes to increase due to gradual warmin...

  4. Meteorological modes of variability for fine particulate matter (PM2.5 air quality in the United States: implications for PM2.5 sensitivity to climate change

    Directory of Open Access Journals (Sweden)

    J. A. Fisher

    2012-03-01

    Full Text Available We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ~1000 sites (~200 sites for PM2.5 components and compared to results from the GEOS-Chem chemical transport model (CTM. All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40% of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign, with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos when diagnosing

  5. Meteorological modes of variability for fine particulate matter (PM2.5 air quality in the United States: implications for PM2.5 sensitivity to climate change

    Directory of Open Access Journals (Sweden)

    J. A. Fisher

    2011-11-01

    Full Text Available We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ~1000 sites (~200 sites for PM2.5 components and compared to results from the GEOS-Chem chemical transport model (CTM. All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40% of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign, with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos when diagnosing

  6. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    Science.gov (United States)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations - Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.

  7. Sensitivity of interglacial Greenland temperature and δ18O to orbital and CO2 forcing: climate simulations and ice core data

    Directory of Open Access Journals (Sweden)

    J. Sjolte

    2011-05-01

    Full Text Available The sensitivity of interglacial Greenland temperature to orbital and CO2 forcing is investigated using the NorthGRIP ice core data and coupled ocean-atmosphere IPSL-CM4 model simulations. These simulations were conducted in response to different interglacial orbital configurations, and to increased CO2 concentrations. These different forcings cause very distinct simulated seasonal and latitudinal temperature and water cycle changes, limiting the analogies between the last interglacial and future climate. However, the IPSL-CM4 model shows similar magnitudes of Arctic summer warming and climate feedbacks in response to 2 × CO2 and orbital forcing of the last interglacial period (126 000 yr ago. The IPSL model produces a remarkably linear relationship between top of atmosphere incoming summer solar radiation and simulated changes in summer and annual mean central Greenland temperature. This contrasts with the stable isotope record from the Greenland ice cores, showing a multi-millennial lagged response to summer insolation. During the early part of interglacials, the observed lags may be explained by ice sheet-ocean feedbacks linked with changes in ice sheet elevation and the impact of meltwater on ocean circulation, as investigated with sensitivity studies. A quantitative comparison between ice core data and climate simulations requires to explore the stability of the stable isotope – temperature relationship. Atmospheric simulations including water stable isotopes have been conducted with the LMDZiso model under different boundary conditions. This set of simulations allows to calculate a temporal Greenland isotope-temperature slope (0.3–0.4 ‰ per °C during warmer than present Arctic climates, in response to increased CO2, increased ocean temperature and orbital forcing. This temporal slope appears twice as small as the modern spatial gradient and is consistent with other ice core estimates. A preliminary comparison with other model

  8. Climate catastrophes

    Science.gov (United States)

    Budyko, Mikhail

    1999-05-01

    Climate catastrophes, which many times occurred in the geological past, caused the extinction of large or small populations of animals and plants. Changes in the terrestrial and marine biota caused by the catastrophic climate changes undoubtedly resulted in considerable fluctuations in global carbon cycle and atmospheric gas composition. Primarily, carbon dioxide and other greenhouse gas contents were affected. The study of these catastrophes allows a conclusion that climate system is very sensitive to relatively small changes in climate-forcing factors (transparency of the atmosphere, changes in large glaciations, etc.). It is important to take this conclusion into account while estimating the possible consequences of now occurring anthropogenic warming caused by the increase in greenhouse gas concentration in the atmosphere.

  9. Multi-Stakeholder Decision Aid for Improved Prioritization of the Public Health Impact of Climate Sensitive Infectious Diseases

    OpenAIRE

    Valerie Hongoh; Pascal Michel; Pierre Gosselin; Karim Samoura; André Ravel; Céline Campagna; Hassane Djibrilla Cissé; Jean-Philippe Waaub

    2016-01-01

    The effects of climate change on infectious diseases are an important global health concern and necessitate decisions for allocation of resources. Economic tools have been used previously; however, how prioritization results might differ when done using broader considerations identified by local stakeholders has yet to be assessed. A multicriteria decision analysis (MCDA) approach was used to assess multi-stakeholder expressed concerns around disease prioritization via focus groups held in Qu...

  10. Dexamethasone treatment promotes Bcl-2 dependence in multiple myeloma resulting in sensitivity to venetoclax.

    Science.gov (United States)

    Matulis, S M; Gupta, V A; Nooka, A K; Hollen, H V; Kaufman, J L; Lonial, S; Boise, L H

    2016-05-01

    Venetoclax (ABT-199), a specific inhibitor of the anti-apoptotic protein Bcl-2, is currently in phase I clinical trials for multiple myeloma. The results suggest that venetoclax is only active in a small cohort of patients therefore we wanted to determine its efficacy when used in combination. Combining venetoclax with melphalan or carfilzomib produced additive or better cell death in four of the five cell lines tested. The most striking results were seen with dexamethasone (Dex). Co-treatment of human myeloma cell lines and primary patient samples, with Dex and venetoclax, significantly increased cell death over venetoclax alone in four of the five cell lines, and in all patient samples tested. The mechanism by which this occurs is an increase in the expression of both Bcl-2 and Bim upon addition of Dex. This results in alterations in Bim binding to anti-apoptotic proteins. Dex shifts Bim binding towards Bcl-2 resulting in increased sensitivity to venetoclax. These data suggest that knowledge of drug-induced alterations of Bim-binding patterns may help inform better combination drug regimens. Furthermore, the data indicate combining this novel therapeutic with Dex could be an effective therapy for a broader range of patients than would be predicted by single-agent activity. PMID:26707935

  11. Trend and climatic sensitivity of vegetation phenology in semiarid and arid ecosystems in the US Great Basin during 1982–2011

    Directory of Open Access Journals (Sweden)

    G. Tang

    2015-07-01

    Full Text Available We quantified the temporal trend and climatic sensitivity of vegetation phenology in dryland ecosystems in the US Great Basin during 1982–2011. Our results indicated that vegetation greenness in the Great Basin increased significantly during the study period, and this positive trend occurred in autumn but not spring and summer. Spatially, increases in vegetation greenness were more apparent in the northwestern, southeastern, and eastern Great Basin but less apparent in the central and southwestern Great Basin. In addition, the start of growing season (SOS was not advanced while the end of growing season (EOS was delayed significantly at a rate of 3.0 days per decade during the study period. The significant delay in EOS and lack of earlier leaf onset caused growing season length (GSL to increase at a rate of 3.0 days per decade during 1982–2011. Interestingly, we found that the variation of mean vegetation greenness in the period of March to November (SSA was not significantly correlated with its mean surface air temperature but was strongly correlated with its total precipitation. Seasonally, the variation of mean vegetation greenness in spring, summer, and autumn was mainly attributable to changes in pre-season precipitation in winter and spring. Nevertheless, climate warming played a strong role in extending GSL that in turn resulted in the upward trend in mean vegetation greenness during 1982–2011. Overall, our results suggested that changes in wintertime and springtime precipitation played a stronger role than temperature in affecting the interannual variability of vegetation greenness while climate warming was mainly responsible for the 30-year upward trend in the magnitudes of mean vegetation greenness in the dryland ecosystems during 1982–2011.

  12. School Climate, Peer Victimization, and Academic Achievement: Results from a Multi-Informant Study

    Science.gov (United States)

    Wang, Weijun; Vaillancourt, Tracy; Brittain, Heather L.; McDougall, Patricia; Krygsman, Amanda; Smith, David; Cunningham, Charles E.; Haltigan, J. D.; Hymel, Shelley

    2014-01-01

    School-level school climate was examined in relation to self-reported peer victimization and teacher-rated academic achievement (grade point average; GPA). Participants included a sample of 1,023 fifth-grade children nested within 50 schools. Associations between peer victimization, school climate, and GPA were examined using multilevel modeling,…

  13. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2008-03-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.

  14. Too hot to trot? evaluating the effects of wildfire on patterns of occupancy and abundance for a climate-sensitive habitat-specialist

    Science.gov (United States)

    Varner, Johanna; Lambert, Mallory S.; Horns, Joshua J.; Laverty, Sean; Dizney, Laurie; Beever, Erik; Dearing, M. Denise

    2015-01-01

    Wildfires are increasing in frequency and severity as a result of climate change in many ecosystems; however, effects of altered disturbance regimes on wildlife remain poorly quantified. Here, we leverage an unexpected opportunity to investigate how fire affects the occupancy and abundance of a climate-sensitive habitat specialist, the American pika (Ochotona princeps). We determine the effects of a fire on microclimates within talus and explore habitat factors promoting persistence and abundance in fire-affected habitat. During the fire, temperatures in talus interstices remained below 19°C, suggesting that animals could have survived in situ. Within 2 years, pikas were widely distributed throughout burned areas and did not appear to be physiologically stressed at severely burned sites. Furthermore, pika densities were better predicted by topographic variables known to affect this species than by metrics of fire severity. This widespread distribution may reflect quick vegetation recovery and the fact that the fire did not alter the talus microclimates in the following years. Together, these results highlight the value of talus as a thermal refuge for small animals during and after fire. They also underscore the importance of further study in individual species’ responses to typical and altered disturbance regimes.

  15. The economics of climate change mitigation in developing countries - methodological and empirical results

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.

    1997-12-01

    This thesis presents a methodological and empirical discussion of the costs associated with implementing greenhouse gas reduction strategies in developing countries. It presents a methodological framework for national costing studies and evaluates a number of associated valuation methods. The methodological framework has been applied in several developing countries as part of a UNEP project in which the author has participated, and reference is made to the results of these country studies. Some of the theoretical issues associated with the determination of the costs of emission reductions are discussed with reference to a number of World Bank and UN guidelines for project analysis in developing countries. The use of several accounting prices is recommended for mitigation projects, with a distinction being made between internationally and domestically traded goods. The consequences of using different accounting prices are discussed with respect to the methodology applied in the UNEP country studies. In conclusion the thesis reviews the results of some of the most important international studies of greenhouse gas emissions in developing countries. The review, which encompasses a total of 27 country studies, was undertaken by the author for the Intergovernmental Panel of Climate Change, the IPCC. Its conclusion is that the UNEP methodological framework and associated country study results are consistent with the recommendations and conclusions of the IPCC. (EG) 23 refs.

  16. The economics of climate change mitigation in developing countries -methodological and empirical results

    International Nuclear Information System (INIS)

    This thesis presents a methodological and empirical discussion of the costs associated with implementing greenhouse gas reduction strategies in developing countries. It presents a methodological framework for national costing studies and evaluates a number of associated valuation methods. The methodological framework has been applied in several developing countries as part of a UNEP project in which the author has participated, and reference is made to the results of these country studies. Some of the theoretical issues associated with the determination of the costs of emission reductions are discussed with reference to a number of World Bank and UN guidelines for project analysis in developing countries. The use of several accounting prices is recommended for mitigation projects, with a distinction being made between internationally and domestically traded goods. The consequences of using different accounting prices are discussed with respect to the methodology applied in the UNEP country studies. In conclusion the thesis reviews the results of some of the most important international studies of greenhouse gas emissions in developing countries. The review, which encompasses a total of 27 country studies, was undertaken by the author for the Intergovernmental Panel of Climate Change, the IPCC. Its conclusion is that the UNEP methodological framework and associated country study results are consistent with the recommendations and conclusions of the IPCC. (EG) 23 refs

  17. Establishing Global Source-Receptor Relationships for Carbonaceous Aerosol to Characterize Sensitivity of its Climate Forcing to Emission Uncertainties

    Science.gov (United States)

    Wang, H.; Rasch, P. J.; Easter, R. C.; Singh, B.; Qian, Y.; Ma, P.; Zhang, R.

    2013-12-01

    , export to emission ratio) of CA emitted from a number of predefined source regions/sectors, establish quantitative aerosol source-receptor relationships, and characterize source-to-receptor transport pathways. We can quantify the sensitivity of atmospheric CA concentrations and surface deposition in receptor regions of interest (including but not limited to the Arctic) to uncertainties in emissions of particular sources without actually perturbing the emissions, which is required by some other strategies for determining source-receptor relationships. Our study shows that the Arctic BC is much more sensitive to high-latitude local emissions than to mid-latitude major source contributors. For example, the same amount of BC emission from East Asia, which contributes about 20% to the annual mean BC loading in the Arctic, is 40 times less efficient than from the local sources to increase the Arctic BC. This indicates that the local BC sources (e.g., fires, metal smelting and gas flaring), which are highly uncertain or even missing from popular emission inventories, at least partly explain the historical under-prediction of Arctic BC in many climate models. The established source-receptor relationships will be used to assess potential climate impacts of the emission uncertainties.

  18. Major Results of the OECD BEMUSE (Best Estimate Methods; Uncertainty and Sensitivity Evaluation) Programme

    International Nuclear Information System (INIS)

    One of the goals of computer code models of Nuclear Power Plants (NPP) is to demonstrate that these are designed to respond safely at postulated accidents. Models and codes are an approximation of the real physical behaviour occurring during a hypothetical transient and the data used to build these models are also known with certain accuracy. Therefore code predictions are uncertain. The BEMUSE programme is focussed on the application of uncertainty methodologies to large break LOCAs. The programme intends to evaluate the practicability, quality and reliability of best-estimate methods including uncertainty evaluations in applications relevant to nuclear reactor safety, to develop common understanding and to promote/facilitate their use by the regulator bodies and the industry. In order to fulfil its objectives BEMUSE is organized in to steps and six phases. The first step is devoted to the complete analysis of a LB-LOCA (L2-5) in an experimental facility (LOFT) while the second step refers to an actual Nuclear Power Plant. Both steps provide results on thermalhydraulic Best Estimate simulation as well as Uncertainty and sensitivity evaluation. At the time this paper is prepared, phases I, II and III are fully completed and the corresponding reports have been issued. Phase IV draft report is by now being reviewed while participants are working on Phase V developments. Phase VI consists in preparing the final status report which will summarizes the most relevant results of the whole programme.

  19. Atmospheric and climatic consequences of a major nuclear war: Results of recent research

    International Nuclear Information System (INIS)

    During the last several years, comprehensive three-dimensional atmospheric circulation models, including detailed parametric formulations of a wide range of climatologically significant processes, have been applied to study the potential consequences of a major nuclear war involving the injection of smoke which could result from the large-scale fires ignited by such an exchange. For plausible smoke injections during the warm season of the year, all model calculations suggest that a significant climatic perturbation would result. In the lower range of smoke injection scenarios (producing of order 10 Tg of highly carbonaceous smoke), smoke would act primarily to inhibit convection and rainfall, especially over land areas, including possibly some disruption of the summer monsoon. The upper range of smoke scenarios (of order 100 Tg of highly carbonaceous smoke) would cause not only rapid and sharp decreases in land temperature and precipitation (a mid-latitude average land-temperature drop of the order of 200C, up to perhaps twice this amount in continental interiors), but also seems likely to leave enough smoke in the atmosphere to persist into the following warm season, inducing a cooling of several degrees

  20. Atmospheric and climatic consequences of a major nuclear war: Results of recent research

    Energy Technology Data Exchange (ETDEWEB)

    Golitsyn, G.S.; MacCracken, M.C.

    1987-09-01

    During the last several years, comprehensive three-dimensional atmospheric circulation models, including detailed parametric formulations of a wide range of climatologically significant processes, have been applied to study the potential consequences of a major nuclear war involving the injection of smoke which could result from the large-scale fires ignited by such an exchange. For plausible smoke injections during the warm season of the year, all model calculations suggest that a significant climatic perturbation would result. In the lower range of smoke injection scenarios (producing of order 10 Tg of highly carbonaceous smoke), smoke would act primarily to inhibit convection and rainfall, especially over land areas, including possibly some disruption of the summer monsoon. The upper range of smoke scenarios (of order 100 Tg of highly carbonaceous smoke) would cause not only rapid and sharp decreases in land temperature and precipitation (a mid-latitude average land-temperature drop of the order of 20/sup 0/C, up to perhaps twice this amount in continental interiors), but also seems likely to leave enough smoke in the atmosphere to persist into the following warm season, inducing a cooling of several degrees.

  1. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    Science.gov (United States)

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  2. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    Science.gov (United States)

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-05-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicate. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found through analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, an understanding of the nature of mPWP Arctic sea ice would be highly beneficial. Using the HadCM3 GCM, this paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2 concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data-model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by HadCM3 from perennial to seasonal. However, this occurs only when atmospheric CO2 concentrations exceed 300 ppm. Reduction of the minimum sea ice albedo from 0.5 to 0.2 is also sufficient to simulate seasonal sea ice, with any of the combinations of atmospheric CO2 and orbital forcing. Compared to a mPWP control simulation, monthly mean increases north of 60°N of up to 4.2 °C (SST) and 9.8 °C (SAT) are simulated. With varying CO2, orbit and sea ice albedo values we are able to reproduce proxy temperature records that lean towards modest levels of high latitude warming, but other proxy data showing greater warming remain beyond the reach of our model. This highlights the importance of additional proxy records at high latitudes and ongoing efforts to compare proxy signals between sites.

  3. Surface solar radiation patterns over the climatically sensitive region of Eastern Mediterranean

    Science.gov (United States)

    Alexandri, Georgia; Georgoulias, Aristeidis K.; Meleti, Charikleia; Balis, Dimitris; Kourtidis, Konstantinos; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Zanis, Prodromos

    2016-04-01

    In this work, the spatiotemporal variability of surface solar radiation (SSR) is examined over the region of Eastern Mediterranean for the 31-year period 1983-2013. For the scopes of this research, high resolution (0.05 x 0.05 degrees) satellite data from the CM SAF SARAH (Satellite Application Facility on Climate Monitoring Solar surfAce RAdiation Heliosat) product were used. The CM SAF SARAH dataset was validated against quality-assured observations from five ground stations located in the region showing that the satellite data are in good agreement with the ground-based data. Also, the dataset was found to be homogeneous and hence appropriate for climatological studies. The high spatial resolution of the product allows for studying various local features which are mostly connected to the topography. The comparison of the CM SAF SARAH product against three satellite-based (CERES, GEWEX, ISCCP) and one reanalysis (ERA-Interim) products showed that the satellite-based datasets underestimate SSR while the reanalysis dataset overestimates SSR. A novel method that incorporates radiative transfer simulations was applied on satellite data from CM SAF and CERES and a set of other data in order to figure out which are the parameters that drive the observed SSR differences between the two products. According to the CM SAF SARAH dataset, the SSR trend is positive and statistically significant at the 95 % confidence level (0.2 W/m2/year or 0.1 %/year) over Eastern Mediterranean for the period 1983-2013. Compared to the other satellite-based and reanalysis products, the CM SAF SARAH SSR trends are closer to the ground-based ones possibly due to the high spatial resolution and the better representation of cloud radiative effects in the dataset. It is suggested here that the inclusion of the interannual variability of aerosol load and composition within CM SAF SARAH would allow for a more accurate reproduction of the SSR trends over regions with high aerosol variability.

  4. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  5. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovsky, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-06-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  6. Glacial marine carbon cycle sensitivities to Atlantic ocean circulation reorganization by coupled climate model simulations

    Directory of Open Access Journals (Sweden)

    M. O. Chikamoto

    2011-04-01

    Full Text Available A series of Last Glacial Maximum (LGM marine carbon cycle sensitivity experiments is conducted to test the effect of different physical processes, as simulated by two atmosphere-ocean general circulation model (AOGCM experiments, on the atmospheric pCO2. One AOGCM solution exhibits an increase in North Atlantic Deep Water (NADW formation, whereas the other mimics an increase in Antarctic Bottom Water (AABW associated with a weaker NADW. Due to enhanced gas solubility associated with lower sea surface temperature, both experiments generate a reduction of atmospheric pCO2 by about 20–23 ppm. However, neither a weakening of NADW nor an increase of AABW formation causes a large atmospheric pCO2 change. A marked enhancement in AABW formation is required to represent the reconstructed vertical gradient of dissolved inorganic carbon (DIC during LGM conditions. The efficiency of Southern Ocean nutrient utilization reduces in response to an enhanced AABW formation, which counteracts the circulation-induced ocean carbon uptake.

  7. Sensitivity of the Carbon Storage of Potential Vegetation to Historical Climate Variability and CO2 in Continental China

    Institute of Scientific and Technical Information of China (English)

    MAO Jiafu; WANG Bin; DAI Yongjiu

    2009-01-01

    The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric CO2 concentrations in the last century affect the carbon storage in continental China was investigated in this study by using the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM). The estimates of the M-SDGVM indicated that during the past 100 years a combination of increasing CO2 with historical temperature and precipitation variability in continental China have caused the total vegetation carbon storage to increase by 2.04 Pg C, with 2.07 Pg C gained in the vegetation biomass but 0.03 Pg C lost from the organic soil carbon matter. The increasing CO2 concentration in the 20th century is primarily responsible for the increase of the total potential vegetation carbon. These factorial experiments show that temperature variability alone decreases the total carbon storage by 1.36 Pg C and precipitation variability alone causes a loss of 1.99 Pg C. The effect of the increasing CO2 concentration alone increased the total carbon storage in the potential vegetation of China by 3.22 Pg C over the past 100 years. With the changing of the climate, the CO2 fertilization on China's ecosystems is the result of the enhanced net biome production (NBP), which is caused by a greater stimulation of the gross primary production (GPP) than the total soil-vegetation respiration. Our study also shows notable interannual and decadal variations in the net carbon exchange between the atmosphere and terrestrial ecosystems in China due to the historical climate variability.

  8. Global-scale projection and its sensitivity analysis of the health burden attributable to childhood undernutrition under the latest scenario framework for climate change research

    International Nuclear Information System (INIS)

    This study assessed the health burden attributable to childhood underweight through 2050 focusing on disability-adjusted life years (DALYs), by considering the latest scenarios for climate change studies (representative concentration pathways and shared socioeconomic pathways (SSPs)) and conducting sensitivity analysis. A regression model for estimating DALYs attributable to childhood underweight (DAtU) was developed using the relationship between DAtU and childhood stunting. We combined a global computable general equilibrium model, a crop model, and two regression models to assess the future health burden. We found that (i) world total DAtU decreases from 2005 by 28 ∼ 63% in 2050 depending on the socioeconomic scenarios. Per capita DAtU also decreases in all regions under either scenario in 2050, but the decreases vary significantly by regions and scenarios. (ii) The impact of climate change is relatively small in the framework of this study but, on the other hand, socioeconomic conditions have a great impact on the future health burden. (iii) Parameter uncertainty of the regression models is the second largest factor on uncertainty of the result following the changes in socioeconomic condition, and uncertainty derived from the difference in global circulation models is the smallest in the framework of this study. (letters)

  9. Multilayer Perceptron Model for Nowcasting Visibility from Surface Observations: Results and Sensitivity to Dissimilar Station Altitudes

    Science.gov (United States)

    Chaudhuri, Sutapa; Das, Debanjana; Sarkar, Ishita; Goswami, Sayantika

    2015-10-01

    The reduction in the visibility during fog significantly influences surface as well as air transport operations. The prediction of fog remains difficult despite improvements in numerical weather prediction models. The present study aims at identifying a suitable neural network model with proper architecture to provide precise nowcast of the horizontal visibility during fog over the airports of three significantly affected metropolises of India, namely: Kolkata (22°32'N; 88°20'E), Delhi (28°38'N; 77°12'E) and Bengaluru (12°95'N; 77°72'E). The investigation shows that the multilayer perceptron (MLP) model provides considerably less error in nowcasting the visibility during fog over the said metropolises than radial basis function network, generalized regression neural network or linear neural network. The MLP models of different architectures are trained with the data and records from 2000 to 2010. The model results are validated with observations from 2011 to 2014. Our results reveal that MLP models with different configurations (1) four input layers, three hidden layers with three hidden nodes in each layer and a single output; (2) four input layers with two hidden layers having one hidden node in the first hidden layer and two hidden nodes in the second hidden layer, and a single output layer; and (3) four input layers with two hidden layers having two hidden nodes in each hidden layer and a single output layer] provide minimum error in nowcasting the visibility during fog over the airports of Kolkata, Delhi and Bengaluru, respectively. The results show that the MLP model is well suited for nowcasting visibility during fog with 6 h lead time, however, the study reveals that the MLP model sensitive to dissimilar station altitudes in nowcasting visibility, as the minimum prediction error for the three metropolises having dissimilar mean sea level altitudes is observed through different configurations of the model.

  10. The role of renewable energy in climate stabilization: results from the EMF27 scenarios

    OpenAIRE

    Luderer, Gunnar; Krey, Volker; Calvin, Katherine; Merrick, James; Mima, Silvana; Pietzcker, Robert; Van Vliet, Jasper; Wada, Kenichi

    2013-01-01

    This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the ...

  11. Seismic hazard analysis application of methodology, results, and sensitivity studies. Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D. L

    1981-08-08

    As part of the Site Specific Spectra Project, this report seeks to identify the sources of and minimize uncertainty in estimates of seismic hazards in the Eastern United States. Findings are being used by the Nuclear Regulatory Commission to develop a synthesis among various methods that can be used in evaluating seismic hazard at the various plants in the Eastern United States. In this volume, one of a five-volume series, we discuss the application of the probabilistic approach using expert opinion. The seismic hazard is developed at nine sites in the Central and Northeastern United States, and both individual experts' and synthesis results are obtained. We also discuss and evaluate the ground motion models used to develop the seismic hazard at the various sites, analyzing extensive sensitivity studies to determine the important parameters and the significance of uncertainty in them. Comparisons are made between probabilistic and real spectral for a number of Eastern earthquakes. The uncertainty in the real spectra is examined as a function of the key earthquake source parameters. In our opinion, the single most important conclusion of this study is that the use of expert opinion to supplement the sparse data available on Eastern United States earthquakes is a viable approach for determining estimted seismic hazard in this region of the country. 29 refs., 15 tabs.

  12. Protest Activity, Social Incentives, and Rejection Sensitivity: Results From a Survey Experiment About Tuition Fees

    Directory of Open Access Journals (Sweden)

    Emma A. Bäck

    2013-10-01

    Full Text Available People may engage in protest activity either because of collective incentives or selective incentives, or a combination of them. In this study we focus on the selective incentives part of the calculus of political participation, particularly the impact of the social dimension. We hypothesize that people will participate in demonstrations or other forms of protest, to a higher extent if they are afraid of rejection, but only if they feel that they have high social support for their own position. This hypothesis was supported in an online survey experiment where social support was manipulated. Results also revealed that individuals who were highly rejection sensitive were among the most likely to participate even though they did not believe protest activity to be an efficient way to bring about social change. This supports the notion that some individuals tend to engage in protest activity for purely social reasons. However it is still unclear whether these individuals are driven by an approach motivation to establish new social bonds or an avoidance motivation to escape possible social rejection.

  13. Thresholds in Atmosphere-Soil Moisture Interactions: Results from Climate Model Studies

    Science.gov (United States)

    Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Roads, John O.; Robertson, Franklin R.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The potential predictability of the effects of warm season soil moisture anomalies over the central U.S. has been investigated using a series of GCM (Global Climate Model) experiments with the NCAR (National Center for Atmospheric Research) CCM3 (Community Climate Model version 3)/LSM (Land Surface Model). Three different types of experiments have been made, all starting in either March (representing precursor conditions) or June (conditions at the onset of the warm season): (1) 'anomaly' runs with large, exaggerated initial soil moisture reductions, aimed at evaluating the physical mechanisms by which soil moisture can affect the atmosphere; (2) 'predictability' runs aimed at evaluating whether typical soil moisture initial anomalies (indicative of year-to-year variability) can have a significant effect, and if so, for how long; (3) 'threshold' runs aimed at evaluating if a soil moisture anomaly must be of a specific size (i.e., a threshold crossed) before a significant impact on the atmosphere is seen. The 'anomaly' runs show a large, long-lasting response in soil moisture and also quantities such as surface temperature, sea level pressure, and precipitation; effects persist for at least a year. The 'predictability' runs, on the other hand, show very little impact of the initial soil moisture anomalies on the subsequent evolution of soil moisture and other atmospheric parameters; internal variability is most important, with the initial state of the atmosphere (representing remote effects such as SST anomalies) playing a more minor role. The 'threshold' runs, devised to help resolve the dichotomy in 'anomaly' and 'predictability' results, suggest that, at least in CCM3/LSM, the vertical profile of soil moisture is the most important factor, and that deep soil zone anomalies exert a more powerful, long-lasting effect than do anomalies in the near surface soil zone. We therefore suggest that soil moisture feedbacks may be more important in explaining prolonged

  14. SAT-MAP-CLIMATE project results[SATellite base bio-geophysical parameter MAPping and aggregation modelling for CLIMATE models

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.; Woetmann Nielsen, N.; Soegaard, H.; Boegh, E.; Hesselbjerg Christensen, J.; Jensen, N.O.; Schultz Rasmussen, M.; Astrup, P.; Dellwik, E.

    2002-08-01

    Earth Observation (EO) data from imaging satellites are analysed with respect to albedo, land and sea surface temperatures, land cover types and vegetation parameters such as the Normalized Difference Vegetation Index (NDVI) and the leaf area index (LAI). The observed parameters are used in the DMI-HIRLAM-D05 weather prediction model in order to improve the forecasting. The effect of introducing actual sea surface temperatures from NOAA AVHHR compared to climatological mean values, shows a more pronounced land-sea breeze effect which is also observable in field observations. The albedo maps from NOAA AVHRR are rather similar to the climatological mean values so for the HIRLAM model this is insignicant, yet most likely of some importance in the HIRHAM regional climate model. Land cover type maps are assigned local roughness values determined from meteorological field observations. Only maps with a spatial resolution around 25 m can adequately map the roughness variations of the typical patch size distribution in Denmark. A roughness map covering Denmark is aggregated (ie area-average non-linearly) by a microscale aggregation model that takes the non-linear turbulent responses of each roughness step change between patches in an arbitrary pattern into account. The effective roughnesses are calculated into a 15 km by 15 km grid for the HIRLAM model. The effect of hedgerows is included as an added roughness effect as a function of hedge density mapped from a digital vector map. Introducing the new effective roughness maps into the HIRLAM model appears to remedy on the seasonal wind speed bias over land and sea in spring. A new parameterisation on the effective roughness for scalar surface fluxes is developed and tested on synthetic data. Further is a method for the estimation the evapotranspiration from albedo, surface temperatures and NDVI succesfully compared to field observations. The HIRLAM predictions of water vapour at 12 GMT are used for atmospheric correction of

  15. Accumulation of pharmaceuticals in groundwater under arid climate conditions - Results from unsaturated column experiments.

    Science.gov (United States)

    Zemann, M; Majewsky, M; Wolf, L

    2016-07-01

    Intense reuse of treated wastewater in agriculture is practiced all over the world, especially in arid and water-scarce regions. In doing so, pharmaceutical residues in the water are irrigated to the soil and subsequently can percolate into the local aquifers. Since evaporation rates in these areas are typically high, persistent substances might enrich in the groundwater recharge of closed catchments like the Jordan Valley. Against this background, unsaturated column tests were conducted to investigate the potential for evaporative accumulation of the two pharmaceuticals bezafibrate and carbamazepine under simulated arid climate conditions. Parallel tests were conducted with inhibited microbiological activity where both substances showed an increase in the effluent concentrations proportional to the evaporation loss of the inflow solution. The mean accumulation factors of the pharmaceuticals correspond to the evaporated water loss. The experiments indicate the accumulation potential for pharmaceuticals with high persistence against biodegradation. For the first time, the overall potential for evaporative enrichment could be demonstrated for pharmaceuticals. Under the given experimental conditions, the two investigated pharmaceuticals did not enrich faster than chloride, which might result in soil salting prior to reaching harmful pharmaceutical concentrations in soil water. The findings are relevant to future assessments of environmental impacts of persistent trace substances, which need to take into account that concentrations in the aquatic cycle might increase further due to evaporative enrichment. PMID:27085060

  16. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C;

    1996-01-01

    tests and 6-week graded use tests with 0.02, 0.1 and 0.8% cinnamic aldehyde in ethanol was studied in a group of cinnamic-aldehyde-sensitive eczema patients. The minimum effect level demonstrated was 0.02% cinnamic aldehyde on patch testing and 0.1% cinnamic aldehyde on use testing, which are allowed...... exposure information is needed to evaluate more fully the consequences of cinnamic aldehyde sensitivity....

  17. CMIP5 multi-model ensemble results applied to hydro-climatic change in the Sava River Basin

    Science.gov (United States)

    Levi, Lea; Andričević, Roko; Bring, Arvid; Jaramillo, Fernando; Pietron, Jan; Rogberg, Peter; Destouni, Georgia

    2014-05-01

    Growing concerns about and needs to plan for water availability, quality and sustainable use require relevant climate-model projections for water on land. The scope of this study is to examine the implications of multi-model ensemble results of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) for the land water system of the Sava River Basin (SRB) and its subcatchments. The SRB and one of its subcatchments, Kozluk, have been recognized as dominantly influenced by human water-use activity during most of the 20th century. A main question is how well climate models can project water conditions and changes in such areas, where human activity may be a dominant driver of hydro-climatic change. To answer that question, we investigate here CMIP5 results for the SRB and its subcatchments, compare the climate model results with observed data for temperature (T), and the water balance components of precipitation (P), runoff (R) and evapotranspiration (ET) and their implied net annual water balance. Individual model results exhibit a very wide range for all the variables. We find consistent increase in projected temperature and evapotranspiration, particularly high inter-model variability of runoff, and major differences between model results and observations in runoff and precipitation in most SRB subcatchments. The long-term average annual net water balance (P-R-ET) result of climate models implies unrealistic continuous decrease of water levels in most of the SRB catchments, with an extreme result of an implied 10.3 meters decrease for the Kozluk catchment over the whole 30-year investigation period of 1961-1990. In general, such results call for improved representation of the land water system in climate modeling.

  18. Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds (Final Report)

    Science.gov (United States)

    Watershed modeling was conducted in 20 large, U.S. watersheds to assess the sensitivity of streamflow, nutrient (nitrogen and phosphorus), and sediment loading to a range of plausible mid-21st Century climate change and urban development scenarios in different regions of the nati...

  19. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    Science.gov (United States)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations - Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large

  20. Greenland Ice Sheet influence on Last Interglacial climate: global sensitivity studies performed with an atmosphere-ocean general circulation model

    Science.gov (United States)

    Pfeiffer, Madlene; Lohmann, Gerrit

    2016-06-01

    During the Last Interglacial (LIG, ˜130-115 kiloyears (kyr) before present (BP)), the northern high latitudes were characterized by higher temperatures than those of the late Holocene and a lower Greenland Ice Sheet (GIS). However, the impact of a reduced GIS on the global climate has not yet been well constrained. In this study, we quantify the contribution of the GIS to LIG warmth by performing various sensitivity studies based on equilibrium simulations, employing the Community Earth System Models (COSMOS), with a focus on height and extent of the GIS. We present the first study on the effects of a reduction in the GIS on the surface temperature (TS) on a global scale and separate the contribution of astronomical forcing and changes in GIS to LIG warmth. The strong Northern Hemisphere summer warming of approximately 2 °C (with respect to pre-industrial) is mainly caused by increased summer insolation. Reducing the height by ˜ 1300 m and the extent of the GIS does not have a strong influence during summer, leading to an additional global warming of only +0.24 °C compared to the purely insolation-driven LIG. The effect of a reduction in the GIS is, however, strongest during local winter, with up to +5 °C regional warming and with an increase in global average temperature of +0.48 °C. In order to evaluate the performance of our LIG simulations, we additionally compare the simulated TS anomalies with marine and terrestrial proxy-based LIG temperature anomalies derived from three different proxy data compilations. Our model results are in good agreement with proxy records with respect to the warming pattern but underestimate the magnitude of temperature change when compared to reconstructions, suggesting a potential misinterpretation of the proxy records or deficits in our model. However, we are able to partly reduce the mismatch between model and data by additionally taking into account the potential seasonal bias of the proxy record and/or the uncertainties

  1. Effects of Climate Change on Drinking Water Distribution Network Integrity: Predicting Pipe Failure Resulting from Differential Soil Settlement

    NARCIS (Netherlands)

    Wols, B.A.; Van Daal, K.; Van Thienen, P.

    2014-01-01

    Climate change may result in lowering of ground water levels and consolidation of the soil. The resulting (differential) settlements, associated with soil property transitions, may damage underground pipe infrastructure, such as drinking water distribution sys- tems. The work presented here offers a

  2. Comparison of Mean Contrast Sensitivity Results of LASIK and LASEK in Patients with Myopia and Myopic Astigmatism

    Directory of Open Access Journals (Sweden)

    Okan Taşkın

    2014-12-01

    Full Text Available Objectives: To compare LASIK and LASEK for the correction of myopia and myopic astigmatism in terms of contrast sensitivity. Materials and Methods: Sixty eyes of 30 patients who underwent LASIK and 60 eyes of 30 patients who underwent LASEK for myopia and myopic astigmatism at the Excimer Laser Center of Dokuz Eylül University, Faculty of Medicine, were included in this study. Mean best-corrected contrast sensitivity values were noted before surgery. Mean uncorrected contrast sensitivity values were evaluated 1 month and 6 months after surgery as well as at the last exam. Complications were noted. The results of LASIK and LASEK groups were compared. Results: The two groups were similar in terms of age and gender. No significant difference was noted between the mean preoperative best-corrected contrast sensitivity values of the two groups. Mean uncorrected contrast sensitivity values were not significantly different at the first and sixth months. Mean last exam time was 13.4 (9-36 months. Also at the last exam, mean uncorrected contrast sensitivity values were not significantly different. Mean uncorrected contrast sensitivity values at the last exam were higher than the preoperative mean best-corrected contrast sensitivity values in both LASIK and LASEK groups. Conclusion: Both LASIK and LASEK for the correction of myopia and myopic astigmatism seem to be safe procedures in terms of contrast sensitivity when performed to appropriate patients. Neither technique demonstrated significantly different contrast sensitivity results in this study. (Turk J Ophthalmol 2014; 44: 436-9

  3. Sensitivity of stream water age to climatic variability and land use change: implications for water quality

    Science.gov (United States)

    Soulsby, Chris; Birkel, Christian; Geris, Josie; Tetzlaff, Doerthe

    2016-04-01

    Advances in the use of hydrological tracers and their integration into rainfall runoff models is facilitating improved quantification of stream water age distributions. This is of fundamental importance to understanding water quality dynamics over both short- and long-time scales, particularly as water quality parameters are often associated with water sources of markedly different ages. For example, legacy nitrate pollution may reflect deeper waters that have resided in catchments for decades, whilst more dynamics parameters from anthropogenic sources (e.g. P, pathogens etc) are mobilised by very young (5 year), high resolution (daily) isotope time series in modelling studies for different catchments to show how variable stream water age distributions can be a result of hydroclimatic variability and the implications for understanding water quality. We will also use examples from catchments undergoing rapid urbanisation, how the resulting age distributions of stream water change in a predictable way as a result of modified flow paths. The implication for the management of water quality in urban catchments will be discussed.

  4. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    Directory of Open Access Journals (Sweden)

    B. Kruijt

    1999-01-01

    Full Text Available The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2], temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong. Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  5. Testing the sensitivity of CGE results: A Monte Carlo Filtering approach to an application to rural development policies in Aberdeenshire

    OpenAIRE

    Sébastien Mary; Euan Phimister; Deborah Roberts; Fabien Santini

    2013-01-01

    Parameter uncertainty has fuelled criticisms on the robustness of CGE results and has led to the development of alternative approaches to sensitivity analyses. Researchers have used Monte Carlo (MC) for systematic sensitivity analysis (SSA) because of its flexibility. However, MC may provide biased simulation results. Gaussian Quadratures (GQ) have then been developed, but they are much more difficult to apply in practical modelling and may not always be desirable. This report applies an alte...

  6. Management strategies in anticipation of climatic change and the resulting impact on wetlands

    International Nuclear Information System (INIS)

    Two significant impacts of climate change could affect waterfowl. Climate changes that induce dryness and reduce surface water would have a detrimental effect on waterfowl production capabilities. Global warming could also increase sea levels and flood critical waterfowl overwintering habitat. Strategies undertaken by Ducks Unlimited, a waterfowl conservation organization, to respond to the threat posed by global warming to waterfowl are reviewed. Ducks Unlimited will continue to assist with wetland restoration and preservation throughout the Great Plains. Strategies to enhance retention include converting marginally arable land to permanent forage, forage backflooding, and encouragement of zero and minimum tillage operations. Improved efficiency of irrigation projects is important to foster water conservation. Widespread surface water drainage should be discouraged, by combinations of legislation and economic incentives. Ducks Unlimited is refocusing its activites on parts of Alberta, Saskatchewan and Manitoba that are likely to have relatively wetter conditions under climatic warming

  7. The climate regime: Results, causes and the role of Norway; Klimaregimet : Resultater, aarsaker og Norges rolle

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, Steinar

    2001-07-01

    About a decade after the Climate Convention, little has been achieved to solve this problem. It is stressed, however, that our knowledge of the problem has increased and today few serious actors would deny the existence of the problem. National and international institutions to deal with it are being established. The main reason why the problem remains unsolved is that it is so much more difficult than most other environmental problems. The political will and ability to handle it has been limited. In the countries that do have reduced emissions, this is mostly not due to climate considerations. Norway is quite representative for many OECD countries. Although they were high in the beginning, ambitions have been reduced over time and are characterized by economical pragmatism rather than high environmental ideals. Norway has implemented more measures than many comparable nations, but this does not substantially reduce the emission of climate gases from the oil- and gas-producing nation Norway.

  8. Consideration of potential effects of climate change and resulting hydrologic impacts on mine developments

    International Nuclear Information System (INIS)

    This paper reviewed current studies related to climatic and hydrologic changes with particular reference to the impact on the oil sand industry. General circulation models (GCMs) such as the Canadian Climate Center model predicts warming trends of 1.0 to 1.5 degrees C from 2001 to 2050 over the Canadian Prairies. This increase in near surface temperature could change precipitation and storm patterns, affecting the hydrology of rivers. It could also change the volume and timing of stream flow and river ice conditions. It was noted that predictions of changes in climate at a watershed scale or even a regional scale are either unknown or less reliable than global predictions. There is much uncertainty in predicting hydrologic changes for specific watersheds. However, the risks associated with various magnitudes of change during the planning and environmental assessments of mine developments must be considered because there is the potential for direct consequences for mine developments, such as increased risk of interrupted water supplies, more severe design criteria for impoundment structures due to increased magnitude or frequency of flood events. There is also the potential for indirect consequences through institutional policy changes designed to cope with climate change. Therefore, there is a vital need for scientific information on the potential and magnitude of region-specific climatic and hydrologic changes. The paper identifies gaps in our current understanding of the watersheds processes that may be affected. Some options to mitigate the impacts of potential hydrologic changes on mine developments were discussed and recommendations were proposed as to how climate change could be incorporated in future environmental assessments

  9. Mid-Holocene climate in New Caledonia (southwest Pacific): coral and PMIP models monthly resolved results

    Science.gov (United States)

    Lazareth, Claire E.; Bustamante Rosell, Maria Gracia; Turcq, Bruno; Le Cornec, Florence; Mandeng-Yogo, Magloire; Caquineau, Sandrine; Cabioch, Guy

    2013-06-01

    The mid-Holocene climate is characterized by an insolation seasonality decrease in the Southern Hemisphere but measurements of its actual impact on monthly resolved sea surface temperature (SST) in the southwest Pacific region are still insufficient. A New Caledonian 5.5 ka cal BP coral provides a 20-year-long seasonally-resolved record of ocean surface conditions as inferred from coral Sr/Ca and Ba/Ca. Results were compared to monthly series of Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2) model simulations. Anomalous stable isotope and U/Ca values are observed in a restricted area of the skeleton related to dissolution features. The mid-Holocene SST seasonal amplitude mean and variability are higher than presently in New Caledonia, the increased seasonal amplitude in the mid-Holocene being most probably due to the occurrence of colder winters. Other southwest Pacific mid-Holocene coral data showed also such an increased seasonal amplitude. This could mean that the South Pacific Convergence Zone (SPCZ) was weaker or reached locations more northerly than at present, which could fit with northward shifts of the inter-tropical convergence zone (ITCZ) during South Hemisphere winter. Inversely, strong rainfalls during the summer, deduced from the Ba/Ca signal and reconstructed sea surface salinity (SSS), were interpreted as reflecting pronounced southwestward shifts of the SPCZ in summer, as those occurring today during La Niña events. None of the six PMIP2 models used reproduce the proxy-based mid-Holocene increase of SST seasonal amplitude. Model maps show a less intense SPCZ in winter that would be consistent with higher SST seasonal amplitude. Finally, we stress the need for more seasonally-resolved data to validate this enhanced mid-Holocene SST seasonal amplitude in the southwest Pacific region and to better understand the underlying mechanisms.

  10. Determining the sensitivity of the high mountain region in Northern Romania to climate and land use changes through multi-proxy analysis

    Science.gov (United States)

    Feurdean, Angelica; Geanta, Anca; Tantau, Ioan; Auer, Andreea; Hutchinson, Simon

    2013-04-01

    Climate and land use changes can have a great impact on high altitude environments due to their species' narrow tolerance capabilities, habitat fragmentation and habitat restriction. Since trees at the timberline and the treeline ecotone grow at their temperature and soil tolerance limit, even small alterations in these parameters can result in marked changes in the position of the treeline ecotone, diversity, and species composition. Current and future climate warming is anticipated to shift the tree and timberlines upwards, whereas land use changes can drive this movement in the opposite direction. Therefore the long-term responses of vegetation to past climate variations and land use changes are of particular relevance for the prediction of future vegetation change in high mountain areas. Here, we use a multi-proxy analysis (pollen, spores, micro and macrocharcoal, mineral magnetic properties and AMS 14C dating) of a 1m lacustrine sequence covering the last 5000 years located in the subalpine zone (1910 m a.s.l.) in the Rodna Mountains (Northern Romanian Carpathians) to determine the sensitivity of high mountain habitats (i.e., movements of the timberline and treeline ecotones, and changes in vegetation composition diversity) in response to climate, fires and land use. The pollen and stomata records reveal regional forests domi