WorldWideScience

Sample records for climate research facility

  1. ARM Climate Research Facility Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  2. ARM Climate Research Facility Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  3. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  4. ARM Climate Research Facility Monthly Instrument Report July 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-08-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ARM Climate Research Facility Instrumentation Status and Information February 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-03-25

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ARM Climate Research Facility Instrumentation Status and Information January 2010

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-02-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ARM Climate Research Facility Monthly Instrument Report May 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-06-21

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. ARM Climate Research Facility Instrumentation Status and Information March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-04-19

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  9. ARM Climate Research Facility Instrumentation Status and Information April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-05-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  10. ARM Climate Research Facility Monthly Instrument Report June 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-07-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  11. ARM Climate Research Facility Instrumentation Status and Information December 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-12-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  12. ARM Climate Research Facility Monthly Instrument Report September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-10-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  13. ARM Climate Research Facility Monthly Instrument Report August 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-09-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  14. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Chitra

    2014-01-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  15. Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2005-11-30

    This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

  16. DOE ARM Climate Research Facility - Providing Research Quality Data Products for Climate Model Evaluation and Advancement

    Science.gov (United States)

    Voyles, J.; Mather, J. H.

    2012-12-01

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national scientific user facility, has recently enhanced its observational capabilities at its fixed and mobile sites as well as its aerial facility. New capabilities include scanning radars, several types of lidars, an array of aerosol instruments, and in situ cloud probes. All ARM sites have been equipped with dual frequency scanning cloud radars that will provide three-dimensional observations of cloud fields for analysis of cloud field evolution. Sites in Oklahoma, Alaska, and Papua New Guinea have also received scanning centimeter wavelength radars for observing precipitation fields. This combination of radars will provide the means to study the interaction of clouds and precipitation. New lidars include a Raman lidar in Darwin, Australia and High Spectral Resolution Lidars in Barrow and with the second ARM Mobile Facility. Each of these lidars will provide profiles of aerosol extinction while the Raman will also measure profiles of water vapor. Scanning Doppler Lidars have been added to our Southern Great Plains, Darwin, and our first Mobile Facility. ARM has also expanded its capabilities in the realm of aerosol observations. ARM is adding Aerosol Observing Systems to its sites in Darwin and the second mobile facility. These aerosol systems principally provided measurements of aerosol optical properties. Additionally, a new Mobile Aerosol Observing System has been developed that includes a variety of instruments to provide information about aerosol chemistry and size distributions. Many of these aerosol instruments are also available for the ARM Aerial Facility. The Aerial Facility also now includes a variety of cloud probes for measuring size distribution and water content. Building on these new capabilities, ARM is adding two new research sites based on our expanded observational strategy and multidimensional measurements. A permanent research site will be added in the Azores and

  17. ARM Climate Research Facility: Outreach Tools and Strategies

    Science.gov (United States)

    Roeder, L.; Jundt, R.

    2009-12-01

    Sponsored by the Department of Energy, the ARM Climate Research Facility is a global scientific user facility for the study of climate change. To publicize progress and achievements and to reach new users, the ACRF uses a variety of Web 2.0 tools and strategies that build off of the program’s comprehensive and well established News Center (www.arm.gov/news). These strategies include: an RSS subscription service for specific news categories; an email “newsletter” distribution to the user community that compiles the latest News Center updates into a short summary with links; and a Facebook page that pulls information from the News Center and links to relevant information in other online venues, including those of our collaborators. The ACRF also interacts with users through field campaign blogs, like Discovery Channel’s EarthLive, to share research experiences from the field. Increasingly, field campaign Wikis are established to help ACRF researchers collaborate during the planning and implementation phases of their field studies and include easy to use logs and image libraries to help record the campaigns. This vital reference information is used in developing outreach material that is shared in highlights, news, and Facebook. Other Web 2.0 tools that ACRF uses include Google Maps to help users visualize facility locations and aircraft flight patterns. Easy-to-use comment boxes are also available on many of the data-related web pages on www.arm.gov to encourage feedback. To provide additional opportunities for increased interaction with the public and user community, future Web 2.0 plans under consideration for ACRF include: evaluating field campaigns for Twitter and microblogging opportunities, adding public discussion forums to research highlight web pages, moving existing photos into albums on FlickR or Facebook, and building online video archives through YouTube.

  18. Quality Assurance of ARM Program Climate Research Facility Data

    International Nuclear Information System (INIS)

    This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and characterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented

  19. Quality Assurance of ARM Program Climate Research Facility Data

    Energy Technology Data Exchange (ETDEWEB)

    Peppler, RA; Kehoe, KE; Sonntag, KL; Bahrmann, CP; Richardson, SJ; Christensen, SW; McCord, RA; Doty, DJ; Wagener, Richard [BNL; Eagan, RC; Lijegren, JC; Orr, BW; Sisterson, DL; Halter, TD; Keck, NN; Long, CN; Macduff, MC; Mather, JH; Perez, RC; Voyles, JW; Ivey, MD; Moore, ST; Nitschke, DL; Perkins, BD; Turner, DD

    2008-03-01

    This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

  20. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  1. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  2. ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2011-01-17

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  3. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  4. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    Energy Technology Data Exchange (ETDEWEB)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    Energy Technology Data Exchange (ETDEWEB)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  8. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    Energy Technology Data Exchange (ETDEWEB)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, DL

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  13. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the

  14. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    Energy Technology Data Exchange (ETDEWEB)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  15. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  16. ARM Climate Research Facility Quarterly Value-Added Product Report First Quarter: October 01-December 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, C

    2012-02-28

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  17. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cialella, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gregory, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lazar, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liang, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tilp, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wagener, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  18. Technology Solutions Case Study: Cold Climate Foundation Wall Hygrothermal Research Facility, Cloquet, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This case study describes the University of Minnesota’s Cloquet Residential Research Facility (CRRF) in northern Minnesota, which features more than 2,500 ft2 of below-grade space for building systems foundation hygrothermal research. Here, the NorthernSTAR Building America Partnership team researches ways to improve the energy efficiency of the building envelope, including wall assemblies, basements, roofs, insulation, and air leakage.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, DL

    2010-10-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research Facility Field Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, CR [University at Albany-SUNY; Santanello, JA [NASA - Goddard Space Flight Center; Gentine, P [Columbia University

    2015-11-01

    Matching observed diurnal cycles is a fundamental yet extremely complex test for models. High temporal resolution measurements of surface turbulent heat fluxes and boundary layer properties are required to evaluate the daytime evolution of the boundary layer and its sensitivity to land-atmosphere coupling. To address this need, (12) one-day intensive observing periods (IOP) with enhanced radiosonding will be carried out at the ARM Southern Great Plains (SGP) Central Facility (CF) during summer 2015. Each IOP will comprise a single launch to correspond with the nighttime overpass of the A-Train of satellites (~0830 UTC) and hourly launches during daytime beginning from 1130 UTC and ending at 2130 UTC. At 3-hourly intervals (i.e., 1140 UTC, 1440 UTC, 1740 UTC, and 2040 UTC) a duplicate second radiosonde will be launched 10 minutes subsequent to launch of the on-hour radiosonde for the purpose of assessing horizontal atmospheric variability. In summary, each IOP will have a 14-sounding supplement to the 6-hourly operational sounding schedule at the ARM-SGP CF. The IOP days will be decided before sunset on the preceding day, according to the judgment of the PI’s and taking into consideration daily weather forecasts and the operability of complimentary ARM-SGP CF instrumentation. An overarching goal of the project is to address how ARM could better observe land-atmosphere coupling to support the evaluation and refinement of coupled weather and climate models.

  1. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  2. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  3. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  4. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  5. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Harmon, Anna C. [NorthernSTAR, St. Paul, MN (United States)

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, DL

    2005-09-30

    Description. Individual raw data streams from instrumentation at the ACRF fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at PNNL for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The DOE requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) site is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) site is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating

  7. Atmospheric Electric Field measurements at Eastern North Atlantic ARM Climate Research Facility: Global Electric Circuit Evolution

    Science.gov (United States)

    Lopes, Francisco; Silva, Hugo; Nitschke, Kim; Azevedo, Eduardo

    2016-04-01

    The Eastern North Atlantic (ENA) facility of the ARM programme (established an supported by the U.S. Department of Energy with the collaboration of the local government and University of the Azores), is located at Graciosa Island of the Azores Archipelago (39° N; 28° W). It constitutes a strategic observatory for Atmospheric Electricity since it is located in the Atlantic Ocean basin exposed to clean marine aerosol conditions which reduces the well known spectral signature of atmospheric pollution and enables the study of the so called Global Electrical Circuit (GEC). First evidences of the existence of a GEC affecting the Earth's Electric Environment has retrieved by the Carnegie cruise expedition, in what became known as the Carnegie Curve. Those measurements were made in the Ocean in several campaigns and the present studies aims at reconsidering measurements in similar conditions but in a long-term basis, at least 5 years. This will contribute to the understanding of the long-term evolution of the Ionospheric Potential (IP). In literature there is theoretical evidence that it is decreasing IP in strength, but that conjecture is still lacking valid experimental evidence. Moreover, to clearly identify the GEC signal two effects must be taken into account: the effect of surface radon gas variation, because the Azores Archipelago is a seismic active region the possible influence of Earthquakes cannot be discarded easily; the effect of short-term solar activity on the Atmospheric Electricity modulation, solar flares emitting solar particles (e.g., solar energetic protons) need to be considered in this study.

  8. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  9. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  10. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditions The Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for...

  11. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  12. Climate and atmospheric research

    International Nuclear Information System (INIS)

    This issue of the scientific journal of the Humboldt university is dedicated to results of research work carried out to the greatest extent at the meteorological institute in the last two years on the area of climate and atmospheric research. The traditional research areas of the institute are climatology and the dynamics of the atmosphere, in particular the atmospherical boundary layer. Considering the high probability of a global climatic fluctuation due to the anthropogenic change of composition of the atmosphere and other climate-relevant factors imminent in the next century, climatological research today is an important part of global and regional environmental research. From the necessity of determination and evaluation of the effect of climatic fluctuations on nature and society the contours of a new interdisciplinary research area are already visible now. This is suitable as hardly any other area to be the supporting idea of environmental research at universities. The contributions contained in the issue already consider, in addition to results on climate diagnosis, also results on aspects of climate effect research. (orig./KW)

  13. FORMAS AND CLIMATE RESEARCH

    OpenAIRE

    Sellberg, В.

    2006-01-01

    Formas has the mandate from the Swedish Government to coordinate Swedish Climate Research. Within the framework of this mandate, Formas together with several other research funding agencies has published two reports, 2002 and 2003 [1, 2] in which the most important research areas are identified. In these reports, the Swedish activities in the field were mapped and new important research activities were suggested. In addition, an analysis of ongoing international research was performed. At the...

  14. Decommissioning Russian Research Facilities

    International Nuclear Information System (INIS)

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety of nuclear research facilities (RR), including research reactors, critical assemblies and sub-critical assemblies. Most of the Russian RR were built and put in operation more than 30 years ago. The problems of ageing equipment and strengthening of safety requirements in time, the lack of further experimental programmes and financial resources, have created a condition when some of the RR were forced to take decisions on their decommissioning. The result of these problems was reflected in reducing the number of RR from 113 in 1998 to 81 in the current year. At present, seven RR are already under decommissioning or pending it. Last year, the Ministry of Atomic Energy took the decision to finally shut down two remaining actual research reactors in the Physics and Power Engineering Institute in Obninsk: AM-1, the first reactor in the world built for peaceful purposes, graphite-type reactor, and the fast liquid metal reactor BR-10, and to start their preparation for decommissioning. It is not enough just to declare the decommissioning of a RR: it is also vital to find financial resources for that purpose. For this reason, due to lack of financing, the MR reactor at the Kurchatov Institute has been pending decommissioning since 1992 and still is. The other example of long-lasting decommissioning is TVR, a heavy water reactor at the Institute of Theoretical Physics in Moscow (ITEF). The reason is also poor financing. Another example discussed in the paper concerns on-site disposal of a RR located above the Arctic Pole Circle, owned by the Norilsk Mining Company. Furthermore, the experience of the plutonium reactor decommissioning at the Joint Institute of Nuclear Research is also discussed. As shown, the Russian Federation has had good experiences in the decommissioning of nuclear research facilities. (author)

  15. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  16. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  17. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  18. Time Series of Aerosol Column Optical Depth at the Barrow, Alaska, ARM Climate Research Facility for 2008 Fourth Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    Energy Technology Data Exchange (ETDEWEB)

    C Flynn; AS Koontz; JH Mather

    2009-09-01

    The uncertainties in current estimates of anthropogenic radiative forcing are dominated by the effects of aerosols, both in relation to the direct absorption and scattering of radiation by aerosols and also with respect to aerosol-related changes in cloud formation, longevity, and microphysics (See Figure 1; Intergovernmental Panel on Climate Change, Assessment Report 4, 2008). Moreover, the Arctic region in particular is especially sensitive to changes in climate with the magnitude of temperature changes (both observed and predicted) being several times larger than global averages (Kaufman et al. 2009). Recent studies confirm that aerosol-cloud interactions in the arctic generate climatologically significant radiative effects equivalent in magnitude to that of green house gases (Lubin and Vogelmann 2006, 2007). The aerosol optical depth is the most immediate representation of the aerosol direct effect and is also important for consideration of aerosol-cloud interactions, and thus this quantity is essential for studies of aerosol radiative forcing.

  19. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  20. Satellite Data Support for the ARM Climate Research Facility, 8/01/2009 - 7/31/2015

    Energy Technology Data Exchange (ETDEWEB)

    Minnis, Patrick [NASA Langley Research Center, Hampton, VA (United States); Khaiyer, Mandana M [Science Systems and Applications, Inc., Hampton, VA (United States)

    2015-10-06

    This report summarizes the support provided by NASA Langley Research for the DOE ARM Program in the form of cloud and radiation products derived from satellite imager data for the period between 8/01/09 through 7/31/15. Cloud properties such as cloud amount, height, and optical depth as well as outgoing longwave and shortwave broadband radiative fluxes were derived from geostationary and low-earth orbiting satellite imager radiance measurements for domains encompassing ARM permanent sites and field campaigns during the performance period. Datasets provided and documents produced are listed.

  1. Biotechnology Facility: An ISS Microgravity Research Facility

    Science.gov (United States)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  2. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  3. Navy Fuel Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research to understand the underlying chemistry that impacts the use, handling, and storage of current and future Navy mobility...

  4. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  5. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  6. Norwegian climate research. An evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    From the executive summary; Based on our evaluation, we make six major recommendations and provide suggestions for how these might be implemented. 1. Establish a clear and coherent national strategy for climate research and its funding. 2. The Research Council of Norway should develop a new integrated long-term climate research programme. 3. Build on strengths and develop capacities in areas where Norway currently lacks sufficient scientific expertise. 4. Ensure societal relevance as well as inter- and transdisciplinarity in research. 5. Emphasise collaboration and cooperation as a basis for successful climate research. 6. Prioritise outreach and stakeholder interaction.(Author)

  7. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  8. Window Observational Research Facility (WORF)

    Science.gov (United States)

    Pelfrey, Joseph; Sledd, Annette

    2007-01-01

    This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.

  9. Norwegian climate research. An evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    [English] In early 2011, the Norwegian Research Council (RCN) appointed a committee to review Norwegian climate research. The aim of the evaluation was to provide a critical review of Norwegian climate research in an international perspective and to recommend measures to enhance the quality, efficiency and relevance of future climate research. The Evaluation Committee met three times: in August and December 2011, and March 2012. RCN sent an invitation to 140 research organisations to participate by delivering background information on their climate research. Based on the initial response, 48 research units were invited to submit self-assessments and 37 research units responded. These were invited to hearings during the second meeting of the Evaluation Committee in December. In our judgement, a great majority of the most active research units are covered by this evaluation report. It should be emphasised that the evaluation concerned the Norwegian landscape of climate research rather than individual scientists or research units. Bibliometric analyses and social network analyses provided additional information. We are aware of problems in making comparisons across disciplinary publishing traditions, especially with regard to the differences between the natural and social sciences and the humanities. The Evaluation Committee also reviewed a number of governmental and RCN policy documents and conducted interviews with the chairs of the NORKLIMA Programme Steering Board and the Norwegian IPY Committee, as well as with staff members of RCN. Additional information was received from hearings organised by RCN with the science communities and various stakeholders in January 2012. For the purpose of this evaluation, climate research was divided into three broad thematic areas: 1. The climate system and climate change: research on climate variability and change in order to improve our capability of understanding climate and of projecting climate change for different time

  10. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  11. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  12. Research Facility Development at CAS

    Institute of Scientific and Technical Information of China (English)

    Tian Dongsheng; Miao Yougui; Zhang Hongsong

    2005-01-01

    @@ This article gives an introductory account on the development of research facilities at the CAS over the past six years since the initiation of the Knowledge Innovation Program in 1998 and during the period of the national 10th Five-year Plan in particular. In addition, it expounds the key points for the future work at the CAS in this regard.

  13. The Biological Flight Research Facility

    Science.gov (United States)

    Johnson, Catherine C.

    1993-01-01

    NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

  14. Decommissioning of Russian research facilities

    International Nuclear Information System (INIS)

    When the most of our research facilities were built and put in operation more than 30 years ago there had been neither requirements no regulations concerning their future decommissioning (D and D). And due to that fact nobody thought of that in the initial designs of these facilities. The situation changed when in 1994 a top-level safety standard 'Safety Provision for Safety of Research Reactors' was issued by Gosatomnadzor of Russia with a special chapter 7, devoted to D and D issues. Unfortunately, it was just one page of requirements pertaining RR D and D in general terms and was not specific. Only in 2001 Gosatomnadzor of Russia developed and issued a more specific standard 'Rules for Safety Decommissioning of Nuclear Research Facilities'. From the total number of 85 Nuclear Research Facilities, including 34 research reactors, 36 critical assemblies and 15 subcritical assemblies, we have now 7 facilities under decommissioning. The situation is inevitably changing over the time. In the end of 2003 the decision was made to permanently shutdown two RR: AM, graphite type with channels, 15 MBt; BR-10, LMFR type, 10 MBt, and to start preparatory work for their future decommissioning, starting from 2005. It needs to be mentioned that from this list we have 6 reactors with which we face many difficulties in developing decommissioning technologies, namely: for TVR reactor: handling of heavy water and high radiation field in the core; for MR reactor: very complex reactor with many former radioactive spills, which is required a careful and expensive D and D work; AM: graphite utilization problem; BR-10: a problem of coolant poisoned with other heavy metals (like lead, bismuth); IBR-30: the fuel cannot be removed from the core prior the D and D project starts; RG-1M: location is above Arctic Circle, problem of transfer of irradiated parts of the reactor. The decision was made to bury then on the site thus creating a shallow-land radwaste storage facility. The established D

  15. Climate strength: a new direction for climate research.

    Science.gov (United States)

    Schneider, Benjamin; Salvaggio, Amy Nicole; Subirats, Montse

    2002-04-01

    Climate strength was conceptualized within D. Chan's (1998) discussion of compositional models and the concept of culture strength from the organizational culture literature. Climate strength was operationalized in terms of within-group variability in climate perceptions-the less within-group variability, the stronger the climate. The authors studied climate strength in the context of research linking employee service climate perceptions to customer satisfaction. The hypothesis was tested that climate strength moderates the relationship between employee perceptions of service climate and customer satisfaction experiences. Partial support for the hypothesis was reported in both a concurrent and predictive (3-year) test across 118 branches of a bank. In the predictive study only the interaction of climate and climate strength predicted customer satisfaction. Implications for future research on climate and climate strength are discussed. PMID:12002951

  16. Statistical Analysis in Climate Research

    Science.gov (United States)

    von Storch, Hans; Zwiers, Francis W.

    2002-03-01

    The purpose of this book is to help the climatologist understand the basic precepts of the statistician's art and to provide some of the background needed to apply statistical methodology correctly and usefully. The book is self contained: introductory material, standard advanced techniques, and the specialized techniques used specifically by climatologists are all contained within this one source. There are a wealth of real-world examples drawn from the climate literature to demonstrate the need, power and pitfalls of statistical analysis in climate research.

  17. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  18. Environmental practices for biomedical research facilities.

    OpenAIRE

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing ...

  19. Health Care Facilities Resilient to Climate Change Impacts

    Directory of Open Access Journals (Sweden)

    Jaclyn Paterson

    2014-12-01

    Full Text Available Climate change will increase the frequency and magnitude of extreme weather events and create risks that will impact health care facilities. Health care facilities will need to assess climate change risks and adopt adaptive management strategies to be resilient, but guidance tools are lacking. In this study, a toolkit was developed for health care facility officials to assess the resiliency of their facility to climate change impacts. A mixed methods approach was used to develop climate change resiliency indicators to inform the development of the toolkit. The toolkit consists of a checklist for officials who work in areas of emergency management, facilities management and health care services and supply chain management, a facilitator’s guide for administering the checklist, and a resource guidebook to inform adaptation. Six health care facilities representing three provinces in Canada piloted the checklist. Senior level officials with expertise in the aforementioned areas were invited to review the checklist, provide feedback during qualitative interviews and review the final toolkit at a stakeholder workshop. The toolkit helps health care facility officials identify gaps in climate change preparedness, direct allocation of adaptation resources and inform strategic planning to increase resiliency to climate change.

  20. Analysis on the Impact of Facility Agriculture Development on Climate Change in Weifang

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the influence of facility agriculture development on the climate variation in Weifang. [Method] Shouguang was selected as the representative station of greenhouse shed planting zone. By using the precipitation, temperature and relative humidity, etc. in Weifang City during 1961-2010, the climatic variation situations in the whole city and the greenhouse shed planting zone were analyzed. The variation trend and evolution characteristics of climate in the different seas...

  1. Climate proofing agricultural research investments

    Directory of Open Access Journals (Sweden)

    Peter Jones

    2007-12-01

    Full Text Available The case for impending climate change is now proven. Governments can decide, by their action or inaction, to what extent the change will occur; the International Agriculture Research Community (IARC will have no say in this whatsoever. It is up to the IARC to try to maintain objectives in the face of the possible scenarios. In this paper we discuss the various types of agricultural research projects in terms of their time to fruition and the expected longevity of their results. We look at the information requirements for ensuring that project products have the necessary lifetimes to justify the investments in the research. We show that strategies differ depending on the type of research that is undertaken. Basic research into genetic traits and capacities within the available germplasm has to be planned in the long term with outcomes in mind. The vulnerability of the populations and agricultural systems that use developments from this basic research now places its priority setting in a changing climate and world concept. Ensuring that the germplasm is available for use has taken on a critical new importance with recent studies. Germplasm banks comprise a small fraction of what we will be relying on for the future. Well over 90% of useful genetic variability may still be in the wild. This has to be considered carefully in setting out research objectives. Plant breeders, who will put together the results of the basic research into useful packages, now have an uncertain target to aim for when regarding future climate conditions. They may not be able to choose their testing sites in present climates to target agricultural populations that will be using their products in the future. Agronomic and agricultural development projects face the most difficult task. How do we develop stable farming systems in an environment that is not only unstable, but also changing so slowly that the farmers cannot see, or even envisage, the changes. These are some

  2. Analysis of facilities in OFF research in participating countries of CORE Organic

    OpenAIRE

    Nykänen, Arja; Canali, Stefano

    2006-01-01

    Report lists the following research facilities: research farms, experimental fields, on-farm studies, networks, animal research facilities, leaching fields and long-term experiments. Other facilities like facilities for laboratory analyses, food processing, greenhouses, climate chambers and growth cabinets are left out from this analysis, because they are seldom exclusively used for OFF research and because their use for OFF research does not require particular characteristics. On the other h...

  3. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    Science.gov (United States)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and

  4. Climate change in safety assessment of a surface disposal facility

    Science.gov (United States)

    Leterme, B.

    2012-04-01

    The Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) aims to develop a surface disposal facility for LILW-SL in Dessel (North-East of Belgium). Given the time scale of interest for the safety assessment (several millennia), a number of parameters in the modelling chain near field - geosphere - biosphere may be influenced by climate change. The present study discusses how potential climate change impact was accounted for the following quantities: (i) near field infiltration through the repository earth cover, (ii) partial pressure of CO2 in the water infiltrating the cover and draining the concrete, and (iii) groundwater recharge in the vicinity of the site. For these three parameters, the impact of climate change is assessed using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. Results indicate that : (i) Using Gijon (Spain) as representative analogue station for the next millennia, infiltration at the bottom of the soil layer towards the modules of the facility is expected to increase (from 346 to 413 mm/y) under a subtropical climate. Although no colder climate is foreseen in the next 10 000 years, the approach was also tested with analogue stations for a colder climate state. Using Sisimiut (Greenland) as representative analogue station, infiltration is expected to decrease (109 mm/y). (ii) Due to changes of the partial pressure of CO2 in the soil water, cement degradation is estimated to occur more rapidly under a warmer climate. (iii) A decrease of long-term annual average groundwater recharge by 12% was simulated using Gijon representative analogue (from 314 to 276 mm), although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). For a colder climate state, groundwater recharge simulated for the representative analogue Sisimiut showed a decrease by 69% compared to current climate conditions. The

  5. Facilities for animal research in space

    Science.gov (United States)

    Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

    1991-01-01

    The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.

  6. Psychological research and global climate change

    Science.gov (United States)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  7. Access to major overseas research facilities

    International Nuclear Information System (INIS)

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year

  8. Meson facility. Powerful new research tool

    International Nuclear Information System (INIS)

    A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described

  9. Observation Needs for Climate Services and Research

    OpenAIRE

    MANTON Mike; BELWARD Alan; Harrison, D. E.; KUHN Anna; LEFALE Pene; Rosner, Stefan; Simmons, A; WESTERMEYER William; ZILLMAN John

    2010-01-01

    Climate data are usefully applied to many economic and societal sectors. Sustained, high quality and uninterrupted climate observations are vital for the development of all countries, because climate variability and change impact significantly on economies and societies. The sectors treated in this paper include the key areas of human health, energy and water. The special needs for research and for the development of strategies to mitigate and adapt to climate change are also considered. All ...

  10. MYRRHA: A multipurpose nuclear research facility

    OpenAIRE

    Baeten P.; Schyns M.; Fernandez Rafaël; De Bruyn Didier; Van den Eynde Gert

    2014-01-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research fac...

  11. The Sanford Underground Research Facility at Homestake

    OpenAIRE

    Heise, Jaret

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the M...

  12. A Bibliometric Analysis of Climate Engineering Research

    Science.gov (United States)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  13. Zero Gravity Research Facility (Zero-G)

    Data.gov (United States)

    Federal Laboratory Consortium — The Zero Gravity Research Facility (Zero-G) provides a near weightless or microgravity environment for a duration of 5.18 seconds. This is accomplished by allowing...

  14. Research on climate effects. Effects of climate changes. Proceedings

    International Nuclear Information System (INIS)

    Global changes affecting the earth are at the forefront of public interest, possibly caused by climate alterations amongst other things. The public expects appropriate measures from politics to successfully adapt to unavoidable climate changes. As well as an investigation into the causes of climatic changes and the corollaries between the different scientific phenomena, the effects on the economy and society must also be examined. The Federal Minister for Research and Technology aims to make a valuable German contribution to international Global Change Research with the focal point ''Effects of Climate Changes on the Ecological and Civil System''. The aim of the workshop was to give an outline of current scientific knowledge, sketch out research requirements and give recommendations on the focal point with regard to the BMFT. (orig.)

  15. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  16. The Norwegian Climate and Ozone Research Programme

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, E. [ed.

    1996-03-01

    This report includes abstracts from a workshop arranged by the Norwegian Climate and Ozone Research Programme 11-12 March 1996. The abstracts are organized according to the sessions: (1) Regional effects of climate change with emphasis on ecology, (2) Climate research related to the North Atlantic, (3) What lessons can be drawn from paleoclimatology about changes in the current climate?, (4) Changes in the ozone layer and their effect on UV and biology. Abstracts of a selection of papers presented at the workshop can be found elsewhere in the present data base. 70 refs., 19 figs., 2 tabs.

  17. Assessing CANDU requirements for irradiation - Research facilities

    International Nuclear Information System (INIS)

    The Canadian nuclear program needs ongoing access to irradiation-research facilities to support the safe operation of existing CANDU reactors and the evolutionary development of CANDU components and design features. The irradiation-research program must facilitate the testing of unique CANDU technology such as the fuel bundle, on-power refueling, the pressure tube, and the heavy-water coolant and moderator. Since 1957, NRU has operated as Canada's principal irradiation facility; however, it has become clear that NRU needs costly refurbishing if its lifetime is to be significantly extended. Accordingly, AECL has reviewed the requirements for CANDU irradiation research and is presently assessing alternatives for providing the necessary future access to irradiation-research facilities. Various options are under consideration, including renting space in existing research reactors, performing irradiations in CANDU power reactors, and building a new indigenous materials testing reactor specifically to meet essential program requirements

  18. The french researches on the climatic change

    International Nuclear Information System (INIS)

    Scientists were the first to prevent decision makers on the risk of the climatic change bond to the greenhouse gases emissions. The results of the third GIEC report confirmed that the main part of the global warming of the last 50 years is due to the human activities. This document presents the major results of the french researches during the last five years: the planet observation, the climate evolution study, the simulation of the future climate, the climatic change in France, the impacts of the climatic change on the marine and earth biosphere, the climatic risks and the public policies, the health impacts, the 2003 heat and the research infrastructures. (A.L.B.)

  19. A Harassing Climate? Sexual Harassment and Campus Racial Climate Research

    Science.gov (United States)

    Lundy-Wagner, Valerie; Winkle-Wagner, Rachelle

    2013-01-01

    In this conceptual paper, the authors discuss how research about sexual harassment and campus racial climates for undergraduate students is relegated to separate silos. Drawing on intersectionality and critical race feminist frameworks, the authors juxtapose these strands of research with attention to ethnicity/race and gender, highlighting how…

  20. IPPE critical facilities and their research programs

    International Nuclear Information System (INIS)

    The 40th anniversary of BFS zero power fast critical facilities family took place in 2001. An extensive neutron physics research program for justification of fast sodium-cooled reactors core physics has been carried out on them. Advanced reactors core physics research is fulfilled today to solve both traditional and non-traditional tasks of nuclear power industry

  1. E-beam facility for collaborative research

    International Nuclear Information System (INIS)

    An indigenously developed Microtron facility at Mangalore University is being used for variety of research activities in interdisciplinary areas of science and technology. The unique facility with 8 MeV electrons, intense Bremsstrahlung photons and neutrons of moderate flux facilitates a number of co-ordinated R and D programs in collaboration with universities and national laboratories. A bird's eye view of all these activities along with a few sample results is presented in this paper. (author)

  2. The computational future for climate change research

    International Nuclear Information System (INIS)

    The development of climate models has a long history starting with the building of atmospheric models and later ocean models. The early researchers were very aware of the goal of building climate models which could integrate our knowledge of complex physical interactions between atmospheric, land-vegetation, hydrology, ocean, cryospheric processes, and sea ice. The transition from climate models to earth system models is already underway with coupling of active biochemical cycles. Progress is limited by present computer capability which is needed for increasingly more complex and higher resolution climate models versions. It would be a mistake to make models too complex or too high resolution. Arriving at a 'feasible' and useful model is the challenge for the climate model community. Some of the climate change history, scientific successes, and difficulties encountered with supercomputers will be presented

  3. International Space Station -- Human Research Facility (HRF)

    Science.gov (United States)

    2000-01-01

    Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

  4. The Sanford Underground Research Facility at Homestake

    CERN Document Server

    Heise, J

    2014-01-01

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  5. The Facility for Antiproton and Ion Research

    Science.gov (United States)

    Langanke, K.

    2015-11-01

    In the coming years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and path-breaking research in hadronic, nuclear and atomic physics as well as applied sciences. This manuscript will discuss some of these research opportunities, with a focus on nuclear physics related to supernova dynamics and nucleosynthesis.

  6. Climate Change Research in View of Bibliometrics

    Science.gov (United States)

    Haunschild, Robin; Bornmann, Lutz; Marx, Werner

    2016-01-01

    This bibliometric study of a large publication set dealing with research on climate change aims at mapping the relevant literature from a bibliometric perspective and presents a multitude of quantitative data: (1) The growth of the overall publication output as well as (2) of some major subfields, (3) the contributing journals and countries as well as their citation impact, and (4) a title word analysis aiming to illustrate the time evolution and relative importance of specific research topics. The study is based on 222,060 papers (articles and reviews only) published between 1980 and 2014. The total number of papers shows a strong increase with a doubling every 5–6 years. Continental biomass related research is the major subfield, closely followed by climate modeling. Research dealing with adaptation, mitigation, risks, and vulnerability of global warming is comparatively small, but their share of papers increased exponentially since 2005. Research on vulnerability and on adaptation published the largest proportion of very important papers (in terms of citation impact). Climate change research has become an issue also for disciplines beyond the natural sciences. The categories Engineering and Social Sciences show the strongest field-specific relative increase. The Journal of Geophysical Research, the Journal of Climate, the Geophysical Research Letters, and Climatic Change appear at the top positions in terms of the total number of papers published. Research on climate change is quantitatively dominated by the USA, followed by the UK, Germany, and Canada. The citation-based indicators exhibit consistently that the UK has produced the largest proportion of high impact papers compared to the other countries (having published more than 10,000 papers). Also, Switzerland, Denmark and also The Netherlands (with a publication output between around 3,000 and 6,000 papers) perform top—the impact of their contributions is on a high level. The title word analysis shows

  7. Climate Change Research in View of Bibliometrics.

    Science.gov (United States)

    Haunschild, Robin; Bornmann, Lutz; Marx, Werner

    2016-01-01

    This bibliometric study of a large publication set dealing with research on climate change aims at mapping the relevant literature from a bibliometric perspective and presents a multitude of quantitative data: (1) The growth of the overall publication output as well as (2) of some major subfields, (3) the contributing journals and countries as well as their citation impact, and (4) a title word analysis aiming to illustrate the time evolution and relative importance of specific research topics. The study is based on 222,060 papers (articles and reviews only) published between 1980 and 2014. The total number of papers shows a strong increase with a doubling every 5-6 years. Continental biomass related research is the major subfield, closely followed by climate modeling. Research dealing with adaptation, mitigation, risks, and vulnerability of global warming is comparatively small, but their share of papers increased exponentially since 2005. Research on vulnerability and on adaptation published the largest proportion of very important papers (in terms of citation impact). Climate change research has become an issue also for disciplines beyond the natural sciences. The categories Engineering and Social Sciences show the strongest field-specific relative increase. The Journal of Geophysical Research, the Journal of Climate, the Geophysical Research Letters, and Climatic Change appear at the top positions in terms of the total number of papers published. Research on climate change is quantitatively dominated by the USA, followed by the UK, Germany, and Canada. The citation-based indicators exhibit consistently that the UK has produced the largest proportion of high impact papers compared to the other countries (having published more than 10,000 papers). Also, Switzerland, Denmark and also The Netherlands (with a publication output between around 3,000 and 6,000 papers) perform top-the impact of their contributions is on a high level. The title word analysis shows that

  8. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  9. Research activities by INS cyclotron facility

    International Nuclear Information System (INIS)

    Research activities made by the cyclotron facility and the related apparatuses at Institute for Nuclear Study (INS), University of Tokyo, have been reviewed in terms of the associated scientific publications. This publication list, which is to be read as a continuation of INS-Rep.-608 (October, 1986), includes experimental works on low-energy nuclear physics, accelerator technology, instrumental developments, radiation physics and other applications in interdisciplinary fields. The publications are classified into the following four categories. (A) : Internal reports published in INS. (B) : Publications in international scientific journals on experimental research works done by the cyclotron facility and the related apparatuses at INS. Those made by outside users are also included. (C) : Publications in international scientific journals on experimental low-energy nuclear physics, which have been done by the staff of INS Nuclear Physics Division using facilities outside INS. (D) : Contributions to international conferences. (author)

  10. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability

  11. CLOUD: an atmospheric research facility at CERN

    OpenAIRE

    The Cloud Collaboration

    2001-01-01

    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements.

  12. The Sanford Underground Research Facility at Homestake

    Science.gov (United States)

    Heise, J.

    2015-08-01

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  13. Information Technology and the Human Research Facility

    Science.gov (United States)

    Klee, Margaret

    2002-01-01

    This slide presentation reviews how information technology supports the Human Research Facility (HRF) and specifically the uses that contractor has for the information. There is information about the contractor, the HRF, some of the experiments that were performed using the HRF on board the Shuttle, overviews of the data architecture, and software both commercial and specially developed software for the specific experiments.

  14. CLOUD an atmospheric research facility at CERN

    CERN Document Server

    Fastrup, B; Lillestøl, Egil; Bosteels, Michel; Gonidec, A; Kirkby, Jasper; Mele, S; Minginette, P; Nicquevert, Bertrand; Schinzel, D; Seidl, W; Grundsøe, P; Marsh, N D; Polny, J; Svensmark, H; Viisanen, Y; Kurvinen, K L; Orava, Risto; Hameri, K; Kulmala, M; Laakso, I; O'Dowd, C D; Afrosimov, V; Basalaev, A; Panov, M; Laaksonen, B D; Joutsensaari, J; Ermakov, V; Makhmutov, V S; Maksumov, O; Pokrevsky, P; Stozhkov, Yu I; Svirzhevsky, N S; Carslaw, K; Yin, Y; Trautmann, T; Arnold, F; Wohlfrom, K H; Hagen, D; Schmitt, J; Whitefield, P; Aplin, K L; Harrison, R G; Bingham, R; Close, Francis Edwin; Gibbins, C; Irving, A; Kellett, B; Lockwood, M; Mäkelä, J M; Petersen, D; Szymanski, W W; Wagner, P E; Vrtala, A; CERN. Geneva. SPS-PS Experiments Committee

    2001-01-01

    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements.

  15. Holifield Heavy Ion Research Facility: Users handbook

    International Nuclear Information System (INIS)

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given

  16. The Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Development of the Holifield facility has continued with resulting improvements in the number of ion species provided, ion energy for tandem-only operations, and utilization efficiency. The Holifield Heavy Ion Research Facility (HHIRF) is located at the Oak Ridge National Laboratory and operated as a national user facility for research in heavy ion science. The facility operates two accelerators: an NEC pelletron tandem accelerator designed to operate at terminal potentials up to 25 MV and the Oak Ridge Isochronous Cyclotron (ORIC) which has been modified to serve as an energy booster for beams from the tandem accelerator. The principal experimental devices of the facility include a broad range spectrograph (ME/q2 = 225) equipped with a vertical drift chamber detector system, a 4π spin spectrometer equipped with 72 NaI detectors (Ge detectors and BGO compton-suppression units can be used in place of the NaI detectors), a time-of-flight spectrometer, a 1.6-m scattering chamber, a heavy-ion/light-ion detector (HILI) which will be used for studying inverse reactions, a split-pole spectrograph, and a velocity filter. In this report, we will discuss our recent development activities, operational experience, and future development plans

  17. 9 CFR 2.37 - Federal research facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Federal research facilities. 2.37 Section 2.37 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish...

  18. Gaps in agricultural climate adaptation research

    Science.gov (United States)

    Davidson, Debra

    2016-05-01

    The value of the social sciences to climate change research is well recognized, but notable gaps remain in the literature on adaptation in agriculture. Contributions focus on farmer behaviour, with important research regarding gender, social networks and institutions remaining under-represented.

  19. Animal research facility for Space Station Freedom

    Science.gov (United States)

    Bonting, Sjoerd L.

    1992-01-01

    An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

  20. MYRRHA: A multipurpose nuclear research facility

    Science.gov (United States)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  1. The Sanford Underground Research Facility at Homestake

    CERN Document Server

    Heise, Jaret

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-sea...

  2. Climate change and the agenda for research

    International Nuclear Information System (INIS)

    The Center for International Climate and Energy Research Oslo (CICERO), founded in 1990, is a policy research foundation of the University of Oslo - Norway's largest university. After the United Nations (UN) Conference on Environment and Development (UNCED), CICERO convened a seminar to assess the UN Framework Convention on Climate Change that was one of UNCED's principal legacies. The essays collected in this volume derive from the presentations at that seminar. As one might suspect, the resulting collection is diverse in subject matter and variable in quality and pertinence. Papers deals with a diverse array of topics relating to anthropogenic climate change: greenhouse gas inventories, energy policies, means for abatement of carbon dioxide emissions, and legal and economic issues. Refreshingly, a number of the papers treat these issues from the perspective of the developing countries that will play an ever-increasing role in these issues, both as villians and victims. While hardly bedside reading, the compendium as a whole is a useful contribution to the vast literature on the climate change issue. The focus of a number of the papers on problems of the developing nations is particularly welcome, contributing usefully to filling a troubling gap in the international dialogue on climate change. However, the collection falls short of the promise of its title. Although topics for research are implicit in the papers, the volume does not attempt to organize these into an explicit agenda. It is more a smorgasbord than a coordinated menu

  3. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  4. MYRRHA: A multipurpose nuclear research facility

    Directory of Open Access Journals (Sweden)

    Baeten P.

    2014-01-01

    As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  5. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. We emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities. 13 refs., 15 figs., 3 tabs

  6. Free event: Impacts of climate change research

    OpenAIRE

    Blog Admin, Impact of Social Sciences,

    2012-01-01

    Impacts of Climate Change Research, a free, half-day conference hosted by the LSE’s Public Policy Group/Impact of Social Sciences project and Imperial College London, will be held on Monday, 21st May, at the London School of Economics and Political Science.

  7. Underground characterisation and research facility ONKALO

    International Nuclear Information System (INIS)

    Posiva's repository for geological disposal of the spent fuel from Finnish nuclear reactors will be constructed at Olkiluoto. The selection of Olkiluoto was made based on site selection research programme conducted between 1987-2001. The next step is to carry out complementary investigations of the site and apply for the construction license for the disposal facility. The license application will be submitted in 2012. To collect detailed information of the geological environment at planned disposal depth an underground characterisation and research facility will be built at the site. This facility, named as ONKALO, will comprise a spiral access tunnel and two vertical shafts. The excavation of ONKALO is in progress and planned depth (400 m) will be reached in 2009. During the course of the excavation Posiva will conduct site characterisation activities to assess the structure and other properties of the site geology. The aim is that construction will not compromise the favourable conditions of the planned disposal depth or introduce harmful effects in the surrounding bedrock which could jeopardize the long-term safety of the geological disposal. (author)

  8. Getting African climate change research recognised

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Fatima; Anderson, Simon; Ayers, Jessica

    2011-11-15

    Across Africa, programmes such as the Climate Change Adaptation in Africa initiative are investigating what it means for countries and communities to effectively adapt to climate change, and how this can be achieved in practice. But research results are not always recognised by policymakers or the global research community — in part because they are not visible within the traditional hallmark of scientific scholarship and credibility, peer-reviewed literature. Greater efforts are required to encourage African scientists to engage in the peer-review process and give their research the credibility it needs to convince decision makers that robust scientific findings support the solutions offered. At the same time, decision makers themselves must find ways of assessing and making use of robust research outside the peer-review arena.

  9. The Multianvil Press Research Facility at GSECARS

    Science.gov (United States)

    Wang, Y.; Uchida, T.; Rivers, M. L.; Sutton, S. R.; Weidner, D. J.; Durham, W. B.

    2002-12-01

    The multianvil press high pressure synchrotron research facility at the GSECARS beamlines consists of two large-volume presses (LVP): a 2.5 MN (250 ton) system at the bending magnet beamline (13-BM-D) and a 10 MN system at the insertion device beamline (13-ID-D). Both systems are now fully operational, with steadily increasing annual usage from ~70 days in 1998 to ~120 days in 2001. Here we present a system overview with brief scientific highlights illustrating the breadth of research and achievements made using this facility. Construction and operation of the facility are supported by the NSF Geosciences Instrumentation and Facilities Program. A DIA-type cubic-anvil apparatus and a split-cylinder apparatus (T-Cup) with 10 mm WC cubes are used to generate pressures and temperatures up to 24 GPa and 2400 K, on millimeter-sized samples, at 13-BM-D. In 13-ID-D, a large T-Cup apparatus with 25 mm anvils is used to reach pressure and temperature conditions of 25 GPa and 2500K simultaneously. Both high-pressure apparatus are mounted in die-sets, which can be easily transported in and out of the hydraulic press. Therefore all pressure generating apparatus can be used at any beamline, depending on research needs. A new deformation DIA (DDIA) was commissioned in August, 2002. This apparatus is capable of generating 30% strain on a 1 mm sample at pressures to ~15 GPa, allowing quantitative triaxial deformation experiments. Close to 400 runs have been carried out at our facility in a wide range of research areas: (1) P-V-T equation of state measurements on important mantle minerals, Fe alloys, and pressure standards, (2) in situ determination of phase relations of silicates, Fe alloys, and semiconductors using X-ray diffraction, (3) falling sphere measurements using radiography to determine viscosity of the silicate and metallic melts, (4) ultrasonic velocity measurements on mantle minerals, especially non-quenchable high pressure phases (e.g., high-pressure clinoenstatite

  10. Embedding Climate Research. The National Research Program for Global Air Pollution and Climate Change and embedding Climate Research in the Netherlands

    International Nuclear Information System (INIS)

    This report is an evaluation of the embedding of climate research conducted under the National Research Programme for Global Air Pollution and Climate Change (NRP) in the Netherlands. The evaluation was based on interviews and document analysis. The term climate research is used in a broad sense, embracing impacts, sustainable solutions and integrated assessment. 82 refs

  11. Retrospect and prospect: advances and future strategies in climate research

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A brief review of the progress in climate research and a prospect on its further development in the 21st century is presented. Some key findings including the concept of climate system, the discovery of climatic multi-equilibrium and abrupt climate changes, and the recognition of human activities as an important force of climate change made breakthroughs in climatology possible during last few decades. The adaptation to climatic and global change emerged as a new aspect of climatic research during the 1990s. Climate research will break through in the observation of the global system, in the analysis of mass data, in the deepening of research on the mechanism of climatic change, and in the improvement of models. In the applied fields of climate research, there will be substantial progress in the research on adaptation to global change and sustainable development, on orderly human activities, and climate modification.

  12. Facility modernization Annular Core Research Reactor

    International Nuclear Information System (INIS)

    The Annular Core Research Reactor (ACRR) has undergone numerous modifications since its conception in response to program needs. The original reactor fuel, which was special U-ZrH TRIGA fuel designed primarily for pulsing, has been replaced with a higher pulsing capacity BeO fuel. Other advanced operating modes which use this increased capability, in addition to the pulse and steady state, have been incorporated to tailor power histories and fluences to the experiments. Various experimental facilities have been developed that range from a radiography facility to a 50 cm diameter External Fuel Ring Cavity (FREC) using 180 of the original ZrH fuel elements. Currently a digital reactor console is being produced with GA, which will give enhanced monitoring capabilities of the reactor parameters while leaving the safety-related shutdown functions with analog technology. (author)

  13. The research in climate system modeling, simulating and forecasting

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The major point of the World Climate Research Program (WCRP) is to predict the real-time climate change in seasons and years. Climate disasters in China occurred frequently, and resulted in a 200 billion RMB lost annually.

  14. Uncertainty and global climate change research

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E. [Oak Ridge National Lab., TN (United States); Weiher, R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1994-06-01

    The Workshop on Uncertainty and Global Climate Change Research March 22--23, 1994, in Knoxville, Tennessee. This report summarizes the results and recommendations of the workshop. The purpose of the workshop was to examine in-depth the concept of uncertainty. From an analytical point of view, uncertainty is a central feature of global climate science, economics and decision making. The magnitude and complexity of uncertainty surrounding global climate change has made it quite difficult to answer even the most simple and important of questions-whether potentially costly action is required now to ameliorate adverse consequences of global climate change or whether delay is warranted to gain better information to reduce uncertainties. A major conclusion of the workshop is that multidisciplinary integrated assessments using decision analytic techniques as a foundation is key to addressing global change policy concerns. First, uncertainty must be dealt with explicitly and rigorously since it is and will continue to be a key feature of analysis and recommendations on policy questions for years to come. Second, key policy questions and variables need to be explicitly identified, prioritized, and their uncertainty characterized to guide the entire scientific, modeling, and policy analysis process. Multidisciplinary integrated assessment techniques and value of information methodologies are best suited for this task. In terms of timeliness and relevance of developing and applying decision analytic techniques, the global change research and policy communities are moving rapidly toward integrated approaches to research design and policy analysis.

  15. Decommissioning of nuclear research facilities at KAERI

    International Nuclear Information System (INIS)

    At the Korea Atomic Energy Research Institute (KAERI), two research reactors (KRR-1 and KRR-2) and one uranium conversion plant (UCP) are being decommissioned. The main reason of the decommissioning was the diminishing utilities; the start of a new research reactor, HANARO, and the higher conversion cost than that of international market for the UCP. Another reason of the decommissioning was prevention from spreading radioactive materials due to the deterioration of the facilities. Two separate projects have already been started and are carried out as planned. The KAERI selected several strategies, considering the small scale of the projects, the internal standards in KAERI, and the future prospects of the decommissioning projects in Korea. In this paper, the current status of the decommissioning including the waste management and the technology development will be explained

  16. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    Science.gov (United States)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ≈50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and

  17. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  18. Engaging the Public in Climate Change Research

    Science.gov (United States)

    Meymaris, K. K.; Henderson, S.; Alaback, P.; Havens, K.; Schwarz Ballard, J.

    2009-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, currently finishing its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. In anticipation of the 2010 campaign, Project BudBurst has developed and released innovative and exciting projects with a special focus in the field of phenology and climate change. The collaborations between Project BudBurst and other organizations are producing unique campaigns for engaging the public in environmental research. The special project foci include on-the-spot and in-the-field data reporting via mobile phones, an emphasis on urban tree phenology data, as well as monitoring of native gardens across the US National Wildlife Refuge System. This presentation will provide an overview of Project Budburst and the new special projects, and share results from 2007-2009. Project BudBurst is managed by the University Corporation for Atmospheric Research, the Chicago Botanic Garden, and the University of Montana.

  19. Operational climate monitoring from space: the EUMETSAT satellite application facility on climate monitoring (CM-SAF

    Directory of Open Access Journals (Sweden)

    J. Schulz

    2008-05-01

    Full Text Available The Satellite Application Facility on Climate Monitoring (CM-SAF aims at the provision of satellite-derived geophysical parameter data sets suitable for climate monitoring. CM-SAF provides climatologies for Essential Climate Variables (ECV, as required by the Global Climate Observing System implementation plan in support of the UNFCCC. Several cloud parameters, surface albedo, radiation fluxes at the top of the atmosphere and at the surface as well as atmospheric temperature and humidity products form a sound basis for climate monitoring of the atmosphere. The products are categorized in monitoring data sets obtained in near real time and data sets based on carefully intercalibrated radiances. The CM-SAF products are derived from several instruments on-board operational satellites in geostationary and polar orbit, i.e., the Meteosat and NOAA satellites, respectively. The existing data sets will be continued using data from the instruments on-board the new EUMETSAT Meteorological Operational satellite (MetOP. The products have mostly been validated against several ground-based data sets both in situ and remotely sensed. The accomplished accuracy for products derived in near real time is sufficient to monitor variability on diurnal and seasonal scales. Products based on intercalibrated radiance data can also be used for climate variability analysis up to inter-annual scale. A central goal of the recently started Continuous Development and Operations Phase of the CM-SAF (2007–2012 is to further improve all CM-SAF data sets to a quality level that allows for studies of inter-annual variability.

  20. SINP MSU accelerator facility and applied research

    International Nuclear Information System (INIS)

    Full text: SINP accelerator facility includes 120 cm cyclotron, electrostatic generator with the upper voltage 3.0 MeV, electrostatic generator with the upper voltage 2.5 MeV, Cocroft -Walton generator with the upper voltage 500 keV, 150 keV accelerator for solid microparticles. A new generation of electron beam accelerators has been developed during the last decade. The SINP accelerator facility will be shortly described in the report. A wide range of basic research in nuclear and atomic physics, physics of ion-beam interactions with condensed matter is currently carried out. SINP activity in the applied research is concentrated in the following areas of materials science: - Materials diagnostics with the Rutherford backscattering techniques (RBS) and channeling of ions (RBS/C). A large number of surface ad-layers and multilayer systems for advanced micro- and nano-electronic technology have been investigated. A selected series of examples will be illustrated. - Concentration depth profiles of hydrogen by the elastic recoils detection techniques (ERD). Primarily, the hydrogen depth profiles in perspective materials for thermonuclear reactors have been investigated. - Lattice site locations of hydrogen by a combination of ERD and channeling techniques. This is a new technique which was successfully applied for investigation of hydrogen and hydrogen-defect complexes in silicon for the smart-cut technology. - Light element diagnostics by RBS and nuclear backscattering techniques (NBS). The technique is illustrated by applications for nitrogen concentration profiling in steels. Nitrogen take-up and release, nitrides precipitate formation will be illustrated. - New medium energy ion scattering (MEIS) facility and applications. Ultra-high vacuum and superior energy resolution electrostatic toroidal analyzer is designed to be applied for characterization of composition and structure of several upper atomic layers of materials

  1. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  2. NSTX: Facility/Research Highlights and Near Term Facility Plans

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  3. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  4. In Vivo Radiobioassay and Research Facility

    International Nuclear Information System (INIS)

    Bioassay monitoring for intakes of radioactive material is an essential part of the internal dosimetry program for radiation workers at the Department of Energy's (DOE) Hanford Site. This monitoring program includes direct measurements of radionuclides in the body by detecting photons that exit the body and analyses of radionuclides in excreta samples. The specialized equipment and instrumentation required to make the direct measurements of these materials in the body are located at the In Vivo Radiobioassay and Research Facility (IVRRF). The IVRRF was originally built in 1960 and was designed expressly for the in vivo measurement of radioactive material in Hanford workers. Most routine in vivo measurements are performed annually and special measurements are performed as needed. The primary source terms at the Hanford Site include fission and activation products (primarily 137Cs and 90Sr), uranium, uranium progeny, and transuranic radionuclides. The facility currently houses five shielded counting systems, men's and women's change rooms and an instrument maintenance and repair shop. Four systems include high purity germanium detectors and one system utilizes large sodium iodide detectors. These systems are used to perform an average of 7,000 measurements annually. This includes approximately 5000 whole body measurements analyzed for fission and activation products and 2000 lung measurements analyzed for americium, uranium, and plutonium. Various other types of measurements are performed periodically to estimate activity in wounds, the thyroid, the liver, and the skeleton. The staff maintains the capability to detect and quantify activity in essentially any tissue or organ. The in vivo monitoring program that utilizes the facility is accredited by the Department of Energy Laboratory Accreditation Program for direct radiobioassay.

  5. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  6. How Large-Scale Research Facilities Connect to Global Research

    DEFF Research Database (Denmark)

    Lauto, Giancarlo; Valentin, Finn

    2013-01-01

    institutional settings. Policies mandating LSRFs should consider that research prioritized on the basis of technological relevance limits the international reach of collaborations. Additionally, the propensity for international collaboration is lower for resident scientists than for those affiliated......Policies for large-scale research facilities (LSRFs) often highlight their spillovers to industrial innovation and their contribution to the external connectivity of the regional innovation system hosting them. Arguably, the particular institutional features of LSRFs are conducive for collaborative...... research. However, based on data on publications produced in 2006–2009 at the Neutron Science Directorate of Oak Ridge National Laboratory in Tennessee (United States), we find that internationalization of its collaborative research is restrained by coordination costs similar to those characterizing other...

  7. The Canadian neutron facility for materials research (CNF)

    International Nuclear Information System (INIS)

    Canada has plans to set up a Canadian Neutron Facility (CNF) of 40 MWt capacity for materials research and nuclear fuel development. The CNF will be a part of the international network with other large neutron facilities in France, the United Kingdom and the USA. Canada may consider offering this facility for international research under the IAEA auspices. (author)

  8. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  9. Current severe accident research facilities and projects

    International Nuclear Information System (INIS)

    The Working Group on the Analysis and Management of Accidents (GAMA) is mainly composed of technical specialists in the areas of coolant system thermal-hydraulics, in-vessel protection, containment protection, and fission product retention. Its general functions include the exchange of information on national and international activities in these areas, the exchange of detailed technical information, and the discussion of progress achieved in respect of specific technical issues. Severe accident management is one of the important tasks of the group. This document is an update of the 'Current Severe Accident Research Facilities and Projects' list. Facilities and projects are sorted according to the following criteria: In-Vessel Phenomena: Core Degradation and Melt Progression, Molten Core Debris Interaction with the Reactor Pressure Vessel Lower Head and Mechanical Behaviour of Reactor Pressure Vessel Lower Head; In-Vessel and Ex-Vessel Molten Fuel/Coolant Interactions; Ex-Vessel Phenomena: Molten Core Debris/Concrete Interactions, Molten Core/Ceramic Interaction, Melt Release (including DCH), Melt Spreading and Catching Devices Studies, Melt Coolability, Corium Melt properties; Hydrogen Transport and Combustion: Mixing and Distribution, Deflagration, Deflagration-to-Detonation Transition, Passive Recombiner Performance; Mechanical Behaviour of Reactor Pressure Vessel Lower Head; Containment Structural Integrity: Containment Failure Experiment and Analysis, Material Properties and Structural Behaviour, Containment Thermal-Hydraulics, Containment Cooling, Cable Penetration Integrity; Fission Products and Aerosols: Effects of Specific Elements on Iodine Volatility, Release of Low-Volatility Fission Products/Late In-Vessel Fission Product Release, Reactor Materials Release, Aerosol and Iodine Behaviour in Reactor Coolant System and Containment, Retention, Resuspension and Revaporization in Primary Circuit, Aerosol Nucleation and Transport, Source Term, Containment

  10. Climate-related research in Svalbard

    International Nuclear Information System (INIS)

    The Svalbard archipelago is located in the Norwegian Arctic, 76-81N. In the Kongsfjord area, 79N, on northwest Spitsbergen, there has been increasing research activity in several climate-related disciplines over the last few years. This research will contribute to the global efforts on monitoring and detecting possible global changes. An intensified program monitoring hydrological processes was run from 1974 to 1978 and restarted in 1988. One well-equipped station for atmospheric research is also established. Four major glaciers are being thoroughly investigated, a program which includes mass balance studies, drainage patterns and core analyses. Since 1978 a permafrost station has been operated in Svea, south-central Spitsbergen. The trend in glacier mass balance analyses shows fairly stable negative conditions, the net balance is slightly increasing due to a slight increase in the winter precipitation. There is no sign of climatic warming through increased melting. The temperature data show a very slight cooling during the ablation period. A reconstruction of mass balance data for the Broegger glacier shows that the mass balance has been consistently negative since 1918

  11. [Research on greenhouse-gas-induced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, M.

    1995-12-31

    This climate research focuses on the following topics: model development and testing; climate simulations and analyses; analyses of observed climate; development of analysis methods; global warming: physics, economics and policy; and participation in international research efforts. Also summarized are six projects that are proposed for the next five years.

  12. The Cobalt-60 Research Facility at Seibersdorf

    International Nuclear Information System (INIS)

    The irradiation facility which is now under construction at Seibersdorf was designed especially for research on the International Fruit Juice Programme. The plant consists of two irradiation chambers, with a capacity of 30 kCi and 10 kCi, respectively. The first is proposed to irradiate quantities of fruit juice for feeding tests and for investigations in source technology. The other was especially designed for research purposes in microbiology and chemistry and has an optimal versatility in source configuration and position according to the experiment conditions. The biological shield, ordinary concrete with a density of about 2.4 ton/m3, gives an outside dose- rate of 0.2 mR/h maximum; The rest position of both sources is a lead cylinder let.into the shielding concrete. Twelve stainless-steel tubes (six tubes for the small chamber), in which the cobalt rods are fitted, pass in a spheric gangway into the irradiation chamber. The 60Co rods of the 30 kCi facility, each with an outside length of 300 mm, consist of two linked parts. They may be arranged individually or in any combination within five seconds by an air pressure system. Different tubes with the respective curvature allow practically every arrangement of source geometry. The chamber, measuring 3 x 3 X 3 m inside, may be closed by a concrete door; a binocular periscope enables the scientist to observe the experiment during irradiation. The other facility, measuring 3.5 x 3 x 3 m inside, can be entered through a labyrinth and has a source activity of 10 kCi. Six rods,- with an outside length of 250 mm, may be moved individually by Teleflex cable. They can be stopped in any position desired, measured from the entrance into the chamber. For observing experiments, a monocular periscope system is installed. The room is controlled at a temperature of between -18°C and +35°C, with an accuracy of ±1°C. Several tubes, up to a diameter of 300 mm, pass the concrete shield to enable the installation of cables and

  13. Research in artificial intelligence for nuclear facilities

    International Nuclear Information System (INIS)

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, artificial intelligence can increase efficiency and effectiveness in a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) and in research facility experiments. Recent work at the University of Tennessee has demonstrated the feasibility of using neural networks to identify six different transients introduced into the simulation of a steam generator of a nuclear power plant. This work is now being extended to utilize data from a nuclear power plant training simulator. In one configuration, the inputs to the neural network are a subset of the quantities that are typical of those available from the safety parameter display system. The outputs of the network represent the various states of the plant (e.g., normal operation, coolant leakage, inadequate core flow, excessive peak fuel temperature, etc.). Training of the neural network is performed by introducing various faults or conditions to be diagnosed into the simulator. The goal of this work is to demonstrate a neural network diagnostic system that could provide advice to the operators in accordance with the emergency operating procedures

  14. New Research Approach to Rebuild Sport Facilities

    Directory of Open Access Journals (Sweden)

    Gaetano Raiola

    2011-01-01

    Full Text Available Problem statement: The game court of team sport, part of Sport Centre of Arturo Collana, was closed after structural accident in 2006 and the local administration is now designing the rebuilding of it. For this reason, it has already allocated economical resource to study a partial reconstruction of it to reutilize actual structure. The problem is how can satisfy the customers according to suggesting the old and new solutions. Approach: The aim is to recognize expected demand about the real choice of customers with the proposal for a various architectural aspects. A survey was carries out by using statistical model to correlate a demand of multi game sport relating to various hypotheses, already designed with a different solution. A sample of 100 customers that have submitted questionnaire with the specific parameters about the architecture and engine was taken to apply the qualitative research method to the market research. Results and Conclusion: The result of this study concludes that it is not possible to the partially construct but it is useful the plenty reconstruction of game court. The local organization of Coni (Italian National Olympic Committee designed a new project according to a specific parameter that follows the same characteristic of old game court without searching the other engineer and architectural solutions. Thus the question is a mix of engine and architectural aspects, economical and functional elements of it. The data showed association between demand of multisport and new architectonical hypothesis and the association between demand of single sport and old architectural structure. The percentage of multi sport demand is higher than single sport and this orientation has to follow to design a new sport facilities.

  15. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  16. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    Science.gov (United States)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  17. MECCA coordinated research program: analysis of climate models uncertainties used for climatic changes study

    International Nuclear Information System (INIS)

    An international consortium, called MECCA, (Model Evaluation Consortium for Climate Assessment) has been created in 1991 by different partners including electric utilities, government and academic groups to make available to the international scientific community, a super-computer facility for climate evolution studies. The first phase of the program consists to assess uncertainties of climate model simulations in the framework of global climate change studies. Fourteen scientific projects have been accepted on an international basis in this first phase. The second phase of the program will consist in the evaluation of a set of long climate simulations realized with coupled ocean/atmosphere models, in order to study the transient aspects of climate changes and the associated uncertainties. A particular attention will be devoted, on the consequences of these assessments on climate impact studies, and on the regional aspects of climate changes

  18. Underground facility plan for Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The basic and most important conditions in forming plans for designing and constructing an underground research facility are ensuring the safety of the facility construction and securing an environment conductive to research. The site presently designated for construction an underground research facility is in a sedimentary soft rock (mudstone) of Neogene period, found to contain methane gas. Evaluating measures to deal with the geological characteristics, including assessment of the stability of support and handling of methane gas, is important in guaranteeing the safety of construction and operation of the research facility once completed. (author)

  19. Research at a European Planetary Simulation Facility

    Science.gov (United States)

    Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob

    2016-04-01

    A unique environmental simulation facility will be presented which is capable of re-creating extreme terrestrial or other planetary environments. It is supported by EU activities including a volcanology network VERTIGO and a planetology network Europlanet 2020 RI. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and industrial community. Details of this laboratory facility will be presented and some of the most recent activities will be summarized. For information on access to this facility please contact the author.

  20. "Responding to Climate Change" Course: Research Integration

    Science.gov (United States)

    Pfirman, S. L.; Bowman, J. S.

    2015-12-01

    The "Responding to Climate Change" Barnard/Columbia course integrates current research as well as hands-on research-based activities modified for a classroom environment. The course covers the major response themes of adaptation, mitigation and communication. In the spring of 2015 the course was oriented around Arctic and Antarctic case studies. Each week a different theme is addressed, such as the physical setting, changing ecosystems, governance issues, perspectives of residents and indigenous peoples, geoengineering, commercial interests, security, and health and developmental issues. Frequent guest lectures from thematic experts keep the course grounded in realities and present the students with cutting edge issues. Activities match the weekly theme, for example during the week on Arctic development, students engage with the marine spatial planning simulation Arctic SMARTIC (Strategic Management of Resources in Times of Change) based on research on Arctic sea ice trends and projections coupled with current and projected developmental interests of stakeholders. Created under the Polar Learning and Responding: PoLAR Climate Change Education Partnership (thepolarhub.org), a complete set of SMARTIC resources is available on line for use by others (http://www.camelclimatechange.org/view/article/175297/). The Responding to Climate Change course is designed to be current and respond to events. For the Arctic case study, students developed proposals for the US State Department as the upcoming Chair of the Arctic Council. Student evaluations indicated that they appreciated the opportunity to connect science with policy and presentation of preliminary proposals in a workshop format was valued as a way to develop and hone their ideas. An additional finding was that students were surprisingly tolerant of technical issues when guest lecturers were linked in via Skype, allowing interaction with thematic experts across the US. Students commented positively on this exposure to

  1. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  2. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    International Nuclear Information System (INIS)

    Anthropogenic impacts on the Earth's atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  3. Northwestern University Facility for Clean Catalytic Process Research

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin Jay [Northwestern University

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  4. National facility for neutron beam research in India

    International Nuclear Information System (INIS)

    A national facility for neutron beam research is operated at the research reactor Dhruva in BARC. It includes single-crystal and powder diffractometers, a polarization analysis spectrometer, inelastic and quasi-elastic scattering spectrometers in the reactor hall, and smallangle scattering instruments and a polarized neutron reflectometer in the neutron-guide laboratory. The National facility is utilized in collaboration with various universities and other institutions. The talk will present our facilities and discuss examples of recent work.

  5. Office of Chief Scientist, Integrated Research Facility (OCSIRF)

    Data.gov (United States)

    Federal Laboratory Consortium — Introduction The Integrated Research Facility (IRF) is part of the Office of the Chief Scientist (OCS) for the Division of Clinical Research in the NIAID Office of...

  6. Research on Climate and Dengue in Malaysia: A Systematic Review

    OpenAIRE

    Hii, Yien Ling; Zaki, Rafdzah Ahmad; Aghamohammadi, Nasrin; Rocklöv, Joacim

    2016-01-01

    Background & Objectives Dengue is a climate-sensitive infectious disease. Climate-based dengue early warning may be a simple, low-cost, and effective tool for enhancing surveillance and control. Scientific studies on climate and dengue in local context form the basis for advancing the development of a climate-based early warning system. This study aims to review the current status of scientific studies in climate and dengue and the prospect or challenges of such research on a climate-based de...

  7. DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report describes the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Operations Centers, and other government-owned, contractor-operated facilities which are located in all regions of the United States. It gives brief descriptions of resources, activities, and capabilities of each field facility (sections III through V). These represent a cumulative capital investment of $12 billion and involve a work force of approximately 12,000 government (field) employees and approximately 100,000 contractor employees.

  8. Climate Science and Policy Research Conceptual and Methodological Challanges

    OpenAIRE

    Lövbrand, Eva; Linnér, Björn-Ola; Ostwald, Madelene

    2009-01-01

    The scope of climate change research has grown immensely over the last decade. Beyond the extensive efforts to map and understand how the various components of the climate system interact and respond to human forcing, academics from a range of fields are today deeply involved in the social and political struggle to develop effective and legitimate climate change policies. While initially focused on the UN Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, we have in recen...

  9. Experimental geothermal research facilities study (Phase 0). Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The study comprises Phase 0 of a project for Experimental Geothermal Research Facilities. The study focuses on identification of a representative liquid-dominated geothermal reservoir of moderate temperature and salinity, preliminary engineering design of an appropriate energy conversion system, identification of critical technology, and planning for implementation of experimental facilities. The objectives included development of liaison with the industrial sector, to ensure responsiveness to their views in facility requirements and planning, and incorporation of environmental and socioeconomic factors. This Phase 0 report covers problem definition and systems requirements. Facilities will incorporate capability for research in component, system, and materials technology and a nominal 10 MWe experimental, binary cycle, power generating plant.

  10. The Finnish research programme on climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roos, J. [ed.

    1996-12-31

    This is the final report of the Finnish Research Programme on Climate Change (SILMU). This report includes the final results and conclusions made by the individual research groups. The aim of this report is to lay out the research work, and to present the main results and conclusions obtained during the six-year work. The Finnish Research Programme on Climate Change (SILMU) was a multidisciplinary national research programme on climate and global change. The principal goals of SILMU were: (1) to increase our knowledge on climate change, its causes, mechanisms and consequences, (2) to strengthen the research on climate change in Finland, (3) to increase the participation of Finnish researchers in international research programmes, and (4) to prepare and disseminate information for policy makers on adaptation and mitigation. The key areas of the research were: (1) quantification of the greenhouse effect and the magnitude of anticipated climatic changes,(2) assessment of the effects of changing climate on ecosystems, and (3) development of mitigation and adaptation strategies. The research programme started in June 1990, and it comprised more than 80 individual research projects, ranging from atmospheric chemistry to economics. There were approximately two hundred scientists working within the programme in seven universities and eleven research institutions. The research activities that comprise SILMU were grouped into four interdisciplinary subprogrammes: atmosphere, waters, terrestrial ecosystems and integration and human interactions

  11. Biomass Gasification Research Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTI’s Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOE’s Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (μGC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeuser’s New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian μGC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from

  12. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  13. Laser Propulsion Research Facilities at DLR Stuttgart

    OpenAIRE

    Karg, Stephanie; Fedotov, Vitalij; Sehnert, Torben; Eckel, Hans-Albert

    2014-01-01

    Irradiation of materials with sufficiently high laser fluence induces an ablation process at the surface yielding a plasma jet of ablated material and laser-induced force acting on the material due to the recoil of the jet. The paper gives an overview of DLR’s experimental facilities for investigation of the potential of laser ablation induced thrust for future microthrusters and space debris removal. A thrust balance based on a modular torsional pendulum concept and suitable calibration f...

  14. Facilities Management research in the Nordic Countries

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    This article provides a brief overview of the short history of FM research in Denmark, Norway, Sweden and Finland, and presents current research topics and trends in these countries. It is based on information originally collected as part of the planning for the Danish research programme that led...

  15. Man-Vehicle Systems Research Facility - Design and operating characteristics

    Science.gov (United States)

    Shiner, Robert J.; Sullivan, Barry T.

    1992-01-01

    This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

  16. Research program on climatic and environmental problems. Summary of Norwegian climatic and ozone layer research in the last decade and important research tasks in the future

    International Nuclear Information System (INIS)

    This report includes 44 abstracts, 21 lectures and 23 posters from a workshop arranged by the Norwegian Research Council, the Steering Group for the Norwegian research programme for changes in climate and ozone layer. The topics dealt with are: Results from the research, the greenhouse effect and its influence on the climate of today, the interactions between ocean and climate, pollution influence on ozone layer changes, the UV radiation effects and their influence on the environment, climatic modelling and forecasting, ecological problems related to climatic and environmental changes, the climatic influences of human energy utilisation and suggestions for future research

  17. Profiles of facilities used for HTR research and testing

    International Nuclear Information System (INIS)

    This report contains a current description of facilities supporting HTR research and development submitted by countries participating in the IWGFR. It has the purpose of providing an overview of the facilities available for use and of the types of experiments that can be conducted therein

  18. Computer facilities at the Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    The computer facilities available at the Mathematics Division of the Institute are outlined including their development since 1966. The major areas of use of the computers by the science divisions and in administration are described as well as the tasks performed for industry. Two examples of the computer applications are considered in some detail: 1) A system developed for control and data acquisition in asbestos-cement plate production; 2) A model treatment of safety calculations for the steam generating systems of light-water reactors. (S.R.)

  19. National facility for neutron beam research

    Indian Academy of Sciences (India)

    K R Rao

    2004-07-01

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview of current scenario of NBR world-wide and future of Indian activities.

  20. Research Facilities for Solar Astronomy at ARIES

    Indian Academy of Sciences (India)

    P. Pant

    2006-06-01

    The solar observational facilities at ARIES (erstwhile U.P. State Observatory, UPSO), Nainital, began in the sixties with the acquisition of two moderate sized (25 cm, f/66 off-axis Skew Cassegrain and 15 cm, f/15 refractor) telescopes. Both these systems receive sunlight through a 45 cm and 25 cm coelostat respectively. The backend instruments to these systems comprised of a single pass grating spectrograph for spectroscopic study of the Sun and a Bernhard–Halle filter, coupled with a Robot recorder camera for solar patrolling in respectively. With the advancement in solar observing techniques with high temporal and spatial resolution in and other wavelengths, it became inevitable to acquire sophisticated instrumentation for data acquisition. In view of that, the above facilities were upgraded, owing to which the conventional photographic techniques were replaced by the CCD camera systems attached with two 15 cm, f/15 Coude refractor telescopes. These CCD systems include the Peltier cooled CCD camera and photometrics PXL high speed modular CCD camera which provide high temporal and spatial resolution of ∼ 25 ms and ∼ 1.3 arcsec respectively.

  1. A facility for using cluster research to study environmental problems

    International Nuclear Information System (INIS)

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report

  2. Organizational culture, safety culture, and safety performance at research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, William S.

    2000-07-30

    Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

  3. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  4. Small Multi-Purpose Research Facility (SMiRF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Multi-Purpose Research Facility (SMiRF) evaluates the performance of the thermal protection systems required to provide long-term storage (up to 10 years)...

  5. The Cloud Project Climate Research with Accelerators

    CERN Document Server

    Kirkby, Jasper

    2010-01-01

    The current understanding of climate change in the in- dustrial age is that it is predominantly caused by anthro- pogenic greenhouse gases, with relatively small natural contributions due to solar irradiance and volcanoes. How- ever, palaeoclimatic reconstructions show that the climate has frequently varied on 100-year time scales during the Holocene (last 10 kyr) by amounts comparable to the present warming—and yet the mechanism is not under- stood. Estimated changes of solar irradiance on these time scales are too small to account for the climate observations. This raises the question of whether cosmic rays, which are modulated by the solar wind, may be directly affect- ing the climate, providing an effective indirect solar forcing mechanism. Indeed recent satellite observations—although disputed—suggest that cosmic rays may affect clouds un- der certain conditions. However, given the many sources of variability in the atmosphere and the lack of control of the cosmic ray flux, demonstrating overall ca...

  6. CAS spearheads R&D program for research facilities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China's capacity for indigenous S&T innovation is believed to have been hampered by its lack of home- grown research facilities. To address the problem, a pilot program for the research and development of major S&T facilities has been launched at CAS. The kick-off meeting was held on 28 March in the CAS Technical Institute of Physics and Chemistry in Beijing.

  7. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  8. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    analysed in the light of a change process in a Danish Municipal Department of Public Property. Three years of Action Research has given a unique insight in the reality in a Municipal Department of Public Property, and as to how a facilitated change process can lead to a more holistic and sustainable......Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM) is...

  9. Teachers Learning to Research Climate: Development of hybrid teacher professional development to support climate inquiry and research in the classroom

    Science.gov (United States)

    Odell, M. R.; Charlevoix, D. J.; Kennedy, T.

    2011-12-01

    The GLOBE Program is an international science and education focused on connecting scientists, teachers and students around relevant, local environmental issues. GLOBE's focus during the next two years in on climate, global change and understanding climate from a scientific perspective. The GLOBE Student Climate Research Campaign (SCRFC) will engage youth from around the world in understanding and researching climate through investigations of local climate challenges. GLOBE teachers are trained in implementation of inquiry in the classroom and the use of scientific data collection protocols to develop inquiry and research projects of the Earth System. In preparation for the SCRC, GLOBE teachers will need additional training in climate science, global change and communicating climate science in the classroom. GLOBE's reach to 111 countries around the world requires development of scalable models for training teachers. In June GLOBE held the first teacher professional development workshop (Learning to Research Summer Institute) in a hybrid format with two-thirds of the teachers participating face-to-face and the remaining teachers participating virtually using Adobe Connect. The week long workshop prepared teachers to integrate climate science inquiry and research projects in the classrooms in the 2011-12 academic year. GLOBE scientists and other climate science experts will work with teachers and their students throughout the year in designing and executing a climate science research project. Final projects and research results will be presented in May 2012 through a virtual conference. This presentation will provide the framework for hybrid teacher professional development in climate science research and inquiry projects as well as summarize the findings from this inaugural session. The GLOBE Program office, headquartered in Boulder, is funded through cooperative agreements with NASA and NOAA with additional support from NSF and the U.S. Department of State. GLOBE

  10. NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem

    Science.gov (United States)

    Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

    2011-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

  11. Biomass Gasification Research Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature

  12. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  13. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  14. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  15. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann;

    2000-01-01

    facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees.......The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...

  16. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  17. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  18. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  19. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  20. Vulnerability in Climate Change Research: A Comprehensive Conceptual Framework

    OpenAIRE

    Füssel, Hans–Martin

    2005-01-01

    Vulnerability is a central concept in climate change research as well as in a number of other research contexts. However, the term is conceptualized in many different ways by the various scientific communities that use it. Widespread disagreement about the appropriate definition of vulnerability is a frequent cause for misunderstanding in interdisciplinary research on vulnerability and adaptation to climate change. This paper attempts to ameliorate this confusion by presenting a comprehensive...

  1. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

    Science.gov (United States)

    Buonocore, Jonathan J.; Luckow, Patrick; Fisher, Jeremy; Kempton, Willett; Levy, Jonathan I.

    2016-07-01

    Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic is capable of producing health and climate benefits of between 54 and 120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately 690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. This work demonstrates health and climate benefits of offshore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.

  2. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    The originative CO2 pellet blasting equipment was developed by improving additional components such as feed screw, idle roller and air-lock feeder to clear up the problems of freezing and discontinuity of blasting and by adopting pneumatically operated vacuum suction head and vacuum cup to prevent recontamination by collecting contaminant particulates simultaneously with the decontamination. The optimum decontamination process was established according to the kind of materials such as metal, concrete and plastic and the type of contaminants such as particulate, fixed chemical compound and oil. An excellent decontamination performances were verified by means of the lab-scale hot test with radioactive specimen and the technology demonstration in IMEF hot cell. The PFC dry decontamination equipment applicable to the surface contaminated with high radioactive particulate was developed. This equipment consists of the unit processes such as spray, collection, filtration and dry distillation designed originatively applicable to inside of dry hot cell. Through the demonstration of PFC spray decontamination process in IMEF hot cell, we secured on-site applicability and the decontamination efficiency more than 90 %. We investigated the characteristics of dismantled metal waste melting and the radionuclide(Co, Cs, U) distribution into ingot and slag by melting decontamination experiments using electric arc melter. We obtained the decontamination factors greater than 100 for Cs and of 10∼100 for uranium. The pilot scale(200 kg/batch) demonstration for melting decontamination was carried out successfully using high temperature melting facility at KAERI. The volume reduction factor of 1/7 and the economical feasibility of the melting decontamination were verified.

  3. Orange County Government Solar Demonstration and Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Renee [Orange County Florida, Orlando, Florida (United States); Cunniff, Lori [Orange County Florida, Orlando, Florida (United States)

    2015-05-12

    generation accessible for public viewing on an interactive kiosk located in the Orange County/University of Florida Cooperative Extension Center’s lobby where visitors can review “real time” power generation, cost savings and environmental benefits of the system. Site commissioning with the software program was delayed due to Internal Security Software issues within Orange County that needed to be resolved, therefore the “real time” capture of the production data for the solar array using the software program commenced on May 1, 2015. In addition an educational flyer was developed and is available in the Orange County Education Center’s main lobby. The project completed under this grant award assisted Orange County in demonstrating leadership by installing the application of a renewable energy technology combined with energy efficiency measures; resulting in reduced energy costs for the Orange County University of Florida Cooperative Extension Center, and helping Orange County citizens and visitors move towards the goals of greater energy independence and climate protection. The addition of the new Solar Demonstration and Research Facility has advanced the Orange County/University of Florida Cooperative Extension Center’s mission of extending, educating and providing research-based information to residents and visitors of Orange County by demonstrating the application of renewable energy technology combined with energy efficiency measures; resulting in reduced energy costs, and helping Orange County move towards the goal of greater energy independence and climate protection. In 2014, the Orange County Cooperative Extension Center hosted nearly 10,800 visitors to their on-site Exploration Gardens plus 12,686 walk-in visitors to their office plant clinic and other services. The Education Center held 2,217 educational events that were attended by 46,434 adults and youth, but about half of those events occurred off-site. Based on the visitation numbers in 2014 the

  4. `Climate wise` program at the Cosmair, Inc. Clark Manufacturing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kraly, K.

    1997-12-31

    Viewgraphs from the conference presentation are reproduced in this paper, which outlines energy efficiency improvements and emissions reductions at a hair care products manufacturing facility. Program management focuses on employee involvement in internal audits, utility tracking, public relations, and preventative maintenance. Energy savings, cost savings, and emission reductions are presented for 1996 and projected to the year 2000. Other program aspects outlined include a summary of utility costs; solid waste; chilled water system modifications; lighting modifications; boiler upgrades; and heating, ventilating, and air conditioning improvements.

  5. IPY to Mark Expansion of Research Facilities on the North Slope of Alaska

    Science.gov (United States)

    Zak, B. D.; Eicken, H.; Sheehan, G. W.; Glenn, R.

    2004-12-01

    The Barrow Global Climate Change Research Facility will open to researchers on the North Slope of Alaska during the 2007-08 anniversary of the first IPY. Between 1949 and 1980, arctic researchers were very active on the North Slope and in nearby waters largely because of the Naval Arctic Research Laboratory (NARL) at Barrow. NARL provided easy access, laboratories and logistical support. NARL was closed in 1981, but particularly during this past decade, Barrow-based arctic research projects have been back on the upswing. The National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory (CMDL) Barrow station was founded during the 1970s, and continues as part of NOAA's five station global network for monitoring atmospheric composition. The North Slope Borough's Department of Wildlife Management (DWM) has for the past 20 years conducted its own research. The DWM also served as logistical provider for growing numbers of arctic researchers without other logistical support. In the late 1990s, the Department of Energy Atmospheric Radiation Measurement program (ARM: DOE's principal climate change research effort) created a Cloud and Radiation Testbed on the North Slope with atmospheric instrumentation at Barrow and Atqasuk. It is now part of the ARM Climate Research Facility, a National User Facility. In response to growing researcher needs, the Barrow Arctic Science Consortium (BASC) was formed in the late 1990s as a non-profit logistical support and community coordinating organization, and received the endorsement of Ukpeagvik Inupiat Corporation (UIC), NSB and the local community college. BASC provides logistical support to National Science Foundation (NSF) researchers through a cooperative agreement, and to others on a fee for service basis. UIC also dedicated 11 square miles of its land as the Barrow Environmental Observatory (BEO), and charged BASC with management of the BEO. This land that has been used for research for more

  6. Research Animal Holding Facility Prevents Space Lab Contamination

    Science.gov (United States)

    Savage, P. D., Jr.; Jahns, G. C.; Dalton, B. P.; Hogan, R. P.; Wray, A. E.

    1991-01-01

    Healthy environment for both rodents and human researchers maintained. Research animal holding facility (RAHF) and rodent cage prevent solid particles (feces, food bits, hair), micro-organisms, ammonia, and odors from escaping into outside environment during spaceflight. Rodent cage contains compartments for two animals. Provides each drinking-water dispenser, feeding alcove, and activity-monitoring port. Feeding and waste trays removable.

  7. Global climate change: Social and economic research issues

    International Nuclear Information System (INIS)

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available

  8. Integrating climate change into agricultural research for development in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Chambwera, Muyeye; Anderson, Simon

    2011-09-15

    African agriculture is already struggling to meet increasing demand for food. Climate change, which will alter agroecological conditions and looks set to arrest and decrease agricultural yields on the continent, will make it even harder to achieve food security. Boosting agricultural productivity in Africa, especially in the face of climate change, cannot be achieved without the benefits of cutting edge science. Advances in technology development and transfer, capacity building and policy research must be harnessed by developing and disseminating relevant strategies and technologies, and improving policy environments. The European Initiative for Agricultural Research for Development (EIARD), which facilitates and coordinates European policy and support for agricultural research for development, must integrate climate change into its activities and ensure that agricultural research for development and climate change adaptation are not disjointed. This demands a more strategic and coordinated approach from the initiative — one that reflects African realities, responds to African priorities for adaptation and development, and makes the best use of limited resources.

  9. Global climate change: Social and economic research issues

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.; Snow, J.; Jacobson, H. [eds.

    1992-05-01

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.

  10. The Reactor and Cold Neutron Research Facility at NIST

    International Nuclear Information System (INIS)

    The NIST Reactor (NBSR) and Cold Neutron Research Facility (CNRF) are located at the Gaithersburg, MD site, and have been in operation since 1969 and 1991, respectively. A total of 26 thermal neutron facilities and 11 cold neutron stations are operating for studies in condensed matter physics and chemistry, materials science, chemical analysis, nondestructive evaluation, neutron standards, fundamental neutron physics, and irradiations. Thermal and cold neutron instruments which have become operational since the 2d IGORR Conference will be described. Major facility upgrades to be implemented in early 1994 will be outlined. (author)

  11. Remote operations in a Fusion Engineering Research Facility (FERF)

    International Nuclear Information System (INIS)

    The proposed Fusion Engineering Research Facility (FERF) has been designed for the test and evaluation of materials that will be exposed to the hostile radiation environment created by fusion reactors. Because the FERF itself must create a very hostile radiation environment, extensive remote handling procedures will be required as part of its routine operations as well as for both scheduled and unscheduled maintenance. This report analyzes the remote-handling implications of a vertical- rather than horizontal-orientation of the FERF magnet, describes the specific remote-handling facilities of the proposed FERF installation and compares the FERF remote-handling system with several other existing and proposed facilities. (U.S.)

  12. Development of a variable climate controlled portable storage facility

    Science.gov (United States)

    Timmins, Mitchel; Yadav, Kamal; Iroanusi, Kennedy; Tickle, Andrew J.

    2012-10-01

    This paper focuses on the development of a portable variable climate controlled system that can be tailored to the requirements of the item to be stored by manipulating the temperature, humidity and light levels within the controlled area. This could be used to store anything from bio-chemical samples (to preserve them from field work) to cooled electronics (prior to deployment in a given situation) to foodstuffs (such as wine and other alcohols). In this situation however, to provide a relatively simplistic example, the environment will be used to store wine. The system is adaptive in that anything can be stored within it, assuming the storage parameters are known in order to correctly configure the environment. In this paper a microcontroller (PICF4520) is connected to a fridge with various sensors attached to monitor and manipulate the environment and adjust it accordingly. For the chosen item to be stored, a temperature of 13- 14oC is required, a high humidity level and a non-Ultraviolent (UV) light source. This work thus allows for a small handheld unit that could be used to control the climate within without the need for the traditional 12 - 16 foot size portable units traditionally used. The unit could be left in the field and run off a solar cell to assist in longer term studies. This paper presents how the microcontroller is connected to the fridge and its sensors, how it manipulates the environment and the process by which the temperature and other factors can be changed without having to edit and recompile the C code, this allows for a much more friendly device interface.

  13. Roadmap towards justice in urban climate adaptation research

    Science.gov (United States)

    Shi, Linda; Chu, Eric; Anguelovski, Isabelle; Aylett, Alexander; Debats, Jessica; Goh, Kian; Schenk, Todd; Seto, Karen C.; Dodman, David; Roberts, Debra; Roberts, J. Timmons; Vandeveer, Stacy D.

    2016-02-01

    The 2015 United Nations Climate Change Conference in Paris (COP21) highlighted the importance of cities to climate action, as well as the unjust burdens borne by the world's most disadvantaged peoples in addressing climate impacts. Few studies have documented the barriers to redressing the drivers of social vulnerability as part of urban local climate change adaptation efforts, or evaluated how emerging adaptation plans impact marginalized groups. Here, we present a roadmap to reorient research on the social dimensions of urban climate adaptation around four issues of equity and justice: (1) broadening participation in adaptation planning; (2) expanding adaptation to rapidly growing cities and those with low financial or institutional capacity; (3) adopting a multilevel and multi-scalar approach to adaptation planning; and (4) integrating justice into infrastructure and urban design processes. Responding to these empirical and theoretical research needs is the first step towards identifying pathways to more transformative adaptation policies.

  14. A New Scenario Framework for Climate Change Research

    OpenAIRE

    van Vuuren, Detlef P.; KRIEGLER Elmar; O’Neill, Brian C.; Kristie L. Ebi; Riahi, Keywan

    2014-01-01

    This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different adaptation and mitigation strategies (in terms of their costs, risks and other consequences) and the possible trade-offs and synergies. The two main axes of the matrix are: 1) the level of radiative ...

  15. Facilities for Research and Development of Medical Radioisotopes

    International Nuclear Information System (INIS)

    This study is carried out by KAERI(Korea Atomic Energy Research Institute) to construct the basic facilities for development and production of medical radioisotope. For the characteristics of radiopharmaceuticals, the facilities should be complied with the radiation shield and GMP(Good Manufacturing Practice) guideline. The KAERI, which has carried out the research and development of the radiopharmaceuticals, made a design of these facilities and built them in the HANARO Center and opened the technique and facilities to the public to give a foundation for research and development of the radiopharmaceuticals. In the facilities, radiation shielding utilities and GMP instruments were set up and their operating manuals were documented. Every utilities and instruments were performed the test to confirm their efficiency and the approval for use of the facilities will be achieved from MOST(Ministry of Science and Technology). It is expected to be applied in development of therapeutic radioisotope such as Re-188 generator and Ho-166, as well as Tc-99m generator and Sr-89 chloride for medical use. And it also looks forward to the contribution to the related industry through the development of product in high demand and value

  16. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  17. Radwaste requirements at a biomedical research facility

    International Nuclear Information System (INIS)

    The low-level radioactive waste (LLRW) federal legislation that was passed during the 1980s was intended to provide an orderly system of LLRW disposal as the country's three waste sites proceeded toward excluding out-of-state generators. The system was based on a regional interstate compact system. As originally envisioned, several contiguous states were to form an association (compact) with one state receiving radwaste from the compact. Everyone is aware of the difficulties that followed as attempts were made to implement these laws and to meet the prescribed milestones to avoid financial penalties. Although the states (compacts) have labored for over 12 yr along this rocky road, no compact has developed and licensed a new disposal site prior to the January 1, 1993 deadline. A recent report by the Center for the Study of American Business at Washington University in St. Louis states that open-quotes The current regional interstate compact system for disposal of low-level radioactive waste is fatally flawed on both technical and practical political grounds.close quotes Thus, the system has broken down and the three original LLRW sites closed their gates (with the possible exception of Barnwell) as planned on January 1, 1993. It would appear that the fate of LLRW will be the same as that of high-level waste (HLW); it will be stored at the site of the generator until a solution to the problem is found. For the nonutility generator, storage is an entirely new problem. It must be appreciated that almost all nonutility generators are in the business of research or medical treatment and not in the business of storing LLRW. Thus, storage represents a new turn of events and a new aspect of doing business. It also means the diversion of limited resources to a problem that should not exist. Lastly, on-site LLRW storage for the nonutility generator will also require additional regulatory approval for the handling, storage, and ongoing monitoring of this waste

  18. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    1994-01-01

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  19. Research Reactor Benchmarking Database: Facility Specification and Experimental Data

    International Nuclear Information System (INIS)

    This web publication contains the facility specifications, experiment descriptions, and corresponding experimental data for nine different research reactors covering a wide range of research reactor types, power levels and experimental configurations. Each data set was prepared in order to serve as a stand-alone resource of well documented experimental data, which can subsequently be used in benchmarking and validation of the neutronic and thermal-hydraulic computational methods and tools employed for improved utilization, operation and safety analysis of research reactors

  20. In-pile experimental facility needs for LMFR safety research

    International Nuclear Information System (INIS)

    Although the achievement of the safety research during the past years has been significant, there still exists a strong need for future research, especially when there is prospect for future LMFR commercialization. In this paper, our current views are described on future research needs especially with a new in-pile experimental facility. The basic ideas and progress are outlined of a preliminary feasibility study. (author)

  1. Direct sunlight facility for testing and research in HCPV

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  2. Direct sunlight facility for testing and research in HCPV

    International Nuclear Information System (INIS)

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules

  3. Climate Change, Human Health, and Biomedical Research: Analysis of the National Institutes of Health Research Portfolio

    OpenAIRE

    Jessup, Christine M.; Balbus, John M.; Christian, Carole; Haque, Ehsanul; Howe, Sally E.; Newton, Sheila A.; Reid, Britt C.; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P.

    2013-01-01

    Background: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. Objectives: In this commentary we p...

  4. Recent Activities at the ORNL Multicharged Ion Research Facility (MIRF)

    International Nuclear Information System (INIS)

    Recent activities at the ORNL Multicharged Ion Research Facility (MIRF) are summarized. A brief summary of the MIRF high voltage (HV) platform and floating beam line upgrade is provided. An expansion of our research program to the use of molecular ion beams in heavy-particle and electron collisions, as well as in ion-surface interactions is described, and a brief description is provided of the most recently added Ion Cooling and Characterization End-station (ICCE) trap. With the expansion to include molecular ion beams, the acronym MIRF for the facility, however, remains unchanged: M can now refer to either Multicharged or Molecular.

  5. Adaptive Management of the Global Climate Problem. Bridging the Gap Between Climate Research and Climate Policy

    International Nuclear Information System (INIS)

    To date the Intergovernmental Panel on Climate Change (IPCC) has concerned itself with gathering a state of the art review of the science of climate change. While significant progress has been made in enhancing our integrated understanding of the climate system and the dynamics of the social systems that produce an array of potential greenhouse gases, it is also clear from the panel's reports how far the science community is from being able to present a dynamic and synoptic view of the climate system as a whole. Clear evidence of these complexities and uncertainties inherent in the climate system is evident in efforts aimed at designing robust policy interventions. In this paper, we argue that the adaptive management framework in ecosystem management may be a useful model for guiding how the IPCC can continue to be relevant both as a scientific establishment and as a policy-relevant scientific endeavor

  6. Management and Development of the RT Research Facilities and Infrastructures

    International Nuclear Information System (INIS)

    The purpose of this project are to operate the core facilities of the research for the Radiation Technology in stable and to assist the research activities efficiently in the industry, academic, and research laboratory. By developing the infrastructure of the national radio technology industry, we can activate the researching area of the RT and the related industry, and obtain the primary and original technology. The key point in the study of the RT and the assistance of the industry, academic, and research laboratory for the RT area smoothly, is managing the various of unique radiation facilities in our country. The gamma Phytotron and Gene Bank are essential in the agribiology because these facilities are used to preserve and utilize the genes and to provide an experimental field for the environment and biotechnology. The Radiation Fusion Technology research supporting facilities are the core support facilities, and are used to develop the high-tech fusion areas. In addition, the most advanced analytical instruments, whose costs are very high, should be managed in stable and be utilized in supporting works, and the experimental animal supporting laboratory and Gamma Cell have to be maintained in high level and managed in stable also. The ARTI have been developed the 30MeV cyclotron during 2005∼2006, aimed to produce radioisotopes and to research the beam applications as a result of the project, 'Establishment of the Infrastructure for the Atomic Energy Research Expansion', collaborated with the Korea Institute of Radiological and Medical Sciences. In addition, the ARTI is in the progress of establishing cyclotron integrated complex as a core research facility, using a proton beam to produce radioisotopes and to support a various research areas. The measurement and evaluation of the irradiation dose, and irradiation supporting technology of the Good Irradiation Practice(GIP) are essential in various researching areas. One thing to remember is that the publicity

  7. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  8. Edwin Buzz Aldrin At Lunar Landing Research Facility

    Science.gov (United States)

    1969-01-01

    Nearly 25 years ago, on July 20,1969, Edwin Buzz Aldrin, shown here with NASA Langley Research Centers Lunar Excursion Module (LEM) Simulator, became one of the first humans to walk on the moon after practicing with the simulator in May of 1969. Training with the simulator, part of Langleys Lunar Research Facility, allowed the Apollo astronauts to study and safely overcome problems that could have occurred during the final 150-foot descent to the surface of the moon. NASA needed such a facility in order to explore and develop techniques for landing the LEM on the moons surface, where the gravity is only one-sixth as strong as on Earth, as well as to determine the limits of human piloting capabilities in the new surroundings. This unique facility, completed in 1965 and now a National Historic Landmark, effectively canceled all but one-sixth of Earths gravitational force by using an overhead cable system.

  9. Development of the new Canadian Irradiation-Research Facility

    International Nuclear Information System (INIS)

    To replace the aging NRU reactor, AECL has developed the concept for a dual-purpose national Irradiation Research Facility (IRF) that tests fuel and materials for CANDU (Canada Deuterium Uranium) reactors and performs materials research using extracted neutron beams. The IRF includes a MAPLE reactor in a containment building, experimental facilities and support facilities. The reactor concept was developed to provide a realistic environment for irradiating up to nine natural- or enriched-uranium CANDU bundles at powers up to 1 MWp to generate fast-neutron fluxes up to 1.4x1018 n m-2 s-1 in materials-damage and corrosion specimens, and to match the thermal-neutron fluxes available in NRU for a set of eight thermal beam tubes plus two cold sources equipped with neutron guides. (author)

  10. Earth Systems Questions in Experimental Climate Change Science: Pressing Questions and Necessary Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Osmond, B.

    2002-05-20

    Sixty-four scientists from universities, national laboratories, and other research institutions worldwide met to evaluate the feasibility and potential of the Biosphere2 Laboratory (B2L) as an inclusive multi-user scientific facility (i.e., a facility open to researchers from all institutions, according to agreed principles of access) for earth system studies and engineering research, education, and training relevant to the mission of the United States Department of Energy (DOE).

  11. Decommissioning of small medical, industrial and research facilities

    International Nuclear Information System (INIS)

    Most of the technical literature on decommissioning addresses the regulatory, organizational, technical and other aspects for large facilities such as nuclear power plants, reprocessing plants and relatively large prototype, research and test reactors. There are, however, a much larger number of licensed users of radioactive material in the fields of medicine, research and industry. Most of these nuclear facilities are smaller in size and complexity and may present a lower radiological risk during their decommissioning. Such facilities are located at research establishments, biological and medical laboratories, universities, medical centres, and industrial and manufacturing premises. They are often operated by users who have not been trained or are unfamiliar with the decommissioning, waste management and associated safety aspects of these types of facility at the end of their operating lives. Also, for many small users of radioactive material such as radiation sources, nuclear applications are a small part of the overall business or process and, although the operating safety requirements may be adhered to, concern or responsibility may not go much beyond this. There is concern that even the minimum requirements of decommissioning may be disregarded, resulting in avoidable delays, risks and safety implications (e.g. a loss of radioactive material and a loss of all records). Incidents have occurred in which persons have been injured or put at risk. It is recognized that the strategies and specific requirements for small facilities may be much less onerous than for large ones such as nuclear power plants or fuel processing facilities, but many of the same principles apply. There has been considerable attention given to nuclear facilities and many IAEA publications are complementary to this report. This report, however, attempts to give specific guidance for small facilities. 'Small' in this report does not necessarily mean small in size but generally modest in terms

  12. Spatial grids for hurricane climate research

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, James B.; Hodges, Robert E.; Jagger, Thomas H. [Florida State University, Tallahassee, FL (United States)

    2012-07-15

    The authors demonstrate a spatial framework for studying hurricane climatology. The framework consists of a spatial tessellation of the hurricane basin using equal-area hexagons. The hexagons are efficient at covering hurricane tracks and provide a scaffolding to combine attribute data from tropical cyclones with spatial climate data. The framework's utility is demonstrated using examples from recent hurricane seasons. Seasons that have similar tracks are quantitatively assessed and grouped. Regional cyclone frequency and intensity variations are mapped. A geographically-weighted regression of cyclone intensity on sea-surface temperature emphasizes the importance of a warm ocean in the intensification of cyclones over regions where the heat content is greatest. The largest differences between model predictions and observations occur near the coast. The authors suggest the framework is ideally suited for comparing tropical cyclones generated from different numerical simulations. (orig.)

  13. Assessment of cold-climate environmental research priorities

    Energy Technology Data Exchange (ETDEWEB)

    States, J.B.

    1983-04-01

    The Environmental Protection Agency (EPA) has consistently recognized that cold regions pose unique environmental problems. This report sets forth the conceptual framework and research plans for several high priority research areas. It provides the fundamental basis for implementation of the EPA Cold-Climate Environmental Research Program. This three- to five-year program encompasses both short- and long-term research of high relevance to the EPA and to the cold regions that it serves.

  14. Implementation Plans for a Systems Microbiology and Extremophile Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. S.

    2009-04-20

    solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed “systems microbiology” is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.

  15. Design and economics of a small shallow land burial facility in a humid climate

    International Nuclear Information System (INIS)

    To assess the technical feasibility and cost to generators of disposal of Maine's Low-Level Radioactive Waste (LLRW), the Maine Department of Environmental Protection has designed several general shallow land burial facilities and is performing preliminary costing exercises on each. Trench and facility design were governed by northern New England's humid climate and high ground water table. Maine's Low-Level Radioactive Waste Siting Commission has been actively discussing with representatives of the States of New Hampshire and Vermont the possibility of a single facility serving all three states over a 25 year period. Also provided for were waste volumes from the decommissioning of the two existing commercial power reactors. Costs were estimated for licensing, facility construction, operation, closure, and post closure care. Using DOE's National Low-Level Waste Management Program's economic model, the Maine State Planning Office (SPO) is estimating unit disposal costs to generators. Preliminary findings are presented in this paper

  16. Rain Garden Research at EPA's Urban Watershed Research Facility

    Science.gov (United States)

    I have been invited to give a presentation at the 2009 National Erosion Conference in Hartford, CT, on October 27-28, 2009. My presentation discusses the research on sizing of rain gardens that is being conducted using the large, parking lot rain gardens on-site. I discuss the ...

  17. NASA indicators research in support of the National Climate Assessment

    Science.gov (United States)

    Leidner, A. K.; Houser, P. R.; Tsaoussi, L.

    2013-12-01

    Indicators have the potential to concisely communicate to a broad audience the observed and projected climate trends and anomalies, as well as society's vulnerability and ability to adapt to climate change. Consequently, indicators are anticipated to play an important role in the Fourth U.S. National Climate Assessment (NCA) report, slated to be released in four years. The NCA objectives include providing information about observed and anticipated changes in climate and assessing the impacts for regions and sectors, in order to help the nation prepare for a changing climate. Efforts are underway within the NCA to identify a set physical, ecological, and societal climate change indicators, by leveraging existing indicators currently in use by federal agencies. The NCA indicators are intended to provide meaningful and authoritative measures about the status and trends of climate for decision makers and the public. As a complement to this effort, and to support the NCA sustained assessment process, NASA solicited membership for an Indicators System Team and selected fourteen projects to begin research in summer 2013. These teams will develop and test potential new indicators that align with the vision set forth by the NCA, by combining NASA's remote sensing and modeling data products with additional datasets. Here, we further describe the objectives of the research program and highlight preliminary findings of several key projects related to physical, ecological, and societal climate change indicators, and discuss future research activities. Ultimately, this research will be made available in the peer-reviewed literature so that the newly developed indicators have the potential to be included in future NCA reports.

  18. Research on Greenhouse-Gas-Induced Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  19. The D4Science research-oriented social networking facilities

    OpenAIRE

    Assante, Massimiliano; Candela, Leonardo; Castelli, Donatella; Pagano, Pasquale (ISTI-CNR)

    2014-01-01

    Modern science calls for innovative practices to facilitate research collaborations spanning institutions, disciplines, and countries. Paradigms such as cloud computing and social computing represent a new opportunity for individuals with scant resources, to participate in science. The D4Science.org Hybrid Data Infrastructure combines these two paradigms with Virtual Research Environments in order to offer a large array of collaboration-oriented facilities as-a-Service.

  20. GroFi: Large-scale fiber placement research facility

    OpenAIRE

    Krombholz, Christian; Kruse, Felix; Wiedemann, Martin

    2016-01-01

    GroFi is a large research facility operated by the German Aerospace Center’s Center for Lightweight-Production-Technology in Stade. A combination of different layup technologies namely (dry) fiber placement and tape laying, allows the development and validation of new production technologies and processes for large-scale composite components. Due to the use of coordinated and simultaneously working layup units a high flexibility of the research platform is achieved. This allows the investiga...

  1. National Bureau of Standards Cold Neutron Research Facility

    International Nuclear Information System (INIS)

    In 1984 a National Academy of Sciences committee was set up to review the need for major facilities in the area of materials and condensed matter science. The report specifically mentioned the National Bureau of Standards Reactor (NBSR) as one of the places that should develop a cold neutron research facility (CNRF). NBS was able to obtain funding from congress to develop the NBS CNRF. The facility will cost approximately $25,000,000, including the guide hall, ten major instruments, and eight guide tubes. The cost does not include the cold source itself, which was funded separately. The cold source configuration is shown. This project has been funded to provide a national center for neutron research. Some fraction (one-third to two-thirds) of all the new facilities will be made available to outside users at no charge. The facilities will be staffed adequately to provide needed assistance to outside users to assure that they can perform their experiments effectively and efficiently. The prioritization of outside proposals will be performed by an independent review committee that will base their recommendations on the scientific merit of each proposal

  2. Novel neutron sources at the Radiological Research Accelerator Facility

    Science.gov (United States)

    Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

    2012-03-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  3. Climate Change and Impacts Research Experiences for Urban Students

    Science.gov (United States)

    Marchese, P.; Carlson, B. E.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Scalzo, F.; Frost, J.; Moshary, F.; Greenbaum, S.; Cheung, T. K.; Howard, A.; Steiner, J. C.; Johnson, L. P.

    2011-12-01

    Climate change and impacts research for undergraduate urban students is the focus of the Center for Global Climate Research (CGCR). We describe student research and significant results obtained during the Summer 2011. The NSF REU site, is a collaboration between the City University of New York (CUNY) and the NASA Goddard Institute for Space Studies (GISS). The research teams are mentored by NASA scientists and CUNY faculty. Student projects include: Effects of Stratospheric Aerosols on Tropical Cyclone Activity in the North Atlantic Basin; Comparison of Aerosol Optical Depth and Angstrom Exponent Retrieved by AERONET, MISR, and MODIS Measurements; White Roofs to the Rescue: Combating the Urban Heat Island Effect; Tropospheric Ozone Investigations in New York City; Carbon Sequestration with Climate Change in Alaskan Peatlands; Validating Regional Climate Models for Western Sub-Sahara Africa; Bio-Remediation of Toxic Waste Sites: Mineral Characteristics of Cyanide-Treated Mining Waste; Assessment of an Ocean Mixing Parameterization for Climate Studies; Comparative Wind Speed through Doppler Sounding with Pulsed Infrared LIDAR; and Satellite Telemetry and Communications. The CGCR also partners with the New York City Research Initiative (NYCRI) at GISS. The center is supported by NSF ATM-0851932 and the American Recovery and Reinvestment Act of 2009 (ARRA).

  4. Detailed description of an SSAC at the facility level for research laboratory facilities

    International Nuclear Information System (INIS)

    The purpose of this document is to provide a detailed description of a system for the accounting for and control of nuclear material in a research laboratory facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following SSAC elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  5. The Advanced Neutron Source Facility: A new user facility for neutron research

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is a new reactor-based research facility being planned by Oak Ridge National Laboratory (ORNL) to meet the need for an intense steady state source of neutrons and for associated research space and equipment. The ANS will be open for use by scientists from universities, industry, and other federal laboratories. The ANS will be built around a new research reactor of unprecedented flux; that is, it will produce the most intense continuous beams of neutrons in the world. The goal is to reach a thermal neutron flux for beam experiments of 5 /times/ 1019 to 10 /times/ 1019 neutrons/(m2/center dot/s/sup /minus/1/). By combining the higher source flux with improved experimental facilities, the ANS will surpass current US high flux reactors---the High Flux Isotope Reactor (HFIR) at ORNL and the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory---by a factor of 10 to 20. The safety analysis of the ANS facility will include a complete probabilistic risk assessment (PRA), which will provide a systematic assessment of dependencies among systems at the malfunctions. For the current generation of nuclear power plants that have recently undergone the licensing review process, PRA has been used an an analysis tool after completion of the plant designs. For the ANS Project, the PRA effort has already begun, before the facility conceptual design. This allows safety insights from the PRA to be incorporated into the evolving plant design. 4 refs., 6 figs

  6. Toward ethical norms and institutions for climate engineering research

    Science.gov (United States)

    Morrow, David R.; Kopp, Robert E.; Oppenheimer, Michael

    2009-10-01

    Climate engineering (CE), the intentional modification of the climate in order to reduce the effects of increasing greenhouse gas concentrations, is sometimes touted as a potential response to climate change. Increasing interest in the topic has led to proposals for empirical tests of hypothesized CE techniques, which raise serious ethical concerns. We propose three ethical guidelines for CE researchers, derived from the ethics literature on research with human and animal subjects, applicable in the event that CE research progresses beyond computer modeling. The Principle of Respect requires that the scientific community secure the global public's consent, voiced through their governmental representatives, before beginning any empirical research. The Principle of Beneficence and Justice requires that researchers strive for a favorable risk-benefit ratio and a fair distribution of risks and anticipated benefits, all while protecting the basic rights of affected individuals. Finally, the Minimization Principle requires that researchers minimize the extent and intensity of each experiment by ensuring that no experiments last longer, cover a greater geographical extent, or have a greater impact on the climate, ecosystem, or human welfare than is necessary to test the specific hypotheses in question. Field experiments that might affect humans or ecosystems in significant ways should not proceed until a full discussion of the ethics of CE research occurs and appropriate institutions for regulating such experiments are established.

  7. Toward ethical norms and institutions for climate engineering research

    International Nuclear Information System (INIS)

    Climate engineering (CE), the intentional modification of the climate in order to reduce the effects of increasing greenhouse gas concentrations, is sometimes touted as a potential response to climate change. Increasing interest in the topic has led to proposals for empirical tests of hypothesized CE techniques, which raise serious ethical concerns. We propose three ethical guidelines for CE researchers, derived from the ethics literature on research with human and animal subjects, applicable in the event that CE research progresses beyond computer modeling. The Principle of Respect requires that the scientific community secure the global public's consent, voiced through their governmental representatives, before beginning any empirical research. The Principle of Beneficence and Justice requires that researchers strive for a favorable risk-benefit ratio and a fair distribution of risks and anticipated benefits, all while protecting the basic rights of affected individuals. Finally, the Minimization Principle requires that researchers minimize the extent and intensity of each experiment by ensuring that no experiments last longer, cover a greater geographical extent, or have a greater impact on the climate, ecosystem, or human welfare than is necessary to test the specific hypotheses in question. Field experiments that might affect humans or ecosystems in significant ways should not proceed until a full discussion of the ethics of CE research occurs and appropriate institutions for regulating such experiments are established.

  8. Langley's two-dimensional research facilities: Capabilities and plans

    Science.gov (United States)

    Ray, E. J.

    1979-01-01

    The current capabilities and the forthcoming plans for Langley's two-dimensional research facilities are described. The characteristics of the Langley facilities are discussed in terms of Reynolds number, Mach number, and angle-of-attack capabilities. Comments are made with regard to the approaches which have been investigated to alleviate typical problem areas such as wall boundary effects. Because of the need for increased Reynolds number capability at high subsonic speeds, a considerable portion of the paper deals with a description of the 20 by 60 cm two-dimensional test section of the Langley 0.3 meter transonic cryogenic tunnel which is currently in the calibration and shakedown phase.

  9. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D2O/H2O ice cold source. (author)

  10. Complex plasma research on ISS past, present, and future facilities

    Science.gov (United States)

    Seurig, R.; Morfill, G.; Fortov, V.; Hofmann, P.

    2007-11-01

    The research in dusty plasma, also known as complex plasma, under prolonged microgravity condition took its first steps in 1998 onboard the Russian Space Station MIR: cosmonauts Vladimir Solovyov and Pavel Vinogradov conducted the first experiments to obtain plasma-dust crystals in the 'Plazmennyi Kristall 1'(PK-1) device using the sun as a 'natural' ionization source. This experiment was followed afterwards by the PK-2 already utilizing its own DC plasma generator. A major step came only three years later with the PKE-Nefedov facility (formerly called PKE-3). Launched in February 2001 and operated in over 13 missions for five consecutive years in the Russian Segment of the International Space Station ISS, this bilateral German-Russian research facility has already shown some surprising, new behavior of radio-frequency induced complex plasmas. An advanced model of PKE-Nefedov, the PK-3 Plus experiment apparatus, is getting readied to be launched to ISS on Progress Cargo spacecraft 20P. Additional developments are in progress to continue this exciting growing research field with: (a) PK-4 utilizing high voltage DC controlled plasma, and (b) IMPACT Laboratory, the European Space Agency's next generation premier research laboratory for plasma and dust physics on the ISS. The paper will provide background information of each of the complex plasma research facilities.

  11. EUFAR – European Facility for Airborne Research: Easy and Open Access to the Airborne Research Facilities and Expert Knowledge

    OpenAIRE

    Holzwarth, Stefanie; Reusen, Ils; Brown, Philip R. A.; Gerard, Elisabeth

    2015-01-01

    The European Facility for Airborne Research, EUFAR, is an Integrating Activity of the 7th Framework Programme (FP7) of the European Commission with funding covering the period 2014-2018. The current EUFAR follows three previous contracts under FP5, FP6 and FP7, and currently represents a consortium of 24 European institutions and organisations involved in airborne research. 18 small and medium size aircraft equipped with a multitude of different sensor systems are available to the European sc...

  12. Hardware development process for Human Research facility applications

    Science.gov (United States)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. .

  13. Recent advances in research on climate and human conflict

    Science.gov (United States)

    Hsiang, S. M.

    2014-12-01

    A rapidly growing body of empirical, quantitative research examines whether rates of human conflict can be systematically altered by climatic changes. We discuss recent advances in this field, including Bayesian meta-analyses of the effect of temperature and rainfall on current and future large-scale conflicts, the impact of climate variables on gang violence and suicides in Mexico, and probabilistic projections of personal violence and property crime in the United States under RCP scenarios. Criticisms of this research field will also be explained and addressed.

  14. Towards a research agenda for adapting to climate change

    International Nuclear Information System (INIS)

    The views, publications and research related to building design and climate change are reviewed in generic terms at the outset of this paper in order to identify a number of questions and potential research avenues. In particular, the links between the roles of building design and its implications for occupant behaviour are addressed in the context of the environmental performance of buildings and climate change. The emphasis is on the integration of adaptation with energy-efficient design, both in terms of how buildings can be designed to increase their adaptive potential and of the significance of occupant adaptive opportunities. (author)

  15. Earth observation big data for climate change research

    Institute of Scientific and Technical Information of China (English)

    GUO; Hua-Dong; ZHANG; Li; ZHU; Lan-Wei

    2015-01-01

    Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development,especially through providing biological,physical,and chemical parameters on a global scale.Earth observation data has the 4V features(volume,variety,veracity,and velocity) of big data that are suitable for climate change research.Moreover,the large amount of data available from scientific satellites plays an important role.This study reviews the advances of climate change studies based on Earth observation big data and provides examples of case studies that utilize Earth observation big data in climate change research,such as synchronous satelliteeaerialeground observation experiments,which provide extremely large and abundant datasets; Earth observational sensitive factors(e.g.,glaciers,lakes,vegetation,radiation,and urbanization); and global environmental change information and simulation systems.With the era of global environment change dawning,Earth observation big data will underpin the Future Earth program with a huge volume of various types of data and will play an important role in academia and decisionmaking.Inevitably,Earth observation big data will encounter opportunities and challenges brought about by global climate change.

  16. Earth observation big data for climate change research

    Directory of Open Access Journals (Sweden)

    Hua-Dong Guo

    2015-06-01

    Full Text Available Earth observation technology has provided highly useful information in global climate change research over the past few decades and greatly promoted its development, especially through providing biological, physical, and chemical parameters on a global scale. Earth observation data has the 4V features (volume, variety, veracity, and velocity of big data that are suitable for climate change research. Moreover, the large amount of data available from scientific satellites plays an important role. This study reviews the advances of climate change studies based on Earth observation big data and provides examples of case studies that utilize Earth observation big data in climate change research, such as synchronous satellite–aerial–ground observation experiments, which provide extremely large and abundant datasets; Earth observational sensitive factors (e.g., glaciers, lakes, vegetation, radiation, and urbanization; and global environmental change information and simulation systems. With the era of global environment change dawning, Earth observation big data will underpin the Future Earth program with a huge volume of various types of data and will play an important role in academia and decisionmaking. Inevitably, Earth observation big data will encounter opportunities and challenges brought about by global climate change.

  17. Inventory of Research on the Impacts of Climate Change

    International Nuclear Information System (INIS)

    Climate change is one of the greatest threats for the global environment today. Global mean temperature has risen by about 0.6C during the 20th century, greater than during any other century in the last 1000 years. Subsequently, climate change is likely to have detrimental effects on all global natural and anthropogenic systems. Climate change will have consequences for the structure and function of ecosystems and all the major global biomes. Also agricultural production and productivity will alter, and physical effects will take place on the environment affecting those that inhabit it. For example, sea level rise and climatic variations will have implications for human health, land use and coastal infrastructure. This report aims to identify the current and proposed research and assessments being undertaken by international organizations as well as the major national research groups regarding climate change and its effects on ecosystems, on agriculture (including fisheries and forestry) and on the economy and human society. The report also identifies possible gaps in this research

  18. Climate research and climate negotiations - status and prospect; Klimaforskning og klimaforhandlinger - status og utsikter fremover

    Energy Technology Data Exchange (ETDEWEB)

    Torvanger, Asbjoern; Fuglestvedt, Jan; Holtsmark, Bjart; Naess, Lars Otto

    1997-12-31

    This report describes the climate process from the preliminary work on the Climate Convention to the negotiations about the Berlin mandate about the increased commitments of the industrialised countries to reduce their emissions of greenhouse gases. Future prospects are discussed up to the Kyoto meeting in 1997. A status survey is given of the climate research and possible man-made climate disturbances. The various countries take different positions on some of the most important issues in the negotiations: (1) Are the various countries to have the same goal, or should the goals be differentiated?, (2) Goal and dating of emission reductions, (3) Selection of measures and means, (4) Flexibility in the fulfillment of commitments over time, (5) Only carbon dioxide or more greenhouse gases?, (6) Is binding of carbon dioxide through net forest growth to be included in the negotiations? 32 refs., 52 figs.

  19. Collaborative Research for Water Resource Management under Climate Change Conditions

    Science.gov (United States)

    Brundiers, K.; Garfin, G. M.; Gober, P.; Basile, G.; Bark, R. H.

    2010-12-01

    We present an ongoing project to co-produce science and policy called Collaborative Planning for Climate Change: An Integrated Approach to Water-Planning, Climate Downscaling, and Robust Decision-Making. The project responds to motivations related to dealing with sustainability challenges in research and practice: (a) state and municipal water managers seek research that addresses their planning needs; (b) the scientific literature and funding agencies call for more meaningful engagement between science and policy communities, in ways that address user needs, while advancing basic research; and (c) empirical research contributes to methods for the design and implementation of collaborative projects. To understand how climate change might impact water resources and management in the Southwest US, our project convenes local, state, and federal water management practitioners with climate-, hydrology-, policy-, and decision scientists. Three areas of research inform this collaboration: (a) the role of paleo-hydrology in water resources scenario construction; (b) the types of uncertainties that impact decision-making beyond climate and modeling uncertainty; and (c) basin-scale statistical and dynamical downscaling of climate models to generate hydrologic projections for regional water resources planning. The project engages all participants in the research process, from research design to workshops that build capacity for understanding data generation and sources of uncertainty to the discussion of water management decision contexts. A team of “science-practice translators” facilitates the collaboration between academic and professional communities. In this presentation we contextualize the challenges and opportunities of use-inspired science-policy research collaborations by contrasting the initial project design with the process of implementation. We draw from two sources to derive lessons learned: literature on collaborative research, and evaluations provided by

  20. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    Schrempf, R.E. [ed.

    1993-04-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE`s long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE`s contribution to the US Global Change Research Program.

  1. The climate and the forest - basis for national research

    International Nuclear Information System (INIS)

    This report describes a proposed interdisciplinary research program to develop support tools to help decision-makers in forestry to adapt forest management practices to meet challenges posed by anticipated, but uncertain, climatic changes. The Climate and the forest Committee at the Royal Swedish Academy of Agriculture and Forestry (KSLA) invited around 30 scientists from different disciplines to a two-day workshop. During the workshop objectives, goals, and methods for a research program were formulated. The participants of the workshop subsequently made contributions to this document, which has been completed by the four named editors. Climate changes would inevitably affect Swedish forestry. The forests have a direct effect on the climate and forestry may have to adapt to the new conditions. Uncertainties about the future climate pose new challenges for forest management of which we have no experience. To support decision-making in this new situation we need new knowledge as well as rational methods to handle uncertainty and risk. Despite uncertainties in the climate scenarios and lack of knowledge about the responses of forests to likely climatic changes, we can still predict some probable effects of anticipated warming on the Swedish forests. Increased potential for biomass production can be expected, as well as greater opportunities to utilise new tree species in commercial forestry. At the same time, the risks for several kind of damage is likely to increase. The basic assumption underlying this research program is that knowledge of likely climate changes and associated uncertainties will increase the possibility to achieve forestry objectives. We advocate a research program consisting of the following three modules, each focusing on different aspects of these issues: Module 1 FORESTRY with the objectives to: Develop a framework to handle uncertainty and risks in forestry. Develop decision-maps that systematically describe the consequences of both single and

  2. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  3. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities.

    Science.gov (United States)

    Collymore, Chereen; Crim, Marcus J; Lieggi, Christine

    2016-07-01

    The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program. PMID:26991393

  4. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  5. New methods of researching healthcare facility users: the nursing workspace

    OpenAIRE

    Karen Keddy

    2012-01-01

    This study is entitled Embodied Professionalism: The relationship between the physicalnature of nursing work and nursing space. The analysis is based in a critical examination of existing approaches, assumptions, and attitudes in the research literature about who, what, and how to study the person-environment relationship in healthcare facilities. New methods of studying how nurses experience their work, their workplace and the objects in their workspace are needed in order to address importa...

  6. Basic Design of the Cold Neutron Research Facility in HANARO

    International Nuclear Information System (INIS)

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments

  7. Sustainability in facilities management: an overview of current research

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Sarasoja, Anna-Liisa; Ramskov Galamba, Kirsten

    2016-01-01

    emerging sub-discipline of sustainable facilities management (SFM) on research, an overview of current studies is needed. The purpose of this literature review is to provide exactly this overview. Design/methodology/approach: This article identifies and examines current research studies on SFM through a...... indicated that the current research varies in focus, methodology and application of theory, and it was concluded that the current research primary addresses environmental sustainability, whereas the current research which takes an integrated strategic approach to SFM is limited. The article includes lists...... comprehensive and systematic literature review. The literature review included screening of 85 identified scientific journals and almost 20,000 articles from the period of 2007-2012. Of the articles reviewed, 151 were identified as key articles and categorised according to topic. Findings: The literature review...

  8. Environmental and climate research programme 1988/89

    International Nuclear Information System (INIS)

    The Study Group of the Large-scale Research Institutes (AGF) has been reporting on these projects since 1972, in its programme for 'Environmental and Climate Research'. The programme, which is worked out by the AGF's Coordination Office for Environmental Research, is closely connected with the programmes of the Federal Government; it is revised and updated periodically by the AGF's Coordination Committees for 'Environmental Research' and 'Climate Research'. The 1988/89 programme gives an up-to-date overview of research projects in the field of 'Research and Technology for Health, Nutrition and the Environment' financed with the AGF programme budget of 1988. At the same time, however, it also documents projects of other areas of the programme concerned with environmental issues. Development trends are also discernible in the specification of the goals for 1989. The figures mentioned in the present programme are not comparable with those of earlier programmes, owing to inclusion of the programme section concerned with issues of climate, and to structural changes. (orig./KW)

  9. A Better understanding of Interdisciplinary research in Climate Change

    OpenAIRE

    Olsen, Dorothy Sutherland; Borlaug, Siri Brorstad; KLITKOU Antje; Lyall, Catherine; Yearley, Steven

    2013-01-01

    This paper is divided into two main parts, the first of which reviews some of the literature on interdisciplinary research collaboration and categorises articles according to their contribution. The second part of the paper reviews the development of the field of climate change and examines the increasing importance of collaboration both between scientific disciplines, between physical and social scientists and with other stakeholders.

  10. Research on the Natural Variability of Climate

    Science.gov (United States)

    2004-01-01

    The scheme for ocean vertical mixing presented in Canuto, Howard, Cheng & Dubovikov and Canuto, Howard, Hogan, Cheng, Dubovikov & Montenegro [GISS mixing scheme] was extended to include the latitudinal dependence reported by Gregg, Sanford & Winkel of the input to the interior ocean turbulence field of energy from internal waves. The resulting latitude dependence was implemented in our module of code for the GISS vertical mixing scheme and tested in the global NCAR-CSM ocean model with 3 degree X 3 degree resolution and 25 levels in the vertical. With the latitude dependence, the background diffusivity decreases from approx. 0.1 sq cm/sec at midlatitudes to approx. less than 0.01 sq cm/sec at the equator. A significant improvement was seen in the tropical ocean, with tropical thermoclines being sharpened in agreement with the requirements of observational studies and the needs of ENS0 modeling. At the same time global measures nf performance such as the meridional overturning and northward heat transport were not adversely affected. Results were presented at the 2004 Layered Ocean Modeling meeting and a paper has been prepared and submitted to Geophysical Research Letters.

  11. GroFi: Large-scale fiber placement research facility

    OpenAIRE

    Krombholz, Christian; Kruse, Felix; Wiedemann, Martin

    2016-01-01

    GroFi is a large research facility operated by the German Aerospace Center’s Center for Lightweight-Production-Technology in Stade. A combination of dierent layup technologies namely (dry) ber placement and tape laying, allows the development and validation of new production technologiesand processes for large-scale composite components. Due to the use of coordinated and simultaneously working layup units a high exibility of the research platform is achieved. This allows the investigation of ...

  12. Progress in developing the concept for the irradiation research facility

    International Nuclear Information System (INIS)

    At the 16th annual Canadian Nuclear Society conference, AECL presented the case for replacing the NRU reactor with an Irradiation Research Facility (IRF) to test CANDU fuels and materials and to perform advanced materials research using neutrons. AECL developed a cost estimate of $500 million for the reference IRF concept, and estimated that it would require 87 months to complete. AECL has initiated a pre-project program to develop the IRF concept and to minimize uncertainties related to feasibility and licensability, and to examine options for reducing the overall project cost before project implementation begins. (author) 10 refs., 2 figs

  13. Progress in developing the concept for the irradiation research facility

    International Nuclear Information System (INIS)

    At the 16th annual Canadian Nuclear Society conference, AECL presented the case for replacing the NRU reactor with an Irradiation Research Facility (IRF) to test CANDU fuels and materials and to perform advanced materials research using neutrons. AECL developed a cost estimate of $500 million for the reference IRF concept, and estimated that it would require 87 months to complete. AECL has initiated a pre-project program to develop the IRF concept to minimize uncertainties related to feasibility and licensability, and to examine options for reducing the overall project cost before project implementation begins. (author)

  14. Dhruva reactor -- a high flux facility for neutron beam research

    International Nuclear Information System (INIS)

    Dhruva reactor, the highest flux thermal neutron source in India has been operating at full power of 100 MW over the past two years. Several advanced facilities like the cold source, guides, etc. are being installed for neutron beam research in condensed matter. A large number and variety of neutron spectrometers are operational. This paper deals with the basic advantages that one can derive from neutron scattering investigations and gives a brief description of the instruments that are developed and commissioned at Dhruva for neutron beam research. (author). 3 figs

  15. The neutron radiography facility at Tehran Research Reactor (TRR)

    International Nuclear Information System (INIS)

    Full text: Non-destructive testing in many fields of industry including detection of explosives, at the airports, testing for micro-cracks on airplane wings and turbine blades cracks is badly needed. Thermal neutron beam is one of preferable method to detect the micro-cracks, reveals the internal structure of components and explosives. The purpose of this paper is to present the neutron radiography facility at Tehran Research Reactor (TRR), Science and Technology Research Institute, and in particular to emphasize the industrial applications in wood industry, automobile engine inspection, minerals composition identification, turbine blade cracks detection. (author)

  16. Usage of virtual research laboratory "Climate" prototype for Northern Eurasia climatic and ecological studies

    Science.gov (United States)

    Gordov, Evgeny; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2015-04-01

    Reported are some results of Northern Eurasia regional climatic and ecological monitoring and modeling obtained using recently developed prototype of thematic virtual research laboratory (VRL) Climate (http://climate.scert.ru/). The prototype integrates distributed thematic data storage, processing and analysis systems and set of models of complex climatic and environmental processes run on supercomputers. Its specific tools are aimed at high resolution rendering on-going climatic processes occurring in Northern Eurasia and reliable and found prognoses of their dynamics for selected sets of future mankind activity scenario. Currently VRL integrates on the base of geoportal the WRF and «Planet Simulator» models, basic reanalysis, meteorological stations data and support profound statistical analysis of storage and modeled on demand data. In particular, one can run the integrated models, preprocess modeling results data, using dedicated modules for numerical processing perform analysys and visualize obtained results. The prototype can provide specialists involved into multidisciplinary research projects with reliable and practical instruments for integrated research of climate and ecosystems changes on global and regional scales. With its help even a user without programming skills would be able to process and visualize multidimensional observational and model data through unified web-interface using a web-browser. Location, frequency and magnitude of observed in Siberia extremes has been studied using recently added prototype functionality allowing detailed statistical analysis studies of regional climatic extremes. Firstly it was shown that ECMWF ERA Interim Reanalysis data are closest to near surface temperature time series measured at regional meteorological stations. Statistical analysis of ERA Interim daily temperature time series (1979-2012) indicates the asymmetric changes in distribution tails of such extreme indices as warm/cold days/nights. Namely, the

  17. Cold neutron irradiation facility for the Brazilian research reactors

    International Nuclear Information System (INIS)

    Neutron irradiation in research reactors and accelerators can be realized at appropriated neutron guides or beam holes shared around a cold neutron source (CNS) with neutron of variable intensity and energy. An irradiation facility for multiple applications including an intense CNS was calculated for the three Brazilian research reactors and can be utilized as a first concept for the new research reactor to be designed, the Brazilian multiple purpose research reactor (RMB). A study about coolant and moderators properties, and simulations with neutron physics and thermal codes, may be important for the definition of the type of the CNS to be utilized. Some earlier results of MCNP simulations and a discussion about the different factors involved in the definition of its installation in the Brazilian research reactors are here presented. One suggests an international cooperation for the design development of this system and posterior construction of a prototype in the Argonauta reactor at the Instituto de Engenharia Nuclear (IEN-CNEN/RJ). It is also being considered the inclusion of other devices as a neutron fiber to guide the neutron beams away of the gamma radiation and fast neutron background. The cold neutron facility increases the intensity of cold neutrons, without the need of additional fuel burn up. (author)

  18. European Research Framework Programme. Research on Climate Change. Prepared for the Third World Climate Conference (WCC-3) and the UNFCCC Conference of the Parties (COP-15)

    International Nuclear Information System (INIS)

    This publication gathers the abstracts of European research projects on climate change and related to climate change which have been completed recently or are ongoing under the sixth and seventh framework programmes for research. This document aims at providing a relevant overview of research activities on climate change funded by the European Community to participants to the third World Climate Conference held in Geneva in August 2009 and to the UNFCCC 15th Conference of the Parties meeting in Copenhagen in December 2009.

  19. Status of CHESS facility and research programs: 2010

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Ernest, E-mail: ef11@cornell.edu [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853 (United States); Bilderback, Donald H.; Gruner, Sol M. [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853 (United States)

    2011-09-01

    CHESS is a hard X-ray synchrotron radiation national facility located at Cornell University and funded by the National Science Foundation. It is open to all scientists by peer-reviewed proposal and serves 500-1000 visitors each year. The CHESS scientific and technical staff develops forefront research tools and X-ray instrumentation and methods and supports 12 experimental stations delivering high intensity X-ray beams produced at 5.3 GeV and 250 mA. The facility consists of a mix of dedicated and flexible experimental stations that are easily configured for general X-ray diffraction (wide- and small-angle), spectroscopy, imaging applications, etc. Dedicated stations support high-pressure powder X-ray diffraction, pulsed-laser deposition for layer-by-layer growth of surfaces, and three dedicated stations for protein crystallography. Specialized resource groups at the laboratory include: an X-ray detector group; MacCHESS, an NIH-supported research resource for protein crystallography; the G-line division, which primarily organizes graduate students and Cornell faculty members around three X-ray stations; a high-pressure diamond-anvil cell support laboratory; and a monocapillary drawing facility for making microbeam X-ray optics. Research is also ongoing to upgrade CHESS to a first-ever 5 GeV, 100 mA Energy Recovery Linac (ERL) hard X-ray source. This source will provide ultra-high spectral-brightness and <100 fs short-pulse capability at levels well in advance of those possible with existing storage rings. It will produce diffraction-limited X-rays beams of up to 10 keV energy and be capable of providing 1 nm round beams. Prototyping for this facility is under way now to demonstrate critical DC photoelectron injector and superconducting linac technologies needed for the full-scale ERL.

  20. Status of CHESS facility and research programs: 2010

    International Nuclear Information System (INIS)

    CHESS is a hard X-ray synchrotron radiation national facility located at Cornell University and funded by the National Science Foundation. It is open to all scientists by peer-reviewed proposal and serves 500-1000 visitors each year. The CHESS scientific and technical staff develops forefront research tools and X-ray instrumentation and methods and supports 12 experimental stations delivering high intensity X-ray beams produced at 5.3 GeV and 250 mA. The facility consists of a mix of dedicated and flexible experimental stations that are easily configured for general X-ray diffraction (wide- and small-angle), spectroscopy, imaging applications, etc. Dedicated stations support high-pressure powder X-ray diffraction, pulsed-laser deposition for layer-by-layer growth of surfaces, and three dedicated stations for protein crystallography. Specialized resource groups at the laboratory include: an X-ray detector group; MacCHESS, an NIH-supported research resource for protein crystallography; the G-line division, which primarily organizes graduate students and Cornell faculty members around three X-ray stations; a high-pressure diamond-anvil cell support laboratory; and a monocapillary drawing facility for making microbeam X-ray optics. Research is also ongoing to upgrade CHESS to a first-ever 5 GeV, 100 mA Energy Recovery Linac (ERL) hard X-ray source. This source will provide ultra-high spectral-brightness and <100 fs short-pulse capability at levels well in advance of those possible with existing storage rings. It will produce diffraction-limited X-rays beams of up to 10 keV energy and be capable of providing 1 nm round beams. Prototyping for this facility is under way now to demonstrate critical DC photoelectron injector and superconducting linac technologies needed for the full-scale ERL.

  1. Research reactor and fuel development facility decommissioning experience and technology

    International Nuclear Information System (INIS)

    This paper discusses the technology and experience gained in research reactor and fuels development facility decommissioning programs carried out by Babcock and Wilcox (B and W) at one of its NRC-licensed sites in Lynchburg, VA. The projects included two buildings that housed plutonium/uranium fuels development laboratories, four low-power critical experiment facilities, and two (megawatt-level) research reactors. This paper concentrates on the experiences with the plutonium/uranium fuels development laboratories and critical experiment facilities. These were comprehensive projects that included: developing the decommissioning and quality assurance plans; interfacing with the U.S. Nuclear Regulatory Commission, performing the actual decontamination/dismantling work; performing decontamination and final radiological surveys; and volume reducing, packaging, certifying, classifying, and shipping the radioactive waste for disposal. This broad experience has involved handling radioactive contamination from the following sources: low- and high-enriched U-235 fuel; depleted uranium; mixed oxide fuel (Pu/UO); thorium fuel; U Al alloy fuel; and fission activation products (beta-gamma). Areas of application to future projects are highlighted in this paper

  2. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  3. Cost calculations for decommissioning and dismantling of nuclear research facilities

    International Nuclear Information System (INIS)

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  4. First Materials Science Research Facility Rack Capabilities and Design Features

    Science.gov (United States)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  5. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

  6. Internship using nuclear facilities in Oarai Research and Development Center

    International Nuclear Information System (INIS)

    Nuclear energy is important from a viewpoint of economy and energy security in Japan. However, the lack of nuclear engineers and scientists in future is concerned after the severe accident of TEPCO's Fukushima Daiichi Nuclear Power Station has occurred. Institute of National Colleges of Technology planned to carry out training programs for human resource development of nuclear energy field including on-site training in nuclear facilities. Oarai Research and Development Center in Japan Atomic Energy Agency cooperatively carried out an internship for nuclear disaster prevention and safety utilizing the nuclear facilities such as the JMTR. Thirty two students joined in total in the internship from FY 2011 to FY 2013. In this paper, contents and results of the internship are reported. (author)

  7. Thermal fuel research and development facilities in BNFL

    International Nuclear Information System (INIS)

    BNFL is committed to providing high quality, cost effective nuclear fuel cycle services to customers on a National and International level. BNFL's services, products and expertise span the complete fuel cycle; from fuel manufacture through to fuel reprocessing, transport, waste management and decommissioning and the Company maintains its technical and commercial lead by investment in continued research and development (R and D). This paper discusses BNFL's involvement in R and D and gives an account of the current facilities available together with a description of the advanced R and D facilities constructed or planned at Springfields and Sellafield. It outlines the work being carried out to support the company fuel technology business, to (1) develop more cost effective routes to existing fuel products; (2) maximize the use of recycled uranium, plutonium and tails uranium and (3) support a successful MOX business

  8. Experience of the Paris Research Consortium Climate-Environment-Society

    Science.gov (United States)

    Joussaume, Sylvie; Pacteau, Chantal; Vanderlinden, Jean Paul

    2016-04-01

    It is now widely recognized that the complexity of climate change issues translates itself into a need for interdisciplinary approaches to science. This allows to first achieve a more comprehensive vision of climate change and, second, to better inform the decision-making processes. However, it seems that willingness alone is rarely enough to implement interdisciplinarity. The purpose of this presentation is to mobilize reflexivity to revisit and analyze the experience of the Paris Consortium for Climate-Environment-Society. The French Consortium Climate-Environment-Society aims to develop, fund and coordinate interdisciplinary research into climate change and its impacts on society and environment. Launched in 2007, the consortium relies on the research expertise of 17 laboratories and federation in the Paris area working mainly in the fields of climatology, hydrology, ecology, health sciences, and the humanities and social sciences. As examples, economists and climatologists have studied greenhouse gas emission scenarios compatible with climate stabilization goals. Historical records have provided both knowledge about past climate change and vulnerability of societies. Some regions, as the Mediterranean and the Sahel, are particularly vulnerable and already have to cope with water availability, agricultural production and even health issues. A project showed that millet production in West Africa is expected to decline due to warming in a higher proportion than observed in recent decades. Climate change also raises many questions concerning health: combined effects of warming and air quality, impacts on the production of pollens and allergies, impacts on infectious diseases. All these issues lead to a need for approaches integrating different disciplines. Furthermore, climate change impacts many ecosystems which, in turn, affect its evolution. Our experience shows that interdisciplinarity supposes, in order to take shape, the conjunction between programming

  9. New methods of researching healthcare facility users: the nursing workspace

    Directory of Open Access Journals (Sweden)

    Karen Keddy

    2012-10-01

    Full Text Available This study is entitled Embodied Professionalism: The relationship between the physicalnature of nursing work and nursing space. The analysis is based in a critical examination of existing approaches, assumptions, and attitudes in the research literature about who, what, and how to study the person-environment relationship in healthcare facilities. New methods of studying how nurses experience their work, their workplace and the objects in their workspace are needed in order to address important issues of this person-environment relationship. Nursing work is re-conceptualized asembodied professionalism which acknowledges the interconnections between the physical labor ofprofessional nursing work, time, and space. This is a qualitative case study of nursing activities on a surgical unit that are invisible, marginalized, and unaccounted for in the research literature. Instead of studying how nurses’ efficiency and productivity could be increased through design interventions, this study examines the physical nature of nursing work and the physical setting from the nurses’ perspective. Instead of viewing the healthcare facility as solely a place for healing, this approach views the healthcare facility as a place for working. A nurse’s goal can simply be the desire to ‘get the workdone.’ A qualitative research methodology and a mixed method approach is used in this study. The methods include structured interviews, location mapping, photo-documentation, architectural inventories, place-centered behavioral mapping, and focused observations. In order to get a better understanding of how nurses experience their workspace, an image-based visual research method, theexperiential collage, was designed. The findings from using these methods reveal the significant rolethat the physical activities of moving, searching, and recovering play in gaining insights into nurses’ socio-spatial experience of the nursing workspace.

  10. The physics of global climate change: challenges for research

    International Nuclear Information System (INIS)

    Full text: There are major issues in our scientific understanding of the functioning of our planet Earth. The growing atmospheric concentrations of greenhouse gases, changing in surface albedo, changes in distribution and lifetime of clouds, alteration in aerosol properties and distribution, are all key issues in the radiation balance that controls the climate of our planet. Earth is a non linear highly complex system. Since the industrial revolution, concentration of greenhouse gases, in particular carbon dioxide and methane have increase by 30 to 100%. The fraction of infrared radiation trapped in the atmosphere has increased by about 1.6 watts/m2. This additional energy has increased the average temperature by 0.79 degrees centigrade, with certain regions. But, we know very little of the physics, chemistry and biology that controls emissions, sinks and effects in Earth climate. Every week new important scientific findings are published in this area, and models that could predict the future of Earth climate are quite primitive and lack key issues. The hard science of global change is closely associated with socio-economic issues. Humanity have taken the main control role on Earth climate, and the potential for an average increase in temperature of 3 to 5 degrees is large, although there are tentative to limit the average temperature growth to 2 degrees. But even with this ambitious target, Amazonia and the Arctic will probably be much hotter than 3-4 degrees, with important feedbacks in the climate system. The talk will deal with these issues and new research that is needed to increase our knowledge on how the climate of our planet works and which climate we could have in the next decades. (author)

  11. Knowledge Discovery and Data Mining in Iran's Climatic Researches

    Science.gov (United States)

    Karimi, Mostafa

    2013-04-01

    Advances in measurement technology and data collection is the database gets larger. Large databases require powerful tools for analysis data. Iterative process of acquiring knowledge from information obtained from data processing is done in various forms in all scientific fields. However, when the data volume large, and many of the problems the Traditional methods cannot respond. in the recent years, use of databases in various scientific fields, especially atmospheric databases in climatology expanded. in addition, increases in the amount of data generated by the climate models is a challenge for analysis of it for extraction of hidden pattern and knowledge. The approach to this problem has been made in recent years uses the process of knowledge discovery and data mining techniques with the use of the concepts of machine learning, artificial intelligence and expert (professional) systems is overall performance. Data manning is analytically process for manning in massive volume data. The ultimate goal of data mining is access to information and finally knowledge. climatology is a part of science that uses variety and massive volume data. Goal of the climate data manning is Achieve to information from variety and massive atmospheric and non-atmospheric data. in fact, Knowledge Discovery performs these activities in a logical and predetermined and almost automatic process. The goal of this research is study of uses knowledge Discovery and data mining technique in Iranian climate research. For Achieve This goal, study content (descriptive) analysis and classify base method and issue. The result shown that in climatic research of Iran most clustering, k-means and wards applied and in terms of issues precipitation and atmospheric circulation patterns most introduced. Although several studies in geography and climate issues with statistical techniques such as clustering and pattern extraction is done, Due to the nature of statistics and data mining, but cannot say for

  12. MYRRHA. An experimental ADS Facility for Research and Development

    International Nuclear Information System (INIS)

    Full text of publication follows: Since 1998, SCK-CEN in partnership with IBA s.a. and many European research laboratories, is designing a multipurpose ADS for R and D applications MYRRHA - and is conducting an associated R and D support programme. MYRRHA is an Accelerator Driven System (ADS) under development at Mol in Belgium and aiming to serve as a basis for the European experimental ADS to provide protons and neutrons for various R and D applications. It consists of a proton accelerator delivering a 350 MeV*5 mA proton beam to a liquid Pb-Bi spallation target that in turn couples to a Pb-Bi cooled, subcritical fast core. In a first stage, the project focuses mainly on demonstration of the ADS concept, safety research on sub-critical systems and nuclear waste transmutation studies. In a later stage, the device will also be dedicated to research on structural materials, nuclear fuel, liquid metal technology and associated aspects and on sub-critical reactor physics. Subsequently, it will be used as fast spectrum irradiation facility and as radioisotope production facility. Along the above design features, the MYRRHA project team is developing the MYRRHA project as a multipurpose irradiation facility for R and D applications on the basis of an Accelerator Driven System (ADS). The project is intended to fit into the European strategy towards an ADS Demo facility for nuclear waste transmutation as described in the PDS-XADS FP5 Project. As such it should serve the following task catalogue: ADS concept demonstration, Safety studies for ADS, MA transmutation studies, LLFP transmutation studies, Medical radioisotopes, Material research, Fuel research. A first preliminary conceptual design file of MYRRHA was completed by the end of 2001 and has been reviewed by an International Technical Guidance Committee that concluded that there are no show stoppers in the project even thought some topics such as the safety studies and the fuel qualification need to be addressed more

  13. Capsule review of the DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  14. Korean underground research facility (KURF) and its utilization programme

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Pil-Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-03-01

    This report is for developing a research plan for the validation of the Korean disposal system utilizing an underground research facility. During the development of the plan, the schedule of long term R and D program as well as the presumable commercialization time schedule was considered. As the main outputs from the ongoing high-level waste disposal study for 10 years, KAERI will present a Korean reference disposal system as well as the results of the performance safety of the disposal concept. In order to apply the Korean disposal system to the commercial project in the future, in situ validation of the system is a premise. For the validation of the system, the construction of a Korean Underground Research Facility(KURF) is essential. The KURF has the following goals: understanding the inherent underground geological conditions in Korea; verification of the influence of buffer material on the life time of waste canisters and on the groundwater flow; development of the techniques related to the operation of the disposal system; and the validation of performance assessment.

  15. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  16. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    International Nuclear Information System (INIS)

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ∼ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC

  17. 14MeV facility and research in IPPE

    International Nuclear Information System (INIS)

    Review of experimental facility and research, performed at 14MeV incident neutron energy in the Institute of Physics and Power Engineering, are given. These studies cover the next topics: double differential neutron emission cross sections (DDX), neutron-gamma coincidence experiments (n, n'γ) and neutron leakage spectra for spherical assemblies (benchmark). The paper contains description and main parameters of pulsed neutron generator KG-0.3, fast neutron time of flight spectrometer, measuring and data reduction procedures, review of experimental data. Results of experiments are compared with other data; evaluated data files BROND-2, ENDF/B6, JENDL-3; basic theoretical and transport model calculations. (author)

  18. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    Science.gov (United States)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  19. Cosmic Muon Flux Measurements at the Kimballton Underground Research Facility

    CERN Document Server

    Kalousis, L N; Link, J M; Mariani, C; Pelkey, R

    2014-01-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  20. Final remarks - do we need a Global Universal Aging Research and Development (GUARD) facility?

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus E-mail: hohlmann@fit.edu

    2003-12-01

    A small new research facility dedicated to aging studies for gaseous detectors is proposed with the goal of overcoming current shortcomings in this research area. The general framework and a possible path towards such a facility are outlined.

  1. Tendances Carbone no. 82 'A 2030 framework for climate and energy policies: CDC Climat Research's answer'

    International Nuclear Information System (INIS)

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO2 allowances. This issue addresses the following points: To establish a climate and energy policy in the EU in 2030, CDC Climat Research addresses three main recommendations to the European Commission: (1) Establish a binding, single and ambitious CO2 emission reduction target of at least 40% in 2030. (2) Put the EU ETS as the central and non-residual instrument aimed at promoting cost-effective reductions in Europe and other parts of the world. (3) Define a stable, predictable and flexible climate regulation to limit carbon leakage and encourage innovation. Key drivers of the European carbon price this month: - The European Parliament has adopted Back-loading: 1.85 billion EUAs will be sold at auction between now and 2015 instead of 2.75 billion; - Phase 2 compliance: a surplus of 1,742 million tonnes (excluding the aviation sector) including auctions. - Energy Efficiency Directive: 22 of the 27 Member States have forwarded indicative targets for 2020 to the European Commission; these targets will be assessed in early 2014

  2. Overview of a new scenario framework for climate change research

    Science.gov (United States)

    Ebi, K. L.

    2013-12-01

    The scientific community is developing new integrated global, regional, and sectoral scenarios to facilitate interdisciplinary research and assessment to explore the range of possible future climates and related physical changes; the risks these could pose to human and natural systems, particularly how these changes could interact with social, economic, and environmental development pathways; the degree to which mitigation and adaptation policies can avoid and reduce the risks; the costs and benefits of various policy mixes; residual impacts under alternative pathways; and the relationship with sustainable development. Developing new scenarios for use in impacts, adaptation, and mitigation research requires more than emissions of greenhouse gases and resulting climate change. Scenarios also require assumptions about socioeconomic development, including a narrative, and qualitative and quantitative assumptions about development patterns. An insight recently gained is that the magnitude and extent of greenhouse gas emissions is relatively independent of demographic and socioeconomic development; that is, multiple demographic and socioeconomic development pathways can lead to any particular emission scenario. A relatively wealthy world with high population density could have low greenhouse gas emissions because of policies that encourage energy efficiency and sufficient low emission technology. The opposite also is plausible. Therefore, demographic and socioeconomic development pathways can be described separately from the Representative Concentration Pathways and then combined using a matrix architecture into a broader range of scenarios than was possible with the SRES. Shared Socioeconomic Pathways (SSPs) define the state of human and natural societies at a macro scale. To encompass a wide range of possible development pathways, five SSPs are defined along two axes describing worlds with increasing socioeconomic challenges to mitigation (y-axis) and adaptation (x

  3. Engaging the Global South on climate engineering research

    Science.gov (United States)

    Winickoff, David E.; Flegal, Jane A.; Asrat, Asfawossen

    2015-07-01

    The Global South is relatively under-represented in public deliberations about solar radiation management (SRM), a controversial climate engineering concept. This Perspective analyses the outputs of a deliberative exercise about SRM, which took place at the University of California-Berkeley and involved 45 mid-career environmental leaders, 39 of whom were from the Global South. This analysis identifies and discusses four themes from the Berkeley workshop that might inform research and governance in this arena: (1) the 'moral hazard' problem should be reframed to emphasize 'moral responsibility'; (2) climate models of SRM deployment may not be credible as primary inputs to policy because they cannot sufficiently address local concerns such as access to water; (3) small outdoor experiments require some form of international public accountability; and (4) inclusion of actors from the Global South will strengthen both SRM research and governance.

  4. Filling the gaps in SCWR materials research: advanced nuclear corrosion research facilities in Hamilton

    International Nuclear Information System (INIS)

    Research efforts on materials selection and development in support of the design of supercritical water-cooled reactors (SCWRs) have produced a considerable amount of data on corrosion, creep and other related properties. Summaries of the data on corrosion [1] and stress corrosion cracking [2] have recently been produced. As research on the SCWR advances, gaps and limitations in the published data are being identified. In terms of corrosion properties, these gaps can be seen in several areas, including: 1) the test environment, 2) the physical and chemical severity of the tests conducted as compared with likely reactor service/operating conditions, and 3) the test methods used. While some of these gaps can be filled readily using existing facilities, others require the availability of advanced test facilities for specific tests and assessments. In this paper, highlights of the new materials research facilities jointly established in Hamilton by CANMET Materials Technology Laboratory and McMaster University are presented. (author)

  5. Growing Diversity in Space Weather and Climate Change Research

    Science.gov (United States)

    Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.

    2013-12-01

    Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.

  6. Inventory of Dutch National Research on Global Climate Change: Inside and outside the National Research Programme

    International Nuclear Information System (INIS)

    This summary of Dutch research on global climate change was compiled from a survey of the major research organisations in the Netherlands. The scope and structure of the survey and this report were based on a request for information from the World Meteorological Organisation for an intergovernmental meeting on the World Climate Programme (WCP) held (from 14 to 16 April 1993). The WMO request emphasized activities related to the WCP and its associated programmes. To extend the usefulness of the exercise, an attempt has been made to broaden the focus to give additional attention to the Intergovernmental Geosphere-Biosphere Programme (IGBP) and the Human Dimensions Programme (HDP). This was the first attempt to inventory the research projects on global climate change underway in the Netherlands - both inside and outside the National Research Programme. Other surveys on Dutch climate-related research have been conducted. The most extensive effort was a cataloging of publications from climate research in the Netherlands from 1981 to 1991, which was conducted by the Netherlands Royal Academy of Sciences (KNAW). That inventory is being updated to include publications through 1992. The database resulting from this exercise will be a useful tool for organisations sponsoring and conducting global climate change research in their efforts to stimulate cooperation and promote coordination among research groups in the Netherlands and abroad. There are plans to update the inventory in the future and to provide the information to participating Dutch organisations as well as research organisations in other countries. An overview of the current research is provided in Volume 1 with a list of projects

  7. Materials science research at the European Synchrotron Radiation Facility

    CERN Document Server

    Kvick, A

    2003-01-01

    The Materials Science Beamline ID11 at the European Synchrotron Radiation Facility in Grenoble, France is dedicated to research in materials science notably employing diffraction and scattering techniques. Either an in-vacuum undulator with a minimum gap of 5 mm or a 10 kW wiggler giving high-flux monochromatic X-rays generates the synchrotron radiation in the energy range 5-100 keV. The dominant research is in the area of time-resolved diffraction, powder diffraction, stress/strain studies of bulk material, 3D mapping of grains and grain interfaces with a measuring gauge down approx 5x5x50 mu m, and microcrystal diffraction. A variety of CCD detectors are used to give time-resolution down to the millisecond time regime.

  8. Safety and licensing program for the proposed irradiation research facility

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) proposes to replace NRU with a dual-purpose irradiation-research facility (IRF) to test Canada deuterium uranium (CANDU) fuels and materials and to perform materials research using neutrons. The reference IRF concept was estimated to cost $500 million and would require 87 months to complete. Approval of the IRF project is not expected to occur before 1997, and a favorable decision will be influenced by the estimated cost and confidence in the estimate. Accordingly, AECL has initiated a preproject program that includes code validation, analysis, development and testing, safety and licensing, and concept design activities to reduce uncertainties in the reference IRF project cost and schedule, and to develop cost and schedule reductions

  9. Magnetic spectrograph for the Holifield heavy ion research facility

    International Nuclear Information System (INIS)

    The need for a new generation magnetic spectrograph for the Holifield Heavy Ion Research Facility is discussed. The advantages of a magnetic spectrograph for heavy ion research are discussed, as well as some of the types of experiments for which such an instrument is suited. The limitations which the quality of the incident beam, target and spectrograph itself impose on high resolution heavy ion measurements are discussed. Desired features of an ideal new spectrograph are: (1) intrinsic resolving power E/ΔE greater than or equal to 3000; (2) maximum solid angle greater than or equal to 20 msr; (3) dispersion approx. 4-8m; (4) maximum energy interval approx. 30%; and (5) mass-energy product greater than or equal to 200. Various existing and proposed spectrographs are compared with the specifications for a new heavy ion magnet design

  10. Brain Cancer in Workers Employed at a Laboratory Research Facility.

    Directory of Open Access Journals (Sweden)

    James J Collins

    Full Text Available An earlier study of research facility workers found more brain cancer deaths than expected, but no workplace exposures were implicated.Adding four additional years of vital-status follow-up, we reassessed the risk of death from brain cancer in the same workforce, including 5,284 workers employed between 1963, when the facility opened, and 2007. We compared the work histories of the brain cancer decedents in relationship to when they died and their ages at death.As in most other studies of laboratory and research workers, we found low rates of total mortality, total cancers, accidents, suicides, and chronic conditions such as heart disease and diabetes. We found no new brain cancer deaths in the four years of additional follow-up. Our best estimate of the brain cancer standardized mortality ratio (SMR was 1.32 (95% confidence interval [95% CI] 0.66-2.37, but the SMR might have been as high as 1.69. Deaths from benign brain tumors and other non-malignant diseases of the nervous system were at or below expected levels.With the addition of four more years of follow-up and in the absence of any new brain cancers, the updated estimate of the risk of brain cancer death is smaller than in the original study. There was no consistent pattern among the work histories of decedents that indicated a common causative exposure.

  11. Introduction of hot cell facility in research center Rez - Poster

    International Nuclear Information System (INIS)

    This poster presents the hot cell facility which is being constructed as part of the SUSEN project at the Rez research center (Czech Republic). Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (nano-indenter with nano-scratch tester and scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. A scheme shows the equipment of each cell. This hot laboratory will be able to cover all the process to study radioactive materials: receiving the material, the preparation of the samples, mechanical testing and microstructure observation. Our hot cells will be close to the research nuclear reactor LVR-15 and new irradiation facility (high irradiation by cobalt source) is planned to be built within the SUSEN project

  12. CSU's MWV Observatory: A Facility for Research, Education and Outreach

    Science.gov (United States)

    Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

    2014-01-01

    The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

  13. Influences of Climate Warming and Facility Management on Continuous Permafrost at Matterhorn Glacier Paradise, Zermatt, Swiss Alps.

    Science.gov (United States)

    King, Lorenz; Duishonakunov, Murataly; Imbery, Stephan

    2014-05-01

    In many parts of the Alps, hazardous bedrock instabilities occur more often during the past 30 years. In many cases, permafrost degradation played a central role for instability (e.g. in 1987 the Val Pola rockslide, Italy). At other events, the role of permafrost degradation is more complex or unpredictable (e.g. in 1991 the Randa rockfall, Wallis, Swiss Alps). However, instabilities in perennially frozen bedrock may also be provoked by human influence. This is exemplarily shown at touristic facilities in the Alps. Human impact on permafrost is often underestimated, or even carelessly taken into account. The tourist resort Zermatt with more than 1.8 million overnight stays per year is located at 1600 m a.s.l. and is surrounded by high mountain ranges that often reach above 4000 m. The dry and sunny climate results in a high glacier equilibrium line thus leaving space for vast non-glaciated permafrost terrain. Numerous tourist facilities provide excellent logistics and easy access to permafrost sites, and the region is thus especially suitable for permafrost research. The infrastructure erected on permafrost consists of hotels, restaurants and mountain huts, station buildings of railways, funiculars, ski lifts and installations for artificial snowing the ski-runs. Some problems at these constructions due to permafrost degradation are shown. At the Matterhorn Glacier Paradise station at an altitude of 3820 meters, todays MAAT ranges between -6 °C and -8°C. During the construction of a tunnel in 1981 bedrock temperatures were at -12°C. Over the past 30 years, these bedrock temperatures have risen to -3 to -2°C, due to the heat brought into the tunnel by facilities and more than 490,000 visitors per year. In an elevator shaft, the temperature temporarily even rose above freezing point. Several new construction sites in continuous permafrost are described and new research data is presented. Another interesting site for permafrost and ice studies at Matterhorn

  14. Anti- and Hypermatter Research at the Facility for Antiproton and Ion Research FAIR

    Science.gov (United States)

    Steinheimer, J.; Xu, Z.; Rau, P.; Sturm, C.; Stöcker, H.

    2013-07-01

    Within the next six years, the Facility for Antiproton and Ion Research (FAIR) is built adjacent to the existing accelerator complex of the GSI Helmholtz Center for Heavy Ion Research at Darmstadt, Germany. Thus, the current research goals and the technical possibilities are substantially expanded. With its worldwide unique accelerator and experimental facilities, FAIR will provide a wide range of unprecedented fore-front research in the fields of hadron, nuclear, atomic, plasma physics and applied sciences which are summarized in this article. As an example this article presents research efforts on strangeness at FAIR using heavy ion collisions, exotic nuclei from fragmentation and antiprotons to tackle various topics in this area. In particular, the creation of hypernuclei, metastable exotic multi-hypernuclear objects (MEMOs) and antimatter is investigated.

  15. Research frontiers in the economics of climate change

    International Nuclear Information System (INIS)

    Academic and policy debates over climate change risks and policies have stimulated economic research in a variety of fields. In this article eight overlapping areas of current research in which further effort is particularly warranted are briefly discussed. These areas include decision criteria for policy; risk assessment and adaptation; uncertainty and learning; abatement cost and the innovation and diffusion of technology; and the credibility of policies and international agreements. Further analysis in these areas not only will advance academic understanding but also will provide insights of considerable importance to policymakers. 120 refs

  16. Thermal facility for BNCT in RA-1 Argentine research reactor

    International Nuclear Information System (INIS)

    Full text: A thermal facility for BNCT experiments is being developed in an Argentine Research Reactor: RA-1 'Enrico Fermi'. RA-1 research nuclear reactor is working at Constituyentes Atomic Center, near Buenos Aires, and started operations in 1958. It worked at several power levels, up to 120 k W. Today, RA-1 is licensed to work at 40 k W. RA-1 was used to produce radioisotopes in the early 60's, and today gives irradiation services to test materials, to calibrate detectors and activation analysis. RA-1 users are CNEA researchers, Nuclear Regulatory Authority staff and private laboratories. Boron Neutron Capture Therapy (BNCT) is a method to fight against cancer. It consists to irradiate cancer tumors using thermal neutrons. The tumor tissue should include a dose of a boron solution. The Boron irradiation produces the following nuclear reactions: n + B10→ α + Li7 + γ. Being the α particle a radiation with short range, but high destructive energy, the tumor cells are destroyed. The neutron flux should be of 109 n/cm2seg, and the gamma dose lower than 0.48 s V/h. This method is oriented to treat brain tumors. Taking in account that the brain tumors usually are several centimeters deep in the head, to get thermal neutrons in the tumor is convenient to irradiate the patient using epithermal neutrons. moderation in the cells of the brain will permit to get more thermal neutrons in the tumor. In CNEA BNCT program there is in construction an epithermal clinical facility in the RA-6, a 500 k W research reactor that is at Bariloche Atomic Center. To perform some experiments for instance to test the boron compounds, RA-1 is used. In this experiments little animals like hamsters or bottles with cultivated cells are used, for that reasons thermal neutrons are used. The project in RA-1 consists in several stages. As the first stage a preliminary thermal facility was built. Irradiation times of 45-60 minutes were estimated, at power operation levels of 40 k W. Several

  17. Introduction of hot cell facility in research center Rez

    International Nuclear Information System (INIS)

    The purpose of the paper is to present the hot cell facility which is being constructed as part of the project SUSEN at the Rez research center (Czech Republic). The Sustainable Energy Project (SUSEN) is implemented as a regional Research/Development center in Priority Axis 2 and its objective is to act as a relevant research partner for cooperation with other European research centers. The project is fully funded by the European Union. Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (micro-hardness and nano-hardness probes, scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. The transportation system for samples and materials is based on a mobile cask with an airtight connection and vertical access. The installation is designed to work with an activity level up to 300 TBq and to receive materials from decommissioned power reactors as well as highly irradiated materials for fusion applications

  18. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 1014 n/cm2/sec and a liquid D2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  19. Climate adaptation - 5 key research themes; Denmark; Klimatilpasning - 5 centrale forskningstemaer

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Bent; Binnerup, S.; Bijl, L. van der; Villholth, K.G.; Drews, M.; Strand, I.F.; Henrichs, T.; Larsen, Niels; Timmermann, T.; Moseholm, L.

    2009-06-15

    The report proposes five key research themes under the heading 'Future climate and climate adaptation' which can support the Danish climate adaptation efforts. These themes underpin climate adaptation in the light of research needs identified by the research environments and sectors under the government's strategy on adaptation to climate change in Denmark from March 2008. The paper has been prepared within the framework of RESEARCH2015-proposal by the Ministry of Science, Technology and Innovation in order to bring about the knowledge and tools that are demanded by sectors and authorities to implement the government's climate adaptation strategy. This concept paper for research themes is a thorough, holistic and inter-sectoral suggestion for future research priorities in climate adaptation with anchoring in both the research community as well as in the political-administrative system. The five key themes are; 1. Models and climate adaptation; 2. Communities and climate adaptation; 3. Construction and climate adaptation; 4. Landscape and climate adaptation; 5. Climate adaptation in the coastal zone. The overall research needs over a 5 year period is estimated at 700 million DKK, of which 85 million DKK yearly can be estimated to be financed primarily through national basic funds and research council funds. Research is assumed to be coupled to external financing, for which the EU's 7th Framework Program and the Nordic excellence and innovation program in the energy, climate and environment will be significant sources.

  20. Scientific workflow and support for high resolution global climate modeling at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, V.; Mayer, B.; Wang, F.; Hack, J.; McKenna, D.; Hartman-Baker, R.

    2012-04-01

    The Oak Ridge Leadership Computing Facility (OLCF) facilitates the execution of computational experiments that require tens of millions of CPU hours (typically using thousands of processors simultaneously) while generating hundreds of terabytes of data. A set of ultra high resolution climate experiments in progress, using the Community Earth System Model (CESM), will produce over 35,000 files, ranging in sizes from 21 MB to 110 GB each. The execution of the experiments will require nearly 70 Million CPU hours on the Jaguar and Titan supercomputers at OLCF. The total volume of the output from these climate modeling experiments will be in excess of 300 TB. This model output must then be archived, analyzed, distributed to the project partners in a timely manner, and also made available more broadly. Meeting this challenge would require efficient movement of the data, staging the simulation output to a large and fast file system that provides high volume access to other computational systems used to analyze the data and synthesize results. This file system also needs to be accessible via high speed networks to an archival system that can provide long term reliable storage. Ideally this archival system is itself directly available to other systems that can be used to host services making the data and analysis available to the participants in the distributed research project and to the broader climate community. The various resources available at the OLCF now support this workflow. The available systems include the new Jaguar Cray XK6 2.63 petaflops (estimated) supercomputer, the 10 PB Spider center-wide parallel file system, the Lens/EVEREST analysis and visualization system, the HPSS archival storage system, the Earth System Grid (ESG), and the ORNL Climate Data Server (CDS). The ESG features federated services, search & discovery, extensive data handling capabilities, deep storage access, and Live Access Server (LAS) integration. The scientific workflow enabled on

  1. Status of heavy irradiation research facilities of nuclear engineering research laboratory Tokyo University

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Hiromi; Iwai, Takeo; Omata, Takao [Tokyo Univ. (Japan)

    2001-02-01

    The system consists of 3.75 MV single-end type Van de Graaff, 1 MV tandem type tandetron, and 7 beam-lines. The subjects of the joint project research program in 1999 are: 1) High-energy ion irradiation effects on electron behavior in low order structures. 2) Collision experiments on ultra-high speed micro-particles and development on space dust trapping-analyzing facilities. Research issues in the first half year in 1999 are categorized as: 1) Material research on fusion facilities (4 issues). 2) Irradiation of materials and its improvement (6 issues). 3) Radiation physics and chemistry (2 issues including the one project research). 4) Measurement and application of quantum beam (1 issue). 5) Production and application of micro-beam (1 issue). 6) Experiments on micro-particle production and measurement (1 issue of the project research). 7) Utilization of positron. Research and development for advanced accelerator experiments are as follows: 1) Production and application of heavy ion micro-beam. 2) Acceleration and application of micro-particles. 3) Electron extinction under ion beam irradiation. 4) Material researches with a combination of femto-second laser and pulse ion beams. Facilities have been operated without the official financial support after 1997. Therefore, the operation is continued by virtue of user's contributions. The overage (16 years old) due to salt damage is another crucial problem. The operation is interrupted some times in hot summer due to high humidity. (Y. Tanaka)

  2. Reactor safety research program at Thai test facility

    International Nuclear Information System (INIS)

    Thermal-hydraulics, Hydrogen, Aerosol and Iodine (Thai) aims at providing experimental database for the verification and validation of Lumped Parameter (Lp) and Computational Fluid Dynamics (CFD) codes with 3-dimensional capabilities. Since its construction in 2000, Thai facility has been engaged in the field of reactor safety in the frame of various national (Thai I: 2000-2003, Thai II: 2003-2006, Thai III: 2006-2009, Thai IV: 2009-2012) and international programs (OECD-Thai: 2007-2009). Additionally, experimental data has been provided for several international standard problems (ISP 41, 46, 47 and 49) code validation exercises. Experiments performed in Thai facility cover a wide spectrum or reactor safety relevant issues by investigating separate and coupled-phenomenon experiments under design basis accident and severe-accident-typical scenarios. Experiments are performed in close co-operation with AREVA Erlangen and Grs Koln. Experimental configuration and the operating conditions in Thai vessel typical of those for PWR, BWR and High Temperature Gas Cooled Reactor can be produced thanks to its modular structure, appropriate feeding/generation devices for gases (H2, He, Steam, N2, etc.), Aerosol (inert and hygroscopic), Iodine Radiotracer, and advanced instrumentation. Experiments also cover investigation of passive safety systems, e.g. commercial Par for H2 mitigation in phenomenon orientated experiments to enhance the confidence in the performance of passive mitigation systems during severe accident scenarios and also to establish a common database accessible by a large research community to support further development and validation of the Lp and CFD codes with 3-dimensional capabilities. This paper summarizes experimental investigations made in Thai test facility to investigate issues related to the thermal-hydraulics, fission product (aerosol, iodine) transport and their interaction with containment walls (deposition, resuspension) and passive safety

  3. Initial Results from the Survey of Organizational Research Climates (SOuRCe) in the U.S. Department of Veterans Affairs Healthcare System

    Science.gov (United States)

    Martinson, Brian C.; Nelson, David; Hagel-Campbell, Emily; Mohr, David; Charns, Martin P.; Bangerter, Ann; Thrush, Carol R.; Ghilardi, Joseph R.; Bloomfield, Hanna; Owen, Richard; Wells, James A.

    2016-01-01

    Background In service to its core mission of improving the health and well-being of veterans, Veterans Affairs (VA) leadership is committed to supporting research best practices in the VA. Recognizing that the behavior of researchers is influenced by the organizational climates in which they work, efforts to assess the integrity of research climates and share such information with research leadership in VA may be one way to support research best practices. The Survey of Organizational Research Climate (SOuRCe) is the first validated survey instrument specifically designed to assess the organizational climate of research integrity in academic research organizations. The current study reports on an initiative to use the SOuRCe in VA facilities to characterize the organizational research climates and pilot test the effectiveness of using SOuRCe data as a reporting and feedback intervention tool. Methods We administered the SOuRCe using a cross-sectional, online survey, with mailed follow-up to non-responders, of research-engaged employees in the research services of a random selection of 42 VA facilities (e.g., Hospitals/Stations) believed to employ 20 or more research staff. We attained a 51% participation rate, yielding more than 5,200 usable surveys. Results We found a general consistency in organizational research climates across a variety of sub-groups in this random sample of research services in the VA. We also observed similar SOuRCe scale score means, relative rankings of these scales and their internal reliability, in this VA-based sample as we have previously documented in more traditional academic research settings. Results also showed more substantial variability in research climate scores within than between facilities in the VA research service as reflected in meaningful subgroup differences. These findings suggest that the SOuRCe is suitable as an instrument for assessing the research integrity climates in VA and that the tool has similar patterns of

  4. Initial Results from the Survey of Organizational Research Climates (SOuRCe in the U.S. Department of Veterans Affairs Healthcare System.

    Directory of Open Access Journals (Sweden)

    Brian C Martinson

    Full Text Available In service to its core mission of improving the health and well-being of veterans, Veterans Affairs (VA leadership is committed to supporting research best practices in the VA. Recognizing that the behavior of researchers is influenced by the organizational climates in which they work, efforts to assess the integrity of research climates and share such information with research leadership in VA may be one way to support research best practices. The Survey of Organizational Research Climate (SOuRCe is the first validated survey instrument specifically designed to assess the organizational climate of research integrity in academic research organizations. The current study reports on an initiative to use the SOuRCe in VA facilities to characterize the organizational research climates and pilot test the effectiveness of using SOuRCe data as a reporting and feedback intervention tool.We administered the SOuRCe using a cross-sectional, online survey, with mailed follow-up to non-responders, of research-engaged employees in the research services of a random selection of 42 VA facilities (e.g., Hospitals/Stations believed to employ 20 or more research staff. We attained a 51% participation rate, yielding more than 5,200 usable surveys.We found a general consistency in organizational research climates across a variety of sub-groups in this random sample of research services in the VA. We also observed similar SOuRCe scale score means, relative rankings of these scales and their internal reliability, in this VA-based sample as we have previously documented in more traditional academic research settings. Results also showed more substantial variability in research climate scores within than between facilities in the VA research service as reflected in meaningful subgroup differences. These findings suggest that the SOuRCe is suitable as an instrument for assessing the research integrity climates in VA and that the tool has similar patterns of results that

  5. Research and Development Program for the PALS Facility

    International Nuclear Information System (INIS)

    Status of the PALS laser system is given and its upgrades implemented up to now as well as those under preparation are also described. During the first year run the PALS facility has proved to be a reliable tool for generating plasmas by using infrared (1315 nm) 0,4-ns laser pulses, with the energy adjustable over two orders of magnitude ( 10 J - 1 kJ). The current PALS research program concentrates along the following two main lines: development and application of (1) laser driven x-ray sources, including the x-ray lasers, and (2) of laser driven ion sources. Simultaneously, new methods of x-ray diagnostics, of soft x-ray detection and x-ray spectroscopy in particular, are being developed and implemented. During the period September 2000 - June 2001, most of the experiments at PALS have been performed within the EC th FP. Towards the end of this period an x-ray laser on Zn (λ =21.2 nm) has been successfully put into operation and used for interferometric measurements in cooperation with the French colleagues. More detailed information about some of the results briefly summarized in the paper is presented at the Symposium via separate oral papers and posters, too. Experience of the first year of operation is essential also for further upgrading of the PALS facility towards higher power outputs. (author)

  6. The development of a Space Shuttle Research Animal Holding Facility

    Science.gov (United States)

    Jagow, R. B.

    1980-01-01

    The ability to maintain the well being of experiment animals is of primary importance to the successful attainment of life sciences flight experiment goals. To assist scientists in the conduct of life sciences flight experiments, a highly versatile Research Animal Holding Facility (RAHF) is being developed for use on Space Shuttle/Spacelab missions. This paper describes the design of the RAHF system, which in addition to providing general housing for various animal species, approximating the environment found in ground based facilities, is designed to minimize disturbances of the specimens by vehicle and mission operations. Life-sustaining capabilities such as metabolic support and environmental control are provided. RAHF is reusable and is a modular concept to accommodate animals of different sizes. The basic RAHF system will accommodate a combination of 24 500-g rats or 144 mice or a mixed number of rats and mice. An alternative design accommodates four squirrel monkeys. The entire RAHF system is housed in a single ESA rack. The animal cages are in drawers which are removable for easy access to the animals. Each cage contains a waste management system, a feeding system and a watering system all of which will operate in zero or one gravity.

  7. Research Studies Performed Using the Cairo Fourier Diffractometer Facility

    Science.gov (United States)

    Maayouf, R. M. A.

    2013-03-01

    This report represents the results of research studies performed using the Cairo Fourier diffractometer facility (CFDF), within 10 years after it was installed and put into operation at the beginning of 1996. The main components of the CFDF were supplied by the IAEA according to the technical assistance project EGY/1/022. Plenty of measurements were performed, since then; yielding several publications, both in local and international scientific periodicals; and 8 M.Sc. & Ph.D. degrees from Egyptian Universities. Besides, a new approach for the analysis of the neutron spectra measured using the CFDF; applying especially designed interface card, along with its proper software program, instead of the reverse time of flight (RTOF), Finnish make, analyzer originally attached to the facility. It has been verified that the new approach cnn successfully replace the RTOF analyzer; significantly decreasing the time of measurement; and saving the reactor's operation time. A special fault diagnostic system program was developed and tested for caring and handling the possible failures of the CFDF. Besides the new developments required for the CFDF for industrial applications in wide scale, are also considered.

  8. High magnetic field facilities and research at Hefei

    International Nuclear Information System (INIS)

    The project for constructing a 20 T hybrid magnet system at the Institute of Plasma Physics, Academia Sinica, was started in 1984 and the hybrid magnet consisting of a NbTi superconducting coil and a water-cooled Bitter coil with 32 mm working bore was first tested in May 1992 producing a steady field of 20.2 T. This installation is now available for scientific experiments. The laboratory also provides water-cooled magnets with fields up to 14 T at two magnet sites and a NbTi superconducting magnet capable of producing 7.5 T in a 10 cm bore for the users. Studies on high Tc superconductors, magnetic materials, low-dimensional organic conductors, etc., have been conducted in high fields. In the paper the laboratory facilities together with some results of research obtained are reported. ((orig.))

  9. The NIST NBSR and Cold Neutron Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rush, J.J. [National Inst. of Standards and Technology, Guthersburg, MD (United States)

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  10. Personal neutron dosimetry at a research reactor facility

    International Nuclear Information System (INIS)

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve. (author)

  11. The International Space University's variable gravity research facility design

    Science.gov (United States)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1991-01-01

    A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

  12. Radiation protection planning for decommissioning of research reactor facilities

    International Nuclear Information System (INIS)

    The MR reactor at the Russian Research Centre Kurchatov Institute (RRCKI), Moscow was a 50 MW multipurpose material testing and research reactor equipped with nine experimental loop facilities to test prototype fuel for various nuclear power reactors being developed. The reactor was shut down in 1993 and de-fuelled. The experimental loops are located in basement rooms around the reactor. The nature of the research into the characteristics of fuel design and coolant chemistry resulted in fission products and activation products in the test loop equipment. Decommissioning of the loops therefore presents a number of challenges. In addition the city of Moscow has expanded such that the RRC KI is now surrounded by housing which had to be taken into account in the radiological protection planning. This paper describes the techniques proposed to undertake the dismantling operations in order to minimise the radiation exposure to workers and members of the public. Estimates have been made of the worker doses which could be incurred during the dismantling process and the environmental impacts which could occur. These are demonstrated to be as low as reasonably achievable. The work was funded by the UK Department of Business Enterprise and Regulatory Reform (DBERR) (formerly the Department of Trade and Industry) under the Nuclear Safety Programme (NSP) set up to address nuclear safety issues in the Former Soviet Union. (author)

  13. Radiation protection planning for decommissioning of research reactor facilities

    International Nuclear Information System (INIS)

    The MR reactor at the Russian Research Centre Kurchatov Institute (RRCKI), Moscow was a 50 MW multipurpose material testing and research reactor equipped with nine experimental loop facilities to test prototype fuel for various nuclear power reactors being developed. The reactor was shut down in 1993 and defuelled. The experimental loops are located in basement rooms around the reactor. The nature of the research into the characteristics of fuel design and coolant chemistry resulted in fission products and activation products in the test loop equipment. Decommissioning of the loops therefore presents a number of challenges. In addition the city of Moscow has expanded such that the RRC KI is now surrounded by housing which had to be taken into account in the radiological protection planning. This paper describes the techniques proposed to undertake the dismantling operations in order to minimise the radiation exposure to workers and members of the public. Estimates have been made of the worker doses which could be incurred during the dismantling process and the environmental impacts which could occur. These are demonstrated to be as low as reasonably achievable. The work was funded by the UK Department of Business Enterprise and Regulatory Reform (DBERR) (formerly the Department of Trade and Industry) under the Nuclear Safety Programme (NSP) set up to address nuclear safety issues in the Former Soviet Union. (author)

  14. Jordan Research and Training Reactor (JRTR) Utilization Facilities

    International Nuclear Information System (INIS)

    Jordan Research and Training Reactor (JRTR) is a 5 MW light water open pool multipurpose reactor that serves as the focal point for Jordan National Nuclear Centre, and is designed to be utilized in three main areas: Education and training, nuclear research, and radioisotopes production and other commercial and industrial services. The reactor core is composed of 18 fuel assemblies, MTR plate type 19.75% enriched uranium silicide (U3Si2) in aluminium matrix, and is reflected on all sides by beryllium and graphite. The reactor power is upgradable to 10 MW with a maximum thermal flux of 1.45×1014 cm-2s-1, and is controlled by a Hafnium control absorber rod and B4C shutdown rod. The reactor is designed to include laboratories and classrooms that will support the establishment of a nuclear reactor school for educating and training students in disciplines like nuclear engineering, reactor physics, radiochemistry, nuclear technology, radiation protection, and other related scientific fields where classroom instruction and laboratory experiments will be related in a very practical and realistic manner to the actual operation of the reactor. JRTR is designed to support advanced nuclear research as well as commercial and industrial services, which can be preformed utilizing any of its 35 experimental facilities. (author)

  15. Climate research in the former Soviet Union. FASAC: Foreign Applied Sciences Assessment Center technical assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, R.G.; Baer, F.; Ellsaesser, H.W.; Harshvardhan; Hoffert, M.I.; Randall, D.A.

    1993-09-01

    This report assesses the state of the art in several areas of climate research in the former Soviet Union. This assessment was performed by a group of six internationally recognized US experts in related fields. The areas chosen for review are: large-scale circulation processes in the atmosphere and oceans; atmospheric radiative processes; cloud formation processes; climate effects of natural atmospheric disturbances; and the carbon cycle, paleoclimates, and general circulation model validation. The study found an active research community in each of the above areas. Overall, the quality of climate research in the former Soviet Union is mixed, although the best Soviet work is as good as the best corresponding work in the West. The best Soviet efforts have principally been in theoretical studies or data analysis. However, an apparent lack of access to modern computing facilities has severely hampered the Soviet research. Most of the issues considered in the Soviet literature are known, and have been discussed in the Western literature, although some extraordinary research in paleoclimatology was noted. Little unusual and exceptionally creative material was found in the other areas during the study period (1985 through 1992). Scientists in the former Soviet Union have closely followed the Western literature and technology. Given their strengths in theoretical and analytical methods, as well as their possession of simplified versions of detailed computer models being used in the West, researchers in the former Soviet Union have the potential to make significant contributions if supercomputers, workstations, and software become available. However, given the current state of the economy in the former Soviet Union, it is not clear that the computer gap will be bridged in the foreseeable future.

  16. Irradiation facilities for materials research: IFMIF and small scale installations

    International Nuclear Information System (INIS)

    The research of advance materials in nuclear fields such as new fission reactors (Generation-IV), Accelerator Driven Systems for Transmutation of Radioactive Wastes and Nuclear Fusion, is becoming very much common in the types of low activation and radiation resistant Materials. Ferritic-Martensitic Steels (based in 9-12 Cr) with or without Oxide Dispersion Techniques (Ytria Nanoparticles), Composites materials are becoming the new generation to answer requirements of high temperature, high radiation resistance of structural materials. Special dedication is appearing in general research programmes to this area of Materials. The understanding of their final performance needs a wider knowledge of the mechanisms of radiation damage in these materials from the atomistic scale to the macroscopic responses. New extensive campaigns are being funded to irradiate from simple elements to model alloys and finally the complex materials themselves. That sequence and its state of art will be presented One clear technique for that understanding is the Multi scale Modelling which includes simulation techniques from quantum mechanics, molecular dynamics, defects diffusion, mesoscopic modelling and finally the macroscopic constitutive relations for macroscopic analysis. However, in each one of these steps is necessary a systematic and well established program of experiments that combines the irradiation and the very detailed analysis with techniques such as Transmission Electron Microscope, Positron Annihilation, SIMS, Atom Probe, Nanoindebntation. A key aspect that wants to be presented in this work is the state of art and discussion of Irradiation Facilities for Materials studies. Those facilities goes from ion implantation sources, small accelerator, Experimental Reactors such High Flux Reactor, sophisticated Triple Beams Sources as JANNUS in France to generate at the same time displacements-hydrogen-helium, and projected very large neutron installation such as IFMIF. The role to

  17. Research Advances of Impacts of Climate Changes on Crop Climatic Adaptability

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Agriculture received most direct influences from climate changes. Because of climate changes, agricultural climate resources changed and thus influenced climate adaptability of agricultural products. The growth and output of crops were finally affected. The calculation method and application of agricultural products in recent years were summarized. Several questions about the response of agricultural crops to climate elements were proposed for attention.

  18. Langley Research Center Utility Risk from Future Climate Change

    Science.gov (United States)

    De Young, Russell J.; Ganoe, Rene

    2015-01-01

    The successful operation of NASA Langley Research Center (LaRC) depends on services provided by several public utility companies. These include Newport News Waterworks, Dominion Virginia Power, Virginia Natural Gas and Hampton Roads Sanitation District. LaRC's plan to respond to future climate change should take into account how these companies plan to avoid interruption of services while minimizing cost to the customers. This report summarizes our findings from publicly available documents on how each company plans to respond. This will form the basis for future planning for the Center. Our preliminary findings show that flooding and severe storms could interrupt service from the Waterworks and Sanitation District but the potential is low due to plans in place to address climate change on their system. Virginia Natural Gas supplies energy to produce steam but most current steam comes from the Hampton trash burning plant, thus interruption risk is low. Dominion Virginia Power does not address climate change impacts on their system in their public reports. The potential interruption risk is considered to be medium. The Hampton Roads Sanitation District is projecting a major upgrade of their system to mitigate clean water inflow and infiltration. This will reduce infiltration and avoid overloading the pump stations and treatment plants.

  19. 48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.

    Science.gov (United States)

    2010-10-01

    ... research facilities acquired by educational institutions. 235.015-70 Section 235.015-70 Federal Acquisition... CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities acquired by educational institutions. (a) Definitions. As used in this subsection— (1) Research...

  20. Multi-Specimen Variable-G Facility for Life and Microgravity Sciences Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-specimen Variable-G Facility (MVF) is a single locker sized centrifuge facility for life and microgravity sciences research on the International Space...

  1. Engine component instrumentation development facility at NASA Lewis Research Center

    Science.gov (United States)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  2. Anomalous radon concentration in a nuclear research facility

    International Nuclear Information System (INIS)

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m-3. The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m-3, manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)

  3. Tritium research and technology facilities at the JRC-Ispra

    International Nuclear Information System (INIS)

    A set of experiments which are of prominent interest for the development of nuclear fusion technology in Europe are planned by the JRC-Ispra for the near future, in the frame of experimental activities to be performed in ETHEL, the European Tritium Handling Experimental Laboratory under construction at the Ispra site. These experiments already included for the most part as JRC-Task Action Sheets in the 1989-1991 European Technology Programme Actions will initiate in ETHEL on a fully active laboratory scale starting mid-1991. They will concern the following research areas: Recycling of tritium from first wall materials; Tritium recovery from water cooled Pb-17Li blankets; Detritiation of ventilation atmospheres; Plasma exhaust processing; Tritiazed waste management. In view of fully active tritium experiments in ETHEL and to obtain information of the basic processes involved, since 1985 preparatory experimental studies are being performed at the JRC-Ispra laboratories using hydrogen and deuterium. Furthermore, always with regard to ETHEL experiments, particular attention is given to possible technical and managerial problems which potentially may arise in this context. To identify at an early stage such problems a questionnaire has been developed and distributed to researchers in conjunction with an ETHEL information packet. The questionnaire demands information regarding the scope, design and operation of the intended experiment as well as planning and required support to be supplied by ETHEL. A brief description of experimental preparatory studies and future tritium handling experiments in ETHEL as well of the ETHEL facility is here presented. (orig.)

  4. Anomalous radon concentration in a nuclear research facility

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Pena, P., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Radon monitoring in more than 60 selected points were part of surveillance radiation activities in the nuclear center of Mexico; three major facilities were inspected, the TRIGA Mark III research reactor, the Tandem Van de Graaff Accelerator and the Pelletron electron Accelerator. During a major maintenance activities in the research reactor, the air extraction system was not functioning for more than a month causing of a radon build up exhaled from the massive concrete of the building, reaching concentrations in some places up to 2.1 kb m{sup -3}. The irradiation room at the Tandem Accelerator presented high radon concentrations up to nearly 5 kb m{sup -3}, manly in the trenches were pipes and electric wires are located, the radon source was identified as originated from small caves under the floor. Low radon concentrations were found inside a similar building where a Pelletron accelerator is located. The reasons for the abnormal radon concentrations and the mitigation actions to remove any risk for the worker are discussed in detail in this paper. (author)

  5. Tracking Middle Grades Climate Data to Inform School Change. REL West Research Digest

    Science.gov (United States)

    Regional Educational Laboratory West, 2015

    2015-01-01

    A growing body of research shows that positive school climate is a key lever for students' academic and social development and success. This research digest shows how an alliance of California schools and districts, school climate experts, and state education agency personnel have teamed up to use school climate data to drive a continuous cycle of…

  6. The impact of SciDAC on US climate change research and the IPCC AR4

    International Nuclear Information System (INIS)

    SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change

  7. Inventory of Dutch National Research on Global Climate Change: Inside and outside the National Research Programme

    International Nuclear Information System (INIS)

    This report contains brief descriptions of research projects in the field of global climate change, performed both within and outside the Dutch National Research Programme on Global Air Pollution and Climate Change (NRP). The descriptions result from a survey of the major research institutions in The Netherlands, conducted by two consultancies (Science and Policy Associates, SPA and Holland Consulting Group, HCG) at the request of the NRP. The inventory had to be completed within a relatively brief period; it is thus unavoidable that one or more projects may sometimes contain inaccuracies. Taken as a whole, this report presents a good picture of the Dutch research activities in this area. The scope and structure of this survey and the contents of this report are based on a request for information from the World Meteorological Organization (WMO) for an intergovernmental meeting on the World Climate Programme (WCP), held on 14-16 April 1993. The WMO request emphasised activities related to the WCP and its associated programmes. The database resulting from this exercise will be a useful tool for organisations which sponsor and conduct research into global climate change in their efforts to stimulate cooperation and to promote coordination between the research groups in The Netherlands and abroad. There are plans to update the inventory in the future and to provide the information to participating organisations in The Netherlands, as well as to research organisations in other countries. An overview of the current research is provided in Volume 1, a list of projects being provided in Annex 3. The projects are presented according to the themes and subthemes which are used in the NRP

  8. An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities

    Science.gov (United States)

    Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

    1971-01-01

    The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

  9. A proposed irradiation-research facility to replace the NRU reactor

    International Nuclear Information System (INIS)

    This report describes the replacement of the National Research Universal (NRU) reactor with a dual purpose irradiation research facility to test CANDU fuels and materials, and to perform materials research using neutrons

  10. Applied research and service activities at the University of Missouri Research Reactor Facility (MURR)

    International Nuclear Information System (INIS)

    The University Of Missouri operates MURR to provide an intense source of neutron and gamma radiation for research and applications by experimenters from its four campuses and by experimenters from other universities, government and industry. The 10 MW reactor, which has been operating an average of 155 hours per week for the past eight years, produces thermal neutron fluxes up to 6-7x1014 n/cm2-s in the central flux trap and beamport source fluxes of up to 1.2x1014 n/cm2-s. The mission of the reactor facility, to promote research, education and service, is the same as the overall mission of the university and therefore, applied research and service supported by industrial firms have been welcomed. The university recognized after a few years of reactor operation that in order to build utilization, it would be necessary to develop in-house research programs including people, equipment and activity so that potential users could more easily and quickly obtain the results needed. Nine research areas have been developed to create a broadly based program to support the level of activity needed to justify the cost of operating the facility. Applied research and service generate financial support for about one-half of the annual budget. The applied and service programs provide strong motivation for university/industry association in addition to the income generated. (author)

  11. A proposal for a new scenario framework to support research and assessment in different climate research communities

    NARCIS (Netherlands)

    Vuuren, D.P. van; Riahi, K.; Moss, R.; Edmonds, J.; Thomson, A.; Nakicenovic, N.; Kram, T.; Berkhout, F.; Swart, R.; Janetos, A.; Rose, S.K.; Arnell, N.

    2012-01-01

    In this paper, we propose a scenario framework that could provide a scenario " thread" through the different climate research communities (climate change - vulnerability, impact, and adaptation - and mitigation) in order to support assessment of mitigation and adaptation strategies and climate impac

  12. A proposal for a new scenario framework to support research and assessment in different climate research communities

    NARCIS (Netherlands)

    Vuuren, van D.P.; Riahi, K.; Moss, R.; Edmonds, J.; Thomson, A.; Nakicenovic, N.; Kram, T.; Berkhout, F.; Swart, R.J.; Janetos, A.; Rose, S.K.; Arnell, N.

    2012-01-01

    In this paper, we propose a scenario framework that could provide a scenario "thread" through the different climate research communities (climate change - vulnerability, impact, and adaptation - and mitigation) in order to support assessment of mitigation and adaptation strategies and climate impact

  13. Climate change effects on human health in a gender perspective: some trends in Arctic research

    OpenAIRE

    Natalia, Kukarenko

    2011-01-01

    Background Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. Objective To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main...

  14. Climate change effects on human health in a gender perspective: some trends in Arctic research

    OpenAIRE

    Kukarenko, Natalia

    2011-01-01

    Background: Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women’s and men’s well-being and health. Objective: To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The ma...

  15. Climate change and health: Research challenges for health in the developing countries

    OpenAIRE

    Harshal T Pandve

    2010-01-01

    Climate change has emerged as one of the most important environmental issues ever to confront humanity. Recent events have emphatically demonstrated our growing vulnerability to climate change, and health hazards are a major concern. Research pertaining to the effects of climate change on human health is the need of the hour. This paper discusses the broad challenges in health research in developing countries with specific reference to climate change.

  16. Climate change and health: Research challenges for health in the developing countries

    Directory of Open Access Journals (Sweden)

    Pandve Harshal

    2010-01-01

    Full Text Available Climate change has emerged as one of the most important environmental issues ever to confront humanity. Recent events have emphatically demonstrated our growing vulnerability to climate change, and health hazards are a major concern. Research pertaining to the effects of climate change on human health is the need of the hour. This paper discusses the broad challenges in health research in developing countries with specific reference to climate change.

  17. ARCADE - Atmospheric Research for Climate and Astroparticle DEtection

    CERN Document Server

    Buscemi, M; Cilmo, M; Coco, M; Ferrarese, S; Guarino, F; Tonachini, A S; Valore, L; Wiencke, L

    2014-01-01

    The characterization of the optical properties of the atmosphere in the near UV, in particular the tropospheric aerosol stratification, clouds optical depth and spatial distribution are common in the field of atmospheric physics, due to aerosol effect on climate, and also in cosmic rays physics, for a correct reconstruction of energy and longitudinal development of showers. The goal of the ARCADE project is the comparison of the aerosol attenuation measurements obtained with the typical techniques used in cosmic ray experiments (side-scattering measurement, elastic LIDAR and Raman LIDAR) in order to assess the systematic errors affecting each method providing simultaneous observations of the same air mass with different techniques. For this purpose we projected a LIDAR that is now under construction: it will use a 355 nm Nd:YAG laser and will collect the elastic and the N2 Raman back-scattered light. For the side-scattering measurement we will use the Atmospheric Monitoring Telescope, a facility owned by the ...

  18. An accelerator facility within a mineral research establishment

    International Nuclear Information System (INIS)

    The importance of the minerals industry in Australia is evident from its share of about 40% of the country's export earnings. Its economic success is due in no small measure to the industry's ability to keep abreast with technological innovations and scientific developments, often through collaborations with federal Governments research laboratories such as the CSIRO. In this context, the CSIRO Division of Mineral Physics recently commissioned a laboratory, known as HIAF - the Heavy Ion Analytical Facility - based on a General Ionex 3 MV Tandetron, a tandem electrostatic accelerator. The Laboratory was designed to facilitate the development of the applications of a host of ion-beam techniques to problems in the geosciences, extending or complementing established methods. Flow-on to the minerals industry is anticipated, with varying degrees of immediacy dependent on the particular technique. The first stage operational at the commissioning provides RBS (Rutherford backscattering spectrometry) PIXE (particle induced X-ray emission) and NRA (nuclear reaction analysis) measurements, and includes the development of a beam microprobe. An ultra-sensitive accelerator mass spectrometry (AMS) system is planned for the second stage, to permit studies of chronology based on radio cosmogenic isotopes and ultra-traces in mineral samples. (orig.)

  19. A neutron tomography facility at a low power research reactor

    CERN Document Server

    Körner, S; Von Tobel, P; Rauch, H

    2001-01-01

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at ...

  20. Progress of the heavy ion research facility in lanzhou

    International Nuclear Information System (INIS)

    Some improvements and upgrading project are progress smoothly at Heavy Ion Research Facility in Lanzhou (HIRFL). The beam intensity of SFC cyclotron is increase 3 to 10 times, the heaviest beam extracted is Pb after improvement of vacuum up to 10-8mbar, reducing the influence the stray magnetic field and power supply system. The beam from SFC could be rebenched to matching SSC cyclotron after new rebuncher is success reaching its design performances. The upgrade project, Cooling Storage Ring (HIRFL-CSR), has been constructed about 4 year. The inject beam line from existing HIRFL system to main ring (CSRm) is installed and tested; CSRm is installed except few special devices; the RIB separator and experimental ring (CSRe) are being installed and will be finish within 2004. The most of setup at CSRm is better than its design that could be optimizing to increase maximum energy about 10-20% more than its original design (900 MeV/u for 12C and 400MeV/u for 238U). There will be some new features at CSR complex which new generation electron cooler, RIB reaction experiment inside CSRe and the digital remote control system. So far, the 12C4+, 16O6+ beam is tuning to inject beam line, and start CSRm commission before end of 2004. (author)

  1. Medical Applications of Non-Medical Research: Applications Derived from BES-Supported Research and Research at BES Facilities

    Science.gov (United States)

    1998-07-01

    This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.

  2. Tourist Perceptions On Supporting Infrastructure Facilities And Climate-Based Visiting Time Of Ngebel Lake, Ponorogo

    Directory of Open Access Journals (Sweden)

    Ardhila Ayu Prasetyowati

    2014-04-01

    Full Text Available This study aims to analyze the tourists’ perception about the importance and satisfaction on the product of fisheries tourism, and to assess the visiting time of tourist based on climate conditions. The research was conducted in May to June 2013 in Ngebel Lake, Ponorogo. We used descriptive quantitative approach, with 45 respondents. Data collected from interview, questionnaire and observation. Analytical methods were used to determine the perception of tourists on the satisfaction and interest in fisheries tourism products, i.e. Importance Performance Analysis (IPA. We also used Tourism Climate Index (TCI to determine the visiting time of tourist. The results show the value of satisfaction and tourist interest is low, therefore the improvement of several aspects become important. It is encompasses: a the existence of parking area; b the condition of Ngebel Lake; c planning and management system, the condition of the local community; and d activities of fish course restaurant and fish farming system of floating net cages. TCI value indicates ideal conditions for tourists traveled in Ngebel Lake is in November (convenience index value of 106, in December (97 and in April (94. This appropriate time to visit Ngebel Lake is expected to create a good impression for the tourists and enjoy the various fisheries activities in Ngebel Lake. Keywords: Importance Performance Analysis, Ngebel Lake, Tourist Climate Index

  3. Survey of organizational research climates in three research intensive, doctoral granting universities.

    Science.gov (United States)

    Wells, James A; Thrush, Carol R; Martinson, Brian C; May, Terry A; Stickler, Michelle; Callahan, Eileen C; Klomparens, Karen L

    2014-12-01

    The Survey of Organizational Research Climate (SOuRCe) is a new instrument that assesses dimensions of research integrity climate, including ethical leadership, socialization and communication processes, and policies, procedures, structures, and processes to address risks to research integrity. We present a descriptive analysis to characterize differences on the SOuRCe scales across departments, fields of study, and status categories (faculty, postdoctoral scholars, and graduate students) for 11,455 respondents from three research-intensive universities. Among the seven SOuRCe scales, variance explained by status and fields of study ranged from 7.6% (Advisor-Advisee Relations) to 16.2% (Integrity Norms). Department accounted for greater than 50% of the variance explained for each of the SOuRCe scales, ranging from 52.6% (Regulatory Quality) to 80.3% (Integrity Inhibitors). It is feasible to implement this instrument in large university settings across a broad range of fields, department types, and individual roles within academic units. Published baseline results provide initial data for institutions using the SOuRCe who wish to compare their own research integrity climates. PMID:25747692

  4. Joint Actinide Shock Physics Experimental Research (JASPER) Facility Update

    International Nuclear Information System (INIS)

    The JASPER Facility utilizes a Two-Stage Light Gas Gun to conduct equation-of-state(EOS) experiments on plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and control interfaces and containment. The containment systems that were developed for this project will be presented

  5. Profiles of facilities used for FBR research and testing

    International Nuclear Information System (INIS)

    This document contains a concise up-to date of supporting ''Liquid Metal Fast Breeder'' facilities submitted by countries (Federal Republic of Germany, Italy, France, Belgium, Netherlands, UK, USA, USSR and Japan) and international organizations. It has the purpose of providing an over-view of the facilities currently used or under construction and of the type of experiments that can be conducted therein

  6. Development of virtual research environment for regional climatic and ecological studies and continuous education support

    Science.gov (United States)

    Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Bogomolov, Vasily; Gordova, Yulia; Martynova, Yulia; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2014-05-01

    Volumes of environmental data archives are growing immensely due to recent models, high performance computers and sensors development. It makes impossible their comprehensive analysis in conventional manner on workplace using in house computing facilities, data storage and processing software at hands. One of possible answers to this challenge is creation of virtual research environment (VRE), which should provide a researcher with an integrated access to huge data resources, tools and services across disciplines and user communities and enable researchers to process structured and qualitative data in virtual workspaces. VRE should integrate data, network and computing resources providing interdisciplinary climatic research community with opportunity to get profound understanding of ongoing and possible future climatic changes and their consequences. Presented are first steps and plans for development of VRE prototype element aimed at regional climatic and ecological monitoring and modeling as well as at continuous education and training support. Recently developed experimental software and hardware platform aimed at integrated analysis of heterogeneous georeferenced data "Climate" (http://climate.scert.ru/, Gordov et al., 2013; Shulgina et al., 2013; Okladnikov et al., 2013) is used as a VRE element prototype and approach test bench. VRE under development will integrate on the base of geoportal distributed thematic data storage, processing and analysis systems and set of models of complex climatic and environmental processes run on supercomputers. VRE specific tools are aimed at high resolution rendering on-going climatic processes occurring in Northern Eurasia and reliable and found prognoses of their dynamics for selected sets of future mankind activity scenaria. Currently the VRE element is accessible via developed geoportal at the same link (http://climate.scert.ru/) and integrates the WRF and «Planet Simulator» models, basic reanalysis and instrumental

  7. A study of trends and techniques for space base electronics. [research facilities

    Science.gov (United States)

    Trotter, J. D.; Wade, T. E.

    1979-01-01

    The research facilities of the Mississippi State University devoted to microelectronics are described. The fabrication and processing capabilities, computer aided design, and experimental evaluation capabilities are discussed.

  8. The NASA Lewis Research Center Internal Fluid Mechanics Facility

    Science.gov (United States)

    Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.

    1991-01-01

    An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.

  9. The Climatic Observatory of the Karst (O.C.C.), a scientific facility within an important tourist framework

    Science.gov (United States)

    Colucci, R. R.; Micheletti, S.; Fabbo, R.

    2009-09-01

    The Climatic Observatory of the Karst, officially inaugurated on 2nd October, 2008, is born in the same place of the historical headquarter of the Borgo Grotta Gigante Meteorological Office, which was set up in 1966 and has been officially operating since 1st January, 1967. The meteorological facilities and the weather office are located on the premises of the visitor centre of "Grotta Gigante”, which is a very popular karstic cave of Trieste, visited each year by at least 70k people. The privileged position induced the promoters of this initiative to think about an integrated meteorological multilanguages system for the visitors. This system provides in real time weather forecasts and meteorological data and, at the same time, general tourist information as well. The synergic cooperation of various Scientific Organizations, which are involved in climatic research at the Borgo Grotta Gigante Climatic Observatory of the Karst, makes possible the realization of this project: "E.Boegan” Cave Commission of S.A.G. (the administrative body); ARPA-OSMER, the Friuli Venezia-Giulia Meteorological Observatory of the Regional Agency of the Environmental Protection, (which manages the automatic station, broadcasts and publishes data in real time and forecasts in the visitors waiting room); C.N.R.-I.S.M.A.R., the Marine Science Institute in Trieste of the National Research Council of Italy (which manages and maintains mechanical instruments, publishes data and carries out checks, files data and publishes reports); U.M.F.V.G., the Friuli Venezia Giulia Meteorological Union (which is involved in scientific dissemination activity and web sharing of information); the Environmental and Public Works Section and Water Service of the Friuli Venezia Giulia Region (water resources monitoring). Moreover one of the main characteristic of the Observatory, also because of didactic reasons, is to maintain the traditional mechanical-analogue part of data collection, carried out by

  10. The Radiological Research Accelerator Facility. Progress report, December 1, 1993--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Marino, S.A.

    1994-04-01

    This document begins with a general description of the facility to include historical and up-to-date aspects of design and operation. A user`s guide and a review of research using the facility follows. Next the accelerator utilization and operation and the development of the facilities is given. Personnel currently working at the facility are listed. Lastly, recent publications and literature cited are presented.

  11. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  12. A neutron tomography facility at a low power research reactor

    Science.gov (United States)

    Koerner, S.; Schillinger, B.; Vontobel, P.; Rauch, H.

    2001-09-01

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at this beam position is 1.3×10 5 neutrons/cm 2 s and the beam diameter is 8 cm. For a 3D tomographic reconstruction of the sample interior, transmission images of the object taken from different view angles are required. Therefore, a rotary table driven by a step motor connected to a computerized motion control system has been installed at the sample position. In parallel a suitable electronic imaging device based on a neutron sensitive scintillator screen and a CCD-camera has been designed. It can be controlled by a computer in order to synchronize the software of the detector and of the rotary table with the aim of an automation of measurements. Reasonable exposure times can get as low as 20 s per image. This means that a complete tomography of a sample can be performed within one working day. Calculation of the 3D voxel array is made by using the filtered backprojection algorithm.

  13. A neutron tomography facility at a low power research reactor

    International Nuclear Information System (INIS)

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at this beam position is 1.3x105 neutrons/cm2 s and the beam diameter is 8 cm. For a 3D tomographic reconstruction of the sample interior, transmission images of the object taken from different view angles are required. Therefore, a rotary table driven by a step motor connected to a computerized motion control system has been installed at the sample position. In parallel a suitable electronic imaging device based on a neutron sensitive scintillator screen and a CCD-camera has been designed. It can be controlled by a computer in order to synchronize the software of the detector and of the rotary table with the aim of an automation of measurements. Reasonable exposure times can get as low as 20 s per image. This means that a complete tomography of a sample can be performed within one working day. Calculation of the 3D voxel array is made by using the filtered backprojection algorithm

  14. Climate Change and Rural Sociology: Broadening the Research Agenda

    Science.gov (United States)

    Dunlap, Riley E.

    2010-01-01

    Climate change is the preeminent environmental problem of this time, and Joseph Molnar's call for greater attention to it by rural sociologists is both welcome and timely. The agenda he lays out for rural sociology's engagement with climate change, however, seems rather narrow and restrictive. Examining the potential impacts of climate change,…

  15. Progress in Research on Climatic Change in China

    Institute of Scientific and Technical Information of China (English)

    LU Xuedu

    2001-01-01

    @@ Global climatic change caused by human factors has become a major issue of increasing international concern. Climatic change may lead to irreversible change to the climatic system on the global scale, and thus result in immeasurable change to the living environment of mankind.

  16. Research on the Natural Variability of Climate and the Impact of Anthropogenic Forcing on Climate

    Science.gov (United States)

    Stone, Peter H.

    2005-01-01

    The paper, "Latitude-dependent vertical mixing and the tropical thermocline in a global OGCM", was revised and published in Geophysical Research Letters. It treats the new GISS mixing scheme which includes the latitudinal dependence of the interior ocean turbulence field reported by Gregg, Sanford & Winkel. When implemented in the 3x3 degree NCAR CSMl OGCM [NCOMl] the new mixing scheme produces an improved, sharper equatorial thermoclines in both the Atlantic and the Pacific while simultaneously maintaining the realistic meridional overturning and northward heat transports found already with the previous GISS scheme. Also the paper "Diagnostics of the oceanic thermohaline circulation in a coupled climate model" describing earlier work on the grany was published.

  17. Joint Actinide Shock Physics Experimental Research (JASPER) Facility Overview

    International Nuclear Information System (INIS)

    The JASPER Facility will utilize a Two-Stage Light Gas Gun to conduct equation-of-state (EOS) experiments of plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and mission. The primary and secondary containment systems that were developed for this project will be presented. Primary gun diagnostics and timing will also be discussed

  18. Research of Road Traffic Facilities System Based on GIS

    OpenAIRE

    Liu-Jian; Li-Qingsong; Li-Hui; Guo-Hanying; Pan-Heng

    2013-01-01

    In order to improve the labor efficiency and economic benefit of road traffic facilities system and reduce resource waste, a scheme of road traffic facilities system based on GIS is provided in this paper. In the new scheme, firstly, we proposed Visual C++ embedding MapX component to program for the visualization of data and function analysis of space, and constructed core table in database and established property database and space database to improve efficiency; then we put forward the sys...

  19. Hardware Development Process for Human Research Facility Applications

    Science.gov (United States)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as

  20. YALINA facility a sub-critical Accelerator-Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008)

    International Nuclear Information System (INIS)

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  1. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  2. NRX and NRU reactor research facilities and irradiation and examination charges

    International Nuclear Information System (INIS)

    This report details the irradiation and examination charges on the NRX and NRU reactors at the Chalk River Nuclear Labs. It describes the NRX and NRU research facilities available to external users. It describes the various experimental holes and loops available for research. It also outlines the method used to calculate the facilities charges and the procedure for applying to use the facilities as well as the billing procedures.

  3. Climate engineering field research: The favorable setting of international environmental law

    OpenAIRE

    Reynolds, J L

    2014-01-01

    As forecasts for climate change and its impacts have become more dire, climate engineering proposals have come under increasing consideration and are presently moving toward field trials. This article examines the relevant international environmental law, distinguishing between climate engineering research and deployment. It also emphasizes the climate change context of these proposals and the enabling function of law. Extant international environmental law generally favors such field tests, ...

  4. Designing an Africa-EU research and innovation collaboration platform on climate change

    DEFF Research Database (Denmark)

    Tostensen, Arne; Monteverde Haakonsen, Jan; Hughes, Mike;

    Climate change is arguably the most significant of a set of interconnected global challenges threatening water resources and food security. In particular, the relationship between water resources, food systems and climate change is tightly coupled, and improved food security under climate change...... contribute to making this process more effective by developing a proposition for a platform to strengthen Africa-EU research and innovation collaboration on climate change....

  5. EXTENDING LKN CLIMATE REGIONALIZATION WITH SPATIAL REGULARIZATION: AN APPLICATION TO EPIDEMIOLOGICAL RESEARCH

    OpenAIRE

    Liss, Alexander; Yulia R. Gel; Kulinkina, Alexandra; Naumova, Elena N.

    2016-01-01

    Regional climate is a critical factor in public health research, adaptation studies, climate change burden analysis, and decision support frameworks. Existing climate regionalization schemes are not well suited for these tasks as they rarely take population density into account. In this work, we are extending our recently developed method for automated climate regionalization (LKN-method) to incorporate the spatial features of target population. The LKN method consists of the data limiting st...

  6. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1993

    International Nuclear Information System (INIS)

    The results of the joint researches by utilizing the facilities of JAERI in 1993 fiscal year were summarized. The number of research themes in 1993 was 228 cases. In this book, 243 reports are collected. (J.P.N.)

  7. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1992

    International Nuclear Information System (INIS)

    The results of the joint researches by utilizing the facilities of JAERI in 1992 fiscal year were summarized. The number of research themes in 1992 was 247 cases. In this book, 166 reports are collected. (J.P.N.)

  8. FAIR - the Facility for Antiproton and Ion Research: the Universe in the Lab

    Science.gov (United States)

    Weissbach, F.

    2015-11-01

    As of the year 2018 the Facility for Antiproton and Ion Research (FAIR) will offer access to exotic ion beams and beams of antiproton of unprecedented luminosity. The facility currently under construction in Darmstadt, Germany, adjacent to the existing accelerator at the GSI Helmholtz Centre for Heavy-Ion Research, will serve several collaborations and fields simultaneously: atomic, hadron, nuclear, and plasma physics.

  9. Science and Engineering Research Council Central Laser Facility

    International Nuclear Information System (INIS)

    This report covers the work done at, or in association with, the Central Laser Facility during the year April 1980 to March 1981. In the first chapter the major reconstruction and upgrade of the glass laser, which has been undertaken in order to increase the versatility of the facility, is described. The work of the six groups of the Glass Laser Scientific Progamme and Scheduling Committee is described in further chapters entitled; glass laser development, laser plasma interactions, transport and particle emission studies, ablative acceleration and compression studies, spectroscopy and XUV lasers, and theory and computation. Publications based on the work of the facility which have either appeared or been accepted for publication during the year are listed. (U.K.)

  10. Biological and Environmental Research: Climate and Environmental Sciences Division: U.S./European Workshop on Climate Change Challenges and Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Laboratory; McCord, Raymond [Oak Ridge National Laboratory; Sisterson, Doug [Argonne National Laboratory; Voyles, Jimmy [Pacific Northwest National Laboratory

    2012-11-08

    The workshop aimed to identify outstanding climate change science questions and the observational strategies for addressing them. The scientific focus was clouds, aerosols, and precipitation, and the required ground- and aerial-based observations. The workshop findings will be useful input for setting priorities within the Department of Energy (DOE) and the participating European centers. This joint workshop was envisioned as the first step in enhancing the collaboration among these climate research activities needed to better serve the science community.

  11. Enabling Linked Science in Global Climate Uncertainty Quantification (UQ) Research

    Science.gov (United States)

    Elsethagen, T.; Stephan, E.; Lin, G.; Williams, D.; Banks, E.

    2012-12-01

    This paper shares a real-world global climate UQ science use case and illustrates how a linked science application called Provenance Environment (ProvEn), currently being developed, enables and facilitates scientific teams to publish, share, link, and discover new links over their UQ research results. UQ results include terascale datasets that are published to an Earth Systems Grid Federation (ESGF) repository. ProvEn demonstrates how a scientific team conducting UQ studies can discover dataset links using its domain knowledgebase, allowing them to better understand the UQ study research objectives, the experimental protocol used, the resulting dataset lineage, related analytical findings, ancillary literature citations, along with the social network of scientists associated with the study. This research claims that scientists using this linked science approach will not only allow them to greatly benefit from understanding a particular dataset within a knowledge context, a benefit can also be seen by the cross reference of knowledge among the numerous UQ studies being stored in ESGF. ProvEn collects native forms of data provenance resources as the UQ study is carried out. The native data provenance resources can be collected from a variety of sources such as scripts, a workflow engine log, simulation log files, scientific team members etc. Schema alignment is used to translate the native forms of provenance into a set of W3C PROV-O semantic statements used as a common interchange format which will also contain URI references back to resources in the UQ study dataset for querying and cross referencing. ProvEn leverages Fedora Commons' digital object model in a Resource Oriented Architecture (ROA) (i.e. a RESTful framework) to logically organize and partition native and translated provenance resources by UQ study. The ROA also provides scientists the means to both search native and translated forms of provenance.

  12. Research and development activities of a neutron generator facility

    International Nuclear Information System (INIS)

    The neutron generator facility at YNRC is used for elemental analysis, nuclear data measurement and education. In nuclear data measurement the focus is on re-evaluating the existing scattered nuclear activation cross-section to obtain systematic data for nuclear reactions such as (n,p), (n,α), and (n,2n). In elemental analysis it is used for analyzing the Nitrogen (N), Phosphor (P) and Potassium (K) contents in chemical and natural fertilizers (compost), protein in rice, soybean, and corn and pollution level in rivers. The neutron generator is also used for education and training of BATAN staff and university students. The facility can also produce neutron generator components. (author)

  13. The Lewis Research Center geomagnetic substorm simulation facility

    Science.gov (United States)

    Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.

    1977-01-01

    A simulation facility was established to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated include the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests include sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients are measured by means of current probes and oscilloscopes and are verified by a photomultiplier. Details of this facility and typical operating procedures are presented.

  14. Development of new irradiation facility for BWR safety research

    International Nuclear Information System (INIS)

    In JAEA (Japan Atomic Energy Agency), about the irradiation embrittlement of the reactor pressure vessel and the stress corrosion cracking of reactor core composition apparatus concerning the long-term use of the light water reactor (BWR), in order to check the influence of the temperature, pressure, and water quality, etc on BWR condition. The water environmental control facility which performs irradiation assisted stress corrosion-cracking (IASCC) evaluation under BWR irradiation environment was fabricated in JMTR (Japan Materials Testing Reactor). This report is described the outline of manufacture of the water environmental control facility for doing an irradiation test using the saturation temperature capsule after JMTR re-operation. (author)

  15. Inventory of Research on the Impacts of Climate Change

    OpenAIRE

    Cesar, H. (eds.); O. Linden; Walker, R.

    2004-01-01

    Climate change is one of the greatest threats for the global environment today. Global mean temperature has risen by about 0.6 degrees C during the 20th century, greater than during any other century in the last 1000 years. Subsequently, climate change is likely to have detrimental effects on all global natural and anthropogenic systems. Climate change will have consequences for the structure and function of ecosystems and all the major global biomes. Also agricultural production and producti...

  16. CFB gasification of biomass. An analysis of available and necessary research facilities

    International Nuclear Information System (INIS)

    The aim of the title analysis is to inventorize the required and available Dutch laboratory facilities for research on Circulating Fluidized Beds (CFB) gasification of biomass. A literature study has been carried to assess the international state-of-the-art of the technology and research. Based on the results the required research facilities could be determined. Next, interviews were held with researchers at relevant Dutch research institutes and information was collected to compile an overview of available Dutch facilities. It appears that the introduction of CFB gasification technologies can take place under good conditions, although coordination of future research activities is desired, while knowledge and facilities are spread over several research institutes. 16 figs., 43 refs., 1 appendix

  17. The new cold neutron research facility at the Budapest Research Reactor

    International Nuclear Information System (INIS)

    The new cold neutron research facility is routinely operated at the Budapest Neutron Centre since February 2001. At the 10 MW research reactor a liquid hydrogen cold neutron source (CNS) has been installed. The commissioning of the CNS has been followed by the replacement of the old neutron guides by a new supermirror guide system both for the in-pile and out-of pile part. The ensemble of the CNS and new guides provides an intensity gain of the order of 30-60. The cold neutron channel has a take-off for three beams. The first guide serves for a triple axis spectrometer and a prompt gamma activation analysis station. A small angle scattering spectrometer is installed on the middle guide, and a reflectometer is operated on the third one. (author)

  18. The Budapest research reactor as an advanced research facility for the early 21st century

    International Nuclear Information System (INIS)

    The Budapest Research Reactor, Hungary's first nuclear facility was originally put into operation in 1959. The reactor serves for: basic and applied research, technological and commercial applications, education and training. The main goal of the reactor is to serve neutron research. This unique research possibility is used by a broad user community of Europe. Eight instruments for neutron scattering, radiography and activation analyses are already used, others (e.g. time of flight spectrometer, neutron reflectometer) are being installed. The majority of these instruments will get a much improved utilization when the cold neutron source is put into operation. In 1999 the Budapest Research Reactor was operated for 3129 full power hours in 14 periods. The normal operation period took 234 hours (starting Monday noon and finishing Thursday morning). The entire production for the year 1999 was 1302 MW days. This is a slightly reduced value, due to the installation of the cold neutron source. For the year 2000 a somewhat longer operation is foreseen (near to 4000 hours), as the cold neutron source will be operational. The operation of the reactor is foreseen at least up to the end of the first decade of the 21st century. (author)

  19. IEK-3 report 2011. Climate-relevant energy research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    IEK-3 is one of nine sub-institutes within the Institute of Energy and Climate Research at Forschungszentrum Juelich GmbH. IEK-3 aims to conduct research of social, ecological and economic relevance and thus generate groundbreaking results on an international level. This quality of work is achieved through basic research in close coordination with technical development work in relevant scientific and technical fields of expertise. Special significance is attached here to international cooperations with partners from research and industry. By implementing research results in innovative products, procedures and processes in cooperation with industry, IEK-3 hopes to help bridge the gap between science and technology. Cooperation with universities, universities of applied sciences, training departments and training centers is designed to promote opportunities for further education and training. With a staff of approximately 100, IEK-3 concentrates on the basic topics of electrochemistry and process engineering for fuel cells. In an integrated approach, the four key areas worked on in the institute - direct methanol fuel cells, high-temperature polymer electrolyte fuel cells, solid oxide fuel cells and fuel processing systems - are accompanied by systems analysis and theoretical investigations, basic modeling and simulations, and by experimental and theoretical systems evaluations. The information generated in these areas is used to design and verify functional systems. In addition, particular attention is given to the development, configuration and application of special measuring techniques for the structural analysis of membrane electrode assemblies, for flow simulation and visualization, and for the characterization of stacks. The solid oxide fuel cell (SOFC) stack pictured comprises 36 cells, each with an active cell area of 360 cm{sup 2}. The nominal power at a mean cell voltage of 800 mV is approximately 5.5 kW. The stack is operated on natural gas, which is

  20. Inconsistencies at the interface of climate impact studies and global climate research

    International Nuclear Information System (INIS)

    Most climate impacts studies, whether they deal with, for instance, terristric or marine ecosystems, coastal morphodynamics, storm surges and damages, or socio-economic aspects, utilize ''scenarios'' of possible future climate. Such scenarios are always based on the output of complex mathematical climate models, whenever they are in any sense detailed. Unfortunately, the user community of such scenarios usually is not well informed about the limitations and potentials of such models. On the other hand, the climate modeller community is not sufficiently aware of the demands on the side of the ''users''. The state of the art of climate models is revieved and the principal limitations concerning the spatial/time resolution and the accuracy of simulated data are discussed. The need for a ''downscaling strategy'' on the climate modeller side and for an ''upscaling'' strategy on the user side is demonstrated. Examples for successful exercieses in downscaling seasonal mean precipitation and daily rainfall sequences are shown. (orig.)

  1. ERDA/Lewis research center photovoltaic systems test facility

    Science.gov (United States)

    Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

    1977-01-01

    A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

  2. New research facility for the coal seam gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Massarotto, P. [University of Queensland, Qld. (Australia). School of Engineering

    2009-10-01

    A new Geo-engineering Centre, for Gas Coal Dynamics, using earth sciences, mining and chemical engineering expertise in coal seam gas, coal bed methane extraction, and geosequestration of greenhouse gases, has been established at the University of QUeensland. The article outlines it mission, capabilities, areas of expertese and facilities and equipment. 3 photos.

  3. Design and safety analysis report of facilities for research and development of medical radioisotopes

    International Nuclear Information System (INIS)

    For production and research for practical use of radio-pharmaceuticals using for medical treatment and diagnosis, the complex facility offer shield and clean environment is basically required for protecting personnel from radiation, and the product from contamination. The facilities was designed for research and development of medical radioisotopes. This facility was designed to comply with GMP(Good Manufacturing Practice) requirements and safety requirements against radiation. In this technical report, technical requirements and design summary for construction of hot cell and clean room are described. And also, This facility will be utilized for production of Tc-99m generator and R and D of other radio-pharmaceuticals(Ho-166 etc.).

  4. Local indicators of climate change: The potential contribution of local knowledge to climate research

    Science.gov (United States)

    Reyes-García, Victoria; Fernández-Llamazares, Álvaro; Guèze, Maximilien; Garcés, Ariadna; Mallo, Miguel; Vila-Gómez, Margarita; Vilaseca, Marina

    2016-01-01

    Local knowledge has been proposed as a place-based tool to ground-truth climate models and to narrow their geographic sensitivity. To assess the potential role of local knowledge in our quest to understand better climate change and its impacts, we first need to critically review the strengths and weaknesses of local knowledge of climate change and the potential complementarity with scientific knowledge. With this aim, we conducted a systematic, quantitative meta-analysis of published peer-reviewed documents reporting local indicators of climate change (including both local observations of climate change and observed impacts on the biophysical and the social systems). Overall, primary data on the topic are not abundant, the methodological development is incipient, and the geographical extent is unbalanced. On the 98 case studies documented, we recorded the mention of 746 local indicators of climate change, mostly corresponding to local observations of climate change (40%), but also to observed impacts on the physical (23%), the biological (19%), and the socioeconomic (18%) systems. Our results suggest that, even if local observations of climate change are the most frequently reported type of change, the rich and fine-grained knowledge in relation to impacts on biophysical systems could provide more original contributions to our understanding of climate change at local scale.

  5. NIST Infrared Blackbody Calibration Support for Climate Change Research

    Science.gov (United States)

    Hanssen, L. M.; Zeng, J.; Mekhontsev, S.; Khromchenko, V.

    2013-12-01

    The National Institute of Standards and Technology (NIST) Sensor Science Division has provided support of various existing and planned satellite programs, which monitor key parameters for the study of climate change, such as solar irradiance, earth radiance, and atmospheric effects. Recently, this has included the establishment of new measurement instrumentation and expanded capabilities for the characterization of infrared reference blackbody sources and cavity radiometers, as well as the materials used to coat the cavity surfaces. In order to accurately measure high levels of effective emissivity and absorptance of cavities, NIST has developed a laser- and integrating-sphere-based facility (the Complete Hemispherical Infrared Laser-based Reflectometer (CHILR)). The system is used for both radiometer and blackbody cavity characterization. Currently, a second CHILR-II is being added, which can accommodate cavities with apertures up to 20 cm in diameter. Multiple laser sources with wavelengths ranging from 1.5 μm to 23 μm are used to perform reflectance (1 - emissivity (or absorptance)) measurements of the radiometer cavities. For a more comprehensive understanding of the measurement results, NIST has also measured samples of the coated surfaces of the cavities and associated baffles. This includes several types of reflectance measurements: specular, directional-hemispherical (diffuse), and bi-directional distribution function (BRDF). The first two are performed spectrally and provide information that enables estimation of the cavity performance where laser sources for CHILR are not available. The coating results provide input for cavity simulation (including Monte-Carlo raytracing software) analysis to help validate the CHILR results as well as to predict the performance of variations in the cavity designs. In order to adequately characterize reference sources operating at temperatures below ambient to approximately 200 K (cloud-top temperatures), coatings have

  6. Advances in ocean modeling for climate change research

    Science.gov (United States)

    Holland, William R.; Capotondi, Antonietta; Holland, Marika M.

    1995-07-01

    An adequate understanding of climate variability and the eventual prediction of climate change are among the most urgent and far-reaching efforts of the scientific community. The climate system is in an ever-changing state with vast impact on mankind in all his activities. Both short and long-term aspects of climate variability are of concern, and the unravelling of "natural" variability from "man-induced" climate change is required to prepare for and ameliorate, if possible, the potentially devastating aspects of such change. In terms of scientific effort, the climate community can be thought of as the union of the disciplinary sciences of meteorology, oceanography, sea ice and glaciology, and land surface processes. Since models are based upon mathematical and numerical constructs, mathematics and computer sciences are also directly involved. In addition, some of the problems of man-induced climate change (release of greenhouse gases, the ozone-hole problem, etc.) are basically chemical in nature, and the expertise of the atmospheric and oceanic chemist is also required. In addition, some part of the response to climate perturbations will arise in the biological world, due to upsetting the balance in the great food web that binds communities together on both the land and the sea. Thus, the problems to be solved are extraordinarily complex and require the efforts of many kinds of scientist.

  7. A new scenario framework for Climate Change Research: scenario matrix architecture

    NARCIS (Netherlands)

    van Vuuren, D.P.; Kriegler, E.; O'Neill, B.C.; Ebi, K.L.; Riahi, K.; Carter, T.R.; Edmonds, J.; Hallegatte, S.; Kram, T.; Mathur, R.; Winkler, H.

    2014-01-01

    This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different ad

  8. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1982

    International Nuclear Information System (INIS)

    The utilization of the facilities in the Japan Atomic Energy Research Institute in common in 1982 has finished in active state, and the results of the researches have reached the stage of publication. The subjects of the researches spread over wide fields, and in 1982 also, extremely diversified researches were carried out. In this report, theses results were collected in one book, and it is desirable to utilize it actively. The number of the research themes is 131. In the field of general researches, the researches on radiochemistry, the utilization of radiation and the effects of irradiation were mostly carried out, while in cooperative researches, the researches were mainly concerned with nuclear reactor engineering and nuclear reactor materials. The total number of visitors was 3025. The facilities offered to the common utilization were JRR-2, JRR-3, JRR-4, Co-60 irradiation facility and others. The abstracts of the papers are reported. (J.P.N.)

  9. Annual report of intra-university joint-use facilities management and research for fiscal 1975

    International Nuclear Information System (INIS)

    Usage of RCNST's (Research Center for Nuclear Science and Technology) facilities by the University of Tokyo and results of the research works in fiscal 1975 are described. In the former are included facility operation, maintenance, etc. and frequency of usage. Comprising the fields of biology/medicine, chemistry/physics, engineering, materials, nuclear physics, etc., the research results are presented in individual summaries. (Mori, K.)

  10. Annual report of intra-university joint-use facilities management and research for fiscal 1974

    International Nuclear Information System (INIS)

    Usage of RCNST's (Research Center for Nuclear Science and Technology) facilities by the University of Tokyo and results of the research works in fiscal 1974 are described. In the former are included facility operation, maintenance, etc. and frequency of usage. Comprising the fields of biology/medicine, chemistry/physics, engineering, materials, nuclear physics, etc., the research results are presented in individual summaries. (Mori, K.)

  11. The technological study on the decommissioning of nuclear facility, etc. in the Tokai Research Establishment

    International Nuclear Information System (INIS)

    Since JPDR is dismantled and is removed, in Tokai Research Establishment, Japan Atomic Energy Research Institute, the dismantling of nuclear facility which finished the mission, etc. is advanced. At present, nuclear facility as a dismantling object count the approximately 20 facilities, and decommissioning plan of these facilities becomes an important problem, when the decommissioning countermeasure is considered. However, decommissioning techniques in proportion to various nuclear facility, etc. are clearly, and it has not been determined. In this report, the technical consideration on decommissioning techniques of nuclear facility promoted on the basis of this experience in future, while until now decommissioning experience and technical knowledge are arranged, etc. was added in order to appropriately and surely carry out decommissioning techniques and legal procedures, etc. (author)

  12. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1988

    International Nuclear Information System (INIS)

    In 1988, this system called 'Common utilization of JAERI facilities' so far was changed to 'Joint research utilizing JAERI facilities', and by evaluating more positively the function of the General Research Center for Nuclear Energy, it has been emphasized to promote and coordinate the joint research among universities centering around the utilization of JAERI facilities. The total number of the research subjects in fiscal year 1988 reached 138, but the results of 120 of them are collected in this book. General joint research is the standard form of the utilization of various facilities that JAERI has opened to common utilization. Cooperation research is to be carried out by concluding research cooperation contracts between university researchers and JAERI researchers, and the facilities which are not opened to common utilization can be used. In the general joint research, the utilization of irradiation such as activation analysis, radiochemistry, irradiation effect, neutron diffraction and so on and the research using beams are mostly carried out, but in the cooperation research, reactor engineering, reactor materials,, nuclear physics measurement and so on are the main subjects. The total number of visitors in one year was 3829 man-day. (K.I.)

  13. UNOLS now oversees research aircraft facilities for ocean science

    OpenAIRE

    Bane, John M.; Bluth, Robert; Flagg, Charles; Jonsson, Haflidi; Melville, W. Kendall; Prince, Mike; Riemer, Daniel

    2004-01-01

    In recognition of the increasing importance and value of aircraft as observational platforms in oceanographic research, the University National Oceanographic Laboratory System (UNOLS) has established the Scientific Committee for Oceanographic Aircraft Research (SCOAR).SCOAR aims to establish procedures for research aircraft that follow the present UNOLS practices for research vessel use, with the goal of making it understandable, and easy, and thus desirable, for...

  14. The case and concept for a proposed new Canadian irradiation research facility

    International Nuclear Information System (INIS)

    Since 1957, the NRU reactor has been the key irradiation facility that underpinned the development of the CANDU power reactor, and it has facilitated world-class materials research using neutrons. In 1995, AECL developed a case for replacing NRU with the Irradiation Research Facility (IRF) to test CANDU fuels and materials and, to provide facilities for materials research using neutrons. A reference IRF concept with an estimated cost of $500 million and a reference schedule to completion of 87 months was produced. Subsequently, a pre-project program has begun to develop the IRF concept to minimize uncertainties related to feasibility and licensability before project implementation begins

  15. Reference Mission Operational Analysis Document (RMOAD) for the Life Sciences Research Facilities

    Science.gov (United States)

    1987-01-01

    The space station will be constructed during the next decade as an orbiting, low-gravity, permanent facility. The facility will provide a multitude of research opportunities for many different users. The pressurized research laboratory will allow life scientists to study the effects of long-term exposure to microgravity on humans, animals, and plants. The results of these studies will increase our understanding of this foreign environment on basic life processes and ensure the safety of man's long-term presence in space. This document establishes initial operational requirements for the use of the Life Sciences Research Facility (LSRF) during its construction.

  16. User Facilities of the Office of Basic Energy Sciences: A National Resource for Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-01

    The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well beyond the scope of any non-government institution and open up otherwise inaccessible facets of Nature to scientific inquiry. For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open literature. These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, biology, and biomedical science. Over 16,000 scientists and engineers.pdf file (27KB) conduct experiments at BES user facilities annually. Thousands of other researchers collaborate with these users and analyze the data measured at the facilities to publish new scientific findings in peer-reviewed journals.

  17. Energy-Efficiency & Water Institute Research Facility, Purdue University, (IN)

    Energy Technology Data Exchange (ETDEWEB)

    Nnanna, Agbai

    2015-01-30

    The renovation of the Schneider Avenue Building to construct two research laboratories within the building is complete. The research laboratories are for the Purdue Calumet Water Institute and the Energy Efficiency and Reliability Center. The Water Institute occupies approximately 1000+ SF of research space plus supporting offices. The Energy-Efficiency Center occupies approximately 1000+ SF that houses the research space. The labs will enhance the Water & Energy Institute’s research capabilities necessary to tackle these issues through the development of practical approaches critical to local government and industry. The addition of these research laboratories to the Purdue University Calumet campus is in both direct support of the University’s Strategic Plan as well as the 2008 Campus Master Plan that identifies a 20% shortage of research space.

  18. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory.

    Science.gov (United States)

    Barton, Carrie L; Johnson, Eric W; Tanguay, Robert L

    2016-07-01

    The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility. PMID:26981844

  19. Carbon Dioxide Effects Research and Assessment Program: Proceedings of the carbon dioxide and climate research program conference

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, L E [ed.

    1980-12-01

    Papers presented at the Carbon Dioxide and Climate Research Program Conference are included in this volume. Topics discussed are: the carbon cycle; modeling the carbon system; climatic response due to increased CO2; climate modeling; the use of paleoclimatic data in understanding climate change; attitudes and implications of CO2; social responses to the CO2 problem; a scenario for atmospheric CO2 to 2025; marine photosynthesis and the global carbon cycle; and the role of tropical forests in the carbon balance of the world. Separate abstracts of nine papers have been prepared for inclusion in the Energy Data Base. (RJC)

  20. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Opportunity for Hearing published in the Federal Register on August 19, 2011 (76 FR 52018- 52022). The NRC... Register on March 30, 2012 (77 FR 19362-19366), and concluded that renewal of the facility operating... COMMISSION Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112...

  1. A status report of the cyclotron facility at the King Faisal Specialist Hospital and Research Centre

    International Nuclear Information System (INIS)

    Operational experience gained since the commissioning of the CS-30 cyclotron at the Research Centre in 1982, has shown this facility to be a viable entity. The incidence of problems with major cyclotron systems has been low, thus allowing routine daily production of radiopharmaceuticals for distribution. Facility operating history, usage, and the radiopharmaceutical program is described. (author)

  2. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.; Poulsen, H.F.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities. The...

  3. A pulsed neutron facility for condensed matter research

    International Nuclear Information System (INIS)

    The scientific and technical basis of the project is presented, as follows: broad synopsis of the proposal for a spallation neutron facility; description of neutron scattering and current work in the UK; scientific applications of the Spallation Neutron Source; discussion of various types of neutron sources; outline description of the SNS and its neutron performance parameters; appendix dealing in more detail with utilization (solid state physics, fluids and amorphous solids, structure determination, molecular and biological sciences); appendix dealing in more detail with the project design (800 MeV synchrotron, target station, shielding, radioactivity and radiation damage, utilization, overall programme). (U.K.)

  4. Research priorities in observing and modeling urban weather and climate

    OpenAIRE

    Chen, Fei; Bornstein, Robert; C. S. B. Grimmond; Li, Ju; Liang, Xudong; Martilli, Alberto; Miao, Shiguang; Voogt, James; Wang, Yingchun

    2012-01-01

    In 2007, the world reached the unprecedented milestone of half of its people living in cities, and that proportion is projected to be 60% in 2030. The combined effect of global climate change and rapid urban growth, accompanied by economic and industrial development, will likely make city residents more vulnerable to a number of urban environmental problems, including extreme weather and climate conditions, sea-level rise, poor public health and air quality, atmospheric transport of accidenta...

  5. Trends in marine climate change research in the Nordic region since the first IPCC report

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Kokkalis, Alexandros; Bardarson, H.;

    2016-01-01

    across disciplines. For climate change related problems these research directions have been well-established since the publication of the first IPCC report in 1990, however it is not well-documented to what extent these directions are reflected in published research. Focusing on the Nordic region, we...... evaluated the development of climate change related marine science by quantifying trends in number of publications, disciplinarity, and scientific focus of 1362 research articles published between 1990 and 2011. Our analysis showed a faster increase in publications within climate change related marine...... science than in general marine science indicating a growing prioritisation of research with a climate change focus. The composition of scientific disciplines producing climate change related publications, which initially was dominated by physical sciences, shifted toward a distribution with almost even...

  6. Report on the cooperating researches utilizing fusion engineering facilities completed in the fiscal year 2007 (Joint research)

    International Nuclear Information System (INIS)

    The Division of Fusion Energy Technology of the Fusion Research and Development Directorate is carrying out cooperating researches with universities, research institutes and industries using five fusion engineering facilities; Caisson Assembly for Tritium Safety Study (CATS), Fusion Neutronics Source (FNS), MeV Test Facility (MTF), JAEA Electron Beam Irradiation System (JEBIS), RF Test Stand (RFTS). In the fiscal year 2007 (from April 1, 2007 to March 31, 2008), 24 activities were carried out as the cooperating researches. This report reviews the results of 8 activities which were completed in the fiscal year 2007. (author)

  7. Climate change and health in the United States of America: impacts, adaptations, and research

    International Nuclear Information System (INIS)

    After a description of the various impacts of climate change on human health, this report describes and comments the impacts of climate change on health in the USA: impacts of heat waves, of air quality degradation, of extreme climate events, of climate change on infectious diseases and allergies, regional impacts of climate change. In a second part, it describes the strategies of adaptation to the 'climate change and health' issue in the USA: mitigation and adaptation to climate change, adaptation challenges, insufficiently prepared public health system, adaptation to heat waves, adaptation to air quality degradation, adaptation to extreme climate events, adaptation to food- and water-based diseases and to vector-based diseases, examples of proactive adaptation. The last part describes the organisation of research on 'climate change and health' in the USA: nowadays and in the future, role of federal agencies, priority research axes. The 'United States Global Change Research Program' is presented in appendix, as well as the most important research centres (mostly in universities)

  8. An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities

    Science.gov (United States)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

  9. THE INFLUENCE OF IMPLEMENTING THE STRATEGIC POLICY IN CREATING BUSINESS CLIMATE, BUSINESS ENVIRONMENT AND PROVIDING SUPPORT FACILITIES TOWARDS BUSINESS EMPOWERMENT ON SMALL MEDIUM CRAFT ENTERPRISES IN AMBON INDONESIA

    OpenAIRE

    Josef Papilaya; Thereesje Roza Soisa; Haedar Akib

    2015-01-01

    This study aims at analyzing and explaining whether there was the influence of implementing the strategic policy in creating business climate, business environment and providing support facilities towards empowerment on small and medium enterprises as well as whether there is synchronously influence of implementing the strategic policy in creating business climate, business environment and providing support facilities for business empowerment on small and medium scale enterprises through a s...

  10. Research on Climate Change and Climate Change Communication%论气候变化与气候传播

    Institute of Scientific and Technical Information of China (English)

    郑保卫; 李玉洁

    2011-01-01

    The paper analyses the origin of the climate change, makes discussion about the rising and importance of climate change communication research, introduces the current research of climate change communication both at home and abroad, and clarifies the basic notion and way in the research. It defines the climate change communication as such a commutative activity which promotes the climate change information and related scientific knowledge to be understood and mastered by the public then to seek the solving of climate change problems as the target via changing the public's attitude and behavior regarding the climate change. While the paper also points out the meaning of this research lies in: to make theory summary and systematic explanation of the climate change communication phenomena, to do the mass dissemination and popularization work of such kind of knowledge, and to provide academic supports for those stakeholders including the government ,media ,business and NGO of climate change.%本文论述了气候变化问题的由来及发展,以及气候传播研究的兴起及意义,介绍了国外和国内气候传播研究的现状,同时厘清了气候传播研究中的一些基本概念与思路。论文认为气候传播是将气候变化信息及其相关科学知识为社会与公众所理解和掌握,并通过公众态度和行为的改变,以寻求气候变化问题解决为目标的社会传播活动;指出气候传播研究的目的及意义在于:对气候传播现象进行理论概括和系统阐释;对气候传播知识进行社会传播与推广;为政府、媒体、企业和NGO等社会组织提供有关气候传播的学术支持等。

  11. The french researches on the climatic change; Les recherches francaises sur le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Scientists were the first to prevent decision makers on the risk of the climatic change bond to the greenhouse gases emissions. The results of the third GIEC report confirmed that the main part of the global warming of the last 50 years is due to the human activities. This document presents the major results of the french researches during the last five years: the planet observation, the climate evolution study, the simulation of the future climate, the climatic change in France, the impacts of the climatic change on the marine and earth biosphere, the climatic risks and the public policies, the health impacts, the 2003 heat and the research infrastructures. (A.L.B.)

  12. Low-background gamma counting at the Kimballton Underground Research Facility

    International Nuclear Information System (INIS)

    The next generation of low-background physics experiments will require the use of materials with unprecedented radio-purity. A gamma-counting facility at the Kimballton Underground Research Facility (KURF) has been commissioned to perform initial screening of materials for radioactivity primarily from nuclides in the 238U and 232Th decay chains, 40K and cosmic-ray induced isotopes. The facility consists of two commercial low-background high purity germanium (HPGe) detectors. A continuum background reduction better than a factor of 10 was achieved by going underground. This paper describes the facility, detector systems, analysis techniques and selected assay results.

  13. Research at the BNL Tandem Van de Graaff Facility, 1980

    International Nuclear Information System (INIS)

    Research programs at the Brookhaven Van de Graaff accelerators are summarized. Major accomplishments of the laboratory are discussed including quasielastic reactions, high-spin spectroscopy, yrast spectra, fusion reactions, and atomic physics. The outside user program at the Laboratory is discussed. Research proposed for 1981 is outlined

  14. Research at the BNL Tandem Van de Graaff Facility, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Research programs at the Brookhaven Van de Graaff accelerators are summarized. Major accomplishments of the laboratory are discussed including quasielastic reactions, high-spin spectroscopy, yrast spectra, fusion reactions, and atomic physics. The outside user program at the Laboratory is discussed. Research proposed for 1981 is outlined. (GHT)

  15. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    International Nuclear Information System (INIS)

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography

  16. Archive of Geosample Information from the British Ocean Sediment Core Research Facility (BOSCORF)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Ocean Sediment Core Research Facility (BOSCORF), National Oceanography Centre, is a contributor to the Index to Marine and Lacustrine Geological Samples...

  17. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

  18. Multi-Specimen Variable-G Facility for Life and Microgravity Sciences Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot, Inc. proposes to develop a Multi-specimen Variable-G Facility (MVF) for life and microgravity sciences research. The MVF incorporates a generic...

  19. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    International Nuclear Information System (INIS)

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  20. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  1. Impacts of Climate Change on Public Health in India: Future Research Directions

    OpenAIRE

    Bush, Kathleen F.; Luber, George; Kotha, S Rani; R. S. Dhaliwal; Kapil, Vikas; Pascual, Mercedes; Brown, Daniel G.; Frumkin, Howard; R.C. Dhiman; Hess, Jeremy; Wilson, Mark L; Balakrishnan, Kalpana; Eisenberg, Joseph; Kaur, Tanvir; Rood, Richard

    2011-01-01

    Background Climate change and associated increases in climate variability will likely further exacerbate global health disparities. More research is needed, particularly in developing countries, to accurately predict the anticipated impacts and inform effective interventions. Objectives Building on the information presented at the 2009 Joint Indo–U.S. Workshop on Climate Change and Health in Goa, India, we reviewed relevant literature and data, addressed gaps in knowledge, and identified prio...

  2. Biological effects of climate change: An introduction to the field and a survey of current research

    OpenAIRE

    Kristiansen, Gørill

    1993-01-01

    This report presents a survey of international (Chapter 2) as well as national research activities within 13 selected countries (Chapter 3) in the field of biological effects of climate change. In addition, a brief overview of potential changes within natural ecosystems in response to climate change is given (Chapter 1). This part is intended to serve as a quick introduction for biologists who lack previous experience with the whole or parts of the field of climate change impact studies. The ...

  3. Responding to Climate Change at the Poles: Findings from the National Research Council's Reports on Climate Intervention

    Science.gov (United States)

    Russell, L. M.; McNutt, M. K.; Abdalati, W.; Caldeira, K.; Doney, S. C.; Falkowski, P. G.; Fetter, S.; Fleming, J. R.; Hamburg, S.; Morgan, G.; Penner, J.; Pierrehumbert, R.; Rasch, P. J.; Snow, J. T.; Wilcox, J.

    2015-12-01

    Earlier this year the National Research Council of the US National Academy of Sciences released a pair of reports on two strategies of climate intervention in order to reduce the risks of negative impacts from climate change. The first of the pair of reports discusses the opportunities and challenges in carbon capture and long-term, safe sequestration. The second report discusses several approaches to reflecting sunlight to cool Earth, including the risks, time scales, costs, and socio-economic, and political considerations. The primary conclusion from these pair of reports is that mitigation and adaptation are still our best choices in terms of cost and low risk for reducing harmful effects from climate change: there is no "silver bullet." Given that the polar regions of the planet are the most sensitive to climate change, the reports also touched on the potential for regional climate intervention. The majority of the methods that are currently under discussion and for which there is a body of peer-reviewed research would have global impacts, with but few exceptions.

  4. ANI [American Nuclear Insurers] support and research facility nuclear liability insurance inspection program

    International Nuclear Information System (INIS)

    American Nuclear Insurers (ANI), a voluntary association of insurance companies, provides property and nuclear liability insurance protection to the nuclear industry. It generally offers insurance coverage to nuclear facilities, suppliers, and transporters for the following: (1) their liability for damages because of bodily injury and/or property damage caused by the nuclear energy hazard, and (2) all-risk damage to nuclear facilities. Among the range of facilities and suppliers insured by ANI are (a) operators of nuclear power plants that supply electricity for the general public, (b) operators of nuclear testing and research reactors, (c) fuel fabricators that manufacture fuel for use in reactors, (d) operators of facilities that dispose of nuclear waste that cannot be salvaged, (e) facilities that maintain and repair equipment used at nuclear facilities, (f) nuclear laundries, and (g) low-level-waste processors. The fundamental goal of the ANI nuclear engineering inspection program is to provide protection to pool members' assets by reducing insurance risk

  5. NSTX Report on FES Joint Facilities Research Milestone 2010

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R.; Ahn, J- W.; Gray, T. K.; McLean, A. G.; Soukhanovskii, V. A.

    2011-03-24

    Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ν*, beta β, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

  6. Recent LAMPF [Los Alamos Meson Physics Facility] research using muons

    International Nuclear Information System (INIS)

    In addition to the core programs in nuclear and particle physics, diverse experiments have been carried out that address interdisciplinary and applied topics at the Los Alamos Meson Physics Facility (LAMPF). These include muon-spin-relaxation experiments to study magnetic dynamics in spin glasses and electronic structure in heavy-fermion superconductors; muon channeling experiments to provide information on pion stopping sites in crystals; tomographic density reconstruction studies using proton energy loss; and radiation-effects experiments to explore microstructure evolution and to characterize materials for fusion devices and high-intensity accelerators. Finally, the catalysis of the d-t fusion reaction using negative muons has been extensively investigated with some surprising results including a stronger than linear dependence of the mesomolecular formation rate on target density and the observation of 150 fusions per muon under certain conditions. Recent results in those programs involving pions and muons interacting with matter are discussed

  7. Ground broken for Virginia Institute for Performance Engineering and Research facility

    OpenAIRE

    Callaway, Curtis

    2005-01-01

    The Virginia Institute for Performance Engineering and Research (VIPER) broke ground today on its research and testing facility located at Virginia International Raceway. VIPER is a resource to the racing and automotive industries, providing a sophisticated testing environment and world-class research capabilities in the field of vehicle dynamics.

  8. Research on Climate Change and Its Impacts Needs Freedom of Research

    OpenAIRE

    Nicole Mölders

    2013-01-01

    Climate change captured my interest as a teenager when, at the dining table, my dad talked about potential anthropogenic climate changes. He brought up subjects such as “climate could change if the Siberian Rivers were to be deviated to the South for irrigation of the (semi) arid areas of the former Soviet Union”. Other subjects were afforestation in the Sahel to enhance precipitation recycling, deforestation in the Tropics that could have worldwide impacts on climate, the local climate impac...

  9. Perceptions of climate change in China:The research and policy connection

    Institute of Scientific and Technical Information of China (English)

    LiHua Zhou; J Scott Hauger; Ning Liu; HuiLing Lu

    2014-01-01

    Global climate change has evolved from a scientific problem into an economic and political problem of worldwide inter-est. National perspectives play a crucial role in addressing climate change. Mutual understanding of perspectives is nec-essary to result in rational policies and a consensus among stakeholders with divergent interests. Conceptual frameworks for understanding the problem of climate change in China, the largest developing country and the largest greenhouse gas emitter, are of great significance to national and international efforts to address the problems of climate change. Chinese perceptions of climate change as a sustainable development problem have recently been in tension with an emerging Western perspective that frames climate change as a security issue. This paper explores Chinese perceptions of climate change as expressed in recent governmental policy statements, public opinion surveys, and academic scholarship with a focus on publications in Chinese-language journals, often unfamiliar in the West. It looks at the relationship between Chinese research and policy and finds that the Chinese policy frame of climate change as a sustainable development problem draws from the body of domestic research and is reflective of the perspectives and multidisciplinary approach of Chinese researchers in areas of climate change.

  10. Karlsruhe Nuclear Research Center, Institute for Meteorology and Climate Research. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    The Institute for Meteorology and Climate Research is operated by Karlsruhe Nuclear Research Centre in cooperation with Karlsruhe University. It investigates mesoscale and global atmospheric processes. Work on mesoscale processes focuses on interactions between atmosphere, soil and vegetation via the exchange of momentum, energy, water, and materials. Another field of primary interest are the flow processes and turbulent exchange processes in the lower troposphere. Parallel to the experiments, numerical simulation models for describing and predicting mesospheric climate-relevant processes and atmospheric exchange processes were used and improved upon. For remote processing of atmospheric parameters, a satellite-based data processing system was used for recording land surface parameters and vertical profiles and meteorological variables that are applicable for climatological studies and for the validation of numerical models. For recording and interpretation of the spatial and time-dependent distribution of trace elements, measuring instruments in the field of air chemistry were newly developed or improved upon, especially with a view towards high time resolution of the measured data. Ozone research is a key issue of the remote measurements. Contributions were made primarily in the framework of international research programmes (e.g. EASOE) on the degradation of the atmospheric ozone layer in the higher latitudes of the northern hemisphere. In addition to the experimental investigations, the transport of stratospheric trace elements was simulated numerically. (orig./KW)

  11. Radiological Research Accelerator Facility. Progress report, April 1, 1984-March 31, 1985

    International Nuclear Information System (INIS)

    The aim of the Radiological Research Accelerator Facility (RARAF) was to provide a source of monoenergetic neutrons for studies in radiation biology, dosimetry and microdosimetry. The research has provided insight into the biological action of radiation and its relation to energy distribution in the cell as described by the theory of dual radiation action. This status report on the facility includes descriptions of the capabilities and layout, staffing, radiation safety, and a chronological account of the development and use of the facilities. 5 references, 2 figures

  12. Climate Research by K-12 Students: Can They Do It? Will Anybody Care?

    Science.gov (United States)

    Brooks, D. R.

    2011-12-01

    Starting from the premise that engaging students in authentic science research is an activity that benefits science education in general, it is first necessary to consider whether students, in collaboration with teachers and climate scientists, can do climate-related research that actually has scientific value. A workshop held in November 2010, co-sponsored by NSF and NOAA, addressed this question. It took as its starting point this "scientific interest" test: "If students conduct a climate-related research project according to protocols designed in collaboration with climate scientists, when they get done, will any of those scientists care whether they did it or not?" If the answer to this question is "yes," then the project may constitute authentic research, but if the answer is "no," then the project may have educational value, but it is not research. This test is important because only when climate scientists (and other stakeholders interested in climate and climate change) are invested in the outcomes of student research will meaningful student research programs with sustainable support be forthcoming. The absence of climate-related projects in high-level student science fair competitions indicates that, currently, the investment and infrastructure required to support student climate research is lacking. As a result, climate science is losing the battle for the "hearts and minds" of today's best students. The critical task for student climate research is to define projects that are theoretically and practically accessible. This excludes the "big questions" of climate science, such as "Is Earth getting warmer?", but includes many observationally based projects that can help to refine our understanding of climate and climate change. The characteristics of collaborative climate research with students include: 1. carefully drawn distinctions between inquiry-based "learning about" activities and actual research; 2. an identified audience of potential stakeholders

  13. Report on the progress of researches using JAERI facilities in common, fiscal 1979

    International Nuclear Information System (INIS)

    The utilization of the facilities in the Japan Atomic Energy Research Institute in common in 1979 has finished in active state, and the results of the researches have reached the stage of publication. The subjects of the researches spread over wide fields, and in 1979 also, extremely diversified researches were carried out. In this report, these results were collected in one book, and it is desirable to utilize it actively. It is expected that the research activities using the JAERI facilities in common will be promoted more and more widely and powerfully, but there are many problems in the manpower, equipment, space and so on required for maintaining and promoting such activities, and it is necessary to improve and strengthen the environment of researches. The number of the research themes is 125. In the field of general researches, the researches on radio-chemistry, the utilization of radiation and the effects of irradiation were mostly carried out, while in cooperative researches, the researches were mainly concerned with nuclear reactor engineering and nuclear reactor materials. The total number of visitors was 3863. The facilities offered to the common utilization were JRR-2, JRR-3, JRR-4, Co-60 irradiation facility, hot laboratory, linear accelerator, No. 1 and No. 2 electron accelerators. The abstracts of the papers are reported. (Kako, I.)

  14. Tackling extremes: Challenges for ecological and evolutionary research on extreme climatic events.

    NARCIS (Netherlands)

    Bailey, Liam; Van de Pol, M.

    2016-01-01

    Summary Extreme climatic events (ECEs) are predicted to become more frequent as the climate changes. A rapidly increasing number of studies – though few on animals – suggest that the biological consequences of ECEs can be severe. However, ecological research on the impacts of ECEs has been limited b

  15. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  16. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  17. Syrinx - a research program for the pulsed power radiation facility

    International Nuclear Information System (INIS)

    Syrinx is a targeted research program with the objective to study, through practical examples, the fundamentals necessary to define the details of all parts which will be required for a new powerful plasma radiation source. The current level of activities of Syrinx is in the design and construction of a multi-megajoule class IES based pulsed power driver which will use long conduction Plasma Opening Switch technology. The present paper reviews mainly the basic experimental research of the POS a nd Z-pinch accomplished in the framework of Syrinx project. This work has a unique international level of participation, from conceptual designs to particular investigations. (author). 9 figs., 17 refs

  18. Gas-gun facility for shock wave research at BARC

    International Nuclear Information System (INIS)

    For carrying out shock-wave experiments on materials, we have built a 63 mm diameter gas-gun facility at our laboratory. It is capable of accelerating projectiles (about half kg in weight) to velocities up to 1 km/s using N2 and He gases. These on impacting a target generate shock pressures up to 40 GPa, depending upon the impedance of the impactor and the target. The barrel of the gun is slotted so that a keyed projectile can be fired for combined compression- shear studies. Large samples can be shocked (about 60 mm diameter and 5-10 mm thick), with pressures lasting for a few microseconds. The gun is similar in design to the one at Washington State University. A number of diagnostic techniques have also been developed. These include measurement of projectile velocity, tilt between the impactor and the target, shock velocity in the target, and time resolved in-material stress wave histories in the shock loaded samples. Recovery capsules have also been made to retrieve shocked samples on unloading, which are then analysed using microscopic techniques like x-ray diffraction, Raman and electron microscopy. The gun has been performing well and has already been used for a few phase transition studies. (author). 73 refs., 42 figs

  19. 3H research in the University of Tokyo facilities, (2)

    International Nuclear Information System (INIS)

    In nuclear fusion reactors and tritium facilities, as the method to remove tritium gas (T2, HT, DT), the catalytic oxidation into steam (T2O, HTO, DTO) and subsequent drying with an adsorbent are promising. The experiments made on the phase of the catalytic oxidation of tritium gas are described with some discussion. HT gas, and H2 at the same time, are generated by the electrolysis of tritiated water. When the concentration in a tank has reached a certain level, the air containing tritium is allowed to flow into a system for investigating the oxidation characteristic of a catalyst. Downstream of this oxidation tower, there is a drying tower of molecular sieve. In both cases of 20% palladium asbestos and copper oxide, the relation between the unreacted fraction and the reciprocal of flow rate is linear. In the case of copper oxide, when the inlet concentration of H2 or HT was varied, the reaction velocity constant is dependent on H2 concentration but independent on HT concentration. (J.P.N.)

  20. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    International Nuclear Information System (INIS)

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy's weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization's safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG ampersand G Rocky Flats Plant (RFP)

  1. Paul Scherrer Institute Scientific and Technical Report 2000. Volume VI: Large Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Zumkeller, Lotty [eds.

    2001-07-01

    The PSI Department Large Research Facilities (GFA) joins the efforts to provide an excellent research environment to Swiss and foreign research groups on the experimental facilities driven by our high intensity proton accelerator complex. Its divisions care for the running, maintenance and enhancement of the accelerator complex, the primary proton beamlines, the targets and the secondary beams as well as the neutron spallation source SINQ. The division for technical support and coordination provides for technical support to the research facility complementary to the basic logistic available from the department for logistics and marketing. Besides running the facilities, the staff of the department is also involved in theoretical and experimental research projects. Some of them address basic scientific questions mainly concerning the properties of micro- or nanostructured materials: experiments as well as large scale computer simulations of molecular dynamics were performed to investigate nonclassical materials properties. Others are related to improvements or extensions of the capabilities of our facilities. We also report on intriguing results from applications of the neutron capture radiography, the prompt gamma activation method and the isotope production facility at SINQ.

  2. Paul Scherrer Institute Scientific and Technical Report 2000. Volume VI: Large Research Facilities

    International Nuclear Information System (INIS)

    The PSI Department Large Research Facilities (GFA) joins the efforts to provide an excellent research environment to Swiss and foreign research groups on the experimental facilities driven by our high intensity proton accelerator complex. Its divisions care for the running, maintenance and enhancement of the accelerator complex, the primary proton beamlines, the targets and the secondary beams as well as the neutron spallation source SINQ. The division for technical support and coordination provides for technical support to the research facility complementary to the basic logistic available from the department for logistics and marketing. Besides running the facilities, the staff of the department is also involved in theoretical and experimental research projects. Some of them address basic scientific questions mainly concerning the properties of micro- or nanostructured materials: experiments as well as large scale computer simulations of molecular dynamics were performed to investigate nonclassical materials properties. Others are related to improvements or extensions of the capabilities of our facilities. We also report on intriguing results from applications of the neutron capture radiography, the prompt gamma activation method and the isotope production facility at SINQ

  3. Integrating solar energy and climate research into science education

    Science.gov (United States)

    Betts, Alan K.; Hamilton, James; Ligon, Sam; Mahar, Ann Marie

    2016-01-01

    This paper analyzes multi-year records of solar flux and climate data from two solar power sites in Vermont. We show the inter-annual differences of temperature, wind, panel solar flux, electrical power production, and cloud cover. Power production has a linear relation to a dimensionless measure of the transmission of sunlight through the cloud field. The difference between panel and air temperatures reaches 24°C with high solar flux and low wind speed. High panel temperatures that occur in summer with low wind speeds and clear skies can reduce power production by as much as 13%. The intercomparison of two sites 63 km apart shows that while temperature is highly correlated on daily (R2=0.98) and hourly (R2=0.94) timescales, the correlation of panel solar flux drops markedly from daily (R2=0.86) to hourly (R2=0.63) timescales. Minimum temperatures change little with cloud cover, but the diurnal temperature range shows a nearly linear increase with falling cloud cover to 16°C under nearly clear skies, similar to results from the Canadian Prairies. The availability of these new solar and climate datasets allows local student groups, a Rutland High School team here, to explore the coupled relationships between climate, clouds, and renewable power production. As our society makes major changes in our energy infrastructure in response to climate change, it is important that we accelerate the technical education of high school students using real-world data.

  4. GIS and crop simulation modelling applications in climate change research

    Science.gov (United States)

    The challenges that climate change presents humanity require an unprecedented ability to predict the responses of crops to environment and management. Geographic information systems (GIS) and crop simulation models are two powerful and highly complementary tools that are increasingly used for such p...

  5. Research and development aiming at safety and reliability upgrading of nuclear facilities

    International Nuclear Information System (INIS)

    In order to proceed development and application of nuclear energy, it is necessary and essential to secure safety and upgrade reliability on nuclear reactors and nuclear fuel cycle facilities. The Japan Atomic Energy Research Institute (JAERI) has proceeded some safety researches on nuclear reactors under a base of integral scientific technology on nuclear energy, nuclear fuel cycle facilities and radioactive wastes processing facilities according to concept and annual program of the Nuclear Safety Commission. And, a safety research on radiation protection is also promoted under the annual program on safety research of environmental radioactivity. Here were outlined on the researches on nuclear reactors and nuclear fuel cycle facilities among safety researches carried out at JAERI, and also introduced on some results on researches on severe accident, researches on nuclear hydrothermal power interaction between nuclear reaction feature of fuel and fluid-dynamic features of cooling water heated by nuclear and researches on upgrading of reprocessing process, as topics except the research results already described in previous report. (G.K.)

  6. The Los Alamos National Laboratory Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    The Physical makeup is presented of the Weapons Neutron Research (WNR) facilitiy at the Los Alamos National Laboratory with emphasis on the critical components. The operating experience is discussed including failure modes and their subsequent resolution. The present target-moderator configuration is given and plans for development and improvements. (orig.)

  7. Fire protection research for DOE facilities: FY 83 year-end report

    International Nuclear Information System (INIS)

    We summarize our research in FY 83 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies of energy technology facilities in order to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are currently advancing three major task areas: (1) the identification of fire hazards unique to fusion energy facilities, (2) the evaluation of accepted fire-management measures to meet the negate hazards, and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  8. Fire-protection research for DOE facilities: FY 82 year-end report

    International Nuclear Information System (INIS)

    We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  9. Fire-protection research for DOE facilities: FY 82 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Priante, S.J.; Foote, K.L.

    1983-09-02

    We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  10. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 3: Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER) atmospheric sciences and carbon dioxide research programs provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the Environmental Sciences Division of OHER, the Atmospheric Chemistry Program continues DOE`s long-term commitment to understanding the local, regional, and global effects of energy-related air pollutants. Research through direct measurement, numerical modeling, and analytical studies in the Atmospheric Chemistry Program emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, photochemically produced oxidant species, nitrogen-reservoir species, and aerosols. The atmospheric studies in Complex Terrain Program applies basic research on atmospheric boundary layer structure and evolution over inhomogeneous terrain to DOE`s site-specific and generic mission needs in site safety, air quality, and climate change. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements, the Computer Hardware, Advanced Mathematics and Model Physics, and Quantitative Links program to form DOE`s contribution to the US Global Change Research Program. The description of ongoing atmospheric and climate research at PNL is organized in two broad research areas: atmospheric research; and climate research. This report describes the progress in fiscal year 1993 in each of these areas. Individual papers have been processed separately for inclusion in the appropriate data bases.

  11. Extending Lkn Climate Regionalization with Spatial Regularization: AN Application to Epidemiological Research

    Science.gov (United States)

    Liss, Alexander; Gel, Yulia R.; Kulinkina, Alexandra; Naumova, Elena N.

    2016-06-01

    Regional climate is a critical factor in public health research, adaptation studies, climate change burden analysis, and decision support frameworks. Existing climate regionalization schemes are not well suited for these tasks as they rarely take population density into account. In this work, we are extending our recently developed method for automated climate regionalization (LKN-method) to incorporate the spatial features of target population. The LKN method consists of the data limiting step (L-step) to reduce dimensionality by applying principal component analysis, a classification step (K-step) to produce hierarchical candidate regions using k-means unsupervised classification algorithm, and a nomination step (N-step) to determine the number of candidate climate regions using cluster validity indexes. LKN method uses a comprehensive set of multiple satellite data streams, arranged as time series, and allows us to define homogeneous climate regions. The proposed approach extends the LKN method to include regularization terms reflecting the spatial distribution of target population. Such tailoring allows us to determine the optimal number and spatial distribution of climate regions and thus, to ensure more uniform population coverage across selected climate categories. We demonstrate how the extended LKN method produces climate regionalization can be better tailored to epidemiological research in the context of decision support framework.

  12. Disposal of radioactive waste from nuclear research facilities

    CERN Document Server

    Maxeiner, H; Kolbe, E

    2003-01-01

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  13. Gordon Research Conference on Radiation & Climate in 2009, July 5 -10

    Energy Technology Data Exchange (ETDEWEB)

    Quiang Fu

    2009-07-10

    The 2009 Gordon Research Conference on Radiation and Climate will present cutting-edge research on the outstanding issues in global climate change with focus on the radiative forcing and sensitivity of the climate system and associated physical processes. The Conference will feature a wide range of topics, including grand challenges in radiation and climate, radiative forcing, climate feedbacks, cloud processes in climate system, hydrological cycle in changing climate, absorbing aerosols and Asian monsoon, recent climate changes, and geo-engineering. The invited speakers will present the recent most important advances and future challenges in these areas. The Conference will bring together a collection of leading investigators who are at the forefront of their field, and will provide opportunities for scientists especially junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented.

  14. Yearly program of safety research for nuclear facilities and others

    International Nuclear Information System (INIS)

    The development of FBRs in Japan has steadily progressed, and subsequently to the experimental reactor 'Joyo' and the prototype reactor 'Monju', by promoting the construction of a demonstration reactor, the stage of verifying and acquiring skill of the electricity generation plant technology of practical scale, improving the performance and establishing the economical efficiency is about to begin. The development of FBRs in Japan has been advanced independently as a national project, and the method of preventing accidents in the actual reactors has been thoroughly taken. 'On the way of thinking in the safety evaluation of FBRs' was decided by the Nuclear Safety Commission. When the safety research from 1987 is systematized, as the constituents of safety logic, the way of thinking of the defense in depth, the way of thinking of the classification according to importance, the way of thinking of multilayer barriers against radioactive substances, and the way of thinking on severe accidents were investigated. The research concerning the decision of safety design and evaluation policy, and the safety research regarding accident prevention and relaxation, accident evaluation and severe accidents are reported. (Kako, I.)

  15. The status of facilities at China Advanced Research Reactor

    International Nuclear Information System (INIS)

    A 60 MW research reactor, so called China Advanced Research Reactor (CARR,) was built in China Institute of Atomic Energy (CIAE), located in the southwest of Beijing and about 37 kilometers away from the central city. CARR is a tank-in-pool inverse neutron trap type reactor using D2O reflector, the designed optimal undisturbed thermal neutron flux is 8×1014 n⋅cm-2⋅s-1. A liquid D2 cold source will be equipped and the installation will be finished at the end of 2015. As a multipurpose research reactor, its main applications include neutron scattering, neutron activation analysis, isotope production, silicon doping, fuel element test, fundamental nuclear physics and so on. On March 13rd, 2012 CARR realized the 72 h stable operation with the full power. And the official operation license is expected to be issued at the beginning of next year. Cooperating with the internal and international users in the first phase ten instruments complete construction and are under commissioning, which are High Resolution Powder Diffractometer, High Intensity Powder Diffractometer, Residual Stress Diffractometer, Texture Diffractometer, Four Circle Diffractometer, Reflectometer, Small Angle Neutron Scattering, two Thermal Triple Axis Spectrometers and Isotope Separator On-Line instrument . In the second phase 7 instruments were approved and are under construction now. Although the operation license was not issued, the reactor was permitted to do the testing run several times and some results were obtained during the instrument commissioning.

  16. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  17. A Research on The Effect of Organizational Safety Climate Upon The Safe Behaviors

    OpenAIRE

    2009-01-01

    This study aims to investigate the relationship between the organizational safety climate and the safety behaviors of the employees. It is been accepted by many researchers that unsafe employee behavior at work place is one of the primary determinants of occupational accidents. More recently researchers suggest that safe/unsafe behaviors of the employees are affected by certain organizational factors. Recent studies accept organizational safety climate as one these factors that affects safe/u...

  18. Neutron scattering facilities at the research reactor DR3

    International Nuclear Information System (INIS)

    DR3 is a heavy-water-moderated 10 MW thermal neutron research reactor. The 26 fuel elements contain 2.5-3.5 kg uranium enriched to less than 20% 235U. Neutron beams emerge from four horizontal through-tubes tangential to the reactor core. Two of the horizontal tubes are used for neutron scattering experiments in the field of materials research. The vertical tubes are predominantly used for isotope production and materials testing. The thermal neutron flux is about 3.5x1013 n/cm2/s in the centre of the 7-inch diameter horizontal through-tubes. The thermal neutron flux in equilibrium with the D2O moderator (50 deg. C) has a nearly Maxwellian distribution peaking at 1.1 A. At the maximum flux position in the two horizontal through-tubes used for materials research are installed scatterers designed with a considerably higher scattering power for thermal neutrons than for fast neutrons and gamma-rays. The scatterer is either a 10 mm slab of light water, providing a nearly thermal Maxweellian spectrum at the beam port, or a chamber filled with supercritical hydrogen gas at 16 atmospheres and 38 K, a so-called cold neutron source. The spectrum from a cold source has a considerable flux enhancement in the long wavelength region when compared to the thermal water scatterer. Neutron beams are available for materials research from two thermal and two cold beam ports in the Reactor Hall. One of the cold beams is shared with a 20 meter long cold-neutron guide-tube which provides three beam ports in a separate building, the Neutron House, with could neutrons. Only neutrons that have undergone total reflection from the Ni-coated glass plates in the bent guide-tube arrive at the end of the guide tube in the Neutron House. The angle of total reflection is proportional to the neutron wavelength. Therefore almost no neutrons of wavelength below a certain ''critical'' wavelength are transmitted through the guide-tube, and the experimental equipment installed in the Neutron Houyse

  19. Upgrading of neutron radiography/tomography facility at research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Bar, Waleed; Mongy, Tarek [Atomic Energy Authority, Cairo (Egypt). ETRR-2; Kardjilov, Nikolay [Helmholtz Zentrum Berlin (HZB) for Materials and Energy, Berlin (Germany)

    2014-03-15

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  20. Upgrading of neutron radiography/tomography facility at research reactor

    International Nuclear Information System (INIS)

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  1. White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research

    Science.gov (United States)

    Pace, N.

    1973-01-01

    The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

  2. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  3. Occupational radiation protection in industrial and research facilities

    International Nuclear Information System (INIS)

    This paper briefly reviews worldwide industrial/research occupational doses associated with irradiation, radiography, well logging, gauging, laboratory research and isotope production. According to the 2000 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, 14% of the annual occupational collective dose (360 man·Sv for the period 1990-1994) derived from industrial uses, compared with 50% from the nuclear fuel cycle. Although worldwide occupational doses indicate general compliance with safety standards and a good safety record, serious overexposures occur frequently enough to cause concern. In the period 1989-1991, there were three fatal radiation accidents at irradiators. In addition, radiography overexposures continue to be frequently reported. Radiography experience in the United States of America included about 70 reported radiography overexposures during the period 1997 to mid-2002. Eight of these entailed acute overexposures resulting from stuck or detached radiation sources, or simple failure to retract a source, and failure to perform proper surveys. The challenges associated with industrial occupational protection include a lack of defence in depth (relative to fuel cycle operations), a large variety of work site conditions encountered and personnel limitations due, in many instances, to the small size of the organizations involved. The path forward to providing improved occupational radiation protection should include a strong emphasis on worker training, consistency of operations (seeking best practices), and co-operation and communication among regulatory authorities. (author)

  4. Annual report of the CTR blanket engineering research facility in 1993

    International Nuclear Information System (INIS)

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor (CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1993. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (author)

  5. Annual report of the CTR Blanket Engineering research facility in 1992

    International Nuclear Information System (INIS)

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor (CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1992. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (J.P.N.)

  6. Report on improved use of research facilities and topics relevant for integration, and training schemes

    OpenAIRE

    Nykänen, Arja

    2007-01-01

    This report describes the possibilities of different research facilities to fulfil the research needs established by the participating countries of the CORE Organic project. The report is based on information given in the WP4 report, WP6 report and WP6 final report.

  7. Annual report of the CTR Blanket Engineering research facility in 1996

    International Nuclear Information System (INIS)

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor (CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1996. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (J.P.N.)

  8. Annual report of the CTR Blanket Engineering research facility in 1994

    International Nuclear Information System (INIS)

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor(CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1994. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (author)

  9. CIRCUS and DESIRE: Experimental facilities for research on natural-circulation-cooled boiling water reactors

    International Nuclear Information System (INIS)

    At the Delft University of Technology two thermohydraulic test facilities are being used to study the characteristics of Boiling Water Reactors (BWRs) with natural circulation core cooling. The focus of the research is on the stability characteristics of the system. DESIRE is a test facility with freon-12 as scaling fluid in which one fuel bundle of a natural-circulation BWR is simulated. The neutronic feedback can be simulated artificially. DESIRE is used to study the stability of the system at nominal and beyond nominal conditions. CIRCUS is a full-height facility with water, consisting of four parallel fuel channels and four parallel bypass channels with a common riser or with parallel riser sections. It is used to study the start-up characteristics of a natural-circulation BWR at low pressures and low power. In this paper a description of both facilities is given and the research items are presented. (author)

  10. Life Science Research Facility materials management requirements and concepts

    Science.gov (United States)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  11. Climate Discovery: Integrating Research With Exhibit, Public Tours, K-12, and Web-based EPO Resources

    Science.gov (United States)

    Foster, S. Q.; Carbone, L.; Gardiner, L.; Johnson, R.; Russell, R.; Advisory Committee, S.; Ammann, C.; Lu, G.; Richmond, A.; Maute, A.; Haller, D.; Conery, C.; Bintner, G.

    2005-12-01

    The Climate Discovery Exhibit at the National Center for Atmospheric Research (NCAR) Mesa Lab provides an exciting conceptual outline for the integration of several EPO activities with other well-established NCAR educational resources and programs. The exhibit is organized into four topic areas intended to build understanding among NCAR's 80,000 annual visitors, including 10,000 school children, about Earth system processes and scientific methods contributing to a growing body of knowledge about climate and global change. These topics include: 'Sun-Earth Connections,' 'Climate Now,' 'Climate Past,' and 'Climate Future.' Exhibit text, graphics, film and electronic media, and interactives are developed and updated through collaborations between NCAR's climate research scientists and staff in the Office of Education and Outreach (EO) at the University Corporation for Atmospheric Research (UCAR). With funding from NCAR, paleoclimatologists have contributed data and ideas for a new exhibit Teachers' Guide unit about 'Climate Past.' This collection of middle-school level, standards-aligned lessons are intended to help students gain understanding about how scientists use proxy data and direct observations to describe past climates. Two NASA EPO's have funded the development of 'Sun-Earth Connection' lessons, visual media, and tips for scientists and teachers. Integrated with related content and activities from the NASA-funded Windows to the Universe web site, these products have been adapted to form a second unit in the Climate Discovery Teachers' Guide about the Sun's influence on Earth's climate. Other lesson plans, previously developed by on-going efforts of EO staff and NSF's previously-funded Project Learn program are providing content for a third Teachers' Guide unit on 'Climate Now' - the dynamic atmospheric and geological processes that regulate Earth's climate. EO has plans to collaborate with NCAR climatologists and computer modelers in the next year to develop

  12. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1982

    International Nuclear Information System (INIS)

    The results of the research carried out in fiscal 1982 commonly using the facilities in the Nuclear Engineering Research Laboratory, University of Tokyo, are summarized in this report. In the utilization of the nuclear reactor, the maximum output was limited to 500W, because it was necessary to examine the growth of the abnormal protrusion having arisen on fuel cladding. The linear accelerator was utilized almost perfectly. The total number of those who commonly utilized the facilities was 2,468, suggesting the importance of the role of common utilization. The summaries of the results of 12 on-pile researches, 11 off-pile researches and 18 researches using the linear accelerator are collected. The committee meetings held in fiscal 1982 are listed. The names of the members of various committees and the names of those in charge of various experiments are given. (Kako, I.)

  13. Soil moisture and root water uptake in climate models. Research Programme Climate Changes Spatial Planning

    OpenAIRE

    Dam, van, P.H.A.; Metselaar, K.; Wipfler, E.L.; Feddes, R.A.; Meijgaard, van, E.; Hurk, van den, B.J.J.M.

    2011-01-01

    More accurate simulation of the energy and water balance near the Earth surface is important to improve the performance of regional climate models. We used a detailed ecohydrological model to rank the importance of vegetation and soil factors with respect to evapotranspiration modeling. The results show that type of lower boundary condition, root zone depth, and temporal course of leaf area index have the strongest effect on yearly and monthly evapotranspiration. Soil texture data from the WI...

  14. Impact of Giardia vaccination on asymptomatic Giardia infections in dogs at a research facility

    OpenAIRE

    Anderson, Kirsten A.; Brooks, Andrew S.; Morrison, Annette L.; Reid-Smith, Richard J.; Martin, S. Wayne; Benn, Denna M.; Peregrine, Andrew S.

    2004-01-01

    Feces were collected from 107 asymptomatic dogs at a research facility in Guelph, Ontario. The prevalence of Giardia infection was 11% (12/107). To assess the effectiveness of Giardia vaccination for treatment of Giardia carriage, 9 additional asymptomatic Giardia antigen-positive dogs were brought into the facility. The Giardia antigen-positive dogs were then randomly allocated to receive either vaccine (n = 10) or a saline placebo (n = 10). Feces were then monitored monthly for 6 mo for Gia...

  15. Delegation lobbies Ottawa to simplify funding of large national research facilities

    CERN Multimedia

    Henderson, M

    2003-01-01

    "Two respected proponents of a strong national innovation system led a delegation to Ottawa last week for five days of meetings to push for dramatic change in how Ottawa funds Canada's national research facilities. The Saskatchewan delegation met with key ministers, secretaries of state, DMs and opposition parties to argue for a consolidation of funding sources so that they flow to national facilities through one institution" (1 page).

  16. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.E.; Harbour, J.L.

    1993-06-01

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

  17. A quantitative analysis of the causes of the global climate change research distribution

    DEFF Research Database (Denmark)

    Pasgaard, Maya; Strange, Niels

    2013-01-01

    investigates whether the need for knowledge on climate changes in the most vulnerable regions of the world is met by the supply of knowledge measured by scientific research publications from the last decade. A quantitative analysis of more than 15,000 scientific publications from 197 countries investigates the...... distribution of climate change research and the potential causes of this distribution. More than 13 explanatory variables representing vulnerability, geographical, demographical, economical and institutional indicators are included in the analysis. The results show that the supply of climate change knowledge...... is biased toward richer countries, which are more stable and less corrupt, have higher school enrolment and expenditures on research and development, emit more carbon and are less vulnerable to climate change. Similarly, the production of knowledge, analyzed by author affiliations, is skewed away...

  18. RESAMA: A Network for Monitoring Health and Husbandry Practices in Aquatic Research Facilities.

    Science.gov (United States)

    Legendre, Laurent; Guillet, Brigitte; Leguay, Emmanuel; Meunier, Emmanuel; Labrut, Sophie; Keck, Nicolas; Bardotti, Massimiliano; Michelet, Lorraine; Sohm, Frédéric

    2016-07-01

    Health monitoring is a crucial aspect of the management of any research animal house. RESAMA is a network strong of 60 academic and private partners acting in France since the end of 2012. The network aims to increase awareness of animal caretakers and researchers on health management issues in facilities holding aquatic model species (zebrafish, Xenopus, medaka, Mexican tetra). To do so, each partner research facility will be visited at least once. The visiting team is composed at least of one veterinarian and one zootechnician specialized in aquatic species. The visit results in a health-monitoring assessment of the facility, which includes a sampling for histo-pathological, bacteriological, and molecular pathogen detection. During the visit, rearing practices are also reviewed through an interview of animal caretakers. However, the present report essentially focuses on the health-monitoring aspect. The ultimate goal of the project is to provide a network-wide picture of health issues in aquatic facilities. Performed in parallel, the rearing practice assessment will ultimately help to establish rational relationship between handling practices and animal health in aquatic facilities. The study is still in progress. Here, we describe the results to be drawn from an analysis of the 23 facilities that had been visited so far. We sampled 720 fish and 127 amphibians and performed a little less than 1400 individual tests. PMID:27192449

  19. Report of results of joint research using facilities in Japan Atomic Energy Research Institute in fiscal year 1987

    International Nuclear Information System (INIS)

    The total themes of the joint research in fiscal year 1987 were 127. These are shown being classified into the general joint research in Tokai and Takasaki, neutron diffraction research and cooperative research. The general joint research is the standard utilization form using research reactors JRR-2 and JRR-4, Co-60 gamma irradiation facilities in Tokai and Takasaki, an electron beam irradiation facility in Takasaki, an electron beam linear accelator and hot laboratories, which are opened for common utilization by Japan Atomic Energy Research Institute. The cooperative research is carried out by concluding research cooperation contracts between the researchers of universities and JAERI. In the general joint research, radioactivation analysis, radiation chemistry, irradiation effect, neutron diffraction and so on are the main themes, and in the cooperative research, reactor technology, reactor materials, nuclear physics measurement and others are the main themes. The total number of visitors was 2629 man-day, and decreased due to the stop of JRR-2. Also other activities are reported. The abstracts of respective reports are collected in this book. (Kako, I.)

  20. Modern indoor climate research in Denmark from 1962 to the early 1990s

    DEFF Research Database (Denmark)

    Andersen, I; Gyntelberg, F

    2011-01-01

    International Indoor Air Symposium in Copenhagen 1978--this research spread to many countries and today it is carried out globally by probably 2000 scientists. This paper recounts the history of Danish indoor climate research, focusing on the three decades from the early 1960s to the founding of the Indoor Air...... journal in 1991. The aim of this paper is to summarize what was learned in those earlier years and to call to the attention of researchers in this area the need of multidisciplinary research, mingling epidemiological fact-finding field studies with climate chamber studies and laboratory investigations...