WorldWideScience

Sample records for climate models rcms

  1. A Framework for the Land Use Change Dynamics Model Compatible with RCMs

    Directory of Open Access Journals (Sweden)

    Xiangzheng Deng

    2013-01-01

    Full Text Available A framework of land use change dynamics (LUCD model compatible with regional climate models (RCMs is introduced in this paper. The LUCD model can be subdivided into three modules, namely, economic module, vegetation change module, and agent-based module. The economic module is capable of estimating the demand of land use changes in economic activities maximizing economic utility. A computable general equilibrium (CGE modeling framework is introduced and an approach to introduce land as a production factor into the economic module is proposed. The vegetation change module provides the probability of vegetation change driven by climate change. The agroecological zone (AEZ model is supposed to be the optimal option for constructing the vegetation change module. The agent-based module identifies whether the land use change demand and vegetation change can be realized and provides the land use change simulation results which are the underlying surfaces needed by RCM. By importing the RCMs' simulation results of climate change and providing the simulation results of land use change for RCMs, the LUCD model would be compatible with RCMs. The coupled simulation system composed of LUCD and RCMs can be very effective in simulating the land surface processes and their changing patterns.

  2. Regional interdependency of precipitation indices across Denmark in two ensembles of high-resolution RCMs

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Madsen, Henrik; Rosbjerg, Dan

    2013-01-01

    all these methods is that the climate models are independent. This study addresses the validity of this assumption for two ensembles of regional climate models (RCMs) from the Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES) project based on the land cells covering Denmark....... Daily precipitation indices from an ensemble of RCMs driven by the 40-yrECMWFRe-Analysis (ERA-40) and an ensemble of the same RCMs driven by different general circulation models (GCMs) are analyzed. Two different methods are used to estimate the amount of independent information in the ensembles....... These are based on different statistical properties of a measure of climate model error. Additionally, a hierarchical cluster analysis is carried out. Regardless of the method used, the effective number of RCMs is smaller than the total number of RCMs. The estimated effective number of RCMs varies depending...

  3. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    Science.gov (United States)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  4. Evaluation of major heat waves' mechanisms in EURO-CORDEX RCMs over Central Europe

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan; Plavcová, Eva

    2018-06-01

    The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970-2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land-atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves' magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.

  5. Effects of climate model interdependency on the uncertainty quantification of extreme rainfall projections

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Madsen, H.; Rosbjerg, Dan

    Climate Models (RCMs) and General Circulation Models (GCMs). These multi-model ensembles provide the information needed to estimate probabilistic climate change projections. Several probabilistic methods have been suggested. One common assumption in most of these methods is that the climate models...... are independent. The effects of this assumption on the uncertainty quantification of extreme rainfall projections are addressed in this study. First, the interdependency of the 95% quantile of wet days in the ENSEMBLES RCMs is estimated. For this statistic and the region studied, the RCMs cannot be assumed...

  6. How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?

    Science.gov (United States)

    Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo

    2013-02-01

    SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.

  7. Regional climate models downscaling in the Alpine area with multimodel superensemble

    Directory of Open Access Journals (Sweden)

    D. Cane

    2013-05-01

    Full Text Available The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs, are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project, which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to

  8. Regional climate models downscaling in the Alpine area with multimodel superensemble

    Science.gov (United States)

    Cane, D.; Barbarino, S.; Renier, L. A.; Ronchi, C.

    2013-05-01

    The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs), are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs) runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project), which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present) were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to reproduce well the

  9. Applicability of ranked Regional Climate Models (RCM) to assess the impact of climate change on Ganges: A case study.

    Science.gov (United States)

    Anand, Jatin; Devak, Manjula; Gosain, Ashvani Kumar; Khosa, Rakesh; Dhanya, Ct

    2017-04-01

    The negative impact of climate change is felt over wide range of spatial scales, ranging from small basins to large watershed area, which can possibly outweighs the benefits of natural water system. General Circulation Models (GCMs) has been widely used as an input to a hydrological models (HMs), to simulate different hydrological components of a river basin. However, the coarser scale of GCMs and spatio-temporal biases, restricted its use at finer resolution. If downscaled, adds one more level of uncertainty i.e., downscaling uncertainty together with model and scenario uncertainty. The outputs computed from Regional Climate Models (RCM) may aid the uncertainties arising from GCMs, as the RCMs are the miniatures of GCMs. However, the RCMs do have some inherent systematic biases, hence bias correction is a prerequisite process before it is fed to HMs. RCMs, together with the input from GCMs at later boundaries also takes topography of the area into account. Hence, RCMs need to be ranked a priori. In this study, impact of climate change on the Ganga basin, India, is assessed using the ranked RCMs. Firstly, bias correction of 14 RCM models are done using Quantile-Quantile mapping and Equidistant cumulative distribution method, for historic (1990-2004) and future scenario (2021-2100), respectively. The runoff simulations from Soil Water Assessment Tool (SWAT), for historic scenario is used for ranking of RCMs. Entropy and PROMETHEE-2 method is employed to rank the RCMs based on five performance indicators namely, Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), normalised root mean square error (NRMSE), absolute normalised mean bias error (ANMBE) and average absolute relative error (AARE). The results illustrated that each of the performance indicators behaves differently for different RCMs. RCA 4 (CNRM-CERFACS) is found as the best model with the highest value of  (0.85), followed by RCA4 (MIROC) and RCA4 (ICHEC) with  values of 0.80 and 0

  10. Impact of the choice of the precipitation reference data set on climate model selection and the resulting climate change signal

    Science.gov (United States)

    Gampe, D.; Ludwig, R.

    2017-12-01

    Regional Climate Models (RCMs) that downscale General Circulation Models (GCMs) are the primary tool to project future climate and serve as input to many impact models to assess the related changes and impacts under such climate conditions. Such RCMs are made available through the Coordinated Regional climate Downscaling Experiment (CORDEX). The ensemble of models provides a range of possible future climate changes around the ensemble mean climate change signal. The model outputs however are prone to biases compared to regional observations. A bias correction of these deviations is a crucial step in the impact modelling chain to allow the reproduction of historic conditions of i.e. river discharge. However, the detection and quantification of model biases are highly dependent on the selected regional reference data set. Additionally, in practice due to computational constraints it is usually not feasible to consider the entire ensembles of climate simulations with all members as input for impact models which provide information to support decision-making. Although more and more studies focus on model selection based on the preservation of the climate model spread, a selection based on validity, i.e. the representation of the historic conditions is still a widely applied approach. In this study, several available reference data sets for precipitation are selected to detect the model bias for the reference period 1989 - 2008 over the alpine catchment of the Adige River located in Northern Italy. The reference data sets originate from various sources, such as station data or reanalysis. These data sets are remapped to the common RCM grid at 0.11° resolution and several indicators, such as dry and wet spells, extreme precipitation and general climatology, are calculate to evaluate the capability of the RCMs to produce the historical conditions. The resulting RCM spread is compared against the spread of the reference data set to determine the related uncertainties and

  11. Applying Multimodel Ensemble from Regional Climate Models for Improving Runoff Projections on Semiarid Regions of Spain

    Science.gov (United States)

    Garcia Galiano, S. G.; Olmos, P.; Giraldo Osorio, J. D.

    2015-12-01

    In the Mediterranean area, significant changes on temperature and precipitation are expected throughout the century. These trends could exacerbate the existing conditions in regions already vulnerable to climatic variability, reducing the water availability. Improving knowledge about plausible impacts of climate change on water cycle processes at basin scale, is an important step for building adaptive capacity to the impacts in this region, where severe water shortages are expected for the next decades. RCMs ensemble in combination with distributed hydrological models with few parameters, constitutes a valid and robust methodology to increase the reliability of climate and hydrological projections. For reaching this objective, a novel methodology for building Regional Climate Models (RCMs) ensembles of meteorological variables (rainfall an temperatures), was applied. RCMs ensembles are justified for increasing the reliability of climate and hydrological projections. The evaluation of RCMs goodness-of-fit to build the ensemble is based on empirical probability density functions (PDF) extracted from both RCMs dataset and a highly resolution gridded observational dataset, for the time period 1961-1990. The applied method is considering the seasonal and annual variability of the rainfall and temperatures. The RCMs ensembles constitute the input to a distributed hydrological model at basin scale, for assessing the runoff projections. The selected hydrological model is presenting few parameters in order to reduce the uncertainties involved. The study basin corresponds to a head basin of Segura River Basin, located in the South East of Spain. The impacts on runoff and its trend from observational dataset and climate projections, were assessed. Considering the control period 1961-1990, plausible significant decreases in runoff for the time period 2021-2050, were identified.

  12. Uncertainties in extreme precipitation under climate change conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia

    of adaptation strategies, but these changes are subject to uncertainties. The focus of this PhD thesis is the quantification of uncertainties in changes in extreme precipitation. It addresses two of the main sources of uncertainty in climate change impact studies: regional climate models (RCMs) and statistical...... downscaling methods (SDMs). RCMs provide information on climate change at the regional scale. SDMs are used to bias-correct and downscale the outputs of the RCMs to the local scale of interest in adaptation strategies. In the first part of the study, a multi-model ensemble of RCMs from the European ENSEMBLES...... project was used to quantify the uncertainty in RCM projections over Denmark. Three aspects of the RCMs relevant for the uncertainty quantification were first identified and investigated. These are: the interdependency of the RCMs; the performance in current climate; and the change in the performance...

  13. Adjustment of regional climate model output for modeling the climatic mass balance of all glaciers on Svalbard.

    NARCIS (Netherlands)

    Möller, M.; Obleitner, F.; Reijmer, C.H.; Pohjola, V.A.; Glowacki, P.; Kohler, J.

    2016-01-01

    Large-scale modeling of glacier mass balance relies often on the output from regional climate models (RCMs). However, the limited accuracy and spatial resolution of RCM output pose limitations on mass balance simulations at subregional or local scales. Moreover, RCM output is still rarely available

  14. Global high resolution versus Limited Area Model climate change projections over Europe

    DEFF Research Database (Denmark)

    Déqué, Michel; Jones, R. G.; Wild, M.

    2005-01-01

    the 2071-2100 and the 1961-1990 means is compared with the same diagnostic obtained with nine Regional Climate Models (RCM) all driven by the Hadley Centre atmospheric GCM. The seasonal mean response for 2m temperature and precipitation is investigated. For temperature, GCMs and RCMs behave similarly......, except that GCMs exhibit a larger spread. However, during summer, the spread of the RCMs - in particular in terms of precipitation - is larger than that of the GCMs. This indicates that the European summer climate is strongly controlled by parameterized physics and/or high-resolution processes...... errors are more spread. In addition, GCM precipitation response is slightly but significantly different from that of the RCMs....

  15. Watershed sensitivity and hydrologic response to high-resolution climate model

    Science.gov (United States)

    Troin, M.; Caya, D.

    2012-12-01

    Global climate models (GCMs) are fundamental research tools to assess climate change impacts on water resources. Regional climate models (RCMs) are complementary to GCMs. The added benefit of RCMs for hydrological applications is still not well understood because watersheds respond differently to RCM experiments. It is expected that the new generation of RCMs improve the representation of climate processes making it more attractive for impact studies. Given the cost of RCMs, it is ascertain to identify whether high-resolution RCMs allow offering more details than what is simulated in GCMs or RCMs with coarser resolution to address impacts on water resources. This study aims to assess the added value of RCM with emphasis on using high-resolution climate models. More specifically is how the hydrological cycle is represented when the resolution in climate models is increased (45 vs 200km; 15 vs 45km). We used simulations from the Canadian RCM (CRCM) driven by reanalyses integrated on high-resolution domains (45 and 15km) and CRCM driven by multiple members of two GCMs (the Canadian CGCM3; the German ECHAM5) with a horizontal resolution of 45 km. CRCM data and data from their host GCMs are compared to observation over 1971-2000. Precipitation and temperature from CRCM and GCMs' simulations are inputted into the hydrological SWAT model to simulate streamflow in watersheds for the historical period. The selected watersheds are two basins in Quebec (QC) and one basin in British Columbia (BC), Canada. CRCM-45km driven by GCMs performs well in representing precipitation but shows a cold bias of 3.3°C. Such bias in temperature is more significant for the BC basin (4.5°C) due to the Rocky Mountains. For the CRCM-45km/GCM combination (CGCM3 or ECHAM5), comparable skills in reproducing the observed climate are identified even though CGCM3 analyzed alone provides more accurate indication of climatology in the basins than ECHAM5. When we compared to GCMs results, CRCM-45km

  16. Validation of precipitation over Japan during 1985-2004 simulated by three regional climate models and two multi-model ensemble means

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, Yasuhiro [Meteorological Research Institute, Tsukuba (Japan); National Institute for Environmental Studies, Tsukuba (Japan); Nakaegawa, Toshiyuki; Takayabu, Izuru [Meteorological Research Institute, Tsukuba (Japan)

    2012-07-15

    We dynamically downscaled Japanese reanalysis data (JRA-25) for 60 regions of Japan using three regional climate models (RCMs): the Non-Hydrostatic Regional Climate Model (NHRCM), modified RAMS version 4.3 (NRAMS), and modified Weather Research and Forecasting model (TWRF). We validated their simulations of the precipitation climatology and interannual variations of summer and winter precipitation. We also validated precipitation for two multi-model ensemble means: the arithmetic ensemble mean (AEM) and an ensemble mean weighted according to model reliability. In the 60 regions NRAMS simulated both the winter and summer climatological precipitation better than JRA-25, and NHRCM simulated the wintertime precipitation better than JRA-25. TWRF, however, overestimated precipitation in the 60 regions in both the winter and summer, and NHRCM overestimated precipitation in the summer. The three RCMs simulated interannual variations, particularly summer precipitation, better than JRA-25. AEM simulated both climatological precipitation and interannual variations during the two seasons more realistically than JRA-25 and the three RCMs overall, but the best RCM was often superior to the AEM result. In contrast, the weighted ensemble mean skills were usually superior to those of the best RCM. Thus, both RCMs and multi-model ensemble means, especially multi-model ensemble means weighted according to model reliability, are powerful tools for simulating seasonal and interannual variability of precipitation in Japan under the current climate. (orig.)

  17. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    Science.gov (United States)

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Spatial-Scale Characteristics of Precipitation Simulated by Regional Climate Models and the Implications for Hydrological Modeling

    DEFF Research Database (Denmark)

    Rasmussen, S.H.; Christensen, J. H.; Drews, Martin

    2012-01-01

    Precipitation simulated by regional climate models (RCMs) is generally biased with respect to observations, especially at the local scale of a few tens of kilometers. This study investigates how well two different RCMs are able to reproduce the spatial correlation patterns of observed summer...... length scales on the order of 130 km are found in both observed data and RCM simulations. When simulations and observations are aggregated to different grid sizes, the pattern correlation significantly decreases when the aggregation length is less than roughly 100 km. Furthermore, the intermodel standard......, reflecting larger predictive certainty of the RCMs at larger scales. The findings on aggregated grid scales are shown to be largely independent of the underlying RCMs grid resolutions but not of the overall size of RCM domain. With regard to hydrological modeling applications, these findings indicate...

  19. High-resolution RCMs as pioneers for future GCMs

    Science.gov (United States)

    Schar, C.; Ban, N.; Arteaga, A.; Charpilloz, C.; Di Girolamo, S.; Fuhrer, O.; Hoefler, T.; Leutwyler, D.; Lüthi, D.; Piaget, N.; Ruedisuehli, S.; Schlemmer, L.; Schulthess, T. C.; Wernli, H.

    2017-12-01

    Currently large efforts are underway to refine the horizontal resolution of global and regional climate models to O(1 km), with the intent to represent convective clouds explicitly rather than using semi-empirical parameterizations. This refinement will move the governing equations closer to first principles and is expected to reduce the uncertainties of climate models. High resolution is particularly attractive in order to better represent critical cloud feedback processes (e.g. related to global climate sensitivity and extratropical summer convection) and extreme events (such as heavy precipitation events, floods, and hurricanes). The presentation will be illustrated using decade-long simulations at 2 km horizontal grid spacing, some of these covering the European continent on a computational mesh with 1536x1536x60 grid points. To accomplish such simulations, use is made of emerging heterogeneous supercomputing architectures, using a version of the COSMO limited-area weather and climate model that is able to run entirely on GPUs. Results show that kilometer-scale resolution dramatically improves the simulation of precipitation in terms of the diurnal cycle and short-term extremes. The modeling framework is used to address changes of precipitation scaling with climate change. It is argued that already today, modern supercomputers would in principle enable global atmospheric convection-resolving climate simulations, provided appropriately refactored codes were available, and provided solutions were found to cope with the rapidly growing output volume. A discussion will be provided of key challenges affecting the design of future high-resolution climate models. It is suggested that km-scale RCMs should be exploited to pioneer this terrain, at a time when GCMs are not yet available at such resolutions. Areas of interest include the development of new parameterization schemes adequate for km-scale resolution, the exploration of new validation methodologies and data

  20. Modelling climate impact on floods under future emission scenarios using an ensemble of climate model projections

    Science.gov (United States)

    Wetterhall, F.; Cloke, H. L.; He, Y.; Freer, J.; Pappenberger, F.

    2012-04-01

    Evidence provided by modelled assessments of climate change impact on flooding is fundamental to water resource and flood risk decision making. Impact models usually rely on climate projections from Global and Regional Climate Models, and there is no doubt that these provide a useful assessment of future climate change. However, cascading ensembles of climate projections into impact models is not straightforward because of problems of coarse resolution in Global and Regional Climate Models (GCM/RCM) and the deficiencies in modelling high-intensity precipitation events. Thus decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs, such as selection of downscaling methods and application of Model Output Statistics (MOS). In this paper a grand ensemble of projections from several GCM/RCM are used to drive a hydrological model and analyse the resulting future flood projections for the Upper Severn, UK. The impact and implications of applying MOS techniques to precipitation as well as hydrological model parameter uncertainty is taken into account. The resultant grand ensemble of future river discharge projections from the RCM/GCM-hydrological model chain is evaluated against a response surface technique combined with a perturbed physics experiment creating a probabilisic ensemble climate model outputs. The ensemble distribution of results show that future risk of flooding in the Upper Severn increases compared to present conditions, however, the study highlights that the uncertainties are large and that strong assumptions were made in using Model Output Statistics to produce the estimates of future discharge. The importance of analysing on a seasonal basis rather than just annual is highlighted. The inability of the RCMs (and GCMs) to produce realistic precipitation patterns, even in present conditions, is a major caveat of local climate impact studies on flooding, and this should be a focus for future development.

  1. Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-12-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22° (about 24 km rotated grid over Europe and the Mediterranean region. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the observed data fields (E-OBS data set, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best-performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of four RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the 21st century. We present and discuss the validation setting, as well as the obtained results and, in some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and advice for researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more generally, climate change impact studies in the Mediterranean region.

  2. Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations

    Energy Technology Data Exchange (ETDEWEB)

    Di Luca, Alejandro; Laprise, Rene [Universite du Quebec a Montreal (UQAM), Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Departement des Sciences de la Terre et de l' Atmosphere, PK-6530, Succ. Centre-ville, B.P. 8888, Montreal, QC (Canada); De Elia, Ramon [Universite du Quebec a Montreal, Ouranos Consortium, Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal (Canada)

    2012-03-15

    Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions. (orig.)

  3. An intercomparison of regional climate model data for hydrological impact studies in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Jens Hesselbjerg; Butts, Michael

    2010-01-01

    The use of high-resolution regional climate models (RCM) to examine the hydrological impacts of climate change has grown significantly in recent years due to the improved representation of the local climate. However, the application is not straightforward because most RCMs are subject to consider......The use of high-resolution regional climate models (RCM) to examine the hydrological impacts of climate change has grown significantly in recent years due to the improved representation of the local climate. However, the application is not straightforward because most RCMs are subject...... to considerable systematic errors. In this study, projected climate change data from the RCM HIRHAM4 are used to generate climate scenario time series of precipitation, temperature, and reference evapotranspiration for the period 2071-2100 for hydrological impact assessments in Denmark. RCM output for the present......-day period (1961-1990) are compared to an observational data set, with precipitation corrected for undercatch and wetting losses, to quantify systematic model errors. A delta change method is applied to cope with these biases. A question arises as to how variable the climate change signals are...

  4. The Alpine snow-albedo feedback in regional climate models

    Science.gov (United States)

    Winter, Kevin J.-P. M.; Kotlarski, Sven; Scherrer, Simon C.; Schär, Christoph

    2017-02-01

    The effect of the snow-albedo feedback (SAF) on 2m temperatures and their future changes in the European Alps is investigated in the ENSEMBLES regional climate models (RCMs) with a focus on the spring season. A total of 14 re-analysis-driven RCM experiments covering the period 1961-2000 and 10 GCM-driven transient climate change projections for 1950-2099 are analysed. A positive springtime SAF is found in all RCMs, but the range of the diagnosed SAF is large. Results are compared against an observation-based SAF estimate. For some RCMs, values very close to this estimate are found; other models show a considerable overestimation of the SAF. Net shortwave radiation has the largest influence of all components of the energy balance on the diagnosed SAF and can partly explain its spatial variability. Model deficiencies in reproducing 2m temperatures above snow and ice and associated cold temperature biases at high elevations seem to contribute to a SAF overestimation in several RCMs. The diagnosed SAF in the observational period strongly influences the estimated SAF contribution to twenty first century temperature changes in the European Alps. This contribution is subject to a clear elevation dependency that is governed by the elevation-dependent change in the number of snow days. Elevations of maximum SAF contribution range from 1500 to 2000 m in spring and are found above 2000 m in summer. Here, a SAF contribution to the total simulated temperature change between 0 and 0.5 °C until 2099 (multi-model mean in spring: 0.26 °C) or 0 and 14 % (multi-model mean in spring: 8 %) is obtained for models showing a realistic SAF. These numbers represent a well-funded but only approximate estimate of the SAF contribution to future warming, and a remaining contribution of model-specific SAF misrepresentations cannot be ruled out.

  5. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    Science.gov (United States)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  6. California Wintertime Precipitation in Regional and Global Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  7. STUDIES ON THE RCMS RF SYSTEM.

    CERN Document Server

    Zhao, Y

    2003-01-01

    This note addresses the various options for the Rapid Cycling Medical Synchrotron (RCMS) RF. The study was divided into three cases, namely non-tuning, tuning and filter. Each case also includes a few options. The primary study was focused on the non-tuning options. However, it was found that it requires too much driver power to cover the wide band and thus causes the cost being too high to be competitive. The proposal of RCMS is not yet clear if it can be approved or not. The results of this study might be useful to other similar machines.

  8. STUDIES ON THE RCMS RF SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO,Y.

    2003-01-22

    This note addresses the various options for the Rapid Cycling Medical Synchrotron (RCMS) RF. The study was divided into three cases, namely non-tuning, tuning and filter. Each case also includes a few options. The primary study was focused on the non-tuning options. However, it was found that it requires too much driver power to cover the wide band and thus causes the cost being too high to be competitive. The proposal of RCMS is not yet clear if it can be approved or not. The results of this study might be useful to other similar machines.

  9. Heat waves over Central Europe in regional climate model simulations

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan

    2014-05-01

    Regional climate models (RCMs) have become a powerful tool for exploring impacts of global climate change on a regional scale. The aim of the study is to evaluate the capability of RCMs to reproduce characteristics of major heat waves over Central Europe in their simulations of the recent climate (1961-2000), with a focus on the most severe and longest Central European heat wave that occurred in 1994. We analyzed 7 RCM simulations with a high resolution (0.22°) from the ENSEMBLES project, driven by the ERA-40 reanalysis. In observed data (the E-OBS 9.0 dataset), heat waves were defined on the basis of deviations of daily maximum temperature (Tmax) from the 95% quantile of summer Tmax distribution in grid points over Central Europe. The same methodology was applied in the RCM simulations; we used corresponding 95% quantiles (calculated for each RCM and grid point) in order to remove the bias of modelled Tmax. While climatological characteristics of heat waves are reproduced reasonably well in the RCM ensemble, we found major deficiencies in simulating heat waves in individual years. For example, METNOHIRHAM simulated very severe heat waves in 1996, when no heat wave was observed. Focusing on the major 1994 heat wave, considerable differences in simulated temperature patterns were found among the RCMs. The differences in the temperature patterns were clearly linked to the simulated amount of precipitation during this event. The 1994 heat wave was almost absent in all RCMs that did not capture the observed precipitation deficit, while it was by far most pronounced in KNMI-RACMO that simulated virtually no precipitation over Central Europe during the 15-day period of the heat wave. By contrast to precipitation, values of evaporative fraction in the RCMs were not linked to severity of the simulated 1994 heat wave. This suggests a possible major contribution of other factors such as cloud cover and associated downward shortwave radiation. Therefore, a more detailed

  10. Evaluation of an ensemble of Arctic regional climate models

    DEFF Research Database (Denmark)

    Rinke, A.; Dethloff, K.; Cassano, J. J.

    2006-01-01

    Simulations of eight different regional climate models (RCMs) have been performed for the period September 1997-September 1998, which coincides with the Surface Heat Budget of the Arctic Ocean (SHEBA) project period. Each of the models employed approximately the same domain covering the western......, temperature, cloud cover, and long-/shortwave downward radiation between the individual model simulations are investigated. With this work, we quantify the scatter among the models and therefore the magnitude of disagreement and unreliability of current Arctic RCM simulations. Even with the relatively...... constrained experimental design we notice a considerable scatter among the different RCMs. We found the largest across-model scatter in the 2 m temperature over land, in the surface radiation fluxes, and in the cloud cover which implies a reduced confidence level for these variables....

  11. Use of regional climate model simulations as an input for hydrological models for the Hindukush-Karakorum-Himalaya region

    NARCIS (Netherlands)

    Akhtar, M.; Ahmad, N.; Booij, Martijn J.

    2009-01-01

    The most important climatological inputs required for the calibration and validation of hydrological models are temperature and precipitation that can be derived from observational records or alternatively from regional climate models (RCMs). In this paper, meteorological station observations and

  12. Climate Change Impacts on Flooding in Southeastern Austria

    Science.gov (United States)

    Switanek, Matt; Truhetz, Heimo; Reszler, Christian

    2015-04-01

    Floods in southeastern Austria can cause significant damage to life, property and infrastructure. These flood events are often the result of extreme precipitation from small-scale convective storms. In order to more accurately model the changes to flood magnitude and frequency, Regional Climate Models (RCMs) must be able to simulate small-scale convective storms similar to those that have been observed. Even as computational resources have increased, RCMs are just now achieving the high spatial and temporal scales necessary to physically resolve the processes that govern small-scale convection. With increased resolution, RCMs can rely on their internal physics to model convective precipitation and need not depend on parameterization. This study uses historical and future scenarios of Regional Climate Models (RCMs) run at a spatial scale of 3 km and temporal scale of 1 hr. In order to subsequently force a hydrological flood model, the sub-daily precipitation and temperature data from the RCMs are first bias corrected. A newly proposed bias correction method is presented and compared to the commonly used quantile mapping. The proposed bias correction method performs better in its ability to preserve the model projected climate change signal (measured by changes in mean and variance). Lastly, the changes in the quantity and frequency of projected extreme precipitation, at the watershed level, are analyzed with respect to the historic time period. With these improvements in dynamical modeling and bias correction methods, a clearer picture emerges revealing the more likely impacts climate change will have on floods in southeastern Austria.

  13. Evaluation of trends in high temperature extremes in north-western Europe in regional climate models

    International Nuclear Information System (INIS)

    Min, E; Hazeleger, W; Van Oldenborgh, G J; Sterl, A

    2013-01-01

    Projections of future changes in weather extremes on the regional and local scale depend on a realistic representation of trends in extremes in regional climate models (RCMs). We have tested this assumption for moderate high temperature extremes (the annual maximum of the daily maximum 2 m temperature, T ann.max ). Linear trends in T ann.max from historical runs of 14 RCMs driven by atmospheric reanalysis data are compared with trends in gridded station data. The ensemble of RCMs significantly underestimates the observed trends over most of the north-western European land surface. Individual models do not fare much better, with even the best performing models underestimating observed trends over large areas. We argue that the inability of RCMs to reproduce observed trends is probably not due to errors in large-scale circulation. There is also no significant correlation between the RCM T ann.max trends and trends in radiation or Bowen ratio. We conclude that care should be taken when using RCM data for adaptation decisions. (letter)

  14. Effects of climate model interdependency on the uncertainty quantification of extreme reinfall projections

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Madsen, H.; Rosbjerg, Dan

    are independent. This study investigates the validity of this assumption and its effects on the estimated probabilistic projections of the changes in the 95% quantile of wet days. The methodology is divided in two main parts. First, the interdependency of the ENSEMBLES RCMs is estimated using the methodology...... developed by Pennell and Reichler (2011). The results show that the projections from the ENSEMBLES RCMs cannot be assumed independent. This result is then used to estimate the uncertainty in climate model projections. A Bayesian approach has been developed using the procedure suggested by Tebaldi et al...

  15. Effects of climate model interdependency on the uncertainty quantification of extreme rainfall projections

    DEFF Research Database (Denmark)

    Sunyer, M. A.; Rosbjerg, Dan; Arnbjerg-Nielsen, Karsten

    2017-01-01

    are independent. This study investigates the validity of this assumption and its effects on the estimated probabilistic projections of the changes in the 95% quantile of wet days. The methodology is divided in two main parts. First, the interdependency of the ENSEMBLES RCMs is estimated using the methodology...... developed by Pennell and Reichler (2011). The results show that the projections from the ENSEMBLES RCMs cannot be assumed independent. This result is then used to estimate the uncertainty in climate model projections. A Bayesian approach has been developed using the procedure suggested by Tebaldi et al...

  16. Evaluation of high intensity precipitation from 16 Regional climate models over a meso-scale catchment in the Midlands Regions of England

    Science.gov (United States)

    Wetterhall, F.; He, Y.; Cloke, H.; Pappenberger, F.; Freer, J.; Wilson, M.; McGregor, G.

    2009-04-01

    Local flooding events are often triggered by high-intensity rain-fall events, and it is important that these can be correctly modelled by Regional Climate Models (RCMs) if the results are to be used in climate impact assessment. In this study, daily precipitation from 16 RCMs was compared with observations over a meso-scale catchment in the Midlands Region of England. The RCM data was provided from the European research project ENSEMBLES and the precipitation data from the UK MetOffice. The RCMs were all driven by reanalysis data from the ERA40 dataset over the time period 1961-2000. The ENSEMBLES data is on the spatial scale of 25 x 25 km and it was disaggregated onto a 5 x 5 km grid over the catchment and compared with interpolated observational data with the same resolution. The mean precipitation was generally underestimated by the ENSEMBLES data, and the maximum and persistence of high intensity rainfall was even more underestimated. The inter-annual variability was not fully captured by the RCMs, and there was a systematic underestimation of precipitation during the autumn months. The spatial pattern in the modelled precipitation data was too smooth in comparison with the observed data, especially in the high altitudes in the western part of the catchment where the high precipitation usually occurs. The RCM outputs cannot reproduce the current high intensity precipitation events that are needed to sufficiently model extreme flood events. The results point out the discrepancy between climate model output and the high intensity precipitation input needs for hydrological impact modelling.

  17. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    Directory of Open Access Journals (Sweden)

    J. G. L. Rae

    2012-11-01

    Full Text Available Four high-resolution regional climate models (RCMs have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB, and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs. This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2, with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.

  18. Characterization of the rainy season in Burkina Faso and it's representation by regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, B.; Karambiri, H. [Institut International d' Ingenierie de l' Eau et de l' Environnement (2iE), Ouagadougou 01 (Burkina Faso); Polcher, J. [Laboratoire de Meteorologie Dynamique du CNRS, Institut Pierre Simon Laplace, Paris Cedex 05 (France); Rockel, B. [Helmholtz-Zentrum Geesthacht Institute of Coastal Research/Group Regional Atmospheric Modeling, Geesthacht (Germany)

    2012-09-15

    West African monsoon is one of the most challenging climate components to model. Five regional climate models (RCMs) were run over the West African region with two lateral boundary conditions, ERA-Interim re-analysis and simulations from two general circulation models (GCMs). Two sets of daily rainfall data were generated from these boundary conditions. These simulated rainfall data are analyzed here in comparison to daily rainfall data collected over a network of ten synoptic stations in Burkina Faso from 1990 to 2004. The analyses are based on a description of the rainy season throughout a number of it's characteristics. It was found that the two sets of rainfall data produced with the two driving data present significant biases. The RCMs generally produce too frequent low rainfall values (between 0.1 and 5 mm/day) and too high extreme rainfalls (more than twice the observed values). The high frequency of low rainfall events in the RCMs induces shorter dry spells at the rainfall thresholds of 0.1-1 mm/day. Altogether, there are large disagreements between the models on the simulate season duration and the annual rainfall amounts but most striking are their differences in representing the distribution of rainfall intensity. It is remarkable that these conclusions are valid whether the RCMs are driven by re-analysis or GCMs. In none of the analyzed rainy season characteristics, a significant improvement of their representation can be found when the RCM is forced by the re-analysis, indicating that these deficiencies are intrinsic to the models. (orig.)

  19. Simulating Climate Change in Ireland

    Science.gov (United States)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  20. Modeling the Impacts of Climate Change on Phytogeographical Units. A Case Study of the Moesz Line

    OpenAIRE

    Bede-Fazekas, Ákos

    2013-01-01

    Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) us...

  1. Performance of the CORDEX regional climate models in simulating offshore wind and wind potential

    Science.gov (United States)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-03-01

    This study is oriented towards quantification of the skill addition by regional climate models (RCMs) in the parent general circulation models (GCMs) while simulating wind speed and wind potential with particular reference to the Indian offshore region. To arrive at a suitable reference dataset, the performance of wind outputs from three different reanalysis datasets is evaluated. The comparison across the RCMs and their corresponding parent GCMs is done on the basis of annual/seasonal wind statistics, intermodel bias, wind climatology, and classes of wind potential. It was observed that while the RCMs could simulate spatial variability of winds, well for certain subregions, they generally failed to replicate the overall spatial pattern, especially in monsoon and winter. Various causes of biases in RCMs were determined by assessing corresponding maps of wind vectors, surface temperature, and sea-level pressure. The results highlight the necessity to carefully assess the RCM-yielded winds before using them for sensitive applications such as coastal vulnerability and hazard assessment. A supplementary outcome of this study is in form of wind potential atlas, based on spatial distribution of wind classes. This could be beneficial in suitably identifying viable subregions for developing offshore wind farms by intercomparing both the RCM and GCM outcomes. It is encouraging that most of the RCMs and GCMs indicate that around 70% of the Indian offshore locations in monsoon would experience mean wind potential greater than 200 W/m2.

  2. Future Precipitation Extremes in China Under Climate Change and Their Possible Mechanisms by Regional Climate Model and Earth System Model Simulations

    Science.gov (United States)

    Qin, P.; Xie, Z.

    2017-12-01

    Future precipitation extremes in China for the mid and end of 21st century were detected with six simulations using the regional climate model RegCM4 (RCM) and 17 global climate models (GCM) participated in the coupled Model Intercomparison Project Phase 5 (CMIP5). Prior to understanding the future changes in precipitation extremes, we overviewed the performance of precipitation extremes simulated by the CMIP5s and RCMs, and found both CMIP5s and RCMs could capture the temporal and spatial pattern of the historical precipitation extremes in China. In the mid-future period 2039-2058 (MF) and far-future 2079-2098 (FF), more wet precipitation extremes will occur in most area of China relative to the present period 1982-2001 (RF). We quantified the rates of the changes in precipitation extremes in China with the changes in air surface temperature (T2M) for the MF and FF period. Changes in precipitation extremes R95p were found around 5% K-1 for the MF period and 10% K-1 for the FF period, and changes in maximum 5 day precipitation (Rx5day) were detected around 4% K-1 for the MF period and 7% K-1 for the FF period, respectively. Finally, the possible physical mechanisms behind the changes in precipitation extremes in China were also discussed through the changes in specific humidity and vertical wind.

  3. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  4. Observational uncertainty and regional climate model evaluation: A pan-European perspective

    Science.gov (United States)

    Kotlarski, Sven; Szabó, Péter; Herrera, Sixto; Räty, Olle; Keuler, Klaus; Soares, Pedro M.; Cardoso, Rita M.; Bosshard, Thomas; Pagé, Christian; Boberg, Fredrik; Gutiérrez, José M.; Jaczewski, Adam; Kreienkamp, Frank; Liniger, Mark. A.; Lussana, Cristian; Szepszo, Gabriella

    2017-04-01

    Local and regional climate change assessments based on downscaling methods crucially depend on the existence of accurate and reliable observational reference data. In dynamical downscaling via regional climate models (RCMs) observational data can influence model development itself and, later on, model evaluation, parameter calibration and added value assessment. In empirical-statistical downscaling, observations serve as predictand data and directly influence model calibration with corresponding effects on downscaled climate change projections. Focusing on the evaluation of RCMs, we here analyze the influence of uncertainties in observational reference data on evaluation results in a well-defined performance assessment framework and on a European scale. For this purpose we employ three different gridded observational reference grids, namely (1) the well-established EOBS dataset (2) the recently developed EURO4M-MESAN regional re-analysis, and (3) several national high-resolution and quality-controlled gridded datasets that recently became available. In terms of climate models five reanalysis-driven experiments carried out by five different RCMs within the EURO-CORDEX framework are used. Two variables (temperature and precipitation) and a range of evaluation metrics that reflect different aspects of RCM performance are considered. We furthermore include an illustrative model ranking exercise and relate observational spread to RCM spread. The results obtained indicate a varying influence of observational uncertainty on model evaluation depending on the variable, the season, the region and the specific performance metric considered. Over most parts of the continent, the influence of the choice of the reference dataset for temperature is rather small for seasonal mean values and inter-annual variability. Here, model uncertainty (as measured by the spread between the five RCM simulations considered) is typically much larger than reference data uncertainty. For

  5. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    NARCIS (Netherlands)

    Rae, J.G.L.; Aðalgeirsdóttir, G.; Edwards, T.L.; Fettweis, X.; Gregory, J.M.; Hewitt, H.T.; Lowe, J.A.; Lucas-Picher, P.; Mottram, R.H.; Payne, A.J.; Ridley, J.K.; Shannon, S.R.; van de Berg, W.J.; van de Wal, R.S.W.; van den Broeke, M.R.

    2012-01-01

    Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution

  6. Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

    Energy Technology Data Exchange (ETDEWEB)

    Plavcova, Eva [Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague 4 (Czech Republic); Technical University, Department of Applied Mathematics, Liberec (Czech Republic); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Kysely, Jan [Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague 4 (Czech Republic); Technical University, Department of Applied Mathematics, Liberec (Czech Republic)

    2012-10-15

    The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for

  7. Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

    International Nuclear Information System (INIS)

    Plavcova, Eva; Kysely, Jan

    2012-01-01

    The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for

  8. Spectral nudging in regional climate modelling: How strongly should we nudge?

    OpenAIRE

    Omrani , Hiba; Drobinski , Philippe; Dubos , Thomas

    2012-01-01

    International audience; Spectral nudging is a technique consisting in driving regional climate models (RCMs) on selected spatial scales corresponding to those produced by the driving global circulation model (GCM). This technique prevents large and unrealistic departures between the GCM driving fields and the RCM fields at the GCM spatial scales. Theoretically, the relaxation of the RCM towards the GCM should be infinitely strong provided thre are perfect large-scale fields. In practice, the ...

  9. An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Wyser, K.; Willen, U. [Rossby Centre, SMHI, Norrkoeping (Sweden); Jones, C.G.; Du, P.; Girard, E.; Laprise, R. [Universite du Quebec a Montreal, Canadian Regional Climate Modelling and Diagnostics Network, Montreal (Canada); Cassano, J.; Serreze, M.; Shaw, M.J. [University of Colorado, Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, Boulder, CO (United States); Christensen, J.H. [Danish Meteorological Institute, Copenhagen (Denmark); Curry, J.A. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA (United States); Dethloff, K.; Rinke, A. [Alfred Wegener Institute for Polar and Marine Research, Research Unit, Potsdam (Germany); Haugen, J.-E.; Koeltzow, M. [Norwegian Meteorological Institute, Oslo (Norway); Jacob, D.; Pfeifer, S. [Max Planck Institute for Meteorology, Hamburg (Germany); Lynch, A. [Monash University, School of Geography and Environmental Science, Melbourne (Australia); Tjernstroem, M.; Zagar, M. [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2008-02-15

    Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated water vapour, liquid water path and cloud cover from each model are evaluated against the SHEBA observation data. Downwelling surface radiation, vertically integrated water vapour and liquid water path are reasonably well simulated at monthly and daily timescales in the model ensemble mean, but with considerable differences among individual models. Simulated surface albedos are relatively accurate in the winter season, but become increasingly inaccurate and variable in the melt season, thereby compromising the net surface radiation budget. Simulated cloud cover is more or less uncorrelated with observed values at the daily timescale. Even for monthly averages, many models do not reproduce the annual cycle correctly. The inter-model spread of simulated cloud-cover is very large, with no model appearing systematically superior. Analysis of the co-variability of terms controlling the surface radiation budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic. (orig.)

  10. assessing climate change impacts on river hydrology

    Indian Academy of Sciences (India)

    71

    model, Soil and Water Assessment Tool (SWAT), in order to evaluate the effect of climate. 24 change on rainfall ... to project future climate data based on the CO2 emission scenarios.The RCMs are of finer ..... Springer Science+Business. 2.

  11. PDF added value of a high resolution climate simulation for precipitation

    Science.gov (United States)

    Soares, Pedro M. M.; Cardoso, Rita M.

    2015-04-01

    General Circulation Models (GCMs) are models suitable to study the global atmospheric system, its evolution and response to changes in external forcing, namely to increasing emissions of CO2. However, the resolution of GCMs, of the order of 1o, is not sufficient to reproduce finer scale features of the atmospheric flow related to complex topography, coastal processes and boundary layer processes, and higher resolution models are needed to describe observed weather and climate. The latter are known as Regional Climate Models (RCMs) and are widely used to downscale GCMs results for many regions of the globe and are able to capture physically consistent regional and local circulations. Most of the RCMs evaluations rely on the comparison of its results with observations, either from weather stations networks or regular gridded datasets, revealing the ability of RCMs to describe local climatic properties, and assuming most of the times its higher performance in comparison with the forcing GCMs. The additional climatic details given by RCMs when compared with the results of the driving models is usually named as added value, and it's evaluation is still scarce and controversial in the literuature. Recently, some studies have proposed different methodologies to different applications and processes to characterize the added value of specific RCMs. A number of examples reveal that some RCMs do add value to GCMs in some properties or regions, and also the opposite, elighnening that RCMs may add value to GCM resuls, but improvements depend basically on the type of application, model setup, atmospheric property and location. The precipitation can be characterized by histograms of daily precipitation, or also known as probability density functions (PDFs). There are different strategies to evaluate the quality of both GCMs and RCMs in describing the precipitation PDFs when compared to observations. Here, we present a new method to measure the PDF added value obtained from

  12. An evaluation of temperature and precipitation from global and regional climate models over Scandinavia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Precipitation and temperature from global (GCMs) and regional (RCMs) climate models are compared with reanalysis and observations over Scandinavia. Also projections for the next 50-100 years are considered. The climate development is visualised as moving averages (1920-2100). Box plots are used to illuminate how well GCM runs capture the observed seasonal cycle. Maps show the seasonal difference between results from control runs (RCM) and observations (E-OBS dataset) for the reference period 1981-2000. Plots illustrate the RCM-representation of seasonal temperature and precipitations cycle for five locations in Norway and Sweden: Oslo, Bergen, Trondheim, Tromsoe and Oestersund. The results show rather large differences between control runs and observations, demonstrating the need for bias correction of results from climate models. To get an indicator of which GC M-RCM-combination give the best representation of present climate over Scandinavia, a model ranking is provided. The performance measure used is the root-mean-square deviation of mean monthly and seasonal values. The data is compared both in an area-weighted spatial average of the whole domain as well as for the selected locations. The results indicate that the regional models RACMO2 and RCA show the smallest deviations from observed climate. Among the top ranking GCM-RCM combinations, most were driven by the global model ECHAM5 and some by a version of HadCM3. These two GCMs are also present among the worst performing GCM-RCM combinations indicating that selection of RCMs is crucial. (Author)

  13. Climate change scenarios of heat waves in Central Europe and their uncertainties

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan; Farda, Aleš

    2018-02-01

    The study examines climate change scenarios of Central European heat waves with a focus on related uncertainties in a large ensemble of regional climate model (RCM) simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970-1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data set in the first step. Although the RCMs are found to reproduce the frequency of heat waves quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) EURO-CORDEX RCMs. In the near future (2020-2049), heat waves are projected to be nearly twice as frequent in comparison to the modelled historical period, and the increase is even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs and GCMs because the increase is similar for all concentration scenarios. For the late twenty-first century (2070-2099), a substantial increase in heat wave frequencies is projected, the magnitude of which depends mainly upon concentration scenario. Three to four heat waves per summer are projected in this period (compared to less than one in the recent climate), and severe heat waves are likely to become a regular phenomenon. This increment is primarily driven by a positive shift of temperature distribution, but changes in its scale and enhanced temporal autocorrelation of temperature also contribute to the projected increase in heat wave frequencies.

  14. The regional climate model as a tool for long-term planning of Quebec water resources

    International Nuclear Information System (INIS)

    Frigon, A.

    2008-01-01

    'Full text': In recent years, important progress has been made in downscaling GCM (Global Climate Model) projections to a resolution where hydrological studies become feasible. Climate change simulations performed with RCMs (Regional Climate Models) have reached a level of confidence that allows us to take advantage of this information in long-term planning of water resources. The RCMs' main advantage consist in their construction based on balanced land as well as atmosphere water and energy budgets, and on their inclusion of feedbacks between the surface and the atmosphere. Such models therefore generate sequences of weather events, providing long time series of hydro-climatic variables that are internally consistent, allowing the analysis of hydrologic regimes. At OURANOS, special attention is placed on the hydrological cycle, given its key role on socioeconomic activities. The Canadian Regional Climate Model (CRCM) was developed as a potential tool to provide climate projections at the watershed scale. Various analyses performed over small basins in Quebec provide information on the level of confidence we have in the CRCM for use in hydrological studies. Even though this approach is not free of uncertainty, it was found useful by some water resource managers and hence this information should be considered. One of the keys to retain usefulness, despite the associated uncertainties, is to make use of more than a single regional climate projection. This approach will allow for the evaluation of the climate change signal and its associated level of confidence. Such a methodology is already applied by Hydro-Quebec in the long-term planning of its water resources for hydroelectric generation over the Quebec territory. (author)

  15. Near-surface wind variability over the broader Adriatic region: insights from an ensemble of regional climate models

    Science.gov (United States)

    Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2018-06-01

    Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.

  16. Consistency of climate change projections from multiple global and regional model intercomparison projects

    Science.gov (United States)

    Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.

    2018-03-01

    We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.

  17. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations

    Science.gov (United States)

    Beranová, Romana; Kyselý, Jan; Hanel, Martin

    2018-04-01

    The study compares characteristics of observed sub-daily precipitation extremes in the Czech Republic with those simulated by Hadley Centre Regional Model version 3 (HadRM3) and Rossby Centre Regional Atmospheric Model version 4 (RCA4) regional climate models (RCMs) driven by reanalyses and examines diurnal cycles of hourly precipitation and their dependence on intensity and surface temperature. The observed warm-season (May-September) maxima of short-duration (1, 2 and 3 h) amounts show one diurnal peak in the afternoon, which is simulated reasonably well by RCA4, although the peak occurs too early in the model. HadRM3 provides an unrealistic diurnal cycle with a nighttime peak and an afternoon minimum coinciding with the observed maximum for all three ensemble members, which suggests that convection is not captured realistically. Distorted relationships of the diurnal cycles of hourly precipitation to daily maximum temperature in HadRM3 further evidence that underlying physical mechanisms are misrepresented in this RCM. Goodness-of-fit tests indicate that generalised extreme value distribution is an applicable model for both observed and RCM-simulated precipitation maxima. However, the RCMs are not able to capture the range of the shape parameter estimates of distributions of short-duration precipitation maxima realistically, leading to either too many (nearly all for HadRM3) or too few (RCA4) grid boxes in which the shape parameter corresponds to a heavy tail. This means that the distributions of maxima of sub-daily amounts are distorted in the RCM-simulated data and do not match reality well. Therefore, projected changes of sub-daily precipitation extremes in climate change scenarios based on RCMs not resolving convection need to be interpreted with caution.

  18. Evaluation of the UK Met Office's HadGEM3-RA and HadRM3P regional climate models within South America-CORDEX simulations: ENSO related interannual precipitation variability

    Science.gov (United States)

    Bozkurt, D.; Rojas, M.

    2014-12-01

    This study aims to investigate and compare the ability of the UK Met Office's HadGEM3-RA and HadRM3P regional climate models (RCMs) to simulate mean and interannual variability of precipitation over South America with a special focus on Chile. The HadGEM3-RA is a regional version of the newly developed HadGEM3 global model and the HadRM3P is based on the earlier HadCM3 global model. The RCMs simulations were carried out at 0.44o x 0.44o degree resolution over South America-CORDEX domain for the period 1989-2008. The initial and boundary conditions were provided by ERA-Interim Reanalysis data available at 6-h intervals with a resolution of 1.5o x 1.5o in the horizontal and 37 pressure levels. We compare the results against a number of observational datasets, including gridded dataset of CRU, UDEL, TRMM and GPCP. Moreover, available station data is derived from Direccion General de Aguas (DGA) mainly for Central Chile, which is the heartland of Chile with the highest population and important economic activities. The analysis is mainly focused on evaluating the abilities of the RCMs in simulating spatial pattern and ENSO related precipitation variability in different subregions of South America-CORDEX domain. In general, both RCMs have a good skill in reproducing spatial pattern and annual cycle of observed precipitation in climatically different subregions. However, both RCMs tend to underestimate precipitation in the Amazon Basin, which is more pronounced in the HadRM3P simulations. On the contrary, the RCMs tend to overestimate the precipitation over the Andes and southern Chile. The overestimation could be related to the physical core of the RCMs, but the discrepancies could also arise due to insufficient station network, especially in the mountainous areas, potentially yielding smaller precipitation quantities in the observed data than the true ones. In terms of interannual variability, the models capture ENSO related wet and dry interannual precipitation

  19. Validation of EURO-CORDEX regional climate models in reproducing the variability of precipitation extremes in Romania

    Science.gov (United States)

    Dumitrescu, Alexandru; Busuioc, Aristita

    2016-04-01

    EURO-CORDEX is the European branch of the international CORDEX initiative that aims to provide improved regional climate change projections for Europe. The main objective of this paper is to document the performance of the individual models in reproducing the variability of precipitation extremes in Romania. Here three EURO-CORDEX regional climate models (RCMs) ensemble (scenario RCP4.5) are analysed and inter-compared: DMI-HIRHAM5, KNMI-RACMO2.2 and MPI-REMO. Compared to previous studies, when the RCM validation regarding the Romanian climate has mainly been made on mean state and at station scale, a more quantitative approach of precipitation extremes is proposed. In this respect, to have a more reliable comparison with observation, a high resolution daily precipitation gridded data set was used as observational reference (CLIMHYDEX project). The comparison between the RCM outputs and observed grid point values has been made by calculating three extremes precipitation indices, recommended by the Expert Team on Climate Change Detection Indices (ETCCDI), for the 1976-2005 period: R10MM, annual count of days when precipitation ≥10mm; RX5DAY, annual maximum 5-day precipitation and R95P%, precipitation fraction of annual total precipitation due to daily precipitation > 95th percentile. The RCMs capability to reproduce the mean state for these variables, as well as the main modes of their spatial variability (given by the first three EOF patterns), are analysed. The investigation confirms the ability of RCMs to simulate the main features of the precipitation extreme variability over Romania, but some deficiencies in reproducing of their regional characteristics were found (for example, overestimation of the mea state, especially over the extra Carpathian regions). This work has been realised within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian

  20. The North American Regional Climate Change Assessment Program (NARCCAP): Status and results

    Science.gov (United States)

    Arritt, R.

    2009-04-01

    NARCCAP is an international program that is generating projections of climate change for the U.S., Canada, and northern Mexico at decision-relevant regional scales. NARCCAP uses multiple limited-area regional climate models (RCMs) nested within multiple atmosphere-ocean general circulation models (AOGCMs). The use of multiple regional and global models allows us to investigate the uncertainty in model responses to future emissions (here, the A2 SRES scenario). The project also includes global time-slice experiments at the same discretization (50 km) using the GFDL atmospheric model (AM2.1) and the NCAR atmospheric model (CAM3). Phase I of the experiment uses the regional models nested within reanalysis in order to establish uncertainty attributable to the RCMs themselves. Phase II of the project then nests the RCMs within results from the current and future runs of the AOGCMs to explore the cascade of uncertainty from the global to the regional models. Phase I has been completed and the results to be shown include findings that spectral nudging is beneficial in some regions but not in others. Phase II is nearing completion and some preliminary results will be shown.

  1. Climate and climate change sensitivity to model configuration in the Canadian RCM over North America

    Energy Technology Data Exchange (ETDEWEB)

    De Elia, Ramon [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada); Centre ESCER, Univ. du Quebec a Montreal (Canada); Cote, Helene [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada)

    2010-06-15

    Climate simulations performed with Regional Climate Models (RCMs) have been found to show sensitivity to parameter settings. The origin, consequences and interpretations of this sensitivity are varied, but it is generally accepted that sensitivity studies are very important for a better understanding and a more cautious manipulation of RCM results. In this work we present sensitivity experiments performed on the simulated climate produced by the Canadian Regional Climate Model (CRCM). In addition to climate sensitivity to parameter variation, we analyse the impact of the sensitivity on the climate change signal simulated by the CRCM. These studies are performed on 30-year long simulated present and future seasonal climates, and we have analysed the effect of seven kinds of configuration modifications: CRCM initial conditions, lateral boundary condition (LBC), nesting update interval, driving Global Climate Model (GCM), driving GCM member, large-scale spectral nudging, CRCM version, and domain size. Results show that large changes in both the driving model and the CRCM physics seem to be the main sources of sensitivity for the simulated climate and the climate change. Their effects dominate those of configuration issues, such as the use or not of large-scale nudging, domain size, or LBC update interval. Results suggest that in most cases, differences between simulated climates for different CRCM configurations are not transferred to the estimated climate change signal: in general, these tend to cancel each other out. (orig.)

  2. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  3. Extreme temperature events on Greenland in observations and the MAR regional climate model

    Science.gov (United States)

    Leeson, Amber A.; Eastoe, Emma; Fettweis, Xavier

    2018-03-01

    Meltwater from the Greenland Ice Sheet contributed 1.7-6.12 mm to global sea level between 1993 and 2010 and is expected to contribute 20-110 mm to future sea level rise by 2100. These estimates were produced by regional climate models (RCMs) which are known to be robust at the ice sheet scale but occasionally miss regional- and local-scale climate variability (e.g. Leeson et al., 2017; Medley et al., 2013). To date, the fidelity of these models in the context of short-period variability in time (i.e. intra-seasonal) has not been fully assessed, for example their ability to simulate extreme temperature events. We use an event identification algorithm commonly used in extreme value analysis, together with observations from the Greenland Climate Network (GC-Net), to assess the ability of the MAR (Modèle Atmosphérique Régional) RCM to reproduce observed extreme positive-temperature events at 14 sites around Greenland. We find that MAR is able to accurately simulate the frequency and duration of these events but underestimates their magnitude by more than half a degree Celsius/kelvin, although this bias is much smaller than that exhibited by coarse-scale Era-Interim reanalysis data. As a result, melt energy in MAR output is underestimated by between 16 and 41 % depending on global forcing applied. Further work is needed to precisely determine the drivers of extreme temperature events, and why the model underperforms in this area, but our findings suggest that biases are passed into MAR from boundary forcing data. This is important because these forcings are common between RCMs and their range of predictions of past and future ice sheet melting. We propose that examining extreme events should become a routine part of global and regional climate model evaluation and that addressing shortcomings in this area should be a priority for model development.

  4. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models

    Science.gov (United States)

    Kjellström, Erik; Nikulin, Grigory; Strandberg, Gustav; Bøssing Christensen, Ole; Jacob, Daniela; Keuler, Klaus; Lenderink, Geert; van Meijgaard, Erik; Schär, Christoph; Somot, Samuel; Sørland, Silje Lund; Teichmann, Claas; Vautard, Robert

    2018-05-01

    We investigate European regional climate change for time periods when the global mean temperature has increased by 1.5 and 2 °C compared to pre-industrial conditions. Results are based on regional downscaling of transient climate change simulations for the 21st century with global climate models (GCMs) from the fifth-phase Coupled Model Intercomparison Project (CMIP5). We use an ensemble of EURO-CORDEX high-resolution regional climate model (RCM) simulations undertaken at a computational grid of 12.5 km horizontal resolution covering Europe. The ensemble consists of a range of RCMs that have been used for downscaling different GCMs under the RCP8.5 forcing scenario. The results indicate considerable near-surface warming already at the lower 1.5 °C of warming. Regional warming exceeds that of the global mean in most parts of Europe, being the strongest in the northernmost parts of Europe in winter and in the southernmost parts of Europe together with parts of Scandinavia in summer. Changes in precipitation, which are less robust than the ones in temperature, include increases in the north and decreases in the south with a borderline that migrates from a northerly position in summer to a southerly one in winter. Some of these changes are already seen at 1.5 °C of warming but are larger and more robust at 2 °C. Changes in near-surface wind speed are associated with a large spread among individual ensemble members at both warming levels. Relatively large areas over the North Atlantic and some parts of the continent show decreasing wind speed while some ocean areas in the far north show increasing wind speed. The changes in temperature, precipitation and wind speed are shown to be modified by changes in mean sea level pressure, indicating a strong relationship with the large-scale circulation and its internal variability on decade-long timescales. By comparing to a larger ensemble of CMIP5 GCMs we find that the RCMs can alter the results, leading either to

  5. Streamflow in the upper Mississippi river basin as simulated by SWAT driven by 20{sup th} century contemporary results of global climate models and NARCCAP regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Takle, Eugene S.; Jha, Manoj; Lu, Er; Arritt, Raymond W.; Gutowski, William J. [Iowa State Univ. Ames, IA (United States)

    2010-06-15

    We use Soil and Water Assessment Tool (SWAT) when driven by observations and results of climate models to evaluate hydrological quantities, including streamflow, in the Upper Mississippi River Basin (UMRB) for 1981-2003 in comparison to observed streamflow. Daily meteorological conditions used as input to SWAT are taken from (1) observations at weather stations in the basin, (2) daily meteorological conditions simulated by a collection of regional climate models (RCMs) driven by reanalysis boundary conditions, and (3) daily meteorological conditions simulated by a collection of global climate models (GCMs). Regional models used are those whose data are archived by the North American Regional Climate Change Assessment Program (NARCCAP). Results show that regional models correctly simulate the seasonal cycle of precipitation, temperature, and streamflow within the basin. Regional models also capture interannual extremes represented by the flood of 1993 and the dry conditions of 2000. The ensemble means of both the GCM-driven and RCM-driven simulations by SWAT capture both the timing and amplitude of the seasonal cycle of streamflow with neither demonstrating significant superiority at the basin level. (orig.)

  6. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    Science.gov (United States)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  7. Ensemble of regional climate model projections for Ireland

    Science.gov (United States)

    Nolan, Paul; McGrath, Ray

    2016-04-01

    The method of Regional Climate Modelling (RCM) was employed to assess the impacts of a warming climate on the mid-21st-century climate of Ireland. The RCM simulations were run at high spatial resolution, up to 4 km, thus allowing a better evaluation of the local effects of climate change. Simulations were run for a reference period 1981-2000 and future period 2041-2060. Differences between the two periods provide a measure of climate change. To address the issue of uncertainty, a multi-model ensemble approach was employed. Specifically, the future climate of Ireland was simulated using three different RCMs, driven by four Global Climate Models (GCMs). To account for the uncertainty in future emissions, a number of SRES (B1, A1B, A2) and RCP (4.5, 8.5) emission scenarios were used to simulate the future climate. Through the ensemble approach, the uncertainty in the RCM projections can be partially quantified, thus providing a measure of confidence in the predictions. In addition, likelihood values can be assigned to the projections. The RCMs used in this work are the COnsortium for Small-scale MOdeling-Climate Limited-area Modelling (COSMO-CLM, versions 3 and 4) model and the Weather Research and Forecasting (WRF) model. The GCMs used are the Max Planck Institute's ECHAM5, the UK Met Office's HadGEM2-ES, the CGCM3.1 model from the Canadian Centre for Climate Modelling and the EC-Earth consortium GCM. The projections for mid-century indicate an increase of 1-1.6°C in mean annual temperatures, with the largest increases seen in the east of the country. Warming is enhanced for the extremes (i.e. hot or cold days), with the warmest 5% of daily maximum summer temperatures projected to increase by 0.7-2.6°C. The coldest 5% of night-time temperatures in winter are projected to rise by 1.1-3.1°C. Averaged over the whole country, the number of frost days is projected to decrease by over 50%. The projections indicate an average increase in the length of the growing season

  8. A characteristics of East Asian climate using high-resolution regional climate model

    Science.gov (United States)

    Yhang, Y.

    2013-12-01

    Climate research, particularly application studies for water, agriculture, forestry, fishery and energy management require fine scale multi-decadal information of meteorological, oceanographic and land states. Unfortunately, spatially and temporally homogeneous multi-decadal observations of these variables in high horizontal resolution are non-existent. Some long term surface records of temperature and precipitation exist, but the number of observation is very limited and the measurements are often contaminated by changes in instrumentation over time. Some climatologically important variables, such as soil moisture, surface evaporation, and radiation are not even measured over most of East Asia. Reanalysis is one approach to obtaining long term homogeneous analysis of needed variables. However, the horizontal resolution of global reanalysis is of the order of 100 to 200 km, too coarse for many application studies. Regional climate models (RCMs) are able to provide valuable regional finescale information, especially in regions where the climate variables are strongly regulated by the underlying topography and the surface heterogeneity. In this study, we will provide accurately downscaled regional climate over East Asia using the Global/Regional Integrated Model system [GRIMs; Hong et al. 2013]. A mixed layer model is embedded within the GRIMs in order to improve air-sea interaction. A detailed description of the characteristics of the East Asian summer and winter climate will be presented through the high-resolution numerical simulations. The increase in horizontal resolution is expected to provide the high-quality data that can be used in various application areas such as hydrology or environmental model forcing.

  9. A statistical adjustment approach for climate projections of snow conditions in mountain regions using energy balance land surface models

    Science.gov (United States)

    Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Lafaysse, Matthieu

    2017-04-01

    Projections of future climate change have been increasingly called for lately, as the reality of climate change has been gradually accepted and societies and governments have started to plan upcoming mitigation and adaptation policies. In mountain regions such as the Alps or the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenue, particular attention is brought to current and future snow availability. The question of the vulnerability of mountain ecosystems as well as the occurrence of climate-related hazards such as avalanches and debris-flows is also under consideration. In order to generate projections of snow conditions, however, downscaling global climate models (GCMs) by using regional climate models (RCMs) is not sufficient to capture the fine-scale processes and thresholds at play. In particular, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Simulations from GCMs and RCMs moreover suffer from biases compared to local observations, due to their rather coarse spatial and altitudinal resolution, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted using empirical-statistical downscaling and error correction methods, before they can be used to drive specific models such as energy balance land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees and the French Alps for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. We first introduce a thorough evaluation of the method using using model runs from the ALADIN RCM driven by a global reanalysis over the

  10. Simulated trends of extreme climate indices for the Carpathian basin using outputs of different regional climate models

    Science.gov (United States)

    Pongracz, R.; Bartholy, J.; Szabo, P.; Pieczka, I.; Torma, C. S.

    2009-04-01

    Regional climatological effects of global warming may be recognized not only in shifts of mean temperature and precipitation, but in the frequency or intensity changes of different climate extremes. Several climate extreme indices are analyzed and compared for the Carpathian basin (located in Central/Eastern Europe) following the guidelines suggested by the joint WMO-CCl/CLIVAR Working Group on climate change detection. Our statistical trend analysis includes the evaluation of several extreme temperature and precipitation indices, e.g., the numbers of severe cold days, winter days, frost days, cold days, warm days, summer days, hot days, extremely hot days, cold nights, warm nights, the intra-annual extreme temperature range, the heat wave duration, the growing season length, the number of wet days (using several threshold values defining extremes), the maximum number of consecutive dry days, the highest 1-day precipitation amount, the greatest 5-day rainfall total, the annual fraction due to extreme precipitation events, etc. In order to evaluate the future trends (2071-2100) in the Carpathian basin, daily values of meteorological variables are obtained from the outputs of various regional climate model (RCM) experiments accomplished in the frame of the completed EU-project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Horizontal resolution of the applied RCMs is 50 km. Both scenarios A2 and B2 are used to compare past and future trends of the extreme climate indices for the Carpathian basin. Furthermore, fine-resolution climate experiments of two additional RCMs adapted and run at the Department of Meteorology, Eotvos Lorand University are used to extend the trend analysis of climate extremes for the Carpathian basin. (1) Model PRECIS (run at 25 km horizontal resolution) was developed at the UK Met Office, Hadley Centre, and it uses the boundary conditions from the HadCM3 GCM. (2) Model Reg

  11. Use of Climate Information for Decision-Making and Impacts Research: State of Our Understanding

    Science.gov (United States)

    2016-03-01

    such as winds, clouds , and pressure levels throughout the atmosphere. Like global models, regional climate models (RCMs) continue to evolve, both by...flooding, and wildfires (Grimm et al. 2013). These and other ongoing changes in climate are expected to influence the spatial ranges occupied by species...West The climate of the Mountain West is heavily influenced by the presence of complex topography over a relatively large geographic area. The

  12. Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods

    Directory of Open Access Journals (Sweden)

    S. Stoll

    2011-01-01

    Full Text Available Climate change related modifications in the spatio-temporal distribution of precipitation and evapotranspiration will have an impact on groundwater resources. This study presents a modelling approach exploiting the advantages of integrated hydrological modelling and a broad climate model basis. We applied the integrated MIKE SHE model on a perialpine, small catchment in northern Switzerland near Zurich. To examine the impact of climate change we forced the hydrological model with data from eight GCM-RCM combinations showing systematic biases which are corrected by three different statistical downscaling methods, not only for precipitation but also for the variables that govern potential evapotranspiration. The downscaling methods are evaluated in a split sample test and the sensitivity of the downscaling procedure on the hydrological fluxes is analyzed. The RCMs resulted in very different projections of potential evapotranspiration and, especially, precipitation. All three downscaling methods reduced the differences between the predictions of the RCMs and all corrected predictions showed no future groundwater stress which can be related to an expected increase in precipitation during winter. It turned out that especially the timing of the precipitation and thus recharge is very important for the future development of the groundwater levels. However, the simulation experiments revealed the weaknesses of the downscaling methods which directly influence the predicted hydrological fluxes, and thus also the predicted groundwater levels. The downscaling process is identified as an important source of uncertainty in hydrological impact studies, which has to be accounted for. Therefore it is strongly recommended to test different downscaling methods by using verification data before applying them to climate model data.

  13. Shifts in comparative advantages for maize, oat, and wheat cropping under climate change in Europe

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Børgesen, Christen Duus; Olesen, Jørgen E

    2012-01-01

    as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed...

  14. THE EVOLUTION OF ANNUAL MEAN TEMPERATURE AND PRECIPITATION QUANTITY VARIABILITY BASED ON ESTIMATED CHANGES BY THE REGIONAL CLIMATIC MODELS

    Directory of Open Access Journals (Sweden)

    Paula Furtună

    2013-03-01

    Full Text Available Climatic changes are representing one of the major challenges of our century, these being forcasted according to climate scenarios and models, which represent plausible and concrete images of future climatic conditions. The results of climate models comparison regarding future water resources and temperature regime trend can become a useful instrument for decision makers in choosing the most effective decisions regarding economic, social and ecologic levels. The aim of this article is the analysis of temperature and pluviometric variability at the closest grid point to Cluj-Napoca, based on data provided by six different regional climate models (RCMs. Analysed on 30 year periods (2001-2030,2031-2060 and 2061-2090, the mean temperature has an ascending general trend, with great varability between periods. The precipitation expressed trough percentage deviation shows a descending general trend, which is more emphazied during 2031-2060 and 2061-2090.

  15. An intercomparison of regional climate simulations for Europe

    DEFF Research Database (Denmark)

    Déqué, M.; Rowell, D. P.; Lüthi, D.

    2007-01-01

    Ten regional climate models (RCM) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre boundary conditions. The response over Europe, calculated as the difference between the 2071-2100 and the 1961-1990 means can be viewed...... as an average over a finite number of years (30). Model uncertainty is due to the fact that the models use different techniques to discretize the equations and to represent sub-grid effects. Radiative uncertainty is due to the fact that IPCC-SRES A2 is merely one hypothesis. Some RCMs have been run with another...... scenario of greenhouse gas concentration (IPCC-SRES B2). Boundary uncertainty is due to the fact that the regional models have been run under the constraint of the same global model. Some RCMs have been run with other boundary forcings. The contribution of the different sources varies according...

  16. Future precipitation changes over China under 1.5 °C and 2.0 °C global warming targets by using CORDEX regional climate models.

    Science.gov (United States)

    Li, Huixin; Chen, Huopo; Wang, Huijun; Yu, Entao

    2018-06-01

    This study aims to characterize future changes in precipitation extremes over China based on regional climate models (RCMs) participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX)-East Asia project. The results of five RCMs involved in CORDEX-East Asia project that driven by HadGEM2-AO are compared with the simulation of CMA-RegCM driven by BCC-CSM1.1. Eleven precipitation extreme indices that developed by the Expert Team on Climate Change Detection and Indices are employed to evaluate precipitation extreme changes over China. Generally, RCMs can reproduce their spatiotemporal characteristics over China in comparison with observations. For future climate projections, RCMs indicate that both the occurrence and intensity of precipitation extremes in most regions of China will increase when the global temperature increases by 1.5/2.0 °C. The yearly maximum five-day precipitation (RX5D) averaged over China is reported to increase by 4.4% via the CMA-RegCM under the 1.5 °C warming in comparison with the baseline period (1986-2005); however, a relatively large increase of 11.1% is reported by the multi-model ensemble median (MME) when using the other five models. Furthermore, the reoccurring risks of precipitation extremes over most regions of China will further increase due to the additional 0.5 °C warming. For example, RX5D will further increase by approximately 8.9% over NWC, 3.8% over NC, 2.3% over SC, and approximately 1.0% over China. Extremes, such as the historical 20-year return period event of yearly maximum one-day precipitation (RX1D) and RX5D, will become more frequent, with occurrences happening once every 8.8 years (RX1D) and 11.5 years (RX5D) under the 1.5 °C warming target, and there will be two fewer years due to the additional 0.5 °C warming. In addition, the intensity of these events will increase by approximately 9.2% (8.5%) under the 1.5 °C warming target and 12.6% (11.0%) under the 2.0 °C warming

  17. Hydrological modeling as an evaluation tool of EURO-CORDEX climate projections and bias correction methods

    Science.gov (United States)

    Hakala, Kirsti; Addor, Nans; Seibert, Jan

    2017-04-01

    Streamflow stemming from Switzerland's mountainous landscape will be influenced by climate change, which will pose significant challenges to the water management and policy sector. In climate change impact research, the determination of future streamflow is impeded by different sources of uncertainty, which propagate through the model chain. In this research, we explicitly considered the following sources of uncertainty: (1) climate models, (2) downscaling of the climate projections to the catchment scale, (3) bias correction method and (4) parameterization of the hydrological model. We utilize climate projections at the 0.11 degree 12.5 km resolution from the EURO-CORDEX project, which are the most recent climate projections for the European domain. EURO-CORDEX is comprised of regional climate model (RCM) simulations, which have been downscaled from global climate models (GCMs) from the CMIP5 archive, using both dynamical and statistical techniques. Uncertainties are explored by applying a modeling chain involving 14 GCM-RCMs to ten Swiss catchments. We utilize the rainfall-runoff model HBV Light, which has been widely used in operational hydrological forecasting. The Lindström measure, a combination of model efficiency and volume error, was used as an objective function to calibrate HBV Light. Ten best sets of parameters are then achieved by calibrating using the genetic algorithm and Powell optimization (GAP) method. The GAP optimization method is based on the evolution of parameter sets, which works by selecting and recombining high performing parameter sets with each other. Once HBV is calibrated, we then perform a quantitative comparison of the influence of biases inherited from climate model simulations to the biases stemming from the hydrological model. The evaluation is conducted over two time periods: i) 1980-2009 to characterize the simulation realism under the current climate and ii) 2070-2099 to identify the magnitude of the projected change of

  18. Reproducing multi-model ensemble average with Ensemble-averaged Reconstructed Forcings (ERF) in regional climate modeling

    Science.gov (United States)

    Erfanian, A.; Fomenko, L.; Wang, G.

    2016-12-01

    Multi-model ensemble (MME) average is considered the most reliable for simulating both present-day and future climates. It has been a primary reference for making conclusions in major coordinated studies i.e. IPCC Assessment Reports and CORDEX. The biases of individual models cancel out each other in MME average, enabling the ensemble mean to outperform individual members in simulating the mean climate. This enhancement however comes with tremendous computational cost, which is especially inhibiting for regional climate modeling as model uncertainties can originate from both RCMs and the driving GCMs. Here we propose the Ensemble-based Reconstructed Forcings (ERF) approach to regional climate modeling that achieves a similar level of bias reduction at a fraction of cost compared with the conventional MME approach. The new method constructs a single set of initial and boundary conditions (IBCs) by averaging the IBCs of multiple GCMs, and drives the RCM with this ensemble average of IBCs to conduct a single run. Using a regional climate model (RegCM4.3.4-CLM4.5), we tested the method over West Africa for multiple combination of (up to six) GCMs. Our results indicate that the performance of the ERF method is comparable to that of the MME average in simulating the mean climate. The bias reduction seen in ERF simulations is achieved by using more realistic IBCs in solving the system of equations underlying the RCM physics and dynamics. This endows the new method with a theoretical advantage in addition to reducing computational cost. The ERF output is an unaltered solution of the RCM as opposed to a climate state that might not be physically plausible due to the averaging of multiple solutions with the conventional MME approach. The ERF approach should be considered for use in major international efforts such as CORDEX. Key words: Multi-model ensemble, ensemble analysis, ERF, regional climate modeling

  19. Influence of Climate Change on River Discharge in Austria

    Directory of Open Access Journals (Sweden)

    Robert A. Goler

    2016-10-01

    Full Text Available The effect of climate change on the river discharge characteristics in four catchment basins within Austria is investigated using a hydrological model. Input for the model are daily climate data generated from three regional climate models (RCMs over the time period 1951–2100 using the A1B emission scenario. Due to the complex terrain of the basins, the climate data has been downscaled to a resolution of 1km×1km$1\\,\\text{km}\\times1\\,\\text{km}$. The hydrological model includes processes such as meltwater from snow and glaciers; surface, subsurface, and groundwater flows; and evapotranspiration. The modelling results show that, although only one RCM exhibits a significant reduction in the mean annual discharge towards the end of the 21st century, all RCMs exhibit significant changes in the seasonal distribution of the discharge. In particular, for basins whose discharge is dependent on water stored as snow, there will be a shift in the time of maximum river discharge to earlier in the year as the snow and ice melt earlier. During the winter months the discharge is forecasted to be higher than at present, which would lead to the number of days of low discharge being reduced. However, the earlier snow melt means that the available water for the summer months will be reduced, leading to lower discharges than present, and thus an increase in the number of low discharge days.

  20. Validation of two high‐resolution climate simulations over Scandinavia

    DEFF Research Database (Denmark)

    Mayer, Stephanie; Maule, Cathrine Fox; Sobolowski, Stefan

    2014-01-01

    ., 2007) and to evaluate to what degree the models simulate observed weather. This is done by performing a so‐called perfect boundary experiment by dynamically downscaling ERA interim data. The atmospheric models WRF and HIRHAM5 were used as regional climate models (RCMs) in this study. Both models were...... are employed to examine the performance of the RCMs behaviour on a seasonal to sub‐daily time scale. Both models exhibit a wet bias of 50‐100 % (1‐3 mm) in seasonal precipitation. This bias is most pronounced during winter. The lower‐resolution reanalysis data underestimates wet‐day precipitation in all four...... season by 13‐36 % over the selected cities Bergen, Oslo and Copenhagen. The RCM simulations show a reduction of this underestimation and even indicate a sign change in some seasons/locations. A spatio‐temporal evaluation of downscaled precipitation extremes shows that both RCM downscalings are much...

  1. Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961-2000

    Science.gov (United States)

    Sanchez-Gomez, Emilia; Somot, S.; Déqué, M.

    2009-10-01

    One of the main concerns in regional climate modeling is to which extent limited-area regional climate models (RCM) reproduce the large-scale atmospheric conditions of their driving general circulation model (GCM). In this work we investigate the ability of a multi-model ensemble of regional climate simulations to reproduce the large-scale weather regimes of the driving conditions. The ensemble consists of a set of 13 RCMs on a European domain, driven at their lateral boundaries by the ERA40 reanalysis for the time period 1961-2000. Two sets of experiments have been completed with horizontal resolutions of 50 and 25 km, respectively. The spectral nudging technique has been applied to one of the models within the ensemble. The RCMs reproduce the weather regimes behavior in terms of composite pattern, mean frequency of occurrence and persistence reasonably well. The models also simulate well the long-term trends and the inter-annual variability of the frequency of occurrence. However, there is a non-negligible spread among the models which is stronger in summer than in winter. This spread is due to two reasons: (1) we are dealing with different models and (2) each RCM produces an internal variability. As far as the day-to-day weather regime history is concerned, the ensemble shows large discrepancies. At daily time scale, the model spread has also a seasonal dependence, being stronger in summer than in winter. Results also show that the spectral nudging technique improves the model performance in reproducing the large-scale of the driving field. In addition, the impact of increasing the number of grid points has been addressed by comparing the 25 and 50 km experiments. We show that the horizontal resolution does not affect significantly the model performance for large-scale circulation.

  2. Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961-2000

    Energy Technology Data Exchange (ETDEWEB)

    Somot, S.; Deque, M. [Meteo-France CNRM/GMGEC CNRS/GAME, Toulouse (France); Sanchez-Gomez, Emilia

    2009-10-15

    One of the main concerns in regional climate modeling is to which extent limited-area regional climate models (RCM) reproduce the large-scale atmospheric conditions of their driving general circulation model (GCM). In this work we investigate the ability of a multi-model ensemble of regional climate simulations to reproduce the large-scale weather regimes of the driving conditions. The ensemble consists of a set of 13 RCMs on a European domain, driven at their lateral boundaries by the ERA40 reanalysis for the time period 1961-2000. Two sets of experiments have been completed with horizontal resolutions of 50 and 25 km, respectively. The spectral nudging technique has been applied to one of the models within the ensemble. The RCMs reproduce the weather regimes behavior in terms of composite pattern, mean frequency of occurrence and persistence reasonably well. The models also simulate well the long-term trends and the inter-annual variability of the frequency of occurrence. However, there is a non-negligible spread among the models which is stronger in summer than in winter. This spread is due to two reasons: (1) we are dealing with different models and (2) each RCM produces an internal variability. As far as the day-to-day weather regime history is concerned, the ensemble shows large discrepancies. At daily time scale, the model spread has also a seasonal dependence, being stronger in summer than in winter. Results also show that the spectral nudging technique improves the model performance in reproducing the large-scale of the driving field. In addition, the impact of increasing the number of grid points has been addressed by comparing the 25 and 50 km experiments. We show that the horizontal resolution does not affect significantly the model performance for large-scale circulation. (orig.)

  3. Impacts of climate change on the seasonality of low flows in 134 catchments in the River Rhine basin using an ensemble of bias-corrected regional climate simulations

    Directory of Open Access Journals (Sweden)

    M. C. Demirel

    2013-10-01

    Full Text Available The impacts of climate change on the seasonality of low flows were analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch-German border. Three seasonality indices for low flows were estimated, namely the seasonality ratio (SR, weighted mean occurrence day (WMOD and weighted persistence (WP. These indices are related to the discharge regime, timing and variability in timing of low flow events respectively. The three indices were estimated from: (1 observed low flows; (2 simulated low flows by the semi-distributed HBV model using observed climate as input; (3 simulated low flows using simulated inputs from seven combinations of General Circulation Models (GCMs and Regional Climate Models (RCMs for the current climate (1964–2007; (4 simulated low flows using simulated inputs from seven combinations of GCMs and RCMs for the future climate (2063–2098 including three different greenhouse gas emission scenarios. These four cases were compared to assess the effects of the hydrological model, forcing by different climate models and different emission scenarios on the three indices. Significant differences were found between cases 1 and 2. For instance, the HBV model is prone to overestimate SR and to underestimate WP and simulates very late WMODs compared to the estimated WMODs using observed discharges. Comparing the results of cases 2 and 3, the smallest difference was found for the SR index, whereas large differences were found for the WMOD and WP indices for the current climate. Finally, comparing the results of cases 3 and 4, we found that SR decreases substantially by 2063–2098 in all seven sub-basins of the River Rhine. The lower values of SR for the future climate indicate a shift from winter low flows (SR > 1 to summer low flows (SR < 1 in the two Alpine sub-basins. The WMODs of low flows tend to be earlier than for the current climate in all sub-basins except for the Middle Rhine and Lower Rhine sub

  4. Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover

    Science.gov (United States)

    Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.

    2010-12-01

    Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the

  5. Improving evaluation of climate change impacts on the water cycle by remote sensing ET-retrieval

    Directory of Open Access Journals (Sweden)

    S. G. García Galiano

    2015-05-01

    Full Text Available Population growth and intense consumptive water uses are generating pressures on water resources in the southeast of Spain. Improving the knowledge of the climate change impacts on water cycle processes at the basin scale is a step to building adaptive capacity. In this work, regional climate model (RCM ensembles are considered as an input to the hydrological model, for improving the reliability of hydroclimatic projections. To build the RCMs ensembles, the work focuses on probability density function (PDF-based evaluation of the ability of RCMs to simulate of rainfall and temperature at the basin scale. To improve the spatial calibration of the continuous hydrological model used, an algorithm for remote sensing actual evapotranspiration (AET retrieval was applied. From the results, a clear decrease in runoff is expected for 2050 in the headwater basin studied. The plausible future scenario of water shortage will produce negative impacts on the regional economy, where the main activity is irrigated agriculture.

  6. Numerical simulation of surface solar radiation over Southern Africa. Part 1: Evaluation of regional and global climate models

    Science.gov (United States)

    Tang, Chao; Morel, Béatrice; Wild, Martin; Pohl, Benjamin; Abiodun, Babatunde; Bessafi, Miloud

    2018-02-01

    This study evaluates the performance of climate models in reproducing surface solar radiation (SSR) over Southern Africa (SA) by validating five Regional Climate Models (RCM, including CCLM4, HIRHAM5, RACMO22T, RCA4 and REMO2009) that participated in the Coordinated Regional Downscaling Experiment program over Africa (CORDEX-Africa) along with their ten driving General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 over SA. The model simulated SSR was thereby compared to reference data from ground-based measurements, satellite-derived products and reanalyses over the period 1990-2005. Results show that (1) the references obtained from satellite retrievals and reanalyses overall overestimate SSR by up to 10 W/m2 on average when compared to ground-based measurements from the Global Energy Balance Archive, which are located mainly over the eastern part of the southern African continent. (2) Compared to one of the satellite products (Surface Solar Radiation Data Set—Heliosat Edition 2; SARAH-2): GCMs overestimate SSR over SA in terms of their multi-model mean by about 1 W/m2 (compensation of opposite biases over sub-regions) and 7.5 W/m2 in austral summer and winter respectively; RCMs driven by GCMs show in their multimodel mean underestimations of SSR in both seasons with Mean Bias Errors (MBEs) of about - 30 W/m2 in austral summer and about - 14 W/m2 in winter compared to SARAH-2. This multi-model mean low bias is dominated by the simulations of the CCLM4, with negative biases up to - 76 W/m2 in summer and - 32 W/m2 in winter. (3) The discrepancies in the simulated SSR over SA are larger in the RCMs than in the GCMs. (4) In terms of trend during the "brightening" period 1990-2005, both GCMs and RCMs (driven by European Centre for Medium-Range Weather Forecasts Reanalysis ERA-Interim, short as ERAINT and GCMs) simulate an SSR trend of less than 1 W/m2 per decade. However, variations of SSR trend exist among different references data

  7. Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Clausen, Niels-Erik

    2012-01-01

    Regional Climate Models. Additionally, internal (inherent) variability and initial conditions exert a strong impact on projected wind climates throughout the twenty-first century. Simulations of wind gusts by one of the RCMs (RCA3) indicate some evidence for increased magnitudes (of up to +10...... be used in interpreting this inference given the high degree of wind climate projection spread that derives from the specific AOGCM and RCM used in the downscaling....

  8. Near-surface wind pattern in regional climate projections over the broader Adriatic region

    Science.gov (United States)

    Belušić, Andreina; Telišman Prtenjak, Maja; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2017-04-01

    The Adriatic region is characterized by the complex coastline, strong topographic gradients and specific wind regimes. This represents excellent test area for the latest generation of the regional climate models (RCMs) applied over the European domain. The most famous wind along the Adriatic coast is bora, which due to its strength, has a strong impact on all types of human activities in the Adriatic region. The typical bora wind is a severe gusty downslope flow perpendicular to the mountains. Besides bora, in the Adriatic region, typical winds are sirocco (mostly during the wintertime) and sea/land breezes (dominantly in the warm part of the year) as a part of the regional Mediterranean wind system. Thus, it is substantial to determine future changes in the wind filed characteristics (e.g., changes in strength and frequencies). The first step was the evaluation of a suite of ten EURO- and MED-CORDEX models (at 50 km and 12.5 km resolution), and two additional high resolution models from the Swiss Federal Institute of Technology in Zürich (ETHZ, at 12.5 km and 2.2. km resolution) in the present climate. These results provided a basis for the next step where wind field features, in an ensemble of RCMs forced by global climate models (GCMs) in historical and future runs are examined. Our aim is to determine the influence of the particular combination of RCMs and GCMs, horizontal resolution and emission scenario on the future changes in the near-surface wind field. The analysis reveals strong sensitivity of the simulated wind flow and its statistics to both season and location analyzed, to the horizontal resolution of the RCM and on the choice of the particular GCM that provides boundary conditions.

  9. The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability

    Energy Technology Data Exchange (ETDEWEB)

    Deque, M.; Somot, S. [Meteo-France, Centre National de Recherches Meteorologiques, CNRS/GAME, Toulouse Cedex 01 (France); Sanchez-Gomez, E. [Cerfacs/CNRS, SUC URA1875, Toulouse Cedex 01 (France); Goodess, C.M. [University of East Anglia, Climatic Research Unit, Norwich (United Kingdom); Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Lenderink, G. [KNMI, Postbus 201, De Bilt (Netherlands); Christensen, O.B. [Danish Meteorological Institute, Copenhagen Oe (Denmark)

    2012-03-15

    Various combinations of thirteen regional climate models (RCM) and six general circulation models (GCM) were used in FP6-ENSEMBLES. The response to the SRES-A1B greenhouse gas concentration scenario over Europe, calculated as the difference between the 2021-2050 and the 1961-1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance explained for temperature and precipitation changes over eight European sub-areas. Three sources of uncertainty can be evaluated from the ENSEMBLES database. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30) despite a non-negligible interannual variability. Regional model uncertainty is due to the fact that the RCMs use different techniques to discretize the equations and to represent sub-grid effects. Global model uncertainty is due to the fact that the RCMs have been driven by different GCMs. Two methods are presented to fill the many empty cells of the ENSEMBLES RCM x GCM matrix. The first one is based on the same approach as in FP5-PRUDENCE. The second one uses the concept of weather regimes to attempt to separate the contribution of the GCM and the RCM. The variance of the climate response is analyzed with respect to the contribution of the GCM and the RCM. The two filling methods agree that the main contributor to the spread is the choice of the GCM, except for summer precipitation where the choice of the RCM dominates the uncertainty. Of course the implication of the GCM to the spread varies with the region, being maximum in the South-western part of Europe, whereas the continental parts are more sensitive to the choice of the RCM. The third cause of spread is systematically the interannual variability. The total uncertainty about temperature is not large enough to mask the 2021-2050 response which shows a similar pattern to the one obtained for 2071-2100 in PRUDENCE. The uncertainty

  10. A synthesis of regional climate change simulations - A Scandinavian perspective

    DEFF Research Database (Denmark)

    Christensen, J. H.; Räinsänen, J.; Iversen, T.

    2001-01-01

    Four downscaling experiments of regional climate change for the Nordic countries have been conducted with three different regional climate models (RCMs). A short synthesis of the outcome of the suite of experiments is presented as an ensemble, reflecting the different driving atmosphere-ocean...... general circulation model (AOGCM) conditions, RCM model resolution and domain size, and choice of emission scenarios. This allows the sources of uncertainties in the projections to be assessed. At the same time analysis of the climate change signal for temperature and precipitation over the period 1990......-2050 reveals strong similarities. In particular, all experiments in the suite simulate changes in the precipitation distribution towards a higher frequency of heavy precipitation....

  11. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models

    Directory of Open Access Journals (Sweden)

    S. Terzago

    2017-07-01

    Full Text Available The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow–climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR, and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs, participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX and in the Fifth Coupled Model Intercomparison Project (CMIP5 respectively. We evaluate their reliability in reproducing the main drivers of snow processes – near-surface air temperature and precipitation – against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around

  12. Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models

    Science.gov (United States)

    Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello

    2017-07-01

    The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow-climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow processes - near-surface air temperature and precipitation - against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around the ensemble mean. We

  13. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    Science.gov (United States)

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity. Copyright © 2016. Published by Elsevier B.V.

  14. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario

    Directory of Open Access Journals (Sweden)

    Ji-Woo Lee

    2014-01-01

    Full Text Available This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM, namely, the Global/Regional Integrated Model System (GRIMs, Regional Model Program (RMP. The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4. The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070 simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.

  15. The Added Value to Global Model Projections of Climate Change by Dynamical Downscaling: A Case Study over the Continental U.S. using the GISS-ModelE2 and WRF Models

    Science.gov (United States)

    Racherla, P. N.; Shindell, D. T.; Faluvegi, G. S.

    2012-01-01

    Dynamical downscaling is being increasingly used for climate change studies, wherein the climates simulated by a coupled atmosphere-ocean general circulation model (AOGCM) for a historical and a future (projected) decade are used to drive a regional climate model (RCM) over a specific area. While previous studies have demonstrated that RCMs can add value to AOGCM-simulated climatologies over different world regions, it is unclear as to whether or not this translates to a better reproduction of the observed climate change therein. We address this issue over the continental U.S. using the GISS-ModelE2 and WRF models, a state-of-the-science AOGCM and RCM, respectively. As configured here, the RCM does not effect holistic improvement in the seasonally and regionally averaged surface air temperature or precipitation for the individual historical decades. Insofar as the climate change between the two decades is concerned, the RCM does improve upon the AOGCM when nudged in the domain proper, but only modestly so. Further, the analysis indicates that there is not a strong relationship between skill in capturing climatological means and skill in capturing climate change. Though additional research would be needed to demonstrate the robustness of this finding in AOGCM/RCM models generally, the evidence indicates that, for climate change studies, the most important factor is the skill of the driving global model itself, suggesting that highest priority should be given to improving the long-range climate skill of AOGCMs.

  16. Application of artificial intelligence (AI) methods for designing and analysis of reconfigurable cellular manufacturing system (RCMS)

    CSIR Research Space (South Africa)

    Xing, B

    2009-12-01

    Full Text Available This work focuses on the design and control of a novel hybrid manufacturing system: Reconfigurable Cellular Manufacturing System (RCMS) by using Artificial Intelligence (AI) approach. It is hybrid as it combines the advantages of Cellular...

  17. Projected changes over western Canada using convection-permitting regional climate model and the pseudo-global warming method

    Science.gov (United States)

    Li, Y.; Kurkute, S.; Chen, L.

    2017-12-01

    Results from the General Circulation Models (GCMs) suggest more frequent and more severe extreme rain events in a climate warmer than the present. However, current GCMs cannot accurately simulate extreme rainfall events of short duration due to their coarse model resolutions and parameterizations. This limitation makes it difficult to provide the detailed quantitative information for the development of regional adaptation and mitigation strategies. Dynamical downscaling using nested Regional Climate Models (RCMs) are able to capture key regional and local climate processes with an affordable computational cost. Recent studies have demonstrated that the downscaling of GCM results with weather-permitting mesoscale models, such as the pseudo-global warming (PGW) technique, could be a viable and economical approach of obtaining valuable climate change information on regional scales. We have conducted a regional climate 4-km Weather Research and Forecast Model (WRF) simulation with one domain covering the whole western Canada, for a historic run (2000-2015) and a 15-year future run to 2100 and beyond with the PGW forcing. The 4-km resolution allows direct use of microphysics and resolves the convection explicitly, thus providing very convincing spatial detail. With this high-resolution simulation, we are able to study the convective mechanisms, specifically the control of convections over the Prairies, the projected changes of rainfall regimes, and the shift of the convective mechanisms in a warming climate, which has never been examined before numerically at such large scale with such high resolution.

  18. Climate change impact assessment of extreme precipitation on urban flash floods – case study, Aarhus, Denmark

    DEFF Research Database (Denmark)

    Madsen, Henrik; Sunyer Pinya, Maria Antonia; Rosbjerg, Dan

    projections for estimation of changes in extreme rainfall characteristics. Climate model projections from 20 regional climate models (RCM) from the ENSEMBLES data archive were used in the analysis. Two different estimation methods were applied, using, respectively, a direct estimation of the changes...... in the extreme value statistics of the RCM data, and application of a stochastic weather generator fitted to the changes in rainfall characteristics from the RCM data. The results show a large variability in the projected changes in extreme precipitation between the different RCMs and the two estimation methods...

  19. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment

    Science.gov (United States)

    Khan, M.; Abdul-Aziz, O. I.

    2017-12-01

    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  20. Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Hyung-Il; Laprise, Rene [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Gachon, Philippe [University of Quebec at Montreal, ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Environment Canada, Adaptation and Impacts Research Section, Climate Research Division, Montreal, QC (Canada); Ouarda, Taha [University of Quebec, INRS-ETE (Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement), Quebec, QC (Canada)

    2012-04-15

    This study presents a combined weighting scheme which contains five attributes that reflect accuracy of climate data, i.e. short-term (daily), mid-term (annual), and long-term (decadal) timescales, as well as spatial pattern, and extreme values, as simulated from Regional Climate Models (RCMs) with respect to observed and regional reanalysis products. Southern areas of Quebec and Ontario provinces in Canada are used for the study area. Three series of simulation from two different versions of the Canadian RCM (CRCM4.1.1, and CRCM4.2.3) are employed over 23 years from 1979 to 2001, driven by both NCEP and ERA40 global reanalysis products. One series of regional reanalysis dataset (i.e. NARR) over North America is also used as reference for comparison and validation purpose, as well as gridded historical observed daily data of precipitation and temperatures, both series have been beforehand interpolated on the CRCM 45-km grid resolution. Monthly weighting factors are calculated and then combined into four seasons to reflect seasonal variability of climate data accuracy. In addition, this study generates weight averaged references (WARs) with different weighting factors and ensemble size as new reference climate data set. The simulation results indicate that the NARR is in general superior to the CRCM simulated precipitation values, but the CRCM4.1.1 provides the highest weighting factors during the winter season. For minimum and maximum temperature, both the CRCM4.1.1 and the NARR products provide the highest weighting factors, respectively. The NARR provides more accurate short- and mid-term climate data, but the two versions of the CRCM provide more precise long-term data, spatial pattern and extreme events. Or study confirms also that the global reanalysis data (i.e. NCEP vs. ERA40) used as boundary conditions in the CRCM runs has non-negligible effects on the accuracy of CRCM simulated precipitation and temperature values. In addition, this study demonstrates

  1. Hydrological Impacts of Climate Change: A Case Study on the Ebro River Basin (Spain)

    Science.gov (United States)

    Zambrano-Bigiarini, M.; Bellin, A.; Majone, B.; Bovolo, C. I.; Blenkinsop, S.

    2009-12-01

    Uncertainty in projections from climate models limits the understanding of future hydrological impacts and complicates the assessment of mitigation policies. This work presents hydrological simulations of the Ebro River Basin (Spain), using both control (1961-1990) and future (2071-2100) climate scenarios, in order to investigate the effect of climate change on the water availability of the basin. Using the SWAT model, hydrological simulations were carried out for four catchments with different climatological regimes. Sets of model parameters were identified using sensitivity analysis, long-term calibration and uncertainty analysis procedures, which enabled the historical behaviour of the catchments to be reproduced. Following validation, the parameters were used to simulate the effects of climate change on future streamflow. Bias-corrected daily time series of precipitation and mean temperature from an ensemble of 6 Regional Climate Models (RCMs), using the SRES A2 emissions scenario, were used as drivers of the hydrological simulations during the future scenarios. Important annual and seasonal differences in the projected future precipitation and temperature fields were observed among the RCMs. However, a general decrease in annual mean precipitation and an increase in annual mean temperature relative to the control period were observed, with the strongest differences during the summer season. When these changes were used to project future streamflows, a general decrease was observed at the outlet of the catchments. Changes in streamflows were in general agreement with the projections of daily precipitation and temperature fields, with a larger drop in predicted monthly streamflows for catchments with more semi-arid climatological regimes, and seasonal differences that are related to the elevation range of the catchments.

  2. Alpine snow cover in a changing climate: a regional climate model perspective

    Science.gov (United States)

    Steger, Christian; Kotlarski, Sven; Jonas, Tobias; Schär, Christoph

    2013-08-01

    An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951-2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971-2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40-80 % by mid century relative to 1971-2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000-2,500 m, SWE reductions amount to 10-60 % by mid century and to 30-80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.

  3. Daily temperature changes and variability in ENSEMBLES regional models predictions: Evaluation and intercomparison for the Ebro Valley (NE Iberia)

    KAUST Repository

    El Kenawy, Ahmed M.; Ló pez-Moreno, Juan Ignacio; McCabe, Matthew; Brunsell, Nathaniel A.; Vicente-Serrano, Sergio M.

    2014-01-01

    We employ a suite of regional climate models (RCMs) to assess future changes in summer (JJA) maximum temperature (Tmax) over the Ebro basin, the largest hydrological division in the Iberian Peninsula. Under the A1B emission scenario, future changes

  4. Assessing the capability of CORDEX models in simulating onset of rainfall in West Africa

    Science.gov (United States)

    Mounkaila, Moussa S.; Abiodun, Babatunde J.; `Bayo Omotosho, J.

    2015-01-01

    Reliable forecasts of rainfall-onset dates (RODs) are crucial for agricultural planning and food security in West Africa. This study evaluates the ability of nine CORDEX regional climate models (RCMs: ARPEGE, CRCM5, RACMO, RCA35, REMO, RegCM3, PRECIS, CCLM and WRF) in simulating RODs over the region. Four definitions are used to compute RODs, and two observation datasets (GPCP and TRMM) are used in the model evaluation. The evaluation considers how well the RCMs, driven by ERA-Interim reanalysis (ERAIN), simulate the observed mean, standard deviation and inter-annual variability of RODs over West Africa. It also investigates how well the models link RODs with the northward movement of the monsoon system over the region. The model performances are compared to that of the driving reanalysis—ERAIN. Observations show that the mean RODs in West Africa have a zonal distribution, and the dates increase from the Guinea coast northward. ERAIN fails to reproduce the spatial distribution of the RODs as observed. The performance of some RCMs in simulating the RODs depends on the ROD definition used. For instance, ARPEGE, RACMO, PRECIS and CCLM produce a better ROD distribution than that of ERAIN when three of the ROD definitions are used, but give a worse ROD distribution than that of ERAIN when the fourth definition is used. However, regardless of the definition used, CCRM5, RCA35, REMO, RegCM3 and WRF show a remarkable improvement over ERAIN. The study shows that the ability of the RCMs in simulating RODs over West Africa strongly depends on how well the models reproduce the northward movement of the monsoon system and the associated features. The results show that there are some differences in the RODs obtained between the two observation datasets and RCMs, and the differences are magnified by differences in the ROD definitions. However, the study shows that most CORDEX RCMs have remarkable skills in predicting the RODs in West Africa.

  5. Assessing the impacts of climate change on future water resources: a methodological approach based on equiratio CDF-matching and vine copula

    Science.gov (United States)

    Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.

    2016-04-01

    In this study, the impacts of climate change on future river discharge are evaluated using equiratio CDF-matching and a stochastic copula-based evapotranspiration generator. In recent years, much effort has been dedicated to improve the performances of RCMs outputs, i.e. the downscaled precipitation and temperature, to use in regional studies. However, these outputs usually suffer from bias due to the fact that many important small-scale processes, e.g. the representations of clouds and convection, are not represented explicitly within the models. To solve this problem, several bias correction techniques are developed. In this study, an advanced quantile bias approach called equiratio cumulative distribution function matching (EQCDF) is applied for the outputs from three RCMs for central Belgium, i.e. daily precipitation, temperature and evapotranspiration, for the current (1961-1990) and future climate (2071-2100). The rescaled precipitation and temperature are then used to simulate evapotranspiration via a stochastic copula-based model in which the statistical dependence between evapotranspiration, temperature and precipitation is described by a three-dimensional vine copula. The simulated precipitation and stochastic evapotranspiration are then used to model discharge under present and future climate. To validate, the observations of daily precipitation, temperature and evapotranspiration during 1961 - 1990 in Uccle, Belgium are used. It is found that under current climate, the basic properties of discharge, e.g. mean and frequency distribution, are well modelled; however there is an overestimation of the extreme discharges with return periods higher than 10 years. For the future climate change, compared with historical events, a considerable increase of the discharge magnitude and the number of extreme events is estimated for the studied area in the time period of 2071-2100.

  6. An evaluation of Arctic cloud and radiation processes during the SHEBA year

    DEFF Research Database (Denmark)

    Wyser, K.; Jones, C. G.; Du, P.

    2008-01-01

    Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred...... on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated...... budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic....

  7. Med-CORDEX: a first coordinated inter-comparison of high-resolution and fully coupled regional climate models for the Mediterranean

    Science.gov (United States)

    Somot, Samuel

    2015-04-01

    Due to its geographical, meteorological and oceanographic features, the Mediterranean region can be considered as one of the best place to test and use regional climate modelling tools. It has been chosen as one of the CORDEX sub-domain (MED) leading to the Med-CORDEX initiative. This open and voluntary initiative, financially supported by MISTRALS/HyMeX, has been proposed by the Mediterranean climate modelling research community as a follow-up of previous initiatives. In addition to the CORDEX-like simulations (Atmosphere-RCM, 50 km, ERA-Interim and GCM driven runs), Med-CORDEX includes additional simulations to experiment some of the regional climate modelling current challenges. We present here the status and results of these additional simulations dedicated to the use of (1) very high-resolution Regional Climate Models (RCM, up to 10 km) and (2) fully coupled Regional Climate System Models (RCSM), coupling the various components of the regional climate (atmosphere, land surface and hydrology, river and ocean). Today, Med-CORDEX gathers 23 different modelling groups from 9 different countries (France, Italy, Spain, Serbia, Turkey, Greece, Tunisia, Germany, Hungary) in Europe, Middle-East and North-Africa. They use 12 different atmosphere RCMs including land-surface representation, 4 river models, 10 regional ocean models and 12 different Regional Climate System Models. Almost all the simulations planned (Evaluation, Historical and Scenarios modes) have been completed by the modelling teams. More than half of the runs are archived and freely available for non-commercial use through a dedicated database hosted at ENEA at www.medcordex.eu in common and standardized netcdf format (265,000 files and 3.6 Tb uploaded). This includes atmosphere-only, ocean-only and fully coupled regional climate models. In particular multi-model regional ocean simulations have been archived in a common and standardized format for the first time in the history of the Mediterranean Sea

  8. Climate change impacts on main agricultural activities in the Oltenia Plain (Romania)

    Science.gov (United States)

    Mitrica, B.; Mateescu, E.; Dragota, C.; Busuioc, A.; Grigorescu, I.; Popovici, A.

    2012-04-01

    Understanding the key drivers of agriculture in relation to climate change as well as their interrelationship with land management decisions and policies, one may be able to project future agricultural productions under certain economic, environmental, and social scenarios in order to minimize their negative impacts. The paper is aiming to stress upon the importance of modelling the potential impact of climate change on crop production, particularly under the current conditions when natural resources and food supplies are shortening in many parts of the world. Under the given circumstances, in assessing the impact of climate change on agriculture in the Oltenia Plain, the authors used a simulation model CERES (Crop-Environment Resource Synthesis), developed as a predictive and deterministic model, used for basic and applied research on the effects of climate (thermal regime, water stress) and management (fertilization practices, irrigation) on the growth and yield of different crops. In assessing the impact of climate change on maize and autumn wheat crops two applications of CERES model were used: CERES-Wheat and CERES-Maize overlapping two regional climatic scenarios for 2021-2050 and 2071-2100 periods. These models describe, based on daily data the basic biophysical processes which take place at the soil-plant-atmosphere interface as a response to the variability of different processes such as: photosynthesis, specific phonological phases, evapotranspiration, water dynamics in soil etc. Assessing the impact of climate change on agricultural productivity under the two regional climatic scenarios (2021-2050 and 2071-2100) will reveal their potential consequences on the main agricultural crops in the Oltenia Plain (autumn wheat and maize) depending on the interaction between local climatic conditions, the effect rising CO2 on photosynthesis and the genetical type of crops. Therefore, the autumn wheat benefits from the interaction between the rise of CO2 and air

  9. Climate change impacts on hydrology and water resources

    Directory of Open Access Journals (Sweden)

    Fred Fokko Hattermann

    2015-04-01

    Full Text Available Aim of our study is to quantify the impacts of climate change on hydrology in the large river basins in Germany (Rhine, Elbe, Danube, Weser and Ems and thereby giving the range of impact uncertainty created by the most recent regional climate projections. The study shows mainly results for the A1B SRES (Special Report on Emission Scenario scenario by comparing the reference period 1981–2010 and the scenario periods 2031–2060 and 2061–2090 and using climate projections of a combination of 4 Global Climate Models (GCMs and 12 Regional Climate Models (RCMs as climate driver. The outcome is compared against impacts driven by a more recent RCP (Representative Emission Pathways scenario by using data of a statistical RCM. The results indicate that more robust conclusions can be drawn for some river basins, especially the Rhine and Danube basins, while diversity of results leads to higher uncertainty in the other river basins. The results also show that hydrology is very sensitive to changes in climate and effects of a general increase in precipitation can even be over-compensated by an increase in evapotranspiration. The decrease of runoff in late summer shown in most results can be an indicator for more pronounced droughts under scenario conditions.

  10. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5

    Directory of Open Access Journals (Sweden)

    F. Zabel

    2013-05-01

    Full Text Available Most land surface hydrological models (LSHMs consider land surface processes (e.g. soil–plant–atmosphere interactions, lateral water flows, snow and ice in a spatially detailed manner. The atmosphere is considered as exogenous driver, neglecting feedbacks between the land surface and the atmosphere. On the other hand, regional climate models (RCMs generally simulate land surface processes through coarse descriptions and spatial scales but include land–atmosphere interactions. What is the impact of the differently applied model physics and spatial resolution of LSHMs on the performance of RCMs? What feedback effects are induced by different land surface models? This study analyses the impact of replacing the land surface module (LSM within an RCM with a high resolution LSHM. A 2-way coupling approach was applied using the LSHM PROMET (1 × 1 km2 and the atmospheric part of the RCM MM5 (45 × 45 km2. The scaling interface SCALMET is used for down- and upscaling the linear and non-linear fluxes between the model scales. The change in the atmospheric response by MM5 using the LSHM is analysed, and its quality is compared to observations of temperature and precipitation for a 4 yr period from 1996 to 1999 for the Upper Danube catchment. By substituting the Noah-LSM with PROMET, simulated non-bias-corrected near-surface air temperature improves for annual, monthly and daily courses when compared to measurements from 277 meteorological weather stations within the Upper Danube catchment. The mean annual bias was improved from −0.85 to −0.13 K. In particular, the improved afternoon heating from May to September is caused by increased sensible heat flux and decreased latent heat flux as well as more incoming solar radiation in the fully coupled PROMET/MM5 in comparison to the NOAH/MM5 simulation. Triggered by the LSM replacement, precipitation overall is reduced; however simulated precipitation amounts are still of high uncertainty, both

  11. Soil mapping and processes models to support climate change mitigation and adaptation strategies: a review

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio

    2017-04-01

    As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here

  12. Consistency and Main Differences Between European Regional Climate Downscaling Intercomparison Results; From PRUDENCE and ENSEMBLES to CORDEX

    Science.gov (United States)

    Christensen, J. H.; Larsen, M. A. D.; Christensen, O. B.; Drews, M.

    2017-12-01

    For more than 20 years, coordinated efforts to apply regional climate models to downscale GCM simulations for Europe have been pursued by an ever increasing group of scientists. This endeavor showed its first results during EU framework supported projects such as RACCS and MERCURE. Here, the foundation for today's advanced worldwide CORDEX approach was laid out by a core of six research teams, who conducted some of the first coordinated RCM simulations with the aim to assess regional climate change for Europe. However, it was realized at this stage that model bias in GCMs as well as RCMs made this task very challenging. As an immediate outcome, the idea was conceived to make an even more coordinated effort by constructing a well-defined and structured set of common simulations; this lead to the PRUDENCE project (2001-2004). Additional coordinated efforts involving ever increasing numbers of GCMs and RCMs followed in ENSEMBLES (2004-2009) and the ongoing Euro-CORDEX (officially commenced 2011) efforts. Along with the overall coordination, simulations have increased their standard resolution from 50km (PRUDENCE) to about 12km (Euro-CORDEX) and from time slice simulations (PRUDENCE) to transient experiments (ENSEMBLES and CORDEX); from one driving model and emission scenario (PRUDENCE) to several (Euro-CORDEX). So far, this wealth of simulations have been used to assess the potential impacts of future climate change in Europe providing a baseline change as defined by a multi-model mean change with associated uncertainties calculated from model spread in the ensemble. But how has the overall picture of state-of-the-art regional climate change projections changed over this period of almost two decades? Here we compare across scenarios, model resolutions and model vintage the results from PRUDENCE, ENSEMBLES and Euro-CORDEX. By appropriate scaling we identify robust findings about the projected future of European climate expressed by temperature and precipitation changes

  13. Assessment of the performance of CORDEX-SA experiments in simulating seasonal mean temperature over the Himalayan region for the present climate: Part I

    Science.gov (United States)

    Nengker, T.; Choudhary, A.; Dimri, A. P.

    2018-04-01

    The ability of an ensemble of five regional climate models (hereafter RCMs) under Coordinated Regional Climate Downscaling Experiments-South Asia (hereafter, CORDEX-SA) in simulating the key features of present day near surface mean air temperature (Tmean) climatology (1970-2005) over the Himalayan region is studied. The purpose of this paper is to understand the consistency in the performance of models across the ensemble, space and seasons. For this a number of statistical measures like trend, correlation, variance, probability distribution function etc. are applied to evaluate the performance of models against observation and simultaneously the underlying uncertainties between them for four different seasons. The most evident finding from the study is the presence of a large cold bias (-6 to -8 °C) which is systematically seen across all the models and across space and time over the Himalayan region. However, these RCMs with its fine resolution perform extremely well in capturing the spatial distribution of the temperature features as indicated by a consistently high spatial correlation (greater than 0.9) with the observation in all seasons. In spite of underestimation in simulated temperature and general intensification of cold bias with increasing elevation the models show a greater rate of warming than the observation throughout entire altitudinal stretch of study region. During winter, the simulated rate of warming gets even higher at high altitudes. Moreover, a seasonal response of model performance and its spatial variability to elevation is found.

  14. Assessing the Added Value of Dynamical Downscaling in the Context of Hydrologic Implication

    Science.gov (United States)

    Lu, M.; IM, E. S.; Lee, M. H.

    2017-12-01

    There is a scientific consensus that high-resolution climate simulations downscaled by Regional Climate Models (RCMs) can provide valuable refined information over the target region. However, a significant body of hydrologic impact assessment has been performing using the climate information provided by Global Climate Models (GCMs) in spite of a fundamental spatial scale gap. It is probably based on the assumption that the substantial biases and spatial scale gap from GCMs raw data can be simply removed by applying the statistical bias correction and spatial disaggregation. Indeed, many previous studies argue that the benefit of dynamical downscaling using RCMs is minimal when linking climate data with the hydrological model, from the comparison of the impact between bias-corrected GCMs and bias-corrected RCMs on hydrologic simulations. It may be true for long-term averaged climatological pattern, but it is not necessarily the case when looking into variability across various temporal spectrum. In this study, we investigate the added value of dynamical downscaling focusing on the performance in capturing climate variability. For doing this, we evaluate the performance of the distributed hydrological model over the Korean river basin using the raw output from GCM and RCM, and bias-corrected output from GCM and RCM. The impacts of climate input data on streamflow simulation are comprehensively analyzed. [Acknowledgements]This research is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 17AWMP-B083066-04).

  15. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models

    Science.gov (United States)

    Marengo, Jose A.; Ambrizzi, Tercio; Da Rocha, Rosmeri P.; Alves, Lincoln M.; Cuadra, Santiago V.; Valverde, Maria C.; Torres, Roger R.; Santos, Daniel C.; Ferraz, Simone E. T.

    2010-11-01

    Regional climate change projections for the last half of the twenty-first century have been produced for South America, as part of the CREAS (Cenarios REgionalizados de Clima Futuro da America do Sul) regional project. Three regional climate models RCMs (Eta CCS, RegCM3 and HadRM3P) were nested within the HadAM3P global model. The simulations cover a 30-year period representing present climate (1961-1990) and projections for the IPCC A2 high emission scenario for 2071-2100. The focus was on the changes in the mean circulation and surface variables, in particular, surface air temperature and precipitation. There is a consistent pattern of changes in circulation, rainfall and temperatures as depicted by the three models. The HadRM3P shows intensification and a more southward position of the subtropical Pacific high, while a pattern of intensification/weakening during summer/winter is projected by the Eta CCS/RegCM3. There is a tendency for a weakening of the subtropical westerly jet from the Eta CCS and HadRM3P, consistent with other studies. There are indications that regions such of Northeast Brazil and central-eastern and southern Amazonia may experience rainfall deficiency in the future, while the Northwest coast of Peru-Ecuador and northern Argentina may experience rainfall excesses in a warmer future, and these changes may vary with the seasons. The three models show warming in the A2 scenario stronger in the tropical region, especially in the 5°N-15°S band, both in summer and especially in winter, reaching up to 6-8°C warmer than in the present. In southern South America, the warming in summer varies between 2 and 4°C and in winter between 3 and 5°C in the same region from the 3 models. These changes are consistent with changes in low level circulation from the models, and they are comparable with changes in rainfall and temperature extremes reported elsewhere. In summary, some aspects of projected future climate change are quite robust across this set of

  16. Investigating added value of regional climate modeling in North American winter storm track simulations

    Science.gov (United States)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given

  17. Assessing River Low-Flow Uncertainties Related to Hydrological Model Calibration and Structure under Climate Change Conditions

    Directory of Open Access Journals (Sweden)

    Mélanie Trudel

    2017-03-01

    Full Text Available Low-flow is the flow of water in a river during prolonged dry weather. This paper investigated the uncertainty originating from hydrological model calibration and structure in low-flow simulations under climate change conditions. Two hydrological models of contrasting complexity, GR4J and SWAT, were applied to four sub-watersheds of the Yamaska River, Canada. The two models were calibrated using seven different objective functions including the Nash-Sutcliffe coefficient (NSEQ and six other objective functions more related to low flows. The uncertainty in the model parameters was evaluated using a PARAmeter SOLutions procedure (PARASOL. Twelve climate projections from different combinations of General Circulation Models (GCMs and Regional Circulation Models (RCMs were used to simulate low-flow indices in a reference (1970–2000 and future (2040–2070 horizon. Results indicate that the NSEQ objective function does not properly represent low-flow indices for either model. The NSE objective function applied to the log of the flows shows the lowest total variance for all sub-watersheds. In addition, these hydrological models should be used with care for low-flow studies, since they both show some inconsistent results. The uncertainty is higher for SWAT than for GR4J. With GR4J, the uncertainties in the simulations for the 7Q2 index (the 7-day low-flow value with a 2-year return period are lower for the future period than for the reference period. This can be explained by the analysis of hydrological processes. In the future horizon, a significant worsening of low-flow conditions was projected.

  18. Evaluation of the applicability in the future climate of a statistical downscaling method in France

    Science.gov (United States)

    Dayon, G.; Boé, J.; Martin, E.

    2013-12-01

    compared to the magnitude of observed trends. Moreover some spurious trends in downscaled precipitation associated with temporal inconsistencies in reanalyses variables as surface humidity are noted. It is therefore difficult to assess the applicability of the downscaling methods in the future climate and their respective skill based on trends. Because of those difficulties, a perfect model approach is developed. In the surrogate world of a regional climate model (RCM), the statistical downscaling relation is established in its present climate and then applied to downscale its future projection. It is finally possible to compare future climate change simulated by the RCM and the result of the SD to test the stationarity hypothesis. To obtain robust results, the perfect model framework is applied to 12 RCMs from the ENSEMBLES project. Several analogs methods using different combination of predictors are tested. Some methods, very skillful for present-day interannual variability, are unable to reproduce correctly changes simulated by the RCMs. Another method with similar skill in the present climate, which only differs by the inclusion of the specific humidity at 850 hPa as predictor, is generally applicable in the future climate.

  19. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    Science.gov (United States)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2018-06-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional

  20. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    Science.gov (United States)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2017-08-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional

  1. A method to encapsulate model structural uncertainty in ensemble projections of future climate: EPIC v1.0

    Science.gov (United States)

    Lewis, Jared; Bodeker, Greg E.; Kremser, Stefanie; Tait, Andrew

    2017-12-01

    A method, based on climate pattern scaling, has been developed to expand a small number of projections of fields of a selected climate variable (X) into an ensemble that encapsulates a wide range of indicative model structural uncertainties. The method described in this paper is referred to as the Ensemble Projections Incorporating Climate model uncertainty (EPIC) method. Each ensemble member is constructed by adding contributions from (1) a climatology derived from observations that represents the time-invariant part of the signal; (2) a contribution from forced changes in X, where those changes can be statistically related to changes in global mean surface temperature (Tglobal); and (3) a contribution from unforced variability that is generated by a stochastic weather generator. The patterns of unforced variability are also allowed to respond to changes in Tglobal. The statistical relationships between changes in X (and its patterns of variability) and Tglobal are obtained in a training phase. Then, in an implementation phase, 190 simulations of Tglobal are generated using a simple climate model tuned to emulate 19 different global climate models (GCMs) and 10 different carbon cycle models. Using the generated Tglobal time series and the correlation between the forced changes in X and Tglobal, obtained in the training phase, the forced change in the X field can be generated many times using Monte Carlo analysis. A stochastic weather generator is used to generate realistic representations of weather which include spatial coherence. Because GCMs and regional climate models (RCMs) are less likely to correctly represent unforced variability compared to observations, the stochastic weather generator takes as input measures of variability derived from observations, but also responds to forced changes in climate in a way that is consistent with the RCM projections. This approach to generating a large ensemble of projections is many orders of magnitude more

  2. Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Luchner, J.; Onof, C.

    2017-01-01

    extreme precipitation over Denmark generated by the regional climate model (RCM) HIRHAM-ECEARTH at different spatial resolutions (8, 12, 25 and 50km), three RCM from the RiskChange project at 8km resolution and three RCMs from ENSEMBLES at 25km resolution at temporal aggregations from 1 to 48h...... are more skewed than the observational dataset, which leads to an overestimation by the higher spatial resolution simulations. Nevertheless, in general, under current conditions RCM simulations at high spatial resolution represent extreme events and high-order moments better. The changes projected...

  3. Projected changes to short- and long-duration precipitation extremes over the Canadian Prairie Provinces

    Science.gov (United States)

    Masud, M. B.; Khaliq, M. N.; Wheater, H. S.

    2017-09-01

    The effects of climate change on April-October short- and long-duration precipitation extremes over the Canadian Prairie Provinces were evaluated using a multi-Regional Climate Model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by the National Centre for Environmental Prediction (NCEP) reanalysis II product for the 1981-2000 period and those driven by four Atmosphere-Ocean General Circulation Models (AOGCMs) for the current 1971-2000 and future 2041-2070 periods (i.e. a total of 11 current-to-future period simulation pairs). A regional frequency analysis approach was used to develop 2-, 5-, 10-, 25-, and 50-year return values of precipitation extremes from NCEP and AOGCM-driven current and future period simulations that respectively were used to study the performance of RCMs and projected changes for selected return values at regional, grid-cell and local scales. Performance errors due to internal dynamics and physics of RCMs studied for the 1981-2000 period reveal considerable variation in the performance of the RCMs. However, the performance errors were found to be much smaller for RCM ensemble averages than for individual RCMs. Projected changes in future climate to selected regional return values of short-duration (e.g. 15- and 30-min) precipitation extremes and for longer return periods (e.g. 50-year) were found to be mostly larger than those to the longer duration (e.g. 24- and 48-h) extremes and short return periods (e.g. 2-year). Overall, projected changes in precipitation extremes were larger for southeastern regions followed by southern and northern regions and smaller for southwestern and western regions of the study area. The changes to return values were also found to be statistically significant for the majority of the RCM-AOGCM simulation pairs. These projections might be useful as a key input for the future planning of urban

  4. Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations

    Science.gov (United States)

    Rajczak, Jan; Schär, Christoph

    2017-10-01

    Projections of precipitation and its extremes over the European continent are analyzed in an extensive multimodel ensemble of 12 and 50 km resolution EURO-CORDEX Regional Climate Models (RCMs) forced by RCP2.6, RCP4.5, and RCP8.5 (Representative Concentration Pathway) aerosol and greenhouse gas emission scenarios. A systematic intercomparison with ENSEMBLES RCMs is carried out, such that in total information is provided for an unprecedentedly large data set of 100 RCM simulations. An evaluation finds very reasonable skill for the EURO-CORDEX models in simulating temporal and geographical variations of (mean and heavy) precipitation at both horizontal resolutions. Heavy and extreme precipitation events are projected to intensify across most of Europe throughout the whole year. All considered models agree on a distinct intensification of extremes by often more than +20% in winter and fall and over central and northern Europe. A reduction of rainy days and mean precipitation in summer is simulated by a large majority of models in the Mediterranean area, but intermodel spread between the simulations is large. In central Europe and France during summer, models project decreases in precipitation but more intense heavy and extreme rainfalls. Comparison to previous RCM projections from ENSEMBLES reveals consistency but slight differences in summer, where reductions in southern European precipitation are not as pronounced as previously projected. The projected changes of the European hydrological cycle may have substantial impact on environmental and anthropogenic systems. In particular, the simulations indicate a rising probability of summertime drought in southern Europe and more frequent and intense heavy rainfall across all of Europe.

  5. Comparison of different statistical downscaling methods to estimate changes in hourly extreme precipitation using RCM projections from ENSEMBLES

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Gregersen, Ida Bülow; Rosbjerg, Dan

    2015-01-01

    change method for extreme events, a weather generator combined with a disaggregation method and a climate analogue method. All three methods rely on different assumptions and use different outputs from the regional climate models (RCMs). The results of the three methods point towards an increase...... in extreme precipitation but the magnitude of the change varies depending on the RCM used and the spatial location. In general, a similar mean change is obtained for the three methods. This adds confidence in the results as each method uses different information from the RCMs. The results of this study...

  6. Climate conditions and drought assessment with the Palmer Drought Severity Index in Iran: evaluation of CORDEX South Asia climate projections (2070-2099)

    Science.gov (United States)

    Senatore, Alfonso; Hejabi, Somayeh; Mendicino, Giuseppe; Bazrafshan, Javad; Irannejad, Parviz

    2018-03-01

    Climate change projections were evaluated over both the whole Iran and six zones having different precipitation regimes considering the CORDEX South Asia dataset, for assessing space-time distribution of drought occurrences in the future period 2070-2099 under RCP4.5 scenario. Initially, the performances of eight available CORDEX South Asia Regional Climate Models (RCMs) were assessed for the baseline period 1970-2005 through the GPCC v.7 precipitation dataset and the CFSR temperature dataset, which were previously selected as the most reliable within a set of five global datasets compared to 41 available synoptic stations. Though the CCLM RCM driven by the MPI-ESM-LR General Circulation Model is in general the most suitable for temperature and, together with the REMO 2009 RCM also driven by MPI-ESM-LR, for precipitation, their performances do not overwhelm other models for every season and zone in which Iranian territory was divided according to a principal component analysis approach. Hence, a weighting approach was tested and adopted to take into account useful information from every RCM in each of the six zones. The models resulting more reliable compared to current climate show a strong precipitation decrease. Weighted average predicts an overall yearly precipitation decrease of about 20%. Temperature projections provide a mean annual increase of 2.4 °C. Future drought scenarios were depicted by means of the self-calibrating version of the Palmer drought severity index (SC-PDSI) model. Weighted average predicts a sharp drying that can be configured as a real shift in mean climate conditions, drastically affecting water resources of the country.

  7. Climate projections and extremes in dynamically downscaled CMIP5 model outputs over the Bengal delta: a quartile based bias-correction approach with new gridded data

    Science.gov (United States)

    Hasan, M. Alfi; Islam, A. K. M. Saiful; Akanda, Ali Shafqat

    2017-11-01

    In the era of global warning, the insight of future climate and their changing extremes is critical for climate-vulnerable regions of the world. In this study, we have conducted a robust assessment of Regional Climate Model (RCM) results in a monsoon-dominated region within the new Coupled Model Intercomparison Project Phase 5 (CMIP5) and the latest Representative Concentration Pathways (RCP) scenarios. We have applied an advanced bias correction approach to five RCM simulations in order to project future climate and associated extremes over Bangladesh, a critically climate-vulnerable country with a complex monsoon system. We have also generated a new gridded product that performed better in capturing observed climatic extremes than existing products. The bias-correction approach provided a notable improvement in capturing the precipitation extremes as well as mean climate. The majority of projected multi-model RCMs indicate an increase of rainfall, where one model shows contrary results during the 2080s (2071-2100) era. The multi-model mean shows that nighttime temperatures will increase much faster than daytime temperatures and the average annual temperatures are projected to be as hot as present-day summer temperatures. The expected increase of precipitation and temperature over the hilly areas are higher compared to other parts of the country. Overall, the projected extremities of future rainfall are more variable than temperature. According to the majority of the models, the number of the heavy rainy days will increase in future years. The severity of summer-day temperatures will be alarming, especially over hilly regions, where winters are relatively warm. The projected rise of both precipitation and temperature extremes over the intense rainfall-prone northeastern region of the country creates a possibility of devastating flash floods with harmful impacts on agriculture. Moreover, the effect of bias-correction, as presented in probable changes of both bias

  8. Regional climate modeling over the Maritime Continent: Assessment of RegCM3-BATS1e and RegCM3-IBIS

    Science.gov (United States)

    Gianotti, R. L.; Zhang, D.; Eltahir, E. A.

    2010-12-01

    Despite its importance to global rainfall and circulation processes, the Maritime Continent remains a region that is poorly simulated by climate models. Relatively few studies have been undertaken using a model with fine enough resolution to capture the small-scale spatial heterogeneity of this region and associated land-atmosphere interactions. These studies have shown that even regional climate models (RCMs) struggle to reproduce the climate of this region, particularly the diurnal cycle of rainfall. This study builds on previous work by undertaking a more thorough evaluation of RCM performance in simulating the timing and intensity of rainfall over the Maritime Continent, with identification of major sources of error. An assessment was conducted of the Regional Climate Model Version 3 (RegCM3) used in a coupled system with two land surface schemes: Biosphere Atmosphere Transfer System Version 1e (BATS1e) and Integrated Biosphere Simulator (IBIS). The model’s performance in simulating precipitation was evaluated against the 3-hourly TRMM 3B42 product, with some validation provided of this TRMM product against ground station meteorological data. It is found that the model suffers from three major errors in the rainfall histogram: underestimation of the frequency of dry periods, overestimation of the frequency of low intensity rainfall, and underestimation of the frequency of high intensity rainfall. Additionally, the model shows error in the timing of the diurnal rainfall peak, particularly over land surfaces. These four errors were largely insensitive to the choice of boundary conditions, convective parameterization scheme or land surface scheme. The presence of a wet or dry bias in the simulated volumes of rainfall was, however, dependent on the choice of convection scheme and boundary conditions. This study also showed that the coupled model system has significant error in overestimation of latent heat flux and evapotranspiration from the land surface, and

  9. Methodological challenges to bridge the gap between regional climate and hydrology models

    Science.gov (United States)

    Bozhinova, Denica; José Gómez-Navarro, Juan; Raible, Christoph; Felder, Guido

    2017-04-01

    The frequency and severity of floods worldwide, together with their impacts, are expected to increase under climate change scenarios. It is therefore very important to gain insight into the physical mechanisms responsible for such events in order to constrain the associated uncertainties. Model simulations of the climate and hydrological processes are important tools that can provide insight in the underlying physical processes and thus enable an accurate assessment of the risks. Coupled together, they can provide a physically consistent picture that allows to assess the phenomenon in a comprehensive way. However, climate and hydrological models work at different temporal and spatial scales, so there are a number of methodological challenges that need to be carefully addressed. An important issue pertains the presence of biases in the simulation of precipitation. Climate models in general, and Regional Climate models (RCMs) in particular, are affected by a number of systematic biases that limit their reliability. In many studies, prominently the assessment of changes due to climate change, such biases are minimised by applying the so-called delta approach, which focuses on changes disregarding absolute values that are more affected by biases. However, this approach is not suitable in this scenario, as the absolute value of precipitation, rather than the change, is fed into the hydrological model. Therefore, bias has to be previously removed, being this a complex matter where various methodologies have been proposed. In this study, we apply and discuss the advantages and caveats of two different methodologies that correct the simulated precipitation to minimise differences with respect an observational dataset: a linear fit (FIT) of the accumulated distributions and Quantile Mapping (QM). The target region is Switzerland, and therefore the observational dataset is provided by MeteoSwiss. The RCM is the Weather Research and Forecasting model (WRF), driven at the

  10. A method to encapsulate model structural uncertainty in ensemble projections of future climate: EPIC v1.0

    Directory of Open Access Journals (Sweden)

    J. Lewis

    2017-12-01

    Full Text Available A method, based on climate pattern scaling, has been developed to expand a small number of projections of fields of a selected climate variable (X into an ensemble that encapsulates a wide range of indicative model structural uncertainties. The method described in this paper is referred to as the Ensemble Projections Incorporating Climate model uncertainty (EPIC method. Each ensemble member is constructed by adding contributions from (1 a climatology derived from observations that represents the time-invariant part of the signal; (2 a contribution from forced changes in X, where those changes can be statistically related to changes in global mean surface temperature (Tglobal; and (3 a contribution from unforced variability that is generated by a stochastic weather generator. The patterns of unforced variability are also allowed to respond to changes in Tglobal. The statistical relationships between changes in X (and its patterns of variability and Tglobal are obtained in a training phase. Then, in an implementation phase, 190 simulations of Tglobal are generated using a simple climate model tuned to emulate 19 different global climate models (GCMs and 10 different carbon cycle models. Using the generated Tglobal time series and the correlation between the forced changes in X and Tglobal, obtained in the training phase, the forced change in the X field can be generated many times using Monte Carlo analysis. A stochastic weather generator is used to generate realistic representations of weather which include spatial coherence. Because GCMs and regional climate models (RCMs are less likely to correctly represent unforced variability compared to observations, the stochastic weather generator takes as input measures of variability derived from observations, but also responds to forced changes in climate in a way that is consistent with the RCM projections. This approach to generating a large ensemble of projections is many orders of

  11. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Hundecha, Y.; Lawrence, D.

    impact studies. Four methods are based on change factors and four are bias correction methods. The change factor methods perturb the observations according to changes in precipitation properties estimated from the Regional Climate Models (RCMs). The bias correction methods correct the output from...... the RCMs. The eight methods are used to downscale precipitation output from fifteen RCMs from the ENSEMBLES project for eleven catchments in Europe. The performance of the bias correction methods depends on the catchment, but in all cases they represent an improvement compared to RCM output. The overall...... results point to an increase in extreme precipitation in all the catchments in winter and in most catchments in summer. For each catchment, the results tend to agree on the direction of the change but differ in the magnitude. These differences can be mainly explained due to differences in the RCMs....

  12. Continuous Estimates of Surface Density and Annual Snow Accumulation with Multi-Channel Snow/Firn Penetrating Radar in the Percolation Zone, Western Greenland Ice Sheet

    Science.gov (United States)

    Meehan, T.; Marshall, H. P.; Bradford, J.; Hawley, R. L.; Osterberg, E. C.; McCarthy, F.; Lewis, G.; Graeter, K.

    2017-12-01

    A priority of ice sheet surface mass balance (SMB) prediction is ascertaining the surface density and annual snow accumulation. These forcing data can be supplied into firn compaction models and used to tune Regional Climate Models (RCM). RCMs do not accurately capture subtle changes in the snow accumulation gradient. Additionally, leading RCMs disagree among each other and with accumulation studies in regions of the Greenland Ice Sheet (GrIS) over large distances and temporal scales. RCMs tend to yield inconsistencies over GrIS because of sparse and outdated validation data in the reanalysis pool. Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) implemented multi-channel 500 MHz Radar in multi-offset configuration throughout two traverse campaigns totaling greater than 3500 km along the western percolation zone of GrIS. The multi-channel radar has the capability of continuously estimating snow depth, average density, and annual snow accumulation, expressed at 95% confidence (+-) 0.15 m, (+-) 17 kgm-3, (+-) 0.04 m w.e. respectively, by examination of the primary reflection return from the previous year's summer surface.

  13. Impact of evolving greenhouse gas forcing on the warming signal in regional climate model experiments.

    Science.gov (United States)

    Jerez, S; López-Romero, J M; Turco, M; Jiménez-Guerrero, P; Vautard, R; Montávez, J P

    2018-04-03

    Variations in the atmospheric concentrations of greenhouse gases (GHG) may not be included as external forcing when running regional climate models (RCMs); at least, this is a non-regulated, non-documented practice. Here we investigate the so far unexplored impact of considering the rising evolution of the CO 2 , CH 4 , and N 2 O atmospheric concentrations on near-surface air temperature (TAS) trends, for both the recent past and the near future, as simulated by a state-of-the-art RCM over Europe. The results show that the TAS trends are significantly affected by 1-2 K century -1 , which under 1.5 °C global warming translates into a non-negligible impact of up to 1 K in the regional projections of TAS, similarly affecting projections for maximum and minimum temperatures. In some cases, these differences involve a doubling signal, laying further claim to careful reconsideration of the RCM setups with regard to the inclusion of GHG concentrations as an evolving external forcing which, for the sake of research reproducibility and reliability, should be clearly documented in the literature.

  14. The use of EuroCordex in marine climate projections

    Science.gov (United States)

    Tinker, Jonathan; Palmer, Matthew; Lowe, Jason; Howard, Tom

    2017-04-01

    The Northwest European Shelf seas (NWS, including the North Sea, Irish Sea and Celtic Sea) are of economic, environmental and cultural importance to a number of European countries. However, their representation by global climate models (GCMs) is very crude, due to their inability to represent the complex geometry and the absence of tides. Therefore, there is a need to employ dynamical downscaling methods when considering the potential impacts of climate change on the European (and other) shelf seas. Using a shelf seas model to dynamically downscale of the ocean component of the GCM is a well established method. While taking open ocean lateral boundary conditions from the GCM ocean is acceptable, using surface flux forcings from the GCM atmosphere is often problematic. The CORDEX project provides an important dataset of high spatial and temporal resolution atmospheric forcings, derived from 'parent' CMIP5 GCM simulations. We drive the NEMO shelf seas model with data from CMIP5 models and EURO-CORDEX Regional Climate Model (RCM) data to produce a set of NWS climate projections. We require relatively high temporal resolution output, and run-off (for the river forcings), and so are limited to a subset of the available EURO-CORDEX RCMs. From these we select two CMIP5 GCMs with the same RCM with two emissions scenarios to give a minimum estimate of GCM model structural and emission scenario uncertainty. Other experiments allow an initial estimate of the uncertainty associated with the model structure of both the shelf seas and the RCM. Our analysis is focused on the uncertainty associated with the mean change in a number of physical marine impacts and the drivers of coastal variability and change, including sea level and the propagation of open ocean signals onto the shelf. Our work is part of the UK Climate Projections (UKCP18) and will inform the following UK Climate Change Risk Assessments, required as part of the Climate Change Act.

  15. Multimodel GCM-RCM Ensemble-Based Projections of Temperature and Precipitation over West Africa for the Early 21st Century

    Directory of Open Access Journals (Sweden)

    I. Diallo

    2012-01-01

    Full Text Available Reliable climate change scenarios are critical for West Africa, whose economy relies mostly on agriculture and, in this regard, multimodel ensembles are believed to provide the most robust climate change information. Toward this end, we analyze and intercompare the performance of a set of four regional climate models (RCMs driven by two global climate models (GCMs (for a total of 4 different GCM-RCM pairs in simulating present day and future climate over West Africa. The results show that the individual RCM members as well as their ensemble employing the same driving fields exhibit different biases and show mixed results in terms of outperforming the GCM simulation of seasonal temperature and precipitation, indicating a substantial sensitivity of RCMs to regional and local processes. These biases are reduced and GCM simulations improved upon by averaging all four RCM simulations, suggesting that multi-model RCM ensembles based on different driving GCMs help to compensate systematic errors from both the nested and the driving models. This confirms the importance of the multi-model approach for improving robustness of climate change projections. Illustrative examples of such ensemble reveal that the western Sahel undergoes substantial drying in future climate projections mostly due to a decrease in peak monsoon rainfall.

  16. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    Science.gov (United States)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  17. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    Science.gov (United States)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  18. Influence of climate change on the flowering of temperate fruit trees

    Science.gov (United States)

    Perez-Lopez, D.; Ruiz-Ramos, M.; Sánchez-Sánchez, E.; Centeno, A.; Prieto-Egido, I.; Lopez-de-la-Franca, N.

    2012-04-01

    It is well known that winter chilling is necessary for the flowering of temperate trees. The chilling requirement is a criterion for choosing a species or variety at a given location. Also chemistry products can be used for reducing the chilling-hours needs but make our production more expensive. This study first analysed the observed values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. Usually the chilling is measured and calculated as chilling-hours, and different methods have been used to calculate them (e.g. Richarson et al., 1974 among others) according to the species considered. For our objective North Carolina method (Shaltout and Unrath, 1983) was applied for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The influence of climate change in temperate trees was studied by calculating projections of chilling-hours with climate data from Regional Climate Models (RCMs) at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). These projections will allow for analysing the modelled variations of chill-hours between 2nd half of 20C and 1st half of 21C at the study locations.

  19. Differences between downscaling with spectral and grid nudging using WRF

    Directory of Open Access Journals (Sweden)

    P. Liu

    2012-04-01

    Full Text Available Dynamical downscaling has been extensively used to study regional climate forced by large-scale global climate models. During the downscaling process, however, the simulation of regional climate models (RCMs tends to drift away from the driving fields. Developing a solution that addresses this issue, by retaining the large scale features (from the large-scale fields and the small-scale features (from the RCMs has led to the development of "nudging" techniques. Here, we examine the performance of two nudging techniques, grid and spectral nudging, in the downscaling of NCEP/NCAR data with the Weather Research and Forecasting (WRF Model. The simulations are compared against the results with North America Regional Reanalysis (NARR data set at different scales of interest using the concept of similarity. We show that with the appropriate choice of wave numbers, spectral nudging outperforms grid nudging in the capacity of balancing the performance of simulation at the large and small scales.

  20. Uncertainty in the Future of Seasonal Snowpack over North America.

    Science.gov (United States)

    McCrary, R. R.; Mearns, L.

    2017-12-01

    The uncertainty in future changes in seasonal snowpack (snow water equivalent, SWE) and snow cover extent (SCE) for North America are explored using the North American Regional Climate Change Assessment Program (NARCCAP) suite of regional climate models (RCMs) and their driving CMIP3 global circulation models (GCMs). The higher resolution of the NARCCAP RCMs is found to add significant value to the details of future projections of SWE in topographically complex regions such as the Pacific Northwest and the Rocky Mountains. The NARCCAP models also add detailed information regarding changes in the southernmost extent of snow cover. 11 of the 12 NARCCAP ensemble members contributed SWE output which we use to explore the uncertainty in future snowpack at higher resolution. In this study, we quantify the uncertainty in future projections by looking at the spread of the interquartile range of the different models. By mid-Century the RCMs consistently predict that winter SWE amounts will decrease over most of North America. The only exception to this is in Northern Canada, where increased moisture supply leads to increases in SWE in all but one of the RCMs. While the models generally agree on the sign of the change in SWE, there is considerable spread in the magnitude (absolute and percent) of the change. The RCMs also agree that the number of days with measureable snow on the ground is projected to decrease, with snow accumulation occurring later in the Fall/Winter and melting starting earlier in the Spring/Summer. As with SWE amount, spread across the models is large for changes in the timing of the snow season and can vary by over a month between models. While most of the NARCCAP models project a total loss of measurable snow along the southernmost edge of their historical range, there is considerable uncertainty about where this will occur within the ensemble due to the bias in snow cover extent in the historical simulations. We explore methods to increase our

  1. Impact of improved Greenland ice sheet surface representation in the NASA GISS ModelE2 GCM on simulated surface mass balance and regional climate

    Science.gov (United States)

    Alexander, P. M.; LeGrande, A. N.; Fischer, E.; Tedesco, M.; Kelley, M.; Schmidt, G. A.; Fettweis, X.

    2017-12-01

    Towards achieving coupled simulations between the NASA Goddard Institute for Space Studies (GISS) ModelE2 general circulation model (GCM) and ice sheet models (ISMs), improvements have been made to the representation of the ice sheet surface in ModelE2. These include a sub-grid-scale elevation class scheme, a multi-layer snow model, a time-variable surface albedo scheme, and adjustments to parameterization of sublimation/evaporation. These changes improve the spatial resolution and physical representation of the ice sheet surface such that the surface is represented at a level of detail closer to that of Regional Climate Models (RCMs). We assess the impact of these changes on simulated Greenland Ice Sheet (GrIS) surface mass balance (SMB). We also compare ModelE2 simulations in which winds have been nudged to match the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis with simulations from the Modèle Atmosphérique Régionale (MAR) RCM forced by the same reanalysis. Adding surface elevation classes results in a much higher spatial resolution representation of the surface necessary for coupling with ISMs, but has a negligible impact on overall SMB. Implementing a variable surface albedo scheme increases melt by 100%, bringing it closer to melt simulated by MAR. Adjustments made to the representation of topography-influenced surface roughness length in ModelE2 reduce a positive bias in evaporation relative to MAR. We also examine the impact of changes to the GrIS surface on regional atmospheric and oceanic climate in coupled ocean-atmosphere simulations with ModelE2, finding a general warming of the Arctic due to a warmer GrIS, and a cooler North Atlantic in scenarios with doubled atmospheric CO2 relative to pre-industrial levels. The substantial influence of changes to the GrIS surface on the oceans and atmosphere highlight the importance of including these processes in the GCM, in view of potential feedbacks between the ice sheet

  2. Assessing regional climate simulations of the last 30 years (1982-2012) over Ganges-Brahmaputra-Meghna River Basin

    Science.gov (United States)

    Khandu; Awange, Joseph L.; Anyah, Richard; Kuhn, Michael; Fukuda, Yoichi

    2017-10-01

    The Ganges-Brahmaputra-Meghna (GBM) River Basin presents a spatially diverse hydrological regime due to it's complex topography and escalating demand for freshwater resources. This presents a big challenge in applying the current state-of-the-art regional climate models (RCMs) for climate change impact studies in the GBM River Basin. In this study, several RCM simulations generated by RegCM4.4 and PRECIS are assessed for their seasonal and interannual variations, onset/withdrawal of the Indian monsoon, and long-term trends in precipitation and temperature from 1982 to 2012. The results indicate that in general, RegCM4.4 and PRECIS simulations appear to reasonably reproduce the mean seasonal distribution of precipitation and temperature across the GBM River Basin, although the two RCMs are integrated over a different domain size. On average, the RegCM4.4 simulations overestimate monsoon precipitation by {˜ }26 and {˜ }5% in the Ganges and Brahmaputra-Meghna River Basin, respectively, while PRECIS simulations underestimate (overestimate) the same by {˜ }7% ({˜ }16%). Both RegCM4.4 and PRECIS simulations indicate an intense cold bias (up to 10° C) in the Himalayas, and are generally stronger in the RegCM4.4 simulations. Additionally, they tend to produce high precipitation between April and May in the Ganges (RegCM4.4 simulations) and Brahmaputra-Meghna (PRECIS simulations) River Basins, resulting in early onset of the Indian monsoon in the Ganges River Basin. PRECIS simulations exhibit a delayed monsoon withdrawal in the Brahmaputra-Meghna River Basin. Despite large spatial variations in onset and withdrawal periods across the GBM River Basin, the basin-averaged results agree reasonably well with the observed periods. Although global climate model (GCM) driven simulations are generally poor in representing the interannual variability of precipitation and winter temperature variations, they tend to agree well with observed precipitation anomalies when driven by

  3. How well do CMIP5 Climate Models Reproduce the Hydrologic Cycle of the Colorado River Basin?

    Science.gov (United States)

    Gautam, J.; Mascaro, G.

    2017-12-01

    The Colorado River, which is the primary source of water for nearly 40 million people in the arid Southwestern states of the United States, has been experiencing an extended drought since 2000, which has led to a significant reduction in water supply. As the water demands increase, one of the major challenges for water management in the region has been the quantification of uncertainties associated with streamflow predictions in the Colorado River Basin (CRB) under potential changes of future climate. Hence, testing the reliability of model predictions in the CRB is critical in addressing this challenge. In this study, we evaluated the performances of 17 General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase Five (CMIP5) and 4 Regional Climate Models (RCMs) in reproducing the statistical properties of the hydrologic cycle in the CRB. We evaluated the water balance components at four nested sub-basins along with the inter-annual and intra-annual changes of precipitation (P), evaporation (E), runoff (R) and temperature (T) from 1979 to 2005. Most of the models captured the net water balance fairly well in the most-upstream basin but simulated a weak hydrological cycle in the evaporation channel at the downstream locations. The simulated monthly variability of P had different patterns, with correlation coefficients ranging from -0.6 to 0.8 depending on the sub-basin and the models from same parent institution clustering together. Apart from the most-upstream sub-basin where the models were mainly characterized by a negative seasonal bias in SON (of up to -50%), most of them had a positive bias in all seasons (of up to +260%) in the other three sub-basins. The models, however, captured the monthly variability of T well at all sites with small inter-model variabilities and a relatively similar range of bias (-7 °C to +5 °C) across all seasons. Mann-Kendall test was applied to the annual P and T time-series where majority of the models

  4. A Comparison of Competing Models for Understanding Industrial Organization’s Acceptance of Cloud Services

    Directory of Open Access Journals (Sweden)

    Shui-Lien Chen

    2018-03-01

    Full Text Available Cloud computing is the next generation in computing, and the next natural step in the evolution of on-demand information technology services and products. However, only a few studies have addressed the adoption of cloud computing from an organizational perspective, which have not proven whether the research model is the best-fitting model. The purpose of this paper is to construct research competing models (RCMs and determine the best-fitting model for understanding industrial organization’s acceptance of cloud services. This research integrated the technology acceptance model and the principle of model parsimony to develop four cloud service adoption RCMs with enterprise usage intention being used as a proxy for actual behavior, and then compared the RCMs using structural equation modeling (SEM. Data derived from a questionnaire-based survey of 227 firms in Taiwan were tested against the relationships through SEM. Based on the empirical study, the results indicated that, although all four RCMs had a high goodness of fit, in both nested and non-nested structure comparisons, research competing model A (Model A demonstrated superior performance and was the best-fitting model. This study introduced a model development strategy that can most accurately explain and predict the behavioral intention of organizations to adopt cloud services.

  5. Impact of climate change on the timing of strawberry phenological processes in the Baltic States

    Directory of Open Access Journals (Sweden)

    Līga Bethere

    2016-02-01

    Full Text Available Climate change has been shown to impact aspects of agriculture and phenology. This study aims to quantify changes in the timing of garden strawberry blooms and harvests in the Baltic States using Regional Climate Models (RCMs. First, parameters for a strawberry phenology model based on the growing degree day (GDD methodology were determined. Growing degree days were calculated using a modified sine wave method that estimates the diurnal temperature cycle from the daily maximum and minimum temperature. Model parameters include the base temperature and the required cumulative GDD sum, estimated from phenological and meteorological observations in Latvia for the years 2010–2013 via iterative calibration. Then an ensemble of bias-corrected RCM results (ENSEMBLES project was used as input to the phenological model to estimate the timing of strawberry phenological processes for the years 1951–2099. The results clearly show that strawberry phenological processes can be expected to occur earlier in the future, with a significant change in regional patterns. Differences between coastal and inland regions are expected to decrease over time. The uncertainty of the results was estimated using the RCM ensemble spread, with northern coastal locations showing the largest spread.

  6. Process-based evaluation of the ÖKS15 Austrian climate scenarios: First results

    Science.gov (United States)

    Mendlik, Thomas; Truhetz, Heimo; Jury, Martin; Maraun, Douglas

    2017-04-01

    The climate scenarios for Austria from the ÖKS15 project consists of 13 downscaled and bias-corrected RCMs from the EURO-CORDEX project. This dataset is meant for the broad public and is now available at the central national archive for climate data (CCCA Data Center). Because of this huge public outreach it is absolutely necessary to objectively discuss the limitations of this dataset and to publish these limitations, which should also be understood by a non-scientific audience. Even though systematical climatological biases have been accounted for by the Scaled-Distribution-Mapping (SDM) bias-correction method, it is not guaranteed that the model biases have been removed for the right reasons. If climate scenarios do not get the patterns of synoptic variability right, biases will still prevail in certain weather patterns. Ultimately this will have consequences for the projected climate change signals. In this study we derive typical weather types in the Alpine Region based on patterns from mean sea level pressure from ERA-INTERIM data and check the occurrence of these synoptic phenomena in EURO-CORDEX data and their corresponding driving GCMs. Based on these weather patterns we analyze the remaining biases of the downscaled and bias-corrected scenarios. We argue that such a process-based evaluation is not only necessary from a scientific point of view, but can also help the broader public to understand the limitations of downscaled climate scenarios, as model errors can be interpreted in terms of everyday observable weather.

  7. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    Science.gov (United States)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a

  8. Impact of dynamical regionalization on precipitation biases and teleconnections over West Africa

    Science.gov (United States)

    Gómara, Iñigo; Mohino, Elsa; Losada, Teresa; Domínguez, Marta; Suárez-Moreno, Roberto; Rodríguez-Fonseca, Belén

    2018-06-01

    West African societies are highly dependent on the West African Monsoon (WAM). Thus, a correct representation of the WAM in climate models is of paramount importance. In this article, the ability of 8 CMIP5 historical General Circulation Models (GCMs) and 4 CORDEX-Africa Regional Climate Models (RCMs) to characterize the WAM dynamics and variability is assessed for the period July-August-September 1979-2004. Simulations are compared with observations. Uncertainties in RCM performance and lateral boundary conditions are assessed individually. Results show that both GCMs and RCMs have trouble to simulate the northward migration of the Intertropical Convergence Zone in boreal summer. The greatest bias improvements are obtained after regionalization of the most inaccurate GCM simulations. To assess WAM variability, a Maximum Covariance Analysis is performed between Sea Surface Temperature and precipitation anomalies in observations, GCM and RCM simulations. The assessed variability patterns are: El Niño-Southern Oscillation (ENSO); the eastern Mediterranean (MED); and the Atlantic Equatorial Mode (EM). Evidence is given that regionalization of the ENSO-WAM teleconnection does not provide any added value. Unlike GCMs, RCMs are unable to precisely represent the ENSO impact on air subsidence over West Africa. Contrastingly, the simulation of the MED-WAM teleconnection is improved after regionalization. Humidity advection and convergence over the Sahel area are better simulated by RCMs. Finally, no robust conclusions can be determined for the EM-WAM teleconnection, which cannot be isolated for the 1979-2004 period. The novel results in this article will help to select the most appropriate RCM simulations to study WAM teleconnections.

  9. TRACKING CLIMATE MODELS

    Data.gov (United States)

    National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...

  10. Dynamical Downscaling of GCM Simulations: Toward the Improvement of Forecast Bias over California

    Energy Technology Data Exchange (ETDEWEB)

    Chin, H S

    2008-09-24

    The effects of climate change will mostly be felt on local to regional scales. However, global climate models (GCMs) are unable to produce reliable climate information on the scale needed to assess regional climate-change impacts and variability as a result of coarse grid resolution and inadequate model physics though their capability is improving. Therefore, dynamical and statistical downscaling (SD) methods have become popular methods for filling the gap between global and local-to-regional climate applications. Recent inter-comparison studies of these downscaling techniques show that both downscaling methods have similar skill in simulating the mean and variability of present climate conditions while they show significant differences for future climate conditions (Leung et al., 2003). One difficulty with the SD method is that it relies on predictor-predict and relationships, which may not hold in future climate conditions. In addition, it is now commonly accepted that the dynamical downscaling with the regional climate model (RCM) is more skillful at the resolving orographic climate effect than the driving coarser-grid GCM simulations. To assess the possible societal impacts of climate changes, many RCMs have been developed and used to provide a better projection of future regional-scale climates for guiding policies in economy, ecosystem, water supply, agriculture, human health, and air quality (Giorgi et al., 1994; Leung and Ghan, 1999; Leung et al., 2003; Liang et al., 2004; Kim, 2004; Duffy et al., 2006). Although many regional climate features, such as seasonal mean and extreme precipitation have been successfully captured in these RCMs, obvious biases of simulated precipitation remain, particularly the winter wet bias commonly seen in mountain regions of the Western United States. The importance of regional climate research over California is not only because California has the largest population in the nation, but California has one of the most

  11. Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas

    Science.gov (United States)

    Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane

    2018-03-01

    This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.

  12. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C; Holopainen, E; Kaurola, J; Ruosteenoja, K; Raeisaenen, J [Helsinki Univ. (Finland). Dept. of Meteorology

    1997-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  13. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  14. The CSAICLAWPS project: a multi-scalar, multi-data source approach to providing climate services for both modelling of climate change impacts on crop yields and development of community-level adaptive capacity for sustainable food security

    Science.gov (United States)

    Forsythe, N. D.; Fowler, H. J.

    2017-12-01

    The "Climate-smart agriculture implementation through community-focused pursuit of land and water productivity in South Asia" (CSAICLAWPS) project is a research initiative funded by the (UK) Royal Society through its Challenge Grants programme which is part of the broader UK Global Challenges Research Fund (GCRF). CSAICLAWPS has three objectives: a) development of "added-value" - bias assessed, statistically down-scaled - climate projections for selected case study sites across South Asia; b) investigation of crop failure modes under both present (observed) and future (projected) conditions; and c) facilitation of developing local adaptive capacity and resilience through stakeholder engagement. At AGU we will be presenting both next steps and progress to date toward these three objectives: [A] We have carried out bias assessments of a substantial multi-model RCM ensemble (MME) from the CORDEX South Asia (CORDEXdomain for case studies in three countries - Pakistan, India and Sri Lanka - and (stochastically) produced synthetic time-series for these sites from local observations using a Python-based implementation of the principles underlying the Climate Research Unit Weather Generator (CRU-WG) in order to enable probabilistic simulation of current crop yields. [B] We have characterised present response of local crop yields to climate variability in key case study sites using AquaCrop simulations parameterised based on input (agronomic practices, soil conditions, etc) from smallholder farmers. [C] We have implemented community-based hydro-climatological monitoring in several case study "revenue villages" (panchayats) in the Nainital District of Uttarakhand. The purpose of this is not only to increase availability of meteorological data, but also has the aspiration of, over time, leading to enhanced quantitative awareness of present climate variability and potential future conditions (as projected by RCMs). Next steps in our work will include: 1) future crop yield

  15. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    Science.gov (United States)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT

  16. The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate

    Energy Technology Data Exchange (ETDEWEB)

    Flato, G.M.; Boer, G.J.; Lee, W.G.; McFarlane, N.A.; Ramsden, D.; Reader, M.C. [Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); Weaver, A.J. [School of Earth and Ocean Sciences, University of Victoria, BC (Canada)

    2000-06-01

    A global, three-dimensional climate model, developed by coupling the CCCma second-generation atmospheric general circulation model (GCM2) to a version of the GFDL modular ocean model (MOM1), forms the basis for extended simulations of past, current and projected future climate. The spin-up and coupling procedures are described, as is the resulting climate based on a 200 year model simulation with constant atmospheric composition and external forcing. The simulated climate is systematically compared to available observations in terms of mean climate quantities and their spatial patterns, temporal variability, and regional behavior. Such comparison demonstrates a generally successful reproduction of the broad features of mean climate quantities, albeit with local discrepancies. Variability is generally well-simulated over land, but somewhat underestimated in the tropical ocean and the extratropical storm-track regions. The modelled climate state shows only small trends, indicating a reasonable level of balance at the surface, which is achieved in part by the use of heat and freshwater flux adjustments. The control simulation provides a basis against which to compare simulated climate change due to historical and projected greenhouse gas and aerosol forcing as described in companion publications. (orig.)

  17. Climate Model Diagnostic Analyzer

    Science.gov (United States)

    Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei

    2015-01-01

    The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.

  18. Precipitation intensity-duration-frequency curves for central Belgium with an ensemble of EURO-CORDEX simulations, and associated uncertainties

    Science.gov (United States)

    Hosseinzadehtalaei, Parisa; Tabari, Hossein; Willems, Patrick

    2018-02-01

    An ensemble of 88 regional climate model (RCM) simulations at 0.11° and 0.44° spatial resolutions from the EURO-CORDEX project is analyzed for central Belgium to investigate the projected impact of climate change on precipitation intensity-duration-frequency (IDF) relationships and extreme precipitation quantiles typically used in water engineering designs. The rate of uncertainty arising from the choice of RCM, driving GCM, and radiative concentration pathway (RCP4.5 & RCP8.5) is quantified using a variance decomposition technique after reconstruction of missing data in GCM × RCM combinations. A comparative analysis between the historical simulations of the EURO-CORDEX 0.11° and 0.44° RCMs shows higher precipitation intensities by the finer resolution runs, leading to a larger overestimation of the observations-based IDFs by the 0.11° runs. The results reveal that making a temporal stationarity assumption for the climate system may lead to underestimation of precipitation quantiles up to 70% by the end of this century. This projected increase is generally larger for the 0.11° RCMs compared with the 0.44° RCMs. The relative changes in extreme precipitation do depend on return period and duration, indicating an amplification for larger return periods and for smaller durations. The variance decomposition approach generally identifies RCM as the most dominant component of uncertainty in changes of more extreme precipitation (return period of 10 years) for both 0.11° and 0.44° resolutions, followed by GCM and RCP scenario. The uncertainties associated with cross-contributions of RCMs, GCMs, and RCPs play a non-negligible role in the associated uncertainties of the changes.

  19. Ensemble simulations to study the impact of land use change of Atlanta to regional climate

    Science.gov (United States)

    Liu, P.; Hu, Y.; Stone, B.; Vargo, J.; Nenes, A.; Russell, A.; Trail, M.; Tsimpidi, A.

    2012-12-01

    Studies show that urban areas may be the "first responders" to climate change (Rosenzweig et al., 2010). Of particular interest is the potential increased temperatures in urban areas, due to use of structures and surfaces that increase local heating, and how that may impact health, air quality and other environmental factors. In response, interest has grown as to how the modification of land use in urban areas, in order to mitigate the adverse effects of urbanization can serve to reduce local temperatures, and how climate is impacted more regionally. Studies have been conducted to investigate the impact of land use change on local or regional climate by dynamic downscaling using regional climate models (RCMs), the boundary conditions (BCs) and initial conditions (ICs) of which result from coarser-resolution reanalysis data or general circulation models (GCMs). However, few studies have focused on demonstrating whether the land use change in local areas significantly impacts the climate of the larger region of the domain, and the spatial scale of the impact from urban-scale changes. This work investigated the significance of the impact of land use change in the Atlanta city area on different scales, using a range of modeling resolutions, including the contiguous US (with 36km resolution), the southeastern US (with 12km resolution) and the state of Georgia (with 4km resolution). We used WRF version 3.1.1 with and ran continuous from June to August of a simulated year 2050, driven by GISS ModelE with inputs corresponding to RCP4.5. During the simulation, spectral nudging is used in the 36km resolution domain to maintain the climate patterns with scales larger than 2000km. Two-way nesting is also used in order to take into account the feedback of nesting domains across model domains. Two land use cases over the Atlanta city are chosen. For the base case, most of the urban area of Atlanta is covered with forest; while for the second, "impervious" case, all the urban

  20. Using SWAT and Fuzzy TOPSIS to Assess the Impact of Climate Change in the Headwaters of the Segura River Basin (SE Spain

    Directory of Open Access Journals (Sweden)

    Javier Senent-Aparicio

    2017-02-01

    Full Text Available The Segura River Basin is one of the most water-stressed basins in Mediterranean Europe. If we add to the actual situation that most climate change projections forecast important decreases in water resource availability in the Mediterranean region, the situation will become totally unsustainable. This study assessed the impact of climate change in the headwaters of the Segura River Basin using the Soil and Water Assessment Tool (SWAT with bias-corrected precipitation and temperature data from two Regional Climate Models (RCMs for the medium term (2041–2070 and the long term (2071–2100 under two emission scenarios (RCP4.5 and RCP8.5. Bias correction was performed using the distribution mapping approach. The fuzzy TOPSIS technique was applied to rank a set of nine GCM–RCM combinations, choosing the climate models with a higher relative closeness. The study results show that the SWAT performed satisfactorily for both calibration (NSE = 0.80 and validation (NSE = 0.77 periods. Comparing the long-term and baseline (1971–2000 periods, precipitation showed a negative trend between 6% and 32%, whereas projected annual mean temperatures demonstrated an estimated increase of 1.5–3.3 °C. Water resources were estimated to experience a decrease of 2%–54%. These findings provide local water management authorities with very useful information in the face of climate change.

  1. Water availability and demand in West Africa in the 21st century: impacts of climate change and population growth

    Science.gov (United States)

    Wisser, Dominik; Oyerinde, Ganiyu; Ibrahim, Moussa; Ibrahim, Boubacar

    2014-05-01

    The countries in West Africa are highly dependent on rainfed agriculture. Changes in the magnitude and timing of precipitation will affect the agricultural output and the economies as a whole. Irrigation is increasingly being considered an important adaptation option to help improve food security of the population that is expected to double in less than 50 years. West Africa is one of the regions where general circulation models (GCM) show the highest disagreements in the direction of future trends of precipitation, making assessments of water availability and the potential for irrigation a difficult task. We use output from a set of dynamically downscaled climate data sets from regional climate modes (RCM) from the CORDEX CMIP5 collection to drive WBMplus, a macroscale hydrological model and simultaneously calculate water demand (livestock, domestic, and irrigation) and availability for a set of land use, and socio economic scenarios around the 2050's for river basins in the ten countries participating in the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) project. Contrary to earlier results from GCMs, the set of RCMs suggest a consistent increase (~5-10%) in annual precipitation for a majority of the land area in West Africa that translates to slight increases in river flow under natural conditions for most river basins and a opportunities for increasing irrigation during the dry season. However, water demand is projected to more than double for livestock and domestic needs as a result of population growth. Demand for irrigation will rise sharply if irrigation is expanded from the current area (representing less than 3% of all croplands in the region), closer to its potential which is multiple times higher than the existing area. The pressures on water resources in the region will therefore be dominated by pressures arising from increased demand rather than changes in the availability of water and can potentially lead to

  2. Assessment of the performance of CORDEX-South Asia experiments for monsoonal precipitation over the Himalayan region during present climate: part I

    Science.gov (United States)

    Ghimire, S.; Choudhary, A.; Dimri, A. P.

    2018-04-01

    Analysis of regional climate simulations to evaluate the ability of 11 Coordinated Regional Climate Downscaling Experiment in South Asia experiments (CORDEX-South Asia) along with their ensemble to produce precipitation from June to September (JJAS) over the Himalayan region have been carried out. These suite of 11 combinations come from 6 regional climate models (RCMs) driven with 10 initial and boundary conditions from different global climate models and are collectively referred here as 11 CORDEX South Asia experiments. All the RCMs use a similar domain and are having similar spatial resolution of 0.44° ( 50 km). The set of experiments are considered to study precipitation sensitivity associated with the Indian summer monsoon (ISM) over the study region. This effort is made as ISM plays a vital role in summertime precipitation over the Himalayan region which acts as driver for the sustenance of habitat, population, crop, glacier, hydrology etc. In addition, so far the summer monsoon precipitation climatology over the Himalayan region has not been studied with the help of CORDEX data. Thus this study is initiated to evaluate the ability of the experiments and their ensemble in reproducing the characteristics of summer monsoon precipitation over Himalayan region, for the present climate (1970-2005). The precipitation climatology, annual precipitation cycles and interannual variabilities from each simulation have been assessed against the gridded observational dataset: Asian Precipitation-Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources for the given time period. Further, after the selection of the better performing experiment the frequency distribution of precipitation was also studied. In this study, an approach has also been made to study the degree of agreement among individual experiments as a way to quantify the uncertainty among them. The experiments though show a wide variation among themselves and individually over

  3. Modeling glacial climates

    Science.gov (United States)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  4. Linking models of human behaviour and climate alters projected climate change

    Science.gov (United States)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  5. On the importance of observational data properties when assessing regional climate model performance of extreme precipitation

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Sørup, Hjalte Jomo Danielsen; Christensen, Ole Bøssing

    2013-01-01

    datasets, the RCMs are ranked according to their performance using two different metrics. These are based on the error in representing the indices and the spatial correlation. In comparison to the mean, extreme precipitation indices are highly dependent on the spatial resolution of the observations...

  6. Deriving user-informed climate information from climate model ensemble results

    Science.gov (United States)

    Huebener, Heike; Hoffmann, Peter; Keuler, Klaus; Pfeifer, Susanne; Ramthun, Hans; Spekat, Arne; Steger, Christian; Warrach-Sagi, Kirsten

    2017-07-01

    Communication between providers and users of climate model simulation results still needs to be improved. In the German regional climate modeling project ReKliEs-De a midterm user workshop was conducted to allow the intended users of the project results to assess the preliminary results and to streamline the final project results to their needs. The user feedback highlighted, in particular, the still considerable gap between climate research output and user-tailored input for climate impact research. Two major requests from the user community addressed the selection of sub-ensembles and some condensed, easy to understand information on the strengths and weaknesses of the climate models involved in the project.

  7. Projections of meteorological and snow conditions in the Pyrenees using adjusted EURO-CORDEX climate projections

    Science.gov (United States)

    Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Soubeyroux, Jean-Michel; Lafaysse, Matthieu

    2017-04-01

    Current and future availability of seasonal snow is a recurring topic in mountain regions such as the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenues in France, Spain and Andorra. Associated changes in river discharges, their consequences on water storage management, the future vulnerability of Pyrenean ecosystems as well as the occurrence of climate-related hazards such as debris flows and avalanches are also under consideration. However, to generate projections of snow conditions, a traditional dynamical downscaling approach featuring spatial resolutions typically between 10 and 50 km is not sufficient to capture the fine-scale processes and thresholds at play. Indeed, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Moreover, simulations from general circulation models (GCMs) and regional climate models (RCMs) suffer from biases compared to local observations, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted before they can be used to drive specific models such as land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. Meteorological observations used for the quantile mapping consist of the regional scale reanalysis SAFRAN, which operates at the scale of homogeneous areas on the order of 1000 km2 within which meteorological conditions vary only with elevation. SAFRAN combines large-scale NWP reanalysis (ERA40, ARPEGE) with in-situ meteorological observations. The SAFRAN reanalysis is available

  8. The Monash University Interactive Simple Climate Model

    Science.gov (United States)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  9. Climate-induced changes in river water temperature in North Iberian Peninsula

    Science.gov (United States)

    Soto, Benedicto

    2017-06-01

    This study evaluates the effects of climate change on the thermal regime of 12 rivers in the Northern Iberian Peninsula by using a non-linear regression model that employs air temperature as the only input variable. Prediction of future air temperature was obtained from five regional climate models (RCMs) under emission scenario Special Report on Emissions Scenarios A1B. Prior to simulation of water temperature, air temperature was bias-corrected (B-C) by means of variance scaling (VS) method. This procedure allows an improvement of fit between observed and estimated air temperature for all climate models. The simulation of water temperature for the period 1990-2100 shows an increasing trend, which is higher for the period of June-August (summer) and September-November (autumn) (0.0275 and 0.0281 °C/year) than that of winter (December-February) and spring (March-May) (0.0181 and 0.0218 °C/year). In the high air temperature range, daily water temperature is projected to increase on average by 2.2-3.1 °C for 2061-2090 relative to 1961-1990. During the coldest days, the increment of water temperature would range between 1.0 and 1.7 °C. In fact, employing the numbers of days that water temperature exceeded the upper incipient lethal temperature (UILT) for brown trout (24.7 °C) has been noted that this threshold is exceeded 14.5 days per year in 2061-2090 while in 1961-1990, this values was exceeded 2.6 days per year of mean and 3.6 days per year in observation period (2000-2014).

  10. On coupling global biome models with climate models

    International Nuclear Information System (INIS)

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992), which predicts global vegetation patterns in equilibrium with climate, is coupled with the ECHAM climate model of the Max-Planck-Institut fuer Meteorologie, Hamburg. It is found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only between the initial biome distribution and the biome distribution computed after the first simulation period, provided that the climate-biome model is started from a biome distribution that resembles the present-day distribution. After the first simulation period, there is no significant shrinking, expanding, or shifting of biomes. Likewise, no trend is seen in global averages of land-surface parameters and climate variables. (orig.)

  11. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  12. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  13. High-resolution multi-model projections of onshore wind resources over Portugal under a changing climate

    Science.gov (United States)

    Nogueira, Miguel; Soares, Pedro M. M.; Tomé, Ricardo; Cardoso, Rita M.

    2018-05-01

    We present a detailed evaluation of wind energy density (WED) over Portugal, based on the EURO-CORDEX database of high-resolution regional climate model (RCM) simulations. Most RCMs showed reasonable accuracy in reproducing the observed near-surface wind speed. The climatological patterns of WED displayed large sub-regional heterogeneity, with higher values over coastal regions and steep orography. Subsequently, we investigated the future changes of WED throughout the twenty-first century, considering mid- and end-century periods, and two emission scenarios (RCP4.5 and RCP8.5). On the yearly average, the multi-model ensemble WED changes were below 10% (15%) under RCP4.5 (RCP8.5). However, the projected WED anomalies displayed strong seasonality, dominated by low positive values in summer (< 10% for both scenarios), negative values in winter and spring (up to - 10% (- 20%) under RCP4.5 (RCP8.5)), and stronger negative anomalies in autumn (up to - 25% (- 35%) under RCP4.5 (RCP8.5)). These projected WED anomalies displayed large sub-regional variability. The largest reductions (and lowest increases) are linked to the northern and central-eastern elevated terrain, and the southwestern coast. In contrast, the largest increases (and lowest reductions) are linked to the central-western orographic features of moderate elevation. The projections also showed changes in inter-annual variability of WED, with small increases for annual averages, but with distinct behavior when considering year-to-year variability over a specific season: small increases in winter, larger increases in summer, slight decrease in autumn, and no relevant change in spring. The changes in inter-annual variability also displayed strong dependence on the underlying terrain. Finally, we found significant model spread in the magnitude of projected WED anomalies and inter-annual variability, affecting even the signal of the changes.

  14. Assessment of the Impacts of Climate Change on Maize Production in the Southern and Western Highlands Sub-agro Ecological Zones of Tanzania

    Directory of Open Access Journals (Sweden)

    Philbert M. Luhunga

    2017-08-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC fourth assessment report confirmed that climate change is unequivocal. It is coming to us faster with larger impacts and bigger risks than even most climate scientists expected as recently as a few years ago. One particular worry is the disastrous consequence to agriculture and food security sectors in many parts of the world, particularly in developing countries. Adaptation is the only option to reduce the impacts of climate change. However, before planning adaptation policies or strategies to climate change, it is important to assess the impacts of climate change at regional and local scale to have scientific evidence that would guide the formulation of such policies or strategies. In this study the impacts of climate change on rain-fed maize (Zea Mays production in the southern and western highlands sub-agro ecological zones of Tanzania are evaluated. High resolution climate simulations from the Coordinated Regional Climate Downscaling Experiment_Regional Climate Models (CORDEX_RCMs were used as input into the Decision Support System for Agro-technological Transfer (DSSAT to simulate maize yield in the historical climate condition (1971–2000, present (2010–2039, mid (2040–2069, and end (2070–2099 centuries. Daily rainfall, solar radiations, minimum and maximum temperatures for the historical (1971–2000 climate condition and future climate projections (2010–2099 under two Representative Concentration Pathways (RCPs RCP4.5 and RCP 8.5 were used to drive DSSAT. The impacts of climate change were assessed by comparing the average maize yields in historical climate condition against the average of simulated maize yields in the present, mid and end centuries under RCP4.5 and RCP8.5. Results of future maize yields estimates from DSSAT driven by individual RCMs under both RCP scenarios (RCP 4.5 and RCP 8.5 differs from one RCM to another and from one scenario to another. This highlight

  15. On coupling global biome models with climate models

    OpenAIRE

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992; J. Biogeogr. 19: 117-134), which predicts global vegetation patterns in equilibrium with climate, was coupled with the ECHAM climate model of the Max-Planck-Institut fiir Meteorologie, Hamburg, Germany. It was found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only betw...

  16. Sensitivity of climate models: Comparison of simulated and observed patterns for past climates

    International Nuclear Information System (INIS)

    Prell, W.L.; Webb, T. III.

    1992-08-01

    Predicting the potential climatic effects of increased concentrations of atmospheric carbon dioxide requires the continuing development of climate models. Confidence in the predictions will be much enhanced once the models are thoroughly tested in terms of their ability to simulate climates that differ significantly from today's climate. As one index of the magnitude of past climate change, the global mean temperature increase during the past 18,000 years is similar to that predicted for carbon dioxide--doubling. Simulating the climatic changes of the past 18,000 years, as well as the warmer-than-present climate of 6000 years ago and the climate of the last interglacial, around 126,000 years ago, provides an excellent opportunity to test the models that are being used in global climate change research. During the past several years, we have used paleoclimatic data to test the accuracy of the National Center for Atmospheric Research, Community Climate Model, Version 0, after changing its boundary conditions to those appropriate for past climates. We have assembled regional and near-global paleoclimatic data sets of pollen, lake level, and marine plankton data and calibrated many of the data in terms of climatic variables. We have also developed methods that permit direct quantitative comparisons between the data and model results. Our research has shown that comparing the model results with the data is an evolutionary process, because the models, the data, and the methods for comparison are continually being improved. During 1992, we have completed new modeling experiments, further analyzed previous model experiments, compiled new paleodata, made new comparisons between data and model results, and participated in workshops on paleoclimatic modeling

  17. Climate simulations for 1880-2003 with GISS modelE

    International Nuclear Information System (INIS)

    Hansen, J.; Lacis, A.; Miller, R.; Schmidt, G.A.; Russell, G.; Canuto, V.; Del Genio, A.; Hall, T.; Hansen, J.; Sato, M.; Kharecha, P.; Nazarenko, L.; Aleinov, I.; Bauer, S.; Chandler, M.; Faluvegi, G.; Jonas, J.; Ruedy, R.; Lo, K.; Cheng, Y.; Lacis, A.; Schmidt, G.A.; Del Genio, A.; Miller, R.; Cairns, B.; Hall, T.; Baum, E.; Cohen, A.; Fleming, E.; Jackman, C.; Friend, A.; Kelley, M.

    2007-01-01

    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcing. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcing, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcing are due to model deficiencies, inaccurate or incomplete forcing, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcing, we aim to provide a benchmark against which the effect of improvements in the model, climate forcing, and observations can be tested. Principal model deficiencies include unrealistic weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. Greatest uncertainties in the forcing are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds. (authors)

  18. Coupling Climate Models and Forward-Looking Economic Models

    Science.gov (United States)

    Judd, K.; Brock, W. A.

    2010-12-01

    Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward

  19. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  20. Construction of a novel economy-climate model

    Institute of Scientific and Technical Information of China (English)

    CHOU JieMing; DONG WenJie; YE DuZheng

    2007-01-01

    An attempt has been made to construct a novel economy-climate model by combining climate change research with agricultural economy research to evaluate the influence of global climate change on grain yields. The insertion of a climate change factor into the economic C-D (Cobb-Dauglas) production function model yields a novel evaluation model, which connects the climate change factor to the economic variation factor, and the performance and reasonableness of the novel evaluation model are also preliminarily simulated and verified.

  1. Validating predictions from climate envelope models

    Science.gov (United States)

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  2. Validating predictions from climate envelope models.

    Directory of Open Access Journals (Sweden)

    James I Watling

    Full Text Available Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species' distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967-1971 (t1 and evaluated using occurrence data from 1998-2002 (t2. Model sensitivity (the ability to correctly classify species presences was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on

  3. Detailed climate-change projections for urban land-use change and green-house gas increases for Belgium with COSMO-CLM coupled to TERRA_URB

    Science.gov (United States)

    Wouters, Hendrik; Vanden Broucke, Sam; van Lipzig, Nicole; Demuzere, Matthias

    2016-04-01

    Recent research clearly show that climate modelling at high resolution - which resolve the deep convection, the detailed orography and land-use including urbanization - leads to better modelling performance with respect to temperatures, the boundary-layer, clouds and precipitation. The increasing computational power enables the climate research community to address climate-change projections with higher accuracy and much more detail. In the framework of the CORDEX.be project aiming for coherent high-resolution micro-ensemble projections for Belgium employing different GCMs and RCMs, the KU Leuven contributes by means of the downscaling of EC-EARTH global climate model projections (provided by the Royal Meteorological Institute of the Netherlands) to the Belgian domain. The downscaling is obtained with regional climate simulations at 12.5km resolution over Europe (CORDEX-EU domain) and at 2.8km resolution over Belgium (CORDEX.be domain) using COSMO-CLM coupled to urban land-surface parametrization TERRA_URB. This is done for the present-day (1975-2005) and future (2040 → 2070 and 2070 → 2100). In these high-resolution runs, both GHG changes (in accordance to RCP8.5) and urban land-use changes (in accordance to a business-as-usual urban expansion scenario) are taken into account. Based on these simulations, it is shown how climate-change statistics are modified when going from coarse resolution modelling to high-resolution modelling. The climate-change statistics of particular interest are the changes in number of extreme precipitation events and extreme heat waves in cities. Hereby, it is futher investigated for the robustness of the signal change between the course and high-resolution and whether a (statistical) translation is possible. The different simulations also allow to address the relative impact and synergy between the urban expansion and increased GHG on the climate-change statistics. Hereby, it is investigated for which climate-change statistics the

  4. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  5. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.|info:eu-repo/dai/nl/290472113

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  6. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  7. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  8. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  9. Modeling Uncertainty in Climate Change: A Multi-Model Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth; Nordhaus, William; Anthoff, David; Blanford, Geoffrey J.; Bosetti, Valentina; Christensen, Peter; McJeon, Haewon C.; Reilly, J. M.; Sztorc, Paul

    2015-10-01

    The economics of climate change involves a vast array of uncertainties, complicating both the analysis and development of climate policy. This study presents the results of the first comprehensive study of uncertainty in climate change using multiple integrated assessment models. The study looks at model and parametric uncertainties for population, total factor productivity, and climate sensitivity and estimates the pdfs of key output variables, including CO2 concentrations, temperature, damages, and the social cost of carbon (SCC). One key finding is that parametric uncertainty is more important than uncertainty in model structure. Our resulting pdfs also provide insight on tail events.

  10. Model confirmation in climate economics

    Science.gov (United States)

    Millner, Antony; McDermott, Thomas K. J.

    2016-01-01

    Benefit–cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth—one of its most important economic components—had questionable predictive power over the 20th century. PMID:27432964

  11. On the statistical comparison of climate model output and climate data

    International Nuclear Information System (INIS)

    Solow, A.R.

    1991-01-01

    Some broad issues arising in the statistical comparison of the output of climate models with the corresponding climate data are reviewed. Particular attention is paid to the question of detecting climate change. The purpose of this paper is to review some statistical approaches to the comparison of the output of climate models with climate data. There are many statistical issues arising in such a comparison. The author will focus on some of the broader issues, although some specific methodological questions will arise along the way. One important potential application of the approaches discussed in this paper is the detection of climate change. Although much of the discussion will be fairly general, he will try to point out the appropriate connections to the detection question. 9 refs

  12. On the statistical comparison of climate model output and climate data

    International Nuclear Information System (INIS)

    Solow, A.R.

    1990-01-01

    Some broad issues arising in the statistical comparison of the output of climate models with the corresponding climate data are reviewed. Particular attention is paid to the question of detecting climate change. The purpose of this paper is to review some statistical approaches to the comparison of the output of climate models with climate data. There are many statistical issues arising in such a comparison. The author will focus on some of the broader issues, although some specific methodological questions will arise along the way. One important potential application of the approaches discussed in this paper is the detection of climate change. Although much of the discussion will be fairly general, he will try to point out the appropriate connections to the detection question

  13. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    Science.gov (United States)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  14. Mediterranean climate modelling: variability and climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-12-01

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  15. Paleoclimate validation of a numerical climate model

    International Nuclear Information System (INIS)

    Schelling, F.J.; Church, H.W.; Zak, B.D.; Thompson, S.L.

    1994-01-01

    An analysis planned to validate regional climate model results for a past climate state at Yucca Mountain, Nevada, against paleoclimate evidence for the period is described. This analysis, which will use the GENESIS model of global climate nested with the RegCM2 regional climate model, is part of a larger study for DOE's Yucca Mountain Site Characterization Project that is evaluating the impacts of long term future climate change on performance of the potential high level nuclear waste repository at Yucca Mountain. The planned analysis and anticipated results are presented

  16. Reconstructing Holocene climate using a climate model: Model strategy and preliminary results

    Science.gov (United States)

    Haberkorn, K.; Blender, R.; Lunkeit, F.; Fraedrich, K.

    2009-04-01

    An Earth system model of intermediate complexity (Planet Simulator; PlaSim) is used to reconstruct Holocene climate based on proxy data. The Planet Simulator is a user friendly general circulation model (GCM) suitable for palaeoclimate research. Its easy handling and the modular structure allow for fast and problem dependent simulations. The spectral model is based on the moist primitive equations conserving momentum, mass, energy and moisture. Besides the atmospheric part, a mixed layer-ocean with sea ice and a land surface with biosphere are included. The present-day climate of PlaSim, based on an AMIP II control-run (T21/10L resolution), shows reasonable agreement with ERA-40 reanalysis data. Combining PlaSim with a socio-technological model (GLUES; DFG priority project INTERDYNAMIK) provides improved knowledge on the shift from hunting-gathering to agropastoral subsistence societies. This is achieved by a data assimilation approach, incorporating proxy time series into PlaSim to initialize palaeoclimate simulations during the Holocene. For this, the following strategy is applied: The sensitivities of the terrestrial PlaSim climate are determined with respect to sea surface temperature (SST) anomalies. Here, the focus is the impact of regionally varying SST both in the tropics and the Northern Hemisphere mid-latitudes. The inverse of these sensitivities is used to determine the SST conditions necessary for the nudging of land and coastal proxy climates. Preliminary results indicate the potential, the uncertainty and the limitations of the method.

  17. GestAqua.AdaPT - Mediterranean river basin modeling and reservoir operation strategies for climate change adaptation

    Science.gov (United States)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Marco, Machado; Aal, Carlo; Carmona Rodrigues, António; Beça, Pedro; Casanova Lino, Rafael; Rocha, João; Carvalho Santos, Cláudia

    2016-04-01

    Climate change (CC) scenarios for the Mediterranean region include an increase in the frequency and intensity of extreme weather events such as drought periods. higher average temperatures and evapotranspiration, combined with the decrease of annual precipitation may strongly affect the sustainability of water resources. In face of these risks, improving water management actions? by anticipating necessary operational measures is required to insure water quantity and quality according to the needs of the populations and irrigation in agriculture. This is clearly the case of the Alentejo region, southern Portugal, where present climatic conditions already pose significant challenges to water resources stakeholders, mainly from the agricultural and the urban supply sectors. With this in mind, the GestAqua.AdaPT project is underway during 2015 and 2016, aiming at analyzing CC impacts until 2100 and develop operational procedures to ensure water needs are adequately satisfied in the Monte Novo and Vigia reservoirs, which supply water for the city of Évora and nearby irrigation systems. Specific project objectives include: a) defining management and operational adaptation strategies aiming to ensure resource sustainability, both quantitatively and qualitatively; b) evaluate future potential costs and available alternatives to the regional water transfer infrastructure linked with the large Alqueva reservoir implemented in 2011; c) defining CC adaptation strategies to reduce irrigation water needs and d) identification of CC adaptation strategies which can be suitable also to other similar water supply systems. The methodology is centered on the implementation of a cascade of modeling tools, allowing the integrated simulation of the multiple variables under analysis. The project is based on CC scenarios resulting from the CORDEX project for 10 combinations of Global and regional climate models (GCMs and RCMs). The study follows by using two of these combinations

  18. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    Science.gov (United States)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European

  19. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Auffhammer, M.; Hsiang, S. M.; Schlenker, W.; Sobel, A.

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

  20. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  1. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  2. Twenty first century climate change as simulated by European climate models

    International Nuclear Information System (INIS)

    Cubasch, Ulrich

    2007-01-01

    Full text: Climate change simulation results for seven European state-of-the-art climate models, participating in the European research project ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts), will be presented. Models from Norway, France, Germany, Denmark, and Great Britain, representing a sub-ensemble of the models contributing to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), are included. Climate simulations are conducted with all the models for present-day climate and for future climate under the SRES A1B, A2, and B1 scenarios. The design of the simulations follows the guidelines of the IPCC AR4. The 21st century projections are compared to the corresponding present-day simulations. The ensemble mean global mean near surface temperature rise for the year 2099 compared to the 1961-1990 period amounts to 3.2Kforthe A1B scenario, to 4.1 K for the A2 scenario, and to 2.1 K for the B1 scenario. The spatial patterns of temperature change are robust among the contributing models with the largest temperature increase over the Arctic in boreal winter, stronger warming overland than over ocean, and little warming over the southern oceans. The ensemble mean globally averaged precipitation increases for the three scenarios (5.6%, 5.7%, and 3.8% for scenarios A1B, A2, and B1, respectively). The precipitation signals of the different models display a larger spread than the temperature signals. In general, precipitation increases in the Intertropical Convergence Zone and the mid- to high latitudes (most pronounced during the hemispheric winter) and decreases in the subtropics. Sea-level pressure decreases over the polar regions in all models and all scenarios, which is mainly compensated by a pressure increase in the subtropical highs. These changes imply an intensification of the Southern and Northern Annular Modes

  3. Modeling and assessing international climate financing

    Science.gov (United States)

    Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng

    2016-06-01

    Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.

  4. Future directions in climate modeling: A climate impacts perspective

    International Nuclear Information System (INIS)

    Mearns, L.O.

    1990-01-01

    One of the most serious impediments to further progress on the determination of specific impacts of climate change on relevant earth systems is the lack of precise and accurate scenarios of regional change. Spatial resolution of models is generally coarse (5-10 degree, corresponding to 550-1,100 km), and the modeling of physical processes is quite crude. Three main areas in which improvements in the modeling of physical processes are being made are modeling of surface processes, modeling of oceans and coupling of oceans and atmospheric models, and modeling of clouds. Improvements are required in the modeling of surface hydrology and vegetative effects, which have significant impact on the albedo scheme used. Oceans are important in climate modeling for the following reasons: delay of warming due to oceanic heat absorption; effect of mean meridional circulation; control of regional patterns of sea surface temperatures and sea ice by wind driven currents; absorption of atmospheric carbon dioxide by the oceans; and determination of interannual climatic variability via variability in sea surface temperature. The effects of clouds on radiation balance is highly significant. Clouds both reflect shortwave radiation and trap longwave radiation. Most cloud properties are sub-grid scale and thus difficult to include explicitly in models. 25 refs., 1 tab

  5. Climate Ocean Modeling on Parallel Computers

    Science.gov (United States)

    Wang, P.; Cheng, B. N.; Chao, Y.

    1998-01-01

    Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.

  6. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  7. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Hundecha, Y.; Lawrence, D.

    2015-01-01

    Information on extreme precipitation for future climate is needed to assess the changes in the frequency and intensity of flooding. The primary source of information in climate change impact studies is climate model projections. However, due to the coarse resolution and biases of these models......), three are bias correction (BC) methods, and one is a perfect prognosis method. The eight methods are used to downscale precipitation output from 15 regional climate models (RCMs) from the ENSEMBLES project for 11 catchments in Europe. The overall results point to an increase in extreme precipitation...... that at least 30% and up to approximately half of the total variance is derived from the SDMs. This study illustrates the large variability in the expected changes in extreme precipitation and highlights the need for considering an ensemble of both SDMs and climate models. Recommendations are provided...

  8. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.; Held, Isaac M.; Stenchikov, Georgiy L.; Zeng, Fanrong; Horowitz, Larry W.

    2014-01-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  9. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  10. Future Projection of Summer Extreme Precipitation from High Resolution Multi-RCMs over East Asia

    Science.gov (United States)

    Kim, Gayoung; Park, Changyong; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Ahn, Joong-Bae; Min, Seung-Ki; Hong, Song-You; Kang, Hyun-Suk

    2017-04-01

    Recently, the frequency and intensity of natural hazards have been increasing due to human-induced climate change. Because most damages of natural hazards over East Asia have been related to extreme precipitation events, it is important to estimate future change in extreme precipitation characteristics caused by climate change. We investigate future changes in extremal values of summer precipitation simulated by five regional climate models participating in the CORDEX-East Asia project (i.e., HadGEM3-RA, RegCM4, MM5, WRF, and GRIMs) over East Asia. 100-year return value calculated from the generalized extreme value (GEV) parameters is analysed as an indicator of extreme intensity. In the future climate, the mean values as well as the extreme values of daily precipitation tend to increase over land region. The increase of 100-year return value can be significantly associated with the changes in the location (intensity) and scale (variability) GEV parameters for extreme precipitation. It is expected that the results of this study can be used as fruitful references when making the policy of disaster management. Acknowledgements The research was supported by the Ministry of Public Safety and Security of Korean government and Development program under grant MPSS-NH-2013-63 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  11. MECCA coordinated research program: analysis of climate models uncertainties used for climatic changes study

    International Nuclear Information System (INIS)

    Caneill, J.Y.; Hakkarinen, C.

    1992-01-01

    An international consortium, called MECCA, (Model Evaluation Consortium for Climate Assessment) has been created in 1991 by different partners including electric utilities, government and academic groups to make available to the international scientific community, a super-computer facility for climate evolution studies. The first phase of the program consists to assess uncertainties of climate model simulations in the framework of global climate change studies. Fourteen scientific projects have been accepted on an international basis in this first phase. The second phase of the program will consist in the evaluation of a set of long climate simulations realized with coupled ocean/atmosphere models, in order to study the transient aspects of climate changes and the associated uncertainties. A particular attention will be devoted, on the consequences of these assessments on climate impact studies, and on the regional aspects of climate changes

  12. Using a Global Climate Model in an On-line Climate Change Course

    Science.gov (United States)

    Randle, D. E.; Chandler, M. A.; Sohl, L. E.

    2012-12-01

    Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that

  13. Modeling lakes and reservoirs in the climate system

    Science.gov (United States)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  14. The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuying [Lawrence Livermore National Laboratory, Livermore, California; Xie, Shaocheng [Lawrence Livermore National Laboratory, Livermore, California; Klein, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California; Marchand, Roger [University of Washington, Seattle, Washington; Kollias, Pavlos [Stony Brook University, Stony Brook, New York; Clothiaux, Eugene E. [The Pennsylvania State University, University Park, Pennsylvania; Lin, Wuyin [Brookhaven National Laboratory, Upton, New York; Johnson, Karen [Brookhaven National Laboratory, Upton, New York; Swales, Dustin [CIRES and NOAA/Earth System Research Laboratory, Boulder, Colorado; Bodas-Salcedo, Alejandro [Met Office Hadley Centre, Exeter, United Kingdom; Tang, Shuaiqi [Lawrence Livermore National Laboratory, Livermore, California; Haynes, John M. [Cooperative Institute for Research in the Atmosphere/Colorado State University, Fort Collins, Colorado; Collis, Scott [Argonne National Laboratory, Argonne, Illinois; Jensen, Michael [Brookhaven National Laboratory, Upton, New York; Bharadwaj, Nitin [Pacific Northwest National Laboratory, Richland, Washington; Hardin, Joseph [Pacific Northwest National Laboratory, Richland, Washington; Isom, Bradley [Pacific Northwest National Laboratory, Richland, Washington

    2018-01-01

    Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have had difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the concept of instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to improve and to facilitate the comparison of modeled clouds with observations. Many simulators have (and continue to be developed) for a variety of instruments and purposes. A community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Klein et al. 2013; Zhang et al. 2010). This article introduces a ground-based cloud radar simulator developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for comparing climate model clouds with ARM observations from its vertically pointing 35-GHz radars. As compared to CloudSat radar observations, ARM radar measurements occur with higher temporal resolution and finer vertical resolution. This enables users to investigate more fully the detailed vertical structures within clouds, resolve thin clouds, and quantify the diurnal variability of clouds. Particularly, ARM radars are sensitive to low-level clouds, which are

  15. An analytical model for climatic predictions

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-12-01

    A climatic model based upon analytical expressions is presented. This model is capable of making long-range predictions of heat energy variations on regional or global scales. These variations can then be transformed into corresponding variations of some other key climatic parameters since weather and climatic changes are basically driven by differential heating and cooling around the earth. On the basis of the mathematical expressions upon which the model is based, it is shown that the global heat energy structure (and hence the associated climatic system) are characterized by zonally as well as latitudinally propagating fluctuations at frequencies downward of 0.5 day -1 . We have calculated the propagation speeds for those particular frequencies that are well documented in the literature. The calculated speeds are in excellent agreement with the measured speeds. (author). 13 refs

  16. Evolution of extreme temperature events in short term climate projection for Iberian Peninsula.

    Science.gov (United States)

    Rodriguez, Alfredo; Tarquis, Ana M.; Sanchez, Enrique; Dosio, Alessandro; Ruiz-Ramos, Margarita

    2014-05-01

    Extreme events of maximum and minimum temperatures are a main hazard for agricultural production in Iberian Peninsula. For this purpose, in this study we analyze projections of their evolution that could be valid for the next decade, represented in this study by the 30-year period 2004-2034 (target period). For this purpose two kinds of data were used in this study: 1) observations from the station network of AEMET (Spanish National Meteorological Agency) for five Spanish locations, and 2) simulated data at a resolution of 50 ×50 km horizontal grid derived from the outputs of twelve Regional Climate Models (RCMs) taken from project ENSEMBLES (van der Linden and Mitchell, 2009), with a bias correction (Dosio and Paruolo, 2011; Dosio et al., 2012) regarding the observational dataset Spain02 (Herrera et al., 2012). To validate the simulated climate, the available period of observations was compared to a baseline period (1964-1994) of simulated climate for all locations. Then, to analyze the changes for the present/very next future, probability of extreme temperature events for 2004-2034 were compared to that of the baseline period. Although only minor changes are expected, small variations in variability may have a significant impact in crop performance. The objective of the work is to evaluate the utility of these short term projections for potential users, as for instance insurance companies. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116,D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research,Volume 117, D17, doi: 0.1029/2012JD017968 Herrera et. al. (2012) Development and Analysis of a 50 year high

  17. Abilities and limitations in the use of regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Koeltzov, Morten Andreas Oedegaard

    2012-11-01

    In order to say something about the effect of climate change at the regional level, one takes in use regional climate models. In these models the thesis introduce regional features, which are not included in the global climate models (which are basically in climate research). Regional models can provide good and useful climate projections that add more value than the global climate models, but also introduces an uncertainty in the calculations. How should this uncertainty affect the use of regional climate models?The most common methodology for calculating potential future climate developments are based on different scenarios of possible emissions of greenhouse gases. These scenarios operates as global climate models using physical laws and calculate possible future developments. This is considered mathematical complexed and processes with limited supercomputing capacity calculates the global models for the larger scale of the climate system. To study the effects of climate change are regional details required and the regional models used therefore in a limited area of the climate system. These regional models are driven by data from the global models and refines and improves these data. Impact studies can then use the data from the regional models or data which are further processed to provide more local details using geo-statistical methods. In the preparation of the climate projections is there a minimum of 4 sources of uncertainty. This uncertainty is related to the provision of emission scenarios of greenhouse gases, uncertainties related to the use of global climate models, uncertainty related to the use of regional climate models and the uncertainty of internal variability in the climate system. This thesis discusses the use of regional climate models, and illustrates how the regional climate model adds value to climate projections, and at the same time introduce uncertainty in the calculations. It discusses in particular the importance of the choice of

  18. The Climate-Agriculture-Modeling and Decision Tool (CAMDT) for Climate Risk Management in Agriculture

    Science.gov (United States)

    Ines, A. V. M.; Han, E.; Baethgen, W.

    2017-12-01

    Advances in seasonal climate forecasts (SCFs) during the past decades have brought great potential to improve agricultural climate risk managements associated with inter-annual climate variability. In spite of popular uses of crop simulation models in addressing climate risk problems, the models cannot readily take seasonal climate predictions issued in the format of tercile probabilities of most likely rainfall categories (i.e, below-, near- and above-normal). When a skillful SCF is linked with the crop simulation models, the informative climate information can be further translated into actionable agronomic terms and thus better support strategic and tactical decisions. In other words, crop modeling connected with a given SCF allows to simulate "what-if" scenarios with different crop choices or management practices and better inform the decision makers. In this paper, we present a decision support tool, called CAMDT (Climate Agriculture Modeling and Decision Tool), which seamlessly integrates probabilistic SCFs to DSSAT-CSM-Rice model to guide decision-makers in adopting appropriate crop and agricultural water management practices for given climatic conditions. The CAMDT has a functionality to disaggregate a probabilistic SCF into daily weather realizations (either a parametric or non-parametric disaggregation method) and to run DSSAT-CSM-Rice with the disaggregated weather realizations. The convenient graphical user-interface allows easy implementation of several "what-if" scenarios for non-technical users and visualize the results of the scenario runs. In addition, the CAMDT also translates crop model outputs to economic terms once the user provides expected crop price and cost. The CAMDT is a practical tool for real-world applications, specifically for agricultural climate risk management in the Bicol region, Philippines, having a great flexibility for being adapted to other crops or regions in the world. CAMDT GitHub: https://github.com/Agro-Climate/CAMDT

  19. Spatial scale separation in regional climate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Feser, F.

    2005-07-01

    In this thesis the concept of scale separation is introduced as a tool for first improving regional climate model simulations and, secondly, to explicitly detect and describe the added value obtained by regional modelling. The basic idea behind this is that global and regional climate models have their best performance at different spatial scales. Therefore the regional model should not alter the global model's results at large scales. The for this purpose designed concept of nudging of large scales controls the large scales within the regional model domain and keeps them close to the global forcing model whereby the regional scales are left unchanged. For ensemble simulations nudging of large scales strongly reduces the divergence of the different simulations compared to the standard approach ensemble that occasionally shows large differences for the individual realisations. For climate hindcasts this method leads to results which are on average closer to observed states than the standard approach. Also the analysis of the regional climate model simulation can be improved by separating the results into different spatial domains. This was done by developing and applying digital filters that perform the scale separation effectively without great computational effort. The separation of the results into different spatial scales simplifies model validation and process studies. The search for 'added value' can be conducted on the spatial scales the regional climate model was designed for giving clearer results than by analysing unfiltered meteorological fields. To examine the skill of the different simulations pattern correlation coefficients were calculated between the global reanalyses, the regional climate model simulation and, as a reference, of an operational regional weather analysis. The regional climate model simulation driven with large-scale constraints achieved a high increase in similarity to the operational analyses for medium-scale 2 meter

  20. Estimating daily climatologies for climate indices derived from climate model data and observations

    Science.gov (United States)

    Mahlstein, Irina; Spirig, Christoph; Liniger, Mark A; Appenzeller, Christof

    2015-01-01

    Climate indices help to describe the past, present, and the future climate. They are usually closer related to possible impacts and are therefore more illustrative to users than simple climate means. Indices are often based on daily data series and thresholds. It is shown that the percentile-based thresholds are sensitive to the method of computation, and so are the climatological daily mean and the daily standard deviation, which are used for bias corrections of daily climate model data. Sample size issues of either the observed reference period or the model data lead to uncertainties in these estimations. A large number of past ensemble seasonal forecasts, called hindcasts, is used to explore these sampling uncertainties and to compare two different approaches. Based on a perfect model approach it is shown that a fitting approach can improve substantially the estimates of daily climatologies of percentile-based thresholds over land areas, as well as the mean and the variability. These improvements are relevant for bias removal in long-range forecasts or predictions of climate indices based on percentile thresholds. But also for climate change studies, the method shows potential for use. Key Points More robust estimates of daily climate characteristics Statistical fitting approach Based on a perfect model approach PMID:26042192

  1. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change.

    Directory of Open Access Journals (Sweden)

    A Michelle Lawing

    Full Text Available Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models, phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species, and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr than it has been on average for the past 320 ky (2.3 m/yr.

  2. Rainfall Downscaling Conditional on Upper-air Variables: Assessing Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Deidda, Roberto; Marrocu, Marino; Kaleris, Vassilios

    2014-05-01

    Due to its intermittent and highly variable character, and the modeling parameterizations used, precipitation is one of the least well reproduced hydrologic variables by both Global Climate Models (GCMs) and Regional Climate Models (RCMs). This is especially the case at a regional level (where hydrologic risks are assessed) and at small temporal scales (e.g. daily) used to run hydrologic models. In an effort to remedy those shortcomings and assess the effect of climate change on rainfall statistics at hydrologically relevant scales, Langousis and Kaleris (2013) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables. The developed downscaling scheme was tested using atmospheric data from the ERA-Interim archive (http://www.ecmwf.int/research/era/do/get/index), and daily rainfall measurements from western Greece, and was proved capable of reproducing several statistical properties of actual rainfall records, at both annual and seasonal levels. This was done solely by conditioning rainfall simulation on a vector of atmospheric predictors, properly selected to reflect the relative influence of upper-air variables on ground-level rainfall statistics. In this study, we apply the developed framework for conditional rainfall simulation using atmospheric data from different GCM/RCM combinations. This is done using atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com), and daily rainfall measurements for an intermediate-sized catchment in Italy; i.e. the Flumendosa catchment. Since GCM/RCM products are suited to reproduce the local climatology in a statistical sense (i.e. in terms of relative frequencies), rather than ensuring a one-to-one temporal correspondence between observed and simulated fields (i.e. as is the case for ERA-interim reanalysis data), we proceed in three steps: a) we use statistical tools to establish a linkage between ERA-Interim upper-air atmospheric forecasts and

  3. Animating climate model data

    Science.gov (United States)

    DaPonte, John S.; Sadowski, Thomas; Thomas, Paul

    2006-05-01

    This paper describes a collaborative project conducted by the Computer Science Department at Southern Connecticut State University and NASA's Goddard Institute for Space Science (GISS). Animations of output from a climate simulation math model used at GISS to predict rainfall and circulation have been produced for West Africa from June to September 2002. These early results have assisted scientists at GISS in evaluating the accuracy of the RM3 climate model when compared to similar results obtained from satellite imagery. The results presented below will be refined to better meet the needs of GISS scientists and will be expanded to cover other geographic regions for a variety of time frames.

  4. Economy-Energy-Climate Interaction. The Model Wiagem

    International Nuclear Information System (INIS)

    Kemfert, C.

    2001-09-01

    This paper presents an integrated economy-energy-climate model WIAGEM (World Integrated Assessment General Equilibrium Model) which incorporates economic, energetic and climatic modules in an integrated assessment approach. In order to evaluate market and non-market costs and benefits of climate change WIAGEM combines an economic approach with a special focus on the international energy market and integrates climate interrelations by temperature changes and sea level variations. WIAGEM bases on 25 world regions which are aggregated to 11 trading regions and 14 sectors within each region. The representation of the economic relations is based on an intertemporal general equilibrium approach and contains the international markets for oil, coal and gas. The model incorporates all greenhouse gases (GHG) which influence the potential global temperature, the sea level variation and the assessed probable impacts in terms of costs and benefits of climate change. Market and non market damages are evaluated due to the damage costs approaches of Tol (2001). Additionally, this model includes net changes in GHG emissions from sources and removals by sinks resulting from land use change and forest activities. This paper describes the model structure in detail and outlines some general results, especially the impacts of climate change. As a result, climate change impacts do matter within the next 50 years, developing regions face high economic losses in terms of welfare and GDP losses. The inclusion of sinks and other GHG changes results significantly

  5. Assessing NARCCAP climate model effects using spatial confidence regions

    Directory of Open Access Journals (Sweden)

    J. P. French

    2017-07-01

    Full Text Available We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.

  6. Climate model diversity in the Northern Hemisphere Polar vortex response to climate change.

    Science.gov (United States)

    Simpson, I.; Seager, R.; Hitchcock, P.; Cohen, N.

    2017-12-01

    Global climate models vary widely in their predictions of the future of the Northern Hemisphere stratospheric polar vortex, with some showing a significant strengthening of the vortex, some showing a significant weakening and others displaying a response that is not outside of the range expected from internal variability alone. This inter-model spread in stratospheric predictions may account for some inter-model spread in tropospheric predictions with important implications for the storm tracks and regional climate change, particularly for the North Atlantic sector. Here, our current state of understanding of this model spread and its tropospheric impacts will be reviewed. Previous studies have proposed relationships between a models polar vortex response to climate change and its present day vortex climatology while others have demonstrated links between a models polar vortex response and changing wave activity coming up from the troposphere below under a warming climate. The extent to which these mechanisms can account for the spread in polar vortex changes exhibited by the Coupled Model Intercomparison Project, phase 5 models will be assessed. In addition, preliminary results from a series of idealized experiments with the Community Atmosphere Model will be presented. In these experiments, nudging of the stratospheric zonal mean state has been imposed to mimic the inter-model spread in the polar vortex response to climate change so that the downward influence of the spread in zonal mean stratospheric responses on the tropospheric circulation can be assessed within one model.

  7. Assessment of climate change scenarios for Saudi Arabia using data from global climate models

    International Nuclear Information System (INIS)

    Husain, T.; Chowdhury, S.

    2009-01-01

    This study assesses available scientific information and data to predict changes in the climatic parameters in Saudi Arabia for understanding the impacts for mitigation and/or adaptation. Meteorological data from 26 synoptic stations were analyzed in this study. Various climatic change scenarios were reviewed and A 2 and B 2 climatic scenario families were selected. In order to assess long-term global impact, global climatic models were used to simulate changes in temperature, precipitation, relative humidity, solar radiation, and wind circulation. Using global climate model (GCM), monthly time series data was retrieved for Longitude 15 o N to 35 o N and 32.5 o E to 60 o E covering the Kingdom of Saudi Arabia from 1970 to 2100 for all grids. Taking averages of 1970 to 2003 as baseline, change in temperature, relative humidity and precipitation were estimated for the base period. A comparative evaluation was performed for predictive capabilities of these models for temperature, precipitation and relative humidity. Available meteorological data from 1970 to 2003 was used to determine trends. This paper discusses the inconsistency in these parameters for decision-making and recommends future studies by linking global climate models with a suitable regional climate modeling tool. (author)

  8. Developing climatic scenarios for pesticide fate modelling in Europe

    International Nuclear Information System (INIS)

    Blenkinsop, S.; Fowler, H.J.; Dubus, I.G.; Nolan, B.T.; Hollis, J.M.

    2008-01-01

    A climatic classification for Europe suitable for pesticide fate modelling was constructed using a 3-stage process involving the identification of key climatic variables, the extraction of the dominant modes of spatial variability in those variables and the use of k-means clustering to identify regions with similar climates. The procedure identified 16 coherent zones that reflect the variability of climate across Europe whilst maintaining a manageable number of zones for subsequent modelling studies. An analysis of basic climatic parameters for each zone demonstrates the success of the scheme in identifying distinct climatic regions. Objective criteria were used to identify one representative 26-year daily meteorological series from a European dataset for each zone. The representativeness of each series was then verified against the zonal classifications. These new FOOTPRINT climate zones provide a state-of-the-art objective classification of European climate complete with representative daily data that are suitable for use in pesticide fate modelling. - The FOOTPRINT climatic zones provide an objective climatic classification and daily climate series that may be used for the modelling of pesticide fate across Europe

  9. Assessing modeled Greenland surface mass balance in the GISS Model E2 and its sensitivity to surface albedo

    Science.gov (United States)

    Alexander, Patrick; LeGrande, Allegra N.; Koenig, Lora S.; Tedesco, Marco; Moustafa, Samiah E.; Ivanoff, Alvaro; Fischer, Robert P.; Fettweis, Xavier

    2016-04-01

    The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) plays an important role in global sea level change. Regional Climate Models (RCMs) such as the Modèle Atmosphérique Régionale (MAR) have been employed at high spatial resolution with relatively complex physics to simulate ice sheet SMB. Global climate models (GCMs) incorporate less sophisticated physical schemes and provide outputs at a lower spatial resolution, but have the advantage of modeling the interaction between different components of the earth's oceans, climate, and land surface at a global scale. Improving the ability of GCMs to represent ice sheet SMB is important for making predictions of future changes in global sea level. With the ultimate goal of improving SMB simulated by the Goddard Institute for Space Studies (GISS) Model E2 GCM, we compare simulated GrIS SMB against the outputs of the MAR model and radar-derived estimates of snow accumulation. In order to reproduce present-day climate variability in the Model E2 simulation, winds are constrained to match the reanalysis datasets used to force MAR at the lateral boundaries. We conduct a preliminary assessment of the sensitivity of the simulated Model E2 SMB to surface albedo, a parameter that is known to strongly influence SMB. Model E2 albedo is set to a fixed value of 0.8 over the entire ice sheet in the initial configuration of the model (control case). We adjust this fixed value in an ensemble of simulations over a range of 0.4 to 0.8 (roughly the range of observed summer GrIS albedo values) to examine the sensitivity of ice-sheet-wide SMB to albedo. We prescribe albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A3 v6 to examine the impact of a more realistic spatial and temporal variations in albedo. An age-dependent snow albedo parameterization is applied, and its impact on SMB relative to observations and the RCM is assessed.

  10. Using High Resolution Simulations with WRF/SSiB Regional Climate Model Constrained by In Situ Observations to Assess the Impacts of Dust in Snow in the Upper Colorado River Basin

    Science.gov (United States)

    Oaida, C. M.; Skiles, M.; Painter, T. H.; Xue, Y.

    2015-12-01

    The mountain snowpack is an essential resource for both the environment as well as society. Observational and energy balance modeling work have shown that dust on snow (DOS) in western U.S. (WUS) is a major contributor to snow processes, including snowmelt timing and runoff amount in regions like the Upper Colorado River Basin (UCRB). In order to accurately estimate the impact of DOS to the hydrologic cycle and water resources, now and under a changing climate, we need to be able to (1) adequately simulate the snowpack (accumulation), and (2) realistically represent DOS processes in models. Energy balance models do not capture the impact on a broader local or regional scale, nor the land-atmosphere feedbacks, while GCM studies cannot resolve orographic-related precipitation processes, and therefore snowpack accumulation, owing to coarse spatial resolution and smoother terrain. All this implies the impacts of dust on snow on the mountain snowpack and other hydrologic processes are likely not well captured in current modeling studies. Recent increase in computing power allows for RCMs to be used at higher spatial resolutions, while recent in situ observations of dust in snow properties can help constrain modeling simulations. Therefore, in the work presented here, we take advantage of these latest resources to address the some of the challenges outlined above. We employ the newly enhanced WRF/SSiB regional climate model at 4 km horizontal resolution. This scale has been shown by others to be adequate in capturing orographic processes over WUS. We also constrain the magnitude of dust deposition provided by a global chemistry and transport model, with in situ measurements taken at sites in the UCRB. Furthermore, we adjust the dust absorptive properties based on observed values at these sites, as opposed to generic global ones. This study aims to improve simulation of the impact of dust in snow on the hydrologic cycle and related water resources.

  11. Predicting Future Seed Sourcing of Platycladus orientalis (L. for Future Climates Using Climate Niche Models

    Directory of Open Access Journals (Sweden)

    Xian-Ge Hu

    2017-12-01

    Full Text Available Climate niche modeling has been widely used to assess the impact of climate change on forest trees at the species level. However, geographically divergent tree populations are expected to respond differently to climate change. Considering intraspecific local adaptation in modeling species responses to climate change will thus improve the credibility and usefulness of climate niche models, particularly for genetic resources management. In this study, we used five Platycladus orientalis (L. seed zones (Northwestern; Northern; Central; Southern; and Subtropical covering the entire species range in China. A climate niche model was developed and used to project the suitable climatic conditions for each of the five seed zones for current and various future climate scenarios (Representative Concentration Pathways: RCP2.6, RCP4.5, RCP6.0, and RCP8.5. Our results indicated that the Subtropical seed zone would show consistent reduction for all climate change scenarios. The remaining seed zones, however, would experience various degrees of expansion in suitable habitat relative to their current geographic distributions. Most of the seed zones would gain suitable habitats at their northern distribution margins and higher latitudes. Thus, we recommend adjusting the current forest management strategies to mitigate the negative impacts of climate change.

  12. Development of ALARO-Climate regional climate model for a very high resolution

    Science.gov (United States)

    Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan

    2014-05-01

    ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main results of the RCM ALARO-Climate model simulations in 25 and 6.25 km resolutions on the longer time-scale (1961-1990). The model was driven by the ERA-40 re-analyses and run on the integration domain of ~ 2500 x 2500 km size covering the central Europe. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version dataset 8. Other simulated parameters (e.g., cloudiness, radiation or components of water cycle) were compared to the ERA-40 re-analyses. The validation of the first ERA-40 simulation in both, 25 km and 6.25 km resolutions, revealed significant cold biases in all seasons and overestimation of precipitation in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The differences between these simulations were small and thus revealed a robustness of the model's physical parameterization on the resolution change. The series of 25 km resolution simulations with several model adaptations was carried out to study their effect on the simulated properties of climate variables and thus possibly identify a source of major errors in the simulated climate. The current investigation suggests the main reason for biases is related to the model physic. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1

  13. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  14. The Swedish Regional Climate Modelling Programme, SWECLIM: a review.

    Science.gov (United States)

    Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael

    2004-06-01

    The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.

  15. Multi-scale climate modelling over Southern Africa using a variable-resolution global model

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2011-12-01

    Full Text Available -mail: fengelbrecht@csir.co.za Multi-scale climate modelling over Southern Africa using a variable-resolution global model FA Engelbrecht1, 2*, WA Landman1, 3, CJ Engelbrecht4, S Landman5, MM Bopape1, B Roux6, JL McGregor7 and M Thatcher7 1 CSIR Natural... improvement. Keywords: multi-scale climate modelling, variable-resolution atmospheric model Introduction Dynamic climate models have become the primary tools for the projection of future climate change, at both the global and regional scales. Dynamic...

  16. Projections of West African summer monsoon rainfall extremes from two CORDEX models

    Science.gov (United States)

    Akinsanola, A. A.; Zhou, Wen

    2018-05-01

    Global warming has a profound impact on the vulnerable environment of West Africa; hence, robust climate projection, especially of rainfall extremes, is quite important. Based on two representative concentration pathway (RCP) scenarios, projected changes in extreme summer rainfall events over West Africa were investigated using data from the Coordinated Regional Climate Downscaling Experiment models. Eight (8) extreme rainfall indices (CDD, CWD, r10mm, r20mm, PRCPTOT, R95pTOT, rx5day, and sdii) defined by the Expert Team on Climate Change Detection and Indices were used in the study. The performance of the regional climate model (RCM) simulations was validated by comparing with GPCP and TRMM observation data sets. Results show that the RCMs reasonably reproduced the observed pattern of extreme rainfall over the region and further added significant value to the driven GCMs over some grids. Compared to the baseline period 1976-2005, future changes (2070-2099) in summer rainfall extremes under the RCP4.5 and RCP8.5 scenarios show statistically significant decreasing total rainfall (PRCPTOT), while consecutive dry days and extreme rainfall events (R95pTOT) are projected to increase significantly. There are obvious indications that simple rainfall intensity (sdii) will increase in the future. This does not amount to an increase in total rainfall but suggests a likelihood of greater intensity of rainfall events. Overall, our results project that West Africa may suffer more natural disasters such as droughts and floods in the future.

  17. Understanding National Models for Climate Assessments

    Science.gov (United States)

    Dave, A.; Weingartner, K.

    2017-12-01

    National-level climate assessments have been produced or are underway in a number of countries. These efforts showcase a variety of approaches to mapping climate impacts onto human and natural systems, and involve a variety of development processes, organizational structures, and intended purposes. This presentation will provide a comparative overview of national `models' for climate assessments worldwide, drawing from a geographically diverse group of nations with varying capacities to conduct such assessments. Using an illustrative sampling of assessment models, the presentation will highlight the range of assessment mandates and requirements that drive this work, methodologies employed, focal areas, and the degree to which international dimensions are included for each nation's assessment. This not only allows the U.S. National Climate Assessment to be better understood within an international context, but provides the user with an entry point into other national climate assessments around the world, enabling a better understanding of the risks and vulnerabilities societies face.

  18. On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions

    Science.gov (United States)

    Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.

    2018-06-01

    Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent

  19. Climate change projections for Greek viticulture as simulated by a regional climate model

    Science.gov (United States)

    Lazoglou, Georgia; Anagnostopoulou, Christina; Koundouras, Stefanos

    2017-07-01

    Viticulture represents an important economic activity for Greek agriculture. Winegrapes are cultivated in many areas covering the whole Greek territory, due to the favorable soil and climatic conditions. Given the dependence of viticulture on climate, the vitivinicultural sector is expected to be affected by possible climatic changes. The present study is set out to investigate the impacts of climatic change in Greek viticulture, using nine bioclimatic indices for the period 1981-2100. For this purpose, reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and data from the regional climatic model Regional Climate Model Version 3 (RegCM3) are used. It was found that the examined regional climate model estimates satisfactorily these bioclimatic indices. The results of the study show that the increasing trend of temperature and drought will affect all wine-producing regions in Greece. In vineyards in mountainous regions, the impact is positive, while in islands and coastal regions, it is negative. Overall, it should be highlighted that for the first time that Greece is classified into common climatic characteristic categories, according to the international Geoviticulture Multicriteria Climatic Classification System (MCC system). According to the proposed classification, Greek viticulture regions are estimated to have similar climatic characteristics with the warmer wine-producing regions of the world up to the end of twenty-first century. Wine growers and winemakers should take the findings of the study under consideration in order to take measures for Greek wine sector adaptation and the continuation of high-quality wine production.

  20. The international coordination of climate model validation and intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Gates, W L [Lawrence Livermore National Lab. Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison

    1996-12-31

    Climate modeling, whereby basic physical laws are used to integrate the physics and dynamics of climate into a consistent system, plays a key role in climate research and is the medium through. Depending upon the portion(s) of the climate system being considered, climate models range from those concerned only with the equilibrium globally-averaged surface temperature to those depicting the 3-dimensional time-dependent evolution of the coupled atmosphere, ocean, sea ice and land surface. Here only the latter class of models are considered, which are commonly known as general circulation models (or GCMs). (author)

  1. The international coordination of climate model validation and intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Gates, W.L. [Lawrence Livermore National Lab. Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison

    1995-12-31

    Climate modeling, whereby basic physical laws are used to integrate the physics and dynamics of climate into a consistent system, plays a key role in climate research and is the medium through. Depending upon the portion(s) of the climate system being considered, climate models range from those concerned only with the equilibrium globally-averaged surface temperature to those depicting the 3-dimensional time-dependent evolution of the coupled atmosphere, ocean, sea ice and land surface. Here only the latter class of models are considered, which are commonly known as general circulation models (or GCMs). (author)

  2. Modeling U.S. water resources under climate change

    Science.gov (United States)

    Blanc, Elodie; Strzepek, Kenneth; Schlosser, Adam; Jacoby, Henry; Gueneau, Arthur; Fant, Charles; Rausch, Sebastian; Reilly, John

    2014-04-01

    Water is at the center of a complex and dynamic system involving climatic, biological, hydrological, physical, and human interactions. We demonstrate a new modeling system that integrates climatic and hydrological determinants of water supply with economic and biological drivers of sectoral and regional water requirement while taking into account constraints of engineered water storage and transport systems. This modeling system is an extension of the Massachusetts Institute of Technology (MIT) Integrated Global System Model framework and is unique in its consistent treatment of factors affecting water resources and water requirements. Irrigation demand, for example, is driven by the same climatic conditions that drive evapotranspiration in natural systems and runoff, and future scenarios of water demand for power plant cooling are consistent with energy scenarios driving climate change. To illustrate the modeling system we select "wet" and "dry" patterns of precipitation for the United States from general circulation models used in the Climate Model Intercomparison Project (CMIP3). Results suggest that population and economic growth alone would increase water stress in the United States through mid-century. Climate change generally increases water stress with the largest increases in the Southwest. By identifying areas of potential stress in the absence of specific adaptation responses, the modeling system can help direct attention to water planning that might then limit use or add storage in potentially stressed regions, while illustrating how avoiding climate change through mitigation could change likely outcomes.

  3. A dynamic, climate-driven model of Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Joseph Leedale

    2016-03-01

    Full Text Available Outbreaks of Rift Valley fever (RVF in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  4. A prognostic pollen emissions model for climate models (PECM1.0

    Directory of Open Access Journals (Sweden)

    M. C. Wozniak

    2017-11-01

    Full Text Available We develop a prognostic model called Pollen Emissions for Climate Models (PECM for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type, and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus, evergreen needleleaf trees (Cupressaceae, Pinaceae, grasses (Poaceae; C3, C4, and ragweed (Ambrosia. This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in the Regional Climate Model version 4 (RegCM4 over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model using (1 a taxa-specific land cover database, phenology, and emission potential, and (2 a plant functional type (PFT land cover, phenology, and emission potential. The simulated surface pollen concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model; however, we note that the PFT-based version provides a useful and climate-flexible emissions

  5. Overview of climate information needs for ecological effects models

    Energy Technology Data Exchange (ETDEWEB)

    Peer, R.L.

    1990-01-01

    Atmospheric scientists engaged in climate change research require a basic understanding of how ecological effects models incorporate climate. The report provides an overview of existing ecological models that might be used to model climate change effects on vegetation. Some agricultural models and statistical methods are also discussed. The weather input data requirements, weather simulation methods, and other model characteristics relevant to climate change research are described for a selected number of models. The ecological models are classified as biome, ecosystem, or tree models; the ecosystem models are further subdivided into species dynamics or process models. In general, ecological modelers have had to rely on readily available meteorological data such as temperature and rainfall. Although models are becoming more sophisticated in their treatment of weather and require more kinds of data (such as wind, solar radiation, or potential evapotranspiration), modelers are still hampered by a lack of data for many applications. Future directions of ecological effects models and the climate variables that will be required by the models are discussed.

  6. Multi-wheat-model ensemble responses to interannual climatic variability

    DEFF Research Database (Denmark)

    Ruane, A C; Hudson, N I; Asseng, S

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and ......-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.......We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and we...... evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...

  7. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    Directory of Open Access Journals (Sweden)

    S. Hagemann

    2013-05-01

    Full Text Available Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three and hydrological models (eight were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

  8. Evaluating the impact of hydrological uncertainty in assessing the impact of climate change on water resources of the Ebro River Basin (Spain)

    Science.gov (United States)

    Zambrano-Bigiarini, Mauricio; Bellin, Alberto; Majone, Bruno; Bovolo, C. Isabella; Blenkinsop, Stephen; Fowler, Hayley J.

    2010-05-01

    Quantification of the impacts of climate change on water resources depends on the emission scenario, climate model, downscaling technique and impact model used to drive the impact study. Uncertainties in projections of climate models and those involved in the quantification of its hydrological response limit the understanding of future impacts and complicate the assessment of mitigation policies. This work analyses the effects of climate change on water resources of the Ebro River Basin (NE Spain), considering the combined effect of uncertainty characterizing both the driving Regional Climate Model (RCM) and hydrological parameterization. In addition, we considered the relative importance of these two contributions. Hydrological simulations in a few test catchments within the basin were performed by using the SWAT model, a widely used hydrological model often applied to large-scale watersheds. After a preliminary sensitivity analysis with Latin Hypercube One-factor-At-a-Time (LH-OAT), the Generalized Likelihood Uncertainty Estimation (GLUE) methodology was used for selecting hydrological parameter sets that best reproduced the observed streamflow during the control period from 1961 to 1991, in terms of percentage of measured data bracketed by the 95% prediction uncertainty (95PPU), and the ratio between the average thickness of the 95PPU band and the standard deviation of the measured data. Following validation, the same parameter sets were used to simulate the effects of climate change on future streamflows. A simple bias-correction methodology was used for downscaling daily time series of precipitation and mean temperature from an ensemble of 6 RCM time-slice experiments. These were obtained from the PRUDENCE project for a control period (1961-1990) and for a future time period (2071-2100) using the medium-high SRES A2 emissions scenario. The bias-corrected future RCM scenarios were then used to drive the hydrological simulations during the future period

  9. Modeling key processes causing climate change and variability

    Energy Technology Data Exchange (ETDEWEB)

    Henriksson, S.

    2013-09-01

    Greenhouse gas warming, internal climate variability and aerosol climate effects are studied and the importance to understand these key processes and being able to separate their influence on the climate is discussed. Aerosol-climate model ECHAM5-HAM and the COSMOS millennium model consisting of atmospheric, ocean and carbon cycle and land-use models are applied and results compared to measurements. Topics at focus are climate sensitivity, quasiperiodic variability with a period of 50-80 years and variability at other timescales, climate effects due to aerosols over India and climate effects of northern hemisphere mid- and high-latitude volcanic eruptions. The main findings of this work are (1) pointing out the remaining challenges in reducing climate sensitivity uncertainty from observational evidence, (2) estimates for the amplitude of a 50-80 year quasiperiodic oscillation in global mean temperature ranging from 0.03 K to 0.17 K and for its phase progression as well as the synchronising effect of external forcing, (3) identifying a power law shape S(f) {proportional_to} f-{alpha} for the spectrum of global mean temperature with {alpha} {approx} 0.8 between multidecadal and El Nino timescales with a smaller exponent in modelled climate without external forcing, (4) separating aerosol properties and climate effects in India by season and location (5) the more efficient dispersion of secondary sulfate aerosols than primary carbonaceous aerosols in the simulations, (6) an increase in monsoon rainfall in northern India due to aerosol light absorption and a probably larger decrease due to aerosol dimming effects and (7) an estimate of mean maximum cooling of 0.19 K due to larger northern hemisphere mid- and high-latitude volcanic eruptions. The results could be applied or useful in better isolating the human-caused climate change signal, in studying the processes further and in more detail, in decadal climate prediction, in model evaluation and in emission policy

  10. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?

    Science.gov (United States)

    Sagoo, Navjit; Valdes, Paul; Flecker, Rachel; Gregoire, Lauren J

    2013-10-28

    Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4.

  11. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Science.gov (United States)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  12. Modelling interactions of carbon dioxide, forests, and climate

    International Nuclear Information System (INIS)

    Luxmoore, R.J.; Baldocchi, D.D.

    1994-01-01

    Atmospheric carbon dioxide is rising and forests and climate is changing exclamation point This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken

  13. Reconstructing Climate Change: The Model-Data Ping-Pong

    Science.gov (United States)

    Stocker, T. F.

    2017-12-01

    When Cesare Emiliani, the father of paleoceanography, made the first attempts at a quantitative reconstruction of Pleistocene climate change in the early 1950s, climate models were not yet conceived. The understanding of paleoceanographic records was therefore limited, and scientists had to resort to plausibility arguments to interpret their data. With the advent of coupled climate models in the early 1970s, for the first time hypotheses about climate processes and climate change could be tested in a dynamically consistent framework. However, only a model hierarchy can cope with the long time scales and the multi-component physical-biogeochemical Earth System. There are many examples how climate models have inspired the interpretation of paleoclimate data on the one hand, and conversely, how data have questioned long-held concepts and models. In this lecture I critically revisit a few examples of this model-data ping-pong, such as the bipolar seesaw, the mid-Holocene greenhouse gas increase, millennial and rapid CO2 changes reconstructed from polar ice cores, and the interpretation of novel paleoceanographic tracers. These examples also highlight many of the still unsolved questions and provide guidance for future research. The combination of high-resolution paleoceanographic data and modeling has never been more relevant than today. It will be the key for an appropriate risk assessment of impacts on the Earth System that are already underway in the Anthropocene.

  14. Two-way against one-way nesting for climate downscaling in Europe and the Mediterranean region using LMDZ4

    Science.gov (United States)

    Li, Shan; Li, Laurent; Le Treut, Hervé

    2016-04-01

    In the 21st century, the estimated surface temperature warming projected by General Circulation Models (GCMs) is between 0.3 and 4.8 °C, depending on the scenario considered. GCMs exhibit a good representation of climate on a global scale, but they are not able to reproduce regional climate processes with the same level of accuracy. Society and policymakers need model projections to define climate change adaptation and mitigation policies on a global, regional and local scale. Climate downscaling is mostly conducted with a regional model nested into the outputs of a global model. This one-way nesting approach is generally used in the climate community without feedbacks from Regional Climate Models (RCMs) to GCMs. This lack of interaction between the two models may affect regional modes of variability, in particular those with a boundary conflict. The objective of this study is to evaluate a two-way nesting configuration that makes an interactive coupling between the RCM and the GCM, an approach against the traditional configuration of one-way nesting system. An additional aim of this work is to examine if the two-way nesting system can improve the RCM performance. The atmospheric component of the IPSL integrated climate model (LMDZ) is configured at both regional (LMDZ-regional) and global (LMDZ-global) scales. The two models have the same configuration for the dynamical framework and the physical forcings. The climatology values of sea surface temperature (SST) are prescribed for the two models. The stretched-grid of LMDZ-global is applied to a region defined by Europe, the Mediterranean, North Africa and Western North Atlantic. To ensure a good statistical significance of results, all simulations last at least 80 years. The nesting process of models is performed by a relaxation procedure of a time scale of 90 minutes. In the case of two-way nesting, the exchange between the two models is every two hours. The relaxation procedure induces a boundary conflict

  15. A climate robust integrated modelling framework for regional impact assessment of climate change

    Science.gov (United States)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  16. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions

    Directory of Open Access Journals (Sweden)

    Asma Foughali

    2015-07-01

    Full Text Available This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2 in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT from the European program ENSEMBLES, forced by two global climate models (GCM: ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to

  17. GLOBAL CLIMATE MODEL:A COMPREHENSIVE TOOL IN CLIMATE CHANGE IMPACT STUDIES

    Directory of Open Access Journals (Sweden)

    Dharmaveer Singh

    2015-01-01

    Full Text Available There is growing concern, how and to what extent future changes in climate will affect human society and natural environments. Continuous emissions of Green House Gasses (GHGs at or above current rates will cause further warming. This, in turn, may modify global climate system during 21st century that very likely would have larger impacts than those observed during 20th century. At present, Global Climate Models (GCMs are only the most reliable tools available for studying behaviour of the climate system. This paper presents a comprehensive review of GCMs including their development and applications in climate change impacts studies. Following a discussion of the limitations of GCMs at regional and local scales, different approaches of downscaling are discussed in detail.

  18. Impacts of Changing Climate, Hydrology and Land Use on the Stormwater Runoff of Urbanizing Central Florida

    Science.gov (United States)

    Huq, E.; Abdul-Aziz, O. I.

    2017-12-01

    We computed the historical and future storm runoff scenarios for the Shingle Creek Basin, including the growing urban centers of central Florida (e.g., City of Orlando). Storm Water Management Model (SWMM 5.1) of US EPA was used to develop a mechanistic hydrologic model for the basin by incorporating components of urban hydrology, hydroclimatological variables, and land use/cover features. The model was calibrated and validated with historical streamflow of 2004-2013 near the outlet of the Shingle Creek. The calibrated model was used to compute the sensitivities of stormwater budget to reference changes in hydroclimatological variables (rainfall and evapotranspiration) and land use/cover features (imperviousness, roughness). Basin stormwater budgets for the historical (2010s = 2004-2013) and future periods (2050s = 2030-2059; 2080s = 2070-2099) were also computed based on downscaled climatic projections of 20 GCMs-RCMs representing the coupled model intercomparison project (CMIP5), and anticipated changes in land use/cover. The sensitivity analyses indicated the dominant drivers of urban runoff in the basin. Comparative assessment of the historical and future stormwater runoff scenarios helped to locate basin areas that would be at a higher risk of future stormwater flooding. Importance of the study lies in providing valuable guidelines for managing stormwater flooding in central Florida and similar growing urban centers around the world.

  19. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    Science.gov (United States)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  20. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

    International Nuclear Information System (INIS)

    Govindasamy, B.; Thompson, S.; Mirin, A.; Wickett, M.; Caldeira, K.; Delire, C.

    2005-01-01

    Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO 2 content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO 2 emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO 2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO 2 content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K

  1. Characterization And State-Of-The-Art Modeling Of Extreme Precipitation Events Over Africa During The Historical Period

    Science.gov (United States)

    Gibba, P.; Sylla, M. B.

    2015-12-01

    The ability of the state-of-the-art climate models to reproduce the mean spatial characteristics of extreme precipitation indices over Africa is evaluated. The ensembles of eight precipitation-based indices as defined by ETCCDI were extracted from seventeen CMIP5 GCMs and twelve CORDEX RCMs simulations based on absolute and percentile (95th) thresholds and computed from the 1975 to 2004 historical period. Daily precipitation indices calculated from GPCP and TRMM satellite-derived observation datasets during the period 1997 to 2012 and 1998 to 2011 respectively were also employed in this study for model validation. Results of spatial representation of the frequency of extreme precipitation events (R1mm, CDD, CWD and R95p) highlight a generally good consistency between the two observations. Equally, in the regional analysis some similarities exist in their median and interquartile (25th and 75th percentile) spread especially for CDD, CWD and R95p for most regions. In the associated intensities (SDII, RX5day, R95 and R95ptot), results indicate large spatial differences between the two observational datasets, with finer resolution TRMM generating higher rainfall intensities than the coarser resolution GPCP. TRMM has also demonstrated higher median and interquartile range as compared to GPCP. The CORDEX RCMs and CMIP5 GCMs simulations have estimated more number of extreme precipitation events, while underestimated the intensities. The differences between the models and observations can be as large as the typical model interquartile spread of the ensembles for some indices (R1mm, CWD, SDII and R95) in some regions. Meanwhile, CORDEX estimations are generally closer to the observations than CMIP5 in reproducing the frequency of extreme rainfall indices. For the estimation of rainfall intensities, CORDEX simulations are in most cases more consistence with TRMM observations whilst the CMIP5 GCMs simulations are closer to GPCP observations.

  2. Agricultural climate impacts assessment for economic modeling and decision support

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  3. Low fidelity of CORDEX and their driving experiments indicates future climatic uncertainty over Himalayan watersheds of Indus basin

    Science.gov (United States)

    Hasson, Shabeh ul; Böhner, Jürgen; Chishtie, Farrukh

    2018-03-01

    whereas the CMIP5 projected warming is less robust owing to higher historical period uncertainty. Interestingly, a better agreement among those CX-SA experiments that have been obtained through downscaling different CMIP5 experiments with the same regional climate model (RCM) indicates the RCMs' ability of modulating the influence of lateral boundary conditions over a large domain. These findings, instead of suggesting the usual skill-based identification of 'reasonable' global or regional low fidelity experiments, rather emphasize on a paradigm shift towards improving their fidelity by exploiting the potential of meso-to-local scale climate models—preferably of those that can solely resolve global-to-local scale climatic processes—in terms of microphysics, resolution and explicitly resolved convections. Additionally, an extensive monitoring of the nival regime within the Himalayan watersheds will reduce the observational uncertainty, allowing for a more robust fidelity assessment of the climate modeling experiments.

  4. Modelling extreme climatic events in Guadalquivir Estuary ( Spain)

    Science.gov (United States)

    Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo

    2017-04-01

    Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.

  5. [Lake eutrophication modeling in considering climatic factors change: a review].

    Science.gov (United States)

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  6. Evaluating the performance and utility of regional climate models

    DEFF Research Database (Denmark)

    Christensen, Jens H.; Carter, Timothy R.; Rummukainen, Markku

    2007-01-01

    This special issue of Climatic Change contains a series of research articles documenting co-ordinated work carried out within a 3-year European Union project 'Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects' (PRUDENCE). The main objective...... of the PRUDENCE project was to provide high resolution climate change scenarios for Europe at the end of the twenty-first century by means of dynamical downscaling (regional climate modelling) of global climate simulations. The first part of the issue comprises seven overarching PRUDENCE papers on: (1) the design...... of the model simulations and analyses of climate model performance, (2 and 3) evaluation and intercomparison of simulated climate changes, (4 and 5) specialised analyses of impacts on water resources and on other sectors including agriculture, ecosystems, energy, and transport, (6) investigation of extreme...

  7. A review on regional convection permitting climate modeling

    Science.gov (United States)

    van Lipzig, Nicole; Prein, Andreas; Brisson, Erwan; Van Weverberg, Kwinten; Demuzere, Matthias; Saeed, Sajjad; Stengel, Martin

    2016-04-01

    With the increase of computational resources, it has recently become possible to perform climate model integrations where at least part the of convection is resolved. Since convection-permitting models (CPMs) are performing better than models where convection is parameterized, especially for high-impact weather like extreme precipitation, there is currently strong scientific progress in this research domain (Prein et al., 2015). Another advantage of CPMs, that have a horizontal grid spacing climate model COSMO-CLM is frequently applied for CPM simulations, due to its non-hydrostatic dynamics and open international network of scientists. This presentation consists of an overview of the recent progress in CPM, with a focus on COSMO-CLM. It consists of three parts, namely the discussion of i) critical components of CPM, ii) the added value of CPM in the present-day climate and iii) the difference in climate sensitivity in CPM compared to coarser scale models. In terms of added value, the CPMs especially improve the representation of precipitation's, diurnal cycle, intensity and spatial distribution. However, an in depth-evaluation of cloud properties with CCLM over Belgium indicates a strong underestimation of the cloud fraction, causing an overestimation of high temperature extremes (Brisson et al., 2016). In terms of climate sensitivity, the CPMs indicate a stronger increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains compared to coarser scale models. In conclusion, CPMs are a very promising tool for future climate research. However, additional efforts are necessary to overcome remaining deficiencies, like improving the cloud characteristics. This will be a challenging task due to compensating deficiencies that currently exist in `state-of-the-art' models, yielding a good representation of average climate conditions. In the light of using CPMs to study climate change it is necessary that these deficiencies

  8. Reconstructing the climate states of the Late Pleistocene with the MIROC climate model

    Science.gov (United States)

    Chan, Wing-Le; Abe-Ouchi, Ayako; O'ishi, Ryouta; Takahashi, Kunio

    2014-05-01

    The Late Pleistocene was a period which lasted from the Eemian interglacial period to the start of the warm Holocene and was characterized mostly by widespread glacial ice. It was also a period which saw modern humans spread throughout the world and other species of the same genus, like the Neanderthals, become extinct. Various hypotheses have been put forward to explain the extinction of Neanderthals, about 30,000 years ago. Among these is one which involves changes in past climate and the inability of Neanderthals to adapt to such changes. The last traces of Neanderthals coincide with the end of Marine Isotope Stage 3 (MIS3) which was marked by large fluctuations in temperature and so-called Heinrich events, as suggested by geochemical records from ice cores. It is thought that melting sea ice or icebergs originating from the Laurentide ice sheet led to a large discharge of freshwater into the North Atlantic Ocean during the Heinrich events and severely weakened the Atlantic meridional overturning circulation, with important environmental ramifications across parts of Europe such as sharp decreases in temperature and reduction in forest cover. In order to assess the effects of past climate change on past hominin migration and on the extinction of certain species, it is first important to have a good understanding of the past climate itself. In this study, we have used three variants of MIROC (The Model for Interdisciplinary Research on Climate), a global climate model, for a time slice experiment within the Late Pleistocene: two mid-resolution models (an atmosphere model and a coupled atmosphere-ocean model) and a high-resolution atmosphere model. To obtain a fuller picture, we also look at a cool stadial state as obtained from a 'freshwater hosing' coupled-model experiment, designed to mimic the effects of freshwater discharge in the North Atlantic. We next use the sea surface temperature response from this experiment to drive the atmosphere models. We discuss

  9. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  10. Practice and philosophy of climate model tuning across six US modeling centers

    Directory of Open Access Journals (Sweden)

    G. A. Schmidt

    2017-09-01

    Full Text Available Model calibration (or tuning is a necessary part of developing and testing coupled ocean–atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major US climate modeling centers. While details differ among groups in terms of scientific missions, tuning targets, and tunable parameters, there is a core commonality of approaches. However, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present-day radiative imbalance vs. the implied balance in the preindustrial era as a target.

  11. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    Science.gov (United States)

    Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.; hide

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.

  12. Climate change decision-making: Model & parameter uncertainties explored

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Linville, C.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.

  13. Improved Analysis of Earth System Models and Observations using Simple Climate Models

    Science.gov (United States)

    Nadiga, B. T.; Urban, N. M.

    2016-12-01

    Earth system models (ESM) are the most comprehensive tools we have to study climate change and develop climate projections. However, the computational infrastructure required and the cost incurred in running such ESMs precludes direct use of such models in conjunction with a wide variety of tools that can further our understanding of climate. Here we are referring to tools that range from dynamical systems tools that give insight into underlying flow structure and topology to tools that come from various applied mathematical and statistical techniques and are central to quantifying stability, sensitivity, uncertainty and predictability to machine learning tools that are now being rapidly developed or improved. Our approach to facilitate the use of such models is to analyze output of ESM experiments (cf. CMIP) using a range of simpler models that consider integral balances of important quantities such as mass and/or energy in a Bayesian framework.We highlight the use of this approach in the context of the uptake of heat by the world oceans in the ongoing global warming. Indeed, since in excess of 90% of the anomalous radiative forcing due greenhouse gas emissions is sequestered in the world oceans, the nature of ocean heat uptake crucially determines the surface warming that is realized (cf. climate sensitivity). Nevertheless, ESMs themselves are never run long enough to directly assess climate sensitivity. So, we consider a range of models based on integral balances--balances that have to be realized in all first-principles based models of the climate system including the most detailed state-of-the art climate simulations. The models range from simple models of energy balance to those that consider dynamically important ocean processes such as the conveyor-belt circulation (Meridional Overturning Circulation, MOC), North Atlantic Deep Water (NADW) formation, Antarctic Circumpolar Current (ACC) and eddy mixing. Results from Bayesian analysis of such models using

  14. A Practical Philosophy of Complex Climate Modelling

    Science.gov (United States)

    Schmidt, Gavin A.; Sherwood, Steven

    2014-01-01

    We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP).We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work.

  15. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    Science.gov (United States)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  16. Effect of model resolution on a regional climate model simulation over southeast Australia

    KAUST Repository

    Evans, J. P.; McCabe, Matthew

    2013-01-01

    Dynamically downscaling climate projections from global climate models (GCMs) for use in impacts and adaptation research has become a common practice in recent years. In this study, the CSIRO Mk3.5 GCM is downscaled using the Weather Research and Forecasting (WRF) regional climate model (RCM) to medium (50 km) and high (10 km) resolution over southeast Australia. The influence of model resolution on the present-day (1985 to 2009) modelled regional climate and projected future (2075 to 2099) changes are examined for both mean climate and extreme precipitation characteristics. Increasing model resolution tended to improve the simulation of present day climate, with larger improvements in areas affected by mountains and coastlines. Examination of circumstances under which increasing the resolution decreased performance revealed an error in the GCM circulation, the effects of which had been masked by the coarse GCM topography. Resolution modifications to projected changes were largest in regions with strong topographic and coastline influences, and can be large enough to change the sign of the climate change projected by the GCM. Known physical mechanisms for these changes included orographic uplift and low-level blocking of air-masses caused by mountains. In terms of precipitation extremes, the GCM projects increases in extremes even when the projected change in the mean was a decrease: but this was not always true for the higher resolution models. Thus, while the higher resolution RCM climate projections often concur with the GCM projections, there are times and places where they differ significantly due to their better representation of physical processes. It should also be noted that the model resolution can modify precipitation characteristics beyond just its mean value.

  17. Effect of model resolution on a regional climate model simulation over southeast Australia

    KAUST Repository

    Evans, J. P.

    2013-03-26

    Dynamically downscaling climate projections from global climate models (GCMs) for use in impacts and adaptation research has become a common practice in recent years. In this study, the CSIRO Mk3.5 GCM is downscaled using the Weather Research and Forecasting (WRF) regional climate model (RCM) to medium (50 km) and high (10 km) resolution over southeast Australia. The influence of model resolution on the present-day (1985 to 2009) modelled regional climate and projected future (2075 to 2099) changes are examined for both mean climate and extreme precipitation characteristics. Increasing model resolution tended to improve the simulation of present day climate, with larger improvements in areas affected by mountains and coastlines. Examination of circumstances under which increasing the resolution decreased performance revealed an error in the GCM circulation, the effects of which had been masked by the coarse GCM topography. Resolution modifications to projected changes were largest in regions with strong topographic and coastline influences, and can be large enough to change the sign of the climate change projected by the GCM. Known physical mechanisms for these changes included orographic uplift and low-level blocking of air-masses caused by mountains. In terms of precipitation extremes, the GCM projects increases in extremes even when the projected change in the mean was a decrease: but this was not always true for the higher resolution models. Thus, while the higher resolution RCM climate projections often concur with the GCM projections, there are times and places where they differ significantly due to their better representation of physical processes. It should also be noted that the model resolution can modify precipitation characteristics beyond just its mean value.

  18. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G.; Gavin, J. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Geological Observatory

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  19. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected...... global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  20. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    Science.gov (United States)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  1. Terrestrial biogeochemistry in the community climate system model (CCSM)

    International Nuclear Information System (INIS)

    Hoffman, Forrest; Fung, Inez; Randerson, Jim; Thornton, Peter; Foley, Jon; Covey, Curtis; John, Jasmin; Levis, Samuel; Post, W Mac; Vertenstein, Mariana; Stoeckli, Reto; Running, Steve; Heinsch, Faith Ann; Erickson, David; Drake, John

    2006-01-01

    Described here is the formulation of the CASA ' biogeochemistry model of Fung, et al., which has recently been coupled to the Community Land Model Version 3 (CLM3) and the Community Climate System Model Version 3 (CCSM3). This model is presently being used for Coupled Climate/Carbon Cycle Model Intercomparison Project (C 4 MIP) Phase 1 experiments. In addition, CASA ' is one of three models - in addition to CN (Thornton, et al.) and IBIS (Thompson, et al.) - that are being run within CCSM to investigate their suitability for use in climate change predictions in a future version of CCSM. All of these biogeochemistry experiments are being performed on the Computational Climate Science End Station (Dr. Warren Washington, Principle Investigator) at the National Center for Computational Sciences at Oak Ridge National Laboratory

  2. The Urgent Need for Improved Climate Models and Predictions

    Science.gov (United States)

    Goddard, Lisa; Baethgen, Walter; Kirtman, Ben; Meehl, Gerald

    2009-09-01

    An investment over the next 10 years of the order of US$2 billion for developing improved climate models was recommended in a report (http://wcrp.wmo.int/documents/WCRP_WorldModellingSummit_Jan2009.pdf) from the May 2008 World Modelling Summit for Climate Prediction, held in Reading, United Kingdom, and presented by the World Climate Research Programme. The report indicated that “climate models will, as in the past, play an important, and perhaps central, role in guiding the trillion dollar decisions that the peoples, governments and industries of the world will be making to cope with the consequences of changing climate.” If trillions of dollars are going to be invested in making decisions related to climate impacts, an investment of $2 billion, which is less than 0.1% of that amount, to provide better climate information seems prudent. One example of investment in adaptation is the World Bank's Climate Investment Fund, which has drawn contributions of more than $6 billion for work on clean technologies and adaptation efforts in nine pilot countries and two pilot regions. This is just the beginning of expenditures on adaptation efforts by the World Bank and other mechanisms, focusing on only a small fraction of the nations of the world and primarily aimed at anticipated anthropogenic climate change. Moreover, decisions are being made now, all around the world—by individuals, companies, and governments—that affect people and their livelihoods today, not just 50 or more years in the future. Climate risk management, whether related to projects of the scope of the World Bank's or to the planning and decisions of municipalities, will be best guided by meaningful climate information derived from observations of the past and model predictions of the future.

  3. Simulated pre-industrial climate in Bergen Climate Model (version 2: model description and large-scale circulation features

    Directory of Open Access Journals (Sweden)

    O. H. Otterå

    2009-11-01

    Full Text Available The Bergen Climate Model (BCM is a fully-coupled atmosphere-ocean-sea-ice model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate. Here, a pre-industrial multi-century simulation with an updated version of BCM is described and compared to observational data. The model is run without any form of flux adjustments and is stable for several centuries. The simulated climate reproduces the general large-scale circulation in the atmosphere reasonably well, except for a positive bias in the high latitude sea level pressure distribution. Also, by introducing an updated turbulence scheme in the atmosphere model a persistent cold bias has been eliminated. For the ocean part, the model drifts in sea surface temperatures and salinities are considerably reduced compared to earlier versions of BCM. Improved conservation properties in the ocean model have contributed to this. Furthermore, by choosing a reference pressure at 2000 m and including thermobaric effects in the ocean model, a more realistic meridional overturning circulation is simulated in the Atlantic Ocean. The simulated sea-ice extent in the Northern Hemisphere is in general agreement with observational data except for summer where the extent is somewhat underestimated. In the Southern Hemisphere, large negative biases are found in the simulated sea-ice extent. This is partly related to problems with the mixed layer parametrization, causing the mixed layer in the Southern Ocean to be too deep, which in turn makes it hard to maintain a realistic sea-ice cover here. However, despite some problematic issues, the pre-industrial control simulation presented here should still be appropriate for climate change studies requiring multi-century simulations.

  4. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability

    Science.gov (United States)

    Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.

    2018-04-01

    This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse 1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to 0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent

  5. Very high resolution regional climate simulations on the 4 km scale as a basis for carbon balance assessments in northeast European Russia

    Science.gov (United States)

    Stendel, Martin; Hesselbjerg Christensen, Jens; Adalgeirsdottir, Gudfinna; Rinke, Annette; Matthes, Heidrun; Marchenko, Sergej; Daanen, Ronald; Romanovsky, Vladimir

    2010-05-01

    Simulations with global circulation models (GCMs) clearly indicate that major climate changes in polar regions can be expected during the 21st century. Model studies have shown that the area of the Northern Hemisphere underlain by permafrost could be reduced substantially in a warmer climate. However, thawing of permafrost, in particular if it is ice-rich, is subject to a time lag due to the large latent heat of fusion. State-of-the-art GCMs are unable to adequately model these processes because (a) even the most advanced subsurface schemes rarely treat depths below 5 m explicitly, and (b) soil thawing and freezing processes cannot be dealt with directly due to the coarse resolution of present GCMs. Any attempt to model subsurface processes needs information about soil properties, vegetation and snow cover, which are hardly realistic on a typical GCM grid. Furthermore, simulated GCM precipitation is often underestimated and the proportion of rain and snow is incorrect. One possibility to overcome resolution-related problems is to use regional climate models (RCMs). Such an RCM, HIRHAM, has until now been the only one used for the entire circumpolar domain, and its most recent version, HIRHAM5, has also been used in the high resolution study described here. Instead of the traditional approach via a degree-day based frost index from observations or model data, we use the regional model to create boundary conditions for an advanced permafrost model. This approach offers the advantage that the permafrost model can be run on the grid of the regional model, i.e. in a considerably higher resolution than in previous approaches. We here present results from a new time-slice integration with an unprecedented horizontal resolution of only 4 km, covering northeast European Russia. This model simulation has served as basis for an assessment of the carbon balance for a region in northeast European Russia within the EU-funded Carbo-North project.

  6. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  7. Islands Climatology at Local Scale. Downscaling with CIELO model

    Science.gov (United States)

    Azevedo, Eduardo; Reis, Francisco; Tomé, Ricardo; Rodrigues, Conceição

    2016-04-01

    Islands with horizontal scales of the order of tens of km, as is the case of the Atlantic Islands of Macaronesia, are subscale orographic features for Global Climate Models (GCMs) since the horizontal scales of these models are too coarse to give a detailed representation of the islands' topography. Even the Regional Climate Models (RCMs) reveals limitations when they are forced to reproduce the climate of small islands mainly by the way they flat and lowers the elevation of the islands, reducing the capacity of the model to reproduce important local mechanisms that lead to a very deep local climate differentiation. Important local thermodynamics mechanisms like Foehn effect, or the influence of topography on radiation balance, have a prominent role in the climatic spatial differentiation. Advective transport of air - and the consequent induced adiabatic cooling due to orography - lead to transformations of the state parameters of the air that leads to the spatial configuration of the fields of pressure, temperature and humidity. The same mechanism is in the origin of the orographic clouds cover that, besides the direct role as water source by the reinforcement of precipitation, act like a filter to direct solar radiation and as a source of long-wave radiation that affect the local balance of energy. Also, the saturation (or near saturation) conditions that they provide constitute a barrier to water vapour diffusion in the mechanisms of evapotranspiration. Topographic factors like slope, aspect and orographic mask have also significant importance in the local energy balance. Therefore, the simulation of the local scale climate (past, present and future) in these archipelagos requires the use of downscaling techniques to adjust locally outputs obtained at upper scales. This presentation will discuss and analyse the evolution of the CIELO model (acronym for Clima Insular à Escala LOcal) a statistical/dynamical technique developed at the University of the Azores

  8. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  9. Integrated climate and hydrology modelling - Coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Larsen, M.A. [Technical Univ. of Denmark. DTU Management Engineering, DTU Risoe Campus, Roskilde (Denmark)

    2013-10-15

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model (LSM), which is superior to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and precipitation between the two models are included. The preparation of the HIRHAM and MIKE SHE models for the coupled study revealed several findings. The performance of HIRHAM was highly affected by the domain size, domain

  10. Stress testing hydrologic models using bottom-up climate change assessment

    Science.gov (United States)

    Stephens, C.; Johnson, F.; Marshall, L. A.

    2017-12-01

    Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.

  11. Terrestrial biogeochemistry in the community climate system model (CCSM)

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forrest [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States); Fung, Inez [University of California at Berkeley, Berkeley, California (United States); Randerson, Jim [University of California at Irvine, Irvine, California (United States); Thornton, Peter [National Center for Atmospheric Research, Boulder, Colorado (United States); Foley, Jon [University of Wisconsin at Madison, Madison, Wisconsin (United States); Covey, Curtis [Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California (United States); John, Jasmin [University of California at Berkeley, Berkeley, California (United States); Levis, Samuel [National Center for Atmospheric Research, Boulder, Colorado (United States); Post, W Mac [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States); Vertenstein, Mariana [National Center for Atmospheric Research, Boulder, Colorado (United States); Stoeckli, Reto [Colorado State University, Ft. Collins, Colorado (United States); Running, Steve [University of Montana, Missoula, Montana (United States); Heinsch, Faith Ann [University of Montana, Missoula, Montana (United States); Erickson, David [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States); Drake, John [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States)

    2006-09-15

    Described here is the formulation of the CASA{sup '} biogeochemistry model of Fung, et al., which has recently been coupled to the Community Land Model Version 3 (CLM3) and the Community Climate System Model Version 3 (CCSM3). This model is presently being used for Coupled Climate/Carbon Cycle Model Intercomparison Project (C{sup 4}MIP) Phase 1 experiments. In addition, CASA{sup '} is one of three models - in addition to CN (Thornton, et al.) and IBIS (Thompson, et al.) - that are being run within CCSM to investigate their suitability for use in climate change predictions in a future version of CCSM. All of these biogeochemistry experiments are being performed on the Computational Climate Science End Station (Dr. Warren Washington, Principle Investigator) at the National Center for Computational Sciences at Oak Ridge National Laboratory.

  12. Improving poverty and inequality modelling in climate research

    Science.gov (United States)

    Rao, Narasimha D.; van Ruijven, Bas J.; Riahi, Keywan; Bosetti, Valentina

    2017-12-01

    As climate change progresses, the risk of adverse impacts on vulnerable populations is growing. As governments seek increased and drastic action, policymakers are likely to seek quantification of climate-change impacts and the consequences of mitigation policies on these populations. Current models used in climate research have a limited ability to represent the poor and vulnerable, or the different dimensions along which they face these risks. Best practices need to be adopted more widely, and new model features that incorporate social heterogeneity and different policy mechanisms need to be developed. Increased collaboration between modellers, economists, and other social scientists could aid these developments.

  13. The Software Architecture of Global Climate Models

    Science.gov (United States)

    Alexander, K. A.; Easterbrook, S. M.

    2011-12-01

    It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.

  14. Modeling maize response to climate modification in Hungary

    OpenAIRE

    Angela Anda

    2006-01-01

    Modeling provides a tool for a better understanding of the modified plant behaviour that results from various climatic differences. The present study provides new information about the physiological processes in maize (Zea mays L.) in response to climatic changes. The aim was to help local farmers adapt to climate modifications in Hungary and mitigate the future consequences of these changes. A simulation model was applied to estimate the possible feedback on crop properties and elevated CO2....

  15. A probabilistic model of ecosystem response to climate change

    International Nuclear Information System (INIS)

    Shevliakova, E.; Dowlatabadi, H.

    1994-01-01

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold

  16. Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe

    Czech Academy of Sciences Publication Activity Database

    Lhotka, Ondřej; Kyselý, Jan; Plavcová, Eva

    2018-01-01

    Roč. 50, 11-12 (2018), s. 4249-4262 ISSN 0930-7575 R&D Projects: GA ČR(CZ) GA16-22000S Institutional support: RVO:68378289 Keywords : heat waves * regional climate models * CORDEX * atmospheric circulation * land–atmosphere interactions * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.146, year: 2016 https://link.springer.com/article/10. 1007 /s00382-017-3873-9

  17. Oscillations in a simple climate-vegetation model

    Science.gov (United States)

    Rombouts, J.; Ghil, M.

    2015-05-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  18. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  19. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  20. Regionalization of climate model results for the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Kauker, F.

    1999-07-01

    A dynamical downscaling is presented that allows an estimation of potential effects of climate change on the North Sea. Therefore, the ocean general circulation model OPYC is adapted for application on a shelf by adding a lateral boundary formulation and a tide model. In this set-up the model is forced, first, with data from the ECMWF reanalysis for model validation and the study of the natural variability, and, second, with data from climate change experiments to estimate the effects of climate change on the North Sea. (orig.)

  1. Towards a regional climate model coupled to a comprehensive hydrological model

    Science.gov (United States)

    Rasmussen, S. H.; Drews, M.; Christensen, J. H.; Butts, M. B.; Jensen, K. H.; Refsgaard, J.; Hydrological ModellingAssessing Climate Change Impacts At Different Scales (Hyacints)

    2010-12-01

    When planing new ground water abstractions wells, building areas, roads or other land use activities information about expected future groundwater table location for the lifetime of the construction may be critical. The life time of an abstraction well can be expected to be more than 50 years, while if for buildings may be up to 100 years or more. The construction of an abstraction well is expensive and it is important to know if clean groundwater is available for its expected life time. The future groundwater table is depending on the future climate. With climate change the hydrology is expected to change as well. Traditionally, this assessment has been done by driving hydrological models with output from a climate model. In this way feedback between the groundwater hydrology and the climate is neglected. Neglecting this feedback can lead to imprecise or wrong results. The goal of this work is to couple the regional climate model HIRHAM (Christensen et al. 2006) to the hydrological model MIKE SHE (Graham and Butts, 2006). The coupling exploits the new OpenMI technology that provides a standardized interface to define, describe and transfer data on a time step basis between software components that run simultaneously (Gregersen et al., 2007). HIRHAM runs on a UNIX platform whereas MIKE SHE and OpenMI are under WINDOWS. Therefore the first critical task has been to develop an effective communication link between the platforms. The first step towards assessing the coupled models performance are addressed by looking at simulated land-surface atmosphere feedback through variables such as evapotranspiration, sensible heat flux and soil moisture content. Christensen, O.B., Drews, M., Christensen, J.H., Dethloff, K., Ketelsen, K., Hebestadt, I. and Rinke, A. (2006) The HIRHAM Regional Climate Model. Version 5; DMI Scientific Report 0617. Danish Meteorological Institute. Graham, D.N. and Butts, M.B. (2005) Flexible, integrated watershed modelling with MIKE SHE, In

  2. A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus).

    Science.gov (United States)

    Shabani, Farzin; Shafapour Tehrany, Mahyat; Solhjouy-Fard, Samaneh; Kumar, Lalit

    2018-01-01

    Aedes albopictus , the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus ? Our study used current Ae. albopictus distribution data to develop two independent models: (i) regions with suitable non-climatic factors, and (ii) regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF), together with six geographical conditioning factors (raster data layers), to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC) using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs), Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically, according

  3. A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    2018-03-01

    Full Text Available Aedes albopictus, the Asian Tiger Mosquito, vector of Chikungunya, Dengue Fever and Zika viruses, has proven its hardy adaptability in expansion from its natural Asian, forest edge, tree hole habitat on the back of international trade transportation, re-establishing in temperate urban surrounds, in a range of water receptacles and semi-enclosures of organic matter. Conventional aerial spray mosquito vector controls focus on wetland and stagnant water expanses, proven to miss the protected hollows and crevices favoured by Ae. albopictus. New control or eradication strategies are thus essential, particular in light of potential expansions in the southeastern and eastern USA. Successful regional vector control strategies require risk level analysis. Should strategies prioritize regions with non-climatic or climatic suitability parameters for Ae. albopictus? Our study used current Ae. albopictus distribution data to develop two independent models: (i regions with suitable non-climatic factors, and (ii regions with suitable climate for Ae. albopictus in southeastern USA. Non-climatic model processing used Evidential Belief Function (EBF, together with six geographical conditioning factors (raster data layers, to establish the probability index. Validation of the analysis results was estimated with area under the curve (AUC using Ae. albopictus presence data. Climatic modeling was based on two General Circulation Models (GCMs, Miroc3.2 and CSIRO-MK30 running the RCP 8.5 scenario in MaxEnt software. EBF non-climatic model results achieved a 0.70 prediction rate and 0.73 success rate, confirming suitability of the study site regions for Ae. albopictus establishment. The climatic model results showed the best-fit model comprised Coldest Quarter Mean Temp, Precipitation of Wettest Quarter and Driest Quarter Precipitation factors with mean AUC value of 0.86. Both GCMs showed that the whole study site is highly suitable and will remain suitable climatically

  4. Impacts of climate change on heat-related mortality risk across the Middle East and North Africa (MENA)

    Science.gov (United States)

    Moradkhani, H.; Ahmadalipour, A.

    2017-12-01

    It has been reported that even if the global mean temperature increase is limited to 2°C, warming over land will be far beyond that in many regions. Global climate change will increase the frequency and intensity of heatwaves and extreme high temperatures, which will in turn have severe impacts on human life. In this study, the mortality risk caused by excessive heat stress is investigated. Daily maximum air temperature and relative humidity are acquired from 17 CMIP5 Regional Climate Models (RCMs) developed by CORDEX at 0.44 degree spatial resolution. Then, the daily wet-bulb temperature is calculated and a recently developed health risk model is implemented to quantify the mortality risk. The study is applied over the latitudes 6.6°S-42°N and longitudes 20°W-60°E covering parts of 70 countries and accommodating over 600 million inhabitants. The analysis is performed for the historical period of 1951-2005 as well as two future scenarios of RCP4.5 (moderate) and RCP8.5 (business as usual) during 2006-2100. Results indicate about 5 to 30 times higher mortality risk in distant future compared to the historical period. The most aggravation of mortality risk over land is found at the southwestern regions of MENA, due to substantial increase in frequency and intensity of extreme temperatures. Mortality risk is found to be much higher over open waters and coastal regions due to abundant humidity, especially in the coastal regions of the Red sea and Persian Gulf.

  5. Production functions for climate policy modeling. An empirical analysis

    International Nuclear Information System (INIS)

    Van der Werf, Edwin

    2008-01-01

    Quantitative models for climate policy modeling differ in the production structure used and in the sizes of the elasticities of substitution. The empirical foundation for both is generally lacking. This paper estimates the parameters of 2-level CES production functions with capital, labour and energy as inputs, and is the first to systematically compare all nesting structures. Using industry-level data from 12 OECD countries, we find that the nesting structure where capital and labour are combined first, fits the data best, but for most countries and industries we cannot reject that all three inputs can be put into one single nest. These two nesting structures are used by most climate models. However, while several climate policy models use a Cobb-Douglas function for (part of the) production function, we reject elasticities equal to one, in favour of considerably smaller values. Finally we find evidence for factor-specific technological change. With lower elasticities and with factor-specific technological change, some climate policy models may find a bigger effect of endogenous technological change on mitigating the costs of climate policy. (author)

  6. On the appropriate definition of soil profile configuration and initial conditions for land surface–hydrology models in cold regions

    Directory of Open Access Journals (Sweden)

    G. Sapriza-Azuri

    2018-06-01

    Full Text Available Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs that represent the lower boundary condition of general circulation models (GCMs and regional climate models (RCMs, which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme, as embedded in the MESH (Modélisation Environmentale Communautaire – Surface and Hydrology modelling system, to (1 characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2 assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3 develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to

  7. Climate models with delay differential equations.

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  8. Climate models with delay differential equations

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M.

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  9. Computer experiments with a coarse-grid hydrodynamic climate model

    International Nuclear Information System (INIS)

    Stenchikov, G.L.

    1990-01-01

    A climate model is developed on the basis of the two-level Mintz-Arakawa general circulation model of the atmosphere and a bulk model of the upper layer of the ocean. A detailed model of the spectral transport of shortwave and longwave radiation is used to investigate the radiative effects of greenhouse gases. The radiative fluxes are calculated at the boundaries of five layers, each with a pressure thickness of about 200 mb. The results of the climate sensitivity calculations for mean-annual and perpetual seasonal regimes are discussed. The CCAS (Computer Center of the Academy of Sciences) climate model is used to investigate the climatic effects of anthropogenic changes of the optical properties of the atmosphere due to increasing CO 2 content and aerosol pollution, and to calculate the sensitivity to changes of land surface albedo and humidity

  10. Current climate and climate change over India as simulated by the Canadian Regional Climate Model

    Science.gov (United States)

    Alexandru, Adelina; Sushama, Laxmi

    2015-08-01

    The performance of the fifth generation of the Canadian Regional Climate Model (CRCM5) in reproducing the main climatic characteristics over India during the southwest (SW)-, post- and pre-monsoon seasons are presented in this article. To assess the performance of CRCM5, European Centre for Medium- Range Weather Forecasts (ECMWF) Re- Analysis (ERA- 40) and Interim re-analysis (ERA-Interim) driven CRCM5 simulation is compared against independent observations and reanalysis data for the 1971-2000 period. Projected changes for two future periods, 2041-2070 and 2071-2100, with respect to the 1971-2000 current period are assessed based on two transient climate change simulations of CRCM5 spanning the 1950-2100 period. These two simulations are driven by the Canadian Earth System Model version 2 (CanESM2) and the Max Planck Institute for Meteorology's Earth System Low Resolution Model (MPI-ESM-LR), respectively. The boundary forcing errors associated with errors in the driving global climate models are also studied by comparing the 1971-2000 period of the CanESM2 and MPI-ESM-LR driven simulations with that of the CRCM5 simulation driven by ERA-40/ERA-Interim. Results show that CRCM5 driven by ERA-40/ERA-Interim is in general able to capture well the temporal and spatial patterns of 2 m-temperature, precipitation, wind, sea level pressure, total runoff and soil moisture over India in comparison with available reanalysis and observations. However, some noticeable differences between the model and observational data were found during the SW-monsoon season within the domain of integration. CRCM5 driven by ERA-40/ERA-Interim is 1-2 °C colder than CRU observations and generates more precipitation over the Western Ghats and central regions of India, and not enough in the northern and north-eastern parts of India and along the Konkan west coast in comparison with the observed precipitation. The monsoon onset seems to be relatively well captured over the southwestern coast of

  11. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036, Rende (CS) (Italy); Vecchio, Antonio, E-mail: tommaso.alberti@unical.it, E-mail: tommasoalberti89@gmail.com [LESIA—Observatoire de Paris, PSL Research University, 5 place Jules Janssen, F-92190, Meudon (France)

    2017-07-20

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  12. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    International Nuclear Information System (INIS)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio; Vecchio, Antonio

    2017-01-01

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  13. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    Science.gov (United States)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  14. An assessment of global climate model-simulated climate for the western cordillera of Canada (1961-90)

    Science.gov (United States)

    Bonsal, Barrie R.; Prowse, Terry D.; Pietroniro, Alain

    2003-12-01

    Climate change is projected to significantly affect future hydrologic processes over many regions of the world. This is of particular importance for alpine systems that provide critical water supplies to lower-elevation regions. The western cordillera of Canada is a prime example where changes to temperature and precipitation could have profound hydro-climatic impacts not only for the cordillera itself, but also for downstream river systems and the drought-prone Canadian Prairies. At present, impact researchers primarily rely on global climate models (GCMs) for future climate projections. The main objective of this study is to assess several GCMs in their ability to simulate the magnitude and spatial variability of current (1961-90) temperature and precipitation over the western cordillera of Canada. In addition, several gridded data sets of observed climate for the study region are evaluated.Results reveal a close correspondence among the four gridded data sets of observed climate, particularly for temperature. There is, however, considerable variability regarding the various GCM simulations of this observed climate. The British, Canadian, German, Australian, and US GFDL models are superior at simulating the magnitude and spatial variability of mean temperature. The Japanese GCM is of intermediate ability, and the US NCAR model is least representative of temperature in this region. Nearly all the models substantially overestimate the magnitude of total precipitation, both annually and on a seasonal basis. An exception involves the British (Hadley) model, which best represents the observed magnitude and spatial variability of precipitation. This study improves our understanding regarding the accuracy of GCM climate simulations over the western cordillera of Canada. The findings may assist in producing more reliable future scenarios of hydro-climatic conditions over various regions of the country. Copyright

  15. Identifying misbehaving models using baseline climate variance

    Science.gov (United States)

    Schultz, Colin

    2011-06-01

    The majority of projections made using general circulation models (GCMs) are conducted to help tease out the effects on a region, or on the climate system as a whole, of changing climate dynamics. Sun et al., however, used model runs from 20 different coupled atmosphere-ocean GCMs to try to understand a different aspect of climate projections: how bias correction, model selection, and other statistical techniques might affect the estimated outcomes. As a case study, the authors focused on predicting the potential change in precipitation for the Murray-Darling Basin (MDB), a 1-million- square- kilometer area in southeastern Australia that suffered a recent decade of drought that left many wondering about the potential impacts of climate change on this important agricultural region. The authors first compared the precipitation predictions made by the models with 107 years of observations, and they then made bias corrections to adjust the model projections to have the same statistical properties as the observations. They found that while the spread of the projected values was reduced, the average precipitation projection for the end of the 21st century barely changed. Further, the authors determined that interannual variations in precipitation for the MDB could be explained by random chance, where the precipitation in a given year was independent of that in previous years.

  16. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  17. Ecological Assimilation of Land and Climate Observations - the EALCO model

    Science.gov (United States)

    Wang, S.; Zhang, Y.; Trishchenko, A.

    2004-05-01

    Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net

  18. Two case studies on NARCCAP precipitation extremes

    Science.gov (United States)

    Weller, Grant B.; Cooley, Daniel; Sain, Stephan R.; Bukovsky, Melissa S.; Mearns, Linda O.

    2013-09-01

    We introduce novel methodology to examine the ability of six regional climate models (RCMs) in the North American Regional Climate Change Assessment Program (NARCCAP) ensemble to simulate past extreme precipitation events seen in the observational record over two different regions and seasons. Our primary objective is to examine the strength of daily correspondence of extreme precipitation events between observations and the output of both the RCMs and the driving reanalysis product. To explore this correspondence, we employ methods from multivariate extreme value theory. These methods require that we account for marginal behavior, and we first model and compare climatological quantities which describe tail behavior of daily precipitation for both the observations and model output before turning attention to quantifying the correspondence of the extreme events. Daily precipitation in a West Coast region of North America is analyzed in two seasons, and it is found that the simulated extreme events from the reanalysis-driven NARCCAP models exhibit strong daily correspondence to extreme events in the observational record. Precipitation over a central region of the United States is examined, and we find some daily correspondence between winter extremes simulated by reanalysis-driven NARCCAP models and those seen in observations, but no such correspondence is found for summer extremes. Furthermore, we find greater discrepancies among the NARCCAP models in the tail characteristics of the distribution of daily summer precipitation over this region than seen in precipitation over the West Coast region. We find that the models which employ spectral nudging exhibit stronger tail dependence to observations in the central region.

  19. Simulated climate change during the last 1,000 years: comparing the ECHO-G general circulation model with the MAGICC simple climate model

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Timothy J.; Briffa, Keith R. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Raper, Sarah C.B. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Manchester Metropolitan University, Dalton Research Institute, Manchester (United Kingdom)

    2006-08-15

    An intercomparison of eight climate simulations, each driven with estimated natural and anthropogenic forcings for the last millennium, indicates that the so-called ''Erik'' simulation of the ECHO-G coupled ocean-atmosphere climate model exhibits atypical behaviour. The ECHO-G simulation has a much stronger cooling trend from 1000 to 1700 and a higher rate of warming since 1800 than the other simulations, with the result that the overall amplitude of millennial-scale temperature variations in the ECHO-G simulation is much greater than in the other models. The MAGICC (Model for the Assessment of Greenhouse-gas-Induced Climate Change) simple climate model is used to investigate possible causes of this atypical behaviour. It is shown that disequilibrium in the initial conditions probably contributes spuriously to the cooling trend in the early centuries of the simulation, and that the omission of tropospheric sulphate aerosol forcing is the likely explanation for the anomalously large recent warming. The simple climate model results are used to adjust the ECHO-G Erik simulation to mitigate these effects, which brings the simulation into better agreement with the other seven models considered here and greatly reduces the overall range of temperature variations during the last millennium simulated by ECHO-G. Smaller inter-model differences remain which can probably be explained by a combination of the particular forcing histories and model sensitivities of each experiment. These have not been investigated here, though we have diagnosed the effective climate sensitivity of ECHO-G to be 2.39{+-}0.11 K for a doubling of CO{sub 2}. (orig.)

  20. Modeling climatic effects of anthropogenic CO2 emissions: Unknowns and uncertainties

    Science.gov (United States)

    Soon, W.; Baliunas, S.; Idso, S.; Kondratyev, K. Ya.; Posmentier, E. S.

    2001-12-01

    A likelihood of disastrous global environmental consequences has been surmised as a result of projected increases in anthropogenic greenhouse gas emissions. These estimates are based on computer climate modeling, a branch of science still in its infancy despite recent, substantial strides in knowledge. Because the expected anthropogenic climate forcings are relatively small compared to other background and forcing factors (internal and external), the credibility of the modeled global and regional responses rests on the validity of the models. We focus on this important question of climate model validation. Specifically, we review common deficiencies in general circulation model calculations of atmospheric temperature, surface temperature, precipitation and their spatial and temporal variability. These deficiencies arise from complex problems associated with parameterization of multiply-interacting climate components, forcings and feedbacks, involving especially clouds and oceans. We also review examples of expected climatic impacts from anthropogenic CO2 forcing. Given the host of uncertainties and unknowns in the difficult but important task of climate modeling, the unique attribution of observed current climate change to increased atmospheric CO2 concentration, including the relatively well-observed latest 20 years, is not possible. We further conclude that the incautious use of GCMs to make future climate projections from incomplete or unknown forcing scenarios is antithetical to the intrinsically heuristic value of models. Such uncritical application of climate models has led to the commonly-held but erroneous impression that modeling has proven or substantiated the hypothesis that CO2 added to the air has caused or will cause significant global warming. An assessment of the positive skills of GCMs and their use in suggesting a discernible human influence on global climate can be found in the joint World Meteorological Organisation and United Nations

  1. Climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Palma, J.H.N.

    2017-11-01

    Aim of study: Climate data is a need for different types of modeling assessments, especially those involving process based modeling focusing on climate change impacts. However, there is a scarcity of tools delivering easy access to climate datasets to use in biological related modeling. This study aimed at the development of a tool that could provide an user-friendly interface to facilitate access to climate datasets, that are used to supply climate scenarios for the International Panel on Climate Change. Area of study: The tool provides daily datasets across Europe, and also parts of northern Africa Material and Methods: The tool uses climatic datasets generated from third party sources (IPCC related) while a web based interface was developed in JavaScript to ease the access to the datasets Main Results: The interface delivers daily (or monthly) climate data from a user-defined location in Europe for 7 climate variables: minimum and maximum temperature, precipitation, radiation, minimum and maximum relative humidity and wind speed). The time frame ranges from 1951 to 2100, providing the basis to use the data for climate change impact assessments. The tool is free and publicly available at http://www.isa.ulisboa.pt/proj/clipick/. Research Highlights: A new and easy-to-use tool is suggested that will promote the use of climate change scenarios across Europe, especially when daily time steps are needed. CliPick eases the communication between climatic and modelling communities such as agriculture and forestry.

  2. Climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture

    International Nuclear Information System (INIS)

    Palma, J.H.N.

    2017-01-01

    Aim of study: Climate data is a need for different types of modeling assessments, especially those involving process based modeling focusing on climate change impacts. However, there is a scarcity of tools delivering easy access to climate datasets to use in biological related modeling. This study aimed at the development of a tool that could provide an user-friendly interface to facilitate access to climate datasets, that are used to supply climate scenarios for the International Panel on Climate Change. Area of study: The tool provides daily datasets across Europe, and also parts of northern Africa Material and Methods: The tool uses climatic datasets generated from third party sources (IPCC related) while a web based interface was developed in JavaScript to ease the access to the datasets Main Results: The interface delivers daily (or monthly) climate data from a user-defined location in Europe for 7 climate variables: minimum and maximum temperature, precipitation, radiation, minimum and maximum relative humidity and wind speed). The time frame ranges from 1951 to 2100, providing the basis to use the data for climate change impact assessments. The tool is free and publicly available at http://www.isa.ulisboa.pt/proj/clipick/. Research Highlights: A new and easy-to-use tool is suggested that will promote the use of climate change scenarios across Europe, especially when daily time steps are needed. CliPick eases the communication between climatic and modelling communities such as agriculture and forestry.

  3. Modeling of climate change impacts on agriculture, forestry and fishery

    International Nuclear Information System (INIS)

    Bala, B.K.; Munnaf, M.A.

    2014-01-01

    Changes in climate affect agriculture, forest and fisheries. This paper examines the climate change impact on crop production, fishery and forestry using state - of - the - art modeling technique. Crop growth model InfoCrop was used to predict the climate change impacts on the yields of rice, wheat and maize in Bangladesh. Historical climate change scenario has little or no negative impacts on rice and wheat yields in Mymensingh and Dinajpur but IPCC climate change scenario has higher negative impacts. There is almost no change in the yields of maize for the historical climate change scenario in the Chittagong, Hill Tracts of but there is a small decrease in the yields of rice and maize for IPCC climate change scenario. A new statistical model to forecast climate change impacts on fishery in the world oceans has been developed. Total climate change impact on fishery in the Indian Ocean is negative and the predictor power is 94.14% for eastern part and 98.59% for the western part. Two models are presented for the mangrove forests of the Sundarbans. To bole volumes of the pioneer, intermediate and climax are simulated for three different logging strategies and the results have been discussed in this paper. (author)

  4. Tropical-extratropical climate interaction as revealed in idealized coupled climate model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haijun [Peking University, Department of Atmospheric Science and Laboratory for Severe Storm and Flood Disasters, School of Physics, Beijing (China); Liu, Zhengyu [University of Wisconsin-Madison, Center for Climatic Research and Department of the Atmospheric and Oceanic Sciences, Madison, WI (United States)

    2005-06-01

    Tropical-extratropical climate interactions are studied by idealized experiments with a prescribed 2 C SST anomaly at different latitude bands in a coupled climate model. Instead of focusing on intrinsic climate variability, this work investigates the mean climate adjustment to remote external forcing. The extratropical impact on tropical climate can be as strong as the tropical impact on extratropical climate, with the remote sea surface temperature (SST) response being about half the magnitude of the imposed SST change in the forcing region. The equatorward impact of extratropical climate is accomplished by both the atmospheric bridge and the oceanic tunnel. About two-thirds of the tropical SST change comes from the atmospheric bridge, while the remaining one-third comes from the oceanic tunnel. The equatorial SST increase is first driven by the reduced latent heat flux and the weakened poleward surface Ekman transport, and then enhanced by the decrease in subtropical cells' strength and the equatorward subduction of warm anomalies. In contrast, the poleward impact of tropical climate is accomplished mainly by the atmospheric bridge, which is responsible for extratropical temperature changes in both the surface and subsurface. Sensitivity experiments also show the dominant role of the Southern Hemisphere oceans in the tropical climate change. (orig.)

  5. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens

    convective precipitation systems. As a result climate model simulations let alone future projections of precipitation often exhibit substantial biases. Here we show that the dynamical coupling of a regional climate model to a detailed fully distributed hydrological model - including groundwater-, overland...... of local precipitation dynamics are seen for time scales of app. Seasonal duration and longer. We show that these results can be attributed to a more complete treatment of land surface feedbacks. The local scale effect on the atmosphere suggests that coupled high-resolution climate-hydrology models...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies....

  6. Supercomputing for weather and climate modelling: convenience or necessity

    CSIR Research Space (South Africa)

    Landman, WA

    2009-12-01

    Full Text Available Weather and climate modelling require dedicated computer infrastructure in order to generate high-resolution, large ensemble, various models with different configurations, etc. in order to optimise operational forecasts and climate projections. High...

  7. Solar radiation modelling using ANNs for different climates in China

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Yang, Liu

    2008-01-01

    Artificial neural networks (ANNs) were used to develop prediction models for daily global solar radiation using measured sunshine duration for 40 cities covering nine major thermal climatic zones and sub-zones in China. Coefficients of determination (R 2 ) for all the 40 cities and nine climatic zones/sub-zones are 0.82 or higher, indicating reasonably strong correlation between daily solar radiation and the corresponding sunshine hours. Mean bias error (MBE) varies from -3.3 MJ/m 2 in Ruoqiang (cold climates) to 2.19 MJ/m 2 in Anyang (cold climates). Root mean square error (RMSE) ranges from 1.4 MJ/m 2 in Altay (severe cold climates) to 4.01 MJ/m 2 in Ruoqiang. The three principal statistics (i.e., R 2 , MBE and RMSE) of the climatic zone/sub-zone ANN models are very close to the corresponding zone/sub-zone averages of the individual city ANN models, suggesting that climatic zone ANN models could be used to estimate global solar radiation for locations within the respective zones/sub-zones where only measured sunshine duration data are available. (author)

  8. Cross-validation of an employee safety climate model in Malaysia.

    Science.gov (United States)

    Bahari, Siti Fatimah; Clarke, Sharon

    2013-06-01

    Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  9. Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960-2012)

    DEFF Research Database (Denmark)

    van As, Dirk; Langer Andersen, Morten; Petersen, Dorthe

    2014-01-01

    We assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations. The region encompasses six glaciers that drain into Godthåbsfjord. RCM data (1960-2012) are resampled to a high...... spatial resolution to include the narrow (relative to the native grid spacing) glacier trunks in the ice mask. Comparing RCM gridded results with automaticweather station (AWS) point measurements reveals that locally models can underestimate ablation andoverestimate accumulation by up to tens of per cent...

  10. A potato model intercomparison across varying climates and productivity levels

    DEFF Research Database (Denmark)

    H. Fleisher, David; Condori, Bruno; Quiroz, Roberto

    2017-01-01

    A potato crop multi-model assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States.......01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach....

  11. Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability

    Science.gov (United States)

    Parsons, Luke Alexander

    Here we analyze climate variability using instrumental, paleoclimate (proxy), and the latest climate model data to understand more about the sources and impacts of low-frequency climate variability. Understanding the drivers of climate variability at interannual to century timescales is important for studies of climate change, including analyses of detection and attribution of climate change impacts. Additionally, correctly modeling the sources and impacts of variability is key to the simulation of abrupt change (Alley et al., 2003) and extended drought (Seager et al., 2005; Pelletier and Turcotte, 1997; Ault et al., 2014). In Appendix A, we employ an Earth system model (GFDL-ESM2M) simulation to study the impacts of a weakening of the Atlantic meridional overturning circulation (AMOC) on the climate of the American Tropics. The AMOC drives some degree of local and global internal low-frequency climate variability (Manabe and Stouffer, 1995; Thornalley et al., 2009) and helps control the position of the tropical rainfall belt (Zhang and Delworth, 2005). We find that a major weakening of the AMOC can cause large-scale temperature, precipitation, and carbon storage changes in Central and South America. Our results suggest that possible future changes in AMOC strength alone will not be sufficient to drive a large-scale dieback of the Amazonian forest, but this key natural ecosystem is sensitive to dry-season length and timing of rainfall (Parsons et al., 2014). In Appendix B, we compare a paleoclimate record of precipitation variability in the Peruvian Amazon to climate model precipitation variability. The paleoclimate (Lake Limon) record indicates that precipitation variability in western Amazonia is 'red' (i.e., increasing variability with timescale). By contrast, most state-of-the-art climate models indicate precipitation variability in this region is nearly 'white' (i.e., equally variability across timescales). This paleo-model disagreement in the overall

  12. Downscaling GISS ModelE Boreal Summer Climate over Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2015-01-01

    The study examines the perceived added value of downscaling atmosphere-ocean global climate model simulations over Africa and adjacent oceans by a nested regional climate model. NASA/Goddard Institute for Space Studies (GISS) coupled ModelE simulations for June- September 1998-2002 are used to form lateral boundary conditions for synchronous simulations by the GISS RM3 regional climate model. The ModelE computational grid spacing is 2deg latitude by 2.5deg longitude and the RM3 grid spacing is 0.44deg. ModelE precipitation climatology for June-September 1998-2002 is shown to be a good proxy for 30-year means so results based on the 5-year sample are presumed to be generally representative. Comparison with observational evidence shows several discrepancies in ModelE configuration of the boreal summer inter-tropical convergence zone (ITCZ). One glaring shortcoming is that ModelE simulations do not advance the West African rain band northward during the summer to represent monsoon precipitation onset over the Sahel. Results for 1998-2002 show that onset simulation is an important added value produced by downscaling with RM3. ModelE Eastern South Atlantic Ocean computed sea-surface temperatures (SST) are some 4 K warmer than reanalysis, contributing to large positive biases in overlying surface air temperatures (Tsfc). ModelE Tsfc are also too warm over most of Africa. RM3 downscaling somewhat mitigates the magnitude of Tsfc biases over the African continent, it eliminates the ModelE double ITCZ over the Atlantic and it produces more realistic orographic precipitation maxima. Parallel ModelE and RM3 simulations with observed SST forcing (in place of the predicted ocean) lower Tsfc errors but have mixed impacts on circulation and precipitation biases. Downscaling improvements of the meridional movement of the rain band over West Africa and the configuration of orographic precipitation maxima are realized irrespective of the SST biases.

  13. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  14. Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios; Weiler, Markus; Matzarakis, Andreas

    2018-01-01

    Estimation of drought in a certain temporal and spatial scale is crucial in climate change studies. The current study targets on three agricultural areas widespread in Greece, Ardas River Basin in Northeastern Greece, Sperchios River Basin in Central Greece, and Geropotamos River Basin in Crete Island in South Greece that are characterized by diverse climates as they are located in various regions. The objective is to assess the spatiotemporal variation of drought conditions prevailing in these areas. The Standardized Precipitation Index (SPI) was used to identify and assess the present and future drought conditions. Future simulated data were derived from a number of Regional Climatic Models (RCMs) from the ENSEMBLES European Project. The analysis was performed for the future periods of 2021-2050 and 2071-2100, implementing A1B and B1 scenarios. The spatial analysis of the drought conditions was performed using a combined downscaling technique and the Ordinary Kriging. The Mann-Kendall test was implemented for trend investigation. During both periods and scenarios, drought conditions will tend to be more severe in the upcoming years. The decrease of the SPI values in the Sperchios River Basin is expected to be the strongest, as it is the only study area that will show a negative balance (in SPI values), regarding the drought conditions. For the Ardas and the Geropotamos River Basins, a great increase of the drought conditions will occur during the 2021-2050 period, while for 2071-2100 period, the decrease will continue but it will be tempered. Nevertheless, the situation in all study areas according to the SPI classification is characterized as "Near-normal", in terms of drought conditions.

  15. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  16. Modelling of anthropogenic and natural climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Mikolajewicz, U; Bakan, S [Max Planck Institute of Meteorology, Hamburg (Germany)

    1993-06-01

    The delay of anthropogenic climate change caused by oceans and other slowly reacting climate system components forces us to numerical modeling as the basis of decisions. For three three-dimensional numerical examples, namely transient coupled ocean-atmosphere models for the additional greenhouse effect, internal ocean-atmosphere variability, and disturbance by soot particles from burning oil wells, the present-day status is described. From all anthropogenic impacts on the radiative balance, the contribution from trace gases is the most important.

  17. Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: a case study for the Tana River basin in Kenya

    Science.gov (United States)

    Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald

    2017-10-01

    This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.

  18. Climate: Policy, Modeling, and Federal Priorities (Invited)

    Science.gov (United States)

    Koonin, S.; Department Of Energy Office Of The Under SecretaryScience

    2010-12-01

    The Administration has set ambitious national goals to reduce our dependence on fossil fuels and reduce anthropogenic greenhouse gas (GHG) emissions. The US and other countries involved in the U.N. Framework Convention on Climate Change continue to work toward a goal of establishing a viable treaty that would encompass limits on emissions and codify actions that nations would take to reduce emissions. These negotiations are informed by the science of climate change and by our understanding of how changes in technology and the economy might affect the overall climate in the future. I will describe the present efforts within the U.S. Department of Energy, and the federal government more generally, to address issues related to climate change. These include state-of-the-art climate modeling and uncertainty assessment, economic and climate scenario planning based on best estimates of different technology trajectories, adaption strategies for climate change, and monitoring and reporting for treaty verification.

  19. Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models

    Czech Academy of Sciences Publication Activity Database

    Gaál, Ľ.; Beranová, R.; Hlavčová, K.; Kyselý, Jan

    2014-01-01

    Roč. 2014, č. 943487 (2014), s. 1-14 ISSN 1687-9309 Institutional support: RVO:67179843 ; RVO:68378289 Keywords : precipitation extremes * regional climate models * climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 0.946, year: 2014

  20. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO 2 , DMS and H 2 SO 4 species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed

  1. Ensemble catchment hydrological modelling for climate change impact analysis

    Science.gov (United States)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions

  2. Simulation of climate characteristics and extremes of the Volta Basin using CCLM and RCA regional climate models

    Science.gov (United States)

    Darko, Deborah; Adjei, Kwaku A.; Appiah-Adjei, Emmanuel K.; Odai, Samuel N.; Obuobie, Emmanuel; Asmah, Ruby

    2018-06-01

    The extent to which statistical bias-adjusted outputs of two regional climate models alter the projected change signals for the mean (and extreme) rainfall and temperature over the Volta Basin is evaluated. The outputs from two regional climate models in the Coordinated Regional Climate Downscaling Experiment for Africa (CORDEX-Africa) are bias adjusted using the quantile mapping technique. Annual maxima rainfall and temperature with their 10- and 20-year return values for the present (1981-2010) and future (2051-2080) climates are estimated using extreme value analyses. Moderate extremes are evaluated using extreme indices (viz. percentile-based, duration-based, and intensity-based). Bias adjustment of the original (bias-unadjusted) models improves the reproduction of mean rainfall and temperature for the present climate. However, the bias-adjusted models poorly reproduce the 10- and 20-year return values for rainfall and maximum temperature whereas the extreme indices are reproduced satisfactorily for the present climate. Consequently, projected changes in rainfall and temperature extremes were weak. The bias adjustment results in the reduction of the change signals for the mean rainfall while the mean temperature signals are rather magnified. The projected changes for the original mean climate and extremes are not conserved after bias adjustment with the exception of duration-based extreme indices.

  3. Storm Water Management Model Climate Adjustment Tool (SWMM-CAT)

    Science.gov (United States)

    The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations. SWMM, first released in 1971, models hydrology and hydrauli...

  4. Evaluation of global climate models for Indian monsoon climatology

    International Nuclear Information System (INIS)

    Kodra, Evan; Ganguly, Auroop R; Ghosh, Subimal

    2012-01-01

    The viability of global climate models for forecasting the Indian monsoon is explored. Evaluation and intercomparison of model skills are employed to assess the reliability of individual models and to guide model selection strategies. Two dominant and unique patterns of Indian monsoon climatology are trends in maximum temperature and periodicity in total rainfall observed after 30 yr averaging over India. An examination of seven models and their ensembles reveals that no single model or model selection strategy outperforms the rest. The single-best model for the periodicity of Indian monsoon rainfall is the only model that captures a low-frequency natural climate oscillator thought to dictate the periodicity. The trend in maximum temperature, which most models are thought to handle relatively better, is best captured through a multimodel average compared to individual models. The results suggest a need to carefully evaluate individual models and model combinations, in addition to physical drivers where possible, for regional projections from global climate models. (letter)

  5. Multi-model approach to assess the impact of climate change on runoff

    Science.gov (United States)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a

  6. Bringing a Realistic Global Climate Modeling Experience to a Broader Audience

    Science.gov (United States)

    Sohl, L. E.; Chandler, M. A.; Zhou, J.

    2010-12-01

    EdGCM, the Educational Global Climate Model, was developed with the goal of helping students learn about climate change and climate modeling by giving them the ability to run a genuine NASA global climate model (GCM) on a desktop computer. Since EdGCM was first publicly released in January 2005, tens of thousands of users on seven continents have downloaded the software. EdGCM has been utilized by climate science educators from middle school through graduate school levels, and on occasion even by researchers who otherwise do not have ready access to climate model at national labs in the U.S. and elsewhere. The EdGCM software is designed to walk users through the same process a climate scientist would use in designing and running simulations, and analyzing and visualizing GCM output. Although the current interface design gives users a clear view of some of the complexities involved in using a climate model, it can be daunting for users whose main focus is on climate science rather than modeling per se. As part of the work funded by NASA’s Global Climate Change Education (GCCE) program, we will begin modifications to the user interface that will improve the accessibility of EdGCM to a wider array of users, especially at the middle school and high school levels, by: 1) Developing an automated approach (a “wizard”) to simplify the user experience in setting up new climate simulations; 2) Produce a catalog of “rediscovery experiments” that allow users to reproduce published climate model results, and in some cases compare model projections to real world data; and 3) Enhance distance learning and online learning opportunities through the development of a web-based interface. The prototypes for these modifications will then be presented to educators belonging to an EdGCM Users Group for feedback, so that we can further refine the EdGCM software, and thus deliver the tools and materials educators want and need across a wider range of learning environments.

  7. Predicting thermal reference conditions for USA streams and rivers

    Science.gov (United States)

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most

  8. Model Interpretation of Climate Signals: Application to the Asian Monsoon Climate

    Science.gov (United States)

    Lau, William K. M.

    2002-01-01

    This is an invited review paper intended to be published as a Chapter in a book entitled "The Global Climate System: Patterns, Processes and Teleconnections" Cambridge University Press. The author begins with an introduction followed by a primer of climate models, including a description of various modeling strategies and methodologies used for climate diagnostics and predictability studies. Results from the CLIVAR Monsoon Model Intercomparison Project (MMIP) were used to illustrate the application of the strategies to modeling the Asian monsoon. It is shown that state-of-the art atmospheric GCMs have reasonable capability in simulating the seasonal mean large scale monsoon circulation, and response to El Nino. However, most models fail to capture the climatological as well as interannual anomalies of regional scale features of the Asian monsoon. These include in general over-estimating the intensity and/or misplacing the locations of the monsoon convection over the Bay of Bengal, and the zones of heavy rainfall near steep topography of the Indian subcontinent, Indonesia, and Indo-China and the Philippines. The intensity of convection in the equatorial Indian Ocean is generally weaker in models compared to observations. Most important, an endemic problem in all models is the weakness and the lack of definition of the Mei-yu rainbelt of the East Asia, in particular the part of the Mei-yu rainbelt over the East China Sea and southern Japan are under-represented. All models seem to possess certain amount of intraseasonal variability, but the monsoon transitions, such as the onset and breaks are less defined compared with the observed. Evidences are provided that a better simulation of the annual cycle and intraseasonal variability is a pre-requisite for better simulation and better prediction of interannual anomalies.

  9. Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling

    Science.gov (United States)

    Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.

    2018-05-01

    Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed

  10. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    Science.gov (United States)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  11. Lake Representations in Global Climate Models: An End-User Perspective

    Science.gov (United States)

    Rood, R. B.; Briley, L.; Steiner, A.; Wells, K.

    2017-12-01

    The weather and climate in the Great Lakes region of the United States and Canada are strongly influenced by the lakes. Within global climate models, lakes are incorporated in many ways. If one is interested in quantitative climate information for the Great Lakes, then it is a first principle requirement that end-users of climate model simulation data, whether scientists or practitioners, need to know if and how lakes are incorporated into models. We pose the basic question, how are lakes represented in CMIP models? Despite significant efforts by the climate community to document and publish basic information about climate models, it is unclear how to answer the question about lake representations? With significant knowledge of the practice of the field, then a reasonable starting point is to use the ES-DOC Comparator (https://compare.es-doc.org/ ). Once at this interface to model information, the end-user is faced with the need for more knowledge about the practice and culture of the discipline. For example, lakes are often categorized as a type of land, a counterintuitive concept. In some models, though, lakes are specified in ocean models. There is little evidence and little confidence that the information obtained through this process is complete or accurate. In fact, it is verifiably not accurate. This experience, then, motivates identifying and finding either human experts or technical documentation for each model. The conclusion from this exercise is that it can take months or longer to provide a defensible answer to if and how lakes are represented in climate models. Our experience with lake finding is that this is not a unique experience. This talk documents our experience and explores barriers we have identified and strategies for reducing those barriers.

  12. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  13. Historical and idealized climate model experiments: an EMIC intercomparison

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.

    2012-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE......, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows considerable synergy between land-use change and CO2... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures...

  14. Holistic uncertainty analysis in river basin modeling for climate vulnerability assessment

    Science.gov (United States)

    Taner, M. U.; Wi, S.; Brown, C.

    2017-12-01

    The challenges posed by uncertain future climate are a prominent concern for water resources managers. A number of frameworks exist for assessing the impacts of climate-related uncertainty, including internal climate variability and anthropogenic climate change, such as scenario-based approaches and vulnerability-based approaches. While in many cases climate uncertainty may be dominant, other factors such as future evolution of the river basin, hydrologic response and reservoir operations are potentially significant sources of uncertainty. While uncertainty associated with modeling hydrologic response has received attention, very little attention has focused on the range of uncertainty and possible effects of the water resources infrastructure and management. This work presents a holistic framework that allows analysis of climate, hydrologic and water management uncertainty in water resources systems analysis with the aid of a water system model designed to integrate component models for hydrology processes and water management activities. The uncertainties explored include those associated with climate variability and change, hydrologic model parameters, and water system operation rules. A Bayesian framework is used to quantify and model the uncertainties at each modeling steps in integrated fashion, including prior and the likelihood information about model parameters. The framework is demonstrated in a case study for the St. Croix Basin located at border of United States and Canada.

  15. Future extreme events in European climate: An exploration of regional climate model projections

    DEFF Research Database (Denmark)

    Beniston, M.; Stephenson, D.B.; Christensen, O.B.

    2007-01-01

    -90) and future (2071-2 100) climate on the basis of regional climate model simulations produced by the PRUDENCE project. A summary of the main results follows. Heat waves - Regional surface warming causes the frequency, intensity and duration of heat waves to increase over Europe. By the end of the twenty first...

  16. Climate Model Diagnostic and Evaluation: With a Focus on Satellite Observations

    Science.gov (United States)

    Waliser, Duane

    2011-01-01

    Each year, we host a summer school that brings together the next generation of climate scientists - about 30 graduate students and postdocs from around the world - to engage with premier climate scientists from the Jet Propulsion Laboratory and elsewhere. Our yearly summer school focuses on topics on the leading edge of climate science research. Our inaugural summer school, held in 2011, was on the topic of "Using Satellite Observations to Advance Climate Models," and enabled students to explore how satellite observations can be used to evaluate and improve climate models. Speakers included climate experts from both NASA and the National Oceanic and Atmospheric Administration (NOAA), who provided updates on climate model diagnostics and evaluation and remote sensing of the planet. Details of the next summer school will be posted here in due course.

  17. The Co-evolution of Climate Models and the Intergovernmental Panel on Climate Change

    Science.gov (United States)

    Somerville, R. C.

    2010-12-01

    As recently as the 1950s, global climate models, or GCMs, did not exist, and the notion that man-made carbon dioxide might lead to significant climate change was not regarded as a serious possibility by most experts. Today, of course, the prospect or threat of exactly this type of climate change dominates the science and ranks among the most pressing issues confronting all mankind. Indeed, the prevailing scientific view throughout the first half of the twentieth century was that adding carbon dioxide to the atmosphere would have only a negligible effect on climate. The science of climate change caused by atmospheric carbon dioxide changes has thus undergone a genuine revolution. An extraordinarily rapid development of global climate models has also characterized this period, especially in the three decades since about 1980. In these three decades, the number of GCMs has greatly increased, and their physical and computational aspects have both markedly improved. Modeling progress has been enabled by many scientific advances, of course, but especially by a massive increase in available computer power, with supercomputer speeds increasing by roughly a factor of a million in the three decades from about 1980 to 2010. This technological advance has permitted a rapid increase in the physical comprehensiveness of GCMs as well as in spatial computational resolution. In short, GCMs have dramatically evolved over time, in exactly the same recent period as popular interest and scientific concern about anthropogenic climate change have markedly increased. In parallel, a unique international organization, the Intergovernmental Panel on Climate Change, or IPCC, has also recently come into being and also evolved rapidly. Today, the IPCC has become widely respected and globally influential. The IPCC was founded in 1988, and its history is thus even shorter than that of GCMs. Yet, its stature today is such that a series of IPCC reports assessing climate change science has already

  18. Assessing climate change over the Marche Region (central Italy) from 1951 to 2050: toward an integrated strategy for climate impacts reduction

    Science.gov (United States)

    Sangelantoni, Lorenzo; Russo, Aniello; Marincioni, Fausto; Appiotti, Federica

    2013-04-01

    This study investigates consequences and future impacts of climate change on the social and natural systems of the Marche Region (one of the 20 administrative divisions of Italy). This Region, is located in central part of the peninsula and borders the Adriatic Sea on the East and the Apennine mountains on the West. The Region extends for about 60 km E-W, and has a NW-SE coastline of about 170 km, covering a total area of 9366 km2. Multimodel projections over the Marche Regions, on daily, monthly and seasonal temperature and precipitation parameters, have been extracted from the outputs of a set of Regional Climate Models (RCMs) over Europe run by several research institutes participating to the EU ENSEMBLE project. These climate simulations refer to the boundary conditions of the IPCC A1B emission scenario, and have a horizontal resolution of 25km × 25km covering a time period from 1951 to 2050. Results detail a significant increase of daily, monthly and seasonal mean temperatures, especially in summer, with anomaly values reaching +3°C after the year 2025, referring to the model CliNo 1981-2010. Mountain areas show higher values of temperature anomalies than coastal ones of approximately 0.5 °C. Concurrently, a widespread decrease of seasonal precipitation appears to affect all seasons, except for autumn. Rainfall decrease and temperature increase could reduce the Region's aquifer recharge and overall availability of hydro resources. These alterations could affect human health, agricultural productivity, forest fires, coastal erosion, algal blooms and water quality. Ongoing analysis of extreme climatological indices (e.g. frequency of maximum daily temperature exceeding comfort thresholds) are expected to quantify such impacts. A first analysis, linking climate change to the hydrologic cycle, studied through the computation of the hydro-climatic intensity index (as defined by Giorgi et al., 2012), suggests for the Marche Region an increase of the intensity of

  19. The transferability of hydrological models under nonstationary climatic conditions

    Directory of Open Access Journals (Sweden)

    C. Z. Li

    2012-04-01

    Full Text Available This paper investigates issues involved in calibrating hydrological models against observed data when the aim of the modelling is to predict future runoff under different climatic conditions. To achieve this objective, we tested two hydrological models, DWBM and SIMHYD, using data from 30 unimpaired catchments in Australia which had at least 60 yr of daily precipitation, potential evapotranspiration (PET, and streamflow data. Nash-Sutcliffe efficiency (NSE, modified index of agreement (d1 and water balance error (WBE were used as performance criteria. We used a differential split-sample test to split up the data into 120 sub-periods and 4 different climatic sub-periods in order to assess how well the calibrated model could be transferred different periods. For each catchment, the models were calibrated for one sub-period and validated on the other three. Monte Carlo simulation was used to explore parameter stability compared to historic climatic variability. The chi-square test was used to measure the relationship between the distribution of the parameters and hydroclimatic variability. The results showed that the performance of the two hydrological models differed and depended on the model calibration. We found that if a hydrological model is set up to simulate runoff for a wet climate scenario then it should be calibrated on a wet segment of the historic record, and similarly a dry segment should be used for a dry climate scenario. The Monte Carlo simulation provides an effective and pragmatic approach to explore uncertainty and equifinality in hydrological model parameters. Some parameters of the hydrological models are shown to be significantly more sensitive to the choice of calibration periods. Our findings support the idea that when using conceptual hydrological models to assess future climate change impacts, a differential split-sample test and Monte Carlo simulation should be used to quantify uncertainties due to

  20. Regional model simulations of New Zealand climate

    Science.gov (United States)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  1. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    Science.gov (United States)

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2017-11-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  2. The regional aerosol-climate model REMO-HAM

    Directory of Open Access Journals (Sweden)

    J.-P. Pietikäinen

    2012-11-01

    Full Text Available REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.

  3. Coupling a global climatic model with insurance impact models for flood and drought: an estimation of the financial impact of climate change

    Directory of Open Access Journals (Sweden)

    Tinard Pierre

    2016-01-01

    Full Text Available CCR, a French reinsurance company mostly involved in natural disasters coverage in France, has been developing tools for the estimation of its exposure to climatic risks for many years. Both a flood and a drought models were developed and calibrated on a large policies and claims database supplied every year with insurers’ data. More recently, CCR has been developing a stochastic approach in order to evaluate its financial exposure to extreme events. A large and realistic event set has been generated by applying extreme value statistic tools to simulate hazard and to estimate, using our impact models, the average annual losses and losses related to different return periods. These event sets have been simulated separately for flood and drought, with a hypothesis of independence, consistent with recent annual damage data. The newest development presented here consists in the use of the ARPEGE–Climat model performed by Météo-France to simulate two 200-years sets of hourly atmospheric time series reflecting both the current climate and the RCP 4.5 climate conditions circa year 2050. These climatic data constitute the input data for the flood and drought impact models to detect events and simulate the associated hazard and damages. Our two main goals are (1 to simulate simultaneously flood and drought events for the same simulated years and (2 to evaluate the financial impact of climate change.

  4. Modeling Past Abrupt Climate Changes

    DEFF Research Database (Denmark)

    Marchionne, Arianna

    of the orbital variations on Earth's climate; however, the knowledge and tools needed to complete a unied theory for ice ages have not been developed yet. Here, we focus on the climatic variations that have occurred over the last few million years. Paleoclimatic records show that the glacial cycles are linked...... to those present in the astronomical forcing. We shall do this in terms of a general framework of conceptual dynamical models, which may or may not exhibit internal self-sustained oscillations. We introduce and discuss two distinct mechanisms for a periodic response at a dierent period to a periodic...

  5. The origins of computer weather prediction and climate modeling

    International Nuclear Information System (INIS)

    Lynch, Peter

    2008-01-01

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed

  6. Model based climate information on drought risk in Africa

    Science.gov (United States)

    Calmanti, S.; Syroka, J.; Jones, C.; Carfagna, F.; Dell'Aquila, A.; Hoefsloot, P.; Kaffaf, S.; Nikulin, G.

    2012-04-01

    The United Nations World Food Programme (WFP) has embarked upon the endeavor of creating a sustainable Africa-wide natural disaster risk management system. A fundamental building block of this initiative is the setup of a drought impact modeling platform called Africa Risk-View that aims to quantify and monitor weather-related food security risk in Africa. The modeling approach is based the Water Requirement Satisfaction Index (WRSI), as the fundamental indicator of the performances of agriculture and uses historical records of food assistance operation to project future potential needs for livelihood protection. By using climate change scenarios as an input to Africa Risk-View it is possible, in principles, to evaluate the future impact of climate variability on critical issues such as food security and the overall performance of the envisaged risk management system. A necessary preliminary step to this challenging task is the exploration of the sources of uncertainties affecting the assessment based on modeled climate change scenarios. For this purpose, a limited set of climate models have been selected in order verify the relevance of using climate model output data with Africa Risk-View and to explore a minimal range of possible sources of uncertainty. This first evaluation exercise started before the setup of the CORDEX framework and has relied on model output available at the time. In particular only one regional downscaling was available for the entire African continent from the ENSEMBLES project. The analysis shows that current coarse resolution global climate models can not directly feed into the Africa RiskView risk-analysis tool. However, regional downscaling may help correcting the inherent biases observed in the datasets. Further analysis is performed by using the first data available under the CORDEX framework. In particular, we consider a set of simulation driven with boundary conditions from the reanalysis ERA-Interim to evaluate the skill drought

  7. What’s Needed from Climate Modeling to Advance Actionable Science for Water Utilities?

    Science.gov (United States)

    Barsugli, J. J.; Anderson, C. J.; Smith, J. B.; Vogel, J. M.

    2009-12-01

    “…perfect information on climate change is neither available today nor likely to be available in the future, but … over time, as the threats climate change poses to our systems grow more real, predicting those effects with greater certainty is non-discretionary. We’re not yet at a level at which climate change projections can drive climate change adaptation.” (Testimony of WUCA Staff Chair David Behar to the House Committee on Science and Technology, May 5, 2009) To respond to this challenge, the Water Utility Climate Alliance (WUCA) has sponsored a white paper titled “Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change. ” This report concerns how investments in the science of climate change, and in particular climate modeling and downscaling, can best be directed to help make climate projections more actionable. The meaning of “model improvement” can be very different depending on whether one is talking to a climate model developer or to a water manager trying to incorporate climate projections in to planning. We first surveyed the WUCA members on present and potential uses of climate model projections and on climate inputs to their various system models. Based on those surveys and on subsequent discussions, we identified four dimensions along which improvement in modeling would make the science more “actionable”: improved model agreement on change in key parameters; narrowing the range of model projections; providing projections at spatial and temporal scales that match water utilities system models; providing projections that water utility planning horizons. With these goals in mind we developed four options for improving global-scale climate modeling and three options for improving downscaling that will be discussed. However, there does not seem to be a single investment - the proverbial “magic bullet” -- which will substantially reduce the range of model projections at the scales at which utility

  8. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-07-14

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively with advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project

  9. What Can Human Geography Offer Climate Change Modelling?

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2014-01-01

    behaviour to economic rationality when construed in sophisticated climate models and sometimes in nongeographical representations. The need to comprehensively take into consideration methodological approaches concerning the interface of society-environment interactions seems highly relevant to contemporary...... regularities, rationalities, and pre-analytic assumptions. Lastly we discuss challenges of constructing nature(s) and how we better understand the (geo) politics of climate change modeling.......The discipline of Geography may be one of the most prominent and oldest disciplines in the conceptualization of human–environment interactions that integrates elements from both natural and social sciences. Yet, much research on society–environment interactions on climate change reduces human...

  10. IIASA's climate-vegetation-biogeochemical cycle module as a part of an integrated model for climate change

    International Nuclear Information System (INIS)

    Ganopolski, A.V.; Jonas, M.; Krabec, J.; Olendrzynski, K.; Petoukhov, V.K.; Venevsky, S.V.

    1994-01-01

    The main objective of this study is the development of a hierarchy of coupled climate biosphere models with a full description of the global biogeochemical cycles. These models are planned for use as the core of a set of integrated models of climate change and they will incorporate the main elements of the Earth system (atmosphere, hydrosphere, pedosphere and biosphere) linked with each other (and eventually with the antroposphere) through the fluxes of heat, momentum, water and through the global biogeochemical cycles of carbon and nitrogen. This set of integrated models can be considered to fill the gap between highly simplified integrated models of climate change and very sophisticated and computationally expensive coupled models, developed on the basis of general circulation models (GCMs). It is anticipated that this range of integrated models will be an effective tool for investigating the broad spectrum of problems connected with the coexistence of human society and biosphere

  11. Learning About Climate and Atmospheric Models Through Machine Learning

    Science.gov (United States)

    Lucas, D. D.

    2017-12-01

    From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*

    KAUST Repository

    Castruccio, Stefano

    2014-03-01

    The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as pattern scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. It may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.

  13. Statistical surrogate models for prediction of high-consequence climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Constantine, Paul; Field, Richard V., Jr.; Boslough, Mark Bruce Elrick

    2011-09-01

    In safety engineering, performance metrics are defined using probabilistic risk assessments focused on the low-probability, high-consequence tail of the distribution of possible events, as opposed to best estimates based on central tendencies. We frame the climate change problem and its associated risks in a similar manner. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We therefore propose the use of specialized statistical surrogate models (SSMs) for the purpose of exploring the probability law of various climate variables of interest. A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field. The SSM can be calibrated to available spatial and temporal data from existing climate databases, e.g., the Program for Climate Model Diagnosis and Intercomparison (PCMDI), or to a collection of outputs from a General Circulation Model (GCM), e.g., the Community Earth System Model (CESM) and its predecessors. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework is developed to provide quantitative measures of confidence, via Bayesian credible intervals, in the use of the proposed approach to assess these risks.

  14. The 2 °C global warming effect on summer European tourism through different indices.

    Science.gov (United States)

    Grillakis, Manolis G; Koutroulis, Aristeidis G; Tsanis, Ioannis K

    2016-08-01

    Climate and weather patterns are an essential resource for outdoor tourism activities. The projected changes in climate and weather patterns are expected to affect the future state of tourism. The present study aims to quantify the positive or negative effect of a 2 °C global warming on summertime climate comfort in the sense of exercising activities that involve light body activity. The well-established Climate Index for Tourism (CIT) and three variants of the widely used Tourism Climatic Index (TCI) were analyzed. Additionally, a new index based on TCI and CIT was tested and compared against the precious indices. Past and future climate data of five high-resolution regional climate models (RCMs) from different Representative Concentration Pathways (RCP4.5 and RCP8.5) of the European Coordinated Regional Climate Downscaling Experiment (Euro-CORDEX) for a +2 °C period were used. The results indicate improvement in the climate comfort for the majority of European areas for the May to October period. For the June to August period, central and northern European areas are projected to improve, while marginal improvement is found for Mediterranean countries. Furthermore, in specific cases of adjacent Mediterranean areas such as the southern Iberian Peninsula, the June to August climate favorability is projected to reduce as a result of the increase to daytime temperature. The use of a set of different indices and different RCMs and RCPs samples a large fraction of the uncertainty that is crucial for providing robust regional impact information due to climate change. The analysis revealed the similarities and the differences in the magnitude of change across the different indices. Moreover, discrepancies were found in the results of different concentration pathways to the +2 °C global warming, with the RCP8.5 projecting more significant changes for some of the analyzed indices. The estimation of the TCI using different timescale climate data did not change the

  15. A Regional Climate Model Evaluation System

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a packaged data management infrastructure for the comparison of generated climate model output to existing observational datasets that includes capabilities...

  16. Cluster-based analysis of multi-model climate ensembles

    Science.gov (United States)

    Hyde, Richard; Hossaini, Ryan; Leeson, Amber A.

    2018-06-01

    Clustering - the automated grouping of similar data - can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model-observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-climate model (CCM) output of tropospheric ozone - an important greenhouse gas - from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ˜ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ˜ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere - where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and

  17. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  18. A Reusable Framework for Regional Climate Model Evaluation

    Science.gov (United States)

    Hart, A. F.; Goodale, C. E.; Mattmann, C. A.; Lean, P.; Kim, J.; Zimdars, P.; Waliser, D. E.; Crichton, D. J.

    2011-12-01

    Climate observations are currently obtained through a diverse network of sensors and platforms that include space-based observatories, airborne and seaborne platforms, and distributed, networked, ground-based instruments. These global observational measurements are critical inputs to the efforts of the climate modeling community and can provide a corpus of data for use in analysis and validation of climate models. The Regional Climate Model Evaluation System (RCMES) is an effort currently being undertaken to address the challenges of integrating this vast array of observational climate data into a coherent resource suitable for performing model analysis at the regional level. Developed through a collaboration between the NASA Jet Propulsion Laboratory (JPL) and the UCLA Joint Institute for Regional Earth System Science and Engineering (JIFRESSE), the RCMES uses existing open source technologies (MySQL, Apache Hadoop, and Apache OODT), to construct a scalable, parametric, geospatial data store that incorporates decades of observational data from a variety of NASA Earth science missions, as well as other sources into a consistently annotated, highly available scientific resource. By eliminating arbitrary partitions in the data (individual file boundaries, differing file formats, etc), and instead treating each individual observational measurement as a unique, geospatially referenced data point, the RCMES is capable of transforming large, heterogeneous collections of disparate observational data into a unified resource suitable for comparison to climate model output. This facility is further enhanced by the availability of a model evaluation toolkit which consists of a set of Python libraries, a RESTful web service layer, and a browser-based graphical user interface that allows for orchestration of model-to-data comparisons by composing them visually through web forms. This combination of tools and interfaces dramatically simplifies the process of interacting with and

  19. Scale dependency of regional climate modeling of current and future climate extremes in Germany

    Science.gov (United States)

    Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver

    2017-11-01

    A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.

  20. Uncertainty and endogenous technical change in climate policy models

    International Nuclear Information System (INIS)

    Baker, Erin; Shittu, Ekundayo

    2008-01-01

    Until recently endogenous technical change and uncertainty have been modeled separately in climate policy models. In this paper, we review the emerging literature that considers both these elements together. Taken as a whole the literature indicates that explicitly including uncertainty has important quantitative and qualitative impacts on optimal climate change technology policy. (author)

  1. Visualizing projected Climate Changes - the CMIP5 Multi-Model Ensemble

    Science.gov (United States)

    Böttinger, Michael; Eyring, Veronika; Lauer, Axel; Meier-Fleischer, Karin

    2017-04-01

    Large ensembles add an additional dimension to climate model simulations. Internal variability of the climate system can be assessed for example by multiple climate model simulations with small variations in the initial conditions or by analyzing the spread in large ensembles made by multiple climate models under common protocols. This spread is often used as a measure of uncertainty in climate projections. In the context of the fifth phase of the WCRP's Coupled Model Intercomparison Project (CMIP5), more than 40 different coupled climate models were employed to carry out a coordinated set of experiments. Time series of the development of integral quantities such as the global mean temperature change for all models visualize the spread in the multi-model ensemble. A similar approach can be applied to 2D-visualizations of projected climate changes such as latitude-longitude maps showing the multi-model mean of the ensemble by adding a graphical representation of the uncertainty information. This has been demonstrated for example with static figures in chapter 12 of the last IPCC report (AR5) using different so-called stippling and hatching techniques. In this work, we focus on animated visualizations of multi-model ensemble climate projections carried out within CMIP5 as a way of communicating climate change results to the scientific community as well as to the public. We take a closer look at measures of robustness or uncertainty used in recent publications suitable for animated visualizations. Specifically, we use the ESMValTool [1] to process and prepare the CMIP5 multi-model data in combination with standard visualization tools such as NCL and the commercial 3D visualization software Avizo to create the animations. We compare different visualization techniques such as height fields or shading with transparency for creating animated visualization of ensemble mean changes in temperature and precipitation including corresponding robustness measures. [1] Eyring, V

  2. Development and application of an interactive climate-ecosystem model system

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; D. Pollard

    2003-01-01

    A regional climate-ecosystem model system is developed in this study. It overcomes the weakness in traditional one-way coupling models and enables detailed description of interactive process between climate and natural ecosystem. It is applied to interaction study between monsoon climate and ecosystem in East Asia, with emphasis on future climate and ecosystem change scenario forced by doubled CO2. The climate tends to be warmer and wetter under doubled CO2 in Jianghuai and the Yangzi River valley, but it becomes warmer and drier in inland areas of northern and northwestern China. The largest changes and feedbacks between vegetation and climate occur in northern China. Northern inland ecosystems experience considerable degradation and desertification, indicating a marked sensitivity and vulnerability to climatic change. The strongest vegetation response to climate change occurs in northern China and the weakest in southern China. Vegetation feedbacks intensify warming and reduce drying due to increased CO2 during summer in northern China. Generally, vegetation-climate interactions are much stronger in northern China than in southern China.

  3. Projected changes in precipitation intensity and frequency over complex topography: a multi-model perspective

    Science.gov (United States)

    Fischer, Andreas; Keller, Denise; Liniger, Mark; Rajczak, Jan; Schär, Christoph; Appenzeller, Christof

    2014-05-01

    Fundamental changes in the hydrological cycle are expected in a future warmer climate. This is of particular relevance for the Alpine region, as a source and reservoir of several major rivers in Europe and being prone to extreme events such as floodings. For this region, climate change assessments based on the ENSEMBLES regional climate models (RCMs) project a significant decrease in summer mean precipitation under the A1B emission scenario by the mid-to-end of this century, while winter mean precipitation is expected to slightly rise. From an impact perspective, projected changes in seasonal means, however, are often insufficient to adequately address the multifaceted challenges of climate change adaptation. In this study, we revisit the full matrix of the ENSEMBLES RCM projections regarding changes in frequency and intensity, precipitation-type (convective versus stratiform) and temporal structure (wet/dry spells and transition probabilities) over Switzerland and surroundings. As proxies for raintype changes, we rely on the model parameterized convective and large-scale precipitation components. Part of the analysis involves a Bayesian multi-model combination algorithm to infer changes from the multi-model ensemble. The analysis suggests a summer drying that evolves altitude-specific: over low-land regions it is associated with wet-day frequency decreases of convective and large-scale precipitation, while over elevated regions it is primarily associated with a decline in large-scale precipitation only. As a consequence, almost all the models project an increase in the convective fraction at elevated Alpine altitudes. The decrease in the number of wet days during summer is accompanied by decreases (increases) in multi-day wet (dry) spells. This shift in multi-day episodes also lowers the likelihood of short dry spell occurrence in all of the models. For spring and autumn the combined multi-model projections indicate higher mean precipitation intensity north of the

  4. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.

  5. Isotopes as validation tools for global climate models

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2001-01-01

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  6. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    Science.gov (United States)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  7. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    Science.gov (United States)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  8. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  9. A commentary on the Atlantic meridional overturning circulation stability in climate models

    Science.gov (United States)

    Gent, Peter R.

    2018-02-01

    The stability of the Atlantic meridional overturning circulation (AMOC) in ocean models depends quite strongly on the model formulation, especially the vertical mixing, and whether it is coupled to an atmosphere model. A hysteresis loop in AMOC strength with respect to freshwater forcing has been found in several intermediate complexity climate models and in one fully coupled climate model that has very coarse resolution. Over 40% of modern climate models are in a bistable AMOC state according to the very frequently used simple stability criterion which is based solely on the sign of the AMOC freshwater transport across 33° S. In a recent freshwater hosing experiment in a climate model with an eddy-permitting ocean component, the change in the gyre freshwater transport across 33° S is larger than the AMOC freshwater transport change. This casts very strong doubt on the usefulness of this simple AMOC stability criterion. If a climate model uses large surface flux adjustments, then these adjustments can interfere with the atmosphere-ocean feedbacks, and strongly change the AMOC stability properties. AMOC can be shut off for many hundreds of years in modern fully coupled climate models if the hosing or carbon dioxide forcing is strong enough. However, in one climate model the AMOC recovers after between 1000 and 1400 years. Recent 1% increasing carbon dioxide runs and RCP8.5 future scenario runs have shown that the AMOC reduction is smaller using an eddy-resolving ocean component than in the comparable standard 1° ocean climate models.

  10. Characterization of the Dynamics of Climate Systems and Identification of Missing Mechanisms Impacting the Long Term Predictive Capabilities of Global Climate Models Utilizing Dynamical Systems Approaches to the Analysis of Observed and Modeled Climate

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Uma S. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Wackerbauer, Renate [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Polyakov, Igor V. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Newman, David E. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Sanchez, Raul E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fusion Energy Division; Univ. Carlos III de Madrid (Spain)

    2015-11-13

    The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were applied to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.

  11. Chapter 7: Developing climate-informed state-and-transition models

    Science.gov (United States)

    Miles A. Hemstrom; Jessica E. Halofsky; David R. Conklin; Joshua S. Halofsky; Dominique Bachelet; Becky K. Kerns

    2014-01-01

    Land managers and others need ways to understand the potential effects of climate change on local vegetation types and how management activities might be impacted by climate change. To date, climate change impact models have not included localized vegetation communities or the integrated effects of vegetation development dynamics, natural disturbances, and management...

  12. Climate Modeling and Causal Identification for Sea Ice Predictability

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth Clare [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urrego Blanco, Jorge Rolando [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urban, Nathan Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-12

    This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments in which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.

  13. Historical and idealized climate model experiments: an EMIC intercomparison

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.

    2012-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE...... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures...... the Medieval Climate Anomaly and the Little Ice Age estimated from paleoclimate reconstructions. This in turn could be a result of errors in the reconstructions of volcanic and/or solar radiative forcing used to drive the models or the incomplete representation of certain processes or variability within...

  14. Climate simulations for the last interglacial period by means of climate models of different complexity

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M L [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    Climatic conditions during the lst interglacial (125,000 years before present) are investigated with two climate models of different complexity: The atmosphere-ocean general circulation model ECHAM-1/LSG and the climate system model of intermediate complexity CLIMBER-2. In particular the role of vegetation at the last interglacial maximum, and its importance for a consistent simulation of the Mid-Holocene climate, has been investigated (EU project ASPEN: Air-Sea Wave Processes in Climate Change Models). Comparison of the results of the two models reveals a broad agreement in most large-scale features. Nevertheless, discrepancies are also detected. Essentially, the models differ in their ocean circulation responses. Profiting of the fast turnaround time of CLIMBER-2, a number of sensitivity experiments have been performed to try to explain the possible reasons for these differences, and to analyze additional effects not included in the previous simulations. In particular, the role of vegetation at the last interglacial maximum has been investigated. Comparison of the simulated responses against CLIMAP reconstructed SSTs for Marine Isotope Stage 5e shows a satisfactory agreement within the data uncertainties. (orig.) [German] Die klimatischen Bedingungen waehrend der letzten interglazialen Periode (vor 125 000 Jahren) werden anhand zweier Klimamodelle unterschiedlicher Komplexitaet untersucht: Dem Ozean-Atmosphaere gekoppelten allgemeinen Zirkulationsmodell ECHAM-1/LSG und dem Klimasystemmodell mittlerer Komplexitaet CLIMBER-2. Inbesondere wurde die Rolle der Vegetation in der letzten interglazialen Periode und ihre Bedeutung fuer eine konsistente Simulation des mittelholozaenischen Klimas untersucht (EU-Projekt ASPEN: Air-Sea Wave Processes in Climate Change Models - 'Klimavariationen in historischen Zeiten'). Der Vergleich der Ergebnisse beider Modelle zeigt eine gute Uebereinstimmung der meisten der grossskaligen Eigenschaften, allerdings zeigen sich auch

  15. Climate simulations for the last interglacial period by means of climate models of different complexity

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.L. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    Climatic conditions during the lst interglacial (125,000 years before present) are investigated with two climate models of different complexity: The atmosphere-ocean general circulation model ECHAM-1/LSG and the climate system model of intermediate complexity CLIMBER-2. In particular the role of vegetation at the last interglacial maximum, and its importance for a consistent simulation of the Mid-Holocene climate, has been investigated (EU project ASPEN: Air-Sea Wave Processes in Climate Change Models). Comparison of the results of the two models reveals a broad agreement in most large-scale features. Nevertheless, discrepancies are also detected. Essentially, the models differ in their ocean circulation responses. Profiting of the fast turnaround time of CLIMBER-2, a number of sensitivity experiments have been performed to try to explain the possible reasons for these differences, and to analyze additional effects not included in the previous simulations. In particular, the role of vegetation at the last interglacial maximum has been investigated. Comparison of the simulated responses against CLIMAP reconstructed SSTs for Marine Isotope Stage 5e shows a satisfactory agreement within the data uncertainties. (orig.) [German] Die klimatischen Bedingungen waehrend der letzten interglazialen Periode (vor 125 000 Jahren) werden anhand zweier Klimamodelle unterschiedlicher Komplexitaet untersucht: Dem Ozean-Atmosphaere gekoppelten allgemeinen Zirkulationsmodell ECHAM-1/LSG und dem Klimasystemmodell mittlerer Komplexitaet CLIMBER-2. Inbesondere wurde die Rolle der Vegetation in der letzten interglazialen Periode und ihre Bedeutung fuer eine konsistente Simulation des mittelholozaenischen Klimas untersucht (EU-Projekt ASPEN: Air-Sea Wave Processes in Climate Change Models - 'Klimavariationen in historischen Zeiten'). Der Vergleich der Ergebnisse beider Modelle zeigt eine gute Uebereinstimmung der meisten der grossskaligen Eigenschaften, allerdings zeigen sich

  16. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  17. A Synergistic Approach for Evaluating Climate Model Output for Ecological Applications

    Directory of Open Access Journals (Sweden)

    Rachel D. Cavanagh

    2017-09-01

    Full Text Available Increasing concern about the impacts of climate change on ecosystems is prompting ecologists and ecosystem managers to seek reliable projections of physical drivers of change. The use of global climate models in ecology is growing, although drawing ecologically meaningful conclusions can be problematic. The expertise required to access and interpret output from climate and earth system models is hampering progress in utilizing them most effectively to determine the wider implications of climate change. To address this issue, we present a joint approach between climate scientists and ecologists that explores key challenges and opportunities for progress. As an exemplar, our focus is the Southern Ocean, notable for significant change with global implications, and on sea ice, given its crucial role in this dynamic ecosystem. We combined perspectives to evaluate the representation of sea ice in global climate models. With an emphasis on ecologically-relevant criteria (sea ice extent and seasonality we selected a subset of eight models that reliably reproduce extant sea ice distributions. While the model subset shows a similar mean change to the full ensemble in sea ice extent (approximately 50% decline in winter and 30% decline in summer, there is a marked reduction in the range. This improved the precision of projected future sea ice distributions by approximately one third, and means they are more amenable to ecological interpretation. We conclude that careful multidisciplinary evaluation of climate models, in conjunction with ongoing modeling advances, should form an integral part of utilizing model output.

  18. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    Science.gov (United States)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated

  19. Global climate model performance over Alaska and Greenland

    DEFF Research Database (Denmark)

    Walsh, John E.; Chapman, William L.; Romanovsky, Vladimir

    2008-01-01

    The performance of a set of 15 global climate models used in the Coupled Model Intercomparison Project is evaluated for Alaska and Greenland, and compared with the performance over broader pan-Arctic and Northern Hemisphere extratropical domains. Root-mean-square errors relative to the 1958...... to narrowing the uncertainty and obtaining more robust estimates of future climate change in regions such as Alaska, Greenland, and the broader Arctic....... of the models are generally much larger than the biases of the composite output, indicating that the systematic errors differ considerably among the models. There is a tendency for the models with smaller errors to simulate a larger greenhouse warming over the Arctic, as well as larger increases of Arctic...

  20. A report on workshops: General circulation model study of climate- chemistry interaction

    International Nuclear Information System (INIS)

    Wei-Chyung, Wang; Isaksen, I.S.A.

    1993-01-01

    This report summarizes the discussion on General Circulation Model Study of Climate-Chemistry Interaction from two workshops, the first held 19--21 August 1992 at Oslo, Norway and the second 26--27 May 1993 at Albany, New York, USA. The workshops are the IAMAP activities under the Trace Constituent Working Group. The main objective of the two workshops was to recommend specific general circulation model (GCM) studies of the ozone distribution and the climatic effect of its changes. The workshops also discussed the climatic implications of increasing sulfate aerosols because of its importance to regional climate. The workshops were organized into four working groups: observation of atmospheric O 3 ; modeling of atmospheric chemical composition; modeling of sulfate aerosols; and aspects of climate modeling

  1. Educational and Scientific Applications of Climate Model Diagnostic Analyzer

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.

    2016-12-01

    Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of

  2. Daily precipitation statistics in regional climate models

    DEFF Research Database (Denmark)

    Frei, Christoph; Christensen, Jens Hesselbjerg; Déqué, Michel

    2003-01-01

    An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km...

  3. Application of Temperature Index Model to Assess the Future Hydrological Regime of the Glacierized Catchments in Nepal.

    Science.gov (United States)

    Kayastha, R.; Kayastha, R. B.

    2017-12-01

    Unavailability of hydro meteorological data in the Himalayan regions is challenging on understanding the flow regimes. Temperature index model is simple yet the powerful glacio-hydrological model to simulate the discharge in the glacierized basin. Modified Positive Degree Day (MPDD) Model Version 2.0 is a grid-ded based semi distributed model with baseflow module is a robust melt modelling tools to estimate the discharge. MPDD model uses temperature and precipitation as a forcing datasets to simulate the discharge and also to obtain the snowmelt, icemelt, rain and baseflow contribution on total discharge. In this study two glacierized, Marsyangdi and Langtang catchment were investigated for the future hydrological regimes. Marsyangdi encompasses an area of 4026.19 sq. km with 20% glaciated area, whereas Langtang catchment with area of 354.64 sq. km with 36% glaciated area is studied to examine for the future climatic scenarios. The model simulates discharge well for the observed period; (1992-1998) in Marsyangdi and from (2007-2013) in Langtang catchment. The Nash-Sutcliffe Efficiency (NSE) for the both catchment were above 0.75 with the volume difference less than - 8 %. The snow and ice melts contribution in Marsyangdi were 4.7% and 10.2% whereas in Langtang the contribution is 15.3% and 23.4%, respectively. Rain contribution ( 40%) is higher than the baseflow contribution in total discharge in both basins. The future river discharge is also predicted using the future climate data from the regional climate models (RCMs) of CORDEX South Asia experiments for the medium stabilization scenario RCP4.5 and very high radiative forcing scenario RCP8.5 after bias correction. The projected future discharge of both catchment shows slightly increase in both scenarios with increase of snow and ice melt contribution on discharge. The result generated from the model can be utilized to understand the future hydrological regimes of the glacierized catchment also the impact of

  4. Physical-Socio-Economic Modeling of Climate Change

    Science.gov (United States)

    Chamberlain, R. G.; Vatan, F.

    2008-12-01

    Because of the global nature of climate change, any assessment of the effects of plans, policies, and response to climate change demands a model that encompasses the entire Earth System, including socio- economic factors. Physics-based climate models of the factors that drive global temperatures, rainfall patterns, and sea level are necessary but not sufficient to guide decision making. Actions taken by farmers, industrialists, environmentalists, politicians, and other policy makers may result in large changes to economic factors, international relations, food production, disease vectors, and beyond. These consequences will not be felt uniformly around the globe or even across a given region. Policy models must comprehend all of these considerations. Combining physics-based models of the Earth's climate and biosphere with societal models of population dynamics, economics, and politics is a grand challenge with high stakes. We propose to leverage our recent advances in modeling and simulation of military stability and reconstruction operations to models that address all these areas of concern. Following over twenty years' experience of successful combat simulation, JPL has started developing Minerva, which will add demographic, economic, political, and media/information models to capabilities that already exist. With these new models, for which we have design concepts, it will be possible to address a very wide range of potential national and international problem