WorldWideScience

Sample records for climate models energy

  1. Energy balance climate models

    Science.gov (United States)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  2. Energy-balance climate models

    Science.gov (United States)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  3. Analysing climate impact on energy demand using the MOLAND model

    OpenAIRE

    Liu, Xiaochen; Twumasi, Bright Osei

    2008-01-01

    The importance and contribution of climate to energy demand are discussed. A linear regression model is developed to analyse future energy demand corresponding to climate change. The methodology for spatial analysis and integration to MOLAND are also provided in order to investigate possible consequences of different urban development paths on energy consumption patterns.

  4. European Climate - Energy Security Nexus. A model based scenario analysis

    International Nuclear Information System (INIS)

    In this research, we have provided an overview of the climate-security nexus in the European sector through a model based scenario analysis with POLES model. The analysis underline that under stringent climate policies, Europe take advantage of a double dividend in its capacity to develop a new cleaner energy model and in lower vulnerability to potential shocks on the international energy markets. (authors)

  5. Modelling the effect of UK energy policy and climate change

    Science.gov (United States)

    Chan, Ronald Wai Ho

    The central aim of this thesis is to investigate various UK energy policy documents and identify how they are implanted to the main energy consuming sectors in order to achieve a reduction of 60 percent of carbon emissions by 2050. This has lead to two key questions: What are the pros and cons of the various UK energy policy documents What are the impacts of currently proposed environmental policies in UK on economic growth in the 21st century To answer these questions, the following four energy policy documents are reviewed. UK Energy White Paper Energy Efficiency Commitment Climate Change Levy and UK Emissions Trading Scheme Renewable Obligations Also, the following macro energy modelling work is also investigated: Markal Model E3ME The UK Energy White Paper has shown the government is being very eager to solve the climate change and its associated problems by reducing carbon dioxide emissions by 60 percent by 2050. The four documents have illustrated the UK government main strategies to tackle climate change they are based on developing new technology, improving energy efficiency and to increase the use of renewables considerably. The analysis of these policies and macro-scale model has forecasted that the UK is going to have a slow down economic growth due to the environmental pressure.

  6. Reconciled climate response estimates from climate models and the energy budget of Earth

    Science.gov (United States)

    Richardson, Mark; Cowtan, Kevin; Hawkins, Ed; Stolpe, Martin B.

    2016-10-01

    Climate risks increase with mean global temperature, so knowledge about the amount of future global warming should better inform risk assessments for policymakers. Expected near-term warming is encapsulated by the transient climate response (TCR), formally defined as the warming following 70 years of 1% per year increases in atmospheric CO2 concentration, by which point atmospheric CO2 has doubled. Studies based on Earth's historical energy budget have typically estimated lower values of TCR than climate models, suggesting that some models could overestimate future warming. However, energy-budget estimates rely on historical temperature records that are geographically incomplete and blend air temperatures over land and sea ice with water temperatures over open oceans. We show that there is no evidence that climate models overestimate TCR when their output is processed in the same way as the HadCRUT4 observation-based temperature record. Models suggest that air-temperature warming is 24% greater than observed by HadCRUT4 over 1861-2009 because slower-warming regions are preferentially sampled and water warms less than air. Correcting for these biases and accounting for wider uncertainties in radiative forcing based on recent evidence, we infer an observation-based best estimate for TCR of 1.66 °C, with a 5-95% range of 1.0-3.3 °C, consistent with the climate models considered in the IPCC 5th Assessment Report.

  7. Projecting Wind Energy Potential Under Climate Change with Ensemble of Climate Model Simulations

    Science.gov (United States)

    Jain, A.; Shashikanth, K.; Ghosh, S.; Mukherjee, P. P.

    2013-12-01

    Recent years have witnessed an increasing global concern over energy sustainability and security, triggered by a number of issues, such as (though not limited to): fossil fuel depletion, energy resource geopolitics, economic efficiency versus population growth debate, environmental concerns and climate change. Wind energy is a renewable and sustainable form of energy in which wind turbines convert the kinetic energy of wind into electrical energy. Global warming and differential surface heating may significantly impact the wind velocity and hence the wind energy potential. Sustainable design of wind mills requires understanding the impacts of climate change on wind energy potential, which we evaluate here with multiple General Circulation Models (GCMs). GCMs simulate the climate variables globally considering the greenhouse emission scenarios provided as Representation Concentration path ways (RCPs). Here we use new generation climate model outputs obtained from Coupled model Intercomparison Project 5(CMIP5). We first compute the wind energy potential with reanalysis data (NCEP/ NCAR), at a spatial resolution of 2.50, where the gridded data is fitted to Weibull distribution and with the Weibull parameters, the wind energy densities are computed at different grids. The same methodology is then used, to CMIP5 outputs (resultant of U-wind and V-wind) of MRI, CMCC, BCC, CanESM, and INMCM4 for historical runs. This is performed separately for four seasons globally, MAM, JJA, SON and DJF. We observe the muti-model average of wind energy density for historic period has significant bias with respect to that of reanalysis product. Here we develop a quantile based superensemble approach where GCM quantiles corresponding to selected CDF values are regressed to reanalysis data. It is observed that this regression approach takes care of both, bias in GCMs and combination of GCMs. With superensemble, we observe that the historical wind energy density resembles quite well with

  8. The Precession Index and a Nonlinear Energy Balance Climate Model

    Science.gov (United States)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  9. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  10. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  11. Review of models on energy and climate change

    International Nuclear Information System (INIS)

    The Energy Modeling Forum recently has initiated a global climate change project. The purpose of the project is to summarize the work which has already been done on this topic and to evaluate the quality of the work. Several critical issues arise in any effort to make credible estimates of the cost of greenhouse control strategies. First, a worldwide modeling framework must be developed because carbon emissions from particular regions affect the global atmosphere. Because the data available on developing countries is quite poor at present, future efforts should focus on new data collection and modeling efforts in these regions. Second, all the major greenhouse gases - CO2, CFCs, methane and N2O - and not just carbon dioxide must be considered in future analyses. It is the overall concentration of all these different greenhouse gases in the atmosphere that ultimately will lead to global climate change. Third, an effective means for analyzing the various greenhouse gas control strategies must be developed. In order to successfully carry out the final task, a method must be developed which integrates a top-down macro-economic approach with a bottom-up process engineering approach. When implementing the macro-economic approach, one must choose plausible ranges for future economic and population growth rates. The reason for this is that even small changes in these driving factors can have huge impacts on emissions projections over the 100 or more year time frames required to address the greenhouse gas problem. The implementation of the process engineering approach requires: an accurate characterization of the costs, performance and availability of current and likely future technologies; an assessment of the likely barriers to technology transfer of both existing and new technologies, particularly from the developed to the developing countries; and an evaluation of the impact of energy prices and greenhouse gas policies on new technological development

  12. A discrete-continuous choice model of climate change impacts on energy

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, W.N. [Middlebury College, VT (United States); Mendelsohn, R. [Yale Univ., New Haven, CT (United States). School of Forestry and Environmental Studies

    1998-09-01

    This paper estimates a discrete-continuous fuel choice model in order to explore climate impacts on the energy sector. The model is estimated on a national data set of firms and households. The results reveal that actors switch from oil in cold climates to electricity and natural gas in warm climates and that fuel-specific expenditures follow a U-shaped relationship with respect to temperature. The model implies that warming will increase American energy expenditures, reflecting a sizable welfare damage.

  13. A discrete-continuous choice model of climate change impacts on energy

    International Nuclear Information System (INIS)

    This paper estimates a discrete-continuous fuel choice model in order to explore climate impacts on the energy sector. The model is estimated on a national data set of firms and households. The results reveal that actors switch from oil in cold climates to electricity and natural gas in warm climates and that fuel-specific expenditures follow a U-shaped relationship with respect to temperature. The model implies that warming will increase American energy expenditures, reflecting a sizable welfare damage

  14. An energy balance model of carbon's effect on climate change

    CERN Document Server

    Benney, Lucas

    2015-01-01

    Due to climate change, the interest of studying our climatic system using mathematical modeling has become tremendous in recent years. One well-known model is Budyko's system, which represents the coupled evolution of two variables, the ice-line and the average earth surface temperature. The system depends on natural parameters, such as the earth albedo, and the amount A of carbon in the atmosphere. We introduce a 3-dimensional extension of this model in which we regard A as the third coupled variable of the system. We analyze the phase space and dependence on parameters, looking for Hopf bifurcations and the birth of cycling behavior. We interpret the cycles as climatic oscillations triggered by the sensitivity in our regulation of carbon emissions at extreme temperatures.

  15. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  16. Building Energy Use Modeling at the U.S. State Level Under Climate Change

    Science.gov (United States)

    Zhou, Y.; Eom, J.; Clarke, L.; Kyle, P.

    2012-12-01

    Climate change plays an important role in building energy use for heating and cooling. As global building energy use accounts for as much as about 32% of global final energy consumption in 2005, the impact of climate change on greenhouse gas emissions may also be significant. As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into regional energy system planning. In this study, we have developed a detailed building energy model with U.S. 50-state representation, embedded in an integrated assessment framework (Global Change Assessment Model). The climate change impact on heating and cooling demand is measured through estimating heating and cooling degree days (HDD/CDDs) derived from MIT Integrated Global System Model (IGSM) climate data and linking the estimates to the building energy model. Having the model calibrated against historical data at the U.S. state level, we estimated the building energy use in the 21st century at the U.S. state level and analyzed its spatial pattern. We have found that the total building energy use (heating and cooling) in U.S. states is over- or under-estimated without having climate feedback taken into account, and that the difference with and without climate feedback at the state level varies from -25% to 25% in reference scenario and -15% to 10% in climate mitigation scenario. The result not only confirms earlier finding that global warming leads to increased cooling and decreased heating energy use, it also indicates that climate change has a different impact on total building energy use at national and state level, exhibiting large spatial heterogeneity across states (Figure 1). The scale impact in building energy use modeling emphasizes the importance of developing a building energy model that represents socioeconomic development, energy service expansion, and

  17. Climate stability for a Sellers-type model. [atmospheric diffusive energy balance model

    Science.gov (United States)

    Ghil, M.

    1976-01-01

    We study a diffusive energy-balance climate model governed by a nonlinear parabolic partial differential equation. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. We consider also models similar to the main one studied, and determine the number of their steady states. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The diffusion is taken to be nonlinear as well as linear. We investigate the stability under small perturbations of the main model's climates. A stability criterion is derived, and its application shows that the 'present climate' and the 'deep freeze' are stable, whereas the model's glacial is unstable. A variational principle is introduced to confirm the results of this stability analysis. For a sufficient decrease in solar radiation (about 2%) the glacial and interglacial solutions disappear, leaving the ice-covered earth as the only possible climate.

  18. Combining climate and energy policies: synergies or antagonism? Modeling interactions with energy efficiency instruments

    International Nuclear Information System (INIS)

    In addition to the already present Climate and Energy package, the European Union (EU) plans to include a binding target to reduce energy consumption. We analyze the rationales the EU invokes to justify such an overlapping and develop a minimal common framework to study interactions arising from the combination of instruments reducing emissions, promoting renewable energy (RE) production and reducing energy demand through energy efficiency (EE) investments. We find that although all instruments tend to reduce GHG emissions and although a price on carbon tends also to give the right incentives for RE and EE, the combination of more than one instrument leads to significant antagonisms regarding major objectives of the policy package. The model allows to show in a single framework and to quantify the antagonistic effects of the joint promotion of RE and EE. We also show and quantify the effects of this joint promotion on ETS permit price, on wholesale market price and on energy production levels. (authors)

  19. The impacts of climate change on energy: An aggregate expenditure model for the US

    International Nuclear Information System (INIS)

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion

  20. The impacts of climate change on energy: An aggregate expenditure model for the US

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, W. [Boston Univ., MA (United States); Mendelsohn, R. [Yale Univ., New Haven, CT (United States). School of Forestry and Environmental Studies

    1998-09-01

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion.

  1. Energetics of IPCC4AR Climate Models: Energy Balance and Meridional Enthalpy Transports

    CERN Document Server

    Lucarini, Valerio

    2009-01-01

    We consider the climate simulations performed using pre-industrial and SRESA1B scenarios and analyse the outputs of the state-of-the-art models included in IPCC4AR. For control simulations, large energy biases are present for several models both when global climate budgets and when energy budgets of the atmospheric, oceanic, and land subdomains are considered. The energy biases depend on the imperfect closure of the energy cycle in the fluid components of the climate system and on issues in the treatment of phase transitions and heat fluxes over land. Additionally, the consequence of a positive global energy bias, which is what most models feature, is the underestimation of the thermodynamic emission temperature of the planet and of the globally averaged surface temperature. This may help explaining the cold bias of climate models. Models agree on the representation of meridional enthalpy transports in terms of location of the peaks of the total and atmospheric transports, whereas quantitative disagreements o...

  2. Energy-climate-forest modelling for integrated policy analysis

    OpenAIRE

    Siljander, Riikka

    2016-01-01

    Increased concern about global warming has led to an intensified search for new and efficient means to reduce greenhouse gas emissions (GHG). So far, forests have been part of climate policies mainly as a source of bioenergy which can substitute for fossil fuels. However, forests constitute also significant sinks and sources of carbon dioxide, which affect the atmospheric carbon balance. This has led to an ongoing debate on whether and how the changes in forest carbon stocks should be taken i...

  3. Surface Water and Energy Budgets for Sub-Saharan Africa in GFDL Coupled Climate Model

    Science.gov (United States)

    Tian, D.; Wood, E. F.; Vecchi, G. A.; Jia, L.; Pan, M.

    2015-12-01

    This study compare surface water and energy budget variables from the Geophysical Fluid Dynamics Laboratory (GFDL) FLOR models with the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), Princeton University Global Meteorological Forcing Dataset (PGF), and PGF-driven Variable Infiltration Capacity (VIC) model outputs, as well as available observations over the sub-Saharan Africa. The comparison was made for four configurations of the FLOR models that included FLOR phase 1 (FLOR-p1) and phase 2 (FLOR-p2) and two phases of flux adjusted versions (FLOR-FA-p1 and FLOR-FA-p2). Compared to p1, simulated atmospheric states in p2 were nudged to the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The seasonal cycle and annual mean of major surface water (precipitation, evapotranspiration, runoff, and change of storage) and energy variables (sensible heat, ground heat, latent heat, net solar radiation, net longwave radiation, and skin temperature) over a 34-yr period during 1981-2014 were compared in different regions in sub-Saharan Africa (West Africa, East Africa, and Southern Africa). In addition to evaluating the means in three sub-regions, empirical orthogonal functions (EOFs) analyses were conducted to compare both spatial and temporal characteristics of water and energy budget variables from four versions of GFDL FLOR, NCEP CFSR, PGF, and VIC outputs. This presentation will show how well each coupled climate model represented land surface physics and reproduced spatiotemporal characteristics of surface water and energy budget variables. We discuss what caused differences in surface water and energy budgets in land surface components of coupled climate model, climate reanalysis, and reanalysis driven land surface model. The comparisons will reveal whether flux adjustment and nudging would improve depiction of the surface water and energy budgets in coupled climate models.

  4. Modeling the impact of large-scale energy conversion systems on global climate

    International Nuclear Information System (INIS)

    There are three energy options which could satisfy a projected energy requirement of about 30 TW and these are the solar, nuclear and (to a lesser extent) coal options. Climate models can be used to assess the impact of large scale deployment of these options. The impact of waste heat has been assessed using energy balance models and general circulation models (GCMs). Results suggest that the impacts are significant when the heat imput is very high and studies of more realistic scenarios are required. Energy balance models, radiative-convective models and a GCM have been used to study the impact of doubling the atmospheric CO2 concentration. State-of-the-art models estimate a surface temperature increase of 1.5-3.00C with large amplification near the poles, but much uncertainty remains. Very few model studies have been made of the impact of particles on global climate, more information on the characteristics of particle input are required. The impact of large-scale deployment of solar energy conversion systems has received little attention but model studies suggest that large scale changes in surface characteristics associated with such systems (surface heat balance, roughness and hydrological characteristics and ocean surface temperature) could have significant global climatic effects. (Auth.)

  5. The Importance of Simulation Workflow and Data Management in the Accelerated Climate Modeling for Energy Project

    Science.gov (United States)

    Bader, D. C.

    2015-12-01

    The Accelerated Climate Modeling for Energy (ACME) Project is concluding its first year. Supported by the Office of Science in the U.S. Department of Energy (DOE), its vision is to be "an ongoing, state-of-the-science Earth system modeling, modeling simulation and prediction project that optimizes the use of DOE laboratory resources to meet the science needs of the nation and the mission needs of DOE." Included in the "laboratory resources," is a large investment in computational, network and information technologies that will be utilized to both build better and more accurate climate models and broadly disseminate the data they generate. Current model diagnostic analysis and data dissemination technologies will not scale to the size of the simulations and the complexity of the models envisioned by ACME and other top tier international modeling centers. In this talk, the ACME Workflow component plans to meet these future needs will be described and early implementation examples will be highlighted.

  6. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    Science.gov (United States)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  7. A Didactic Model of the Seasonal Cycle in Energy Fluxes and Climate

    Science.gov (United States)

    Donohoe, A.; Battisti, D.

    2009-12-01

    In the annual mean, the polar regions receive a deficit of solar insolation relative to the global average. The local energy budget is balanced primarily by atmospheric heat transport into the region, with smaller contributions from ocean heat transport and anomalously low outgoing longwave radiation (relative to the global average). In contrast, the annual cycle features large seasonal anomalies (departures from the local annual average) in solar insolation in the polar regions that are primarily balanced by ocean heat storage anomalies; changes in meridional heat transport, emitted long wave radiation, and atmospheric heat storage play a decreasingly important role in the seasonal energy balance. Land-ocean contrasts also have a large impact on the seasonal energetics of the polar climate system. Over the ocean, zonal heat transport from the land domain is maximized during the summer, and the sum of the insolation and zonal heat transport anomalies is balanced by ocean heat storage. In contrast, over the land, the primary summertime balance is excess solar insolation balanced by an enhanced zonal heat export. In this study we examine the global scale climate and the aforementioned seasonal cycle of energy fluxes using an aquaplanet atmospheric general circulation model coupled to a slab ocean and a simplified energy balance model that interacts with the underlying ocean. The gross climate and seasonal energetics in both models are highly sensitive to the specification of ocean mixed layer depth. The observed seasonal cycle of energy fluxes and the land and ocean temperatures are also replicated in a simplified energy balance model that includes land-ocean contrast and the hemispheric differences in fractional land area. The sensitivity of the seasonal cycle in climate (atmosphere and ocean temperatures) - and in the gross partitioning of the mix of energy flux processes that determine the climate - to the fractional land area is further explored in an ensemble of

  8. Informing energy and climate policies using energy systems models insights from scenario analysis increasing the evidence base

    CERN Document Server

    Giannakidis, George; Ó Gallachóir, Brian; Tosato, GianCarlo

    2015-01-01

    This book highlights how energy-system models are used to underpin and support energy and climate mitigation policy decisions at national, multi-country and global levels. It brings together, for the first time in one volume, a range of methodological approaches and case studies of good modeling practice on a national and international scale from the IEA-ETSAP energy technology initiative. It provides insights for the reader into the rich and varied applications of energy-system models and the underlying methodologies and policy questions they can address. The book demonstrates how these mode

  9. Modeling and simulation of the energy use in an occupied residential building in cold climate

    International Nuclear Information System (INIS)

    Highlights: ► An overview of the energy-characteristics based on illustrations in graphical figures. ► Figures to support identification and validation energy refurbishment measures. ► Emphasizing energy efficiency measures in early stage of building design. -- Abstract: In order to reduce the energy use in the building sector there is a demand for tools that can identify significant building energy performance parameters. In the work introduced in this paper presents a methodology, based on a simulation module and graphical figures, for interactive investigations of the building energy performance. The building energy use simulation program is called TEKLA and is using EN832 with an improved procedure in calculating the heat loss through the floor and the solar heat gain. The graphical figures are simple and are illustrating the savings based on retrofit measures and climate conditions. The accuracy of the TEKLA simulation was investigated on a typical single-family building in Sweden for a period of time in a space heating demand of relatively cold and mild climate. The model was found applicable for relative investigations. Further, the methodology was applied on a typical single family reference building. The climate data from three locations in Sweden were collected and a set of relevant measures were studied. The investigated examples illustrate how decisions in the early stages of the building design process can have decisive importance on the final building energy performance.

  10. Climate-Energy Nexus

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, Gary; Gentry, Randall; Zhuang, Jie

    2010-07-01

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit future cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology

  11. Modeling Uncertainty and the Economics of Climate Change. Recommendations for Robust Energy Policy

    International Nuclear Information System (INIS)

    This special issue is meant to gather front-edge research and innovative analysis in the modeling of uncertainty related to the economics of climate change. The focus is notably on advancements in probabilistic integrated assessment modeling and stochastic analysis of climate futures. The possibility to use non-probabilistic economic methods to treat uncertainty in global or regional dynamic climate change models is explored as well. Given the intimate link between climate change and the nature of mankind's energy production and consumption system, this special issue also proffers direct practical recommendations for energy decision making at the global, regional, and national levels. The special issue originated from a series of research tasks carried out under the PLANETS project, funded by the European Commission under its 7th Framework Programme and co-coordinated by the Fondazione Eni Enrico Mattei (FEEM) and the Energy research Centre of the Netherlands (ECN). This project, accomplished in 2010, had, as main focus, how to incorporate uncertainty when carrying out numerical analysis of climate and energy policies. A special PLANETS session was organized during the 2010 edition of the International Energy Workshop (IEW 2010, Royal Institute of Technology, Stockholm), which generated broad expert discussion on both methodology and policy-related issues. The recognition of the importance of these topics and the diversity of approaches undertaken, plus a concern over them becoming fragmented in the literature, constituted the motivation to edit this special issue gathering the generated material in one orchestrated publication. Several contributions, in the form of 12 papers, have been brought together with the aim of providing a comprehensive overview of some of the main recent developments in the modeling of uncertainty in the economics of climate change. We categorize these 12 articles in five distinct domains in hybrid integrated assessment EEE (Energy

  12. Modeling U.S. Energy Use Changes with Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W [ORNL; Erickson III, David J [ORNL; Hernandez Figueroa, Jose L [ORNL

    2006-09-01

    Using a general circulation model of Earth climate (PCM-IBIS) to drive an energy use model (DD-NEMS), we calculated the energy use changes for each year from 2003-2025 for the nine U.S. Census regions. We used five scenarios: 1) a reference with no change in temperatures from the 1970-2003 average, 2) a gradual 1 F rise in temperature by 2025, 3) a gradual 3 F rise by 2025, 4) a climate simulation with low temperature response to CO2 doubling in the atmosphere, and 5) a climate simulation with a more extreme response. The low-?T scenario had a cumulative reduction in energy of 2.1 Quads but an increase in cost of $14.8 billion. The northern states had reductions in cost over the entire period, but most other regions had increases in costs because increases in cooling costs outweighed reductions in heating and other energy uses. Higher temperature sensitivity resulted in increased warming, especially in the winter months. Because heating needs decreased, total energy requirements declined by a cumulative 4.2 Quads. However, total cost still increased $6.1 billion and carbon emissions still rose as coal-based electricity for cooling needs grew.

  13. TRACKING CLIMATE MODELS

    Data.gov (United States)

    National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...

  14. A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation

    International Nuclear Information System (INIS)

    Highlights: • This paper introduces the design of a hybrid energy-economy model, GTEM-C. • The model offers a unified tool to analyse the energy-carbon-environment nexus. • Results are presented on global energy transformation due to carbon mitigation. • Electrification with renewable energies can contain the spiking of carbon prices. - Abstract: This paper introduces the design of the CSIRO variant of the Global Trade and Environment model (GTEM-C). GTEM-C is a hybrid model that combines the top-down macroeconomic representation of a computable general equilibrium model with the bottom-up engineering details of energy production. The model features detailed accounting for global energy flows that are embedded in traded energy goods, and it offers a unified framework to analyse the energy-carbon-environment nexus. As an illustrative example, we present simulation results on global energy transformation under the Intergovernmental Panel on Climate Change’s representative carbon pathways 4.5 and 8.5. By testing the model’s sensitivity to the relevant parameter, we find that the pace of electrification will significantly contain the spiking of carbon prices because electricity can be produced from carbon-free or less carbon-intensive technologies. The decoupling of energy use and carbon footprint, due to the uptake of clean electricity technologies, such as nuclear, wind, solar, and carbon capture and storage, allows the world to maintain high level of energy consumption, which is essential to economic growth

  15. Evaluation of water and energy budgets in regional climate models applied over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, S.; Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Machenhauer, B.; Christensen, O.B. [Danish Meteorological Institute, Climate Research Division, Copenhagen Oe (Denmark); Jones, R. [Meteorological Office Hadley Centre, Bracknell (United Kingdom); Deque, M. [Meteo-France CNRM/GMGEC/EAC, Toulouse Cedex 01 (France); Vidale, P.L. [Climate Research ETH, Zuerich (Switzerland)

    2004-10-01

    This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is

  16. ADVANCED ENERGY TECHNOLOGIES AND CLIMATE CHANGE: AN ANALYSIS USING THE GLOBAL CHANGE ASSESSMENT MODEL (GCAM)

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J. A.; Wise, M. A.; MacCracken, C. N.

    1994-05-01

    We report results from a "top down" energy-economy model employing "bottom up" assumptions embedded in an integrated assessment framework, the Global Change Assessment Model (GCAM). The analys~s shows that from the perspective of long-term energy system development, differences. in results from the "top down" and "bottom up" research communities would appear to be more closely linked to differences in assumptions regarding the economic cost associated with advanced technologies than to differences In modeling approach. The adoption of assumptions regarding advanced energy technologies were shown to have a profound effect on the future rate of anthropogenic climate change. The cumulative effect of the five sets of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv, the point at which atmospheric concentrations are double those that existed in the m~ddleo f the eighteenth century. While all energy technologies play roles in reducing future fossil fuel carbon dioxide emissions, the introduction of advanced biomass energy production technology plays a particularly important role. If biomass energy can be made available at $2.40/GJ or less in quantities sufficient to make it the core energy supply technology in the middle of the next century, then emissions can be cut dramatically relative to the reference case. The problem of emiss~ons reduction becomes one of technology development and deployment in this case, and not one of fiscal and regulatory intervention.

  17. Internal variability of Earth’s energy budget simulated by CMIP5 climate models

    International Nuclear Information System (INIS)

    We analyse a large number of multi-century pre-industrial control simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to investigate relationships between: net top-of-atmosphere radiation (TOA), globally averaged surface temperature (GST), and globally integrated ocean heat content (OHC) on decadal timescales. Consistent with previous studies, we find that large trends (∼0.3 K dec−1) in GST can arise from internal climate variability and that these trends are generally an unreliable indicator of TOA over the same period. In contrast, trends in total OHC explain 95% or more of the variance in TOA for two-thirds of the models analysed; emphasizing the oceans’ role as Earth’s primary energy store. Correlation of trends in total system energy (TE ≡ time integrated TOA) against trends in OHC suggests that for most models the ocean becomes the dominant term in the planetary energy budget on a timescale of about 12 months. In the context of the recent pause in global surface temperature rise, we investigate the potential importance of internal climate variability in both TOA and ocean heat rearrangement. The model simulations suggest that both factors can account for O (0.1 W m−2) on decadal timescales and may play an important role in the recently observed trends in GST and 0–700 m (and 0–1800 m) ocean heat uptake. (paper)

  18. The ``Nordic`` HBV model. Description and documentation of the model version developed for the project Climate Change and Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Saelthun, N.R.

    1996-12-31

    The model described in this report is a version of the HBV model developed for the project Climate Change and Energy Production. This was a Nordic project aimed at evaluating the impacts of the Scandinavian countries including Greenland with emphasis on hydropower production. The model incorporates many of the features found in individual versions of the HBV model in use in the Nordic countries, and some new ones. It has catchment subdivision in altitude intervals, a simple vegetation parametrization including interception, temperature based evapotranspiration calculation, lake evaporation, lake routing, glacier mass balance simulation, special functions for climate change simulations etc. The user interface is very basic, and the model is primarily intended for research and educational purposes. Commercial versions of the model should be used for operational implementations. 5 refs., 4 figs., 1 tab.

  19. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  20. Innovative energy technologies in energy-economy models: assessing economic, energy and environmental impacts of climate policy and technological change in Germany.

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.

    2007-04-18

    Energy technologies and innovation are considered to play a crucial role in climate change mitigation. Yet, the representation of technologies in energy-economy models, which are used extensively to analyze the economic, energy and environmental impacts of alternative energy and climate policies, is rather limited. This dissertation presents advanced techniques of including technological innovations in energy-economy computable general equilibrium (CGE) models. New methods are explored and applied for improving the realism of energy production and consumption in such top-down models. The dissertation addresses some of the main criticism of general equilibrium models in the field of energy and climate policy analysis: The lack of detailed sectoral and technical disaggregation, the restricted view on innovation and technological change, and the lack of extended greenhouse gas mitigation options. The dissertation reflects on the questions of (1) how to introduce innovation and technological change in a computable general equilibrium model as well as (2) what additional and policy relevant information is gained from using these methodologies. Employing a new hybrid approach of incorporating technology-specific information for electricity generation and iron and steel production in a dynamic multi-sector computable equilibrium model it can be concluded that technology-specific effects are crucial for the economic assessment of climate policy, in particular the effects relating to process shifts and fuel input structure. Additionally, the dissertation shows that learning-by-doing in renewable energy takes place in the renewable electricity sector but is equally important in upstream sectors that produce technologies, i.e. machinery and equipment, for renewable electricity generation. The differentiation of learning effects in export sectors, such as renewable energy technologies, matters for the economic assessment of climate policies because of effects on international

  1. Multi-model comparison of the economic and energy implications for China and India in an international climate regime

    NARCIS (Netherlands)

    Johansson, D.J.A.; Lucas, P.L.; Weitzel, M.; Ahlgren, E.O.; Bazaz, A.B.; Chen, W.; den Elzen, M.G.J.; Ghosh, J.; Grahn, M.; Liang, Q.M.; Peterson, S.; Pradhan, B.K.; van Ruijven, B.J.; Shukla, P.R.; van Vuuren, D.P.; Wei, Y.M.

    2014-01-01

    This paper presents a modeling comparison on how stabilization of global climate change at about 2 °C above the pre-industrial level could affect economic and energy systems development in China and India. Seven General Equilibrium (CGE) and energy system models on either the global or national scal

  2. Achieving stringent climate targets. An analysis of the role of transport and variable renewable energies using energy-economy-climate models

    International Nuclear Information System (INIS)

    technologies photovoltaics (PV) and concentrating solar power (CSP) in REMIND confirms the dominant role of these variable renewable energies for the decarbonization of the power sector. Recent cost reductions have brought PV to cost-competitiveness in regions with high midday electricity demand and high solar irradiance. The representation of system integration costs in REMIND is found to have significant impact on the competition between PV and CSP in the model: the low integration requirements of CSP equipped with thermal storage and hydrogen co-firing make CSP competitive at high shares of variable renewable energies, which leads to substantial deployment of both PV and CSP in low stabilization scenarios. A cross-model study of transport sector decarbonization confirms the earlier finding that the transport sector is not very reactive to intermediate carbon price levels: Until 2050, transport decarbonization lags 10-30 years behind the decarbonization of other sectors, and liquid fuels dominate the transport sector. In the long term, however, transportation does not seem to be an insurmountable barrier to stringent climate targets: As the price signals on CO2 increase further, transport emissions can be reduced substantially - if either hydrogen fuel cells or electromobility open a route to low-carbon energy carriers, or second generation biofuels (possibly in combination with CCS) allow the use of liquid-based transport modes with low emissions. The last study takes up the fundamental question of this thesis and analyses the trade-off between the stringency of a climate target and the resulting techno-economic requirements and costs. We find that transforming the global energy-economy system to keep a two-thirds likelihood of limiting global warming to below 2 C is achievable at moderate economic implications. This result is contingent on the near-term implementation of stringent global climate policies and full availability of several technologies that are still in the

  3. Architecture, energy and climate

    DEFF Research Database (Denmark)

    Lauring, Michael

    2010-01-01

    necessity almost as basic as food and water, and lack of wood has caused illness and migration - scarcity of energy is not a new topic either [Kjærgaard]. The new aspects are that human civilization is in danger of causing severe global climate changes, secondly that we can foresee using up the global non......Architecture has always had to relate to climatic conditions while providing shelter from the sun, the rain, the winds or the cold. This is a main purpose of buildings: To establish an indoor climate different from the outdoor. In the Nordic countries fuels for heating buildings has been a vital......-renewable reserves of oil, gas and uranium, both aspects capable of pulling the carpet under human civilization itself as we know it. The huge energy consumption especially in the northern hemisphere is closely linked to industrialization, and the response from those aware of energy and climate problems has in some...

  4. Clearing the cloudy crystal balls: Hybrid modelling for energy and climate change mitigation scenarios – A case study for Portugal

    OpenAIRE

    Silva, Patrícia Alexandra Fortes da

    2014-01-01

    Dissertação para obtenção do Grau de Doutor em Ambiente Energy and greenhouse gas (GHG) emissions scenarios, generated by energy-economy-environment (E3) models, have been used to explore alternative futures and support energy and climate mitigation policy decisions. The uncertainty carried in these scenarios comes from inherent uncertainty of future conditions, reflected in the models input assumptions, and from the models intrinsic features (e.g. technology bottom-up vs. economic top-...

  5. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is

  6. Evaluation of the energy-climate package with the help of Gemini-E3 Model

    International Nuclear Information System (INIS)

    This article presents an evaluation of the energy-climate package carried out at the request of the Ministry of Sustainable Development (MEEDDAT) by simulating several scenarios on the general calculable equilibrium model GEMINI-E3. The analysis was carried out during the European negotiations in very close collaboration with the services of the Ministry and has thus constituted a useful tool for deciding and defining the position of France, which, besides, chaired the Union in the course of the transition period of the second half of 2008 and was in charge of finding and gaining acceptance of a compromise between all the member countries, while taking into account the aspirations of the professionals most closely involved. As one might guess, the study shows that the easing of constraints through mechanisms of flexibility yields reductions in the cost of European policy on climate change, particularly for the achievement of the main objective, viz. the 20% reduction of greenhouse gas emissions by 2020. This cost is reasonable, although its distribution between countries is neither homogeneous, nor in conformity with concerns over equity. Many indirect effects of the policy on climate change, in particular the gains or losses caused by the modification of the terms of trade, may significantly upset the hierarchy of direct costs. This article also looks into the carbon leakage issue and suggests, in particular, favouring the net leakage concept, this being the discrepancy between the additional emissions in non-annex B countries and those which would have been incurred if production in response to demand from annex B countries relatively insensitive to the policy o climatic change, had not been relocated. Another feature of this study is an evaluation, after the event, of the extent to which the use of a modelling tool has effectively allowed identification of the issues raised in the course of the European negotiation, and to provide relevant answers. (authors)

  7. Achieving stringent climate targets. An analysis of the role of transport and variable renewable energies using energy-economy-climate models

    Energy Technology Data Exchange (ETDEWEB)

    Pietzcker, Robert Carl

    2014-07-01

    technologies photovoltaics (PV) and concentrating solar power (CSP) in REMIND confirms the dominant role of these variable renewable energies for the decarbonization of the power sector. Recent cost reductions have brought PV to cost-competitiveness in regions with high midday electricity demand and high solar irradiance. The representation of system integration costs in REMIND is found to have significant impact on the competition between PV and CSP in the model: the low integration requirements of CSP equipped with thermal storage and hydrogen co-firing make CSP competitive at high shares of variable renewable energies, which leads to substantial deployment of both PV and CSP in low stabilization scenarios. A cross-model study of transport sector decarbonization confirms the earlier finding that the transport sector is not very reactive to intermediate carbon price levels: Until 2050, transport decarbonization lags 10-30 years behind the decarbonization of other sectors, and liquid fuels dominate the transport sector. In the long term, however, transportation does not seem to be an insurmountable barrier to stringent climate targets: As the price signals on CO{sub 2} increase further, transport emissions can be reduced substantially - if either hydrogen fuel cells or electromobility open a route to low-carbon energy carriers, or second generation biofuels (possibly in combination with CCS) allow the use of liquid-based transport modes with low emissions. The last study takes up the fundamental question of this thesis and analyses the trade-off between the stringency of a climate target and the resulting techno-economic requirements and costs. We find that transforming the global energy-economy system to keep a two-thirds likelihood of limiting global warming to below 2 C is achievable at moderate economic implications. This result is contingent on the near-term implementation of stringent global climate policies and full availability of several technologies that are still in

  8. Diffusive Heat Transport in Budyko's Energy Balance Climate Model with a Dynamic Ice Line

    CERN Document Server

    Walsh, James

    2016-01-01

    M. Budyko and W. Sellers independently introduced seminal energy balance climate models in 1969, each with a goal of investigating the role played by positive ice albedo feedback in climate dynamics. In this paper we replace the relaxation to the mean horizontal heat transport mechanism used in the models of Budyko and Sellers with diffusive heat transport. We couple the resulting surface temperature equation with an equation for movement of the edge of the ice sheet (called the ice line), recently introduced by E. Widiasih. We apply the spectral method to the temperature-ice line system and consider finite approximations. We prove there exists a stable equilibrium solution with a small ice cap, and an unstable equilibrium solution with a large ice cap, for a range of parameter values. If the diffusive transport is too efficient, however, the small ice cap disappears and an ice free Earth becomes a limiting state. In addition, we analyze a variant of the coupled diffusion equations appropriate as a model for ...

  9. Modeling the water-energy nexus under changing energy market and climate conditions: a case study in the Italian Alps

    Science.gov (United States)

    Denaro, Simona; Anghileri, Daniela; Castelletti, Andrea; Fumagalli, Elena; Giuliani, Matteo

    2015-04-01

    Climate change and growing population are expected to severely affect freshwater availability by the end of 21th century. Many river basins, especially in the Mediterranean region, are likely to become more prone to periods of reduced water supply, risking considerable impacts on the society, the environment, and the economy, thus emphasizing the need to rethink the way water resources are distributed, managed, and used at the regional and river basin scale. This paradigm shift will be essential to cope with the undergoing global change, characterized by growing water demands and by increasingly uncertain hydrologic regimes. Most of the literature traditionally focused on predicting the impacts of climate change on water resources, while our understanding of the human footprint on the hydrological cycle is limited. For example, changes in the operation of the Alpine hydropower reservoirs induced by socio-economic drivers (e.g., development of renewable energy) have been already observed over the last few years and have produced relevant impacts on multiple water uses due to the altered distribution of water volumes in time and space. Modeling human decisions as well as the links between society and environmental systems becomes key to develop reliable projections on the co-evolution of the coupled human-water systems and deliver robust adaptation strategies. This work contributes a preliminary model-based analysis of the behaviour of hydropower operators under changing energy market and climate conditions. The proposed approach is developed for the San Giacomo-Cancano reservoir system located in the Lake Como catchment. The identification of the current operating policy is supported by input variable selection methods to select the most relevant hydrological and market based drivers to explain the observed release time series. The identified model is then simulated under a set of future scenarios, accounting for both climate and socio-economic change (e

  10. The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis

    International Nuclear Information System (INIS)

    In order to reduce energy-related CO2 emissions different options have been considered: energy efficiency improvements, structural changes to low carbon or zero carbon fuel/technologies, carbon sequestration, and reduction in energy-service demands (useful energy). While efficiency and technology options have been extensively studied within the context of climate change mitigation, this paper addresses the possible role of price-related energy-service demand reduction. For this analysis, the elastic demand version of the TIAM-UCL global energy system model is used in combination with decomposition analysis. The results of the CO2 emission decomposition indicate that a reduction in energy-service demand can play a limited role, contributing around 5% to global emission reduction in the 21st century. A look at the sectoral level reveals that the demand reduction can play a greater role in selected sectors like transport contributing around 16% at a global level. The societal welfare loss is found to be high when the price elasticity of demand is low. - Highlights: → A reduction in global energy-service demand can contribute around 5% to global emission reduction in the 21st century. → The role of demand is a lot higher in transport than in the residential sector. → Contribution of demand reduction is higher in early periods of the 21st century. → Societal welfare loss is found to be high when the price elasticity of demand is low. → Regional shares in residual emissions vary under different elasticity scenarios.

  11. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  12. Dynamic temperature dependence patterns in future energy demand models in the context of climate change

    NARCIS (Netherlands)

    Hekkenberg, M.; Moll, H.C.; Schoot Uiterkamp, A.J.M.

    2009-01-01

    Energy demand depends on outdoor temperature in a 'u' shaped fashion. Various studies have used this temperature dependence to investigate the effects of climate change on energy demand. Such studies contain implicit or explicit assumptions to describe expected socio-economic changes that may affect

  13. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  14. Hybrid modeling to support energy-climate policy: Effects of feed-in tariffs to promote renewable energy in Portugal

    International Nuclear Information System (INIS)

    Feed-in tariffs have been the main policy instrument applied in Portugal for the promotion of electricity produced from renewable energy sources under the EU Directives on energy and climate regulation. In this paper, we provide an empirical impact assessment of the economic and environmental effects of Portugal's FITs policy to promote RES-E generation. Impact assessment of policy instruments plays a crucial role on decision-making process. For numerical simulations, we make use of a hybrid top-down/bottom-up general equilibrium modeling approach, which represents a reliable tool to analyze the complex interactions between economic, energy, and environmental issues related to energy policies. Numerical simulations confirm the empirical evidence that the FITs policy implemented by Portugal was both an effective and a cost-efficient way to increase the generation of electricity from renewable energy sources and thus to achieve the national RES-E target of 45% in 2010. Results show relatively modest macroeconomic impacts indicating potentially low economic adjustment costs. From an environmental perspective, the deployment of renewable energy source results in significant carbon emissions reductions. - Highlights: ► We provide an impact assessment of Portugal's FITs policy to promote RES-E generation. ► For numerical simulations, we make use of a hybrid top-down/bottom-up general equilibrium model. ► Portugal's FITs policy proved to be a cost-efficient way to increase generation of renewable electricity. ► Results show relatively modest macroeconomic effects indicating potentially low economic adjustment costs. ► The deployment of renewable energy sources results in significant carbon emission reductions

  15. Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyu; Clarke, Leon E.; Eom, Jiyong; Kyle, G. Page; Patel, Pralit L.; Kim, Son H.; Dirks, James A.; Jensen, Erik A.; Liu, Ying; Rice, Jennie S.; Schmidt, Laurel C.; Seiple, Timothy E.

    2014-01-01

    As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into climate policy and regional energy system planning. In this study, we presented a detailed building energy model with a U.S. state-level representation, nested in the GCAM integrated assessment framework. We projected state-level building energy demand and its spatial pattern over the century, considering the impact of climate change based on the estimates of heating and cooling degree days derived from downscaled USGS CASCaDE temperature data. The result indicates that climate change has a large impact on heating and cooling building energy and fuel use at the state level, exhibiting large spatial heterogeneity across states (ranges from -10% to +10%). The sensitivity analysis reveals that the building energy demand is subject to multiple key factors, such as the magnitude of climate change, the choice of climate models, and the growth of population and GDP, and that their relative contributions vary greatly across the space. The scale impact in building energy use modeling highlights the importance of constructing a building energy model with the spatially-explicit representation of socioeconomics, energy system development, and climate change. These findings will help the climate-based policy decision and energy system, especially utility planning related to building sector at the U.S. state and regional level facing the potential climate change.

  16. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling

    NARCIS (Netherlands)

    Oerlemans, J.

    1991-01-01

    The sensitivity of the mass balance of the Greenland ice sheet to climate change is studied with an energy-balance model of the ice/snow surface, applied at 200 m elevation intervals for four characteristic regions of the ice sheet. Solar radiation, longwave radiation, turbulent heat fluxes and refr

  17. Energy, environmental and climate assessment with the EPA MARKAL energy system modeling framework

    Science.gov (United States)

    The energy system is comprised of the technologies and fuels that extend from the import or extraction of energy resources (e.g., mines and wells), through the conversion of these resources into useful forms (e.g., electricity and gasoline), to the technologies (e.g., cars, light...

  18. Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model

    Energy Technology Data Exchange (ETDEWEB)

    Visschers, Vivianne H.M., E-mail: vvisschers@ethz.ch [ETH Zurich, Institute for Environmental Decisions (IED), Consumer Behavior, Universitaetsstrasse 22 CHN J 75.2, 8092 Zurich (Switzerland); Keller, Carmen; Siegrist, Michael [ETH Zurich, Institute for Environmental Decisions (IED), Consumer Behavior, Universitaetsstrasse 22 CHN J 75.2, 8092 Zurich (Switzerland)

    2011-06-15

    Several countries are currently discussing whether they will rebuild their nuclear power stations in order to continue this type of energy production in the future. The public, with its own opinion about nuclear power stations, has an influential voice in this discussion. As a result, policy makers and nuclear scientists are interested in the public's perception of nuclear power and in what determines this perception. We therefore examined an explanatory model of the public's acceptance of nuclear power based on a telephone survey among a representative sample in Switzerland. The model included such factors as risk perception, benefit perception, affective feelings, and social trust. Moreover, we distinguished between two types of benefit perception: benefit for the climate and a secure energy supply. The model fitted very well to our data and explained acceptance very well. Acceptance was mainly influenced by perceived benefits for a secure energy supply and, to a lesser extent, both by perceived benefits for the climate and by risk perception. Affective feelings about nuclear power appeared to be a central factor in the model. Implications for communication about nuclear power stations and for further research are discussed. - Highlights: > Explanatory model of determinants of nuclear power acceptance was studied in the representative survey. > Perceived benefits for a secure energy supply had the largest influence on acceptance. > Perceived benefits for the climate seemed less influential on acceptance. > Affect had a central role in the explanatory model. > Implications for communication about nuclear power plants are discussed.

  19. Producing an integrated climate-land-energy-water (CLEW) model for glaciated regions in the developing world

    Science.gov (United States)

    Delman, E. M.; Thomas, B. F.; Famiglietti, J. S.

    2013-12-01

    Growing concern over the impact of climate change on global freshwater resources has spurred a demand for practical, basin-specific adaptation tools. The potential for water stress is particularly inflated in the glaciated watersheds of the developing world; widespread and rapid glacial retreat has forced regional resource managers to reconcile the reality of a diminishing supply with an overall increase in demand, while accounting for the underlying geopolitical and cultural context. An integrated approach, such as the development of a Climate-Land-Energy-Water (CLEW) model that examines relationships among climate, land-use, and the energy and water sectors, can be used to assess the impact of different climate change scenarios on basin sustainability and vulnerability. This study will first constrain the hydrologic budget in the Río Santa Watershed of Peru using satellite imagery, historical and contemporary stream discharge data, hydrologic modeling, climatic data analysis, and isotopic and chemical tracers. Ultimately, glacier retreat will be examined at the watershed scale and be used as an input in the CLEW model framework to assess hydrologic budget scenarios and the subsequent impact on regional economic and environmental sustainability.

  20. Methods for developing time-series climate surfaces to drive topographically distributed energy- and water-balance models

    Science.gov (United States)

    Susong, D.; Marks, D.; Garen, D.

    1999-01-01

    Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited

  1. The tropical water and energy cycles in a cumulus ensemble model. Part 1: Equilibrium climate

    Science.gov (United States)

    Sui, C. H.; Lau, K. M.; Tao, W. K.; Simpson, J.

    1994-01-01

    A cumulus ensemble model is used to study the tropical water and energy cycles and their role in the climate system. The model includes cloud dynamics, radiative processes, and microphysics that incorporate all important production and conversion processes among water vapor and five species of hydrometeors. Radiative transfer in clouds is parameterized based on cloud contents and size distributions of each bulk hydrometeor. Several model integrations have been carried out under a variety of imposed boundary and large-scale conditions. In Part 1 of this paper, the primary focus is on the water and heat budgets of the control experiment, which is designed to simulate the convective - radiative equilibrium response of the model to an imposed vertical velocity and a fixed sea surface temperature at 28 C. The simulated atmosphere is conditionally unstable below the freezing level and close to neutral above the freezing level. The equilibrium water budget shows that the total moisture source, M(sub s), which is contributed by surface evaporation (0.24 M(sub s)) and the large-scale advection (0.76 M(sub s)), all converts to mean surface precipitation bar-P(sub s). Most of M(sub s) is transported verticaly in convective regions where much of the condensate is generated and falls to surface (0.68 bar-P(sub s)). The remaining condensate detrains at a rate of 0.48 bar-P(sub s) and constitutes 65% of the source for stratiform clouds above the melting level. The upper-level stratiform cloud dissipates into clear environment at a rate of 0.14 bar-P(sub s), which is a significant moisture source comparable to the detrained water vapor (0.15 bar-P(sub s)) to the upper troposphere from convective clouds. In the lower troposphere, stratiform clouds evaporate at a rate of 0.41 bar-P(sub s), which is a more dominant moisture source than surface evaporation (0.22 bar-P(sub s)). The precipitation falling to the surface in the stratiform region is about 0.32 bar-P(sub s). The associated

  2. An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change

    Directory of Open Access Journals (Sweden)

    A. Robinson

    2010-04-01

    Full Text Available In order to explore the response of the Greenland ice sheet (GIS to climate change on long (centennial to multi-millennial time scales, a regional energy-moisture balance model has been developed. This model simulates seasonal variations of temperature and precipitation over Greenland and explicitly accounts for elevation and albedo feedbacks. From these fields, the annual mean surface temperature and surface mass balance can be determined and used to force an ice sheet model. The melt component of the surface mass balance is computed here using both a positive degree day approach and a more physically-based alternative that includes insolation and albedo explicitly. As a validation of the climate model, we first simulated temperature and precipitation over Greenland for the prescribed, present-day topography. Our simulated climatology compares well to observations and does not differ significantly from that of a simple parameterization used in many previous simulations. Furthermore, the calculated surface mass balance using both melt schemes falls within the range of recent regional climate model results. For a prescribed, ice-free state, the differences in simulated climatology between the regional energy-moisture balance model and the simple parameterization become significant, with our model showing much stronger summer warming. When coupled to a three-dimensional ice sheet model and initialized with present-day conditions, the two melt schemes both allow realistic simulations of the present-day GIS.

  3. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.;

    and marginal costs of the power producers. Two effects of climate change on the power system were studied: changes in the hydropower production caused by changes in precipitation and temperature, and changes in the electricity demand over the year caused by temperature changes. A rainfall-runoff model......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...

  4. Modelling Interglacial Climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Anker

    Past warm climate states could potentially provide information on future global warming. The past warming was driven by changed insolation rather than an increased greenhouse effect, and thus the warm climate states are expected to be different. Nonetheless, the response of the climate system...... involves some of the same mechanisms in the two climate states. This thesis aims to investigate these mechanisms through climate model experiments. This two-part study has a special focus on the Arctic region, and the main paleoclimate experiments are supplemented by idealized experiments detailing...... the impact of a changing sea ice cover. The first part focusses on the last interglacial climate (125,000 years before present) which was characterized by substantial warming at high northern latitudes due to an increased insolation during summer. The simulations reveal that the oceanic changes dominate...

  5. Comparison of Radiative Energy Flows in Observational Datasets and Climate Modeling

    Science.gov (United States)

    Raschke, Ehrhard; Kinne, Stefan; Rossow, William B.; Stackhouse, Paul W. Jr.; Wild, Martin

    2016-01-01

    This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10Wm(exp -2) each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30Wmexp -2) over trade wind cumulus regions, yet smaller CRE by about -30Wm(exp -2) over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15Wm(exp -2) smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.

  6. The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model

    International Nuclear Information System (INIS)

    There is a revival in the nuclear debate observed in the literature. Several analyses have shown that nuclear technologies may represent very attractive options for greenhouse gas (GHG) emission reductions, especially in countries with high growth projections for energy demand. Our objective is to analyze the role of nuclear energy in long-term climate scenarios using the World-TIMES (The Integrated MARKAL-EFOM System) bottom-up model. World-TIMES is a global model that optimizes the energy system of 15 regions over a 100-year horizon (2000-2100). We present energy and emission results for climate scenarios for two levels of CO2 concentration (450 and 550 ppmv by 2100). We analyze the penetration level of nuclear energy under various sets of assumptions on technology parameters and exogenous constraints on nuclear development to reflect social perceptions. Nuclear energy technologies satisfy a large portion of electricity production in many regions. Most regions experience an energy transition based on advanced oil and gas technologies and hydropower. Other renewable technologies might play a more important role but need further cost reductions or new regulations to penetrate the market in substantial proportions. Carbon sequestration and endogenous demand reductions for energy services are also significantly contributing to reach environmental target

  7. The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, Kathleen [GERAD Research Center, 3000 Chemin de la Cote-Sainte-Catherine, Montreal, Quebec, H3T 2A7 (Canada)], E-mail: kathleen.vaillancourt@gerad.ca; Labriet, Maryse [CIEMAT Research Center, Avenida Complutense 22, 28040 Madrid (Spain); Loulou, Richard [GERAD Research Center, 3000 Chemin de la Cote-Sainte-Catherine, Montreal, Quebec, H3T 2A7 (Canada); McGill University, Faculty of Management, Montreal, Quebec (Canada); Waaub, Jean-Philippe [GERAD Research Center, 3000 Chemin de la Cote-Sainte-Catherine, Montreal, Quebec, H3T 2A7 (Canada); Departement de Geographie, Universite du Quebec a Montreal, Montreal, Quebec (Canada)

    2008-07-15

    There is a revival in the nuclear debate observed in the literature. Several analyses have shown that nuclear technologies may represent very attractive options for greenhouse gas (GHG) emission reductions, especially in countries with high growth projections for energy demand. Our objective is to analyze the role of nuclear energy in long-term climate scenarios using the World-TIMES (The Integrated MARKAL-EFOM System) bottom-up model. World-TIMES is a global model that optimizes the energy system of 15 regions over a 100-year horizon (2000-2100). We present energy and emission results for climate scenarios for two levels of CO{sub 2} concentration (450 and 550 ppmv by 2100). We analyze the penetration level of nuclear energy under various sets of assumptions on technology parameters and exogenous constraints on nuclear development to reflect social perceptions. Nuclear energy technologies satisfy a large portion of electricity production in many regions. Most regions experience an energy transition based on advanced oil and gas technologies and hydropower. Other renewable technologies might play a more important role but need further cost reductions or new regulations to penetrate the market in substantial proportions. Carbon sequestration and endogenous demand reductions for energy services are also significantly contributing to reach environmental target.

  8. The Monash University Interactive Simple Climate Model

    Science.gov (United States)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  9. Nuclear Energy and Climate Change

    OpenAIRE

    Méritet, Sophie; Zaleski, Pierre

    2009-01-01

    The paper will discuss the possibilities of the development of nuclear energy in the world in the midterm and long term. It will correlate the prospects with the emissions of CO2 and the effects on climate change. In particular it will discuss the problems nuclear energy face to make a large contribution of climate change issue.

  10. Green Growth - an Illusion? Energy and Climate Risk: Rethinking our Developmental Models

    International Nuclear Information System (INIS)

    The years go by and international conferences come and go, with their quota of cries of alarm and calls to action to counter climate change. But in reality few large-scale programmes have been launched anywhere in the world involving concrete action to bring down greenhouse gas emissions. As one who has campaigned for many years for policies of energy consumption control, Benjamin Dessus shows here that the energy challenge is as great as it has ever been in a world of expanding populations in which most peoples aspire to reach the developmental level of the northern countries, despite the fact that our climate probably cannot support such a state of affairs. He argues here against a certain number of common suppositions, such as the idea of focussing exclusively on CO2 in the fight against global warming, the need for a continuous economic growth on the order of 2% per annum or excessive faith in market mechanisms to bring down greenhouse gas emissions. He also stresses the ambiguities of so-called 'green' growth and compares different energy conservation scenarios. In this way, he shows that, against a relatively dominant line of reasoning based largely on (at times near-utopian) technological solutions and the continuation of sustained economic growth, there are more effective paths based on individual/collective energy sobriety and a serious slowdown of economic growth in the most developed countries, if not indeed a total halt to that growth (though these are more ambitious in that they require a revolution in the behaviour of the most affluent peoples). He concludes by proposing some courses of action for implementing such a programme in a country like France, showing the extent to which modern modes of life are going to have to change and how urgent it now is to debate these matters, if such change is to be achieved without - excessive - pain. (author)

  11. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    Science.gov (United States)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  12. An energy-balance model with multiply-periodic and quasi-chaotic free oscillations. [for climate forecasting

    Science.gov (United States)

    Bhattacharya, K.; Ghil, M.

    1979-01-01

    A slightly modified version of the one-dimensional time-dependent energy-balance climate model of Ghil and Bhattacharya (1978) is presented. The albedo-temperature parameterization has been reformulated and the smoothing of the temperature distribution in the tropics has been eliminated. The model albedo depends on time-lagged temperature in order to account for finite growth and decay time of continental ice sheets. Two distinct regimes of oscillatory behavior which depend on the value of the albedo-temperature time lag are considered.

  13. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  14. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  15. Development of the multi-scale model for urban climate analysis and evaluation of urban greening effects on energy consumption

    Science.gov (United States)

    Hamano, H.; Nakayama, T.; Fujita, T.; Hori, H.; Tagami, H.

    2009-12-01

    It is necessary to reduce Greenhouse gases (GHG) emissions drastically to stabilize climate change, and Japan is also required to assess its long-term global warming policy. In achieving the low carbon society and sustainable cities, the numerical evaluation of environmental impacts of the application of different technologies and policies was preliminarily examined by utilizing integrative urban environmental model. This research aims to develop the multi-scale model for urban climate analysis and to evaluate the urban greening effects on energy consumption from household and business sectors. It developed the multi-scale model combined the process-based NIES integrated catchment-based eco-hydrology (NICE) model with the meso-scale meteorological model (Regional Atmospheric Modeling System : RAMS) and urban canopy model to estimate the urban climate mitigation effects by introduction of urban heat environmental mitigation technology and scenario. The numerical simulation conducted with the multi-scale level horizontally consisting regional scale (260×260km with 2km grid) and urban area scale (36×26km with 0.2km grid) against the objective area, Kawasaki city of Japan. The urban canopy model predicts the three dimensional atmospheric conditions including anthropogenic heat effect from household, business and factory sectors. Furthermore the tile method applied into the urban canopy model for the improvement of numerical accuracy and detailed land use information in each grid. The validation of this model was conducted by comparison with the observed air temperature of 29 points in entire Kawasaki area from 1st to 31th of August, 2006. From the quantitative validation of model performance, the coefficient of correlation was 0.72 and the root mean square error was 2.99C. The introduction of patch method into urban canopy model made it possible to calculate the each land use effect, and the accuracy of predicted results was improved against the land use area

  16. Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model

    Science.gov (United States)

    Li, Peng; Chou, Ming-Dah; Arking, Albert

    1987-01-01

    The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.

  17. How reliable are climate models?

    OpenAIRE

    Räisänen, Jouni

    2007-01-01

    How much can we trust model-based projections of future anthropogenic climate change? This review attempts to give an overview of this important but difficult topic by using three main lines of evidence: the skill of models in simulating present-day climate, intermodel agreement on future climate changes, and the ability of models to simulate climate changes that have already occurred. A comparison of simulated and observed present-day climates shows good agreement for many basic variables, p...

  18. Application of global weather and climate model output to the design and operation of wind-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Judith [Climate Forecast Applications Network, Atlanta, GA (United States)

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  19. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling

    OpenAIRE

    Oerlemans, J.

    1991-01-01

    The sensitivity of the mass balance of the Greenland ice sheet to climate change is studied with an energy-balance model of the ice/snow surface, applied at 200 m elevation intervals for four characteristic regions of the ice sheet. Solar radiation, longwave radiation, turbulent heat fluxes and refreezing of melt water in the snow pack are treated separately. The daily cycle is fully resolved. For the climatology chosen as input (mainly from work by A. Ohmura), the, mean specific balance prod...

  20. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO2 emissions. (Author)

  1. Energies-climate review (Panorama energies-climate) - issue 2013

    International Nuclear Information System (INIS)

    This issue first analyses what is at stake with energy transition: struggle against climate change, management of energy demand and promotion of energy efficiency, struggle against energy poverty, development of technologies for tomorrow's energy system. It discusses France's position within its European and international environment: European energy-climate objectives, world context of oil and gas markets, European electricity markets, imports and exports, energy bill. It presents and analyses the situation of the oil and gas sector in France: hydrocarbon exploration and production in France, refining activities, substitution fuels, oil infrastructures, oil product retailing, and gas infrastructures. It then presents the French electric system (electricity production, electricity transport and distribution grids and networks, electric system safety) and the industrial sectors involved in de-carbonated energy production: biomass, wind energy, sea energy, geothermal energy, hydroelectricity, nuclear energy, photovoltaic and thermodynamic solar energy. It addresses the industrial sectors involved in a better use of energy: dynamic control of smart energy systems (smart grids, hydrogen, energy storage), CO2 capture and storage, de-carbonated vehicle and its ecosystem. The last part addresses oil product prices, gas prices, electricity prices, the energy tax system, and the arrangements and costs of the support to renewable energy production

  2. Towards a low-carbon future in China's building sector-A review of energy and climate models forecast

    International Nuclear Information System (INIS)

    This article investigates the potentials of energy saving and greenhouse gases emission mitigation offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy-demand and carbon dioxide (CO2) emission forecast scenarios is presented. Energy consumption in buildings could be reduced by 100-300 million tons of oil equivalent (mtoe) in 2030 compared with the business-as-usual (BAU) scenario, which means that 600-700 million metric tons of CO2 emissions could be saved by implementing appropriate energy policies within an adapted institutional framework. The main energy-saving potentials in buildings can be achieved by improving a building's thermal performance and district heating system efficiency. The analyses also reveal that the energy interchange systems are effective especially in the early stage of penetration. Our analysis on the reviewed models suggests that more ambitious efficiency improvement policies in both supply- and demand-side as well as the carbon price should be taken into account in the policy scenarios to address drastic reduction of CO2 emission in the building sector to ensure climate security over the next decades

  3. Econometrically calibrated computable general equilibrium models: Applications to the analysis of energy and climate politics

    Science.gov (United States)

    Schu, Kathryn L.

    Economy-energy-environment models are the mainstay of economic assessments of policies to reduce carbon dioxide (CO2) emissions, yet their empirical basis is often criticized as being weak. This thesis addresses these limitations by constructing econometrically calibrated models in two policy areas. The first is a 35-sector computable general equilibrium (CGE) model of the U.S. economy which analyzes the uncertain impacts of CO2 emission abatement. Econometric modeling of sectors' nested constant elasticity of substitution (CES) cost functions based on a 45-year price-quantity dataset yields estimates of capital-labor-energy-material input substitution elasticities and biases of technical change that are incorporated into the CGE model. I use the estimated standard errors and variance-covariance matrices to construct the joint distribution of the parameters of the economy's supply side, which I sample to perform Monte Carlo baseline and counterfactual runs of the model. The resulting probabilistic abatement cost estimates highlight the importance of the uncertainty in baseline emissions growth. The second model is an equilibrium simulation of the market for new vehicles which I use to assess the response of vehicle prices, sales and mileage to CO2 taxes and increased corporate average fuel economy (CAFE) standards. I specify an econometric model of a representative consumer's vehicle preferences using a nested CES expenditure function which incorporates mileage and other characteristics in addition to prices, and develop a novel calibration algorithm to link this structure to vehicle model supplies by manufacturers engaged in Bertrand competition. CO2 taxes' effects on gasoline prices reduce vehicle sales and manufacturers' profits if vehicles' mileage is fixed, but these losses shrink once mileage can be adjusted. Accelerated CAFE standards induce manufacturers to pay fines for noncompliance rather than incur the higher costs of radical mileage improvements

  4. Utilization of solar energy in cold climate

    OpenAIRE

    Tazeeva, Elena

    2010-01-01

    Solar radiation is a source of life on the Earth. The sun heats the atmosphere and the surface of our planet. Because of the sun winds are blowing, circulation of water is happened, seas and oceans are heated, and plants are growing. Nowadays people know how to transfer solar radiation straightly into energy. The subject of the project is to research the possibilities of utilization of solar energy in cold climate. At this project the model of calculation solar energy is shown. Following ...

  5. Philosophy of climate science part II: modelling climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the second of three parts of an introduction to the philosophy of climate science. In this second part about modelling climate change, the topics of climate modelling, confirmation of climate models, the limits of climate projections, uncertainty and finally model ensembles will be discussed.

  6. Modeling an emissions peak in China around 2030: Synergies or trade-offs between economy, energy and climate security

    Directory of Open Access Journals (Sweden)

    Qi-Min Chai

    2014-12-01

    Full Text Available China has achieved a political consensus around the need to transform the path of economic growth toward one that lowers carbon intensity and ultimately leads to reductions in carbon emissions, but there remain different views on pathways that could achieve such a transformation. The essential question is whether radical or incremental reforms are required in the coming decades. This study explores relevant pathways in China beyond 2020, particularly modeling the major target choices of carbon emission peaking in China around 2030 as China-US Joint Announcement by an integrated assessment model for climate change IAMC based on carbon factor theory. Here scenarios DGS-2020, LGS2025, LBS-2030 and DBS-2040 derived from the historical pathways of developed countries are developed to access the comprehensive impacts on the economy, energy and climate security for the greener development in China. The findings suggest that the period of 2025–2030 is the window of opportunity to achieve a peak in carbon emissions at a level below 12 Gt CO2 and 8.5 t per capita by reasonable trade-offs from economy growth, annually −0.2% in average and cumulatively −3% deviation to BAU in 2030. The oil and natural gas import dependence will exceed 70% and 45% respectively while the non-fossil energy and electricity share will rise to above 20% and 45%. Meantime, the electrification level in end use sectors will increase substantially and the electricity energy ratio approaching 50%, the labor and capital productivity should be double in improvements and the carbon intensity drop by 65% by 2030 compared to the 2005 level, and the cumulative emission reductions are estimated to be more than 20 Gt CO2 in 2015–2030.

  7. Quantifying the "Energy-Return-on-Investment" of desert greening in the Sahara/Sahel using a Global Climate Model

    Science.gov (United States)

    Bowring, S. P. K.; Miller, L. M.; Ganzeveld, L.; Kleidon, A.

    2013-08-01

    "Greening" the world's deserts has been proposed as a way to produce additional food, sequester carbon, and alter the climate of desert regions. Here, we quantify the potential benefits in terms of energetic quantities and compare these to the energetic costs. We then compare these using the metric of Energy-Return-On-Investment (EROI). We apply EROI to a series of global climate model simulations where the arid Sahara/Sahel region is irrigated with various rates of desalinated water to produce biomass. The energy content of this biomass is greater than the energy input rate for a minimum irrigation rate of about 200 mm yr-1 in the winter and 500 mm yr-1 in the summer, thereby yielding an EROI ratio > 1 : 1, expressing energetic sustainability. Quantified annually, the EROI was > 1 : 1 for irrigation rates more than 500 mm yr-1, progressively increasing to a maximum of 1.8 : 1 with 900 mm yr-1, and then decreasing with further increases in the irrigation rate. Including the precipitation feedback arising from changes in moisture-recycling within the study region approximately doubles these EROI ratios. This overall result varies spatially and temporally, so while the entire Sahara/Sahel region is irrigated equally, the western coastal region from June to August had the highest EROI. Other factors would complicate such a large-scale modification of the Earth System, but this sensitivity study concludes that with a required energy input, desert greening may be energetically sustainable. Furthermore, we suggest that this type of EROI-analysis could be applied as a metric to assess a diverse range of human alterations to, and interventions within, the Earth System.

  8. Climate predictions: the chaos and complexity in climate models

    CERN Document Server

    Mihailović, Dragutin T; Arsenić, Ilija

    2013-01-01

    Some issues which are relevant for the recent state in climate modeling have been considered. A detailed overview of literature related to this subject is given. The concept in modeling of climate, as a complex system, seen through Godel's Theorem and Rosen's definition of complexity and predictability is discussed. It is pointed out to occurrence of chaos in computing the environmental interface temperature from the energy balance equation given in a difference form. A coupled system of equations, often used in climate models is analyzed. It is shown that the Lyapunov exponent mostly has positive values allowing presence of chaos in this systems. The horizontal energy exchange between environmental interfaces, which is described by the dynamics of driven coupled oscillators, is analyzed. Their behavior and synchronization, when a perturbation is introduced in the system, as a function of the coupling parameters, the logistic parameter and the parameter of exchange, was studied calculating the Lyapunov expone...

  9. Modeling for climate change in the aspect of nuclear energy priority: Nuclear power energy-based convergence social-humanity analysis

    International Nuclear Information System (INIS)

    Following the industry expansion, the energy consumptions have increased steeply, which have produced the global warming in our lives by carbon production energies. This climate change has provoked significant natural disasters which have damaged to social as well economic matters. Considering the non-carbon production which is the major factor of global warming, nuclear energy is a newly spotlighted source as the green energy source. The climate change factor is affected by the carbon productions made by humans. Then, the nuclear energy increasing rate with the climate change factor affects to the temperature change which is expressed by annual anomaly. Fig. 6 is the protocol for climate change investigation incorporated with the nuclear industry where the climate factor like the temperature is an important index to find out the priority of nuclear energy. The increased environmental pollutions can give the expanding of nuclear energy due to the carbon gas of fossil fuels. This study showed the effectiveness of the nuclear energy by the simulations. The seasonal climate disaster like the very cold winter and very hot summer can increase the necessity of nuclear energy development which could appeal to the general public persons as well as the politicians. So, it is important for the nuclear energy manager to make people understand the importance of the nuclear energy comparing to the oil or coal fuels. The regeneration energy has been considered as the alternative source

  10. Modeling for climate change in the aspect of nuclear energy priority: Nuclear power energy-based convergence social-humanity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Systemix Global Co. Ltd., Seoul, (Korea, Republic of)

    2015-05-15

    Following the industry expansion, the energy consumptions have increased steeply, which have produced the global warming in our lives by carbon production energies. This climate change has provoked significant natural disasters which have damaged to social as well economic matters. Considering the non-carbon production which is the major factor of global warming, nuclear energy is a newly spotlighted source as the green energy source. The climate change factor is affected by the carbon productions made by humans. Then, the nuclear energy increasing rate with the climate change factor affects to the temperature change which is expressed by annual anomaly. Fig. 6 is the protocol for climate change investigation incorporated with the nuclear industry where the climate factor like the temperature is an important index to find out the priority of nuclear energy. The increased environmental pollutions can give the expanding of nuclear energy due to the carbon gas of fossil fuels. This study showed the effectiveness of the nuclear energy by the simulations. The seasonal climate disaster like the very cold winter and very hot summer can increase the necessity of nuclear energy development which could appeal to the general public persons as well as the politicians. So, it is important for the nuclear energy manager to make people understand the importance of the nuclear energy comparing to the oil or coal fuels. The regeneration energy has been considered as the alternative source.

  11. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.

  12. Stochastic Climate Theory and Modelling

    CERN Document Server

    Franzke, Christian L E; Berner, Judith; Williams, Paul D; Lucarini, Valerio

    2014-01-01

    Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations as well as for model error representation, uncertainty quantification, data assimilation and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochast...

  13. Climate and Energy Responsive Housing in Continental Climates

    OpenAIRE

    Nasrollahi, Farshad

    2009-01-01

    zugleich in Printform erschienen im Universitätsverlag der TU Berlin: Nasrollahi, Farshad: Climate and Energy Responsive Housing in Continental Climates : the Suitability of Passive Houses for Iran’s Dry and Cold Climate. - Universitätsverlag der TU Berlin, 2009. - 279 S. : Ill. ISBN 978-3-7983-2144-1

  14. An analytical model for climatic predictions

    International Nuclear Information System (INIS)

    A climatic model based upon analytical expressions is presented. This model is capable of making long-range predictions of heat energy variations on regional or global scales. These variations can then be transformed into corresponding variations of some other key climatic parameters since weather and climatic changes are basically driven by differential heating and cooling around the earth. On the basis of the mathematical expressions upon which the model is based, it is shown that the global heat energy structure (and hence the associated climatic system) are characterized by zonally as well as latitudinally propagating fluctuations at frequencies downward of 0.5 day-1. We have calculated the propagation speeds for those particular frequencies that are well documented in the literature. The calculated speeds are in excellent agreement with the measured speeds. (author). 13 refs

  15. Dynamical Downscaling of Climate Change Impacts on Wind Energy Resources in the Contiguous United States by Using a Limited-Area Model with Scale-Selective Data Assimilation

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2014-01-01

    Full Text Available By using a limited-area model (LAM in combination with the scale-selective data assimilation (SSDA approach, wind energy resources in the contiguous United States (CONUS were downscaled from IPCC CCSM3 global model projections for both current and future climate conditions. An assessment of climate change impacts on wind energy resources in the CONUS region was then conducted. Based on the downscaling results, when projecting into future climate under IPCC’s A1B scenario, the average annual wind speed experiences an overall shift across the CONUS region. From the current climate to the 2040s, the average annual wind speed is expected to increase from 0.1 to 0.2 m s−1 over the Great Plains, Northern Great Lakes Region, and Southwestern United States located southwest of the Rocky Mountains. When projecting into the 2090s from current climate, there is an overall increase in the Great Plains Region and Southwestern United States located southwest of the Rockies with a mean wind speed increase between 0 and 0.1 m s−1, while, the Northern Great Lakes Region experiences an even greater increase from current climate to 2090s than over the first few decades with an increase of mean wind speed from 0.1 to 0.4 m s−1.

  16. Green Growth - an Illusion? Energy and Climate Risk: Rethinking our Developmental Models; La croissance verte, une illusion? Energie et risque climatique: repenser nos modeles de developpement

    Energy Technology Data Exchange (ETDEWEB)

    Dessus, B. [Association Global Chance, 92 - Meudon (France)

    2011-04-15

    The years go by and international conferences come and go, with their quota of cries of alarm and calls to action to counter climate change. But in reality few large-scale programmes have been launched anywhere in the world involving concrete action to bring down greenhouse gas emissions. As one who has campaigned for many years for policies of energy consumption control, Benjamin Dessus shows here that the energy challenge is as great as it has ever been in a world of expanding populations in which most peoples aspire to reach the developmental level of the northern countries, despite the fact that our climate probably cannot support such a state of affairs. He argues here against a certain number of common suppositions, such as the idea of focussing exclusively on CO{sub 2} in the fight against global warming, the need for a continuous economic growth on the order of 2% per annum or excessive faith in market mechanisms to bring down greenhouse gas emissions. He also stresses the ambiguities of so-called 'green' growth and compares different energy conservation scenarios. In this way, he shows that, against a relatively dominant line of reasoning based largely on (at times near-utopian) technological solutions and the continuation of sustained economic growth, there are more effective paths based on individual/collective energy sobriety and a serious slowdown of economic growth in the most developed countries, if not indeed a total halt to that growth (though these are more ambitious in that they require a revolution in the behaviour of the most affluent peoples). He concludes by proposing some courses of action for implementing such a programme in a country like France, showing the extent to which modern modes of life are going to have to change and how urgent it now is to debate these matters, if such change is to be achieved without - excessive - pain. (author)

  17. Investigating the performance and energy saving potential of Chinese commercial building benchmark models for the hot humid and severe cold climate regions

    Science.gov (United States)

    Herrmann, Lesley Anne

    2011-12-01

    The demand for energy in China is growing at an alarming rate. Buildings have become a significant component of the energy-demand mix accounting for nearly one-quarter of the country's total primary energy consumption. This study compares the building code standards for office and hotel buildings in the hot humid and severe cold climate regions of China and the United States. Benchmark office and hotel building models have been developed for Guangzhou and Harbin, China that meets China's minimum national and regional building energy codes with the integration of common design and construction practices for each region. These models are compared to the ASHRAE standard based US reference building models for Houston, Texas and Duluth, Minnesota which have similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmarks using existing US products to identify the primary areas for potential energy savings. In the case of the Harbin models, an economic analysis has also been performed to determine the economic feasibility of alternative building designs. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building energy codes.

  18. Do regional climate models represent regional climate?

    Science.gov (United States)

    Maraun, Douglas; Widmann, Martin

    2014-05-01

    When using climate change scenarios - either from global climate models or further downscaled - to assess localised real world impacts, one has to ensure that the local simulation indeed correctly represents the real world local climate. Representativeness has so far mainly been discussed as a scale issue: simulated meteorological variables in general represent grid box averages, whereas real weather is often expressed by means of point values. As a result, in particular simulated extreme values are not directly comparable with observed local extreme values. Here we argue that the issue of representativeness is more general. To illustrate this point, assume the following situations: first, the (GCM or RCM) simulated large scale weather, e.g., the mid-latitude storm track, might be systematically distorted compared to observed weather. If such a distortion at the synoptic scale is strong, the simulated local climate might be completely different from the observed. Second, the orography even of high resolution RCMs is only a coarse model of true orography. In particular in mountain ranges the simulated mesoscale flow might therefore considerably deviate from the observed flow, leading to systematically displaced local weather. In both cases, the simulated local climate does not represent observed local climate. Thus, representativeness also encompasses representing a particular location. We propose to measure this aspect of representativeness for RCMs driven with perfect boundary conditions as the correlation between observations and simulations at the inter-annual scale. In doing so, random variability generated by the RCMs is largely averaged out. As an example, we assess how well KNMIs RACMO2 RCM at 25km horizontal resolution represents winter precipitation in the gridded E-OBS data set over the European domain. At a chosen grid box, RCM precipitation might not be representative of observed precipitation, in particular in the rain shadow of major moutain ranges

  19. Energy security and climate change: Friends with asymmetric benefits

    Science.gov (United States)

    Chaturvedi, Vaibhav

    2016-06-01

    Combatting climate change is often considered to bring about security of energy supply by reducing reliance on imports. By modelling the impact of pursuing energy security policies, a study now finds that the inverse situation is less advantageous for the global climate.

  20. Sensitivity of the Tropical Atmospheric Energy Balance to ENSO-Related SST Changes: Comparison of Climate Model Simulations to Observed Responses

    Science.gov (United States)

    Robertson, Franklin R.; Fitzjarrald, Dan; Marshall, Susan; Oglesby, Robert; Roads, John; Arnold, James E. (Technical Monitor)

    2001-01-01

    This paper focuses on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. While this natural perturbation to climate is quite distinct from possible anthropogenic changes in climate, adjustments in the tropical water and energy budgets during ENSO may give insight into feedback processes involving water vapor and cloud feedbacks. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). In a companion paper we have presented observational analyses, based principally on space-based measurements which document systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes. Here we analyze several contemporary climate models run with observed SSTs over recent decades and compare SST-induced changes in radiation, precipitation, evaporation, and energy transport to observational results. Among these are the NASA / NCAR Finite Volume Model, the NCAR Community Climate Model, the NCEP Global Spectral Model, and the NASA NSIPP Model. Key disagreements between model and observational results noted in the recent literature are shown to be due predominantly to observational shortcomings. A reexamination of the Langley 8-Year Surface Radiation Budget data reveals errors in the SST surface longwave emission due to biased SSTs. Subsequent correction allows use of this data set along with ERBE TOA fluxes to infer net atmospheric radiative heating. Further analysis of recent rainfall algorithms provides new estimates for precipitation variability in line with interannual evaporation changes inferred from

  1. Impact of Energy and Climate Policies on Electricity Generation - Analysis based on Large-scale Unit Commitment Modeling

    OpenAIRE

    Van den Bergh, Kenneth

    2016-01-01

    Electricity generation systems in Europe are undergoing dramatic changes, largely driven by changing energy and climate policies. In this dissertation, three evolutions are dealt with in particular: (1) the deployment of intermittent renewables in electricity systems such as wind and solar photovoltaics, (2) the integration of electricity markets and (3) the mitigation of CO2 emissions from the electricity sector. The focus of this dissertation is on the technical and cost-related aspects...

  2. Evaluation of climate change impacts on energy demand

    DEFF Research Database (Denmark)

    Taseska, Verica; Markovska, Natasa; Callaway, John M.

    2012-01-01

    Although previous climate change research has documented the effects of linking mitigation and adaptation in the energy sector, there is still a lack of integrated assessment, particularly at national level. This paper may contribute to fill this gap, identifying the interactions between climate...... change and the energy demand in Macedonia. The analyses are conducted using the MARKAL (MARKet ALlocation)-Macedonia model, with a focus on energy demand in commercial and residential sectors (mainly for heating and cooling). Three different cases are developed: 1) Base Case, which gives the optimal...... electricity production mix, taking into account country’s development plans (without climate change); 2) Climate Change Damage Case, which introduces the climate changes by adjusting the heating and cooling degree days inputs, consistent with the existing national climate scenarios; and 3) Climate Change...

  3. Exploring Air-Climate-Energy Impacts with GCAM-USA

    Science.gov (United States)

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change and energy (ACE) goals. My research focuseson integration of impact factors in GCAM-USA and a...

  4. Modeling Earth's Climate

    Science.gov (United States)

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  5. Energy and climate policy in Europe; Energie- und Klimapolitik in Europa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This is a publication of the Baden-Wuerttemberg state center of political education (Landeszentrale fuer Politische Bildung Baden-Wuerttemberg) on energy policy and climate policy in Europe. It discusses the following aspects: Assured supply of energy and climate policy - incompatible goals? Climate policy and energy policy in a global system; Legitimation of the EU by successful energy policy and climate policy; Emission trading: Selling of indulgences or successful instrument? Energy policy in Europe after 1945; From a beacon of hope to a phase-out model? The future of nuclear power; The future of renewable energy sources in Europe. (orig./RHM)

  6. Global comparison of three greenhouse climate models

    NARCIS (Netherlands)

    Bavel, van C.H.M.; Takakura, T.; Bot, G.P.A.

    1985-01-01

    Three dynamic simulation models for calculating the greenhouse climate and its energy requirements for both heating and cooling were compared by making detailed computations for each of seven sets of data. The data sets ranged from a cold winter day, requiring heating, to a hot summer day, requiring

  7. Measure the Climate, Model the City

    Science.gov (United States)

    Boufidou, E.; Commandeur, T. J. F.; Nedkov, S. B.; Zlatanova, S.

    2011-08-01

    Modern large cities are characterized by a high building concentration, little aeration and lack of green spaces. Such characteristics create an urban climate which is different from the climate outside of cities. An example of an urban climate effect is the so-called Urban Heat Island: cities tend to be warmer than the surrounding rural areas. The higher temperature results in an increase in energy consumption since people, especially in summer, use artificial means to cool themselves. Although means of mitigating the UHI effect exist, they are difficult to justify, as knowledge about urban climate is limited, and analysis tools are lacking. This paper presents the work carried during the 2010 MSc Geomatics Synthesis Project. A 3D spatial relational database has been implemented which is meant to act as starting point in the development of a 3D climate-enabled geographical information system. To this end, the database stores 3D geometries representing the built environment and its thematic properties. The database is also able to store measurements of climate parameters, in this case temperature, obtained through mobile sensors. Spatial analyses and queries are supported, allowing users to calculate areas, distances, buffers, add and remove geometries and thematic attributes. The database design is based on the CityGML information model which has been extended to allow the storage of climate parameters relevant to urban climate research.

  8. An Analog Earth Climate Model

    Science.gov (United States)

    Varekamp, J. C.

    2010-12-01

    The earth climate is broadly governed by the radiative power of the sun as well as the heat retention and convective cooling of the atmosphere. I have constructed an analog earth model for an undergraduate climate class that simulates mean climate using these three parameters. The ‘earth’ is a hollow, black, bronze sphere (4 cm diameter) mounted on a thin insulated rod, and illuminated by two opposite optic fibers, with light focused on the sphere by a set of lenses. The sphere is encased in a large double-walled aluminum cylinder (34 cm diameter by 26 cm high) with separate water cooling jackets at the top, bottom, and sides. The cylinder can be filled with a gas of choice at a variety of pressures or can be run in vacuum. The exterior is cladded with insulation, and the temperature of the sphere, atmosphere and walls is monitored with thermocouples. The temperature and waterflow of the three cooling jackets can be monitored to establish the energy output of the whole system; the energy input is the energy yield of the two optic fibers. A small IR transmissive lens at the top provides the opportunity to hook up the fiber of a hyper spectrometer to monitor the emission spectrum of the black ‘earth’ sphere. A pressure gauge and gas inlet-outlet system for flushing of the cell completes it. The heat yield of the cooling water at the top is the sum of the radiative and convective components, whereas the bottom jacket only carries off the radiative heat of the sphere. Undergraduate E&ES students at Wesleyan University have run experiments with dry air, pure CO2, N2 and Ar at 1 atmosphere, and a low vacuum run was accomplished to calibrate the energy input. For each experiment, the lights are flipped on, the temperature acquisition routine is activated, and the sphere starts to warm up until an equilibrium temperature has been reached. The lights are then flipped off and the cooling sequence towards ambient is registered. The energy input is constant for a given

  9. Modelling the water and energy balances of Amazonian rainforest and pasture using Anglo-Brazilian Amazonian climate observation study data

    NARCIS (Netherlands)

    Ashby, M.

    1999-01-01

    A soil-vegetation-atmosphere transfer model, SWAPS, is introduced. The model is based on existing models for two-layer evaporation and energy balance, interception evaporation and unsaturated soil moisture transport. The model includes a physically based parameterisation for the soil surface resista

  10. A Pedagogical "Toy" Climate Model

    CERN Document Server

    Katz, J I

    2010-01-01

    A "toy" model, simple and elementary enough for an undergraduate class, of the temperature dependence of the greenhouse (mid-IR) absorption by atmospheric water vapor implies a bistable climate system. The stable states are glaciation and warm interglacials, while intermediate states are unstable. This is in qualitative accord with the paleoclimatic data. The present climate may be unstable, with or without anthropogenic interventions such as CO$_2$ emission, unless there is additional stabilizing feedback such as "geoengineering".

  11. A Pedagogical "Toy" Climate Model

    OpenAIRE

    Katz, J. I.

    2010-01-01

    A "toy" model, simple and elementary enough for an undergraduate class, of the temperature dependence of the greenhouse (mid-IR) absorption by atmospheric water vapor implies a bistable climate system. The stable states are glaciation and warm interglacials, while intermediate states are unstable. This is in qualitative accord with the paleoclimatic data. The present climate may be unstable, with or without anthropogenic interventions such as CO$_2$ emission, unless there is additional stabil...

  12. Teacher challenges, perceptions, and use of science models in middle school classrooms about climate, weather, and energy concepts

    Science.gov (United States)

    Yarker, Morgan Brown

    Research suggests that scientific models and modeling should be topics covered in K-12 classrooms as part of a comprehensive science curriculum. It is especially important when talking about topics in weather and climate, where computer and forecast models are the center of attention. There are several approaches to model based inquiry, but it can be argued, theoretically, that science models can be effectively implemented into any approach to inquiry if they are utilized appropriately. Yet, it remains to be explored how science models are actually implemented in classrooms. This study qualitatively looks at three middle school science teachers' use of science models with various approaches to inquiry during their weather and climate units. Results indicate that the teacher who used the most elements of inquiry used models in a way that aligned best with the theoretical framework than the teachers who used fewer elements of inquiry. The theoretical framework compares an approach to argument-based inquiry to model-based inquiry, which argues that the approaches are essentially identical, so teachers who use inquiry should be able to apply model-based inquiry using the same approach. However, none of the teachers in this study had a complete understanding of the role models play in authentic science inquiry, therefore students were not explicitly exposed to the ideas that models can be used to make predictions about, and are representations of, a natural phenomenon. Rather, models were explicitly used to explain concepts to students or have students explain concepts to the teacher or to each other. Additionally, models were used as a focal point for conversation between students, usually as they were creating, modifying, or using models. Teachers were not observed asking students to evaluate models. Since science models are an important aspect of understanding science, it is important that teachers not only know how to implement models into an inquiry environment

  13. A Climate System Model, Numerical Simulation and Climate Predictability

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingcun; WANG Huijun; LIN Zhaohui; ZHOU Guangqing; YU Yongqiang

    2007-01-01

    @@ The implementation of the project has lasted for more than 20 years. As a result, the following key innovative achievements have been obtained, ranging from the basic theory of climate dynamics, numerical model development and its related computational theory to the dynamical climate prediction using the climate system models:

  14. Climate and energy challenges for materials science

    Science.gov (United States)

    Gielen, Dolf; Boshell, Francisco; Saygin, Deger

    2016-02-01

    The Paris agreement on climate change represents an important step in the design of a new global framework for the mitigation of greenhouse gas emissions. Energy efficiency and renewable energy are keys for the success of this ambitious agreement.

  15. Model confirmation in climate economics.

    Science.gov (United States)

    Millner, Antony; McDermott, Thomas K J

    2016-08-01

    Benefit-cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth-one of its most important economic components-had questionable predictive power over the 20th century.

  16. Model confirmation in climate economics.

    Science.gov (United States)

    Millner, Antony; McDermott, Thomas K J

    2016-08-01

    Benefit-cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth-one of its most important economic components-had questionable predictive power over the 20th century. PMID:27432964

  17. Wind energy under cold climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-03-01

    There is an increasing interest in wind energy production under different climatic conditions, among them cold climate and icing conditions. More and more wind turbines are being installed in cold climates and even adapted technology has been developed for that environment. Various national activities are going on in at least Finland, Canada, Italy, Sweden, etc. and international collaboration has been carried out within the European Union's Non-nuclear energy programme. Wind turbine operation is affected by both the cold temperatures and the formation of ice on the blades and the supporting structure. Cold temperatures can be handled by material selections known in other technical fields but to prevent icing, new techniques have to be - and have been - developed. Icing affects the reliability of anemometers, which concerns both turbine control and resource estimation, and changes the aerodynamics of the blades, which eventually stops the turbine. In addition, occasional icing events can locally affect public safety. The development of applied technology has entered some different paths and different solutions are tried out. As the applications are entering a commercial phase, these is a request to gather the experiences and monitor the reliability in a form that can be utilised by developers, manufactureres, consultants and other tenderers. The Topical Experts Meeting will focus on site classification, operational experiences, modelling and mesurements of ice induced loads and safety aspects. (EHS)

  18. Investigating the Nexus of Climate, Energy, Water, and Land at Decision-Relevant Scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA)

    Energy Technology Data Exchange (ETDEWEB)

    Kraucunas, Ian P.; Clarke, Leon E.; Dirks, James A.; Hathaway, John E.; Hejazi, Mohamad I.; Hibbard, Kathleen A.; Huang, Maoyi; Jin, Chunlian; Kintner-Meyer, Michael C.W.; Kleese van Dam, Kerstin; Leung, Lai-Yung R.; Li, Hongyi; Moss, Richard H.; Peterson, Marty J.; Rice, Jennie S.; Scott, Michael J.; Thomson, Allison M.; Voisin, Nathalie; West, Tristram O.

    2015-04-01

    The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture, socioeconomics, and energy systems using a flexible coupling approach. The platform can be customized to inform a variety of complex questions and decisions, such as the integrated evaluation of mitigation and adaptation options across a range of sectors. Research into stakeholder decision support needs underpins the platform's application to regional issues, including uncertainty characterization. Ongoing numerical experiments are yielding new insights into the interactions among human and natural systems on regional scales with an initial focus on the energy-land-water nexus in the upper U.S. Midwest. This paper focuses on PRIMA’s functional capabilities and describes some lessons learned to date about integrated regional modeling.

  19. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  20. Wind climate from the regional climate model REMO

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Berg, Jacob;

    2010-01-01

    Selected outputs from simulations with the regional climate model REMO from the Max Planck Institute, Hamburg, Germany were studied in connection with wind energy resource assessment. It was found that the mean wind characteristics based on observations from six mid-latitude stations are well...... described by the standard winds derived from the REMO pressure data. The mean wind parameters include the directional wind distribution, directional and omni-directional mean values and Weibull fitting parameters, spectral analysis and interannual variability of the standard winds. It was also found that...

  1. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems

    Science.gov (United States)

    Wild, Martin; Folini, Doris; Henschel, Florian; Müller, Björn

    2015-04-01

    Traditionally, for the planning and assessment of solar energy systems, the amount of solar radiation (sunlight) incident on the Earth's surface is assumed to be constant over the years. However, with changing climate and air pollution levels, solar resources may no longer be stable over time and undergo substantial decadal changes. Observational records covering the past decades confirm long-term changes in this quantity. Here we examine, how the latest generation of climate models used for the 5th IPCC report projects potential changes in surface solar radiation over the coming decades, and how this may affect, in combination with the expected greenhouse warming, solar power output from photovoltaic (PV) systems. For this purpose, projections up to the mid 21th century from 39 state of the art climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analysed globally and for selected key regions with major solar power production capacity. The large model ensemble allows to assess the degree of consistency of their projections. Models are largely consistent in the sign of the projected changes in solar radiation under cloud-free conditions as well as in surface temperatures over most of the globe, while still reasonably consistent over a considerable part of the globe in the sign of changes in cloudiness and associated changes in solar radiation. A first order estimate of the impact of solar radiation and temperature changes on energy yields of PV systems under the RPC8.5 scenario indicates statistically significant decreases in PV outputs in large parts of the world, but notable exceptions with positive trends in parts of Europe and the South-East of China. Projected changes between 2006 and 2049 under the RCP8.5 scenario overall are on the order of 1 % per decade for horizontal planes, but may be larger for tilted or tracked planes as well as on shorter (decadal) timescales. Related References: Wild, M., Folini, D., Henschel, F., and M

  2. Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technological, and socioeconomic futures in a regional integrated-assessment model

    International Nuclear Information System (INIS)

    Improving the energy efficiency of building stock, commercial equipment, and household appliances can have a major positive impact on energy use, carbon emissions, and building services. Sub-national regions such as the U.S. states wish to increase energy efficiency, reduce carbon emissions, or adapt to climate change. Evaluating sub-national policies to reduce energy use and emissions is difficult because of the large uncertainties in socioeconomic factors, technology performance and cost, and energy and climate policies. Climate change itself may undercut such policies. However, assessing all of the uncertainties of large-scale energy and climate models by performing thousands of model runs can be a significant modeling effort with its accompanying computational burden. By applying fractional–factorial methods to the GCAM-USA 50-state integrated-assessment model in the context of a particular policy question, this paper demonstrates how a decision-focused sensitivity analysis strategy can greatly reduce computational burden in the presence of uncertainty and reveal the important drivers for decisions and more detailed uncertainty analysis. - Highlights: • We evaluate building energy codes and standards for climate mitigation. • We use an integrated assessment model and fractional factorial methods. • Decision criteria are energy use, CO2 emitted, and building service cost. • We demonstrate sensitivity analysis for three states. • We identify key variables to propagate with Monte Carlo or surrogate models

  3. Climate and Energy Policy in Hungary

    Directory of Open Access Journals (Sweden)

    Maria Csete

    2012-02-01

    Full Text Available The energy problem has been redefined as one of the most important elements of sustainable development by climate change, adaptation and mitigation. Meeting energy needs is always a current issue in Hungary, irrespective of climate change because of the country’s high dependency on oil and gas imports, limited opportunities to replace them with domestic production, and the pollution associated with using fossil energy sources. Increasing effectiveness and saving energy can provide relatively short-term solutions with bearable costs and a relatively quick return on investment. The aim of the present paper is to give an overview about the climate and energy policy in Hungary with a special focus on the new energy strategy. Energy policy has a pivotal role in the economic recovery plan of the Hungarian government. The National Energy Strategy 2030 taking shape in Hungary takes climate policy into account with respect to adaptation and mitigation and lists renewable energy sources as the second most important tool for achieving strategic goals. As in most countries, it is also possible in Hungary to introduce climate strategy measures with zero social costs. The expedient management of climate change requires the combination of prevention, adaptation and dissemination initiatives. Strategies must meet a dual requirement: they must face the economic risks associated with premature measures, while also considering the adverse effects of delay.

  4. Hierarchical Climate Modeling for Cosmoclimatology

    Science.gov (United States)

    Ohfuchi, Wataru

    2010-05-01

    It has been reported that there are correlations among solar activity, amount of galactic cosmic ray, amount of low clouds and surface air temperature (Svensmark and Friis-Chistensen, 1997). These correlations seem to exist for current climate change, Little Ice Age, and geological time scale climate changes. Some hypothetic mechanisms have been argued for the correlations but it still needs quantitative studies to understand the mechanism. In order to decrease uncertainties, only first principles or laws very close to first principles should be used. Our group at Japan Agency for Marine-Earth Science and Technology has started modeling effort to tackle this problem. We are constructing models from galactic cosmic ray inducing ionization, to aerosol formation, to cloud formation, to global climate. In this talk, we introduce our modeling activities. For aerosol formation, we use molecular dynamics. For cloud formation, we use a new cloud microphysics model called "super droplet method". We also try to couple a nonhydrostatic atmospheric regional cloud resolving model and a hydrostatic atmospheric general circulation model.

  5. Climate system model, numerical simulation and climate predictability

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Thanks to its work of past more than 20 years,a research team led by Prof.ZENG Qingcun and Prof.WANG Huijun from the CAS Institute of Atmospheric Physics (IAP) has scored innovative achievements in their studies of basic theory of climate dynamics,numerical model development,its related computational theory,and the dynamical climate prediction using the climate system models.Their work received a second prize of the National Award for Natural Sciences in 2005.

  6. Energy budget increases reduce mean streamflow more than snow–rain transitions: using integrated modeling to isolate climate change impacts on Rocky Mountain hydrology

    Science.gov (United States)

    Foster, Lauren M.; Bearup, Lindsay A.; Molotch, Noah P.; Brooks, Paul D.; Maxwell, Reed M.

    2016-04-01

    In snow-dominated mountain regions, a warming climate is expected to alter two drivers of hydrology: (1) decrease the fraction of precipitation falling as snow; and (2) increase surface energy available to drive evapotranspiration. This study uses a novel integrated modeling approach to explicitly separate energy budget increases via warming from precipitation phase transitions from snow to rain in two mountain headwaters transects of the central Rocky Mountains. Both phase transitions and energy increases had significant, though unique, impacts on semi-arid mountain hydrology in our simulations. A complete shift in precipitation from snow to rain reduced streamflow between 11% and 18%, while 4 °C of uniform warming reduced streamflow between 19% and 23%, suggesting that changes in energy-driven evaporative loss, between 27% and 29% for these uniform warming scenarios, may be the dominant driver of annual mean streamflow in a warming climate. Phase changes induced a flashier system, making water availability more susceptible to precipitation variability and eliminating the runoff signature characteristic of snowmelt-dominated systems. The impact of a phase change on mean streamflow was reduced as aridity increased from west to east of the continental divide.

  7. The Climate Literacy and Energy Awareness Network (CLEAN) - Enabling Collective Impact on Climate and Energy Literacy

    Science.gov (United States)

    Ledley, T. S.; Gold, A. U.; Niepold, F., III

    2015-12-01

    Numerous climate change education efforts exist that aim to enable citizens and society to make informed decisions addressing environmental and societal issues arising from climate change. To extend the reach and impact of these efforts, it is necessary to coordinate them in order to reach a greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network, as an example of a rudimentary form of such an organization, engages in continuous communication through weekly teleconferences, an active listserv and other activities to share resources, activities, and ideas that is moving the network to develop common understandings that will likely lead to the development of effective collective impact on increasing climate and energy literacy. A Spring 2013 survey of the CLEAN Network provided insight as to how the CLEAN Network was addressing member needs and identified what other support was needed to increase its collective impact. In addition, community discussions identified the components needed for an effective overarching backbone support organization. A Fall 2015 survey of the CLEAN Network and the broader climate change education community is being conducted to examine 1) how the CLEAN Network make up and needs have evolved and how they compare to the broader community, and 2) to gather further input into the shaping of the elements of collective impact on climate and energy literacy. This presentation will describe the results from the 2015 survey and compare them to the 2013 survey and the community discussions. This will include describing the CLEAN Network's evolving professional make up, engagement of its members network activities, the importance of the network to members; how the findings compare with the broader climate

  8. Towards a calibration of building energy models: A case study from the Spanish housing stock in the Mediterranean climate

    Directory of Open Access Journals (Sweden)

    Blázquez, T.

    2015-12-01

    Full Text Available Current energy policies focus on retrofitting to achieve Horizon 2020 aims, especially concerning the residential stock constructed before the first thermal regulations. According to this, improving energy efficiency and interior comfort conditions in buildings must be supported by the knowledge of its real energy performance. Due to uncertainty and the lack of information on the current energy performance of housing and its real operational conditions, discrepancies between the results obtained and the measured data arise. Housing monitoring under real occupational conditions become essential for a better understanding of environmental behavior of residential building stock. Our aim is to show the calibration process, based on monitoring data obtained from a group of dwellings of national heritage interest built in the 1950s in Seville (a Mediterranean climate city. Calibration allows simulation results to approximate to current environmental conditions, aiming to predict and optimize the potential for subsequent environmental and energy implementation.Las actuales políticas energéticas europeas proponen la rehabilitación para poder alcanzar los objetivos del Horizonte 2020, especialmente del parque residencial construido antes de las primeras normativas térmicas, debiendo cimentarse la mejora en eficiencia energética y confort en el conocimiento de su comportamiento energético real. Aparecen divergencias entre resultados reales y de simulación debido a las incertidumbres y falta de información sobre el estado actual y las condiciones reales de uso y operacionales. La monitorización bajo condiciones de ocupación real resulta imprescindible para conocer el comportamiento energético y ambiental del parque residencial. Nuestro objetivo es mostrar el proceso de calibración de modelos energéticos, a partir de la monitorización, de unas viviendas de interés patrimonial construidas en los años cincuenta en Sevilla, ciudad de clima

  9. Wind-Climate Estimation Based on Mesoscale and Microscale Modeling: Statistical-Dynamical Downscaling for Wind Energy Applications

    DEFF Research Database (Denmark)

    Badger, Jake; Frank, Helmut; Hahmann, Andrea N.;

    2014-01-01

    turbine site. The method is divided into two parts: 1) preprocessing, in which the configurations for the mesoscale model simulations are determined, and 2) postprocessing, in which the data from the mesoscale simulations are prepared for wind energy application. Results from idealized mesoscale modeling...... experiments for a challenging wind farm site in northern Spain are presented to support the preprocessing method. Comparisons of modeling results with measurements from the same wind farm site are presented to support the postprocessing method. The crucial element in postprocessing is the bridging...... of mesoscale modeling data to microscale modeling input data, via a so-called generalization method. With this method, very high-resolution wind resource mapping can be achieved....

  10. Smart energy strategies. Meeting the climate change challenge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This book published by the Energy Science Center (ESC) at the Swiss Federal Institute of Technology (ETH) in Zurich presents a wide selection of reports on how the challenge of dealing with climate change can be met. The 69 reports included cover a wide range of topics ranging from traffic modelling, biofuels and electrification of power trains, through demand-side management, electricity production and distribution and life cycle assessment, to the integration of wind power and renewable energy technologies. Also, climate policy matters are dealt with as are nano-technology applications in the energy area and the integration of energy conversion and production processes and waste management.

  11. Smart energy strategies. Meeting the climate change challenge

    International Nuclear Information System (INIS)

    This book published by the Energy Science Center (ESC) at the Swiss Federal Institute of Technology (ETH) in Zurich presents a wide selection of reports on how the challenge of dealing with climate change can be met. The 69 reports included cover a wide range of topics ranging from traffic modelling, biofuels and electrification of power trains, through demand-side management, electricity production and distribution and life cycle assessment, to the integration of wind power and renewable energy technologies. Also, climate policy matters are dealt with as are nano-technology applications in the energy area and the integration of energy conversion and production processes and waste management

  12. Coupling Climate Models and Forward-Looking Economic Models

    Science.gov (United States)

    Judd, K.; Brock, W. A.

    2010-12-01

    Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward

  13. EU energy and climate change strategy

    International Nuclear Information System (INIS)

    This paper will summarise the European Strategy for Energy and Climate Change. In current international negotiations Europe has proposed a 20% reduction in GHG (greenhouse gases) in the developed countries by 2020 or 30% should there be an international agreement in the domain. However it is important to define measures to achieve the targets. One of the principal tools is to improve energy efficiency under the energy efficiency action plan, which will help to achieve a 20% energy saving by 2020. On the other hand, the amount of energy from renewable sources consumed in Europe will have to rise from its current level of 8.5%–20% by 2020. These are ambitious but achievable targets. Nonetheless, these can only be achieved through strong investment in areas of the knowledge triangle which strengthens research and innovation in the energy sector in Europe. The paper covers European Energy and Climate Change Policy, the European Strategic Energy Technology plan, the consequences of the Lisbon Treaty, European and national Road maps to a low carbon economy, the Energy Efficiency Plan for 2011 and finishes with a brief consideration of the EU’s energy infrastructure priorities. -- Highlights: ► This paper summarises the European Strategy for Energy and Climate Change. ► Reduction of GHG emissions by 30%-international agreement or −20% without agreement. ► Use of 20% of renewable energies by 2020. ► Increase of energy efficiency of 20% by 2020. ► Consolidating of the internal energy market.

  14. A Study of Spatio-Temporal Variability in Future Wind Energy over the Korean Peninsula Using Regional Climate Model Ensemble Projections

    Science.gov (United States)

    KIM, Y.; Lim, Y. J.; Kim, Y. H.; Kim, B. J.

    2015-12-01

    The impacts of climate change on wind speed, wind energy density (WED), and potential electronic production (PEP) over the Korean peninsula have been investigated by using five regional climate models (HadGEM3-RA, RegCM, WRF, GRIMs and MM5) ensemble projection data. HadGEM2-AO based two RCP scenarios (RCP4.5/8.5) data have been used for initial and boundary condition to all RCMs. Wind energy density and its annual and seasonal variability have been estimated based on monthly near-surface wind speeds, and the potential electronic production and its change have been also analyzed. As a result of comparison ensemble models based annual mean wind speed for 25-yr historical period (1981-2005) to the ERA-interim, it is shown that all RCMs overestimate near-surface wind speed compared to the reanalysis data but the results of HadGEM3-RA are most comparable. The changes annual and seasonal mean of WED and PEP for the historical period and comparison results to future projection (2021-2050) will be presented in this poster session. We also scrutinize the changes in mean sea level pressure and mean sea level pressure gradient in driving GCM/RCM as a factor inducing the variations. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.

  15. Energy policies avoiding a tipping point in the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Olivier [GERAD and Department of Management Sciences, HEC Montreal, Montreal (Qc) (Canada); Edwards, Neil R. [Earth and Environmental Sciences, CEPSAR, Open University, Milton Keynes MK7 6AA (United Kingdom); Knutti, Reto [Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich (Switzerland); Stocker, Thomas F. [Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern (Switzerland)

    2011-01-15

    Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems. (author)

  16. Improved predictive ability of climate-human-behaviour interactions with modifications to the COMFA outdoor energy budget model

    Science.gov (United States)

    Vanos, J. K.; Warland, J. S.; Gillespie, T. J.; Kenny, N. A.

    2012-11-01

    The purpose of this paper is to implement current and novel research techniques in human energy budget estimations to give more accurate and efficient application of models by a variety of users. Using the COMFA model, the conditioning level of an individual is incorporated into overall energy budget predictions, giving more realistic estimations of the metabolism experienced at various fitness levels. Through the use of VO2 reserve estimates, errors are found when an elite athlete is modelled as an unconditioned or a conditioned individual, giving budgets underpredicted significantly by -173 and -123 W m-2, respectively. Such underprediction can result in critical errors regarding heat stress, particularly in highly motivated individuals; thus this revision is critical for athletic individuals. A further improvement in the COMFA model involves improved adaptation of clothing insulation ( I cl), as well clothing non-uniformity, with changing air temperature ( T a) and metabolic activity ( M act). Equivalent T a values (for I cl estimation) are calculated in order to lower the I cl value with increasing M act at equal T a. Furthermore, threshold T a values are calculated to predict the point at which an individual will change from a uniform I cl to a segmented I cl (full ensemble to shorts and a T-shirt). Lastly, improved relative velocity ( v r) estimates were found with a refined equation accounting for the degree angle of wind to body movement. Differences between the original and improved v r equations increased with higher wind and activity speeds, and as the wind to body angle moved away from 90°. Under moderate microclimate conditions, and wind from behind a person, the convective heat loss and skin temperature estimates were 47 W m-2 and 1.7°C higher when using the improved v r equation. These model revisions improve the applicability and usability of the COMFA energy budget model for subjects performing physical activity in outdoor environments

  17. Climate change and energy: The implications for the Spanish case

    International Nuclear Information System (INIS)

    This paper examines the mutual implications between the climate change problem and the actual energy-at-a-crossroads situation of the unsustainable world energy model. The implications for the Spanish case are studied as a case example. The paper provides a brief review of the scientific evidence on climate change, analyzes the causes of the present energy dilemma and characterizes the problem to be addressed. The principal challenge for the future climate regime is to identify the nature and level of commitment that will provide sufficient incentives for all countries, with such a diversity of interests. The paper also exposes the most plausible framework for the future climate regime, the basic components of such a regime, the role to be played by the major stake holders and some guidelines for future negotiations. (Author)

  18. Recent changes in energy and freshwater budgets for the Godthåbsfjord catchment simulated in a 5 km regional climate model

    DEFF Research Database (Denmark)

    Langen, P. L.; Mottram, R.; Christensen, J. H.;

    2014-01-01

    Freshwater input to the Godthåbsfjord (Southwest Greenland) is analyzed with special attention on the melt and runoff from the ice sheet. We use the high resolution (5.5 km) HIRHAM5 regional climate model covering all of Greenland, forced by the ERA-Interim reanalysis at the lateral boundaries over......-meteorological observations both on and off the ice sheet and is found to represent weather variability well. During this period, the ice sheet up to elevations of 2000 m experienced increasing energy input from the surface turbulent heat flux and the ice sheet above 1000 m experienced increasing energy input due...... to shortwave radiation. Large-scale trends show an increase in atmospheric pressure over North Greenland, southerly wind anomalies and declining cloudiness. These factors contributed to increased summer melt, which outweighed changes in annual accumulation, resulting in a decline in surface mass balance (SMB...

  19. Global Energy Security under Different Climate Policies, GDP Growth Rates and Fossil Resource Availabilities

    OpenAIRE

    Cherp, Aleh; Jewell, Jessica; Vinichenko, Vadim; BAUER, NICO; De Cian, Enrica

    2014-01-01

    Energy security is one of the main drivers of energy policies. Understanding energy security implications of long-term scenarios is crucial for informed policy making, especially with respect to transformations of energy systems required to stabilize climate change. This paper evaluates the global energy security under several global energy scenarios, modeled in the REMIND and WITCH integrated assessment models. The paper examines the effects of long-term climate policies on energy security u...

  20. Major economies Forum on energy and climate

    International Nuclear Information System (INIS)

    The Major Economies Forum is intended to facilitate an open dialogue among major developed and developing economies, help generate the political leadership necessary to achieve a successful outcome at the United Nations climatic change conference in Copenhagen, and advance the exploration of concrete initiatives and joint ventures that increase the supply of clean energy while cutting greenhouse gas emissions. The Forum's second preparatory meeting was held in Paris in May 2009, mainly focused on greenhouse gas emissions reduction actions and objectives, the diffusion of clean technologies, the financing of activities for climate protection and adaptation to climatic change impacts

  1. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model

    International Nuclear Information System (INIS)

    The sensible and latent heat fluxes, representatives of the physical exchange processes of energy and water between land and air, are the two crucial variables controlling the surface energy partitioning related to temperature and humidity. The net primary production (NPP), the major carbon flux exchange between vegetation and atmosphere, is of great importance for the terrestrial ecosystem carbon cycle. The fluxes are simulated by a two-way coupled model, Atmosphere-Vegetation Interaction Model-Global Ocean-Atmosphere-Land System Model (AVIM-GOALS) in which the surface physical and physiological processes are coupled with general circulation model (GCM), and the global spatial and temporal variation of the fluxes is studied. The simulated terrestrial surface physical fluxes are consistent with the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA40) in the global distribution, but the magnitudes are generally 20-40 W/m2 underestimated. The annual NPP agrees well with the International Geosphere Biosphere Programme (IGBP) NPP data except for the lower value in northern high latitudes. The surface physical fluxes, leaf area index (LAI) and NPP of the global mid-latitudes, especially between 30 deg N-50 deg N, show great variation in annual oscillation amplitudes. And all physical and biological fields in northern mid-latitudes have the largest seasonality with a high statistical significance of 99.9%. The seasonality of surface physical fluxes, LAI and NPP are highly correlated with each other. The meridional three-peak pattern of seasonal change emerges in northern mid-latitudes, which indicates the interaction of topographical gradient variation of surface fluxes and vegetation phenology on these three latitudinal belts

  2. Development of a wind energy climate service based on seasonal climate prediction

    Science.gov (United States)

    Torralba, Veronica; Doblas-Reyes, Francisco J.; Cortesi, Nicola; Christel, Isadora; González-Reviriego, Nube; Turco, Marco; Soret, Albert

    2016-04-01

    Climate predictions tailored to the wind energy sector represent an innovation to better understand the future variability of wind energy resources. At seasonal time scales current energy practices employ a simple approach based on a retrospective climatology. Instead, probabilistic climate forecasting can better address specific decisions that affect energy demand and supply, as well as decisions relative to the planning of maintenance work. Here we illustrate the advantages that seasonal climate predictions might offer to a wide range of users and discuss the best way to provide them with this information. We use the predictions of 10-meter wind speed from the ECMWF seasonal forecast System 4 (S4). S4, as every operational seasonal forecast system, is affected by a range of biases. Hence, to produce usable climate information from the predictions, different bias-adjustment techniques and downscaling methods should be applied, their choice depending on the user requirements. An ensemble of post-processing methods is described, and their relative merit evaluated as a function of their impact of the characteristics of the forecast error and the usability of the resulting forecasts. Both reanalyses (ERA-Interim, JRA-55, MERRA) and in-situ observations are used as observational references. As an illustration of the downstream impact of the forecasts as a source of climate information, the post-processed seasonal predictions of wind speed will be used as input in a transfer model that translates climate information into generated power at different spatial scales.

  3. Climate and energy use in glazed spaces

    Energy Technology Data Exchange (ETDEWEB)

    Wall, M.

    1996-11-01

    One objective of the thesis has been to elucidate the relationship between building design and the climate, thermal comfort and energy requirements in different types of glazed spaces. Another object has been to study the effect of the glazed spaces on energy requirements in adjacent buildings. It has also been the object to develop a simple calculation method for the assessment of temperatures and energy requirements in glazed spaces. The research work has mainly comprised case studies of existing buildings with glazed spaces and energy balance calculations using both the developed steady-state method and a dynamic building energy simulation program. Parameters such as the geometry of the building, type of glazing, orientation, thermal inertia, airtightness, ventilation system and sunshades have been studied. These parameters are of different importance for each specific type of glazed space. In addition, the significance of each of these parameters varies for different types of glazed spaces. The developed calculation method estimates the minimum and mean temperature in glazed spaces and the energy requirements for heating and cooling. The effect of the glazed space on the energy requirement of the surrounding buildings can also be estimated. It is intended that the method should be applied during the preliminary design stage so that the effect which the design of the building will have on climate and energy requirement may be determined. The method may provide an insight into how glazed spaces behave with regard to climate and energy. 99 refs

  4. Energy security and climate policy. Assessing interactions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-28

    World energy demand is surging. Oil, coal and natural gas still meet most global energy needs, creating serious implications for the environment. One result is that CO2 emissions, the principal cause of global warming, are rising. This new study underlines the close link between efforts to ensure energy security and those to mitigate climate change. Decisions on one side affect the other. To optimise the efficiency of their energy policy, OECD countries must consider energy security and climate change mitigation priorities jointly. The book presents a framework to assess interactions between energy security and climate change policies, combining qualitative and quantitative analyses. The quantitative analysis is based on the development of energy security indicators, tracking the evolution of policy concerns linked to energy resource concentration. The 'indicators' are applied to a reference scenario and CO2 policy cases for five case-study countries: The Czech Republic, France, Italy, the Netherlands, and the United Kingdom. Simultaneously resolving energy security and environmental concerns is a key challenge for policy makers today. This study helps chart the course.

  5. Energy and Climate Change (Executive Summary)

    International Nuclear Information System (INIS)

    The world needs urgently to develop a coherent and practical approach to reducing greenhouse gas (ghg) emissions. Energy professionals from across the world have been examining climate change policies to see what works in promoting sustainable development. The Intergovernmental Panel on Climate Change has recently confirmed that the evidence for global warming is unequivocal and the Stern Report has argued that early action to combat climate change makes economic sense. However, existing efforts are clearly insufficient - most countries with targets under Kyoto Protocol are not on track to meeting them and many countries do not have Kyoto targets. As a result, ghg emissions are still rising and are forecast to go on doing so for decades to come. The problem is not a lack of policies to deal with climate change - some thousands of policies have been introduced, both by countries within the Kyoto system and those outside, and the effort is under way to develop a successor to the Kyoto Protocol. Yet so far those policies are not proving adequate to the scale of the problem. There is a pressing need to understand why they are failing and to implement measures that are more effective in reducing emissions, particularly from the energy sector, which accounts for around two thirds of total ghg emissions. The WEC has therefore undertaken a Study of Energy and Climate Change, drawing on the collective experience and resources of energy professionals worldwide. It has looked in detail at the impact of existing climate change measures and how effective they have been in promoting sustainable development, using the criteria of the three A's - accessibility (to affordable energy); acceptability (of the energy sources used, particularly in environmental terms); and availability (how secure and reliable are those sources?). It is important to remember that sustainable development is not only about the environment - policies which fail to contribute to economic and social

  6. Soil moisture and root water uptake in climate models. Research Programme Climate Changes Spatial Planning

    NARCIS (Netherlands)

    Dam, van J.C.; Metselaar, K.; Wipfler, E.L.; Feddes, R.A.; Meijgaard, van E.; Hurk, van den B.

    2011-01-01

    More accurate simulation of the energy and water balance near the Earth surface is important to improve the performance of regional climate models. We used a detailed ecohydrological model to rank the importance of vegetation and soil factors with respect to evapotranspiration modeling. The results

  7. Climate change, energy, sustainability and pavements

    CERN Document Server

    Gopalakrishnan, Kasthurirangan; Harvey, John

    2014-01-01

    Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently.  To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world.  As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design,

  8. Resolution on the program energy-climate; Resolution sur le paquet energie-climat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This document presents the resolutions proposed in the resolution proposition n. 1261 and concerning the european Commission program on the energy policies and the climate change. Twelve resolution are presented on the energy sources development, the energy efficiency, the energy economy and the carbon taxes. (A.L.B.)

  9. Parameter sensitivity of climate models and climate driven ecological systems

    NARCIS (Netherlands)

    Moolenaar, H.E.

    2006-01-01

    Uncertainty in the outcome of numerical models of physical and biological processes, such as the climate and ecological systems, is widely recognized. One contributing factor is uncertainty in model parameters. Because of this uncertainty, a range of model outcomes is usually given. This might obstr

  10. Climate Modeling: Ocean Cavities below Ice Shelves

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Mark Roger [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-09-12

    The Accelerated Climate Model for Energy (ACME), a new initiative by the U.S. Department of Energy, includes unstructured-mesh ocean, land-ice, and sea-ice components using the Model for Prediction Across Scales (MPAS) framework. The ability to run coupled high-resolution global simulations efficiently on large, high-performance computers is a priority for ACME. Sub-ice shelf ocean cavities are a significant new capability in ACME, and will be used to better understand how changing ocean temperature and currents influence glacial melting and retreat. These simulations take advantage of the horizontal variable-resolution mesh and adaptive vertical coordinate in MPAS-Ocean, in order to place high resolution below ice shelves and near grounding lines.

  11. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  12. A Regional Climate Model Evaluation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a packaged data management infrastructure for the comparison of generated climate model output to existing observational datasets that includes...

  13. The Paris-Nairobi climate initiative. Access to clean energy for all in Africa and countries vulnerable to climate change. Access to energy, sustainable development and climate change

    International Nuclear Information System (INIS)

    The first part of this report highlights the importance of a universal access to energy, the role of public policies and renewable energies, the need to implement sustainable economic models for energy services, and indicates the major objectives and essential actions for these purposes. The second part outlines the weakness of electricity production in Africa, the degradation of the energy mix balance, the vulnerability to climate change, and the fact that Africa, like other countries vulnerable to climate change, possess huge and unexploited renewable energy resources (biomass, hydroelectricity, geothermal, solar, wind). The third part proposes an approach to energy services by developing sustainable cooking, supplying energy to support rural development and to poles of economic growth, by developing sustainable cities (notably in transports and buildings), and by developing national and regional electricity grids. The last part addresses the issue of energy financing in developing countries

  14. Energy saving systems in hot humid climates

    NARCIS (Netherlands)

    Hadjilambi, A.; D'Aquilo, A.; Rodenberg, O.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. The aim of this manual is the description and comparison of several systems and strategies for cooling buildings in hot humid climates. To cool down a building you need to move the energy from a space or fro

  15. Climate change adaptation in the Canadian energy sector : workshop report

    International Nuclear Information System (INIS)

    This workshop on climate change adaptation in the Canadian energy sector was conducted in order to develop a climate change work plan for the Council of Energy Ministers (CEM) as well as to develop awareness and dialogue within Canada's energy sector. Industry members and government officials identified findings from recent assessment reports on climate change adaptation and discussed ways in which the international oil and gas industry is currently adapting its operations and technologies to ensure continuing safety and risk mitigation. The use of hydrological models to forecast the potential impacts of climate change was discussed, and the drivers of climate change adaptation were reviewed. A total of 26 topics were identified, 13 of which were prioritized for group discussions based on their impact and urgency. The following 5 topics were finally identified as top priority topics: (1) climate change adaptation science, (2) co-ordinated local, provincial, national, and international policies, (3) information sharing and knowledge transfer, (4) aging infrastructure and increasing demand, and (5) market mechanisms for adaptation. Four presentations were given during the initial portion of the workshop. 4 tabs., 1 fig

  16. Climate studies with a multi-layer energy balance model. I - Model description and sensitivity to the solar constant. II - The role of feedback mechanisms in the CO2 problem

    Science.gov (United States)

    Peng, L.; Chou, M.-D.; Arking, A.

    1982-01-01

    A nine-layer zonally averaged, steady-state model, based upon thermal energy balance, is developed for use in climate sensitivity studies and includes an accurate treatment of radiative transfer, parameterized meridional and vertical energy transport, and thermodynamic interaction between the surface and the atmosphere. A high degree of nonlinearity is exhibited by the model in a study of sensitivity to changes in the solar constant. The change in the hemispheric mean surface temperature is +3.1 C in response to a 2% increase in the solar constant and -4.3 C in response to a 2% decrease in the solar constant. The sensitivity varies with latitude, and the response of atmospheric temperature varies with height. In addition, the model is used to study the sensitivity of climate to a doubling of the atmospheric CO2 content. It is found that the tropospheric temperature lapse rate decreases at low latitudes but increases at high latitudes in response to a doubled CO2 content. Averaged over the Northern Hemisphere, the change is +2.3 C in the surface temperature and +0.47 C in the earth's brightness temperature. The effects of some feedback mechanisms on the climate sensitivity to a doubled CO2 content show that the sensitivity of surface temperature approximately doubles at all latitudes due to the change in water vapor content.

  17. Building energy efficiency in different climates

    International Nuclear Information System (INIS)

    Energy simulation was conducted for office buildings in the five major climate zones - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter - in China using DOE-2.1E. The primary aim was to investigate the thermal and energy performance of office buildings with centralised heating, ventilation and air conditioning plants in the major climatic zones in China. The computed results were analysed in three aspects - heating load, cooling load and the corresponding building energy consumption. The building peak monthly heating load varied from 142 MW h (1033 MW h cooling) in Hong Kong to 447 MW h (832 MW h cooling) in Harbin. It was also found that passive solar designs could have large energy savings potential in the severe cold and cold climates. In Harbin, the window solar component helped lower the annual building heating load by 650 MW h. Internal loads (lighting and office equipment) and part load operations of fans and pumps also played a significant role in the overall building energy efficiency. This paper presents the work, its findings and energy efficiency implications

  18. Satellite Remote Sensing and Mesoscale Modeling of Biomass Burning Aerosols over the Southeast Asian Maritime Continent: Climatic Implications of Smokes on Regional Energy Balance, Cloud Formations and Precipitations

    Science.gov (United States)

    Feng, N.

    2015-12-01

    The influences of anthropogenic aerosols have been suggested as an important reason for climate changes over Southeast Asia (SE Asia, 10°S~20°N and 90°E~135°E). Accurate observations and modelling of aerosols effects on the weather and climate patterns is crucial for a better understanding and mitigation of anthropogenic climate change. This study uses NASA satellite observations along with online-coupled Weather Research and Forecasting model with Chemistry (WRF-Chem) to evaluate aerosols impacts on climate over SE Asia. We assess the direct and semi-direct radiative effects of smoke particles over this region during September, 2009 when a significant El Niño event caused the highest biomass burning activity during the last 15 years. Quantification efforts are made to assess how changes of radiative and non radiative parameters (sensible and latent heat) due to smoke aerosols would affect regional climate process such as precipitations, clouds and planetary boundary layer process. Comparison of model simulations for the current land cover conditions against surface meteorological observations and satellite observations of precipitations and cloudiness show satisfactory performance of the model over our study area. In order to quantitatively validate the model results, several experiments will be performed to test the aerosols radiative feedback under different radiation schemes and with/without considering aerosol effects explicitly in the model. Relevant ground-based data (e.g. AERONET), along with aerosol vertical profile data from CALIPSO, will also be applied.

  19. Climate Control Using Nuclear Energy

    CERN Document Server

    Modgil, Moninder Singh

    2008-01-01

    We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

  20. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  1. Energy policy and climate change in Turkey

    International Nuclear Information System (INIS)

    The problem of massive emissions of carbon dioxide (CO2) from the burning of fossil fuels and their climatic impact have become major scientific and political issues. Future stabilization of the atmospheric CO2 content requires a drastic decrease of CO2 emissions worldwide. In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country; with more than half of the energy requirement being supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture contents. Because of increasing energy consumption, air pollution is becoming a great environmental concern for the future in the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of the renewable energy sources

  2. An Appraisal of Coupled Climate Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K

    2004-02-24

    In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''

  3. Uncertainty Quantification in Climate Modeling and Projection

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Jackson, Charles S.; Giorgi, Filippo; Booth, Ben; Duan, Qingyun; Forest , Chris; Higdon, Dave; Hou, Zhangshuan; Huerta, Gabriel

    2016-05-01

    The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change information for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for

  4. Climate Modeling in the Calculus and Differential Equations Classroom

    Science.gov (United States)

    Kose, Emek; Kunze, Jennifer

    2013-01-01

    Students in college-level mathematics classes can build the differential equations of an energy balance model of the Earth's climate themselves, from a basic understanding of the background science. Here we use variable albedo and qualitative analysis to find stable and unstable equilibria of such a model, providing a problem or perhaps a…

  5. Diagnostic indicators for integrated assessment models of climate policy

    NARCIS (Netherlands)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Valeria Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Méjean, Aurélie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef P.

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economy systems can be performed by a variety of models with different functional structures. In order to provide insights into why results differ between models, this article proposes a diagnostic scheme that can be applied to a wid

  6. Energy and climate protection management, the key to higher energy efficiency in communities; Energie- und Klimaschutzmanagement. Der Schluessel zu mehr Energieeffizienz in Kommunen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    The brochure explains the dena energy and climate protection management concepts and presents tools for long-term reduction of energy consumption in communities. It presents valuable information for better organization of internal processes in community administrations and for the management of energy efficiency measures. The dena energy and climate protection management concept is developed in cooperation with model communities of different sizes since 2010. All interested communities can use this brochure as a guide for initiating effective climate protection measures.

  7. Modeling and assessing international climate financing

    Science.gov (United States)

    Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng

    2016-06-01

    Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.

  8. Energy, world should not chose nuclear energy to fight against climatic change. Nuclear and climatic change

    International Nuclear Information System (INIS)

    This document proposes an abstract of the conclusions of an expert group, the Oxford Research Group, which criticizes the today boost in favor of the electricity from nuclear energy. They explain that the nuclear energy should not be a solution for the fight against the climatic change. (A.L.B.)

  9. The new energy challenges: climate, economy, geopolitics

    International Nuclear Information System (INIS)

    Oil, coal and natural gas, three polluting and non-renewable energies, supply more than 80% of the World daily energy consumption. Today, the scientific community has acknowledged the responsibility of this consumption on the global warming which may have dramatic impacts on physical, economical, social and political equilibria of our planet. Climate has become a public resource which belongs to everybody, the management of which should be done collectively and prospectively. However, the nation-states defend their wealth, their immediate interest without globalization and long-term outlook. This book treats of the new energy challenges under their regional and global aspects. This allows to better understand the dynamics of a multipolar world. Each region of the world has its own specificity, its capital of natural resources, its history, its own level of economic development, and its vulnerability with respect to climate change. For hundreds of million people, priority is given to the economic growth and wealth generation, but such a priority is synonymous of rise of the energy consumption and increase of greenhouse gas emissions. This opposition between 'more energy' and 'less emissions' is source of new economical and geopolitical tensions. Only a reinforcement of the world governance can solve these contradictions by the affirmation of a solidarity between populations, and for the first time, between generations. (J.S.)

  10. Economic Growth Assumptions in Climate and Energy Policy

    Directory of Open Access Journals (Sweden)

    Nir Y. Krakauer

    2014-03-01

    Full Text Available The assumption that the economic growth seen in recent decades will continue has dominated the discussion of future greenhouse gas emissions and the mitigation of and adaptation to climate change. Given that long-term economic growth is uncertain, the impacts of a wide range of growth trajectories should be considered. In particular, slower economic growth would imply that future generations will be relatively less able to invest in emissions controls or adapt to the detrimental impacts of climate change. Taking into consideration the possibility of economic slowdown therefore heightens the urgency of reducing greenhouse gas emissions now by moving to renewable energy sources, even if this incurs short-term economic cost. I quantify this counterintuitive impact of economic growth assumptions on present-day policy decisions in a simple global economy-climate model (Dynamic Integrated model of Climate and the Economy (DICE. In DICE, slow future growth increases the economically optimal present-day carbon tax rate and the utility of taxing carbon emissions, although the magnitude of the increase is sensitive to model parameters, including the rate of social time preference and the elasticity of the marginal utility of consumption. Future scenario development should specifically include low-growth scenarios, and the possibility of low-growth economic trajectories should be taken into account in climate policy analyses.

  11. Changing Energy Requirements in the Mediterranean Under Changing Climatic Conditions

    Directory of Open Access Journals (Sweden)

    George Demosthenous

    2009-09-01

    Full Text Available This study investigates the impacts of climate change on energy requirements in the Mediterranean. Energy requirements, especially for space heating and cooling, are closely linked to several weather variables, mainly air temperature. The analysis is based on daily temperature outputs from several regional climate models run at a resolution of 25 km × 25 km in the framework of EU project ENSEMBLES using the A1B emissions scenario. The impacts of changes in temperature on energy requirements are investigated using the concept of degree days, defined as the difference of mean air temperature from a base temperature. Base temperature should be chosen to coincide with the minimum energy consumption. In this way, changes in heating and cooling requirements between the reference and the future period are calculated and areas about to undergo large changes identified. These changes are calculated between a 30-year reference period 1961–1990 and a near future period 2021–2050 taking the ensemble mean of all regional climate models. The near-term future has been chosen instead of the frequently used end-of-the-century period to assist policy makers in their planning. In general, a decrease in energy requirements is projected under future milder winters and an increase under hotter summers.

  12. An analysis of the sensitivity of a dynamic climate-economy CGE model (GDynE) to empirically estimated energy-related elasticity parameters

    OpenAIRE

    Alessandro Antimiani; Valeria Costantini; Elena Paglialunga

    2015-01-01

    A dynamic energy-economic CGE model is used to analyse how sensitive simulation results are to alternative values assumed by several types of elasticity of substitution. Substitutability in the energy mix is analysed by taking into account the nest structure of the CGE model in the energy module. Input substitutability in the production function is tested for the relationship between capital and energy in different manufacturing sectors. The simulation exercise reveals that the model produces...

  13. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G.; Gavin, J. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Geological Observatory

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  14. Inference of Climate Sensitivity from Analysis of Earth's Energy Budget

    Science.gov (United States)

    Forster, Piers M.

    2016-06-01

    Recent attempts to diagnose equilibrium climate sensitivity (ECS) from changes in Earth's energy budget point toward values at the low end of the Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5)'s likely range (1.5–4.5 K). These studies employ observations but still require an element of modeling to infer ECS. Their diagnosed effective ECS over the historical period of around 2 K holds up to scrutiny, but there is tentative evidence that this underestimates the true ECS from a doubling of carbon dioxide. Different choices of energy imbalance data explain most of the difference between published best estimates, and effective radiative forcing dominates the overall uncertainty. For decadal analyses the largest source of uncertainty comes from a poor understanding of the relationship between ECS and decadal feedback. Considerable progress could be made by diagnosing effective radiative forcing in models.

  15. Energy- and humidity-budget of the non-hydrostatic mesoscale model GESIMA by nesting into the regional climate model REMO; Energie- und Feuchtehaushalt im nichthydrostatischen Mesoskalamodell GESIMA bei Nestung in das Regionalklimamodell REMO

    Energy Technology Data Exchange (ETDEWEB)

    Horneffer, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik]|[Hamburg Univ. (Germany). Fachbereich 15 - Geowissenschaften

    1997-12-31

    The `Geesthacht Simulationsmodel of the Atmosphere` (GESIMA) was nested into the `Regional Climate Model` (REMO). Exemplary studies prove that the presented nesting scheme is suitable to resolve subscale phenomena in the regional climate model. Some results of simulations above the island Gotland in the Baltic Sea were presented. The mesoscale model GESIMA could now be used to analyze real synoptic weather situations. (orig.) [Deutsch] Das Geesthachter Simulationsmodell der Atmosphaere (GESIMA) wird in das Regionalklimamodell (REMO) genestet. Beispielhafte Untersuchungen zeigen, dass mit der genesteten Modellversion subskalige Effekte, die durch das grobe Raster des Regionalklimamodells fallen, aufgeloest werden. Dies wird anhand von Simulationen ueberprueft. Hauptuntersuchungsgegenstand ist die Insel Gotland in der Ostsee. Duch die Nestung kann das Mesoskalamodell fuer tatsaechliche synoptische Situationen eingesetzt werden. (orig.)

  16. Point Climat no. 26 'Regional Climate - Air - Energy Plans at the heart of the debate on the energy transition'

    International Nuclear Information System (INIS)

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: On the eve of the introduction of the environmental assessment procedure for planning documents, almost all Regional Climate - Air - Energy Plans have now been published. This Climate Brief assesses regional climate strategies, which rely on significant commitment from those involved, including citizens by changing their behaviour, companies by improving their energy efficiency and the banking sector through financial support. Identification of these challenges and areas for action will feed into the national debate on energy transition which began last autumn

  17. Planetary boundary layer energetics simulated from a regional climate model over Europe for present climate and climate change conditions

    Science.gov (United States)

    Sánchez, E.; Yagüe, C.; Gaertner, M. A.

    2007-01-01

    This paper presents a description of the planetary boundary layer (PBL) for current (1960-1990) and future (2070-2100) climate periods as obtained from a regional climate model (RCM) centered on the Mediterranean basin. Vertically integrated turbulent kinetic energy (TKEZ) and boundary layer height (z i ) are used to describe PBL energetics. Present climate shows a TKEZ annual cycle with a clear summer maximum for southern regions, while northern regions of Europe exhibit a smoother or even a lack of cycle. Future climate conditions exhibit a similar behaviour, with an increase in the summer maximum peaks. A detailed analysis of summer surface climate change energetics over land shows an increased Bowen ratio and decreases in the evaporative fraction. The enhanced sensible heat flux responsible for these results causes an energy surplus inside the PBL, resulting in increased convective activity and corresponding TKEZ. These results are consistent with temperature increases obtained by several other model simulations, and also indicate that changes in the turbulent transport from the PBL to the free troposphere can affect atmospheric circulations.

  18. Transitions in climate and energy discourse between Hurricanes Katrina and Sandy

    CERN Document Server

    Cody, Emily M; Bagrow, James P; Dodds, Peter Sheridan; Danforth, Christopher M

    2015-01-01

    Although climate change and energy are intricately linked, their explicit connection is not always prominent in public discourse and the media. Disruptive extreme weather events, including hurricanes, focus public attention in new and different ways, offering a unique window of opportunity to analyze how a focusing event influences public opinion. Simultaneously shaping and reflecting public discourse, media coverage of extreme weather events reflects public opinion of climate issues. Here we analyze climate and energy media coverage of Hurricanes Katrina (2005) and Sandy (2012) using topic models, mathematical techniques used to discover abstract topics within a set of documents. Our results demonstrate that post-Katrina media coverage does not contain a climate change topic, and the energy topic is limited to discussion of energy prices, markets, and the economy with almost no explicit linkages made between energy and climate change. In contrast, post-Sandy media coverage does contain a prominent climate ch...

  19. Energy infrastructure in India: Profile and risks under climate change

    International Nuclear Information System (INIS)

    India has committed large investments to energy infrastructure assets-power plants, refineries, energy ports, pipelines, roads, railways, etc. The coastal infrastructure being developed to meet the rising energy imports is vulnerable to climate extremes. This paper provides an overview of climate risks to energy infrastructures in India and details two case studies – a crude oil importing port and a western coast railway transporting coal. The climate vulnerability of the port has been mapped using an index while that of the railway has been done through a damage function for RCP 4.5.0 and 8.5 scenarios. Our analysis shows that risk management through adaptation is likely to be very expensive. The system risks can be even greater and might adversely affect energy security and access objectives. Aligning sustainable development and climate adaptation measures can deliver substantial co-benefits. The key policy recommendations include: i) mandatory vulnerability assessment to future climate risks for energy infrastructures; ii) project and systemic risks in the vulnerability index; iii) adaptation funds for unmitigated climate risks; iv) continuous monitoring of climatic parameters and implementation of adaptation measures, and iv) sustainability actions along energy infrastructures that enhance climate resilience and simultaneously deliver co-benefits to local agents. -- Highlights: •Climate risks to energy infrastructures adversely impact energy security. •Case studies of a port and a railway show their future climate change vulnerability. •Managing climate-induced risks through preventive adaptation policies

  20. Modeling Renewable Water Resources under Climate Change

    Science.gov (United States)

    Liu, X.; Tang, Q.

    2014-12-01

    The impacts of climate change on renewable water resources are usually assessed using hydrological models driven by downscaled climate outputs from global climate models. Most hydrological models do not have explicit parameterization of vegetation and thus are unable to assess the effects of elevated atmospheric CO2 on stomatal conductance and water loss of leaf. The response of vegetation to elevated atmospheric CO2 would reduce evaporation and affect runoff and renewable water resources. To date, the impacts of elevated CO2 on vegetation transpiration were not well addressed in assessment of water resources under climate change. In this study, the distributed biosphere-hydrological (DBH) model, which incorporates a simple biosphere model into a distributed hydrological scheme, was used to assess the impacts of elevated CO2 on vegetation transpiration and consequent runoff. The DBH model was driven by five General Circulation Models (GCMs) under four Representative Concentration Pathways (RCPs). For each climate scenario, two model experiments were conducted. The atmospheric CO2 concentration in one experiment was assumed to remain at the level of 2000 and increased as described by the RCPs in the other experiment. The results showed that the elevated CO2 would result in decrease in evapotranspiration, increase in runoff, and have considerable impacts on water resources. However, CO2 induced runoff change is generally small in dry areas likely because vegetation is usually sparse in the arid area.

  1. Climate Model Intercomparisons: Preparing for the Next Phase

    Science.gov (United States)

    Meehl, Gerald A.; Moss, Richard; Taylor, Karl E.; Eyring, Veronika; Stouffer, Ronald J.; Bony, Sandrine; Stevens, Bjorn

    2014-03-01

    Since 1995, the Coupled Model Intercomparison Project (CMIP) has coordinated climate model experiments involving multiple international modeling teams. Through CMIP, climate modelers and scientists from around the world have analyzed and compared state-of-the-art climate model simulations to gain insights into the processes, mechanisms, and consequences of climate variability and climate change. This has led to a better understanding of past, present, and future climate, and CMIP model experiments have routinely been the basis for future climate change assessments made by the Intergovernmental Panel on Climate Change (IPCC) [e.g., IPCC, 2013, and references therein].

  2. The Community Climate System Model: CCSM3

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W D; Blackmon, M; Bitz, C; Bonan, G; Bretherton, C S; Carton, J A; Chang, P; Doney, S; Hack, J J; Kiehl, J T; Henderson, T; Large, W G; McKenna, D; Santer, B D; Smith, R D

    2004-12-27

    A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates several significant improvements in the scientific formulation. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice thickness, polar radiation budgets, equatorial sea-surface temperatures, ocean currents, cloud radiative effects, and ENSO teleconnections. CCSM3 can produce stable climate simulations of millenial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean-atmosphere fluxes in western coastal regions, the spectrum of ENSO variability, the spatial distribution of precipitation in the Pacific and Indian Oceans, and the continental precipitation and surface air temperatures. We conclude with the prospects for extending CCSM to a more comprehensive model of the Earth's climate system.

  3. Renewable energy and climate policies: Studies in the forest and energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Kangas, H.-L.

    2012-07-01

    This dissertation examines the impacts of energy and climate policies on the energy and forest sectors, focusing on the case of Finland. The thesis consists of an introduction article and four separate studies. The dissertation was motivated by the climate concern and the increasing demand for renewable energy. In particular, the renewable energy consumption and greenhouse gas emission reduction targets of the European Union were driving this work. In Finland, both forest and energy sectors are in key roles in achieving these targets. In fact, the separation between forest and energy sector is diminishing as the energy sector is utilizing increasing amounts of wood in energy production and as the forest sector is becoming more and more important energy producer. The objective of this dissertation is to find out and measure the impacts of climate and energy policies on the forest and energy sectors. In climate policy, the focus is on emissions trading, and in energy policy the dissertation focuses on the promotion of renewable forestbased energy use. The dissertation relies on empirical numerical models that are based on microeconomic theory. Numerical partial equilibrium mixed complementarity problem models were constructed to study the markets under scrutiny. The separate studies focus on co-firing of wood biomass and fossil fuels, liquid biofuel production in the pulp and paper industry, and the impacts of climate policy on the pulp and paper sector. The dissertation shows that the policies promoting wood-based energy may have unexpected negative impacts. When feed-in tariff is imposed together with emissions trading, in some plants the production of renewable electricity might decrease as the emissions price increases. The dissertation also shows that in liquid biofuel production, investment subsidy may cause high direct policy costs and other negative impacts when compared to other policy instruments. The results of the dissertation also indicate that from the

  4. Relationships between energy consumption and climate change in China

    Institute of Scientific and Technical Information of China (English)

    QIANHuaisui; YUANShunquan; SUNJiulin; LIZehui

    2004-01-01

    Energy consumption has an inevitable connection with economic level and climate. Based on selected data covering annual total energy consumption and its composition and that of all kinds of energy in 1953-1999, the annual residential energy consumption and the coal and electricity consumption in 1980-1999 in China, the acreage of crops under cultivation suffered from drought and flood annually and gross domestic product (GDP) in 1953-1999 in the whole country, and mean daily temperature data from 29 provincial meteorological stations in the whole country from 1970 to 1999, this paper divides energy consumption into socio-economic energy consumption and climatic energy consumption in the way of multinomial. Itchanges between the climate energy consumption andalso goes further into the relations and their changes between the climate energy consumptionenergy consumption and the economic level inand climate factor and between the socio-economic energy between the climate energy level in China with the method of statistical analysis. At present, there are obvious transitions in the changing relationships of the energy consumption to economy and climate, which comprises the transition of economic system from resource-intensive industry to technology-intensive industry and the transition of climatic driving factors of the energy consumption from driven by the disasters of drought and flood to driven by temperature.

  5. Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations

    Energy Technology Data Exchange (ETDEWEB)

    Forster, P M A F; Taylor, K E

    2006-07-25

    A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled Atmosphere Ocean General Circulation Models (AOGCMs). This 'climate forcing' differs from the conventionally defined radiative forcing as it includes semi-direct effects that account for certain short timescale responses in the troposphere. Firstly, we calculate a climate feedback term from reported values of 2 x CO{sub 2} radiative forcing and surface temperature time series from 70-year simulations by twenty AOGCMs. In these simulations carbon dioxide is increased by 1%/year. The derived climate feedback agrees well with values that we diagnose from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. We find partial compensation between longwave and shortwave feedback terms that lessens the inter-model differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in 20th and 21st Century simulations in the AOGCMs. We validate the technique using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings we diagnose agree with the conventional forcing time series within {approx}10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of two differences in the longwave climate forcing time series, which may indicate

  6. The effect of financial constraints on energy-climate scenarios

    International Nuclear Information System (INIS)

    In this paper, we discuss the implications of financing constraints for future energy and climate scenarios. Aspirations to improve energy access and electrification rates in developing countries, while simultaneously reducing greenhouse gas emissions, can be seriously hindered by the availability of low-cost capital for the necessary investments. We first provide a brief description of the theoretical foundations for financing constraints in the energy sector. Then, using a broad range of alternate assumptions we introduce capital supply curves to an energy system model for Sub-Saharan Africa, with a specific focus on the power sector. Our results portray the effect of capital cost on technology selection in electricity generation, specifically how limited capital supply decreases investments to capital-intensive zero-emission technologies. As a direct consequence, the emission price required to meet given emission targets is considerably increased when compared to case that disregards the capital constraints. Finally, we discuss possible policy instruments for resolving the constraints. - Highlights: • Climate and electrification targets increase the capital required for investments. • Required low-cost capital might not be available in developing countries. • Paper presents capital-constrained scenarios on electricity generation in Africa. • The cost of capital affects technology choice and emission levels considerably. • Climate policy effectiveness is dependent on the availability of low-cost capital

  7. Complementarity among climate related energy sources: Sensitivity study to climate characteristics across Europe

    Science.gov (United States)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Raynaud, Damien; Borga, Marco; Vautard, Robert

    2015-04-01

    Climate related energy sources like solar-power, wind-power and hydro-power are important contributors to the transitions to a low-carbon economy. Past studies, mainly based on solar and wind powers, showed that the power from such energy sources fluctuates in time and space following their driving climatic variables. However, when combining different energy sources together, their intermittent feature is smoothed, resulting to lower time variability of the produced power and to lower storage capacity required for balancing. In this study, we consider solar, wind and hydro energy sources in a 100% renewable Europe using a set of 12 regions following two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine wind and solar irradiance data from the Weather Research and Forecasting Model (Vautard et al., 2014), temperature data from the European Climate Assessment & Dataset (Haylock et al., 2008) and runoff from the Global Runoff Data Center (GRDC, 1999) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 30 years. The use of this set of 12 regions across Europe allows integrating knowledge about time and space variability for each different energy sources. We then assess the optimal share of each energy sources, aiming to decrease the time variability of the regional energy balance at different time scales as well as the energy storage required for balancing within each region. We also evaluate how energy transport among regions contributes for smoothing out both the energy balance and the storage requirement. The strengths of this study are i) to handle with run-of-the-river hydro power in addition to wind and solar energy sources and ii) to carry out this analysis

  8. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  9. Exploring elementary students’ understanding of energy and climate change

    Directory of Open Access Journals (Sweden)

    Colin BOYLAN

    2008-10-01

    Full Text Available As environmental changes become a significant societal issue, elementary science curriculaneed to develop students’ understanding about the key concepts of energy and climate change.For teachers, developing quality learning experiences involves establishing what theirstudents’ prior understanding about energy and climate change are. A survey was developed toexplore what elementary students know and understand about renewable and non-renewablesources of energy and their relationship to climate change issues. The findings from thissurvey are reported in this paper.

  10. Climate model uncertainty vs. conceptual geological uncertainty in hydrological modeling

    Directory of Open Access Journals (Sweden)

    T. O. Sonnenborg

    2015-04-01

    Full Text Available Projections of climate change impact are associated with a cascade of uncertainties including CO2 emission scenario, climate model, downscaling and impact model. The relative importance of the individual uncertainty sources is expected to depend on several factors including the quantity that is projected. In the present study the impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Each projection of future climate is a result of a GCM-RCM model combination (from the ENSEMBLES project forced by the same CO2 scenario (A1B. The changes from the reference period (1991–2010 to the future period (2081–2100 in projected hydrological variables are evaluated and the effects of geological model and climate model uncertainties are quantified. The results show that uncertainty propagation is context dependent. While the geological conceptualization is the dominating uncertainty source for projection of travel time and capture zones, the uncertainty on the climate models is more important for groundwater hydraulic heads and stream flow.

  11. Objective calibration of regional climate models

    Science.gov (United States)

    Bellprat, O.; Kotlarski, S.; Lüthi, D.; SchäR, C.

    2012-12-01

    Climate models are subject to high parametric uncertainty induced by poorly confined model parameters of parameterized physical processes. Uncertain model parameters are typically calibrated in order to increase the agreement of the model with available observations. The common practice is to adjust uncertain model parameters manually, often referred to as expert tuning, which lacks objectivity and transparency in the use of observations. These shortcomings often haze model inter-comparisons and hinder the implementation of new model parameterizations. Methods which would allow to systematically calibrate model parameters are unfortunately often not applicable to state-of-the-art climate models, due to computational constraints facing the high dimensionality and non-linearity of the problem. Here we present an approach to objectively calibrate a regional climate model, using reanalysis driven simulations and building upon a quadratic metamodel presented by Neelin et al. (2010) that serves as a computationally cheap surrogate of the model. Five model parameters originating from different parameterizations are selected for the optimization according to their influence on the model performance. The metamodel accurately estimates spatial averages of 2 m temperature, precipitation and total cloud cover, with an uncertainty of similar magnitude as the internal variability of the regional climate model. The non-linearities of the parameter perturbations are well captured, such that only a limited number of 20-50 simulations are needed to estimate optimal parameter settings. Parameter interactions are small, which allows to further reduce the number of simulations. In comparison to an ensemble of the same model which has undergone expert tuning, the calibration yields similar optimal model configurations, but leading to an additional reduction of the model error. The performance range captured is much wider than sampled with the expert-tuned ensemble and the presented

  12. CLIMBER-2: a climate system model of intermediate complexity. Pt. 1. Model description and performance for present climate

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, V.; Ganopolski, A.; Brovkin, V.; Claussen, M.; Eliseev, A.; Kubatzki, C.; Rahmstorf, S.

    1998-02-01

    A 2.5-dimensional climate system model of intermediate complexity CLIMBER-2 and its performance for present climate conditions are presented. The model consists of modules describing atmosphere, ocean, sea ice, land surface processes, terrestrial vegetation cover, and global carbon cycle. The modules interact (on-line) through the fluxes of momentum, energy, water and carbon. The model has a coarse spatial resolution, allowing nevertheless to capture the major features of the Earth`s geography. The model describes temporal variability of the system on seasonal and longer time scales. Due to the fact that the model does not employ any type of flux adjustment and has fast turnaround time, it can be used for study of climates significantly different from the present one and allows to perform long-term (multimillennia) simulations. The constraints for coupling the atmosphere and ocean without flux adjustment are discussed. The results of a model validation against present climate data show that the model successfully describes the seasonal variability of a large set of characteristics of the climate system, including radiative balance, temperature, precipitation, ocean circulation and cryosphere. (orig.) 62 refs.

  13. Challenges in Modeling Regional Climate Change (Invited)

    Science.gov (United States)

    Leung, L.

    2013-12-01

    Precipitation, soil moisture, and runoff are vital to ecosystems and human activities. Predicting changes in the space-time characteristics of these water cycle processes has been a longstanding challenge in climate modeling. Different modeling approaches have been developed to allow high resolution to be achieved using available computing resources. Although high resolution is necessary to better resolve regional forcing and processes, improvements in simulating water cycle response are difficult to demonstrate and climate models have so far shown irreducible sensitivity to model resolution, dynamical framework, and physics parameterizations that confounds reliable predictions of regional climate change. Additionally, regional climate responds to both regional and global forcing but predicting changes in regional and global forcing such as related to land use/land cover and aerosol requires improved understanding and modeling of the dynamics of human-earth system interactions. Furthermore, regional response and regional forcing may be related through complex interactions that are dependent on the regional climate regimes, making decisions on regional mitigation and adaptation more challenging. Examples of the aforementioned challenges from on-going research and possible future directions will be discussed.

  14. Ionospheric climate and weather modeling

    International Nuclear Information System (INIS)

    Simulations of the ionospheric model of Schunk et al. (1986) have been used for climatology and weather modeling. Steady state empirical models were used in the climatology model to provide plasma convection and particle precipitation patterns in the northern high-latitude region. The climatology model also depicts the ionospheric electron density and ion and electron temperatures for solar maximum, winter solstice, and strong geomagnetic activity conditions. The weather model describes the variations of ionospheric features during the solar cycle, seasonal changes, and geomagnetic activity. Prospects for future modeling are considered. 23 references

  15. Pending the adoption of an international climate agreement An overview of the energy-climate regime

    OpenAIRE

    Selosse, Sandrine; Maïzi, Nadia

    2015-01-01

    After a large awareness and decades of negotiations, a historic climate agreement is waiting to be adopted by all 195 parties at the UNFCCC, in December during the 2015 Paris Climate Change Conference (COP 21), in order to provide an answer to the climate issue. We analyze a combination of scenarios to discuss the energy-climate regime inherited from the past negotiations and what can be expected for the future decarbonated system.

  16. Energy for climate in Europe. An assessment of energy policies with climate-relevance. The LinkS Project.

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Audun; Knudsen, Joergen K.; Jacobsen, Gerd B.

    2011-07-01

    The LinkS project aims at providing a better linkage between perspectives and projections for global climate policy development and regional energy systems, by linking relevant modelling tools. The present report provides a specific focus on energy policy measures within the EY with climate relevance. The EU has in recent years aimed at reinforcing the linkage between the climate and energy policies, both at strategic and operational levels. The EU has pledged itself to reduce its greenhouse gas (GHG) emissions with 8 percent by 2008-12 as compared to the 1990 level, and by 20 percent by 2020 as compared to the as compared to the 2005 level. The EU-27 reduced it GHG emissions with 11,3 percent in 1990-2008. The 2020-target, however, will require stronger efforts and energy is a key sector: The EU has decided that 20 percent of the energy must be renewable, and that the energy usage in 2020 is to be 20 per sent more efficient than in 2005. A number of policy strategies, measures and legislation are formulated to fulfil these targets. In order to highlight the potential of these measures, this report specifically addresses the drivers and limitations given the existing decision-making structures in the EU. The methodology employed is mainly qualitative, based on document analysis and a review of secondary literature. Climate-change mitigation is in principle based on supra-national decision-making, but unanimity among all Eu Member States is still required in critical issues related to the energy sector. In addition, the national follow-up of the targets constitutes a particular challenge. This is here illustrated by the cases of Denmark and Norway. Energy policy is also substantially characterised by several conflicting interests between the Member States, resulting in diverging policy priorities. It is, therefore, an open question whether the EU will succeed in fulfilling its 20/20/20 percent targets by 2020, and will be the actual role of energy within the climate

  17. Modeling Water, Climate, Agriculture, and the Economy

    OpenAIRE

    Yu, Winston; Yang, Yi-chen; Savitsky, Andre; Alford, Donald; Brown, Casey; Wescoat, James; Debowicz, Dario; Robinson, Sherman

    2013-01-01

    Describes two models used in the integrated modeling framework designed to study water, climate, agriculture and the economy in Pakistan's Indus Basin: (1) the Indus Basin Model Revised (IBMR-1012), a hydro-economic optimization model that takes a variety of inputs (such as agronomic information, irrigation system data, and water inflows) to generate the optimal crop production across the provinces (subject to a variety of physical and political constraints) for every month of the year; and (...

  18. Computing and Systems Applied in Support of Coordinated Energy, Environmental, and Climate Planning

    Science.gov (United States)

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: ...

  19. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  20. Renewable energy technologies and climate change policies in India

    International Nuclear Information System (INIS)

    suggests that in the absence of stringent climate change policies, India is likely to go along the conventional fossil fuel path. The same can be true of many other developing countries. The policies in specific countries, especially developing nations with no binding carbon mitigation commitments, will be crucial for generating initial technology 'push', before the market will be ready to provide the demand 'pull' in the long run. This paper provides a review of the renewable energy experience in India in terms of positive lessons and identified barriers. It looks at various policy options for India and develops, using macro-modelling tools, scenarios of the likely penetration of RETs under different climate change mitigation policy regimes. (author)

  1. Plugging the Energy Efficiency Gap with Climate Finance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The role of International Financial Institutions (IFIs) and the Green Climate Fund to realise the potential of energy efficiency in developing countries. This report examines the current role of climate finance in funding EE projects and the potential to channel funds to relevant EE projects in developing countries under the new Green Climate Fund (GCF). The objectives of the report are to examine: 1) the share of climate finance currently being channelled to energy efficiency measures, and 2) how the design of climate finance can better facilitate energy efficiency projects. Improving energy efficiency (EE) can deliver a range of benefits such as improved air quality, enhanced economic competitiveness and, at the national scale, a higher degree of energy security. Significant improvements in energy efficiency in developing countries could provide greater opportunity for economic growth while also providing broader access to energy and related services even from limited energy resources. However, several barriers limit the scaling-up of funding of EE projects in developing countries (some are common also to developed countries). The report focuses primarily on public climate finance flows from 'north' to 'south', probing the current use of funds from multi-lateral development banks (MDBs), bi-lateral financial institutions (BFIs) and carbon markets for energy efficiency projects and the design of the future climate financial mechanisms such as the Green Climate Fund to encourage energy efficiency improvements in developing countries.

  2. Linkages between climate change, water and nuclear energy

    International Nuclear Information System (INIS)

    This paper presents an overview of projected changes in various climate properties, water supply and extreme weather events under different climate change scenarios. An assessment of impacts of these changes on nuclear energy is provided, highlighting the special characteristics of the industry and the importance of making nuclear facilities 'climate and weather proof' with a view to the projected changes in climatic and weather conditions. (author)

  3. Energy Balance, Climate, and Life - Work of M. Budyko

    Science.gov (United States)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  4. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    Science.gov (United States)

    Romanach, Stephanie; Watling, James I.; Fletcher, Robert J., Jr.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  5. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  6. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  7. Political motives in climate and energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Bruvoll, Annegrete; Dalen, Hanne Marit; Larsen, Bodil M.

    2012-07-01

    Standard economic theory provides clear guidance on the design of cost-efficient policy in the presence of imperfect markets and externalities. However, observed policies reveal extensive discrepancies between principles and practise. Based on interviews with core politicians from the Norwegian parliament, we investigate causes for the lack of cost efficiency in climate and energy policy. We find that politicians agree with the notion of cost efficiency in principle, but rather than ascribing efficient instruments directed at specific policy goals, they include concerns for industrial and regional development, income distribution and employment in the environmental policy design. Lacking insight in the functioning of economic instruments and perceptions of a non-binding budget constraint also violate the requirements for efficient policy decisions. The findings point to the role of economists and social scientists to communicate the functioning of complex instruments. Improved compensation procedures could help reduce the politicians' incentives to undermine efficiency in order to avoid unwanted distributional effects.(Author)

  8. Modelling interactions of carbon dioxide, forests, and climate

    International Nuclear Information System (INIS)

    Atmospheric carbon dioxide is rising and forests and climate is changing exclamation point This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken

  9. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N;

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...

  10. Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate

    Science.gov (United States)

    Bhattarai, Nishan; Shaw, Stephen B.; Quackenbush, Lindi J.; Im, Jungho; Niraula, Rewati

    2016-07-01

    In the last two decades, a number of single-source surface energy balance (SEB) models have been proposed for mapping evapotranspiration (ET); however, there is no clear guidance on which models are preferable under different conditions. In this paper, we tested five models-Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET at high Resolution with Internalized Calibration (METRIC), Simplified Surface Energy Balance Index (S-SEBI), Surface Energy Balance System (SEBS), and operational Simplified Surface Energy Balance (SSEBop)-to identify the single-source SEB models most appropriate for use in the humid southeastern United States. ET predictions from these models were compared with measured ET at four sites (marsh, grass, and citrus surfaces) for 149 cloud-free Landsat image acquisition days between 2000 and 2010. The overall model evaluation statistics showed that SEBS generally outperformed the other models in terms of estimating daily ET from different land covers (e.g., the root mean squared error (RMSE) was 0.74 mm day-1). SSEBop was consistently the worst performing model and overestimated ET at all sites (RMSE = 1.67 mm day-1), while the other models typically fell in between SSEBop and SEBS. However, for short grass conditions, SEBAL, METRIC, and S-SEBI appear to work much better than SEBS. Overall, our study suggests that SEBS may be the best SEB model in humid regions, although it may require modifications to work better over short vegetation.

  11. High dimensional decision dilemmas in climate models

    Directory of Open Access Journals (Sweden)

    A. Bracco

    2013-10-01

    Full Text Available An important source of uncertainty in climate models is linked to the calibration of model parameters. Interest in systematic and automated parameter optimization procedures stems from the desire to improve the model climatology and to quantify the average sensitivity associated with potential changes in the climate system. Building upon on the smoothness of the response of an atmospheric circulation model (AGCM to changes of four adjustable parameters, Neelin et al. (2010 used a quadratic metamodel to objectively calibrate the AGCM. The metamodel accurately estimates global spatial averages of common fields of climatic interest, from precipitation, to low and high level winds, from temperature at various levels to sea level pressure and geopotential height, while providing a computationally cheap strategy to explore the influence of parameter settings. Here, guided by the metamodel, the ambiguities or dilemmas related to the decision making process in relation to model sensitivity and optimization are examined. Simulations of current climate are subject to considerable regional-scale biases. Those biases may vary substantially depending on the climate variable considered, and/or on the performance metric adopted. Common dilemmas are associated with model revisions yielding improvement in one field or regional pattern or season, but degradation in another, or improvement in the model climatology but degradation in the interannual variability representation. Challenges are posed to the modeler by the high dimensionality of the model output fields and by the large number of adjustable parameters. The use of the metamodel in the optimization strategy helps visualize trade-offs at a regional level, e.g., how mismatches between sensitivity and error spatial fields yield regional errors under minimization of global objective functions.

  12. High dimensional decision dilemmas in climate models

    Directory of Open Access Journals (Sweden)

    A. Bracco

    2013-05-01

    Full Text Available An important source of uncertainty in climate models is linked to the calibration of model parameters. Interest in systematic and automated parameter optimization procedures stems from the desire to improve the model climatology and to quantify the average sensitivity associated with potential changes in the climate system. Neelin et al. (2010 used a quadratic metamodel to objectively calibrate an atmospheric circulation model (AGCM around four adjustable parameters. The metamodel accurately estimates global spatial averages of common fields of climatic interest, from precipitation, to low and high level winds, from temperature at various levels to sea level pressure and geopotential height, while providing a computationally cheap strategy to explore the influence of parameter settings. Here, guided by the metamodel, the ambiguities or dilemmas related to the decision making process in relation to model sensitivity and optimization are examined. Simulations of current climate are subject to considerable regional-scale biases. Those biases may vary substantially depending on the climate variable considered, and/or on the performance metric adopted. Common dilemmas are associated with model revisions yielding improvement in one field or regional pattern or season, but degradation in another, or improvement in the model climatology but degradation in the interannual variability representation. Challenges are posed to the modeler by the high dimensionality of the model output fields and by the large number of adjustable parameters. The use of the metamodel in the optimization strategy helps visualize trade-offs at a regional level, e.g. how mismatches between sensitivity and error spatial fields yield regional errors under minimization of global objective functions.

  13. High dimensional decision dilemmas in climate models

    Science.gov (United States)

    Bracco, A.; Neelin, J. D.; Luo, H.; McWilliams, J. C.; Meyerson, J. E.

    2013-10-01

    An important source of uncertainty in climate models is linked to the calibration of model parameters. Interest in systematic and automated parameter optimization procedures stems from the desire to improve the model climatology and to quantify the average sensitivity associated with potential changes in the climate system. Building upon on the smoothness of the response of an atmospheric circulation model (AGCM) to changes of four adjustable parameters, Neelin et al. (2010) used a quadratic metamodel to objectively calibrate the AGCM. The metamodel accurately estimates global spatial averages of common fields of climatic interest, from precipitation, to low and high level winds, from temperature at various levels to sea level pressure and geopotential height, while providing a computationally cheap strategy to explore the influence of parameter settings. Here, guided by the metamodel, the ambiguities or dilemmas related to the decision making process in relation to model sensitivity and optimization are examined. Simulations of current climate are subject to considerable regional-scale biases. Those biases may vary substantially depending on the climate variable considered, and/or on the performance metric adopted. Common dilemmas are associated with model revisions yielding improvement in one field or regional pattern or season, but degradation in another, or improvement in the model climatology but degradation in the interannual variability representation. Challenges are posed to the modeler by the high dimensionality of the model output fields and by the large number of adjustable parameters. The use of the metamodel in the optimization strategy helps visualize trade-offs at a regional level, e.g., how mismatches between sensitivity and error spatial fields yield regional errors under minimization of global objective functions.

  14. Climate change impacts on chosen activities from the energy sector

    International Nuclear Information System (INIS)

    The present work, results of a study carried out about the possible impact of climate change on the energy sector in the province Camaguey are shown. First of all, the main activities in companies, utilities, and farms related to the most significant energy consumption were chosen in order to model corresponding equivalent fuel consumption. Impacts were determined taking into account differences between present and future consumptions for each kind of energy. In developed countries, this kind of work is done using well-known empirical-statistical models, which usually require a lot of data at a nation-wide scale, but to attempt it in an undeveloped country demands the use of specific methodology, which in this case was non-existent and required us to create it. This resulted in a carefully posed question since we had to take into consideration that the spatial scale is only that of a province, and so it was necessary, above all, to study specific characteristics of provincial fuel consumption. We used the Magic-Scengen system and SRES scenarios, and outputs of general circulation models like HadCM2 to obtain values of chosen climatic variables for use in energy consumption regression models, previously developed for each kind of activity in the corresponding companies, firm, and facilities included in the present research. It made possible to estimate energy consumption in each activity at the selected time periods centered at 2020, 2050, and 2080. The study shows that impact could rise the consumption by 2,5% of the present energy level in this territory

  15. "EARTH: The Operators' Manual" - a hybrid model (TV+online+in-person) to effectively communicate climate change science alongside sustainable energy solutions

    Science.gov (United States)

    Haines-stiles, G.; Alley, R. B.; Akuginow, E.

    2011-12-01

    Recent public opinion surveys have found that Americans underestimate the degree of agreement by climate scientists about global warming and climate change, and - despite growing evidence of ice sheet loss, ocean acidification, sea level rise and extreme weather events - believe less in warming trends in 2011 than they did earlier. The issue has become politicized and controversial. "EARTH: The Operators' Manual" is an informal science education project supported by NSF, the National Science Foundation. Its ambitious goal is to use a hybrid mix of broadcast programs appearing on public television and hosted by Penn State geoscientist, Richard Alley, together with on-site outreach events and online resources and tools, to present core climate science in engaging ways, and to combine that presentation of objective research with an overview of sustainable energy solutions. The project's content and communication strategies have been shaped in response to analyses of public opinion such as the SIX AMERICAS study and aim to address common "skeptic" arguments and share essential climate science. Social science research has also found that audiences seem more open to scientific information where the possibility of a positive response is also offered. The first hour-long PBS program aired nationally in April 2011, has since been re-broadcast, and is also available online. Two more programs will air in 2012, and the presentation at the Fall AGU Conference will preview segments from both programs. Five regionally-diverse science centers (in San Diego, Raleigh NC, St. Paul MN, Fort Worth TX and Portland OR) have hosted outreach events, with Richard Alley and other project participants, and will continue with additional activities through summer 2012. The project's website includes video clips, case studies of energy-saving initiatives world-wide and across the USA, plus an interactive "Energy Gauge" inviting users to assess their current Home, Travel, Food, and Goods and

  16. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    Science.gov (United States)

    McCusker, Kelly E.

    . We show that upon cessation, an abrupt, spatially broad, and sustained warming over land occurs that is well outside the bounds of 20th century climate variability. We then use an upwelling-diffusion energy balance climate model to further show the sensitivity of these trends to background greenhouse gas emissions, termination year, and climate sensitivity. We find that the rate of warming from cessation of solar radiation management -- of critical importance for ecological and human systems -- is principally controlled by the background greenhouse gas concentrations. It follows that the only way to avoid the risk of an abrupt and dangerous warming that is inherent to the large-scale implementation of solar radiation management is to also strongly reduce greenhouse gas emissions. The climate system responds to radiative forcing on a diverse spectrum of timescales, which will affect what goals can be achieved for a given stratospheric aerosol implementation. We next investigate how different rates of stratospheric sulfate aerosol deployment affect what climate impacts can be avoided by simulating two rates of increasing stratospheric sulfate concentrations in a fully-coupled global climate model. We find that disparate goals are achieved for different rates of deployment; for a slow ramping of sulfate, land surface temperature trends remain small but sea levels continue to rise for decades, whereas a quick ramp-up of sulfate yields large land surface cooling trends and immediately reduces sea level. However, atmospheric circulation changes also act to create a large-scale subsurface ocean environment around Antarctica that is favorable for increased basal melting of ice sheet outlets, thereby leaving the potential open for increased sea level rise even in the absence of large atmospheric surface warming. We show that instead, when greenhouse gases are abruptly returned to preindustrial levels, circulation anomalies are reversed, and the subsurface ocean environment

  17. Modeling interactions between land cover and climate in integrated assessment models (Invited)

    Science.gov (United States)

    Calvin, K. V.

    2013-12-01

    Integrated Assessment Models (IAMs) link representations of the regionally disaggregated global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate in an internally consistent framework. These models are often used as science-based decision-support tools for evaluating the consequences of climate, energy, and other policies, and their use in this framework is likely to increase in the future. Additionally, these models are used to develop future scenarios of emissions and land cover for use in climate models (e.g., RCPs and CMIP5). Land use is strongly influenced by assumptions about population, income, diet, ecosystem productivity change, and climate policy. Population, income, and diet determine the amount of food production needed in the future. Assumptions about future changes in crop yields due to agronomic developments influence the amount of land needed to produce food crops. Climate policy has implications for land when land-based mitigation options (e.g., afforestation and bioenergy) are considered. IAM models consider each of these factors in their computation of land use in the future. As each of these factors is uncertain in the future, IAM models use scenario analysis to explore the implications of each. For example, IAMs have been used to explore the effect of different mitigation policies on land cover. These models can quantify the trade-offs in terms of land cover, energy prices, food prices, and mitigation costs of each of these policies. Furthermore, IAMs are beginning to explore the effect of climate change on land productivity, and the implications that changes in productivity have on mitigation efforts. In this talk, we describe the implications for future land use and land cover of a variety of socioeconomic, technological, and policy drivers in several IAM models. Additionally, we will discuss the effects of future land cover on climate and the effects of climate on future land cover, as simulated

  18. Examine Climate Models by Using Infrared Spectrum

    OpenAIRE

    Yi Huang; Ramaswamy, V.

    2008-01-01

    We examine global climate models by comparing the satellite-observed high resolution global infrared spectra with the model-simulated counterpart. Because the topof-the-atmosphere outgoing Earth thermal emission at different frequencies is sensitive to different geophysical variables (temperature, water vapor and other greenhouse gas concentrations, clouds, etc.) at various levels, a comparison of observed and simulated spectra is as challenging as examining a variety of model-simulated geoph...

  19. Land use effects on climate in China as simulated by a regional climate model

    Institute of Scientific and Technical Information of China (English)

    J.S.PAL; F.GIORGI

    2007-01-01

    A regional climate model (RegCM3) nested within ERA40 re-analyzed data is used to investigate the climate effects of land use change over China. Two 15-year simulations (1987―2001), one with current land use and the other with potential vegetation cover without human intervention, are conducted for a domain encompassing China. The climate impacts of land use change are assessed from the difference between the two simulations. Results show that the current land use (modified by anthropogenic ac- tivities) influences local climate as simulated by the model through the reinforcement of the monsoon circulation in both the winter and summer seasons and through changes of the surface energy budget. In winter, land use change leads to reduced precipitation and decreased surface air temperature south of the Yangtze River, and increased precipitation north of the Yangtze River. Land use change signifi- cantly affects summer climate in southern China, yielding increased precipitation over the region, de- creased temperature along the Yangtze River and increased temperature in the South China area (south-end of China). In summer, a reduction of precipitation over northern China and a temperature rise over Northwest China are also simulated. Both daily maximum and minimum temperatures are affected in the simulations. In general, the current land use in China leads to enhanced mean annual precipitation and decreased annual temperature over south China along with decreased precipitation over North China.

  20. Land use effects on climate in China as simulated by a regional climate model

    Institute of Scientific and Technical Information of China (English)

    GAO XueJie; ZHANG DongFeng; CHEN ZhongXin; J.S.PAL; F. GIORGI

    2007-01-01

    A regional climate model (RegCM3)nested within ERA40 re-analyzed data is used to investigate the climate effects of land use change over China. Two 15-year simulations (1987-2001),one with current land use and the other with potential vegetation cover without human intervention, are conducted for a domain encompassing China. The climate impacts of land use change are assessed from the difference between the two simulations. Results show that the current land use (modified by anthropogenic activities) influences local climate as simulated by the model through the reinforcement of the monsoon circulation in both the winter and summer seasons and through changes of the surface energy budget. In winter. Land use change leads to reduced precipitation and decreased surface air temperature south of the Yangtze River, and increased precipitation north of the Yangtze River. Land use change significantly affects summer climate in southern China, yielding increased precipitation over the region, decreased temperature along the Yangtze River and increased temperature in the South China area (south-end of China).In summer, a reduction of precipitation over northern China and a temperature rise over Northwest China are also simulated. Both daily maximum and minimum temperatures are affected in the simulations. In general, the current land use in China leads to enhanced mean annual precipitation and decreased annual temperature over south China along with decreased precipitation over North China.

  1. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  2. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures

    OpenAIRE

    Cowtan, Kevin; Hausfather, Zeke; Hawkins, Ed; Jacobs, Peter; Mann, Michael E.; Miller, Sonya K.; Byron A. Steinman; Stolpe, Martin B.; Way, Robert G.

    2015-01-01

    The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observation...

  3. Big Data and Data Models for Climate System Energetics

    Science.gov (United States)

    Fillmore, D. W.; Habermann, T.; Goedecke, W. B.

    2015-12-01

    Multi-decade satellite missions, such as the NASA CERES mission designed to place observational constraints on the distribution of reflected solar radiation and emitted thermal radiation, present a significant challenge both in the analysis of heterogeneous Big Data and in data continuity. The NASA CERES EBAF dataset is a part of a broader effort to increase the usability of satellite observational data for the climate modeling community. Issues of accessibility, consistency, and reproducibility are paramount. Here we describe the transformation of CERES measurements from source to high level data products intended for direct use by the climate community. At each stage we examine data storage and processing patterns, metadata and potential challenges in reproducibility. The spatial distribution of net energy uptake and transport in the climate system, and its evolution over interannual and decadal time scales, is fundamental to the development of Earth system models. The workflow begins with the CERES footprint radiance seen by a polar orbiter, to the conversion of radiance to radiometric fluxes based on scene identification from MODIS and VIIRS imagery, followed by diurnal interpolation through the use of geostationary satellite imagery and eventually to the creation of high level gridded data products, the ultimate being the Energy Balanced and Filled flux product for direct comparison to climate models. Based on this CERES case study we try to anticipate future questions the may arise in the context of these massive satellite data collections, and what new data models may facilitate future data analysis.

  4. A model approach to climate change

    International Nuclear Information System (INIS)

    The Earth is warming up, with potentially disastrous consequences. Computer climate models based on physics are our best hope of predicting and managing climate change, as Adam Scaife, Chris Folland and John Mitchell explain. This month scientists from over 60 nations on the Intergovernmental Panel on Climate Change (IPCC) released the first part of their latest report on global warming. In the report the panel concludes that it is very likely that most of the 0.5 deg. C increase in global temperature over the last 50 years is due to man-made emissions of greenhouse gases. And the science suggests that much greater changes are in store: by 2100 anthropogenic global warming could be comparable to the warming of about 6 deg. C since the last ice age. The consequences of global warming could be catastrophic. As the Earth continues to heat up, the frequency of floods and droughts is likely to increase, water supplies and ecosystems will be placed under threat, agricultural practices will have to be changed and millions of people may be displaced as the sea level rises. The global economy could also be severely affected. The scientific consensus is that the observed warming of the Earth during the past half-century is mostly due to human emissions of greenhouse gases. Predicting climate change depends on sophisticated computer models developed over the past 50 years. Climate models are based on the Navier-Stokes equations for fluid flow, which are solved numerically on a grid covering the globe. These models have been very successful in simulating the past climate, giving researchers confidence in their predictions. The most likely value for the global temperature increase by 2100 is in the range 1.4-5.8 deg. C, which could have catastrophic consequences. (U.K.)

  5. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    Science.gov (United States)

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  6. Variational formulation of Budyko-Sellers climate models

    Science.gov (United States)

    North, G. R.; Howard, L.; Pollard, D.; Wielicki, B.

    1979-01-01

    A class of simple climate models including those of the Budyko-Sellers type are formulated from a variational principle. A functional is constructed for the zonally averaged mean annual temperature field such that extrema of the functional occur when the climate satisfies the usual energy-balance equation. Local minima of the functional correspond to stable solutions while saddle points correspond to unstable solutions. The technique can be used to construct approximate solutions from trial functions and to carry out finite-amplitude stability analyses. A spectral example is given in explicit detail.

  7. ESCIMO.spread – a spreadsheet-based point snow surface energy balance model to calculate hourly snow water equivalent and melt rates for historical and changing climate conditions

    Directory of Open Access Journals (Sweden)

    T. Marke

    2010-05-01

    Full Text Available This paper describes the spreadsheet-based point energy balance model ESCIMO.spread which simulates the energy and mass balance as well as melt rates of a snow surface. The model makes use of hourly recordings of temperature, precipitation, wind speed, relative humidity, global and longwave radiation. The effect of potential climate change on the seasonal evolution of the snow cover can be estimated by modifying the time series of observed temperature and precipitation by means of adjustable parameters. Model output is graphically visualized in hourly and daily diagrams. The results compare well with weekly measured snow water equivalent (SWE. The model is easily portable and adjustable, and runs particularly fast: hourly calculation of a one winter season is instantaneous on a standard computer. ESICMO.spread can be obtained from the authors on request (contact: ulrich.strasser@uni-graz.at.

  8. ESCIMO.spread – a spreadsheet-based point snow surface energy balance model to calculate hourly snow water equivalent and melt rates for historical and changing climate conditions

    Directory of Open Access Journals (Sweden)

    T. Marke

    2010-11-01

    Full Text Available This paper describes the spreadsheet-based point energy balance model ESCIMO.spread which simulates the energy and mass balance as well as melt rates at the snow surface. The model makes use of hourly recordings of temperature, precipitation, wind speed, relative humidity, and incoming global and longwave radiation. The effect of potential climate change on the seasonal evolution of the snow cover can be estimated by modifying the time series of observed temperature and precipitation by means of adjustable parameters. Model output is graphically visualized in hourly and daily diagrams. The results compare well with weekly measured snow water equivalent (SWE. The model is easily portable and adjustable, and runs particularly fast: an hourly calculation of a one winter season is instantaneous on a standard computer. ESCIMO.spread can be obtained from the authors on request.

  9. Diagnostic indicators for integrated assessment models of climate policy

    Energy Technology Data Exchange (ETDEWEB)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Mejean, Aurelie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economic systems can be performed by a variety of models with different functional structures. This article proposes a diagnostic scheme that can be applied to a wide range of integrated assessment models to classify differences among models based on their carbon price responses. Model diagnostics can uncover patterns and provide insights into why, under a given scenario, certain types of models behave in observed ways. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnostic indicators to characterize model responses to carbon price signals and test these in a diagnostic study with 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to more easily explain variations among policy-relevant model results.

  10. Climate crisis: energy solutions for BC

    International Nuclear Information System (INIS)

    This report is a collection of essays which, collectively, detail the current situation of energy and climate policy in British Columbia, taking account of the full consequences of addiction to fossil fuels and the automobile. The report examines the forces at work responsible for the current situation, namely population growth, urban sprawl, low density communities in the Lower Fraser Valley, southern Vancouver Island and other parts of the province. The growing pressure on the development of agricultural land, congestion on highways and in cities, the increase in air pollution, land alienation, longer commutes to and from work, increased demand for electricity and natural gas, construction of new power plants, pipelines and gas processing facilities are just further examples of the same trend, culminating in dramatic growth in greenhouse gas emissions. The report proposes a range of conservation and renewable options in the areas of urban land use and transportation, commercial and industrial energy reduction and oil and gas production, and provides some ideas of how these recommendations could be realized by businesses, institutions and individuals. It insists on stressing that while the challenges are formidable, they could be achieved through a combination of regulation, public investment, market mechanisms and cultural change. 163 end-notes, tabs

  11. Climate crisis: energy solutions for BC

    Energy Technology Data Exchange (ETDEWEB)

    Foley, D. [ed.

    2000-07-01

    This report is a collection of essays which, collectively, detail the current situation of energy and climate policy in British Columbia, taking account of the full consequences of addiction to fossil fuels and the automobile. The report examines the forces at work responsible for the current situation, namely population growth, urban sprawl, low density communities in the Lower Fraser Valley, southern Vancouver Island and other parts of the province. The growing pressure on the development of agricultural land, congestion on highways and in cities, the increase in air pollution, land alienation, longer commutes to and from work, increased demand for electricity and natural gas, construction of new power plants, pipelines and gas processing facilities are just further examples of the same trend, culminating in dramatic growth in greenhouse gas emissions. The report proposes a range of conservation and renewable options in the areas of urban land use and transportation, commercial and industrial energy reduction and oil and gas production, and provides some ideas of how these recommendations could be realized by businesses, institutions and individuals. It insists on stressing that while the challenges are formidable, they could be achieved through a combination of regulation, public investment, market mechanisms and cultural change. 163 end-notes, tabs.

  12. Energy and climate: the essential world cooperation; Energie et climat: l'indispensable cooperation mondiale

    Energy Technology Data Exchange (ETDEWEB)

    Lesourne, J.

    2008-07-01

    Considering the double challenge of energy supply for economic development and of greenhouse gas emission management to struggle against climate change, the author identifies what can be done at different levels: between governments and households (in terms of energy costs, public transport development, information and education), between governments and firms (in terms of standards, network leakage reductions, intellectual property on new technologies), and between governments. He identifies the related objectives for the European Union, the United States of America, Japan, Russia, China, India, Brazil, the Middle-East, and Sub-Saharan Africa

  13. A Holographic Energy Model

    OpenAIRE

    Huang, P; Huang, Yong-Chang

    2012-01-01

    We suggest a holographic energy model in which the energy coming from spatial curvature, matter and radiation can be obtained by using the particle horizon for the infrared cut-off. We show the consistency between the holographic dark-energy model and the holographic energy model proposed in this paper. Then, we give a holographic description of the universe.

  14. Modelling the wind climate of Ireland

    DEFF Research Database (Denmark)

    Frank, H.P.; Landberg, L.

    1997-01-01

    The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The climatology is represented by 65 frequency classes of geostrophic wind that were selected as equiangular direction sectors and speed intervals with equal frequency in a sector. The results are...

  15. Energy taxes, resource taxes and quantity rationing for climate protection

    Energy Technology Data Exchange (ETDEWEB)

    Eisenack, Klaus [Oldenburg Univ. (Germany). Dept. of Economics; Edenhofer, Ottmar; Kalkuhl, Matthias [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany)

    2010-11-15

    Economic sectors react strategically to climate policy, aiming at a re-distribution of rents. Established analysis suggests a Pigouvian emission tax as efficient instrument, but also recommends factor input or output taxes under specific conditions. However, existing studies leave it open whether output taxes, input taxes or input rationing perform better, and at best only touch their distributional consequences. When emissions correspond to extracted ressources, it is questionable whether taxes are effective at all. We determine the effectiveness, efficiency and functional income distribution for these instruments in the energy and resource sector, based on a game theoretic growth model with explicit factor markets and policy instruments. Market equilibrium depends on a government that acts as a Stackelberg leader with a climate protection goal. We find that resource taxes and cumulative resource quantity rationing achieve this objective efficiently. Energy taxation is only second best. Mitigation generates a substantial ''climate rent'' in the resource sector that can be converted to transfer incomes by taxes. (orig.)

  16. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  17. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  18. Interactions of Policies for Renewable Energy and Climate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper explores the relationships between climate policy and renewable energy policy instruments. It shows that, even where CO2 emissions are duly priced, specific incentives for supporting the early deployment of renewable energy technologies are justified by the steep learning curves of nascent technologies. This early investment reduces costs in the longer term and makes renewable energy affordable when it needs to be deployed on a very large scale to fully contribute to climate change mitigation and energy security. The paper also reveals other noteworthy interaction effects of climate policy and renewable policy instruments on the wholesale electricity prices in deregulated markets, which open new areas for future research.

  19. A Practical Philosophy of Complex Climate Modelling

    Science.gov (United States)

    Schmidt, Gavin A.; Sherwood, Steven

    2014-01-01

    We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP).We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work.

  20. Advance in Application of Regional Climate Models in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; YAN Minhua; CHEN Panqin; XU Helan

    2008-01-01

    Regional climate models have become the powerful tools for simulating regional climate and its changeprocess and have been widely used in China. Using regional climate models, some research results have been obtainedon the following aspects: 1) the numerical simulation of East Asian monsoon climate, including exceptional monsoonprecipitation, summer precipitation distribution, East Asian circulation, multi-year climate average condition, summerrain belt and so on; 2) the simulation of arid climate of the western China, including thermal effect of the Qing-hai-Tibet Plateau, the plateau precipitation in the Qilian Mountains; and the impacts of greenhouse effects (CO2 dou-bling) upon climate in the western China; and 3) the simulation of the climate effect of underlying surface changes, in-cluding the effect of soil on climate formation, the influence of terrain on precipitation, the effect of regional soil deg-radation on regional climate, the effect of various underlying surfaces on regional climate, the effect of land-sea con-trast on the climate formulation, the influence of snow cover over the plateau regions on the regional climate, the effectof vegetation changes on the regional climate, etc. In the process of application of regional climate models, the prefer-ences of the models are improved so that better simulation results are gotten. At last, some suggestions are made aboutthe application of regional climate models in regional climate research in the future.

  1. Crop based climate regimes for energy saving in greenhouse cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, O.

    2003-06-16

    Sustainability is one of the major aims in greenhouse horticulture. According to agreements between the Dutch grower association and the government, energy consumption and the use of chemical biocides have to be reduced. More advanced greenhouse technique is being developed to reach the target to decrease the energy efficiency-index by 65% between 1980 and 2010. However, this could also be achieved with existing technology by using more advanced climate regimes. The present thesis aimed at that, through designing and analysing climate regimes while employing existing climate control possibilities. Theoretical temperature and humidity regimes were designed to decrease energy consumption and a photosynthesis maximisation procedure was implemented to maximise growth. The basis for a crop gross photosynthesis model for control purposes was created. Crop photosynthesis models were evaluated at conditions expected to occur with more sustainable climate regimes. It was shown with experimental evidence that theoretical assumptions on the temperature - CO2 effects in a crop that are based on theoretically models scaling up leaf photosynthesis to the crop level are valid and that simplified existing models could be applied up to 28C. With higher temperatures new designs are needed and this can probably be achieved with an improved stomata-resistance model. The well known temperature integration principle was modified with two nested time-frames (24-hour and six days) and a temperature dose-response function. In a year round tomato cultivation, energy consumption was predicted to decrease with up to 9 % compared to regular temperature integration. The potential for energy saving with temperature integration is limited by humidity control when as usual fixed set points are maintained, because it counteracts temperature integration. Vents open at lower temperatures and heating is switched on at higher temperatures than required for optimal effects of temperature integration. A

  2. Modeling, Estimation and Control of Indoor Climate in Livestock Buildings

    DEFF Research Database (Denmark)

    Wu, Zhuang

    The main objective of this research is to design an efficient control system for the indoor climate of a large-scale partition-less livestock building, in order to maintain a healthy, comfortable and economically energy consuming indoor environment for the agricultural animals and farmers....... In this thesis, a conceptual multi-zone climate model is proposed according to the knowledge about the hybrid ventilation theory. The method is to compartmentalize the building into some well-mixed macroscopic homogeneous zones, with the major emphasizes on the occupied spaces where the animals confined in...... the resilience of the control system to disturbances beyond its bandwidth, increases the manipulators utilization efficiency, and reduces energy consumption by solving a constrained convex optimization. Through comparative simulation results analysis, the proposed modeling and control technique is proved...

  3. Climate Modeling Computing Needs Assessment

    Science.gov (United States)

    Petraska, K. E.; McCabe, J. D.

    2011-12-01

    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  4. Integrated climate and hydrology modelling - Coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Larsen, M.A. [Technical Univ. of Denmark. DTU Management Engineering, DTU Risoe Campus, Roskilde (Denmark)

    2013-10-15

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model (LSM), which is superior to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and precipitation between the two models are included. The preparation of the HIRHAM and MIKE SHE models for the coupled study revealed several findings. The performance of HIRHAM was highly affected by the domain size, domain

  5. Assessing the links between Greenland Ice Sheet Surface Mass Balance and Arctic climate using Climate Models and Observations

    Science.gov (United States)

    Mottram, Ruth; Rodehacke, Christian; Boberg, Fredrik; Langen, Peter; Sloth Madsen, Marianne; Høyer Svendsen, Synne; Yang, Shuting; Hesselbjerg Christensen, Jens; Olesen, Martin

    2016-04-01

    Changes in different parts of the Arctic cryosphere may have knock-on effects on other parts of the system. The fully coupled climate model EC-Earth, which includes the ice sheet model PISM, is a useful tool to examine interactions between sea ice, ice sheet, ocean and atmosphere. Here we present results from EC-Earth experimental simulations that show including an interactive ice sheet model changes ocean circulation, sea ice extent and regional climate with, for example, a dampening of the expected increase in Arctic temperatures under the RCP scenarios when compared with uncoupled experiments. However, the relatively coarse resolution of the climate model likely influences the calculated surface mass balance forcing applied to the ice sheet model and it is important therefore to evaluate the model performance over the ice sheet. Here, we assess the quality of the climate forcing from the GCM to the ice sheet model by comparing the energy balance and surface mass balance (SMB) output from EC-Earth with that from a regional climate model (RCM) run at very high resolution (0.05 degrees) over Greenland. The RCM, HIRHAM5, has been evaluated over a wide range of climate parameters for Greenland which allows us to be confident it gives a representative climate forcing for the Greenland ice sheet. To evaluate the internal variability in the climate forcing, we compare simulations from HIRHAM5 forced with both the EC-Earth historical emissions and the ERA-Interim reanalysis on the boundaries. The EC-Earth-PISM RCP8.5 scenario is also compared with an EC-Earth run without an ice sheet to assess the impact of an interactive ice sheet on likely future changes. To account for the resolution difference between the models we downscale both EC-Earth and HIRHAM5 simulations with a simple offline energy balance model (EBM).

  6. Energy transition - economic challenge, climate challenge, industrial challenge

    International Nuclear Information System (INIS)

    This document highlights and discusses the different economic, climate and industrial challenges, identifies and discusses the different objectives and main results for a successful energy transition respectively in its relationships with the energy mix (the result is to divide emissions by a factor 4), with governance (the result should be a balanced distribution of energy governance), with energy consumption

  7. Grenelle de l'Environnement: the climate-energy assessment

    International Nuclear Information System (INIS)

    After having recalled the main principles of the French 'Grenelle de l'Environnement' environmental policy (integration of cost for climate and biodiversity in large project choices) and discussed the articulation with international and European challenges (international negotiations, EU ETS, adjustment taxes), this report presents and discusses the different commitments, objectives, demands and adopted measures in different sectors: buildings, transports, energy management, development of renewable energies, climate-energy contribution, agriculture, regions and urban planning

  8. ESCAPE. Energy Security and ClimAte Policy Evaluation

    International Nuclear Information System (INIS)

    Climate change and energy supply security policy are currently not integrated in most countries, despite possible synergies. The ESCAPE approach suggests that linking climate change policy with security of energy supply could improve climate change policy at both a national and international level. The report explores the interaction between policies of energy security and climate change and the options of inclusion of energy security issues into national and international post-2012 climate negotiations. It emphasises the importance of the US in this regard and takes a close look at US energy policy documents. It appears that current US energy policy is not directed towards reducing its reliance on imported fossil fuel, even though the government has a strong preference for this. This study shows that measures to reduce import dependency are mostly synergetic with climate policy and gives some options that can be implemented. On an international level, linkages of energy security into post-2012 climate policy may be possible in sectoral bottom-up approaches or technology frameworks. As well, inclusion of a security of supply criterion in international emission trading instruments may provide potential benefits

  9. Challenging some tenets of Regional Climate Modelling

    Science.gov (United States)

    Laprise, R.; de Elía, R.; Caya, D.; Biner, S.; Lucas-Picher, P.; Diaconescu, E.; Leduc, M.; Alexandru, A.; Separovic, L.

    2008-08-01

    Nested Regional Climate Models (RCMs) are increasingly used for climate-change projections in order to achieve spatial resolutions that would be computationally prohibitive with coupled global climate models. RCMs are commonly thought to behave as a sort of sophisticated magnifying glass to perform dynamical downscaling, which is to add fine-scale details upon the large-scale flow provided as time-dependent lateral boundary condition. Regional climate modelling is a relatively new approach, initiated less than twenty years ago. The interest for the approach has grown rapidly as it offers a computationally affordable means of entering into appealing applications of timely societal relevance, such as high-resolution climate-change projections and seasonal prediction. There exists however a need for basic research aiming at establishing firmly the strengths and limitations of the technique. This paper synthesises the results of a stream of investigations on the merits and weaknesses of the nested approach, initiated almost a decade ago by some members of our team. This short paper revisits some commonly accepted notions amongst practitioners of Regional Climate Modelling, in the form of four tenets that will be challenged: (1) RCMs are capable of generating small-scale features absent in the driving fields supplied as lateral boundary conditions; (2) The generated small scales have the appropriate amplitudes and statistics; (3) The generated small scales accurately represent those that would be present in the driving data if it were not limited by resolution; (4) In performing dynamical downscaling, RCMs operate as a kind of sophisticated magnifying glass, in the sense that the small scales that are generated are uniquely defined for a given set of lateral boundary conditions (LBC). From the partial failure of the last two tenets emerges the notion of internal variability, which has often been thought to be negligible in one-way nested models due to the control

  10. A pragmatic energy policy assessment model

    International Nuclear Information System (INIS)

    A study was conducted in which exploratory changes were made to a conventional computable general equilibrium (CGE) model. The changes reflected the productivity of the public capital stock and investments in energy efficiency. It also reflected changes in technology and industrial energy use. The objective of the study was to examine the sensitivity of the effect of carbon taxes and energy efficiency standards to alternative assumptions in a computable general equilibrium model of the United States economy under five production sectors, agriculture, non-energy manufacturing, fossil energy, electricity and services. The newly developed CGE model proposed here has several innovative features. It uses an engineering-econometric energy demand model to determine industrial energy efficiency as it changes over time, and allows for the unexpected productivity effects of energy-efficiency investment. It also accounts for the contribution of public infrastructure investments to private productivity. Two kinds of climate/energy policies were modelled; a carbon tax and an energy efficiency standard

  11. Energy infrastructure in India: Profile and risks under climate change

    DEFF Research Database (Denmark)

    Garg, Amit; Naswa, Prakriti; Shukla, P.R.

    2015-01-01

    India has committed large investments to energy infrastructure assets-power plants, refineries, energy ports, pipelines, roads, railways, etc. The coastal infrastructure being developed to meet the rising energy imports is vulnerable to climate extremes. This paper provides an overview of climate...... and implementation of adaptation measures, and iv) sustainability actions along energy infrastructures that enhance climate resilience and simultaneously deliver co-benefits to local agents....... risks to energy infrastructures in India and details two case studies - a crude oil importing port and a western coast railway transporting coal. The climate vulnerability of the port has been mapped using an index while that of the railway has been done through a damage function for RCP 4.5.0 and 8...

  12. Comparison of two soya bean simulation models under climate change : II Application of climate change scenarios

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for 2050 compared to ambient climate) and change in climatic variability on soya bean growth and production at 3 sites in the EU have been calculated. These calculations have been done with both a simple growth model, SOYBEANW, and a comprehensive model, CROPGRO. Compa

  13. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  14. Large climate-moderating envelopes for enclosed structures: a preliminary evaluation of energy conservation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, R.L.; Giles, G.E.; Park, J.E.

    1981-12-01

    An investigation was made of the basic impacts of putting a large secondary enclosure around a number of functions and thereby creating a Large Climate Moderating Envelope (LCME). This study is a preliminary estimate of the energy conservation benefits of an LCME. A hypothetical LMCE design was chosen and a coupled fluid dynamic and energy transport analysis was performed to estimate the energy conservation potential of this design. The heat transfer models included insolation, outside air temperature and wind, thermal radiation exchange with the sky, and between the fabric and ground and thermal storage in the earth mass beneath the LCME. The energy transported within the fluid by the buoyancy driven circulation was modeled as an incompressible fluid utilizing the Boussinesq approximation. The climatic conditions were assumed to vary in smooth repeating daily cycles. The numerical simulation of climatic variation was continued until the results within the LCME achieved a repeating daily cycle. The results for selected seasonally characteristic days were utilized to estimate the annual energy consumption of structures within an LCME relative to similar structures exposed to the exterior environment. The relative annual energy savings for summer-dominated climates was estimated to be approx. 70%. The energy savings for a winter-dominated climate LCME were estimated to be somewhat smaller but the LCME concept could offer significant benefits for agricultural applications for this type of climate.

  15. Precalibrating an intermediate complexity climate model

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Neil R. [The Open University, Earth and Environmental Sciences, Milton Keynes (United Kingdom); Cameron, David [Centre for Ecology and Hydrology, Edinburgh (United Kingdom); Rougier, Jonathan [University of Bristol, Department of Mathematics, Bristol (United Kingdom)

    2011-10-15

    Credible climate predictions require a rational quantification of uncertainty, but full Bayesian calibration requires detailed estimates of prior probability distributions and covariances, which are difficult to obtain in practice. We describe a simplified procedure, termed precalibration, which provides an approximate quantification of uncertainty in climate prediction, and requires only that uncontroversially implausible values of certain inputs and outputs are identified. The method is applied to intermediate-complexity model simulations of the Atlantic meridional overturning circulation (AMOC) and confirms the existence of a cliff-edge catastrophe in freshwater-forcing input space. When uncertainty in 14 further parameters is taken into account, an implausible, AMOC-off, region remains as a robust feature of the model dynamics, but its location is found to depend strongly on values of the other parameters. (orig.)

  16. Does climate policy lead to relocation with adverse effects for GHG emissions or not? A first assessment of the spillovers of climate policy for energy intensive industry

    International Nuclear Information System (INIS)

    Energy-intensive industries play a special role in climate policy. World-wide, industry is responsible for about 50% of greenhouse gas emissions. The emission intensity makes these industries an important target for climate policy. At the same time these industries are particularly vulnerable if climate policy would lead to higher energy costs, and if they would be unable to offset these increased costs. The side effects of climate policy on GHG emissions in foreign countries are typically referred to as 'spillovers'. Negative spillovers reduce the effectiveness of a climate policy, while positive spillovers increase its effectiveness. This paper provides a review of the literature on the spillover effects of climate policy for carbon intensive industries. Reviews of past trends in production location of energy-intensive industries show an increased share of non-Annex 1 countries. However, this trend is primarily driven by demand growth, and there is no empirical evidence for a role of environmental policy in these development patterns. In contrast, climate models do show a strong carbon leakage of emissions from these industries. Even though that climate policy may have a more profound impact than previous environmental policies, the results of the modelling are ambiguous. The energy and carbon intensity of energy-intensive industries is rapidly declining in most developing countries, and reducing the 'gap' between industrialized and developing countries. Still, considerable potential for emission reduction exists, both in developing and industrialized countries. Technology development is likely to deliver further reductions in energy use and CO2 emissions. Despite the potential for positive spillovers in the energy-intensive industries, none of the models used in the analysis of spillovers of climate policies has an endogenous representation of technological change for the energy-intensive industries. This underlines the need for a better understanding of

  17. Modelling and observing urban climate in the Netherlands

    International Nuclear Information System (INIS)

    The main aims of the present study are: (1) to evaluate the performance of two well-known mesoscale NWP (numerical weather prediction) models coupled to a UCM (Urban Canopy Models), and (2) to develop a proper measurement strategy for obtaining meteorological data that can be used in model evaluation studies. We choose the mesoscale models WRF (Weather Research and Forecasting Model) and RAMS (Regional Atmospheric Modeling System), respectively, because the partners in the present project have a large expertise with respect to these models. In addition WRF and RAMS have been successfully used in the meteorology and climate research communities for various purposes, including weather prediction and land-atmosphere interaction research. Recently, state-of-the-art UCM's were embedded within the land surface scheme of the respective models, in order to better represent the exchange of heat, momentum, and water vapour in the urban environment. Key questions addressed here are: What is the general model performance with respect to the urban environment?; How can useful and observational data be obtained that allow sensible validation and further parameterization of the models?; and Can the models be easily modified to simulate the urban climate under Dutch climatic conditions, urban configuration and morphology? Chapter 2 reviews the available Urban Canopy Models; we discuss their theoretical basis, the different representations of the urban environment, the required input and the output. Much of the information was obtained from the Urban Surface Energy Balance: Land Surface Scheme Comparison project (PILPS URBAN, PILPS stands for Project for Inter-comparison of Land-Surface Parameterization Schemes). This project started in March 2008 and was coordinated by the Department of Geography, King's College London. In order to test the performance of our models we participated in this project. Chapter 3 discusses the main results of the first phase of PILPS URBAN. A first

  18. Modelling and observing urban climate in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van Hove, B. [Wageningen University, Earth System Science, Wageningen (Netherlands); Steeneveld, G.J.; Heusinkveld, B.; Holtslag, B. [Wageningen University, Meteorology and Air Quality, Wageningen (Netherlands); Jacobs, C.; Ter Maat, H.; Elbers, J.; Moors, E. [Wageningen UR, Alterra, Climate Change, Wageningen (Netherlands)

    2011-06-15

    The main aims of the present study are: (1) to evaluate the performance of two well-known mesoscale NWP (numerical weather prediction) models coupled to a UCM (Urban Canopy Models), and (2) to develop a proper measurement strategy for obtaining meteorological data that can be used in model evaluation studies. We choose the mesoscale models WRF (Weather Research and Forecasting Model) and RAMS (Regional Atmospheric Modeling System), respectively, because the partners in the present project have a large expertise with respect to these models. In addition WRF and RAMS have been successfully used in the meteorology and climate research communities for various purposes, including weather prediction and land-atmosphere interaction research. Recently, state-of-the-art UCM's were embedded within the land surface scheme of the respective models, in order to better represent the exchange of heat, momentum, and water vapour in the urban environment. Key questions addressed here are: What is the general model performance with respect to the urban environment?; How can useful and observational data be obtained that allow sensible validation and further parameterization of the models?; and Can the models be easily modified to simulate the urban climate under Dutch climatic conditions, urban configuration and morphology? Chapter 2 reviews the available Urban Canopy Models; we discuss their theoretical basis, the different representations of the urban environment, the required input and the output. Much of the information was obtained from the Urban Surface Energy Balance: Land Surface Scheme Comparison project (PILPS URBAN, PILPS stands for Project for Inter-comparison of Land-Surface Parameterization Schemes). This project started in March 2008 and was coordinated by the Department of Geography, King's College London. In order to test the performance of our models we participated in this project. Chapter 3 discusses the main results of the first phase of PILPS URBAN. A

  19. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  20. Environmental sub models for a macroeconomic model: Agricultural contribution to climate change and acidification in Denmark

    DEFF Research Database (Denmark)

    Jensen, T.S.; Jensen, J.D.; Hasler, B.;

    2007-01-01

    of emission coefficients is described. Emission dependent parameters are identified in order to perform model projections. The model system is demonstrated by projections of agricultural-related emissions in Denmark under two alternative sets of assumptions: a baseline projection and a policy scenario...... economic model, environmental satellite models of energy and waste related emissions contributing to climate change and acidification. The model extension allows the main Danish contribution to climate change and acidification to be modelled. The existing model system is extended by environmental satellite...... models, in which emission coefficients are linked to economic activity variables as modelled by the agricultural sector model ESMERALDA. Agricultural emission sources related to the activity variables in ESMERALDA are mapped in order to develop the environmental satellite models and the development...

  1. Study of tropical clouds feedback to a climate warming as simulated by climate models

    International Nuclear Information System (INIS)

    The last IPCC report affirms the predominant role of low cloud-radiative feedbacks in the inter-model spread of climate sensitivity. Understanding the mechanisms that control the behavior of low-level clouds is thus crucial. However, the complexity of coupled ocean-atmosphere models and the large number of processes potentially involved make the analysis of this response difficult. To simplify the analysis and to identify the most critical controls of cloud feedbacks, we analyze the cloud response to climate change simulated by the IPSL-CM5A model in a hierarchy of configurations. A comparison between three model configurations (coupled, atmospheric and aqua-planet) using the same physical parametrizations shows that the cloud response to global warming is dominated by a decrease of low clouds in regimes of moderate subsidence. Using a Single Column Model, forced by weak subsidence large-scale forcing, allows us to reproduce the vertical cloud profile predicted in the 3D model, as well as its response to climate change (if a stochastic forcing is added on vertical velocity). We analyze the sensitivity of this low-cloud response to external forcing and also to uncertain parameters of physical parameterizations involved on the atmospheric model. Through a moist static energy (MSE) budget, we highlight several mechanisms: (1) Robust: Over weak subsidence regimes, the Clausius-Clapeyron relationship predicts that a warmer atmosphere leads to a increase of the vertical MSE gradient, resulting on a strengthening of the import of low-MSE from the free atmosphere into the cloudy boundary layer. The MSE budget links changes of vertical advection and cloud radiative effects. (2) Physics Model Dependent: The coupling between shallow convection, turbulence and cloud schemes allows the intensification of low-MSE transport so that cloud radiative cooling becomes 'less necessary' to balance the energy budget (Robust positive low cloud-radiative feedback for the model). The

  2. Explosive cyclones in CMIP5 climate models

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.

    2014-12-01

    Explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. A better understanding of the potential impacts of climate change on these so called meteorological bombs is therefore of great societal relevance. This study evaluates how well CMIP5 climate models reproduce explosive cyclones in the extratropics of the northern hemisphere, and how these bombs respond to global warming. For this purpose an objective-feature tracking algorithm was used to identify and track extratropical cyclones from 25 CMIP5 models and 3 reanalysis products for the periods 1980 to 2005 and 2070 to 2099. Cyclones were identified as the maxima of T42 vorticity of 6h wind speed at 850 hPa. Explosive and non-explosive cyclones were separated based on the corresponding deepening rates of mean sea level pressure. Most models accurately reproduced the spatial distribution of bombs when compared to results from reanalysis data (R2 = 0.84, p-value = 0.00), with high frequencies along the Kuroshio Current and the Gulf Stream, as well as the exit regions of the polar jet streaks. Most models however significantly underestimated bomb frequencies by a third on average, and by 74% in the most extreme case. This negative frequency bias coincided with significant underestimations of either meridional sea surface temperature (SST) gradients, or wind speeds of the polar jet streaks. Bomb frequency biases were significantly correlated with the number vertical model levels (R2= 0.36, p-value = 0.001), suggesting that the vertical atmospheric model resolution is crucial for simulating bomb frequencies accurately. The impacts of climate change on the location, frequency, and intensity of explosive cyclones were then explored for the Representative Concentration Pathway 8.5. Projections were related to model bias, resolution, projected changes of SST gradients, and wind speeds

  3. Possible (water sensitive) mitigation strategies for the urban climate in a regional climate modelling context

    OpenAIRE

    Demuzere, Matthias; Coutts, Andrew; Van Lipzig, Nicole

    2012-01-01

    Urban climate models provide a useful tool for assessing the impacts of urban land surface modification on urban climates. It provides a mechanism for trialling different scenarios for urban heat island mitigation. Only recently, urban land surfaces have been included in global and regional climate models. Often they represent a trade-off between the complexity of the biophysical processes of the urban canopy layer and the computational demands in order to be workable on regional climate time...

  4. Anticipating the uncertain: economic modeling and climate change policy

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Svenn

    2012-11-01

    With this thesis I wish to contribute to the understanding of how uncertainty and the anticipation of future events by economic actors affect climate policies. The thesis consists of four papers. Two papers are analytical models which explicitly consider that emissions are caused by extracting scarce fossil fuels which in the future must be replaced by clean technologies. The other two are so called numerical integrated assessment models. Such models represent the world economy, the climate system and the interactions between those two quantitatively, complementing more abstract theoretical work. Should policy makers discriminate between subsidizing renewable energy sources such as wind or solar power, and technologies such as carbon capture and storage (CCS)? Focusing only on the dynamic supply of fossil fuels and hence Co{sub 2}, we find here that cheaper future renewables cause extraction to speed up, lower costs of CCS may delay it. CCS hence may dampen the dynamic inefficiency caused by the absence of comprehensive climate policies today. Does it matter whether uncertainty about future damage assessment is due to scientific complexities or stems from the political process? In paper two, I find that political and scientific uncertainties have opposing effects on the incentives to investment in renewables and the extraction of fossil fuels: The prospect of scientific learning about the climate system increases investment incentives and, ceteris paribus, slows extraction down; uncertainty about future political constellations does the opposite. The optimal carbon tax under scientific uncertainty equals expected marginal damages, whereas political uncertainty demands a tax below marginal damages that decreases over time. Does uncertainty about economic growth impact optimal climate policy today? Here we are the first to consistently analyze how uncertainty about future economic growth affects optimal emission reductions and the optimal social cost of carbon. We

  5. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    Science.gov (United States)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  6. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 1. Model and validation

    Science.gov (United States)

    Guo, Ying; Shen, Yanjun

    2015-09-01

    We have developed an operational model to simulate water and energy fluxes in the Haihe River Basin (231,800 km2 in size) for the past 28 years. This model is capable of estimating water and energy fluxes of irrigated croplands and heterogeneous grids. The model was validated using actual evapotranspiration (ETa) measured by an eddy covariance system, measured soil moisture in croplands, groundwater level measurements over the piedmont plain and runoff observations in a mountainous catchment. A long-term time series of water and energy balance components were then simulated at a daily time step by integrating remotely sensed information and meteorological data to examine the spatial and temporal distribution and changes in water and energy fluxes in the basin over the past 28 years. The results show that net radiation (Rn) in the mountainous regions is generally higher than that in the plain regions. ETa in the plain regions is higher than that in the mountainous regions mostly because of higher air temperature and larger areas of irrigated farmland. Higher sensible heat flux (H) and lower ETa in the urban areas are possibly due to less vegetation cover, an impervious surface, rapid drainage, and the heat island effect of cities. During the study period, a water deficit continuously occurred in the plain regions because of extensive pumping of groundwater for irrigation to meet the crop water requirements. Irrigation has led to significant groundwater depletion, which poses a substantial challenge to the sustainability of water resources in this basin.

  7. Energy Partition From Various Climate Conditions And Land Use Types

    Science.gov (United States)

    Cheng, Chi-Han; Hsu2, Pang-Chi

    2015-04-01

    Investigating how energy partitions and what factors control energy exchange is critical for better understanding the hydrological cycle, boundary layer dynamics, and land -atmosphere coupling. Climate and land use conditions are the two main factors to control energy partitation. However, previous studies discussed energy partition and factors that controlled Bowen ratio (i.e., ratio of sensible heat flux to latent heat flux) in limited land use types and climate conditions. To provide a more comprehensive analysis over various climate and vegetation types, in this study, we studied eleven different land use types in the eight different climate zones within the United State. The results found out that the Mediterranean climate zone with dry summer season, dry arid (desert) climate zone, and the higher latitude area with severe winter would had higher Bowen ratio, lower precipitation and net radiation. In contrast, the humid climate zones had the lower Bowen ratio, higher net radiation and precipitation. Moreover, the higher Bowen ratio usually happened in the winter or early spring seasons. Regarding land conditions, it is found that soil moistures are the key factor to control Bowen ratio in the drier climate areas. Hence, the grassland and closed shrublands sites have higher Bowen ratio than deciduous broadleaf forests and evergreen needle-leaf forests sites' because of shallower root systems that lack access to the full storage of water in the vadose zone. However, in the humid areas, land use factors, such as stomatal resistance and leaf area, would play an important role in changing latent heat and sensible heat. Based on the tight relationships between Bowen ratio and conditions of climate and land use, we suggest that Bowen ratio could be a useful tool for understanding the potential feedbacks of changes in climate and land use to energy partition and exchange.

  8. Uncertainty of biomass contributions from agriculture and forestry to renewable energy resources under climate change

    Directory of Open Access Journals (Sweden)

    Martin Gutsch

    2015-04-01

    Full Text Available In the future, Germany's land-use policies and the impacts of climate change on yields will affect the amount of biomass available for energy production. We used recent published data on biomass potentials in the federal states of Germany to assess the uncertainty caused by climate change effects in the potential supply of biomass available for energy production. In this study we selected three climate scenarios representing the maximum, mean and minimum temperature increase for Germany out of 21 CMIP5-projections driven by the Representative Concentration Pathways (RCP 8.5 scenario. Each of the three selected projections was downscaled using the regional statistical climate model STARS. We analysed the yield changes of four biomass feedstock crops (forest, short-rotation coppices (SRC, cereal straw (winter wheat and energy maize for the period 2031–2060 in comparison to 1981–2010. The mean annual yield changes of energy wood from forest and short-rotation coppices were modelled using the process-based forest growth model 4C. The yield changes of winter wheat and energy maize from agricultural production were simulated with the statistical yield model IRMA. Germany's annual biomass potential of 1500 PJ varies between minus 5 % and plus 8 % depending on the climate scenario realisation. Assuming that 1500 PJ of biomass utilisation can be achieved, climate change effects of minus 75 (5 % PJ or plus 120 (8 % PJ do not impede overall bioenergy targets of 1287 PJ in 2020 and 1534 PJ in 2050. In five federal states the climate scenarios lead to decreasing yields of energy maize and winter wheat. Impacts of climate scenarios on forest yields are mainly positive and show both positive and negative effects on yields of SRC.

  9. Energy modelling and capacity building

    International Nuclear Information System (INIS)

    The Planning and Economic Studies Section of the IAEA's Department of Nuclear Energy is focusing on building analytical capacity in MS for energy-environmental-economic assessments and for the elaboration of sustainable energy strategies. It offers a variety of analytical models specifically designed for use in developing countries for (i) evaluating alternative energy strategies; (ii) assessing environmental, economic and financial impacts of energy options; (iii) assessing infrastructure needs; (iv) evaluating regional development possibilities and energy trade; (v) assessing the role of nuclear power in addressing priority issues (climate change, energy security, etc.). These models can be used for analysing energy or electricity systems, and to assess possible implications of different energy, environmental or financial policies that affect the energy sector and energy systems. The models vary in complexity and data requirements, and so can be adapted to the available data, statistics and analytical needs of different countries. These models are constantly updated to reflect changes in the real world and in the concerns that drive energy system choices. They can provide thoughtfully informed choices for policy makers over a broader range of circumstances and interests. For example, they can readily reflect the workings of competitive energy and electricity markets, and cover such topics as external costs. The IAEA further offers training in the use of these models and -just as important- in the interpretation and critical evaluation of results. Training of national teams to develop national competence over the full spectrum of models, is a high priority. The IAEA maintains a broad spectrum of databanks relevant to energy, economic and environmental analysis in MS, and make these data available to analysts in MS for use in their own analytical work. The Reference Technology Data Base (RTDB) and the Reference Data Series (RDS-1) are the major vehicles by which we

  10. Climate change and energy security: an analysis of policy research

    Energy Technology Data Exchange (ETDEWEB)

    King, Marcus Dubois [George Washington University; Gulledge, Jay [ORNL

    2013-01-01

    The literature on climate change's impacts on energy security is scattered across disparate fields of research and schools of thought. Much of this literature has been produced outside of the academy by scholars and practitioners working in "think tanks," government agencies, and international/multilateral institutions. Here we reviewed a selected set of 58 articles and reports primarily from such sources and performed textual analysis of the arguments. Our review of this literature identifies three potential mechanisms for linking climate change and energy security: Climate change may 1) create second-order effects that may exacerbate social instability and disrupt energy systems; 2) directly impact energy supply and/or systems or 3) influence energy security through the effects of climate-related policies. We identify emerging risks to energy security driven by climate mitigation tech-nology choices but find less evidence of climate change's direct physical impacts. We used both empirical and qualitative selection factors for choosing the grey literature sample. The sources we selected were published in the last 5 years, available through electronic media and were written in language accessible to general policy or academic readers. The organi-zations that published the literature had performed previous research in the general fields of energy and/or climate change with some analytical content and identified themselves as non-partisan. This literature is particularly valuable to scholars because identifies understudied relationships that can be rigorously assessed through academic tools and methodologies and informs a translational research agenda that will allow scholars to engage with practitioners to address challenges that lie at the nexus of climate change and energy security.

  11. Environmental Issues, Climate Changes, and Energy Security in Developing Asia

    OpenAIRE

    Sovacool, Benjamin K

    2014-01-01

    Four environmental dimensions of energy security—climate change, air pollution, water availability and quality, and land-use change—and the environmental impact of 13 energy systems on each are discussed in this paper. Climate change threatens more land, people, and economies in Asia and small Pacific island states than any other part of the planet. Air pollution takes a substantial toll on national health-care expenditures and economies in general. Of the 18 megacities worldwide with severe ...

  12. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.;

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  13. Modelling Complexity: the case of Climate Science

    CERN Document Server

    Lucarini, Valerio

    2011-01-01

    We briefly review some of the scientific challenges and epistemological issues related to climate science. We discuss the formulation and testing of theories and numerical models, which, given the presence of unavoidable uncertainties in observational data, the non-repeatability of world-experiments, and the fact that relevant processes occur in a large variety of spatial and temporal scales, require a rather different approach than in other scientific contexts. A brief discussion of the intrinsic limitations of geo-engineering solutions to global warming is presented, and a framework of investigation based upon non-equilibrium thermodynamics is proposed. We also critically discuss recently proposed perspectives of development of climate science based purely upon massive use of supercomputer and centralized planning of scientific priorities.

  14. Comparison and interactions between the long-term pursuit of energy independence and climate policies

    Science.gov (United States)

    Jewell, Jessica; Vinichenko, Vadim; McCollum, David; Bauer, Nico; Riahi, Keywan; Aboumahboub, Tino; Fricko, Oliver; Harmsen, Mathijs; Kober, Tom; Krey, Volker; Marangoni, Giacomo; Tavoni, Massimo; van Vuuren, Detlef P.; van der Zwaan, Bob; Cherp, Aleh

    2016-06-01

    Ensuring energy security and mitigating climate change are key energy policy priorities. The recent Intergovernmental Panel on Climate Change Working Group III report emphasized that climate policies can deliver energy security as a co-benefit, in large part through reducing energy imports. Using five state-of-the-art global energy-economy models and eight long-term scenarios, we show that although deep cuts in greenhouse gas emissions would reduce energy imports, the reverse is not true: ambitious policies constraining energy imports would have an insignificant impact on climate change. Restricting imports of all fuels would lower twenty-first-century emissions by only 2-15% against the Baseline scenario as compared with a 70% reduction in a 450 stabilization scenario. Restricting only oil imports would have virtually no impact on emissions. The modelled energy independence targets could be achieved at policy costs comparable to those of existing climate pledges but a fraction of the cost of limiting global warming to 2 ∘C.

  15. Building energy efficiency and thermal comfort in tropical climates

    Energy Technology Data Exchange (ETDEWEB)

    Bastide, A.; Lauret, P.; Garde, F.; Boyer, H. [Laboratoire de Physique du Batiment et des Systemes, Universite de La Reunion, Saint-Pierre, Ile de La Reunion (France)

    2006-07-01

    The paper deals with the optimization of building energy efficiency in tropical climates by reducing the period of air-conditioning thanks to natural ventilation and a better bioclimatic design. A bioclimatic approach to designing comfortable buildings in hot and humid tropical regions requires, firstly, some preliminary, important work on the building envelope to limit the energy contributions, and secondly, an airflow optimization based on the analysis of natural ventilation airflow networks. For the first step, tools such as nodal or zonal models have been largely implemented in building energy codes to evaluate energy transport between indoor and outdoor. For the second step, the assessment of air velocities, in three dimensions and in a large space, can only be performed through the use of detailed models such as with CFD. A new modelling approach based on the derivation of a new quantity - i.e. the well-ventilated percentage of a living space is proposed. The well-ventilated percentage of a space allows a time analysis of the air motion behaviour of the building in its environment. These percentages can be over a period such as 1 day, a season or a year. Twelve living spaces with different configuration of openings have been studied to compare the performance of ventilation function of the opening distribution. Results and discussion are presented in the paper. This method is helpful for an architect to design the rooms according to their use, and their environment. Finally, the developed models can be used in building projects to estimate the period of the natural ventilation and to reduce the energy consumption due to air-conditioning. (author)

  16. Hydroclimatology of the Nile: results from a regional climate model

    Directory of Open Access Journals (Sweden)

    Y. A. Mohamed

    2005-01-01

    Full Text Available This paper presents the result of the regional coupled climatic and hydrologic model of the Nile Basin. For the first time the interaction between the climatic processes and the hydrological processes on the land surface have been fully coupled. The hydrological model is driven by the rainfall and the energy available for evaporation generated in the climate model, and the runoff generated in the catchment is again routed over the wetlands of the Nile to supply moisture for atmospheric feedback. The results obtained are quite satisfactory given the extremely low runoff coefficients in the catchment. The paper presents the validation results over the sub-basins: Blue Nile, White Nile, Atbara river, the Sudd swamps, and the Main Nile for the period 1995 to 2000. Observational datasets were used to evaluate the model results including radiation, precipitation, runoff and evaporation data. The evaporation data were derived from satellite images over a major part of the Upper Nile. Limitations in both the observational data and the model are discussed. It is concluded that the model provides a sound representation of the regional water cycle over the Nile. The sources of atmospheric moisture to the basin, and location of convergence/divergence fields could be accurately illustrated. The model is used to describe the regional water cycle in the Nile basin in terms of atmospheric fluxes, land surface fluxes and land surface-climate feedbacks. The monthly moisture recycling ratio (i.e. locally generated/total precipitation over the Nile varies between 8 and 14%, with an annual mean of 11%, which implies that 89% of the Nile water resources originates from outside the basin physical boundaries. The monthly precipitation efficiency varies between 12 and 53%, and the annual mean is 28%. The mean annual result of the Nile regional water cycle is compared to that of the Amazon and the Mississippi basins.

  17. Hydroclimatology of the Nile: results from a regional climate model

    Directory of Open Access Journals (Sweden)

    Y. A. Mohamed

    2005-02-01

    Full Text Available This paper is the result of the first regional coupled climatic and hydrologic model of the Nile. For the first time the interaction between the climatic processes and the hydrological processes on the land surface have been fully coupled. The hydrological model is driven by the rainfall and the energy available for evaporation generated in the climate model, and the runoff generated in the catchment is again routed over the wetlands of the Nile to supply moisture for atmospheric feedback. The results obtained are surprisingly accurate given the extremely low runoff coefficients in the catchment.

    The paper presents model results over the sub-basins: Blue Nile, White Nile, Atbara river and the Main Nile for the period 1995 to 2000, but focuses on the Sudd swamp. Limitations in both the observational data and the model are discussed. It is concluded that the model provides a sound representation of the regional water cycle over the Nile. The model is used to describe the regional water cycle in the Nile basin in terms of atmospheric fluxes, land surface fluxes and land surface-climate feedbacks. The monthly moisture recycling ratio (i.e. locally generated/total precipitation over the Nile varies between 8 and 14%, with an annual mean of 11%, which implies that 89% of the Nile water resources originates from outside the basin physical boundaries. The monthly precipitation efficiency varies between 12 and 53%, and the annual mean is 28%. The mean annual result of the Nile regional water cycle is compared to that of the Amazon and the Mississippi basins.

  18. Climate information for the application of solar energy

    International Nuclear Information System (INIS)

    In view of population growth, industrialization and urbanization which provoked increasing energy demand there has been an increasing interest in developing new technologies that use various renewable energy sources and have less environmental impact, such as solar, wind, tidal and biomass. Solar energy is one of the energy resources with a wide geographical distribution. Nowadays, its contribution to the world's energy supply is very small, but it is considered an important long term option which will satisfy, together with conventional energy sources, the future energy needs of the world. The main objective of this work is to report the actual uses of the principal types of solar energy systems, based on their climatic, technological and economical context. This is to improve the dissemination of information on the application of climate knowledge and data, especially by national meteorological services, with the purpose to improve the planning, design and operation of solar energy systems, as well as facilitate their more widespread use

  19. Hortisim: a model for greenhouse crops and greenhouse climate

    NARCIS (Netherlands)

    Gijzen, H.; Heuvelink, E.; Challa, H.; Dayan, E.; Marcelis, L.F.M.; Cohen, S.; Fuchs, M.

    1998-01-01

    A combined model for crop production and climate in greenhouses, HORTISIM, was developed. Existing models, developed by several research groups, of various aspects of crop growth and greenhouse climate have been integrated. HORTISIM contains 7 submodels (Weather, Greenhouse Climate, Soil, Crop, Gree

  20. Modeling lakes and reservoirs in the climate system

    NARCIS (Netherlands)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L.N.; Fang, X.; Gal, G.; Jöhnk, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere–land surface–lake climate models that could be used for both of these types of study simu

  1. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric concent

  2. Interpolation of climate variables and temperature modeling

    Science.gov (United States)

    Samanta, Sailesh; Pal, Dilip Kumar; Lohar, Debasish; Pal, Babita

    2012-01-01

    Geographic Information Systems (GIS) and modeling are becoming powerful tools in agricultural research and natural resource management. This study proposes an empirical methodology for modeling and mapping of the monthly and annual air temperature using remote sensing and GIS techniques. The study area is Gangetic West Bengal and its neighborhood in the eastern India, where a number of weather systems occur throughout the year. Gangetic West Bengal is a region of strong heterogeneous surface with several weather disturbances. This paper also examines statistical approaches for interpolating climatic data over large regions, providing different interpolation techniques for climate variables' use in agricultural research. Three interpolation approaches, like inverse distance weighted averaging, thin-plate smoothing splines, and co-kriging are evaluated for 4° × 4° area, covering the eastern part of India. The land use/land cover, soil texture, and digital elevation model are used as the independent variables for temperature modeling. Multiple regression analysis with standard method is used to add dependent variables into regression equation. Prediction of mean temperature for monsoon season is better than winter season. Finally standard deviation errors are evaluated after comparing the predicted temperature and observed temperature of the area. For better improvement, distance from the coastline and seasonal wind pattern are stressed to be included as independent variables.

  3. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2012-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  4. Modeling and Analysis of Global and Regional Climate Change in Relation to Atmospheric Hydrologic Processes

    Science.gov (United States)

    Johnson, Donald R.

    2001-01-01

    This research was directed to the development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. An additional objective was to investigate the accuracy and theoretical limits of global climate predictability which are imposed by the inherent limitations of simulating trace constituent transport and the hydrologic processes of condensation, precipitation and cloud life cycles.

  5. Climate stability and sensitivity in some simple conceptual models

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J. Ray [University College Dublin, Meteorology and Climate Centre, School of Mathematical Sciences, Dublin (Ireland)

    2012-02-15

    A theoretical investigation of climate stability and sensitivity is carried out using three simple linearized models based on the top-of-the-atmosphere energy budget. The simplest is the zero-dimensional model (ZDM) commonly used as a conceptual basis for climate sensitivity and feedback studies. The others are two-zone models with tropics and extratropics of equal area; in the first of these (Model A), the dynamical heat transport (DHT) between the zones is implicit, in the second (Model B) it is explicitly parameterized. It is found that the stability and sensitivity properties of the ZDM and Model A are very similar, both depending only on the global-mean radiative response coefficient and the global-mean forcing. The corresponding properties of Model B are more complex, depending asymmetrically on the separate tropical and extratropical values of these quantities, as well as on the DHT coefficient. Adopting Model B as a benchmark, conditions are found under which the validity of the ZDM and Model A as climate sensitivity models holds. It is shown that parameter ranges of physical interest exist for which such validity may not hold. The 2 x CO{sub 2} sensitivities of the simple models are studied and compared. Possible implications of the results for sensitivities derived from GCMs and palaeoclimate data are suggested. Sensitivities for more general scenarios that include negative forcing in the tropics (due to aerosols, inadvertent or geoengineered) are also studied. Some unexpected outcomes are found in this case. These include the possibility of a negative global-mean temperature response to a positive global-mean forcing, and vice versa. (orig.)

  6. Towards Systematic Benchmarking of Climate Model Performance

    Science.gov (United States)

    Gleckler, P. J.

    2014-12-01

    The process by which climate models are evaluated has evolved substantially over the past decade, with the Coupled Model Intercomparison Project (CMIP) serving as a centralizing activity for coordinating model experimentation and enabling research. Scientists with a broad spectrum of expertise have contributed to the CMIP model evaluation process, resulting in many hundreds of publications that have served as a key resource for the IPCC process. For several reasons, efforts are now underway to further systematize some aspects of the model evaluation process. First, some model evaluation can now be considered routine and should not require "re-inventing the wheel" or a journal publication simply to update results with newer models. Second, the benefit of CMIP research to model development has not been optimal because the publication of results generally takes several years and is usually not reproducible for benchmarking newer model versions. And third, there are now hundreds of model versions and many thousands of simulations, but there is no community-based mechanism for routinely monitoring model performance changes. An important change in the design of CMIP6 can help address these limitations. CMIP6 will include a small set standardized experiments as an ongoing exercise (CMIP "DECK": ongoing Diagnostic, Evaluation and Characterization of Klima), so that modeling groups can submit them at any time and not be overly constrained by deadlines. In this presentation, efforts to establish routine benchmarking of existing and future CMIP simulations will be described. To date, some benchmarking tools have been made available to all CMIP modeling groups to enable them to readily compare with CMIP5 simulations during the model development process. A natural extension of this effort is to make results from all CMIP simulations widely available, including the results from newer models as soon as the simulations become available for research. Making the results from routine

  7. Ensemble of regional climate model projections for Ireland

    Science.gov (United States)

    Nolan, Paul; McGrath, Ray

    2016-04-01

    The method of Regional Climate Modelling (RCM) was employed to assess the impacts of a warming climate on the mid-21st-century climate of Ireland. The RCM simulations were run at high spatial resolution, up to 4 km, thus allowing a better evaluation of the local effects of climate change. Simulations were run for a reference period 1981-2000 and future period 2041-2060. Differences between the two periods provide a measure of climate change. To address the issue of uncertainty, a multi-model ensemble approach was employed. Specifically, the future climate of Ireland was simulated using three different RCMs, driven by four Global Climate Models (GCMs). To account for the uncertainty in future emissions, a number of SRES (B1, A1B, A2) and RCP (4.5, 8.5) emission scenarios were used to simulate the future climate. Through the ensemble approach, the uncertainty in the RCM projections can be partially quantified, thus providing a measure of confidence in the predictions. In addition, likelihood values can be assigned to the projections. The RCMs used in this work are the COnsortium for Small-scale MOdeling-Climate Limited-area Modelling (COSMO-CLM, versions 3 and 4) model and the Weather Research and Forecasting (WRF) model. The GCMs used are the Max Planck Institute's ECHAM5, the UK Met Office's HadGEM2-ES, the CGCM3.1 model from the Canadian Centre for Climate Modelling and the EC-Earth consortium GCM. The projections for mid-century indicate an increase of 1-1.6°C in mean annual temperatures, with the largest increases seen in the east of the country. Warming is enhanced for the extremes (i.e. hot or cold days), with the warmest 5% of daily maximum summer temperatures projected to increase by 0.7-2.6°C. The coldest 5% of night-time temperatures in winter are projected to rise by 1.1-3.1°C. Averaged over the whole country, the number of frost days is projected to decrease by over 50%. The projections indicate an average increase in the length of the growing season

  8. Construction of a novel economy-climate model

    Institute of Scientific and Technical Information of China (English)

    CHOU JieMing; DONG WenJie; YE DuZheng

    2007-01-01

    An attempt has been made to construct a novel economy-climate model by combining climate change research with agricultural economy research to evaluate the influence of global climate change on grain yields. The insertion of a climate change factor into the economic C-D (Cobb-Dauglas) production function model yields a novel evaluation model, which connects the climate change factor to the economic variation factor, and the performance and reasonableness of the novel evaluation model are also preliminarily simulated and verified.

  9. The international coordination of climate model validation and intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Gates, W.L. [Lawrence Livermore National Lab. Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison

    1995-12-31

    Climate modeling, whereby basic physical laws are used to integrate the physics and dynamics of climate into a consistent system, plays a key role in climate research and is the medium through. Depending upon the portion(s) of the climate system being considered, climate models range from those concerned only with the equilibrium globally-averaged surface temperature to those depicting the 3-dimensional time-dependent evolution of the coupled atmosphere, ocean, sea ice and land surface. Here only the latter class of models are considered, which are commonly known as general circulation models (or GCMs). (author)

  10. The Development in modeling Tibetan Plateau Land/Climate Interaction

    Science.gov (United States)

    Xue, Yongkang; Liu, Ye; li, qian; Maheswor Shrestha, Maheswor; Ma, Hsi-Yen; Cox, Peter; Sun, shufen; Koike, Toshio

    2015-04-01

    Tibetan Plateau (TP) plays an important role in influencing the continental and planetary scale climate, including East Asian and South Asian monsoon, circulation and precipitation over West Pacific and Indian Oceans. The numerical study has identified TP as the area with strongest land/atmosphere interactions over the midlatitude land. The land degradation there has also affected the monsoon precipitation in TP along the monsoon pathway. The water cycle there affects water sources for major Asian river systems, which include the Tarim, Amu Darya, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtze Rivers. Despite the importance of TP land process in the climate system, the TP land surface processes are poorly modeled due to lack of data available for model validation. To better understand, simulate, and project the role of Tibetan Plateau land surface processes, better parameterization of the Tibetan Land surface processes have been developed and evaluated. The recently available field measurement there and satellite observation have greatly helped this development. This paper presents these new developments and preliminary results using the newly developed biophysical/dynamic vegetation model, frozen soil model, and glacier model. In recent CMIP5 simulation, the CMIP5 models with dynamic vegetation model show poor performance in simulating the TP vegetation and climate. To better simulate the TP vegetation condition and its interaction with climate, we have developed biophysical/dynamic vegetation model, the Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), based on water, carbon, and energy balance. The simulated vegetation variables are updates, driven by carbon assimilation, allocation, and accumulation, as well as competition between plant functional types. The model has been validated with the station data, including those measured over the TP

  11. Post-2020 climate agreements in the major economies assessed in the light of global models

    Energy Technology Data Exchange (ETDEWEB)

    Tavoni, Massimo; Kriegler, Elmar; Riahi, Keywan; Van Vuuren, Detlef; Aboumahboub, Tino; Bowen, Alex; Calvin, Katherine V.; Campiglio, Emanuele; Kober, Tom; Jewell, Jessica; Luderer, Gunnar; Marangoni, Giacomo; McCollum, David; van Sluisveld, Mariesse; Zimmer, Anne; van der Zwaan, Bob

    2014-12-15

    Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced pledges and their relation to the 2°C target. We provide key information for all the major economies, such as the year of emission peaking, regional carbon budgets and emissions allowances. We highlight the distributional consequences of climate policies, and discuss the role of carbon markets for financing clean energy investments, and achieving efficiency and equity.

  12. Climate Change and Vulnerabilities of the European Energy Balance

    Directory of Open Access Journals (Sweden)

    Giuliano Buceti

    2015-03-01

    Full Text Available Energy consumption induces climate change but at the same time modifications in climate impact energy sector both in term of supply capacity and shifts in energy demands. Different regions will be affected in different ways and this paper aims at analysing the issue at European level. Usually rising sea levels, extremes of weather and an increase in the frequency of droughts and floods are indicated play havoc with the world's energy systems but they can be hardly estimated and this study will be limited to the effects of the increase in average temperature. Tipping points are also taken out of any quantitative assessment. Structure of the EU energy budget is presented, shifts in energy demand, vulnerabilities of supply and risks for energy infrastructure are discussed in order to, eventually, provide figures of possible further threats to continental energy security.

  13. Indoor climate quality after renovation for improved energy efficiency

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Løck, Sebastian; Kolarik, Barbara;

    2016-01-01

    The building sector is responsible for approximately 40 % of the Danish energy consumption. As every year less than 1 % of the building stock is rebuild after demolition of old buildings, improved energy efficiency of existing buildings are in focus. In the late seventies to mid-eighties unwise...... energy efficiency retrofitting caused several cases of indoor climate degradation. This project describes possibilities, barriers and methods of combining energy performance and indoor climate enhancements in today’s retrofitting of rental dwellings. The project followed three energy retrofitting...... before and after the retrofitting. The results showed significant energy savings in all projects. There was a marked difference between expected and measured energy consumption in one building and good agreement in the two others indicating a strong impact of good maintenance and operations on energy...

  14. The Development in modeling Tibetan Plateau Land/Climate Interaction

    Science.gov (United States)

    Xue, Yongkang; Liu, Ye; li, qian; Maheswor Shrestha, Maheswor; Ma, Hsi-Yen; Cox, Peter; Sun, shufen; Koike, Toshio

    2015-04-01

    Tibetan Plateau (TP) plays an important role in influencing the continental and planetary scale climate, including East Asian and South Asian monsoon, circulation and precipitation over West Pacific and Indian Oceans. The numerical study has identified TP as the area with strongest land/atmosphere interactions over the midlatitude land. The land degradation there has also affected the monsoon precipitation in TP along the monsoon pathway. The water cycle there affects water sources for major Asian river systems, which include the Tarim, Amu Darya, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtze Rivers. Despite the importance of TP land process in the climate system, the TP land surface processes are poorly modeled due to lack of data available for model validation. To better understand, simulate, and project the role of Tibetan Plateau land surface processes, better parameterization of the Tibetan Land surface processes have been developed and evaluated. The recently available field measurement there and satellite observation have greatly helped this development. This paper presents these new developments and preliminary results using the newly developed biophysical/dynamic vegetation model, frozen soil model, and glacier model. In recent CMIP5 simulation, the CMIP5 models with dynamic vegetation model show poor performance in simulating the TP vegetation and climate. To better simulate the TP vegetation condition and its interaction with climate, we have developed biophysical/dynamic vegetation model, the Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), based on water, carbon, and energy balance. The simulated vegetation variables are updates, driven by carbon assimilation, allocation, and accumulation, as well as competition between plant functional types. The model has been validated with the station data, including those measured over the TP

  15. Mixing parameterizations in ocean climate modeling

    Science.gov (United States)

    Moshonkin, S. N.; Gusev, A. V.; Zalesny, V. B.; Byshev, V. I.

    2016-03-01

    Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin-Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.

  16. Energy, atmospheric chemistry, and global climate

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  17. Watershed response and land energy feedbacks under climate change depend upon groundwater.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Kollet, S J

    2008-06-10

    Human induced climate change will have a significant impact on the hydrologic cycle, creating changes in fresh water resources, land cover, and feedbacks that are difficult to characterize, which makes it an issue of global importance. Previous studies have not included subsurface storage in climate change simulations and feedbacks. A variably-saturated groundwater flow model with integrated overland flow and land surface model processes is used to examine the interplay between coupled water and energy processes under climate change conditions. A case study from the Southern Great Plains (SGP) USA, an important agricultural region that is susceptible to drought, is used as the basis for three scenarios simulations using a modified atmospheric forcing dataset to reflect predicted effects due to human-induced climate change. These scenarios include an increase in the atmospheric temperature and variations in rainfall amount and are compared to the present-day climate case. Changes in shallow soil saturation and groundwater levels are quantified as well as the corresponding energy fluxes at the land surface. Here we show that groundwater and subsurface lateral flow processes are critical in understanding hydrologic response and energy feedbacks to climate change and that certain regions are more susceptible to changes in temperature, while others to changes in precipitation. This groundwater control is critical for understanding recharge and drought processes, possible under future climate conditions.

  18. Integrated approaches to climate-crop modelling: needs and challenges.

    Science.gov (United States)

    Betts, Richard A

    2005-11-29

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation

  19. Sensitivity of climate models: Comparison of simulated and observed patterns for past climates

    International Nuclear Information System (INIS)

    Predicting the potential climatic effects of increased concentrations of atmospheric carbon dioxide requires the continuing development of climate models. Confidence in the predictions will be much enhanced once the models are thoroughly tested in terms of their ability to simulate climates that differ significantly from today's climate. As one index of the magnitude of past climate change, the global mean temperature increase during the past 18,000 years is similar to that predicted for carbon dioxide--doubling. Simulating the climatic changes of the past 18,000 years, as well as the warmer-than-present climate of 6000 years ago and the climate of the last interglacial, around 126,000 years ago, provides an excellent opportunity to test the models that are being used in global climate change research. During the past several years, we have used paleoclimatic data to test the accuracy of the National Center for Atmospheric Research, Community Climate Model, Version 0, after changing its boundary conditions to those appropriate for past climates. We have assembled regional and near-global paleoclimatic data sets of pollen, lake level, and marine plankton data and calibrated many of the data in terms of climatic variables. We have also developed methods that permit direct quantitative comparisons between the data and model results. Our research has shown that comparing the model results with the data is an evolutionary process, because the models, the data, and the methods for comparison are continually being improved. During 1992, we have completed new modeling experiments, further analyzed previous model experiments, compiled new paleodata, made new comparisons between data and model results, and participated in workshops on paleoclimatic modeling

  20. Regional climate simulations over Vietnam using the WRF model

    Science.gov (United States)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2015-07-01

    We present an analysis of the present-day (1961-1990) regional climate simulations over Vietnam. The regional climate model Weather Research and Forecasting (WRF) was driven by the global reanalysis ERA40. The performance of the regional climate model in simulating the observed climate is evaluated with a main focus on precipitation and temperature. The regional climate model was able to reproduce the observed spatial patterns of the climate, although with some biases. The model also performed better in reproducing the extreme precipitation and the interannual variability. Overall, the WRF model was able to simulate the main regional signatures of climate variables, seasonal cycles, and frequency distributions. This study is an evaluation of the present-day climate simulations of a regional climate model at a resolution of 25 km. Given that dynamical downscaling has become common for studying climate change and its impacts, the study highlights that much more improvements in modeling might be necessary to yield realistic simulations of climate at high resolutions before they can be used for impact studies at a local scale. The need for a dense network of observations is also realized as observations at high resolutions are needed when it comes to evaluations and validations of models at sub-regional and local scales.

  1. Regional climate simulations over Vietnam using the WRF model

    Science.gov (United States)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2016-10-01

    We present an analysis of the present-day (1961-1990) regional climate simulations over Vietnam. The regional climate model Weather Research and Forecasting (WRF) was driven by the global reanalysis ERA40. The performance of the regional climate model in simulating the observed climate is evaluated with a main focus on precipitation and temperature. The regional climate model was able to reproduce the observed spatial patterns of the climate, although with some biases. The model also performed better in reproducing the extreme precipitation and the interannual variability. Overall, the WRF model was able to simulate the main regional signatures of climate variables, seasonal cycles, and frequency distributions. This study is an evaluation of the present-day climate simulations of a regional climate model at a resolution of 25 km. Given that dynamical downscaling has become common for studying climate change and its impacts, the study highlights that much more improvements in modeling might be necessary to yield realistic simulations of climate at high resolutions before they can be used for impact studies at a local scale. The need for a dense network of observations is also realized as observations at high resolutions are needed when it comes to evaluations and validations of models at sub-regional and local scales.

  2. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  3. Combating complexity: the integration of EU climate and energy policies

    Directory of Open Access Journals (Sweden)

    Radostina Primova

    2011-11-01

    Full Text Available In this article, we analyse EU energy policy from the perspective of the EU’s long-term commitments to combat climate change. We focus on the policy integration of climate concerns – ‘climate policy integration’ (CPI. We seek to answer the question: what is the extent of CPI in energy policy, and what factors can explain this level of CPI? After outlining a conceptualisation of CPI that argues for applying a principled priority standard for the assessment of the level of integration of climate policy objectives in other policy sectors, we apply an analytical framework, with factors derived from general theories of European integration and literature on environmental policy integration, to explain the strength of CPI in two sub-energy sector case studies – renewable energy policies and internal energy market policies. CPI is found to be insufficient in both cases, and two factors are highlighted as particularly crucial for furthering CPI: political commitment to CPI, and the strong participation of climate advocates in the policy process. The article suggests that the expansion of EU competence in energy policy does not necessarily provide a guarantee for full and complete CPI.

  4. An attempt to assess the energy related climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Iotova, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). National Inst. of Meteorology and Hydrology

    1995-12-31

    A lot of efforts are directed now to study the interactions between energy and climate because of their significant importance for our planet. Globally, energy related emissions of Greenhouse Gases (GHGs) contribute for atmospheric warming. On regional level, where it is more difficult to determine concrete direction of climate variability and change, the role of energy remains considerable being not so direct as in the case of emissions` impact. Still there is essential necessity for further analyses and assessments of energy related climate variations and change in order to understand better and to quantify the energy - climate relations. In the presentation an attempt is made to develop approach for assessment of energy related climate variations on regional level. For this purpose, data and results from the research within Bulgarian Case Study (BCS) in the DECADES Inter-Agency Project framework are used. Considering the complex nature of the examined interconnections and the medium stage of the Study`s realisation, at the moment the approach can be presented in conceptual form. Correspondingly, the obtained results are illustrative and preliminary

  5. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    2009-01-01

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to Chi

  6. A 'Common Information Model' for the climate modelling process

    Science.gov (United States)

    Treshansky, Allyn; Devine, Gerard

    2010-05-01

    The Common Information Model (CIM), developed by the EU-funded METAFOR project (http://metaforclimate.eu), is a formal model of the climate modeling process. It provides a rich structured description of not only climate data but also the "provenance" of that data: the software models and tools used to generate that data, the simulations those models implement, the experiments those simulations conform to, etc.. This formal metadata model is expected to add value to those datasets by firstly codifying what is currently found only in the heads of climate experts (the aforementioned provenance of climate datasets), and secondly by allowing tools to be developed that make searching for and analysing climate datasets a much more intuitive process than it has been in the past. This paper will describe the structure of the CIM, concentrating on how it works with and what it adds to other metadata standards. As alluded to above, current metadata standards concentrate on the contents of a climate dataset. Scientific detail and relevance of the model components that generated that data as well as the context for why it was run are missing. The CIM addresses this gap. However, it does not aim to replace existing standards. Rather, wherever possible it re-uses them. It also attempts to standardise our understanding of climate modeling at a very high level, at a conceptual level. This results in a UML description of climate modeling, the CONCIM. METAFOR extracts from this high-level UML the bits of the CIM that we want to use in our applications; These bits get converted into a set of XSD application schemas, the APPCIM. Other user groups may derive a different APPCIM (in a different format) that suits them from the same CONCIM. Thus there is a common understanding of the concepts used in climate modeling even if the implementation differs. In certain key places the CIM describes a general structure over which a specific Controlled Vocabulary (CV) can be applied. For example

  7. Climate Change Resilience Planning at the Department of Energy's Savannah River Site

    Science.gov (United States)

    Werth, D. W.; Johnson, A.

    2015-12-01

    The Savannah River National Laboratory (SRNL) is developing a site sustainability plan for the Department of Energy's Savannah River Site (SRS) in South Carolina in accordance with Executive Order 13693, which charges each DOE agency with "identifying and addressing projected impacts of climate change" and "calculating the potential cost and risk to mission associated with agency operations". The plan will comprise i) projections of climate change, ii) surveys of site managers to estimate the effects of climate change on site operations, and iii) a determination of adaptive actions. Climate change projections for SRS are obtained from multiple sources, including an online repository of downscaled global climate model (GCM) simulations of future climate and downscaled GCM simulations produced at SRNL. Taken together, we have projected data for temperature, precipitation, humidity, and wind - all variables with a strong influence on site operations. SRNL is working to engage site facility managers and facilitate a "bottom up" approach to climate change resilience planning, where the needs and priorities of stakeholders are addressed throughout the process. We make use of the Vulnerability Assessment Scoring Tool, an Excel-based program designed to accept as input various climate scenarios ('exposure'), the susceptibility of assets to climate change ('sensitivity'), and the ability of these assets to cope with climate change ('adaptive capacity'). These are combined to produce a series of scores that highlight vulnerabilities. Working with site managers, we have selected the most important assets, estimated their expected response to climate change, and prepared a report highlighting the most endangered facilities. Primary risks include increased energy consumption, decreased water availability, increased forest fire danger, natural resource degradation, and compromised outdoor worker safety in a warmer and more humid climate. Results of this study will aid in driving

  8. The Paris-Nairobi climate initiative. Access to clean energy for all in Africa and countries vulnerable to climate change. Access to energy, sustainable development and climate change; Initiative climat Paris-Nairobi. Acces aux energies propres en Afrique et dans les pays vulnerables au changement climatique. Livre-Blanc, Acces a l'energie, developpement durable et changements climatiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-04-21

    The first part of this report highlights the importance of a universal access to energy, the role of public policies and renewable energies, the need to implement sustainable economic models for energy services, and indicates the major objectives and essential actions for these purposes. The second part outlines the weakness of electricity production in Africa, the degradation of the energy mix balance, the vulnerability to climate change, and the fact that Africa, like other countries vulnerable to climate change, possess huge and unexploited renewable energy resources (biomass, hydroelectricity, geothermal, solar, wind). The third part proposes an approach to energy services by developing sustainable cooking, supplying energy to support rural development and to poles of economic growth, by developing sustainable cities (notably in transports and buildings), and by developing national and regional electricity grids. The last part addresses the issue of energy financing in developing countries

  9. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated...... in impact assessments. This warrants the question: How do we assess the climate change related impacts of a project that inherently has a positive effect on climate? This paper is based on a document study of EIA reports from Denmark. The results show that climate change is included in most of the EIA...... reports reviewed, and that only climate change mitigation is in focus while adaptation is absent. Also the results point to focus on positive impacts, while the indirect negative impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA....

  10. Updated cloud physics improve the modelled near surface climate of Antarctica of a regional atmospheric climate model

    Directory of Open Access Journals (Sweden)

    J. M. van Wessem

    2013-07-01

    Full Text Available The physics package of the polar version of the regional atmospheric climate model RACMO2 has been updated from RACMO2.1 to RACMO2.3. The update constitutes, amongst others, the inclusion of a parameterization for cloud ice super-saturation, an improved turbulent and radiative flux scheme and a changed cloud scheme. In this study the effects of these changes on the modelled near-surface climate of Antarctica are presented. Significant biases remain, but overall RACMO2.3 better represents the near-surface climate in terms of the modelled surface energy balance, based on a comparison with > 750 months of data from nine automatic weather stations located in East Antarctica. Especially the representation of the sensible heat flux and net longwave radiative flux has improved with a decrease in biases of up to 40 %. These improvements are mainly caused by the inclusion of ice super-saturation, which has led to more moisture being transported onto the continent, resulting in more and optically thicker clouds and more downward longwave radiation. As a result, modelled surface temperatures have increased and the bias, when compared to 10 m snow temperatures from 64 ice core observations, has decreased from −2.3 K to −1.3 K. The weaker surface temperature inversion consequently improves the representation of the sensible heat flux, whereas wind speed remains unchanged.

  11. International energy technology collaboration and climate change mitigation. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Justus, D. [Environment Directorate, Organisation for Economic Co-operation and Development OECD, Paris (France); Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2005-11-18

    towards commercialisation, the scope for collaborative RD and D becomes more limited. However, there is ample range for international co-operation in market deployment efforts, information dissemination and standards development. Government collaboration related to energy technology and climate change is carried out in a variety of forms. The formal enabling mechanisms are surveyed here with examples of current initiatives and, where available, evidence of their results. All of the mechanisms considered here are based on common objectives, voluntary participation and a shared view that collaboration can provide benefits additional to an independent pursuit. Beyond those elements, the characteristics of collaborative mechanisms vary widely and range from pronouncements of 'good intentions' to legal contracts with non-compliance provisions. Some approaches include centralised management, defined milestones, cost-sharing, monitoring and evaluation provisions; while others function on a dispersed basis and are largely for data and information exchange. There is not one model that accommodates the various modes in which governments pursue co-operative international energy technology development. What is important in designing effective joint activities is flexibility in the nature of the collaboration, the participants and the scope of the programme. The form of an approach for near-market collaborative activities, for example an energy efficiency labelling scheme for refrigerators, is most likely to be distinct from co-operative research on nanotechnologies. Joint research consortia for large-scale energy technology innovation tend to have a structured framework, significant duration and a diversity of players. The design features that need to be considered for developing an effective collaboration dealing with new energy technologies and systems - from setting goals to sharing results - are summarised in the last section.

  12. A Data Driven Framework for Integrating Regional Climate Models

    Science.gov (United States)

    Lansing, C.; Kleese van Dam, K.; Liu, Y.; Elsethagen, T.; Guillen, Z.; Stephan, E.; Critchlow, T.; Gorton, I.

    2012-12-01

    There are increasing needs for research addressing complex climate sensitive issues of concern to decision-makers and policy planners at a regional level. Decisions about allocating scarce water across competing municipal, agricultural, and ecosystem demands is just one of the challenges ahead, along with decisions regarding competing land use priorities such as biofuels, food, and species habitat. Being able to predict the extent of future climate change in the context of introducing alternative energy production strategies requires a new generation of modeling capabilities. We will also need more complete representations of human systems at regional scales, incorporating the influences of population centers, land use, agriculture and existing and planned electrical demand and generation infrastructure. At PNNL we are working towards creating a first-of-a-kind capability known as the Integrated Regional Earth System Model (iRESM). The fundamental goal of the iRESM initiative is the critical analyses of the tradeoffs and consequences of decision and policy making for integrated human and environmental systems. This necessarily combines different scientific processes, bridging different temporal and geographic scales and resolving the semantic differences between them. To achieve this goal, iRESM is developing a modeling framework and supporting infrastructure that enable the scientific team to evaluate different scenarios in light of specific stakeholder questions such as "How do regional changes in mean climate states and climate extremes affect water storage and energy consumption and how do such decisions influence possible mitigation and carbon management schemes?" The resulting capability will give analysts a toolset to gain insights into how regional economies can respond to climate change mitigation policies and accelerated deployment of alternative energy technologies. The iRESM framework consists of a collection of coupled models working with high

  13. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  14. Extreme winds over Europe in the ENSEMBLES regional climate models

    Directory of Open Access Journals (Sweden)

    S. D. Outten

    2013-05-01

    Full Text Available Extreme winds cause vast amounts of damage every year and represent a major concern for numerous industries including construction, afforestation, wind energy and many others. Under a changing climate, the intensity and frequency of extreme events are expected to change, and accurate projections of these changes will be invaluable to decision makers and society as a whole. This work examines four regional climate model downscalings over Europe following the SRES A1B scenario from the "ENSEMBLE-based Predictions of Climate Changes and their Impacts" project (ENSEMBLES. It investigates the projected changes in the 50 yr return wind speeds and the associated uncertainties. This is accomplished by employing the peaks-over-threshold method with the use of the generalised Pareto distribution. The models show that, for much of Europe, the 50 yr return wind is projected to change by less than 2 m s−1, while the uncertainties associated with the statistical estimates are larger than this. In keeping with previous works in this field, the largest source of uncertainty is found to be the inter-model spread, with some locations showing differences in the 50 yr return wind of over 20 m s−1 between two different downscalings.

  15. Extreme winds over Europe in the ENSEMBLES regional climate models

    Directory of Open Access Journals (Sweden)

    S. D. Outten

    2013-01-01

    Full Text Available Extreme winds cause vast amounts of damage every year and represent a major concern for numerous industries including construction, afforestation, wind energy and many others. Under a changing climate, the intensity and frequency of extreme events are expected to change, and accurate predictions of these changes will be invaluable to decision makers and society as a whole. This work examines four regional climate model downscalings over Europe from the "ENSEMBLE-based Predictions of Climate Changes and their Impacts" project (ENSEMBLES, and investigates the predicted changes in the 50 yr return wind speeds and the associated uncertainties. This is accomplished by employing the peaks-over-threshold method with the use of the Generalised Pareto Distribution. The models show that for much of Europe the 50 yr return wind is projected to change by less than 2 m s−1, while the uncertainties associated with the statistical estimates are larger than this. In keeping with previous works in this field, the largest source of uncertainty is found to be the inter-model spread, with some locations showing differences in the 50 yr return wind of over 20 m s−1 between two different downscalings.

  16. Modeling Bird Migration under Climate Change: A Mechanistic Approach

    Science.gov (United States)

    Smith, James A.

    2009-01-01

    How will migrating birds respond to changes in the environment under climate change? What are the implications for migratory success under the various accelerated climate change scenarios as forecast by the Intergovernmental Panel on Climate Change? How will reductions or increased variability in the number or quality of wetland stop-over sites affect migratory bird species? The answers to these questions have important ramifications for conservation biology and wildlife management. Here, we describe the use of continental scale simulation modeling to explore how spatio-temporal changes along migratory flyways affect en-route migration success. We use an individually based, biophysical, mechanistic, bird migration model to simulate the movement of shorebirds in North America as a tool to study how such factors as drought and wetland loss may impact migratory success and modify migration patterns. Our model is driven by remote sensing and climate data and incorporates important landscape variables. The energy budget components of the model include resting, foraging, and flight, but presently predation is ignored. Results/Conclusions We illustrate our model by studying the spring migration of sandpipers through the Great Plains to their Arctic breeding grounds. Why many species of shorebirds have shown significant declines remains a puzzle. Shorebirds are sensitive to stop-over quality and spacing because of their need for frequent refueling stops and their opportunistic feeding patterns. We predict bird "hydrographs that is, stop-over frequency with latitude, that are in agreement with the literature. Mean stop-over durations predicted from our model for nominal cases also are consistent with the limited, but available data. For the shorebird species simulated, our model predicts that shorebirds exhibit significant plasticity and are able to shift their migration patterns in response to changing drought conditions. However, the question remains as to whether this

  17. A new coupled ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions

    Directory of Open Access Journals (Sweden)

    J. G. Fyke

    2011-03-01

    Full Text Available The need to better understand long-term climate/ice sheet feedback loops is motivating efforts to couple ice sheet models into Earth System models which are capable of long-timescale simulations. In this paper we describe a coupled model that consists of the University of Victoria Earth System Climate Model (UVic ESCM and the Pennsylvania State University Ice model (PSUI. The climate model generates a surface mass balance (SMB field via a sub-gridded surface energy/moisture balance model that resolves narrow ice sheet ablation zones. The ice model returns revised elevation, surface albedo and ice area fields, plus coastal fluxes of heat and moisture. An arbitrary number of ice sheets can be simulated, each on their own high-resolution grid and each capable of synchronous or asynchronous coupling with the overlying climate model. The model is designed to conserve global heat and moisture. In the process of improving model performance we developed a procedure to account for modelled surface air temperature (SAT biases within the energy/moisture balance surface model and improved the UVic ESCM snow surface scheme through addition of variable albedos and refreezing over the ice sheet.

    A number of simulations for late Holocene, Last Glacial Maximum (LGM, and Eemian climate boundary conditions were carried out to explore the sensitivity of the coupled model and identify model configurations that best represented these climate states. The modelled SAT bias was found to play a significant role in long-term ice sheet evolution, as was the effect of refreezing meltwater and surface albedo. The bias-corrected model was able to reasonably capture important aspects of the Antarctic and Greenland ice sheets, including modern SMB and ice distribution. The simulated northern Greenland ice sheet was found to be prone to ice margin retreat at radiative forcings corresponding closely to those of the Eemian or the present-day.

  18. A new coupled ice sheet-climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions

    Directory of Open Access Journals (Sweden)

    J. G. Fyke

    2010-08-01

    Full Text Available The need to better understand long-term climate/ice sheet feedback loops is motivating efforts to couple ice sheet models into Earth System models which are capable of long-timescale simulations. In this paper we describe a coupled model, that consists of the University of Victoria Earth System Climate Model (UVic ESCM and the Pennsylvania State University Ice model (PSUI. The climate model generates a surface mass balance (SMB field via a sub-gridded surface energy/moisture balance model that resolves narrow ice sheet ablation zones. The ice model returns revised elevation, surface albedo and ice area fields, plus coastal fluxes of heat and moisture. An arbitrary number of ice sheets can be simulated, each on their own high-resolution grid and each capable of synchronous or asynchronous coupling with the overlying climate model. The model is designed to conserve global heat and moisture. In the process of improving model performance we developed a procedure to account for modelled surface air temperature (SAT biases within the energy/moisture balance surface model and improved the UVic ESCM snow surface scheme through addition of variable albedos and refreezing over the ice sheet.

    A number of simulations for late Holocene, Last Glacial Maximum (LGM, and Eemian climate boundary conditions were carried out to explore the sensitivity of the coupled model and identify model configurations that best represented these climate states. The modelled SAT bias was found to play a significant role in long-term ice sheet evolution, as was the effect of refreezing meltwater and surface albedo. The bias-corrected model was able to reasonably capture important aspects of the Antarctic and Greenland ice sheets, including modern SMB and ice distribution. The simulated northern Greenland ice sheet was found to be prone to ice margin retreat at radiative forcings corresponding closely to those of the Eemian or the present-day.

  19. A new coupled ice sheet-climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions

    Science.gov (United States)

    Fyke, J. G.; Weaver, A. J.; Pollard, D.; Eby, M.; Carter, L.; Mackintosh, A.

    2010-08-01

    The need to better understand long-term climate/ice sheet feedback loops is motivating efforts to couple ice sheet models into Earth System models which are capable of long-timescale simulations. In this paper we describe a coupled model, that consists of the University of Victoria Earth System Climate Model (UVic ESCM) and the Pennsylvania State University Ice model (PSUI). The climate model generates a surface mass balance (SMB) field via a sub-gridded surface energy/moisture balance model that resolves narrow ice sheet ablation zones. The ice model returns revised elevation, surface albedo and ice area fields, plus coastal fluxes of heat and moisture. An arbitrary number of ice sheets can be simulated, each on their own high-resolution grid and each capable of synchronous or asynchronous coupling with the overlying climate model. The model is designed to conserve global heat and moisture. In the process of improving model performance we developed a procedure to account for modelled surface air temperature (SAT) biases within the energy/moisture balance surface model and improved the UVic ESCM snow surface scheme through addition of variable albedos and refreezing over the ice sheet. A number of simulations for late Holocene, Last Glacial Maximum (LGM), and Eemian climate boundary conditions were carried out to explore the sensitivity of the coupled model and identify model configurations that best represented these climate states. The modelled SAT bias was found to play a significant role in long-term ice sheet evolution, as was the effect of refreezing meltwater and surface albedo. The bias-corrected model was able to reasonably capture important aspects of the Antarctic and Greenland ice sheets, including modern SMB and ice distribution. The simulated northern Greenland ice sheet was found to be prone to ice margin retreat at radiative forcings corresponding closely to those of the Eemian or the present-day.

  20. A new coupled ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions

    Science.gov (United States)

    Fyke, J. G.; Weaver, A. J.; Pollard, D.; Eby, M.; Carter, L.; Mackintosh, A.

    2011-03-01

    The need to better understand long-term climate/ice sheet feedback loops is motivating efforts to couple ice sheet models into Earth System models which are capable of long-timescale simulations. In this paper we describe a coupled model that consists of the University of Victoria Earth System Climate Model (UVic ESCM) and the Pennsylvania State University Ice model (PSUI). The climate model generates a surface mass balance (SMB) field via a sub-gridded surface energy/moisture balance model that resolves narrow ice sheet ablation zones. The ice model returns revised elevation, surface albedo and ice area fields, plus coastal fluxes of heat and moisture. An arbitrary number of ice sheets can be simulated, each on their own high-resolution grid and each capable of synchronous or asynchronous coupling with the overlying climate model. The model is designed to conserve global heat and moisture. In the process of improving model performance we developed a procedure to account for modelled surface air temperature (SAT) biases within the energy/moisture balance surface model and improved the UVic ESCM snow surface scheme through addition of variable albedos and refreezing over the ice sheet. A number of simulations for late Holocene, Last Glacial Maximum (LGM), and Eemian climate boundary conditions were carried out to explore the sensitivity of the coupled model and identify model configurations that best represented these climate states. The modelled SAT bias was found to play a significant role in long-term ice sheet evolution, as was the effect of refreezing meltwater and surface albedo. The bias-corrected model was able to reasonably capture important aspects of the Antarctic and Greenland ice sheets, including modern SMB and ice distribution. The simulated northern Greenland ice sheet was found to be prone to ice margin retreat at radiative forcings corresponding closely to those of the Eemian or the present-day.

  1. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  2. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Auffhammer, Maximilian [University of California at Berkeley; Hsiang, Solomon M. [Princeton University; Schlenker, Wolfram [Columbia University; Sobel, Adam H. [Columbia University

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

  3. Supply of Renewable Energy Sources and the Cost of EU Climate Policy

    OpenAIRE

    Boeters, Stefan; Koornneef, Joris

    2010-01-01

    What are the excess costs of a separate 20% target for renewable energy as a part of the EU climate policy for 2020? We answer this question using a computable general equilibrium model, WorldScan, which has been extended with a bottom-up module of the electricity sector. The model set-up makes it possible to directly use available estimates of costs and capacity potentials for renewable energy sources for calibration. In our base case simulation, the costs of EU climate policy with the renew...

  4. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  5. Developing a Common Information Model for climate models and data

    Science.gov (United States)

    Valcke, S.; Balaji, V.; Bentley, P.; Guilyardi, E.; Lawrence, B.; Pascoe, C.; Steenman-Clark, L.; Toussaint, F.; Treshansky, A.

    2009-04-01

    The Metafor project, funded under the EU Framework Programme 7, proposes a Common Information Model (CIM) to describe in a standard way climate data and the models and modelling environments that produced this data. To establish the CIM, Metafor first considered the metadata models developed by other groups engaged in similar efforts in Europe and worlwide, such as the US Earth System Curator, explored fragmentation and gaps as well as duplication of information present in these metadata models, and reviewed current problems in identifying, accessing or using climate data present in existing repositories. Based on this analysis and on different use cases, the first version of the CIM is composed of 5 packages. The "data" package is used to describe the data objects that can be collected and stored in any number of ways; the "activity" package details the simulations and experiments and related requirements that were performed with numerical (possibly coupled) models described with the "software" packages. Both data and models can be associated with numerical grids represented by the "grid" package and finally the "shared" package gathers concepts shared among the other packages. The CIM is defined and implemented in the Unified Modelling Language (UML) and application schema have been generated in XML schema. Aiming at a wide adoption of the CIM, Metafor will optimize the way climate data infrastructures are used to store knowledge, thereby adding value to primary research data and information, and providing an essential asset for the numerous stakeholders actively engaged in climate change issues (policy, research, impacts, mitigation, private sector).

  6. Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models

    OpenAIRE

    Labriet, Maryse; Drouet, Laurent; Vielle, Marc; Loulou, Richard; Kanudia, Amit; Haurie, Alain

    2015-01-01

    In order to assess climate mitigation agreements, we propose an iterative procedure linking TIAM-WORLD, a global technology-rich optimization model, and GEMINI-E3, a global general equilibrium model. The coupling methodology combines the precise representation of energy and technology choices with a coherent representation of the macro-economic impacts, especially in terms of trade effects of climate policies on energy-intensive products. In climate mitigation scenarios, drastic technology br...

  7. Opportunity knocks - the sustainable energy industry and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Price, B.; Keegan, P. [International Institute for Energy Conservation, Washington, DC (United States)

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  8. Potential contribution of wind energy to climate change mitigation

    Science.gov (United States)

    Barthelmie, R. J.; Pryor, S. C.

    2014-08-01

    It is still possible to limit greenhouse gas emissions to avoid the 2 °C warming threshold for dangerous climate change. Here we explore the potential role of expanded wind energy deployment in climate change mitigation efforts. At present, most turbines are located in extra-tropical Asia, Europe and North America, where climate projections indicate continuity of the abundant wind resource during this century. Scenarios from international agencies indicate that this virtually carbon-free source could supply 10-31% of electricity worldwide by 2050 (refs , ). Using these projections within Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) climate forcing scenarios, we show that dependent on the precise RCP followed, pursuing a moderate wind energy deployment plan by 2050 delays crossing the 2 °C warming threshold by 1-6 years. Using more aggressive wind turbine deployment strategies delays 2 °C warming by 3-10 years, or in the case of RCP4.5 avoids passing this threshold altogether. To maximize these climate benefits, deployment of non-fossil electricity generation must be coupled with reduced energy use.

  9. Impacts of climate change on wind energy resources in France: a regionalization study

    International Nuclear Information System (INIS)

    In this work, we study the impact of climate change on surface winds in France and draw conclusions concerning wind energy resources. Because of their coarse spatial resolution, climate models cannot properly reproduce the spatial variability of surface winds. Thus, 2 down-scaling methods are developed in order to regionalize an ensemble of climate scenarios: a statistical method based on weather typing and a statistic-dynamical method that resorts to high resolution mesoscale modelling. By 2050, significant but relatively small changes are depicted with, in particular, a decrease of the wind speed in the southern and an increase in the northern regions of France. The use of other down-scaling methods enables us to study several uncertainty sources: it appears that most of the uncertainty is due to the climate models. (author)

  10. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  11. Coupled Climate Model Appraisal a Benchmark for Future Studies

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; AchutaRao, K; Bader, D; Covey, C; Doutriaux, C M; Fiorino, M; Gleckler, P J; Sperber, K R; Taylor, K E

    2005-08-22

    The Program for Climate Model Diagnosis and Intercomparison (PCMDI) has produced an extensive appraisal of simulations of present-day climate by eleven representative coupled ocean-atmosphere general circulation models (OAGCMs) which were developed during the period 1995-2002. Because projections of potential future global climate change are derived chiefly from OAGCMs, there is a continuing need to test the credibility of these predictions by evaluating model performance in simulating the historically observed climate. For example, such an evaluation is an integral part of the periodic assessments of climate change that are reported by the Intergovernmental Panel on Climate Change. The PCMDI appraisal thus provides a useful benchmark for future studies of this type. The appraisal mainly analyzed multi-decadal simulations of present-day climate by models that employed diverse representations of climate processes for atmosphere, ocean, sea ice, and land, as well as different techniques for coupling these components (see Table). The selected models were a subset of those entered in phase 2 of the Coupled Model Intercomparison Project (CMIP2, Covey et al. 2003). For these ''CMIP2+ models'', more atmospheric or oceanic variables were provided than the minimum requirements for participation in CMIP2. However, the appraisal only considered those climate variables that were supplied from most of the CMIP2+ models. The appraisal focused on three facets of the simulations of current global climate: (1) secular trends in simulation time series which would be indicative of a problematical ''coupled climate drift''; (2) comparisons of temporally averaged fields of simulated atmospheric and oceanic climate variables with available observational climatologies; and (3) correspondences between simulated and observed modes of climatic variability. Highlights of these climatic aspects manifested by different CMIP2+ simulations are briefly

  12. Nuclear Energy's Role in Mitigating Climate Change and Air Pollution

    International Nuclear Information System (INIS)

    Energy experts expect energy demand to rise dramatically in the 21st century, especially in developing countries, where today, over one billion people have no access to modern energy services. Meeting global energy demand will require a 75% expansion in primary energy supply by 2050. If no steps are taken to reduce emissions, the energy-related CO2 emissions would nearly double in the same period. The increased levels of this greenhouse gas in the atmosphere could raise average global temperatures 3oC or more above pre-industrial levels, which may trigger the dangerous anthropogenic interference with the climate system, which the United Nations Framework Convention on Climate Change seeks to prevent.

  13. 40% Whole-House Energy Savings in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  14. 40% Whole-House Energy Savings in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, T. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, M. G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cole, P. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adams, K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butner, R. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ortiz, S. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, Pat M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  15. Climate information for the wind energy industry in the Mediterranean Region

    Science.gov (United States)

    Calmanti, Sandro; Davis, Melanie; Schmidt, Peter; Dell'Aquila, Alessandro

    2013-04-01

    Mediterranean Region as a tool for assessing the impact of changes in climate patterns on the energy output of wind power plants. Subsequently, we will give here a brief overview of these techniques as well as first results related to wind projections for different sites across the Mediterranean Region. We will highlight that regional climate models have a large potential for enhancing the quality of climate projections in the presence of complex orography and in the proximity of coastal areas.

  16. Climate modelling: IPCC gazes into the future

    Science.gov (United States)

    Raper, Sarah

    2012-04-01

    In 2013, the Intergovernmental Panel on Climate Change will report on the next set of future greenhouse-gas emission scenarios, offering a rational alternative pathway for avoiding dangerous climate change.

  17. Modeling the Earth: Climate on an Icosphere

    Science.gov (United States)

    Fouts, Stephanie; Cook, L. Jonathan

    The totally asymmetric simple exclusion process with Langmuir kinetics is a one-dimensional transport model used to study the motion of particles through a lattice. Its applications include systems in the fields of biology, climatology, mathematics, civil engineering, and physics. In our research, we examine the temporal dynamics through the power spectra, as well as the time-averaged particle distribution on the lattice via Monte Carlo simulations. We have applied our particle transport model to an icosahedron in an attempt to model Earth's changing climate. In our research, we examine the temporal dynamics of the particle distribution on the lattice, as they correspond to seasonal heat fluctuations in the polar and equatorial regions of the globe. Using Monte Carlos simulations, we alter the input parameters of the system to explore the resultant actions of the Earth-system model. Our findings include seasonal oscillations consistent with those seen in reality. We also built a mathematical framework for our model which, when solved numerically, matches the oscillations seen in our physical system.

  18. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Science.gov (United States)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  19. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Drake, John B [ORNL; Worley, Patrick H [ORNL; Hoffman, Forrest M [ORNL; Jones, Phil [Los Alamos National Laboratory (LANL)

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  20. Nuclear energy and climate change; Energia nuclear y cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Jimenez, A.

    2002-07-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO{sub 2} emissions. (Author)

  1. Hybrid Surface Mesh Adaptation for Climate Modeling

    Institute of Scientific and Technical Information of China (English)

    Ahmed Khamayseh; Valmor de Almeida; Glen Hansen

    2008-01-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, lesspopular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is pro-duced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is de-signed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  2. On a minimal model for estimating climate sensitivity

    OpenAIRE

    Cawley, G.C.; Cowtan, K.; Way, R.G.; Jacobs, P.; Jokimäki, A.

    2015-01-01

    In a recent issue of this journal, Loehle (2014) presents a "minimal model" for estimating climate sensitivity, identical to that previously published by Loehle and Scafetta (2011). The novelty in the more recent paper lies in the straightforward calculation of an estimate of transient climate response based on the model and an estimate of equilibrium climate sensitivity derived therefrom, via a flawed methodology. We demonstrate that the Loehle and Scafetta model systematically underestimate...

  3. A transient stochastic weather generator incorporating climate model uncertainty

    Science.gov (United States)

    Glenis, Vassilis; Pinamonti, Valentina; Hall, Jim W.; Kilsby, Chris G.

    2015-11-01

    Stochastic weather generators (WGs), which provide long synthetic time series of weather variables such as rainfall and potential evapotranspiration (PET), have found widespread use in water resources modelling. When conditioned upon the changes in climatic statistics (change factors, CFs) predicted by climate models, WGs provide a useful tool for climate impacts assessment and adaption planning. The latest climate modelling exercises have involved large numbers of global and regional climate models integrations, designed to explore the implications of uncertainties in the climate model formulation and parameter settings: so called 'perturbed physics ensembles' (PPEs). In this paper we show how these climate model uncertainties can be propagated through to impact studies by testing multiple vectors of CFs, each vector derived from a different sample from a PPE. We combine this with a new methodology to parameterise the projected time-evolution of CFs. We demonstrate how, when conditioned upon these time-dependent CFs, an existing, well validated and widely used WG can be used to generate non-stationary simulations of future climate that are consistent with probabilistic outputs from the Met Office Hadley Centre's Perturbed Physics Ensemble. The WG enables extensive sampling of natural variability and climate model uncertainty, providing the basis for development of robust water resources management strategies in the context of a non-stationary climate.

  4. Towards a science of climate and energy choices

    Science.gov (United States)

    Stern, Paul C.; Sovacool, Benjamin K.; Dietz, Thomas

    2016-06-01

    The linked problems of energy sustainability and climate change are among the most complex and daunting facing humanity at the start of the twenty-first century. This joint Nature Energy and Nature Climate Change Collection illustrates how understanding and addressing these problems will require an integrated science of coupled human and natural systems; including technological systems, but also extending well beyond the domain of engineering or even economics. It demonstrates the value of replacing the stylized assumptions about human behaviour that are common in policy analysis, with ones based on data-driven science. We draw from and engage articles in the Collection to identify key contributions to understanding non-technological factors connecting economic activity and greenhouse gas emissions, describe a multi-dimensional space of human action on climate and energy issues, and illustrate key themes, dimensions and contributions towards fundamental understanding and informed decision making.

  5. Global energy economics and climate protection report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Crastan, Valentin

    2010-07-01

    The Global Energy Economics and Climate Protection Report 2009 compiles the essential indicators which are necessary to assess the climate evolution and protection. The report explains the most important facts and indicators, shows the data for all important regions of the world and comments on the data with a focus on the key players. As a result, the report provides with the important facts and the knowledge necessary to for a quantitative climate discussion. The Annex of the report gives a concise overview on the fundamentals of energy economy, a brief analysis of the global energy economy, and a table of the main CO{sub 2} emissions - sorted according to countries and sectors (Electricity, Fuel, Heating). (orig.)

  6. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  7. Measure the climate, model the city

    NARCIS (Netherlands)

    Boufidou, E.; Commandeur, T.J.F.; Nedkov, S.B.; Zlatanova, S.

    2011-01-01

    Modern large cities are characterized by a high building concentration, little aeration and lack of green spaces. Such characteristics create an urban climate which is different from the climate outside of cities. An example of an urban climate effect is the so-called Urban Heat Island: cities tend

  8. Spatial scale dependency of the modelled climatic response to deforestation

    Directory of Open Access Journals (Sweden)

    P. Longobardi

    2012-10-01

    Full Text Available Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scale land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we determine effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is registered over low latitude deforested areas. Mid latitude SAT response is mixed. For all simulations deforested areas tend to become drier and have lower surface air temperature, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation, cause an increase in soil carbon large enough to generate a previously not reported net drawdown of CO2 from the atmosphere. Our results support previous indications of the importance of changes in cloud cover in the modelled temperature response to deforestation at low latitudes. They also show the complex interaction between soil carbon dynamics and climate and the role this plays on the climatic response to land cover change.

  9. Health and climate benefits of different energy-efficiency and renewable energy choices

    Science.gov (United States)

    Buonocore, Jonathan J.; Luckow, Patrick; Norris, Gregory; Spengler, John D.; Biewald, Bruce; Fisher, Jeremy; Levy, Jonathan I.

    2016-01-01

    Energy efficiency (EE) and renewable energy (RE) can benefit public health and the climate by displacing emissions from fossil-fuelled electrical generating units (EGUs). Benefits can vary substantially by EE/RE installation type and location, due to differing electricity generation or savings by location, characteristics of the electrical grid and displaced power plants, along with population patterns. However, previous studies have not formally examined how these dimensions individually and jointly contribute to variability in benefits across locations or EE/RE types. Here, we develop and demonstrate a high-resolution model to simulate and compare the monetized public health and climate benefits of four different illustrative EE/RE installation types in six different locations within the Mid-Atlantic and Lower Great Lakes of the United States. Annual benefits using central estimates for all pathways ranged from US$5.7-US$210 million (US$14-US$170 MWh-1), emphasizing the importance of site-specific information in accurately estimating public health and climate benefits of EE/RE efforts.

  10. Energy upgrading measures improve also indoor climate

    DEFF Research Database (Denmark)

    Foldbjerg, Peter; Knudsen, Henrik Nellemose

    2014-01-01

    to increase the number of homeowners who venture into a major energy upgrading of their house, the demonstrated positive side effects, more than energy savings, should be included in the communication to motivate homeowners. The barriers should be reduced by “taking the homeowners by the hand” and helping...

  11. Modelling Hydrological Consequences of Climate Change-Progress and Challenges

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases,(2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods)for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales.Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.

  12. A potato model intercomparison across varying climates and productivity levels

    DEFF Research Database (Denmark)

    H. Fleisher, David; Condori, Bruno; Quiroz, Roberto;

    2016-01-01

    A potato crop multi-model assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States...

  13. NGSS, Climate & Energy: Teaching About Climate Change Without Teaching About Energy Is Like Teaching About Lung Cancer Without Teaching About Smoking

    Science.gov (United States)

    Duggan-Haas, D.

    2013-12-01

    reliance largely on fossil fuels, through the lens of the crosscutting concepts: 1. Patterns. 2. Cause and effect: Mechanism and explanation.3. Scale, proportion, and quantity.4. Systems and system models. 5. Energy and matter. 6. Structure and function. 7. Stability and change. And, we will connect to other resources and strategies for effectively addressing climate and energy in the context of NGSS. The Geography of Energy: an excerpt of a map showing electric power net generation by source for the Northeast.

  14. Report of a Policy Forum: Weather, Climate, and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-01

    The report of a policy forum on Weather, Climate, and Energy presents findings and recommendations that, if implemented, could position the energy sector, the providers of weather and climate science and services, and energy consumers to mange more cooperatively and effectively the production, distribution, and consumption of electrical power and fossil fuels. Recent U.S. experience with a series of energy shortages encouraged the AMS Atmospheric Policy Program to join with the University of Oklahoma in the development of a forum to address the issues connected with responding to those shortages. Nearly 100 representatives from the public, private, and academic portions of the energy production sector, the meteorological community, political and corporate leaders, weather risk management analysts, and policy makers met on October 16-17, 2001 to discuss these policy issues.

  15. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Deal, Clara [Univ. of Alaska, Fairbanks, AL (United States); Jin, Meibing [Univ. of Alaska, Fairbanks, AL (United States)

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  16. The nuclear energy in debate. Myths, realities and climatic changes

    International Nuclear Information System (INIS)

    This study argues myths and the truths that involve nuclear energy: on the one hand, the universal issue on the nuclear energy and its supposed contribution for the global warming reduction, and another one, there are many lower-risk options available to fight against climate change. Investing in nuclear energy carries not only considerable health, financial and security risks, it may also prove to be a dangerous lock-in and dead end. Twenty years after the nuclear disaster of Chernobyl, any attempts by the nuclear industry to celebrate its revival and to paint itself as the solution to climate change should be rejected. Policy makers around the world should learn from its people, who largely resist the use of nuclear energy. In this context the authors firmly believe that nuclear energy is no answer to climate change. A short-sighted renaissance of nuclear energy would require considerable amounts of public money, which should rather be invested in the development and deployment of renewable energy technologies and energy efficiency measures

  17. The Challenges and Potential of Nuclear Energy for Addressing Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Son H.; Edmonds, James A.

    2007-10-24

    The response to climate change and the stabilization of atmospheric greenhouse gas concentrations has major implications for the global energy system. Stabilization of atmospheric carbon dioxide (CO2) concentrations requires a peak and an indefinite decline of global CO2 emissions. Nuclear energy, along with other technologies, has the potential to contribute to the growing demand for energy without emitting CO2. Nuclear energy is of particular interest because of its global prevalence and its current significant contribution, nearly 20%, to the world’s electricity supply. We have investigated the value of nuclear energy in addressing climate change, and have explored the potential challenges for the rapid and large-scale expansion of nuclear energy as a response to climate change. The scope of this study is long-term and the modeling time frame extends out a century because the nature of nuclear energy and climate change dictate that perspective. Our results indicate that the value of the nuclear technology option for addressing climate change is denominated in trillions of dollars. Several-fold increases to the value of the nuclear option can be expected if there is limited availability of competing carbon-free technologies, particularly fossil-fuel based technologies that can capture and sequester carbon. Challenges for the expanded global use of nuclear energy include the global capacity for nuclear construction, proliferation, uranium availability, and waste disposal. While the economic costs of nuclear fuel and power are important, non-economic issues transcend the issues of costs. In this regard, advanced nuclear technologies and new vision for the global use of nuclear energy are important considerations for the future of nuclear power and climate change.

  18. Building synergies between climate change mitigation and energy poverty alleviation

    International Nuclear Information System (INIS)

    Even though energy poverty alleviation and climate change mitigation are inextricably linked policy goals, they have remained as relatively disconnected fields of research inquiry and policy development. Acknowledging this gap, this paper explores the mainstream academic and policy literatures to provide a taxonomy of interactions and identify synergies and trade-offs between them. The most important trade-off identified is the potential increase in energy poverty levels as a result of strong climate change action if the internalisation of the external costs of carbon emissions is not offset by efficiency gains. The most significant synergy was found in deep energy efficiency in buildings. The paper argues that neither of the two problems – deep reductions in GHG emissions by mid-century, and energy poverty eradication – is likely to be solved fully on their own merit, while joining the two policy goals may provide a very solid case for deep efficiency improvements. Thus, the paper calls for a strong integration of these two policy goals (plus other key related benefits like energy security or employment), in order to provide sufficient policy motivation to mobilise a wide-scale implementation of deep energy efficiency standards. - Highlights: ► A taxonomy of interactions between climate change and energy poverty is offered. ► Energy poverty levels may increase as a result of strong climate change action. ► However, strong synergies are offered by deep improvements of energy efficiency. ► Access to modern energy carriers is a key requirement in developing countries. ► Sufficiently solving both problems requires the integration of policy goals.

  19. The importance of reliable climatic data in the energy evaluation

    International Nuclear Information System (INIS)

    In the last few years, more and more attention has been focused on energy issues, as it is pointed out, for example, by the Directive 2002/91/EC on the Energy Performance of Buildings and Directive 2009/28/EC on the promotion of the use of energy from renewable sources. However, in order to do that, reliable tools for technicians to design systems for such topics should be provided. Nowadays, several software are available; the weak point is the availability of reliable climatic data and, above all, the ones referring to solar radiation. In this work, after a short overview of the world climatic databases, a description of three statistical methods for the elaboration of a climatic reduced set of data is reported. Then, referring to the climatic station of Palermo, Italy, we build three different sets of data utilizing the three statistical methods and compare these sets of data by means of two applications, namely the energy consumption of a simple building and the energy produced by a photovoltaic (PV) system.

  20. Climate, air and energy - Issue 2014. Key figures

    International Nuclear Information System (INIS)

    After having recalled international objectives (Kyoto protocol), European objectives (directives related to energy efficiency and renewable energies, greenhouse gas emissions and adaptation, air quality, wastes) and French national (plans, laws) and sector-based objectives (for buildings, transports, agriculture, renewable energies, industry, office building and local communities, air quality), this publication presents and comments numerous tables and graphs of data and indicators (and of their evolution) regarding energy consumptions and intensities (primary and final energy), greenhouse gas emissions and climate change, emissions of pollutants and air quality in France and in European countries, but also the implementation of various plans and tools (Agenda 21 for example), the creation of specific public bodies, jobs and markets related to renewable energies in France. The other chapters propose detailed data related to energy consumption or production, energy efficiency, greenhouse gas emissions, and so on for different sectors: housing, tertiary sector, transport, industry, agriculture and forest, renewable energies and heat networks, wastes, individuals

  1. Enabling the use of climate model data in the Dutch climate effect community

    Science.gov (United States)

    Som de Cerff, Wim; Plieger, Maarten

    2010-05-01

    Within the climate effect community the usage of climate model data is emerging. Where mostly climate time series and weather generators were used, there is a shift to incorporate climate model data into climate effect models. The use of climate model data within the climate effect models is difficult, due to missing metadata, resolution and projection issues, data formats and availability of the parameters of interest. Often the climate effect modelers are not aware of available climate model data or are not aware of how they can use it. Together with seven other partners (CERFACS, CNR-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 IS ENES (http://www.enes.org) project work package 10/JRA5 ‘Bridging Climate Research Data and the Needs of the Impact Community. The aims of this work package are to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. Phase one is to define use cases together with the Dutch climate effect community, which describe the intended use of climate model data in climate effect models. We defined four use cases: 1) FEWS hydrological Framework (Deltares) 2) METAPHOR, a plants and species dispersion model (Wageningen University) 3) Natuurplanner, an Ecological model suite (Wageningen University) 4) Land use models (Free University/JRC). Also the other partners in JRA5 have defined use cases, which are representative for the climate effect and impact communities in their country. Goal is to find commonalities between all defined use cases. The common functionality will be implemented as e-tools and incorporated in the IS-ENES data portal. Common issues relate to e.g., need for high resolution: downscaling from GCM to local scale (also involves interpolation); parameter selection; finding extremes; averaging methods. At the conference we will describe the FEWS case in more detail: Delft FEWS is an open shell system (in development since 1995) for performing

  2. Teaching about Climate Change and Energy with Online Materials and Workshops from On the Cutting Edge

    Science.gov (United States)

    Kirk, K. B.; Manduca, C. A.; Myers, J. D.; Loxsom, F.

    2009-12-01

    -playing, inquiry-based learning via online data sets, and the use of computer models. The website houses course descriptions and syllabi for both introductory-level and upper-level climate courses contributed by faculty. Collections of climate visualizations and recommended references help faculty navigate to online materials that are best suited for their classroom. The On the Cutting Edge program features a biennial workshop series about teaching climate change, held in conjunction with the American Quaternary Association. Presentations, teaching ideas and references from the 2006 and 2008 workshops are available, along with applications for the upcoming workshop to be held in August 2010. All of these materials can be found at http://serc.carleton.edu/NAGTWorkshops/energy and http://serc.carleton.edu/NAGTWorkshops/climatechange. Faculty are encouraged to submit their own teaching materials to the web collections via on-line forms for submitting information and uploading files.

  3. The nuclear energy like an option in Mexico before the climatic change

    International Nuclear Information System (INIS)

    The current energy poverty, the future necessities of energy and the climatic change caused by the global warming, are factors that associates each, manifest with more clarity the unsustainable production way and energy consumption that demands the society in the current life. This work analyzes the nuclear energy generation like an alternative from the environmental view point that ties with the sustainable development and the formulation of energy use models that require the countries at global level. With this purpose were collected and reviewed documented data of the energy resources, current and future energy consumption and the international commitments of Mexico regarding to greenhouse gases reduction. For Mexico two implementation scenarios of nuclear reactors type BWR and A BWR were analyzed, in compliance with the goals and policy development established in the National Strategy of Climatic Change and the National Strategy of Energy; the scenarios were analyzed through the emissions to the air of CO2, (main gas of greenhouse effect) which avoids when the energy production is obtained by nuclear reactors instead of consumptions of traditional fuels, such as coal, diesel, natural gas and fuel oil. The obtained results reflect that the avoided emissions contribute from 4.2% until 40% to the national goal that Mexico has committed to the international community through the Convention Marco of the United Nations against the Climatic Change (CMNUCC). These results recommends to the nuclear energy like a sustainable energy solution on specific and current conditions for Mexico. (Author)

  4. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2013-08-01

    Full Text Available The assessment of climate change impacts on the risk for pesticide leaching needs careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-west Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO-model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-west Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios could provide robust probabilistic estimates of future pesticide losses and assessments of changes in pesticide leaching risks.

  5. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  6. The MARKAL-MACRO model and the climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    MARKAL-MACRO and its extensions is a model appropriate to study partial and general equilibrium in the energy markets and the implications of the carbon dioxide mitigation policy. The main advantage of MM is the explicit treatment of energy demand, supply and conversion technologies, including emission control and conservation options, within a general equilibrium framework. The famous gap between top-down and bottom-up models is resolved and the economic implications of environmental and supply policy constraints can be captured either in an aggregated (Macro) or in a sectorial (Micro) level. The multi-regional trade version of the model allows to study questions related to efficient and equitable allocation of cost and benefits associated with the climate change issue. Finally, the stochastic version of the model allows to assess policies related to uncertain and even catastrophic effects and define appropriate hedging strategies. The report is divided in three parts: - the first part gives an overview of the new model structure. It describes its macro economic part and explains its calibration, - the second part refers to the model applications for Switzerland when analyzing the economic implications of curbing CO{sub 2} emissions or policies related to the introduction of a carbon tax, including a hedging strategy, - the last part is organized in form of Appendices and gives a mathematical description and some potential extensions of the model. It describes also a sensitivity analysis done with MARKAL-MACRO in 1992. (author) figs., tabs., refs.

  7. The MARKAL-MACRO model and the climate change

    International Nuclear Information System (INIS)

    MARKAL-MACRO and its extensions is a model appropriate to study partial and general equilibrium in the energy markets and the implications of the carbon dioxide mitigation policy. The main advantage of MM is the explicit treatment of energy demand, supply and conversion technologies, including emission control and conservation options, within a general equilibrium framework. The famous gap between top-down and bottom-up models is resolved and the economic implications of environmental and supply policy constraints can be captured either in an aggregated (Macro) or in a sectorial (Micro) level. The multi-regional trade version of the model allows to study questions related to efficient and equitable allocation of cost and benefits associated with the climate change issue. Finally, the stochastic version of the model allows to assess policies related to uncertain and even catastrophic effects and define appropriate hedging strategies. The report is divided in three parts: - the first part gives an overview of the new model structure. It describes its macro economic part and explains its calibration, - the second part refers to the model applications for Switzerland when analyzing the economic implications of curbing CO2 emissions or policies related to the introduction of a carbon tax, including a hedging strategy, - the last part is organized in form of Appendices and gives a mathematical description and some potential extensions of the model. It describes also a sensitivity analysis done with MARKAL-MACRO in 1992. (author) figs., tabs., refs

  8. Climate Modeling with a Million CPUs

    Science.gov (United States)

    Tobis, M.; Jackson, C. S.

    2010-12-01

    Michael Tobis, Ph.D. Research Scientist Associate University of Texas Institute for Geophysics Charles S. Jackson Research Scientist University of Texas Institute for Geophysics Meteorological, oceanographic, and climatological applications have been at the forefront of scientific computing since its inception. The trend toward ever larger and more capable computing installations is unabated. However, much of the increase in capacity is accompanied by an increase in parallelism and a concomitant increase in complexity. An increase of at least four additional orders of magnitude in the computational power of scientific platforms is anticipated. It is unclear how individual climate simulations can continue to make effective use of the largest platforms. Conversion of existing community codes to higher resolution, or to more complex phenomenology, or both, presents daunting design and validation challenges. Our alternative approach is to use the expected resources to run very large ensembles of simulations of modest size, rather than to await the emergence of very large simulations. We are already doing this in exploring the parameter space of existing models using the Multiple Very Fast Simulated Annealing algorithm, which was developed for seismic imaging. Our experiments have the dual intentions of tuning the model and identifying ranges of parameter uncertainty. Our approach is less strongly constrained by the dimensionality of the parameter space than are competing methods. Nevertheless, scaling up remains costly. Much could be achieved by increasing the dimensionality of the search and adding complexity to the search algorithms. Such ensemble approaches scale naturally to very large platforms. Extensions of the approach are anticipated. For example, structurally different models can be tuned to comparable effectiveness. This can provide an objective test for which there is no realistic precedent with smaller computations. We find ourselves inventing new code to

  9. Predictive modelling of climate suitability for Pinus halepensis in Spain

    OpenAIRE

    Gastón González, Aitor; Garcia Viñas, Juan Ignacio

    2010-01-01

    The response of Mediterranean pine species distribution to global change is a key feature of forest management in a changing environment. Climate suitability models are valuable tools for understanding and anticipating the effects of climate change on species distributions. Logistic regression was used to model climate suitability for Pinus halepensis in Spain, using National Forest Inventory as training sample. Predictive performance was evaluated using ICP Forests Level I grid as independen...

  10. A framework for modeling uncertainty in regional climate change (Invited)

    Science.gov (United States)

    Monier, E.; Gao, X.; Scott, J. R.; Sokolov, A. P.; Schlosser, C. A.

    2013-12-01

    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the United States associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework are the emissions projections (using different climate policies), the climate system response (represented by different values of climate sensitivity and net aerosol forcing), natural variability (by perturbing initial conditions) and structural uncertainty (using different climate models). The modeling framework revolves around the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model with an intermediate complexity earth system model (with a two-dimensional zonal-mean atmosphere). Regional climate change over the United States is obtained through a two-pronged approach. First, we use the IGSM-CAM framework which links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Secondly, we use a pattern-scaling method that extends the IGSM zonal mean based on climate change patterns from various climate models. Results show that uncertainty in temperature changes are mainly driven by policy choices and the range of climate sensitivity considered. Meanwhile, the four sources of uncertainty contribute more equally to precipitation changes, with natural variability having a large impact in the first part of the 21st century. Overall, the choice of policy is the largest driver of uncertainty in future projections of climate change over the United States. In light of these results, we recommend that when investigating climate change impacts over specific regions, studies consider all four sources of uncertainty analyzed in this paper.

  11. Usage of web-GIS platform Climate to prepare specialists in climate changes modeling and analysis

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A web-GIS based platform "Climate" developed in our institute (http://climate.scert.ru/) has a set of tools and data bases to perform climate changes analysis on the selected territory. The platform is functioning and open for registration and all these tools are available. Besides that the platform has a potential to be used in education. It contains several educational courses followed by tests and trainings which are performed within the platform "Climate" using its web-gis tools. The main purpose of a new "Climatic and environmental modeling" module course is to enable students and graduates meteorological departments to improve their knowledge and skills in modern climatology. Although the emphasis is on climate science, the course is directly related to the part of the ecological science, which refers to the environment. This is due to the fact that the current global climate models have become models of the Earth system and include models of environment as well. The module includes a main course of lectures devoted to basic aspects of modern climatology , including analysis of the current climate change and its possible consequences , a special course on geophysical hydrodynamics, several on-line computing labs dedicated to specific monitoring and modeling of climate and climate change , as well as information kit , which not only includes the usual list of recommended reading, but also contains the files of many publications , the distribution of which is not limited by copyright law. Laboratory exercises are designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate". The results obtained on laboratory work are presented as reports with the statement of the problem, the results of calculations and logically justified conclusion. Now the following labs are used to train and prepare young

  12. Deficiencies in the simulation of the geographic distribution of climate types by global climate models

    Science.gov (United States)

    Zhang, Xianliang; Yan, Xiaodong

    2016-05-01

    The performances of General Circulation Models (GCMs) when checked with conventional methods (i.e. correlation, bias, root-mean-square error) can only be evaluated for each variable individually. The geographic distribution of climate type in GCM simulations, which reflects the spatial attributes of models and is related closely to the terrestrial biosphere, has not yet been evaluated. Thus, whether the geographic distribution of climate types was well simulated by GCMs was evaluated in this study for nine GCMs. The results showed that large areas of climate zones classified by the GCMs were allocated incorrectly when compared to the basic climate zones established by observed data. The percentages of wrong areas covered approximately 30-50 % of the total land area for most models. In addition, the temporal shift in the distribution of climate zones according to the GCMs was found to be inaccurate. Not only were the locations of shifts poorly simulated, but also the areas of shift in climate zones. Overall, the geographic distribution of climate types was not simulated well by the GCMs, nor was the temporal shift in the distribution of climate zones. Thus, a new method on how to evaluate the simulated distribution of climate types for GCMs was provided in this study.

  13. Use of RCM simulations to assess the impact of climate change on wind energy availability

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, Rebecca Jane

    2004-01-01

    on near-surface flow and hence wind energy density across northern Europe. It is shown that: - Simulated wind fields using the Rossby Centre coupled Regional Climate Model (RCM) (RCAO) during the control period(1961-1990) exhibit reasonable and realistic features as documented in in situ observations...

  14. Modeling and Representing National Climate Assessment Information using Linked Data

    Science.gov (United States)

    Zheng, J.; Tilmes, C.; Smith, A.; Zednik, S.; Fox, P. A.

    2012-12-01

    Every four years, earth scientists work together on a National Climate Assessment (NCA) report which integrates, evaluates, and interprets the findings of climate change and impacts on affected industries such as agriculture, natural environment, energy production and use, etc. Given the amount of information presented in each report, and the wide range of information sources and topics, it can be difficult for users to find and identify desired information. To ease the user effort of information discovery, well-structured metadata is needed that describes the report's key statements and conclusions and provide for traceable provenance of data sources used. We present an assessment ontology developed to describe terms, concepts and relations required for the NCA metadata. Wherever possible, the assessment ontology reuses terms from well-known ontologies such as Semantic Web for Earth and Environmental Terminology (SWEET) ontology, Dublin Core (DC) vocabulary. We have generated sample National Climate Assessment metadata conforming to our assessment ontology and publicly exposed via a SPARQL-endpoint and website. We have also modeled provenance information for the NCA writing activities using the W3C recommendation-candidate PROV-O ontology. Using this provenance the user will be able to trace the sources of information used in the assessment and therefore make trust decisions. In the future, we are planning to implement a faceted browser over the metadata to enhance metadata traversal and information discovery.

  15. Repositioning urban governments? Energy efficiency and Australia’s changing climate and energy governance regimes.

    OpenAIRE

    McGuirk, Pauline; Dowling, Robyn; Bulkeley, Harriet

    2014-01-01

    Urban local governments are important players in climate governance, and their roles are evolving. This review traces the changing nexus of Australia’s climate policy, energy policy and energy efficiency imperatives and its repositioning of urban local governments. We characterise the ways urban local governments’ capacities and capabilities are being mobilised in light of a changing multi-level political opportunity structure around energy efficiency. The shifts we observe not only extend lo...

  16. Global climate models: Past, present, and future

    OpenAIRE

    Stute, Martin; Clement, Amy; Lohmann, Gerrit

    2001-01-01

    One of the main features of climate spectra is their redness which originates from stochastic mechanisms (see e.g. the time scale arguments of Hasselmann, 1976). The variance increases toward the longer time scales and is limited by the negative feedback mechanisms in the climate system. Apart from this there is climate variability at distinct time scales due to external forcing (e.g. Milankowitch cycles), or internal oscillations (e.g. ENSO, decadal oscillations). The understanding of long-t...

  17. An Overview of BCC Climate System Model Development and Application for Climate Change Studies

    Institute of Scientific and Technical Information of China (English)

    WU Tongwen; WU Fanghua; LIU Yiming; ZHANG Fang; SHI Xueli; CHU Min; ZHANG Jie; FANG Yongjie; WANG Fang; LU Yixiong; LIU Xiangwen; SONG Lianchun; WEI Min; LIU Qianxia; ZHOU Wenyan; DONG Min; ZHAO Qigeng; JI Jinjun; Laurent LI; ZHOU Mingyu; LI Weiping; WANG Zaizhi; ZHANG Hua; XIN Xiaoge; ZHANG Yanwu; ZHANG Li; LI Jianglong

    2014-01-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC-CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC-CSM1.1 with coarse resolution (approximately 2.8125◦×2.8125◦) and BCC-CSM1.1(m) with moderate resolution (approximately 1.125◦×1.125◦). Both versions are fully cou-pled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase fi ve (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate pro jections. Simulations of the 20th century climate using BCC-CSM1.1 and BCC-CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and pro jections of climate change during the next century are also presented and discussed. Both BCC-CSM1.1 and BCC-CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses in-dicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSM1.1, particularly on regional scales.

  18. An overview of BCC climate system model development and application for climate change studies

    Science.gov (United States)

    Wu, Tongwen; Song, Lianchun; Li, Weiping; Wang, Zaizhi; Zhang, Hua; Xin, Xiaoge; Zhang, Yanwu; Zhang, Li; Li, Jianglong; Wu, Fanghua; Liu, Yiming; Zhang, Fang; Shi, Xueli; Chu, Min; Zhang, Jie; Fang, Yongjie; Wang, Fang; Lu, Yixiong; Liu, Xiangwen; Wei, Min; Liu, Qianxia; Zhou, Wenyan; Dong, Min; Zhao, Qigeng; Ji, Jinjun; Li, Laurent; Zhou, Mingyu

    2014-02-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC_CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC_CSM1.1 with coarse resolution (approximately 2.8125°×2.8125°) and BCC_CSM1.1(m) with moderate resolution (approximately 1.125°×1.125°). Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC_CSM model have been contributed to the Coupled Model Intercomparison Project phase five (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections. Simulations of the 20th century climate using BCC_CSM1.1 and BCC_CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed. Both BCC_CSM1.1 and BCC_CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses indicate that the higher resolution in BCC_CSM1.1(m) improves the simulation of mean climate relative to BCC_CSM1.1, particularly on regional scales.

  19. Climatization, energy and design in rural housing

    International Nuclear Information System (INIS)

    The Work analyzes the possibilities to influence in the energy inputs of the air conditioning in the rural housing through architectonic project decisions. It presents a methodology to guide the first project decisions and to evaluate the future of the housing behavior

  20. Indoor climate in renovated and energy retrofitted social housing

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Jensen, Ole Michael

    2016-01-01

    The need for energy retrofitting of the Danish single-family houses is massive, especially for the high proportion of single-family houses built in the 1960s and 1970s. But even though the potential benefits are many, only few families embark on a major energy retrofit. There may be many reasons...... and less risk of mould growth. Hence a strategy to increase the number of house owners who embark on energy retrofitting of their house should include the communication of non-energy benefits like improved indoor climate. In addition, the strategy must include help for the house owners to overcome barriers...

  1. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  2. The role of clouds in climate model bias and sensitivity

    NARCIS (Netherlands)

    Lacagnina, C.

    2014-01-01

    Clouds are prominent in the climate system, since they play a major role in the way energy and water are cycled through the atmosphere. One of the most relevant impacts of the clouds on the earth's climate is their interaction with the radiative fluxes. Changes in this interaction in response to an

  3. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  4. Energy efficient climate control for cut flower alstroemeria

    OpenAIRE

    Labrie, C.W.; Zwart, de, H.F.

    2012-01-01

    Like in most countries, in the Netherlands energy consumption is an increasing cost component. In cut flowers grown at a relatively low temperature, most of the energy is used for dehumidification. In Alstroemeria dehumidification is especially important to prevent the physiological disorder expressed as necrotic leaf tips. Research has been carried out showing that improved climate control can save 37% on heating, without a reduction on yield and even a quality, compared to a contemporary re...

  5. Modelling the effect of climate change on species ranges

    NARCIS (Netherlands)

    C.J. Nagelkerke; J.R.M. Alkemade

    2003-01-01

    Three main types of models can be used to understand and predict climate-related range shifts. Equilibrium models predict potential future distributions from the current climate envelope of a species, but do not take migration constraints into account. They show that future range changes can be larg

  6. Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling

    NARCIS (Netherlands)

    Lenaerts, J.T.M.; van den Broeke, M.R.; van Wessem, J.M.; van de Berg, W.J.; van Meijgaard, E.; van Ulft, L.H.; Schaefer, M.

    2014-01-01

    This study uses output of a high-resolution (5.5 km) regional atmospheric climate model to describe the present-day (1979–2012) climate of Patagonia, with a particular focus on the surface mass balance (SMB) of the Patagonian ice fields. Through a comparison with available in situ observations, it i

  7. Modeling climate change impact in hospitality sector, using building resources consumption signature

    Science.gov (United States)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in

  8. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  9. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  10. Evaluation of global climate models for Indian monsoon climatology

    International Nuclear Information System (INIS)

    The viability of global climate models for forecasting the Indian monsoon is explored. Evaluation and intercomparison of model skills are employed to assess the reliability of individual models and to guide model selection strategies. Two dominant and unique patterns of Indian monsoon climatology are trends in maximum temperature and periodicity in total rainfall observed after 30 yr averaging over India. An examination of seven models and their ensembles reveals that no single model or model selection strategy outperforms the rest. The single-best model for the periodicity of Indian monsoon rainfall is the only model that captures a low-frequency natural climate oscillator thought to dictate the periodicity. The trend in maximum temperature, which most models are thought to handle relatively better, is best captured through a multimodel average compared to individual models. The results suggest a need to carefully evaluate individual models and model combinations, in addition to physical drivers where possible, for regional projections from global climate models. (letter)

  11. Energy sector water use implications of a 2 °C climate policy

    International Nuclear Information System (INIS)

    Quantifying water implications of energy transitions is important for assessing long-term freshwater sustainability since large volumes of water are currently used throughout the energy sector. In this paper, we assess direct global energy sector water use and thermal water pollution across a broad range of energy system transformation pathways to assess water impacts of a 2 °C climate policy. A global integrated assessment model is equipped with the capabilities to account for the water impacts of technologies located throughout the energy supply chain. The model framework is applied across a broad range of 2 °C scenarios to highlight long-term water impact uncertainties over the 21st century. We find that water implications vary significantly across scenarios, and that adaptation in power plant cooling technology can considerably reduce global freshwater withdrawals and thermal pollution. Global freshwater consumption increases across all of the investigated 2 °C scenarios as a result of rapidly expanding electricity demand in developing regions and the prevalence of freshwater-cooled thermal power generation. Reducing energy demand emerges as a robust strategy for water conservation, and enables increased technological flexibility on the supply side to fulfill ambitious climate objectives. The results underscore the importance of an integrated approach when developing water, energy, and climate policy, especially in regions where rapid growth in both energy and water demands is anticipated. (letter)

  12. Energy sector water use implications of a 2 °C climate policy

    Science.gov (United States)

    Fricko, Oliver; Parkinson, Simon C.; Johnson, Nils; Strubegger, Manfred; van Vliet, Michelle TH; Riahi, Keywan

    2016-03-01

    Quantifying water implications of energy transitions is important for assessing long-term freshwater sustainability since large volumes of water are currently used throughout the energy sector. In this paper, we assess direct global energy sector water use and thermal water pollution across a broad range of energy system transformation pathways to assess water impacts of a 2 °C climate policy. A global integrated assessment model is equipped with the capabilities to account for the water impacts of technologies located throughout the energy supply chain. The model framework is applied across a broad range of 2 °C scenarios to highlight long-term water impact uncertainties over the 21st century. We find that water implications vary significantly across scenarios, and that adaptation in power plant cooling technology can considerably reduce global freshwater withdrawals and thermal pollution. Global freshwater consumption increases across all of the investigated 2 °C scenarios as a result of rapidly expanding electricity demand in developing regions and the prevalence of freshwater-cooled thermal power generation. Reducing energy demand emerges as a robust strategy for water conservation, and enables increased technological flexibility on the supply side to fulfill ambitious climate objectives. The results underscore the importance of an integrated approach when developing water, energy, and climate policy, especially in regions where rapid growth in both energy and water demands is anticipated.

  13. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  14. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  15. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    Science.gov (United States)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    treatment works. This analysis is achieved through development of an empirical model utilising historical climatic data in conjunction with low, medium and high emission IPCC climate scenarios using the HADCM3 global climate model across a baseline condition and two further time steps. Results highlight projected alterations in flow rates together with the potential for increases in the frequency and persistence of drought/flooding events and the resulting impacts on future energy recovery. Critical climate change limits are also identified indicating the tolerable ranges within which hydropower recovery is financially viable, thus allowing for more informed decision making across potential sites.

  16. Coping with climate change and China's wind energy sustainable development

    Directory of Open Access Journals (Sweden)

    De-Xin He

    2016-03-01

    Full Text Available Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from “large wind power country” to “strong wind power country”, opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.

  17. China's strategy for energy development and climate change mitigation

    International Nuclear Information System (INIS)

    In recent years, China has made great efforts in energy saving and carbon emission reduction by pushing forward domestic sustainable development along with global climate change mitigation. The efforts have paid off with a dramatic decrease in carbon intensity. Nevertheless, China is still confronted with tough challenges in emission control due to the fast pace of industrialization, large total historical emission and high growth rate of emissions. Therefore, China should give priority to energy saving by improving energy efficiency and sectoral structure adjustment and upgrade, and develop sustainable and renewable energy to optimize energy mix and its carbon content. China should continue to regard significant reduction of energy intensity and carbon intensity as the main objective in the near future, strive to achieve peak emissions around 2030, and realize a relatively sharp emissions reduction by 2050 in order to address climate change to meet the goal of making the warming less than 2°. During the 12th Five Year Plan (FYP), China will further strengthen measures to control the amount of energy consumption, establish a statistics, accounting and evaluation system of carbon emissions, and promote a market-based carbon emissions trading mechanism to facilitate the low-carbon transformation of China's economy. - Highlights: ► This paper studies China's strategy for energy development and climate change mitigation. ► We suggest that China should focus on reducing the energy intensity and carbon intensity of GDP, and optimization of energy mix in the near term. ► In the long term, China should achieve the peak emission around 2030, and realize a relative sharp emission reduction by 2050. ► The paper also concludes some important measures which China should take during the 12th Five-Year-Plan (2011–2015).

  18. Enhancements to modeling regional climate response and global variability; FINAL

    International Nuclear Information System (INIS)

    Efforts during this grant period focused on three main considerations: (a) developing and testing various climate scenarios with SEAM, a newly created model (b) model reconstruction efforts to speed up computations and (c) optimum realization statistics

  19. Subtask 2.4 - Integration and Synthesis in Climate Change Predictive Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav Solc

    2009-06-01

    The Energy & Environmental Research Center (EERC) completed a brief evaluation of the existing status of predictive modeling to assess options for integration of our previous paleohydrologic reconstructions and their synthesis with current global climate scenarios. Results of our research indicate that short-term data series available from modern instrumental records are not sufficient to reconstruct past hydrologic events or predict future ones. On the contrary, reconstruction of paleoclimate phenomena provided credible information on past climate cycles and confirmed their integration in the context of regional climate history is possible. Similarly to ice cores and other paleo proxies, acquired data represent an objective, credible tool for model calibration and validation of currently observed trends. It remains a subject of future research whether further refinement of our results and synthesis with regional and global climate observations could contribute to improvement and credibility of climate predictions on a regional and global scale.

  20. Modeling key processes causing climate change and variability

    Energy Technology Data Exchange (ETDEWEB)

    Henriksson, S.

    2013-09-01

    Greenhouse gas warming, internal climate variability and aerosol climate effects are studied and the importance to understand these key processes and being able to separate their influence on the climate is discussed. Aerosol-climate model ECHAM5-HAM and the COSMOS millennium model consisting of atmospheric, ocean and carbon cycle and land-use models are applied and results compared to measurements. Topics at focus are climate sensitivity, quasiperiodic variability with a period of 50-80 years and variability at other timescales, climate effects due to aerosols over India and climate effects of northern hemisphere mid- and high-latitude volcanic eruptions. The main findings of this work are (1) pointing out the remaining challenges in reducing climate sensitivity uncertainty from observational evidence, (2) estimates for the amplitude of a 50-80 year quasiperiodic oscillation in global mean temperature ranging from 0.03 K to 0.17 K and for its phase progression as well as the synchronising effect of external forcing, (3) identifying a power law shape S(f) {proportional_to} f-{alpha} for the spectrum of global mean temperature with {alpha} {approx} 0.8 between multidecadal and El Nino timescales with a smaller exponent in modelled climate without external forcing, (4) separating aerosol properties and climate effects in India by season and location (5) the more efficient dispersion of secondary sulfate aerosols than primary carbonaceous aerosols in the simulations, (6) an increase in monsoon rainfall in northern India due to aerosol light absorption and a probably larger decrease due to aerosol dimming effects and (7) an estimate of mean maximum cooling of 0.19 K due to larger northern hemisphere mid- and high-latitude volcanic eruptions. The results could be applied or useful in better isolating the human-caused climate change signal, in studying the processes further and in more detail, in decadal climate prediction, in model evaluation and in emission policy

  1. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

    2014-05-01

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  2. Climate Change Hotspots Identification in China through the CMIP5 Global Climate Model Ensemble

    Directory of Open Access Journals (Sweden)

    Huanghe Gu

    2014-01-01

    Full Text Available China is one of the countries vulnerable to adverse climate changes. The potential climate change hotspots in China throughout the 21st century are identified in this study by using a multimodel, multiscenario climate model ensemble that includes Phase Five of the Coupled Model Intercomparison Project (CMIP5 atmosphere-ocean general circulation models. Both high (RCP8.5 and low (RCP4.5 greenhouse gas emission trajectories are tested, and both the mean and extreme seasonal temperature and precipitation are considered in identifying regional climate change hotspots. Tarim basin and Tibetan Plateau in West China are identified as persistent regional climate change hotspots in both the RCP4.5 and RCP8.5 scenarios. The aggregate impacts of climate change increase throughout the 21st century and are more significant in RCP8.5 than in RCP4.5. Extreme hot event and mean temperature are two climate variables that greatly contribute to the hotspots calculation in all regions. The contribution of other climate variables exhibits a notable subregional variability. South China is identified as another hotspot based on the change of extreme dry event, especially in SON and DJF, which indicates that such event will frequently occur in the future. Our results can contribute to the designing of national and cross-national adaptation and mitigation policies.

  3. Teaching a Model-based Climatology Using Energy Balance Simulation.

    Science.gov (United States)

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  4. Climate sensitivity uncertainty and the necessity to transform global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Zwaan, Bob van der [Energy research Centre of the Netherlands (ECN), Policies Studies Department, P.O. Box 37154, 1030 AD Amsterdam (Netherlands) and Harvard University, John F. Kennedy School of Government, 79 J.F.K. Street, Cambridge, MA 02138 (United States)]. E-mail: vanderzwaan@ecn.nl; Gerlagh, Reyer [Vrije Universiteit Amsterdam, Institute for Environmental Studies (IVM), De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)

    2006-11-15

    This paper analyses the policy relevance of the dominant uncertainty in our current scientific understanding of the terrestrial climate system, and provides further evidence for the need to radically transform-this century-our global energy supply infrastructure, given the global average temperature increase as a result of anthropogenic carbon dioxide (CO{sub 2}) emissions. We investigate the effect on required CO{sub 2} emission reduction efforts, both in terms of how much and when, of our present uncertain knowledge of the climate sensitivity to a doubling of the atmospheric CO{sub 2} concentration. We use a top-down integrated assessment model in which there are two competing energy sources, fossil and non-fossil. Technological change is represented endogenously through learning curves, and modest but non-zero demand exists for the relatively expensive carbon-free energy resource. We find that during the forthcoming two decades the relative roles of carbon-free energy and energy savings are similar, while in the long run the importance of carbon-free energy deployment becomes predominant, independent of the assumed climate sensitivity, but dependent on some of our model's characteristic features. We also find that, in the absence of the realisation of drastic energy efficiencies or a massive deployment of carbon capture and storage technologies, non-carbon energy resources should provide 10-30% and 80-90% of total energy supply, in 2020 and 2100, respectively. Finally, we observe that in our model the timing of the emissions reduction effort is nearly linear and close to independent of either the climate sensitivity or policy target.

  5. Modeling of climate change impacts on agriculture, forestry and fishery

    International Nuclear Information System (INIS)

    Changes in climate affect agriculture, forest and fisheries. This paper examines the climate change impact on crop production, fishery and forestry using state - of - the - art modeling technique. Crop growth model InfoCrop was used to predict the climate change impacts on the yields of rice, wheat and maize in Bangladesh. Historical climate change scenario has little or no negative impacts on rice and wheat yields in Mymensingh and Dinajpur but IPCC climate change scenario has higher negative impacts. There is almost no change in the yields of maize for the historical climate change scenario in the Chittagong, Hill Tracts of but there is a small decrease in the yields of rice and maize for IPCC climate change scenario. A new statistical model to forecast climate change impacts on fishery in the world oceans has been developed. Total climate change impact on fishery in the Indian Ocean is negative and the predictor power is 94.14% for eastern part and 98.59% for the western part. Two models are presented for the mangrove forests of the Sundarbans. To bole volumes of the pioneer, intermediate and climax are simulated for three different logging strategies and the results have been discussed in this paper. (author)

  6. Analysis and Monitoring of Energy Consumption and Indoor Climate in a School Before and After Deep Energy Renovation

    DEFF Research Database (Denmark)

    Rose, Jørgen; Thomsen, Kirsten Engelund; Bergsøe, Niels Christian;

    2015-01-01

    to achieve deep energy retrofits of government/ public buildings, starting with the determination of working bundles of technologies and corresponding business models using combined public and private funding. Denmark will contribute to the project with seven buildings in total -- two schools and five...... ventilation systems with heat recovery, low-energy lighting, water-saving measures, improved insulation of piping, and improved control using building energy management systems. This paper presents preliminary results of the analysis and monitoring of energy consumption and indoor climate in one public school...

  7. Effects of climate change on regional energy systems focussing on space heating and cooling: A case study of Austria

    Directory of Open Access Journals (Sweden)

    Hausl Stephan

    2014-01-01

    Full Text Available Climate change affects regions differently and therefore also climate change effects on energy systems need to be analyzed region specific. The objective of the study presented is to show and analyze these effects on regional energy systems following a high spatial resolution approach. Three regional climate scenarios are downscaled to a 1 km resolution and error corrected for three different testing regions in Austria. These climate data are used to analyze effects of climate change on heating and cooling demand until the year 2050. Potentials of renewable energies such as solar thermal, photovoltaic, ambient heat and biomass are also examined. In the last process step the outcomes of the previous calculations are fed into two energy system models, where energy system optimizations are executed, which provide information concerning optimal setups and operations of future energy systems. Due to changing climate strong changes for the energy demand structure are noticed; lower heat demand in winter (between -7 and -15% until 2050 and - strongly differing between regions - higher cooling demand in summer (up to +355%. Optimization results show that the composition of energy supply carriers is barely affected by climate change, since other developments such as refurbishment actions, price developments and regional biomass availabilities are more influencing within this context.

  8. Intersects between Land, Energy, Water and the Climate System

    Science.gov (United States)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy

  9. SUSTAINABLE DEVELOPMENT, ENERGY AND CLIMATE CHANGE IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Andrei ROTH

    2015-04-01

    Full Text Available Through sustainable development the needs of the current generation are fulfilled without jeopardizing the opportunities of future generations. The concept takes into account economic, social and environmental considerations. It has a wide range of applications from natural resources to population growth and biodiversity. One of its most important themes is energy. In this area, sustainable development relates with resource availability and green house gases emissions. Also it takes into account the needs of people without access to energy, and their legitimate quest for development. For the European Union, sustainable development represents an overarching objective. The present article analyzes the concept from a theoretical perspective, contrasting its strong points and weaknesses. It highlights the relation between sustainable development, energetic resources and climate change. The EU policies results in the field of energy are analyzed from the perspective of resources, energetic dependency and climate change efforts.

  10. SLC summer 2010 university - The ocean in the climate-energy problem, urban policies. Proceedings

    International Nuclear Information System (INIS)

    This document brings together the available presentations given at the summer 2010 university of the SLC (save the climate) organization on the topics of the ocean in the climate-energy problem, and of the urban policies. Nine presentations (slides) are compiled in this document and deal with: 1 - Biofuels made from micro-algae: stakes and challenges (Olivier Bernard, Comore - INRIA /CNRS/UPMC); 2 - The energy of waves (Alain Clement, Ecole Centrale de Nantes); 3 - The sea, new source of renewable energies? (J.J. Herou, EDF CIH); 4 - Oceans acidification: the other CO2 problem (James Orr, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE, CEA-CNRS-UVSQ); 5 - Oceans and carbon cycle (Laurent Bopp, IPSL/LSCE); 6 - Renewable marine energies (Yann-Herve De Roeck, France Energies Marines); 7 - Energy renovation of buildings (Jean-Claude Terrier, Mesac Europe); 8 - Modevur research project - Modeling of urban development, sketch of a development typology of chinese cities (Clement-Noel Douady); 9 - Urban areas in the fight against climate change: stakes, knowledge and controversies (Francois Menard, PUCA)

  11. Municipal energy and climate policy in a liberalized energy market

    International Nuclear Information System (INIS)

    Due to the ongoing process of liberalisation, Dutch municipal energy policy is undergoing significant changes. The probable privatisation of energy companies, the change from what used to be 'their' local energy company to what will become an energy company, results in a need for local administrations to build up energy knowledge, end-use information and financial resources that 'their' energy companies used to share but, because of operating in a competitive market, are now more reluctant to do so. On the other hand offers privatisation and the selling of shares the possibility for some local governments to collect a significant sum of money which can be addressed to energy policy. This process of growing responsibility of local administrations for their own energy policy coincides with the structural change of the nature of the energy supply in the Netherlands. The change towards a more decentralised energy supply results in more energy systems (e.g. PV and wind) coming under the influence of local regulations. Municipal governments will have to act more like actors in a complex policy network, playing different roles at different times in different situations, often stimulating and regulating at the same time. The growing popularity of platforms like energy agencies, bringing together parties like the local government, energy companies and commercial- and housing associations are examples hereof. In this report, another new role for local governments resulting from the liberalisation process is highlighted: the role of energy consumer. It is estimated that the aggregated electricity demand resulting from activities under direct municipal responsibility (e.g. municipal dwellings, traffic lights, public lighting) amounts to a fairly large share of the market. Due to the public interests vested in the local administrations, it is expected that an important part of this demand is demand for green electricity. Also, local governments can use the energy markets to act

  12. Tendances Carbone no. 82 'A 2030 framework for climate and energy policies: CDC Climat Research's answer'

    International Nuclear Information System (INIS)

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO2 allowances. This issue addresses the following points: To establish a climate and energy policy in the EU in 2030, CDC Climat Research addresses three main recommendations to the European Commission: (1) Establish a binding, single and ambitious CO2 emission reduction target of at least 40% in 2030. (2) Put the EU ETS as the central and non-residual instrument aimed at promoting cost-effective reductions in Europe and other parts of the world. (3) Define a stable, predictable and flexible climate regulation to limit carbon leakage and encourage innovation. Key drivers of the European carbon price this month: - The European Parliament has adopted Back-loading: 1.85 billion EUAs will be sold at auction between now and 2015 instead of 2.75 billion; - Phase 2 compliance: a surplus of 1,742 million tonnes (excluding the aviation sector) including auctions. - Energy Efficiency Directive: 22 of the 27 Member States have forwarded indicative targets for 2020 to the European Commission; these targets will be assessed in early 2014

  13. Evaluating Programs That Promote Climate and Energy Education-Meeting Teacher Needs for Online Resources

    Science.gov (United States)

    Lynds, S. E.; Buhr, S. M.

    2011-12-01

    The Climate Literacy and Energy Awareness Network (CLEAN) Pathway, is a National Science Digital Library (NSDL) Pathways project that was begun in 2010. The main goal of CLEAN is to generate a reviewed collection of educational resources that are aligned with the Essential Principles of Climate Science (EPCS). Another goal of the project is to support a community that will assist students, teachers, and citizens in climate literacy. A complementary program begun in 2010 is the ICEE (Inspiring Climate Education Excellence) program, which is developing online modules and courses designed around the climate literacy principles for use by teachers and other interested citizens. In these projects, we learn about teacher needs through a variety of evaluation mechanisms. The programs use evaluation to assist in the process of providing easy access to high quality climate and energy learning resources that meet classroom requirements. The internal evaluation of the CLEAN program is multidimensional. At the CLEAN resource review camps, teachers and scientists work together in small groups to assess the value of online resources for use in the classroom. The review camps are evaluated using observation and feedback surveys; the resulting evaluation reports provide information to managers to fine-tune future camps. In this way, a model for effective climate resource development meetings has been refined. Evaluation methods used in ICEE and CLEAN include teacher needs assessment surveys, teacher feedback at professional development opportunities, scientist feedback at resource review workshops, and regular analysis of online usage of resources, forums, and education modules. This paper will review the most successful strategies for evaluating the effectiveness of online climate and energy education resources and their use by educators and the general public.

  14. Regionalization of climate model results for the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Kauker, F.

    1999-07-01

    A dynamical downscaling is presented that allows an estimation of potential effects of climate change on the North Sea. Therefore, the ocean general circulation model OPYC is adapted for application on a shelf by adding a lateral boundary formulation and a tide model. In this set-up the model is forced, first, with data from the ECMWF reanalysis for model validation and the study of the natural variability, and, second, with data from climate change experiments to estimate the effects of climate change on the North Sea. (orig.)

  15. Climate Science for a Sustainable Energy Future Test Bed and Data Infrastructure Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Van Dam, Kerstin Kleese [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shipman, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-04

    The collaborative Climate Science for a Sustainable Energy Future (CSSEF) project started in July 2011 with the goal of accelerating the development of climate model components (i.e., atmosphere, ocean and sea ice, and land surface) and enhancing their predictive capabilities while incorporating uncertainty quantification (UQ). This effort required accessing and converting observational data sets into specialized model testing and verification data sets and building a model development test bed, where model components and sub-models can be rapidly evaluated. CSSEF’s prototype test bed demonstrated, how an integrated testbed could eliminate tedious activities associated with model development and evaluation, by providing the capability to constantly compare model output—where scientists store, acquire, reformat, regrid, and analyze data sets one-by-one—to observational measurements in a controlled test bed.

  16. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin;

    2016-01-01

    simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface...

  17. A coupled climate model simulation of Marine Isotope Stage 3 stadial climate

    Directory of Open Access Journals (Sweden)

    J. Brandefelt

    2011-01-01

    Full Text Available We present a coupled global climate model (CGCM simulation, integrated for 1500 years to quasi-equilibrium, of a stadial (cold period within Marine Isotope Stage 3 (MIS 3. The simulated Greenland stadial 12 (GS12; ~44 ka BP annual global mean surface temperature (Ts is 5.5 °C higher than in the simulated recent past (RP climate and 1.3 °C lower than in the simulated Last Glacial Maximum (LGM; 21 ka BP climate. The simulated GS12 climate is evaluated against proxy data of sea surface temperature (SST. Simulated SSTs fall within the uncertainty range of the proxy SSTs for 30–50% of the sites depending on season. Proxy SSTs are higher than simulated SSTs in the Central North Atlantic, in contrast to earlier simulations of MIS 3 stadial climate in which proxy SSTs were found to be lower than simulated SST. The annual global mean Ts only changes by 0.10 °C from model years 500–599 to the last century of the simulation, indicating that the climate system may be close to equilibrium already after 500 years of integration. However, significant regional differences between the last century of the simulation and model years 500–599, with a maximum of 8 °C in temperature and 65% in precipitation in Southeastern Greenland in boreal winter, exist. Further, the agreement between simulated and proxy SST is improved from model years 500–599 to the last century of the simulation. El-Niño-Southern Oscillation (ENSO teleconnections in mean sea level pressure (MSLP are analysed for the last 300 years of the GS12, LGM and RP climate simulations. In agreement with an earlier study, we find that GS12 and LGM forcing and boundary conditions induce major modifications to ENSO teleconnections. However, significant differences in the teleconnection patterns are found between a 300-year time-slice starting after 195 model years and the last 300 years of the simulation. Thus we conclude that both the mean state and the

  18. Energy-saving strategies with personalized ventilation in cold climates

    DEFF Research Database (Denmark)

    Shiavon, Stefano; Melikov, Arsen Krikor

    2009-01-01

    supply air temperature. The simulated office room was located in a cold climate. The results reveal that the supply air temperature control strategy has a marked influence on energy consumption. The energy consumption with personalized ventilation may increase substantially (in the range: 61......In this study the influence of the personalized supply air temperature control strategy on energy consumption and the energy-saving potentials of a personalized ventilation system have been investigated by means of simulations with IDA-ICE software. GenOpt software was used to determine the optimal......–268%) compared to mixing ventilation alone if energy-saving strategies are not applied. The results show that the best supply air temperature control strategy is to provide air constantly at 20 °C. The most effective way of saving energy with personalized ventilation is to extend the upper room operative...

  19. An efficient climate model with water isotope physics: NEEMY

    Science.gov (United States)

    Hu, J.; Emile-Geay, J.

    2015-12-01

    This work describes the development of an isotope-enabled atmosphere-ocean global climate model, NEEMY. This is a model of intermediate complexity, which can run 100 model years in 30 hours using 33 CPUs. The atmospheric component is the SPEEDY-IER (Molteni et al. 2003; Dee et al. 2015a), which is a water isotope-enabled (with equilibrium and kinetic fractionation schemes in precipitation, evaporation and soil moisture) simplified atmospheric general circulation model, with T30 horizontal resolution and 8 vertical layers. The oceanic component is NEMO 3.4 (Madec 2008), a state-of-the-art oceanic model (~2° horizontal resolution and 31 vertical layers) with an oceanic isotope module (a passive tracer scheme). A 1000-year control run shows that NEEMY is stable and its energy is conserved. The mean state is comparable to that of CMIP3-era CGCMs, though much cheaper to run. Atmospheric teleconnections such as the NAO and PNA are simulated very well. NEEMY also simulates the oceanic meridional overturning circulation well. The tropical climate variability is weaker than observations, and the climatology exhibits a double ITCZ problem despite bias corrections. The standard deviation of the monthly mean Nino3.4 index is 0.61K, compared to 0.91K in observations (Reynolds et al. 2002). We document similarities and differences with a close cousin, SPEEDY-NEMO (Kucharski et al. 2015). With its fast speed and relatively complete physical processes, NEEMY is suitable for paleoclimate studies ; we will present some forced simulations of the past millennium and their use in forward-modeling climate proxies, via proxy system models (PSMs, Dee et al 2015b). References Dee, S., D. Noone, N. Buenning, J. Emile-Geay, and Y. Zhou, 2015a: SPEEDY-IER: A fast atmospheric GCM with water isotope physics. J. Geophys. Res. Atmos., 120: 73-91. doi:10.1002/2014JD022194. Dee, S. G., J. Emile-Geay, M. N. Evans, Allam, A., D. M. Thompson, and E. J. Steig, 2015b: PRYSM: an open-source framework

  20. Energy and Development. A Modelling Approach

    International Nuclear Information System (INIS)

    policies have an important role. For instance, low energy taxes and subsidies in developing countries limit the opportunities to promote alternative energy options. A final issue in this thesis is the impact of the changing development context - depletion of fossil fuels and climate change - on the economic development of low-income regions. We developed a stylized population-economy-energy-climate model (SUSCLIME) in which automated agents can take policy-decisions and develop strategies to cope with resource depletion and climate change. From preliminary model experiments it appears that developing countries are more vulnerable to both resource depletion and climate change. A co-benefit of a long-term focus on avoiding climate change is that it also slows down fossil resource depletion. A short-term focus to reduce impacts from depletion of endogenous fossil resources has probably not much synergy with climate policy because imported fossil energy (or coal) is more attractive than developing alternatives.

  1. Integrated hydrological SVAT model for climate change studies in Denmark

    Science.gov (United States)

    Mollerup, M.; Refsgaard, J.; Sonnenborg, T. O.

    2010-12-01

    In a major Danish funded research project (www.hyacints.dk) a coupling is being established between the HIRHAM regional climate model code from Danish Meteorological Institute and the MIKE SHE distributed hydrological model code from DHI. The linkage between those two codes is a soil vegetation atmosphere transfer scheme, which is a module of MIKE SHE. The coupled model will be established for the entire country of Denmark (43,000 km2 land area) where a MIKE SHE based hydrological model already exists (Henriksen et al., 2003, 2008). The present paper presents the MIKE SHE SVAT module and the methodology used for parameterising and calibrating the MIKE SHE SVAT module for use throughout the country. As SVAT models previously typically have been tested for research field sites with comprehensive data on energy fluxes, soil and vegetation data, the major challenge lies in parameterisation of the model when only ordinary data exist. For this purpose annual variations of vegetation characteristics (Leaf Area Index (LAI), Crop height, Root depth and the surface albedo) for different combinations of soil profiles and vegetation types have been simulated by use of the soil plant atmosphere model Daisy (Hansen et al., 1990; Abrahamsen and Hansen, 2000) has been applied. The MIKE SHE SVAT using Daisy generated surface/soil properties model has been calibrated against existing data on groundwater heads and river discharges. Simulation results in form of evapotranspiration and percolation are compared to the existing MIKE SHE model and to observations. To analyse the use of the SVAT model in climate change impact assessments data from the ENSEMBLES project (http://ensembles-eu.metoffice.com/) have been analysed to assess the impacts on reference evapotranspiration (calculated by the Makkink and the Penmann-Monteith equations) as well as on the individual elements in the Penmann-Monteith equation (radiation, wind speed, humidity and temperature). The differences on the

  2. The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Gerald L; Bader, David C; Riches, Michael; Bamzai, Anjuli; Joseph, Renu

    2011-01-05

    Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment and because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates's early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session

  3. Climate for Collaboration: Analysis of US and EU Lessons and Opportunities in Energy and Climate Policy

    Energy Technology Data Exchange (ETDEWEB)

    De Vita, A.; de Connick, H.; McLaren, J.; Cochran, J.

    2009-11-01

    A deepening of cooperation between the United States and the European Union requires mutual trust, and understanding of current policies, challenges and successes. Through providing such understanding among policymakers, industry and other stakeholders in both economies, opportunities for transatlantic cooperation on climate change and energy policy emerge. This paper sets out by discussing the environmental, legislative, and economic contexts of the EU and US as related to climate. This context is essential to understanding how cap-and-trade, renewable energy and sustainable transportation policies have taken shape in the EU and the US, as described in Chapter 3.1. For each of these policies, a barrier analysis and discussion is provided. Chapter 4 builds off this improved understanding to listobservations and possible lessons learned. The paper concludes with recommendations on topics where EU and US interests align, and where further cooperation could prove beneficial.

  4. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  5. Blackout: coal, climate and the last energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Heinberg, R. [Post Carbon Institute in California, CA (United States)

    2009-07-15

    Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

  6. PROPOSALS REGARDING CLIMATE CHANGE AND ENERGY FOR 2030

    Directory of Open Access Journals (Sweden)

    MARIA POPESCU

    2015-03-01

    Full Text Available Climate policies are fundamental for the future of our planet, while a truly European energy policy is a key factor for our competitiveness.It`s mandatory a new European energy policy which must accept the real energetic motivations regarding sustainability and greenhouse gas, security of supply and dependence on imports, competitiveness and efficient functioning of the internal energy market. An ambitious target of 40% reduction in emissions of greenhouse gases for 2030 is the cornerstone of the most efficient in terms of cost on our path towards a low-carbon dioxide. And at least 27% target for renewable energy is an important signal to investors to provide stability, boost green jobs and support security of supply. Using renewable energy sources (wind, solar and photovoltaic, biomass and biofuels, geothermal and heat pumps undeniably contributes to limiting climate change. In addition, it helps to secure energy supplies and to create and increase employment in Europe, thanks to increasing local energy production and consumption.

  7. Climate change and renewable energy alternatives for Antigonish

    International Nuclear Information System (INIS)

    Antigonish is located along the northeastern shores of mainland Nova Scotia, bounded by the Gulf of St. Lawrence and the Bay of St. George. This document investigated the local effects of climate change in the area and on known renewable energy alternatives that are currently being used around the world, and how those same options could be applied to Antigonish. Examples of each energy option were applied to industrial, institutional and residential sectors, and the local effects of climate change were also examined. The renewable energy alternatives were probed against a variety of criteria and were compared on a cost basis. Focusing on the resources available in Antigonish, each energy alternative was rated on a scale of 1 to 10, with one being the best option. The top 5 renewable energy alternatives for Antigonish were identified as: (1) geothermal heating through a heat pump; (2) solar thermal for small business, institutional or residential applications; (3) small scale wind for commercial, institutional or farm practices; (4) biomass plants for secondary material, particularly forestry residue; and, (5) low-head hydro generating stations. The broad range of uses for these renewable energy resources were described. In order to reduce dependence on traditional energy sources, the examples described the potential changes for industry, institutional and residential applications. 74 refs., 6 figs.

  8. Energy security and climate change: How oil endowment influences alternative vehicle innovation

    International Nuclear Information System (INIS)

    Fast growing global energy needs raise concerns on energy supply security and climate change. Although policies addressing the two issues sometimes benefit one at the expense of the other, technology innovation, especially in alternative energy, provides a win–win solution to tackle both issues. This paper examines the effect of oil endowment on the patterns of technology innovation in the transportation sector, attempting to identify drivers of technology innovation in alternative energy. The analysis employs panel data constructed from patent data on five different types of automobile-related technologies from 1990 to 2002: oil extraction, petroleum refining, fuel cells, electric and hybrid vehicles (EHV) and vehicle energy efficiency. I find that countries with larger oil endowments perform less innovation on refining and alternative technologies. Conversely, higher gasoline prices positively impact the patent counts of alternative technologies and energy efficiency technology. The findings highlight the challenges and importance of policy designs in international climate change agreements. - Highlights: • I examine the effect of oil endowment on technology innovation in the transportation sector. • An empirical model was developed for a cross-country analysis of oil endowments. • A country's oil endowment is a negative driver of alternative technologies. • Energy price is a positive driver of alternative technologies and energy efficiency technology. • Implications for domestic and international climate policy are discussed

  9. Regional Climate Modeling over South America: A Review

    Directory of Open Access Journals (Sweden)

    Silvina A. Solman

    2013-01-01

    Full Text Available This review summarizes the progress achieved on regional climate modeling activities over South America since the early efforts at the beginning of the 2000s until now. During the last 10 years, simulations with regional climate models (RCMs have been performed for several purposes over the region. Early efforts were mainly focused on sensitivity studies to both physical mechanisms and technical aspects of RCMs. The last developments were focused mainly on providing high-resolution information on regional climate change. This paper describes the most outstanding contributions from the isolated efforts to the ongoing coordinated RCM activities in the framework of the CORDEX initiative, which represents a major endeavor to produce ensemble climate change projections at regional scales and allows exploring the associated range of uncertainties. The remaining challenges in modeling South American climate features are also discussed.

  10. Renewable and low-carbon energies as mitigation options of climate change for China

    OpenAIRE

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2009-01-01

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to China's present-day economy and power sector. We then developed different scenarios based on story lines for possible future developments in China. We simulated China's carbon-based electricity produc...

  11. Agricultural climate impacts assessment for economic modeling and decision support

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  12. Envelope as Climate Negotiator: Evaluating adaptive building envelope's capacity to moderate indoor climate and energy

    Science.gov (United States)

    Erickson, James

    Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.

  13. Revisiting the weather effect on energy consumption: Implications for the impact of climate change

    International Nuclear Information System (INIS)

    We revisit statistical estimates for the relation between weather and energy consumption in Massachusetts using times series for heating degree hours that are calculated from hourly data with different set points and set backs. Using hourly values to calculate heating degree hours supports models that generate more accurate out-of-sample forecasts than models estimated from time series for heating degree-days calculated the traditional way. Furthermore, the set point and set back used to calculate heating degree hours generates statistically measurable differences in the accuracy of out-of-sample forecasts. These results indicate that assuming a set point of 65 °F biases statistical estimates for the effect of a warming climate on energy use. We also quantify a new mechanism by which climate change will affect energy use—the temperature of tap water. As climate warms, the temperature of tap water that supplies hot water tanks rises, which reduces the amount of energy consumed to provide hot water. Finally, we use the statistical models to generate a spatial (1 km×1 km) and temporal (hourly) downscaling of carbon emissions that will be used to simulate a model for atmospheric transport and validate our understanding of the sources and sinks of carbon for the urban atmosphere. - Highlights: • Hourly measures of temperature generate more accurate models of energy use. • Set points other than 65 °F generate more accurate models of energy use. • Temperature of tap water affects energy use via domestic hot water. • Models can be downscaled to generate hourly carbon emissions at 1 km×1 km

  14. Performance and Economic Modeling of Horizontally Drilled Ground-Source Heat Pumps in Select California Climates

    Science.gov (United States)

    Wiryadinata, Steven

    Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.

  15. A framework for modeling uncertainty in regional climate change

    Science.gov (United States)

    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the United States associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework ...

  16. Drivers of stability of climate coalitions in the STACO model

    NARCIS (Netherlands)

    Dellink, R.B.

    2011-01-01

    This paper investigates which drivers affect the formation and stability of international climate agreements (ICAs). The applied model STACO is used to project costs and benefits of an international agreement on climate change mitigation activities. The simulation results show that an incentive-base

  17. Model based design of optimal multivariable climate control systems.

    NARCIS (Netherlands)

    Henten, van E.J.

    1989-01-01

    The simulation results are presented of the application of the linear quadratic performance (LQP) control design methodology to a non-linear physical greenhouse climate system. A multivariable greenhouse climate model designed by Bot (1983) is used for controller design and evaluation. First, the no

  18. Detecting Warming Hiatus Periods in CMIP5 Climate Model Projections

    OpenAIRE

    Li, Tony W.; Baker, Noel C.

    2016-01-01

    The observed slow-down in the global-mean surface temperature (GST) warming from 1998 to 2012 has been called a “warming hiatus.” Certain climate models, operating under experiments which simulate warming by increasing radiative forcing, have been shown to reproduce periods which resemble the observed hiatus. The present study provides a comprehensive analysis of 38 CMIP5 climate models to provide further evidence that models produce warming hiatus periods during warming experiments. GST rate...

  19. Switzerland: current energy and climate policies. Political boundary conditions

    International Nuclear Information System (INIS)

    End use energy consumption in Switzerland has increased almost ninefold over the past 95 years, amounting to nearly 88 PJ in 2004. This figure breaks down as follows: coal 5%, oil-based fuels 29%, motor fuels 31%, electricity 22%, gas 11%, district heat, solid municipal and industrial waste as well as renewables (excluding electricity) approx. 1%. In 2004 alone, end use energy consumption rose by half a percent, thus reaching a new record high. This development is due, above all, to the population increase and to economic growth. To achieve its goals in energy and climate policies, and to initiate sustainable energy supply, the Swiss federal council in 2001 launched the 'EnergySwitzerland' Program. The new strategy of the Program focuses on these three goals: 'Climate', 'Electricity: Efficiency Goal', and 'Renewable Energies'. On the basis of perspectives of the development of the population and of the economy, the consequences of a number of policy variants for energy supply and demand and for the economy and the environment have been examined. Four scenarios (variants) are to help design energy policy on a medium and long term by showing energy policy options. For the area of electricity supply facing increasing requirements, 4 options and their pros and cons are distinguished: electricity imports, renewable energies, fossil- fired thermal plants (combined-cycle plants), and nuclear power. With a 40% share in domestic production, nuclear power continues to be a pillar of Swiss energy supply. The fundamental question about the future of nuclear power is not a question of technical or economic know-how, but a question of the system of political values. As the current legal system in the field of electricity supply does not meet requirements, it will have to be adapted. (orig.)

  20. Photosynthesis sensitivity to climate change in land surface models

    Science.gov (United States)

    Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo

    2016-04-01

    Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.

  1. Design challenges for a climate adaptive multi-functional lightweight prefab panel for energy-efficient retrofitting of residential building based on one-room model simulations

    NARCIS (Netherlands)

    Dijkmans, T.J.A.; Donkervoort, D.R.; Phaff, J.C.; Valcke, S.L.A.

    2014-01-01

    Current solutions for highly energy-efficient retrofitting rely on thick static insulation, airtight construction and extensive ventilation systems to become independent from variable outdoor conditions. A building skin that adapts to the outdoor conditions to regulate the indoor conditions could pr

  2. Climatic change and nuclear energy; Changement climatique et energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-08-15

    The data presented in the different chapters lead to show that nuclear energy ids not a sustainable energy sources for the following reasons: investments in nuclear energy account financing that lacks to energy efficiency programmes. The nuclear programmes have negative effects such the need of great electric network, the need of highly qualified personnel, the freezing of innovation in the fields of supply and demand, development of small performing units. The countries resort to nuclear energy are among the biggest carbon dioxide emitters, because big size nuclear power plants lead to stimulate electric power consumption instead of inducing its rational use. Nuclear energy produces only electric power then a part of needs concerns heat (or cold) and when it is taken into account nuclear energy loses its advantages to the profit of cogeneration installations. Finally nuclear energy is a dangerous energy source, difficult to control as the accident occurring at Tokai MURA showed it in 1998. The problem of radioactive wastes is not still solved and the nuclear proliferation constitutes one of the most important threat at the international level. (N.C.)

  3. A dynamic, climate-driven model of Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Joseph Leedale

    2016-03-01

    Full Text Available Outbreaks of Rift Valley fever (RVF in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  4. Assessing Climate Impacts on Air Pollution from Models and Measurements

    Science.gov (United States)

    Holloway, T.; Plachinski, S. D.; Morton, J. L.; Spak, S.

    2011-12-01

    It is well known that large-scale patterns in temperature, humidity, solar radiation and atmospheric circulation affect formation and transport of atmospheric constituents. These relationships have supported a growing body of work projecting changes in ozone (O3), and to a lesser extent aerosols, as a function of changing climate. Typically, global and regional chemical transport models are used to quantify climate impacts on air pollution, but the ability of these models to assess weather-dependent chemical processes has not been thoroughly evaluated. Quantifying model sensitivity to climate poses the additional challenge of isolating the local to synoptic scale effects of meteorological conditions on chemistry and transport from concurrent trends in emissions, hemispheric background concentrations, and land cover change. Understanding how well models capture historic climate-chemistry relationships is essential in projecting future climate impacts, in that it allows for better evaluation of model skill and improved understanding of climate-chemistry relationships. We compare the sensitivity of chemistry-climate relationships, as simulated by the EPA Community Multiscale Air Quality (CMAQ) model, with observed historical response characteristics from EPA Air Quality System (AQS) monitoring data. We present results for O3, sulfate and nitrate aerosols, and ambient mercury concentrations. Despite the fact that CMAQ over-predicts daily maximum 8-hour ground-level O3 concentrations relative to AQS data, the model does an excellent job at simulating the response of O3 to daily maximum temperature. In both model and observations, we find that higher temperatures produce higher O3 across most of the U.S., as expected in summertime conditions. However, distinct regions appear in both datasets where temperature and O3 are anti-correlated - for example, over the Upper Midwestern U.S. states of Iowa, Missouri, Illinois, and Indiana in July 2002. Characterizing uncertainties

  5. Exomoon Climate Models with the Carbonate-Silicate Cycle and Viscoelastic Tidal Heating

    CERN Document Server

    Forgan, Duncan

    2016-01-01

    The habitable zone for exomoons with Earth-like properties is a non-trivial manifold, compared to that of Earth-like exoplanets. The presence of tidal heating, eclipses and planetary illumination in the exomoon energy budget combine to produce both circumstellar and circumplanetary habitable regions. Analytical calculations suggest that the circumplanetary habitable region is defined only by an inner edge (with its outer limits determined by orbital stability). Subsequent calculations using 1D latitudinal climate models indicated that the combined effect of eclipses and ice-albedo feedback can produce an outer edge to the circumplanetary habitable zone. But is this outer edge real, or an artefact of the climate model's relative simplicity? We present an upgraded 1D climate model of Earth-like exomoon climates, containing the carbonate-silicate cycle and viscoelastic tidal heating. We conduct parameter surveys of both the circumstellar and circumplanetary habitable zones, and we find that the outer circumplane...

  6. Computer experiments with a coarse-grid hydrodynamic climate model

    International Nuclear Information System (INIS)

    A climate model is developed on the basis of the two-level Mintz-Arakawa general circulation model of the atmosphere and a bulk model of the upper layer of the ocean. A detailed model of the spectral transport of shortwave and longwave radiation is used to investigate the radiative effects of greenhouse gases. The radiative fluxes are calculated at the boundaries of five layers, each with a pressure thickness of about 200 mb. The results of the climate sensitivity calculations for mean-annual and perpetual seasonal regimes are discussed. The CCAS (Computer Center of the Academy of Sciences) climate model is used to investigate the climatic effects of anthropogenic changes of the optical properties of the atmosphere due to increasing CO2 content and aerosol pollution, and to calculate the sensitivity to changes of land surface albedo and humidity

  7. Simplifications of Simulation on Energy Balances and Estimations of a Hybrid Renewable Energy System for Use in Cold Climate Regions

    Science.gov (United States)

    Akpan, Itoro Etim; Sasaki, Masafumi; Endoh, Noboru

    A simplified double grade meteorological data model for the simulation of the annual performance of a domestic-size renewable energy system is proposed. With the model, only two representative days (clearest and cloudiest) during each season of the year are necessary to estimate annual energy balances, carbon emissions and the running costs. The model was chosen in preference to other simplified models based on the error distributions from the results of the continuous simulations in a test period. Detailed numerical simulation studies show that the carbon emissions from the renewable energy system are about 16%of a comparable conventional system. The thermal energy produced by a solar collector during the winter season, however, is insufficient to meet all the loads so that frequent heat pump operations and the auxiliary boiler are necessary in cold climate regions.

  8. Multi-Scale Coupling in Ocean and Climate Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengyu Liu, Leslie Smith

    2009-08-14

    We have made significant progress on several projects aimed at understanding multi-scale dynamics in geophysical flows. Large-scale flows in the atmosphere and ocean are influenced by stable density stratification and rotation. The presence of stratification and rotation has important consequences through (i) the conservation of potential vorticity q = {omega} {center_dot} {del} {rho}, where {omega} is the total vorticity and {rho} is the density, and (ii) the existence of waves that affect the redistribution of energy from a given disturbance to the flow. Our research is centered on quantifying the effects of potential vorticity conservation and of wave interactions for the coupling of disparate time and space scales in the oceans and the atmosphere. Ultimately we expect the work to help improve predictive capabilities of atmosphere, ocean and climate modelers. The main findings of our research projects are described.

  9. An integrated assessment of climate change, air pollution, and energy security policy

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johannes [CPB Netherlands Bureau for Economic Policy Analysis, P.O. Box 80510, 2508 GM, The Hague (Netherlands); Hers, Sebastiaan [KYOS Energy Consulting, Nieuwe Gracht 49, 2011 ND, Haarlem (Netherlands); Van der Zwaan, Bob [ECN, Energy research Centre of the Netherlands, Policy Studies Department, Radarweg 60, 1043 NT, Amsterdam (Netherlands); Columbia University, Lenfest Center for Sustainable Energy, Earth Institute, 500 West 120th Street, New York, NY 10027 (United States)

    2010-08-15

    This article presents an integrated assessment of climate change, air pollution, and energy security policy. Basis of our analysis is the MERGE model, designed to study the interaction between the global economy, energy use, and the impacts of climate change. For our purposes we expanded MERGE with expressions that quantify damages incurred to regional economies as a result of air pollution and lack of energy security. One of the main findings of our cost-benefit analysis is that energy security policy alone does not decrease the use of oil: global oil consumption is only delayed by several decades and oil reserves are still practically depleted before the end of the 21st century. If, on the other hand, energy security policy is integrated with optimal climate change and air pollution policy, the world's oil reserves will not be depleted, at least not before our modeling horizon well into the 22nd century: total cumulative demand for oil decreases by about 24%. More generally, we demonstrate that there are multiple other benefits of combining climate change, air pollution, and energy security policies and exploiting the possible synergies between them. These benefits can be large: for Europe the achievable CO{sub 2} emission abatement and oil consumption reduction levels are significantly deeper for integrated policy than when a strategy is adopted in which one of the three policies is omitted. Integrated optimal energy policy can reduce the number of premature deaths from air pollution by about 14,000 annually in Europe and over 3 million per year globally, by lowering the chronic exposure to ambient particulate matter. Only the optimal strategy combining the three types of energy policy can constrain the global average atmospheric temperature increase to a limit of 3 C with respect to the pre-industrial level. (author)

  10. Sustainable development, energy and climate. Exploring synergies and tradeoffs

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Garg, A. (eds.)

    2006-11-15

    This report summarizes the results of the Development, Energy and Climate Project that has been managed by the UNEP Risoe Centre on behalf of UNEP DTIE. The project is a partnership between the UNEP Risoe Centre and centers of excellence in Bangladesh, Brazil, China, India, Senegal and South Africa. The focus of this report is on the energy sector mitigation assessments that have been carried out in the countries. In addition to this work, the project has also included adaptation focused case studies that explore climate change impacts on the energy sector and infrastructure. The report includes a short introduction to the project and its approach and summaries of the six country studies. This is followed by an assessment of cross country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. Furthermore, energy access and affordability for households are considered as major social aspects of energy provision. The country study results that are included in this report are a short summary of some of the main findings and do not provide all details of the work that has been undertaken. Some of the countries in particular those with fast growing economies and energy sectors such as Brazil, China, India and South Africa have conducted general scenario analysis of the energy sector and explored some policies in more depth, while the country studies for Bangladesh and Senegal where the energy sector is less developed have focused more on specific issues related to energy access and the electricity sector. (au)

  11. Sustainable development, energy and climate. Exploring synergies and tradeoffs

    International Nuclear Information System (INIS)

    This report summarizes the results of the Development, Energy and Climate Project that has been managed by the UNEP Risoe Centre on behalf of UNEP DTIE. The project is a partnership between the UNEP Risoe Centre and centers of excellence in Bangladesh, Brazil, China, India, Senegal and South Africa. The focus of this report is on the energy sector mitigation assessments that have been carried out in the countries. In addition to this work, the project has also included adaptation focused case studies that explore climate change impacts on the energy sector and infrastructure. The report includes a short introduction to the project and its approach and summaries of the six country studies. This is followed by an assessment of cross country results that gives a range of key indicators of the relationship between economic growth, energy, and local and global pollutants. Furthermore, energy access and affordability for households are considered as major social aspects of energy provision. The country study results that are included in this report are a short summary of some of the main findings and do not provide all details of the work that has been undertaken. Some of the countries in particular those with fast growing economies and energy sectors such as Brazil, China, India and South Africa have conducted general scenario analysis of the energy sector and explored some policies in more depth, while the country studies for Bangladesh and Senegal where the energy sector is less developed have focused more on specific issues related to energy access and the electricity sector. (au)

  12. Climate-smart technologies. Integrating renewable energy and energy efficiency in mitigation and adaptation responses

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Mannke, Franziska; Schulte, Veronika [Hamburg Univ. of Applied Sciences (Germany). Faculty of Life Sciences; Mohee, Romeela; Surroop, Dinesh (eds.) [Mauritius Univ., Reduit (Mauritius). Chemical and Environmental Engineering Dept.

    2013-11-01

    Explores the links between climate change and technologies. Relates to the links between renewable energy and climate change. Documents and promotes a collection of experiences from island nations. Has a strong international focus and value to developing countries. The book addresses the perceived need for a publication with looks at both, climate smart technologies and the integration of renewable energy and energy efficiency in mitigation and adaptation responses. Based on a set of papers submitted as part of the fifth on-line climate conference (CLIMATE 2012) and a major conference on renewable energy on island States held in Mauritius in 2012, the book provides a wealth of information on climate change strategies and the role of smart technologies. The book has been produced in the context of the project ''Small Developing Island Renewable Energy Knowledge and Technology Transfer Network'' (DIREKT), funded by the ACP Science and Technology Programme, an EU programme for cooperation between the European Union and the ACP region.

  13. Is wartime mobilisation a suitable policy model for rapid national climate mitigation?

    International Nuclear Information System (INIS)

    Climate science suggests that, to have a high probability of limiting global warming to an average temperature increase of 2 °C, global greenhouse gas emissions must peak by 2020 and be reduced to close to zero by 2040. However, the current trend is heading towards at least 4 °C by 2100 and little effective action is being taken. This paper commences the process of developing contingency plans for a scenario in which a sudden major global climate impact galvanises governments to implement emergency climate mitigation targets and programs. Climate activists assert that rapid mitigation is feasible, invoking the scale and scope of wartime mobilisation strategies. This paper draws upon historical accounts of social, technological and economic restructurings in several countries during World War 2 in order to investigate potential applications of wartime experience to radical, rigorous and rapid climate mitigation strategies. We focus on the energy sector, the biggest single contributor to global climate change, in developed and rapidly developing countries. We find that, while wartime experience suggests some potential strategies for rapid climate mitigation in the areas of finance and labour, it also has severe limitations, resulting from its lack of democratic processes. - Highlights: • The paper explores the strengths and weaknesses of using wartime experience as a model for rapid climate mitigation. • Wartime experience suggests some potential strategies for rapid climate mitigation in the areas of finance and labour. • Wartime experience also has severe limitations, resulting from its lack of democratic processes

  14. A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates

    NARCIS (Netherlands)

    Vanthoor, B.H.E.; Stanghellini, C.; Henten, van E.J.; Visser, de P.H.B.

    2011-01-01

    With the aim of developing a model-based method to design greenhouses for a broad range of climatic and economic conditions, a greenhouse climate model has been developed and validated. This model describes the effects of the outdoor climate and greenhouse design on the indoor greenhouse climate. Fo

  15. Emulation of MIROC5 with a simple climate model

    Science.gov (United States)

    Ishizaki, Yasuhiro; Emori, Seita; Shiogama, Hideo; Takahashi, Kiyoshi; Yokohata, Tokuta; Yoshimori, Masakazu

    2014-05-01

    We developed a simple climate model based on MAGICC6, and investigated the ability of the simple climate model to emulate global mean surface air temperature (SAT) changes of an atmosphere-ocean general circulation model (MIROC5) in the twenty-first century in representative concentration pathways (RCPs). Some previous research indicated that climate sensitivity, ocean vertical diffusion and forcing of anthropogenic aerosols (direct and indirect effects of sulfate aerosol, black carbon and organic carbon) are important factors to emulate global mean SAT changes of atmosphere-ocean general circulation models CMIP3. We therefore estimate these important parameters in the simple climate model using a Metropolis-Hastings Markov chain Monte Carlo (MCMC) approach. The estimated values of the important parameters by the MCMC are physically valid, and our simple climate model can successfully emulate global mean SAT changes of MIROC5 in RCPs with the estimated parameters by the MCMC approach. In addition, we estimated the relative contributions f each important parameter in sensitivity experiments, in which we change the value of an important parameter from the estimated one by the MCMC to the default value of MAGICC6. As a result, we found that the estimation of climate sensitivity is the most important factor for the emulation of the AOGCM, and the stimation of ocean vertical diffusion is also important factor. Although the estimations of the anthropogenic aerosols forcing are very important for the emulation of the AOGCM in the twenty century, the influence of them on the emulation of the AOGCM in the twenty first century is very small. This is because emissions of anthropogenic aerosols are projected to decrease in the twenty first century, and relative contributions of the forcing of anthropogenic aerosols also decrease. Carbon cycle models are not incorporated into our simple climate model yet. A sophisticated carbon cycle model is required to be incorporated into

  16. Fuelling the climate crisis : the continental energy plan

    International Nuclear Information System (INIS)

    This paper emphasized the need for the Canadian government to address the issue of climate change. It was argued that the political will in Canada to address global warming is subordinate to the expansion of fossil fuel production and exports. Canadians are highly dependent upon the services that these carbon-based fuels provide. However, these fossil fuels are significant contributors to local air pollution and the biggest contributor to global climate change. It was argued that conservation and other sources, such as renewable energy sources, are equally technically feasible and economically available. The paper criticized the fact that while world markets for renewables are expanding, Canada's energy future is being developed by the fossil fuel industry in collaboration with U.S. political leaders, energy regulators and policy makers, and that industry and government are ignoring the obvious contradiction between the science of climate change and the policy of fossil fuel expansion. The Canadian government encourages the development of fossil fuel supply and production through subsidies and incentive programs for exploration and development along with deregulation of the oil and natural gas markets. This paper demonstrated that under current market trends, the planned growth in Canadian fossil fuel production and use will raise emissions 44 per cent above the Kyoto target by 2010. New tar sands expansion projects, increased natural gas production to meet U.S. demand and new coal-fired electricity generation will add 63.5 megatonnes of greenhouse gas emissions to Canada's projected annual total. refs., tabs., figs

  17. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    Science.gov (United States)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian; Trolle, Dennis; Børgesen, Christen Duus; Olesen, Jørgen E.; Jeppesen, Erik; Jensen, Karsten H.

    2016-04-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice remained the dominant factor for mean discharge, low and high flows as well as hydraulic head at the end of the century.

  18. Combining Global Climate Model Outputs and Insights from Downscaling for Australian Climate Projections

    Science.gov (United States)

    Grose, M. R.; Timbal, B.; Katzfey, J. J.; Moise, A. F.; Eksrtrom, M.; Whetton, P.

    2013-12-01

    Dynamical and statistical downscaling of global climate model (GCM) outputs has the potential to provide valuable insights when making regional climate projections. It may reveal regional detail in the projected climate change signal through higher resolution and accounting for local influences such as topography and coastlines. However, climate change adaptation research and planning desires a coherent view of possible future climate that accounts for the various sources of uncertainty and at a relevant spatial scale. This means there is value in combining the most useful insights from all available downscaling with a more comprehensive set of designed global climate model (GCM) projections (e.g. the CMIP5 archive), and this is done for the next set of national climate projections products in Australia. There are several practical considerations in this process that affect the process, primarily because downscaling is done using various disparate methods for a limited set of models and scenarios. There is no objective framework to combine different sets of ad hoc downscaling simulations with a set of GCMs, so some degree of expert judgment is used. We emphasize cases where there is the most apparent ';added value' and report these insights in complement, and in some cases in preference to, GCM projections. Confidence in such insights first requires understanding of what input data is used from the host model, what biases are reduced and what new biases are potentially introduced. We then seek an understanding of how the climate change signal differs from that of the host model, and an attribution of the cause of this difference. Several case studies within Australia are discussed.

  19. Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results

    Science.gov (United States)

    Salzmann, Nadine; NöTzli, Jeannette; Hauck, Christian; Gruber, Stephan; Hoelzle, Martin; Haeberli, Wilfried

    2007-06-01

    Climate change can have severe impacts on the high-mountain cryosphere, such as instabilities in rock walls induced by thawing permafrost. Relating climate change scenarios produced from global climate models (GCMs) and regional climate models (RCMs) to complex high-mountain environments is a challenging task. The qualitative and quantitative impact of changes in climatic conditions on local to microscale ground surface temperature (GST) and the ground thermal regime is not readily apparent. This study assesses a possible range of changes in the GST (ΔGST) in complex mountain topography. To account for uncertainties associated with RCM output, a set of 12 different scenario climate time series (including 10 RCM-based and 2 incremental scenarios) was applied to the topography and energy balance (TEBAL) model to simulate average ΔGST for 36 different topographic situations. Variability of the simulated ΔGST is related primarily to the emission scenarios, the RCM, and the approach used to apply RCM results to the impact model. In terms of topography, significant influence on GST simulation was shown by aspect because it modifies the received amount of solar radiation at the surface. North faces showed higher sensitivity to the applied climate scenarios, while uncertainties are higher for south faces. On the basis of the results of this study, use of RCM-based scenarios is recommended for mountain permafrost impact studies, as opposed to incremental scenarios.

  20. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-01-01

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies. PMID:26960564

  1. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-01-01

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  2. Model experiments on climate change in the Tokyo metropolitan area using regional climate scenarios

    Science.gov (United States)

    Tsunematsu, N.; Dairaku, K.

    2011-12-01

    There is a possibility that the future atmospheric warming leads to more frequent heavy rainfall in the metropolitan area, thereby increasing the risk of floods. As part of REsearch Program on Climate Change Adaptation (RECCA) funded by Ministry of Education, Culture, Sports, Science and Technology, Japan, we started numerical model experiments for investigating the vulnerability and adaptation to climate change in water hazard assessments in the metropolitan area by the use of regional climate scenarios. The model experiments adopt dynamical downscaling techniques. Future climate projections obtained from regional climate model simulations at 20 km horizontal grid spacing are downscaled into finer grids (less than 5 km resolutions) of Regional Atmospheric Modeling System Version 6.0 modified by National Research Institute for Earth Science and Disaster Prevention (NIED-RAMS). Prior to performing the dynamical downscaling experiments, the NIED-RAMS model biases are evaluated by comparing long-term surface meteorological observations with results of the model simulations that are carried out by using the Japanese Re-Analysis (JRA) data and Japan Meteorological Agency Meso-Scale Model outputs as the initial and boundary conditions.

  3. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  4. An ecosystem approach to climate policy : the role of rural renewable energy design

    International Nuclear Information System (INIS)

    Climate change provides renewed importance to the issues of rural energy and the task of providing modern, sustainable energy services to the 2 billion people around the world who rely on biomass energy. Impoverished countries are most vulnerable to the adverse affects of climate change. The author argues that energy deprivation must be addressed in order to alleviate poverty, and that increased energy provision to the world's poor is not a development option, rather a basic necessity. The choices made in how that energy is delivered can either intensify climate change or mitigate it. There are many changes that are transforming the power sector. Deregulation is providing new business opportunities for independent power producers and contributing to the break up of vertically integrated power utilities. Ecosystem and community-based methods to rural development are contributing to the application of decentralized renewable energy source development. In countries such as India, policy-makers have legislated decentralized renewable energy systems. This study addresses the fact that there are no appropriate design tools for ecosystem-oriented rural energy planning. The author therefore presents a newly developed ecosystem-based approach to rural energy systems design whose main components include the use of a complex adaptive system theory to establish rural energy system design principles; a human energetics model for studying the influence of bioenergy resource accessibility; and spatial optimization methods for rural biomass energy planning. The approach was refined to include landscape structure optimization for biodiversity objectives using landscape ecology concepts in subregions of India. It was then generalized for regional-scale distributed renewable energy system designs with integrated bioenergy, wind and solar resource assessment

  5. The importance of land cover change across urban-rural typologies for climate modeling.

    Science.gov (United States)

    Vargo, Jason; Habeeb, Dana; Stone, Brian

    2013-01-15

    Land cover changes affect local surface energy balances by changing the amount of solar energy reflected, the magnitude and duration over which absorbed energy is released as heat, and the amount of energy that is diverted to non-heating fluxes through evaporation. However, such local influences often are only crudely included in climate modeling exercises, if at all. A better understanding of local land conversion dynamics can serve to inform inputs for climate models and increase the role for land use planning in climate management policy. Here we present a new approach for projecting and incorporating metropolitan land cover change into mesoscale climate and other environmental assessment models. Our results demonstrate the relative contributions of different land development patterns to land cover change and conversion and suggest that regional growth management strategies serving to increase settlement densities over time can have a significant influence on the rate of deforestation per unit of population growth. Employing the approach presented herein, the impacts of land conversion on climate change and on parallel environmental systems and services, such as ground water recharge, habitat provision, and food production, may all be investigated more closely and managed through land use planning.

  6. Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O. (Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)); Pichs Madruga, R. (Centro de Investigaciones de la Economia Mundial (CIEM), Hanoi (Viet Nam)); Sokona, Y. (African Climate Policy Centre, United Nations Economic Commission for Africa, Addis Ababa (Ethiopia)) (and others)

    2012-07-01

    Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health. This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs. (Author)

  7. A Net Energy-based Analysis for a Climate-constrained Sustainable Energy Transition

    CERN Document Server

    Sgouridis, Sgouris; Csala, Denes

    2015-01-01

    The transition from a fossil-based energy economy to one based on renewable energy is driven by the double challenge of climate change and resource depletion. Building a renewable energy infrastructure requires an upfront energy investment that subtracts from the net energy available to society. This investment is determined by the need to transition to renewable energy fast enough to stave off the worst consequences of climate change and, at the same time, maintain a sufficient net energy flow to sustain the world's economy and population. We show that a feasible transition pathway requires that the rate of investment in renewable energy should accelerate approximately by an order of magnitude if we are to stay within the range of IPCC recommendations.

  8. Historical and idealized climate model experiments: an EMIC intercomparison

    Directory of Open Access Journals (Sweden)

    M. Eby

    2012-08-01

    Full Text Available Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes seem to be underestimated. It is possible that recent modelled climate trends or climate-carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated.

    Several one thousand year long, idealized, 2x and 4x CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate-carbon feedbacks. The values from EMICs generally fall within the range given by General Circulation Models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows considerable synergy between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given

  9. Twenty first century climate change as simulated by European climate models

    International Nuclear Information System (INIS)

    Full text: Climate change simulation results for seven European state-of-the-art climate models, participating in the European research project ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts), will be presented. Models from Norway, France, Germany, Denmark, and Great Britain, representing a sub-ensemble of the models contributing to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), are included. Climate simulations are conducted with all the models for present-day climate and for future climate under the SRES A1B, A2, and B1 scenarios. The design of the simulations follows the guidelines of the IPCC AR4. The 21st century projections are compared to the corresponding present-day simulations. The ensemble mean global mean near surface temperature rise for the year 2099 compared to the 1961-1990 period amounts to 3.2Kforthe A1B scenario, to 4.1 K for the A2 scenario, and to 2.1 K for the B1 scenario. The spatial patterns of temperature change are robust among the contributing models with the largest temperature increase over the Arctic in boreal winter, stronger warming overland than over ocean, and little warming over the southern oceans. The ensemble mean globally averaged precipitation increases for the three scenarios (5.6%, 5.7%, and 3.8% for scenarios A1B, A2, and B1, respectively). The precipitation signals of the different models display a larger spread than the temperature signals. In general, precipitation increases in the Intertropical Convergence Zone and the mid- to high latitudes (most pronounced during the hemispheric winter) and decreases in the subtropics. Sea-level pressure decreases over the polar regions in all models and all scenarios, which is mainly compensated by a pressure increase in the subtropical highs. These changes imply an intensification of the Southern and Northern Annular Modes

  10. Multi-wheat-model ensemble responses to interannual climatic variability

    DEFF Research Database (Denmark)

    Ruane, A C; Hudson, N I; Asseng, S;

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and we...... evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...... common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 ≤ 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long...

  11. Climate change and health modeling: horses for courses

    Directory of Open Access Journals (Sweden)

    Kristie L. Ebi

    2014-05-01

    Full Text Available Mathematical and statistical models are needed to understand the extent to which weather, climate variability, and climate change are affecting current and may affect future health burdens in the context of other risk factors and a range of possible development pathways, and the temporal and spatial patterns of any changes. Such understanding is needed to guide the design and the implementation of adaptation and mitigation measures. Because each model projection captures only a narrow range of possible futures, and because models serve different purposes, multiple models are needed for each health outcome (‘horses for courses’. Multiple modeling results can be used to bracket the ranges of when, where, and with what intensity negative health consequences could arise. This commentary explores some climate change and health modeling issues, particularly modeling exposure-response relationships, developing early warning systems, projecting health risks over coming decades, and modeling to inform decision-making. Research needs are also suggested.

  12. A probabilistic model of ecosystem response to climate change

    International Nuclear Information System (INIS)

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold

  13. Comparing snow models under current and future climates: Uncertainties and implications for hydrological impact studies

    Science.gov (United States)

    Troin, Magali; Poulin, Annie; Baraer, Michel; Brissette, François

    2016-09-01

    Projected climate change effects on snow hydrology are investigate