WorldWideScience

Sample records for climate model validation

  1. Validating predictions from climate envelope models.

    Science.gov (United States)

    Watling, James I; Bucklin, David N; Speroterra, Carolina; Brandt, Laura A; Mazzotti, Frank J; Romañach, Stephanie S

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species' distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967-1971 (t1 ) and evaluated using occurrence data from 1998-2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species. PMID

  2. A validated physical model of greenhouse climate

    International Nuclear Information System (INIS)

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the greenhouse and of the control system. The greenhouse model is based on the energy, water vapour and CO2 balances of the crop-greenhouse system. While the emphasis is on the dynamic behaviour of the greenhouse for implementation in continuous optimization, the state variables temperature, water vapour pressure and carbondioxide concentration in the relevant greenhouse parts crop, air, soil and cover are calculated from the balances over these parts. To do this in a proper way, the physical exchange processes between the system parts have to be quantified first. Therefore the greenhouse model is constructed from submodels describing these processes: a. Radiation transmission model for the modification of the outside to the inside global radiation. b. Ventilation model to describe the ventilation exchange between greenhouse and outside air. c. The description of the exchange of energy and mass between the crop and the greenhouse air. d. Calculation of the thermal radiation exchange between the various greenhouse parts. e. Quantification of the convective exchange processes between the greenhouse air and respectively the cover, the heating pipes and the soil surface and between the cover and the outside air. f. Determination of the heat conduction in the soil. The various submodels are validated first and then the complete greenhouse model is verified

  3. Isotopes as validation tools for global climate models

    International Nuclear Information System (INIS)

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  4. The international coordination of climate model validation and intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Gates, W.L. [Lawrence Livermore National Lab. Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison

    1995-12-31

    Climate modeling, whereby basic physical laws are used to integrate the physics and dynamics of climate into a consistent system, plays a key role in climate research and is the medium through. Depending upon the portion(s) of the climate system being considered, climate models range from those concerned only with the equilibrium globally-averaged surface temperature to those depicting the 3-dimensional time-dependent evolution of the coupled atmosphere, ocean, sea ice and land surface. Here only the latter class of models are considered, which are commonly known as general circulation models (or GCMs). (author)

  5. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  6. A model validation framework for climate change projection and impact assessment

    DEFF Research Database (Denmark)

    Madsen, Henrik; Refsgaard, Jens C.; Andréassian, Vazken;

    2014-01-01

    using proxies of future conditions. In general, a model that has been setup for solving a specific problem at a particular site should be tested in order to document its predictive capability and credibility. In a climate change context such tests, often referred to as model validations tests, are......Models used for projection of climate change and its impacts are usually not validated for simulation of future climate conditions. This is a serious deficiency that introduces an unknown level of uncertainty in the projections. A framework and guiding principles are presented for testing models...... particularly challenging since the model is used for an unknown future with a climate that is significantly different from current conditions. Most model studies reported on projections of climate change and its impacts have not included formal model validation tests that address this issue. A model validation...

  7. Validating and understanding the ENSO simulation in two coupled climate models

    OpenAIRE

    Misra, Vasubandhu; Marx, Larry; James L. Kinter III; Kirtman, Ben P.; Guo, Zhichang; Min, Dughong; Fennessy, Mike; Dirmeyer, Paul A.; Kallummal, Rameshan; Straus, David M.

    2007-01-01

    A newly developed Atmospheric General Circulation Model (AGCM) at T62 spectral truncation with 28 terrainfollowing (σ = p/ps) levels coupled to the Modular Ocean Model version 3.0 (MOM3.0) is evaluated for its simulation of El Niño and the Southern Oscillation (ENSO). It is also compared with an older version of the AGCM coupled to the same ocean model. A dozen features of ENSO are validated. These characteristics of ENSO highlight its influence on global climate at seasonal to interannual sc...

  8. Validating and understanding the ENSO simulation in two coupled climate models

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Vasubandhu; Marx, Larry; Kinter, James L. III; Kirtman, Ben P.; Zhichang Guo; Dughong Min; Fennessy, Mike; Dirmeyer, Paul A.; Kallummal, Rameshan; Straus, David M. [Center for Ocean-Land-Atmosphere Studies, Institute of Global Environment and Society, Inc. 4041 Powder Mill Road, Suite 302, Calverton, MD 20705 (United States)]. E-mail: misra@cola.iges.org

    2007-05-15

    A newly developed Atmospheric General Circulation Model (AGCM) at T62 spectral truncation with 28 terrain-following levels coupled to the Modular Ocean Model version 3.0 (MOM3.0) is evaluated for its simulation of El Nino and the Southern Oscillation (ENSO). It is also compared with an older version of the AGCM coupled to the same ocean model. A dozen features of ENSO are validated. These characteristics of ENSO highlight its influence on global climate at seasonal to interannual scales. The major improvements of the ENSO simulation from this new coupled climate model are the seasonal phase locking of the ENSO variability to a realistic annual cycle of the eastern equatorial Pacific Ocean, the duration of the ENSO events and its evolution that is comparable to the ocean data assimilation. The two apparent drawbacks of this new model are its relatively weak ENSO variability and the presence of erroneous split ITCZ. The improvement of the ENSO simulation in the new coupled model is attributed to realistic thermocline variability and wind stress simulation.

  9. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.

    Science.gov (United States)

    Yihdego, Yohannes; Webb, John

    2016-05-01

    Forecast evaluation is an important topic that addresses the development of reliable hydrological probabilistic forecasts, mainly through the use of climate uncertainties. Often, validation has no place in hydrology for most of the times, despite the parameters of a model are uncertain. Similarly, the structure of the model can be incorrectly chosen. A calibrated and verified dynamic hydrologic water balance spreadsheet model has been used to assess the effect of climate variability on Lake Burrumbeet, southeastern Australia. The lake level has been verified to lake level, lake volume, lake surface area, surface outflow and lake salinity. The current study aims to increase lake level confidence model prediction through historical validation for the year 2008-2013, under different climatic scenario. Based on the observed climatic condition (2008-2013), it fairly matches with a hybridization of scenarios, being the period interval (2008-2013), corresponds to both dry and wet climatic condition. Besides to the hydrologic stresses uncertainty, uncertainty in the calibrated model is among the major drawbacks involved in making scenario simulations. In line with this, the uncertainty in the calibrated model was tested using sensitivity analysis and showed that errors in the model can largely be attributed to erroneous estimates of evaporation and rainfall, and surface inflow to a lesser. The study demonstrates that several climatic scenarios should be analysed, with a combination of extreme climate, stream flow and climate change instead of one assumed climatic sequence, to improve climate variability prediction in the future. Performing such scenario analysis is a valid exercise to comprehend the uncertainty with the model structure and hydrology, in a meaningful way, without missing those, even considered as less probable, ultimately turned to be crucial for decision making and will definitely increase the confidence of model prediction for management of the water

  10. Creep in Wood Under Variable Climate Conditions: Numerical Modeling and Experimental Validation

    Science.gov (United States)

    Dubois, F.; Randriambololona, H.; Petit, C.

    2005-09-01

    This paper deals with the modeling of linear viscoelastic behavior and strain accumulation (accelerated creep) during moisture content changes in timber. A generalized Kelvin-Voigt model is used and associated in series with a shrinkage-swelling element depending on the mechanical and moisture content states of materials. The hygrothermal aging due to climatic variations implies an evolution of rheological parameters depending upon moisture content and temperature. Two distinct viscoelastic laws, one for drying and the other for moistening, are coupled according to the thermodynamic principles when wood is subjected to nonmonotonous moisture variations. An incremental formulation of behavior is established in the finite element program CAST3M (Software developed by C.E.A. (Commissariat á l'Energi Atomique) and an experimental validation from tension creep-recovery tests is presented.

  11. A Strategy for Process-Oriented Validation of Coupled Chemistry-Climate Models

    OpenAIRE

    Eyring, V.; Harris, N. R. P.; Rex, M.; Shepherd, T. G.; Fahey, D. W.; Amanatidis, G. T.; J. Austin; M. P. Chipperfield; Dameris, M.; P. M. De F. Forster; Gettelman, A.; Graf, H. F.; Nagashima, T.; Newman, P. A.; Pawson, S.

    2005-01-01

    Accurate and reliable predictions and an understanding of future changes in the stratosphere are of major importance to our understanding of climate change. Simulating the interaction between chemistry and climate is of particular importance, because continued increases in greenhouse gases and a slow decrease in halogen loading are expected. These both influence the abundance of stratospheric ozone. In recent years a number of coupled chemistry climate models (CCMs) with different levels of c...

  12. Validation of climate model-inferred regional temperature change for late-glacial Europe

    Science.gov (United States)

    Heiri, Oliver; Brooks, Stephen J.; Renssen, Hans; Bedford, Alan; Hazekamp, Marjolein; Ilyashuk, Boris; Jeffers, Elizabeth S.; Lang, Barbara; Kirilova, Emiliya; Kuiper, Saskia; Millet, Laurent; Samartin, Stéphanie; Toth, Monika; Verbruggen, Frederike; Watson, Jenny E.; van Asch, Nelleke; Lammertsma, Emmy; Amon, Leeli; Birks, Hilary H.; Birks, H. John B.; Mortensen, Morten F.; Hoek, Wim Z.; Magyari, Enikö; Sobrino, Castor Muñoz; Seppä, Heikki; Tinner, Willy; Tonkov, Spassimir; Veski, Siim; Lotter, André F.

    2014-01-01

    Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized paleoclimate datasets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth's recent past. Here we present a new chironomid-based paleotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our paleotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe. PMID:25208610

  13. Validation of an ensemble modelling system for climate projections for the northwest European shelf seas

    Science.gov (United States)

    Tinker, Jonathan; Lowe, Jason; Holt, Jason; Pardaens, Anne; Wiltshire, Andy

    2015-11-01

    The aim of this study was to evaluate the performance of a modelling system used to represent the northwest European shelf seas. Variants of the coupled atmosphere-ocean global climate model, HadCM3, were run under conditions of historically varying concentrations of greenhouse gases and other radiatively active constituents. The atmospheric simulation for the shelf sea region and its surrounds was downscaled to finer spatial scales using a regional climate model (HadRM3); these simulations were then used to drive a river routing scheme (TRIP). Together, these provide the atmospheric, oceanic and riverine boundary conditions to drive the shelf seas model POLCOMS. Additionally, a shelf seas simulation was driven by the ERA-40 reanalysis in place of HadCM3. We compared the modelling systems output against a sea surface temperature satellite analysis product, a quality controlled ocean profile dataset and values of volume transport through particular ocean sections from the literature. In addition to assessing model drift with a pre-industrial control simulation the modelling system was evaluated against observations and the reanalysis driven simulation. We concluded that the modelling system provided an excellent (good) representation of the spatial patterns of temperature (salinity). It provided a good representation of the mean temperature climate, and a sufficient representation of the mean salinity and water column structure climate. The representation of the interannual variability was sufficient, while the overall shelf-wide circulation was qualitatively good. From this wide range of metrics we judged the modelling system fit for the purpose of providing centennial climate projections for the northwest European shelf seas.

  14. Validation and quantification of uncertainty in coupled climate models using network analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, Annalisa [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-08-10

    We developed a fast, robust and scalable methodology to examine, quantify, and visualize climate patterns and their relationships. It is based on a set of notions, algorithms and metrics used in the study of graphs, referred to as complex network analysis. This approach can be applied to explain known climate phenomena in terms of an underlying network structure and to uncover regional and global linkages in the climate system, while comparing general circulation models outputs with observations. The proposed method is based on a two-layer network representation, and is substantially new within the available network methodologies developed for climate studies. At the first layer, gridded climate data are used to identify ‘‘areas’’, i.e., geographical regions that are highly homogeneous in terms of the given climate variable. At the second layer, the identified areas are interconnected with links of varying strength, forming a global climate network. The robustness of the method (i.e. the ability to separate between topological distinct fields, while identifying correctly similarities) has been extensively tested. It has been proved that it provides a reliable, fast framework for comparing and ranking the ability of climate models of reproducing observed climate patterns and their connectivity. We further developed the methodology to account for lags in the connectivity between climate patterns and refined our area identification algorithm to account for autocorrelation in the data. The new methodology based on complex network analysis has been applied to state-of-the-art climate model simulations that participated to the last IPCC (International Panel for Climate Change) assessment to verify their performances, quantify uncertainties, and uncover changes in global linkages between past and future projections. Network properties of modeled sea surface temperature and rainfall over 1956–2005 have been constrained towards observations or reanalysis data sets

  15. GEOLAND2 global LAI, FAPAR Essential Climate Variables for terrestrial carbon modeling: principles and validation

    Science.gov (United States)

    Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Smets, B.; Pacholczyk, P.; Makhmara, H.

    2010-12-01

    LAI and fAPAR are recognized as Essential Climate Variables providing key information for the understanding and modeling of canopy functioning. Global remote sensing observations at medium resolution are routinely acquired since the 80’s mainly with AVHRR, SEAWIFS, VEGETATION, MODIS and MERIS sensors. Several operational products have been derived and provide global maps of LAI and fAPAR at daily to monthly time steps. Inter-comparison between MODIS, CYCLOPES, GLOBCARBON and JRC-FAPAR products showed generally consistent seasonality, while large differences in magnitude and smoothness may be observed. One of the objectives of the GEOLAND2 European project is to develop such core products to be used in a range of application services including the carbon monitoring. Rather than generating an additional product from scratch, the version 1 of GEOLAND2 products was capitalizing on the existing products by combining them to retain their pros and limit their cons. For these reasons, MODIS and CYCLOPES products were selected since they both include LAI and fAPAR while having relatively close temporal sampling intervals (8 to 10 days). GLOBCARBON products were not used here because of the too long monthly time step inducing large uncertainties in the seasonality description. JRC-FAPAR was not selected as well to preserve better consistency between LAI and fAPAR products. MODIS and CYCLOPES products were then linearly combined to take advantage of the good performances of CYCLOPES products for low to medium values of LAI and fAPAR while benefiting from the better MODIS performances for the highest LAI values. A training database representative of the global variability of vegetation type and conditions was thus built. A back-propagation neural network was then calibrated to estimate the new LAI and fAPAR products from VEGETATION preprocessed observations. Similarly, the vegetation cover fraction (fCover) was also derived by scaling the original CYCLOPES fCover products

  16. A validation methodology aid for improving a thermal building model: Case of diffuse radiation accounting in a tropical climate

    OpenAIRE

    Lauret, Philippe; Mara, Thierry A.; Boyer, Harry; Adelard, Laetitia; Garde, Francois; Garde, François

    2012-01-01

    As part of our efforts to complete the software CODYRUN validation, we chose as test building a block of flats constructed in Reunion Island, which has a humid tropical climate. The sensitivity analysis allowed us to study the effects of both diffuse and direct solar radiation on our model of this building. With regard to the choice and location of sensors, this stage of the study also led us to measure the solar radiation falling on the windows. The comparison of measured and predicted radia...

  17. Validation of EURO-CORDEX regional climate models in reproducing the variability of precipitation extremes in Romania

    Science.gov (United States)

    Dumitrescu, Alexandru; Busuioc, Aristita

    2016-04-01

    EURO-CORDEX is the European branch of the international CORDEX initiative that aims to provide improved regional climate change projections for Europe. The main objective of this paper is to document the performance of the individual models in reproducing the variability of precipitation extremes in Romania. Here three EURO-CORDEX regional climate models (RCMs) ensemble (scenario RCP4.5) are analysed and inter-compared: DMI-HIRHAM5, KNMI-RACMO2.2 and MPI-REMO. Compared to previous studies, when the RCM validation regarding the Romanian climate has mainly been made on mean state and at station scale, a more quantitative approach of precipitation extremes is proposed. In this respect, to have a more reliable comparison with observation, a high resolution daily precipitation gridded data set was used as observational reference (CLIMHYDEX project). The comparison between the RCM outputs and observed grid point values has been made by calculating three extremes precipitation indices, recommended by the Expert Team on Climate Change Detection Indices (ETCCDI), for the 1976-2005 period: R10MM, annual count of days when precipitation ≥10mm; RX5DAY, annual maximum 5-day precipitation and R95P%, precipitation fraction of annual total precipitation due to daily precipitation > 95th percentile. The RCMs capability to reproduce the mean state for these variables, as well as the main modes of their spatial variability (given by the first three EOF patterns), are analysed. The investigation confirms the ability of RCMs to simulate the main features of the precipitation extreme variability over Romania, but some deficiencies in reproducing of their regional characteristics were found (for example, overestimation of the mea state, especially over the extra Carpathian regions). This work has been realised within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian

  18. Validating a physics-based back-of-the-envelope climate model with state-of-the-art data

    CERN Document Server

    Benestad, Rasmus E

    2013-01-01

    An old conceptual physics-based back-of-the-envelope model for greenhouse effect is revisited and validated against state-of-the-art reanalyses. Untraditional diagnostics show a physically consistent picture, for which the state of earth's climate is constrained by well-known physical principles, such as energy balance, flow and, conservation. Greenhouse gas concentrations affect the atmospheric optical depth for infrared radiation, and increased opacity implies higher altitude from which earth's equivalent bulk heat loss takes place without being re-absorbed. Such increase is seen in the reanalyses. There has also been a reduction in the correlation between the spatial structure of outgoing long-wave radiation and surface temperature, consistent with increasingly more processes interfering with the upwelling infrared light before it reaches the top of the atmosphere. State-of-the-art reanalyses further imply increases in the overturning in the troposphere, consistent with a constant and continuous vertical e...

  19. A validation methodology aid for improving a thermal building model: Case of diffuse radiation accounting in a tropical climate

    CERN Document Server

    Lauret, A J P; Boyer, H; Adelard, L; Garde, F

    2012-01-01

    As part of our efforts to complete the software CODYRUN validation, we chose as test building a block of flats constructed in Reunion Island, which has a humid tropical climate. The sensitivity analysis allowed us to study the effects of both diffuse and direct solar radiation on our model of this building. With regard to the choice and location of sensors, this stage of the study also led us to measure the solar radiation falling on the windows. The comparison of measured and predicted radiation clearly showed that our predictions over-estimated the incoming solar radiation, and we were able to trace the problem to the algorithm which calculates diffuse solar radiation. By calculating view factors between the windows and the associated shading devices, changes to the original program allowed us to improve the predictions, and so this article shows the importance of sensitivity analysis in this area of research.

  20. Comparison of solar radiation models and their validation under Algerian climate – The case of direct irradiance

    International Nuclear Information System (INIS)

    Highlights: • We focus on solar energy assessment where measurements are not available. • Seventeen broadband models have been reviewed, and then evaluated. • Predictions have been compared with measured data of Gherdaia, Algeria. • Simple models that require few inputs perform better than some complex models. • ASHRAE predicts the DNI with good accuracy, particularly in developing countries. - Abstract: The accurate prediction of direct solar irradiance is essential in many solar energy applications, particularly those relying on concentrating solar technologies. The present paper is aimed at a detailed assessment of a large range of clear-sky solar radiation models under Algerian climate to select the more accurate one for estimating the performance of solar power projects where meteorological and radiometric measurement stations are not available. To this end, seventeen models have been reviewed and their performance compared to measured irradiance of Ghardaia (Southern Algeria). The validation methodology presented herein is very helpful for ranking the models. A new statistical accuracy indicator has been originally introduced to find out the most accurate ones. A thorough analysis of selected models has shown that the more complex models, that seem at first sight more sophisticated, are not necessary the most accurate; while simpler models depending on a limited number of parameters are more suitable. In other words, the suitability and accuracy of a model do not necessarily improve with an increase in the number of its parameters. This important finding is in good agreement with the previous published studies. This fact is important to take into account, in the case where measured data are not available, for the selection of the most suitable locations for the installation of the future concentrating solar power plants in Algeria or even in other countries

  1. Biases of the Arctic climate in a regional ocean-sea ice-atmosphere coupled model:an annual validation

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying

    2014-01-01

    The Coupling of three model components, WRF/PCE (polar climate extension version of weather research and forecasting model ( WRF)), ROMS (regional ocean modeling system), and CICE (community ice code), has been implemented, and the regional atmosphere-ocean-sea ice coupled model named WRF/PCE-ROMS-CICE has been validated against ERA-interim reanalysis data sets for 1989. To better understand the reasons that generate model biases, the WRF/PCE-ROMS-CICE results were compared with those of its components, the WRF/PCE and the ROMS-CICE. There are cold biases in surface air temperature (SAT) over the Arctic Ocean, which contribute to the sea ice concentration (SIC) and sea surface temperature (SST) biases in the results of the WRF/PCE-ROMS-CICE. The cold SAT biases also appear in results of the atmo-spheric component with a mild temperature in winter and similar temperature in summer. Compared to results from the WRF/PCE, due to influences of different distributions of the SIC and the SST and inclusion of interactions of air-sea-sea ice in the WRF/PCE-ROMS-CICE, the simulated SAT has new features. These influences also lead to apparent differences at higher levels of the atmosphere, which can be thought as responses to biases in the SST and sea ice extent. There are similar atmospheric responses in feature of distribution to sea ice biases at 700 and 500 hPa, and the strength of responses weakens when the pressure decreases in January. The atmospheric responses in July reach up to 200 hPa. There are surplus sea ice ex-tents in the Greenland Sea, the Barents Sea, the Davis Strait and the Chukchi Sea in winter and in the Beau-fort Sea, the Chukchi Sea, the East Siberian Sea and the Laptev Sea in summer in the ROMS-CICE. These differences in the SIC distribution can all be explained by those in the SST distributions. These features in the simulated SST and SIC from ROMS-CICE also appear in the WRF/PCE-ROMS-CICE. It is shown that the performance of the WRF/PCE-ROMS-CICE is

  2. TRACKING CLIMATE MODELS

    Data.gov (United States)

    National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...

  3. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety of...... models has been somewhat narrow-minded reducing the notion of validation to establishment of truth. This article puts forward the diversity in applications of simulation models that demands a corresponding diversity in the notion of validation....

  4. On the development of a coupled regional climate-vegetation model RCM-CLM-CN-DV and its validation in Tropical Africa

    Science.gov (United States)

    Wang, Guiling; Yu, Miao; Pal, Jeremy S.; Mei, Rui; Bonan, Gordon B.; Levis, Samuel; Thornton, Peter E.

    2016-01-01

    This paper presents a regional climate system model RCM-CLM-CN-DV and its validation over Tropical Africa. The model development involves the initial coupling between the ICTP regional climate model RegCM4.3.4 (RCM) and the Community Land Model version 4 (CLM4) including models of carbon-nitrogen dynamics (CN) and vegetation dynamics (DV), and further improvements of the models. Model improvements derive from the new parameterization from CLM4.5 that addresses the well documented overestimation of gross primary production (GPP), a refinement of stress deciduous phenology scheme in CN that addresses a spurious LAI fluctuation for drought-deciduous plants, and the incorporation of a survival rule into the DV model to prevent tropical broadleaf evergreens trees from growing in areas with a prolonged drought season. The impact of the modifications on model results is documented based on numerical experiments using various subcomponents of the model. The performance of the coupled model is then validated against observational data based on three configurations with increasing capacity: RCM-CLM with prescribed leaf area index and fractional coverage of different plant functional types (PFTs); RCM-CLM-CN with prescribed PFTs coverage but prognostic plant phenology; RCM-CLM-CN-DV in which both the plant phenology and PFTs coverage are simulated by the model. Results from these three models are compared against the FLUXNET up-scaled GPP and ET data, LAI and PFT coverages from remote sensing data including MODIS and GIMMS, University of Delaware precipitation and temperature data, and surface radiation data from MVIRI and SRB. Our results indicate that the models perform well in reproducing the physical climate and surface radiative budgets in the domain of interest. However, PFTs coverage is significantly underestimated by the model over arid and semi-arid regions of Tropical Africa, caused by an underestimation of LAI in these regions by the CN model that gets exacerbated

  5. Validation of HEDR models

    International Nuclear Information System (INIS)

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid

  6. Validation of HEDR models

    International Nuclear Information System (INIS)

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model predictions with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid

  7. A regional climate palaeosimulation for Europe in the period 1500–1990 – Part 1: Model validation

    Directory of Open Access Journals (Sweden)

    J. J. Gómez-Navarro

    2013-07-01

    Full Text Available We present and analyse a high-resolution regional climate palaeosimulation encompassing the European region for the period 1500–1990. We use the regional model MM5 driven at the boundaries by the global model ECHO-G. Both models are forced by reconstructions of three external factors: greenhouse gas concentrations, total solar irradiance and volcanic activity. The simulation skill is assessed in a recent period by comparing the model results with the Climate Research Unit (CRU database. The results show that although the regional model is tightly driven by the boundary conditions, it is able to improve the reliability of the simulations, narrowing the differences to the observations, especially in areas of complex topography. Additionally, the evolution of the spatial distributions of temperature and precipitation through the last five centuries is analysed, showing that the mean values of temperature reflects the influence of the external forcings. However, contrary to the results obtained under climate change scenario conditions, higher-order momenta of seasonal temperature and precipitation are hardly affected by changes in the external forcings.

  8. A regional climate palaeosimulation for Europe in the period 1500–1990 – Part 1: Model validation

    Directory of Open Access Journals (Sweden)

    J. J. Gómez-Navarro

    2013-04-01

    Full Text Available We present and analyse a high-resolution regional climate palaeosimulation encompassing the European region for the period 1500–1990. We use the regional model MM5 coupled to the global model ECHO-G. Both models were driven by reconstructions of three external factors: greenhouse gas concentrations, Total Solar Irradiance and volcanic activity. The simulation has been assessed in a recent period by comparing the model results with the Climate Research Unit (CRU database. The results show that although the regional model is tightly driven by the boundary conditions, it is able to improve the reliability of the simulations, narrowing the differences to the observations, especially in areas of complex topography. Additionally, the evolution of the spatial distributions of temperature and precipitation through the last five centuries has been analysed. The mean values of temperature reflects the influence of the external forcings but, contrary to the results obtained under climate change scenario conditions, we found that higher-order momenta of the probability distribution of seasonal temperature and precipitation are hardly affected by changes in the external forcings

  9. Model Validation Status Review

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  10. Model Validation Status Review

    International Nuclear Information System (INIS)

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M and O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  11. Comments on model validation

    International Nuclear Information System (INIS)

    The paper points out the importance and usefulness of recognizing the separate roles of processes and geometric structures in predictive modeling of the performance of a nuclear waste repository or underground injection disposal of toxic wastes. Based on this a validation procedure is proposed. Furthermore, two stages and three elements of validation are described and discussed. Finally, comments are made on the choice of measurables to be used to compare modeling results and field data in the validation procedure. 8 refs

  12. SOSS ICN Model Validation

    Science.gov (United States)

    Zhu, Zhifan

    2016-01-01

    Under the NASA-KAIA-KARI ATM research collaboration agreement, SOSS ICN Model has been developed for Incheon International Airport. This presentation describes the model validation work in the project. The presentation will show the results and analysis of the validation.

  13. A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models

    International Nuclear Information System (INIS)

    This report summarizes the activities of our group to meet our stated objectives. The report is divided into sections entitled: Radiation Model Testing Activities, General Circulation Model Testing Activities, Science Team Activities, and Publications, Presentations and Meetings. The section on Science Team Activities summarizes our participation with the science team to further advance the observation and modeling programs. Appendix A lists graduate students supported, and post-doctoral appointments during the project. Reports on the activities during each of the first two years are included as Appendix B. Significant progress has been made in: determining the ability of line-by-line radiation models to calculate the downward longwave flux at the surface; determining the uncertainties in calculated the downwelling radiance and flux at the surface associated with the use of different proposed profiling techniques; intercomparing clear-sky radiance and flux observations with calculations from radiation codes from different climate models; determining the uncertainties associated with estimating N* from surface longwave flux observations; and determining the sensitivity of model calculations to different formulations of the effects of finite sized clouds

  14. Utilizing the social media data to validate 'climate change' indices

    Science.gov (United States)

    Molodtsova, T.; Kirilenko, A.; Stepchenkova, S.

    2013-12-01

    Reporting the observed and modeled changes in climate to public requires the measures understandable by the general audience. E.g., the NASA GISS Common Sense Climate Index (Hansen et al., 1998) reports the change in climate based on six practically observable parameters such as the air temperature exceeding the norm by one standard deviation. The utility of the constructed indices for reporting climate change depends, however, on an assumption that the selected parameters are felt and connected with the changing climate by a non-expert, which needs to be validated. Dynamic discussion of climate change issues in social media may provide data for this validation. We connected the intensity of public discussion of climate change in social networks with regional weather variations for the territory of the USA. We collected the entire 2012 population of Twitter microblogging activity on climate change topic, accumulating over 1.8 million separate records (tweets) globally. We identified the geographic location of the tweets and associated the daily and weekly intensity of twitting with the following parameters of weather for these locations: temperature anomalies, 'hot' temperature anomalies, 'cold' temperature anomalies, heavy rain/snow events. To account for non-weather related events we included the articles on climate change from the 'prestige press', a collection of major newspapers. We found that the regional changes in parameters of weather significantly affect the number of tweets published on climate change. This effect, however, is short-lived and varies throughout the country. We found that in different locations different weather parameters had the most significant effect on climate change microblogging activity. Overall 'hot' temperature anomalies had significant influence on climate change twitting intensity.

  15. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  16. HEDR model validation plan

    International Nuclear Information System (INIS)

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computational ''tools'' for estimating the possible radiation dose that individuals may have received from past Hanford Site operations. This document describes the planned activities to ''validate'' these tools. In the sense of the HEDR Project, ''validation'' is a process carried out by comparing computational model predictions with field observations and experimental measurements that are independent of those used to develop the model

  17. Assessment of gridded observations used for climate model validation in the Mediterranean region: the HyMeX and MED-CORDEX framework

    International Nuclear Information System (INIS)

    This letter assesses the quality of temperature and rainfall daily retrievals of the European Climate Assessment and Dataset (ECA and D) with respect to measurements collected locally in various parts of the Euro-Mediterranean region in the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX), endorsed by the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP). The ECA and D, among other gridded datasets, is very often used as a reference for model calibration and evaluation. This is for instance the case in the context of the WCRP Coordinated Regional Downscaling Experiment (CORDEX) and its Mediterranean declination MED-CORDEX. This letter quantifies ECA and D dataset uncertainties associated with temperature and precipitation intra-seasonal variability, seasonal distribution and extremes. Our motivation is to help the interpretation of the results when validating or calibrating downscaling models by the ECA and D dataset in the context of regional climate research in the Euro-Mediterranean region. (letter)

  18. Validation of two high‐resolution climate simulations over Scandinavia

    DEFF Research Database (Denmark)

    Mayer, Stephanie; Maule, Cathrine Fox; Sobolowski, Stefan;

    2014-01-01

    Before running climate projections with numerical models it is important to validate their performance under present climate conditions. Within the RiskChange project two high‐resolution regional climate models were run as a perfect boundary experiment over Scandinavia. The simulations are...... study is to analyse the properties of high‐resolution climate simulations over Scandinavia by testing a hypothesis that dynamic simulations are better at retaining the properties of precipitation, notably precipitation extremes than coarser simulations. When compared to statistical methods the dynamical...... downscaling has the advantage of retaining the full set of atmospheric variables as well as a physically more realistic description of e.g. complex terrain (e.g. mountain ranges and coastlines) and when the representation and behaviour of extremes are important to be captured in a realistic manner. Here, we...

  19. A method of validating climate models in climate research with a view to extreme events; Eine Methode zur Validierung von Klimamodellen fuer die Klimawirkungsforschung hinsichtlich der Wiedergabe extremer Ereignisse

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, U.

    2000-08-01

    A method is presented to validate climate models with respect to extreme events which are suitable for risk assessment in impact modeling. The algorithm is intended to complement conventional techniques. These procedures mainly compare simulation results with reference data based on single or only a few climatic variables at the same time under the aspect how well a model performs in reproducing the known physical processes of the atmosphere. Such investigations are often based on seasonal or annual mean values. For impact research, however, extreme climatic conditions with shorter typical time scales are generally more interesting. Furthermore, such extreme events are frequently characterized by combinations of individual extremes which require a multivariate approach. The validation method presented here basically consists of a combination of several well-known statistical techniques, completed by a newly developed diagnosis module to quantify model deficiencies. First of all, critical threshold values of key climatic variables for impact research have to be derived serving as criteria to define extreme conditions for a specific activity. Unlike in other techniques, the simulation results to be validated are interpolated to the reference data sampling points in the initial step of this new technique. Besides that fact that the same spatial representation is provided in this way in both data sets for the next diagnostic steps, this procedure also enables to leave the reference basis unchanged for any type of model output and to perform the validation on a real orography. To simultaneously identify the spatial characteristics of a given situation regarding all considered extreme value criteria, a multivariate cluster analysis method for pattern recognition is separately applied to both simulation results and reference data. Afterwards, various distribution-free statistical tests are applied depending on the specific situation to detect statistical significant

  20. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  1. Model Validation and Model Error Modeling

    OpenAIRE

    Ljung, Lennart

    1999-01-01

    To validate an estimated model and to have a good understanding of its reliability is a central aspect of System Identification. This contribution discusses these aspects in the light of model error models that are explicit descriptions of the model error. A model error model is implicitly present in most model validation methods, so the concept is more of a representation form than a set of new techniques. Traditional model validation is essentially a test of whether the confidence region of...

  2. Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose with this deliverable 2.5 is to use fresh experimental data for validation and selection of a flow model to be used for control design in WP3-4. Initially the idea was to investigate the models developed in WP2. However, in the project it was agreed to include and focus on a additive...... model turns out not to be useful for prediction of the flow. Moreover, standard Box Jenkins model structures and multiple output auto regressive models proves to be superior as they can give useful predictions of the flow....

  3. Validating the Implementation Climate Scale (ICS) in child welfare organizations.

    Science.gov (United States)

    Ehrhart, Mark G; Torres, Elisa M; Wright, Lisa A; Martinez, Sandra Y; Aarons, Gregory A

    2016-03-01

    There is increasing emphasis on the use of evidence-based practices (EBPs) in child welfare settings and growing recognition of the importance of the organizational environment, and the organization's climate in particular, for how employees perceive and support EBP implementation. Recently, Ehrhart, Aarons, and Farahnak (2014) reported on the development and validation of a measure of EBP implementation climate, the Implementation Climate Scale (ICS), in a sample of mental health clinicians. The ICS consists of 18 items and measures six critical dimensions of implementation climate: focus on EBP, educational support for EBP, recognition for EBP, rewards for EBP, selection or EBP, and selection for openness. The goal of the current study is to extend this work by providing evidence for the factor structure, reliability, and validity of the ICS in a sample of child welfare service providers. Survey data were collected from 215 child welfare providers across three states, 12 organizations, and 43 teams. Confirmatory factor analysis demonstrated good fit to the six-factor model and the alpha reliabilities for the overall measure and its subscales was acceptable. In addition, there was general support for the invariance of the factor structure across the child welfare and mental health sectors. In conclusion, this study provides evidence for the factor structure, reliability, and validity of the ICS measure for use in child welfare service organizations. PMID:26563643

  4. Modelling Interglacial Climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Anker

    Past warm climate states could potentially provide information on future global warming. The past warming was driven by changed insolation rather than an increased greenhouse effect, and thus the warm climate states are expected to be different. Nonetheless, the response of the climate system...... involves some of the same mechanisms in the two climate states. This thesis aims to investigate these mechanisms through climate model experiments. This two-part study has a special focus on the Arctic region, and the main paleoclimate experiments are supplemented by idealized experiments detailing the...... impact of a changing sea ice cover. The first part focusses on the last interglacial climate (125,000 years before present) which was characterized by substantial warming at high northern latitudes due to an increased insolation during summer. The simulations reveal that the oceanic changes dominate the...

  5. On validation of the rain climatic zone designations for Nigeria

    Science.gov (United States)

    Obiyemi, O. O.; Ibiyemi, T. S.; Ojo, J. S.

    2016-04-01

    In this paper, validation of rain climatic zone classifications for Nigeria is presented based on global radio-climatic models by the International Telecommunication Union-Radiocommunication (ITU-R) and Crane. Rain rate estimates deduced from several ground-based measurements and those earlier estimated from the precipitation index on the Tropical Rain Measurement Mission (TRMM) were employed for the validation exercise. Although earlier classifications indicated that Nigeria falls into zones P, Q, N, and K for the ITU-R designations, and zones E and H for Crane's climatic zone designations, the results however confirmed that the rain climatic zones across Nigeria can only be classified into four, namely P, Q, M, and N for the ITU-R designations, while the designations by Crane exhibited only three zones, namely E, G, and H. The ITU-R classification was found to be more suitable for planning microwave and millimeter wave links across Nigeria. The research outcomes are vital in boosting the confidence level of system designers in using the ITU-R designations as presented in the map developed for the rain zone designations for estimating the attenuation induced by rain along satellite and terrestrial microwave links over Nigeria.

  6. Model confirmation in climate economics.

    Science.gov (United States)

    Millner, Antony; McDermott, Thomas K J

    2016-08-01

    Benefit-cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth-one of its most important economic components-had questionable predictive power over the 20th century. PMID:27432964

  7. Climate modeling at Manitoba Hydro

    International Nuclear Information System (INIS)

    This paper gives an outline of climate modeling at Manitoba Hydro. Manitoba Hydro is studying climate change because it affects water supply and energy demand. Hence climate change must be addressed in planning and operation of hydropower projects as well as regulatory and compliance issues. The study has developed a series of climate change scenarios based on the Global Climate Models

  8. CECILIA regional climate simulations for the present climate: validation and inter-comparison

    Czech Academy of Sciences Publication Activity Database

    Skalák, Petr; Déqué, M.; Belda, M.; Farda, Aleš; Halenka, T.; Csima, G.; Bartholy, J.; Caian, M.; Spiridonov, V.

    2014-01-01

    Roč. 60, č. 1 (2014), s. 1-12. ISSN 0936-577X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.4.31.0056 Institutional support: RVO:67179843 Keywords : RCM * Model performance * Validation * CECILIA * ALADIN-Climate * RegCM3 Subject RIV: EH - Ecology, Behaviour Impact factor: 2.496, year: 2014

  9. Energy balance climate models

    Science.gov (United States)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  10. Application de la teledetection a l'analyse de la variabilite climatique des regions boreales et subarctiques du Canada et a la validation du modele regional canadien du climat

    Science.gov (United States)

    Fillol, Erwann Joachim

    indicators developed in this thesis, a North/South disparity over Canada. The region north of the 55th parallel indicated a warming trend (increase in the annual degree-days, reduction in the length of the snow cover period, increase in the length of the growing season, increase in the air temperature), southern regions of Canada appeared to be cooling (based on the same indicators). Validation of the Canadian regional climate model ( towards the development of future climate prediction tools). The second part of this thesis focuses on the validation, using remotely sensed measurements, of a specific surface field of the CRCM model (Canadian Regional Climate Model), namely the land-surface temperature. The comparison over a short time scale between the ground temperature values modeled by the CRCM with composited satellite temperatures shows the feasibility of validating climatic models using remote sensing. The results show a slight under-estimation of the CRCM ground temperature during the summer. This is possibly due to an overestimation of the precipitation rate which in turn generates excessive surface wetness and an excessive evaporation rate (thus cooling the surface). The agreement which was observed between model and measurements strongly suggest that climate models of the type used in this work should facilitate reliable predictions of future climate trends and help in orienting the decision making process for the world community as we collectively fact the prospect of climate imbalance.

  11. Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale

    Directory of Open Access Journals (Sweden)

    Markus Soini

    2014-03-01

    Full Text Available The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES. A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students.

  12. Global and diffuse solar irradiance modelling over north-western Europe using MAR regional climate model : validation and construction of a 30-year climatology

    Science.gov (United States)

    Beaumet, Julien; Doutreloup, Sébastien; Fettweis, Xavier; Erpicum, Michel

    2015-04-01

    Solar irradiance modelling is crucial for solar resource management, photovoltaic production forecasting and for a better integration of solar energy in the electrical grid network. For those reasons, an adapted version of the Modèle Atmospheric Regional (MAR) is being developed at the Laboratory of Climatology of the University of Liège in order to provide high quality modelling of solar radiation, wind and temperature over north-western Europe. In this new model version, the radiation scheme has been calibrated using solar irradiance in-situ measurements and CORINE Land Cover data have been assimilated in order to improve the modelling of 10 m wind speed and near-surface temperature. In this study, MAR is forced at its boundary by ERA-40 reanalysis and its horizontal resolution is 10 kilometres. Diffuse radiation is estimated using global radiation from MAR outputs and a calibrated version of Ruiz-Arias et al., (2010) sigmoid model. This study proposes to evaluate the method performance for global and diffuse radiation modelling at both the hourly and daily time scale using data from the European Solar Radiation Atlas database for the weather stations of Uccle (Belgium) and Braunschweig (Germany). After that, a 30-year climatology of global and diffuse irradiance for the 1981-2010 period over western Europe is built. The created data set is then analysed in order to highlight possible regional or seasonal trends. The validity of the results is then evaluated after comparison with trends found in in-situ data or from different studies from the literature.

  13. How reliable are climate models?

    OpenAIRE

    Räisänen, Jouni

    2007-01-01

    How much can we trust model-based projections of future anthropogenic climate change? This review attempts to give an overview of this important but difficult topic by using three main lines of evidence: the skill of models in simulating present-day climate, intermodel agreement on future climate changes, and the ability of models to simulate climate changes that have already occurred. A comparison of simulated and observed present-day climates shows good agreement for many basic variables, p...

  14. Ecological reality and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Cale, Jr, W. G.; Shugart, H. H.

    1980-01-01

    Definitions of model realism and model validation are developed. Ecological and mathematical arguments are then presented to show that model equations which explicitly treat ecosystem processes can be systematically improved such that greater realism is attained and the condition of validity is approached. Several examples are presented.

  15. School Climate of Educational Institutions: Design and Validation of a Diagnostic Scale

    Science.gov (United States)

    Becerra, Sandra

    2016-01-01

    School climate is recognized as a relevant factor for the improvement of educative processes, favoring the administrative processes and optimum school performance. The present article is the result of a quantitative research model which had the objective of psychometrically designing and validating a scale to diagnose the organizational climate of…

  16. Validating Animal Models

    Directory of Open Access Journals (Sweden)

    Nina Atanasova

    2015-06-01

    Full Text Available In this paper, I respond to the challenge raised against contemporary experimental neurobiology according to which the field is in a state of crisis because of the multiple experimental protocols employed in different laboratories and strengthening their reliability that presumably preclude the validity of neurobiological knowledge. I provide an alternative account of experimentation in neurobiology which makes sense of its experimental practices. I argue that maintaining a multiplicity of experimental protocols and strengthening their reliability are well justified and they foster rather than preclude the validity of neurobiological knowledge. Thus, their presence indicates thriving rather than crisis of experimental neurobiology.

  17. Validating Animal Models

    OpenAIRE

    Nina Atanasova

    2015-01-01

    In this paper, I respond to the challenge raised against contemporary experimental neurobiology according to which the field is in a state of crisis because of the multiple experimental protocols employed in different laboratories and strengthening their reliability that presumably preclude the validity of neurobiological knowledge. I provide an alternative account of experimentation in neurobiology which makes sense of its experimental practices. I argue that maintaining a multiplicity of ex...

  18. Philosophy of climate science part II: modelling climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the second of three parts of an introduction to the philosophy of climate science. In this second part about modelling climate change, the topics of climate modelling, confirmation of climate models, the limits of climate projections, uncertainty and finally model ensembles will be discussed.

  19. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is the systematic "building-block" validation of CFD/turbulence models employing a GUI driven CFD code (RPFM) and existing as well as new data sets...

  20. Validating Dart Model

    Directory of Open Access Journals (Sweden)

    Mazur Jolanta

    2014-12-01

    Full Text Available The primary objective of the study was to quantitatively test the DART model, which despite being one of the most popular representations of co-creation concept was so far studied almost solely with qualitative methods. To this end, the researchers developed a multiple measurement scale and employed it in interviewing managers. The statistical evidence for adequacy of the model was obtained through CFA with AMOS software. The findings suggest that the DART model may not be an accurate representation of co-creation practices in companies. From the data analysis it was evident that the building blocks of DART had too much of conceptual overlap to be an effective framework for quantitative analysis. It was also implied that the phenomenon of co-creation is so rich and multifaceted that it may be more adequately captured by a measurement model where co-creation is conceived as a third-level factor with two layers of intermediate latent variables.

  1. Impact of late glacial climate variations on stratification and trophic state of the meromictic lake Längsee (Austria: validation of a conceptual model by multi proxy studies

    Directory of Open Access Journals (Sweden)

    Jens MÜLLER

    2002-02-01

    Full Text Available Selected pigments, diatoms and diatom-inferred phosphorus (Di-TP concentrations of a late glacial sediment core section of the meromictic Längsee, Austria, were compared with tephra- and varve-dated pollen stratigraphic and geochemical results. A conceptual model was adopted for Längsee and evaluated using multi proxy data. During the unforested late Pleniglacial, a holomictic lake stage with low primary productivity prevailed. Subsequent to the Lateglacial Betula expansion, at about 14,300 cal. y BP, okenone and isorenieratene, pigments from purple and green sulphur bacteria, indicate the onset of anoxic conditions in the hypolimnion. The formation of laminae coincides with this anoxic, meromictic period with high, though fluctuating, amounts of okenone that persisted throughout the Lateglacial interstadial. The occurrence of unlaminated sediment sections of allochthonous origin, and concurrent low concentrations of okenone, were related to cool and wet climate fluctuations during this period, probably coupled with a complete mixing of the water column. Two of these oscillations of the Lateglacial interstadial have been correlated tentatively with the Aegelsee and Gerzensee oscillations in the Alps. The latter climate fluctuation divides a period of enhanced anoxia and primary productivity, correlated with the Alleröd chronozone. Continental climate conditions were assumed to be the main driving forces for meromictic stability during Alleröd times. In addition, calcite dissolution due to severe hypolimnetic anoxia, appear to have supported meromictic stability. Increased pigment concentrations, which are in contrast to low diatom-inferred total phosphorus (Di- TP, indicate the formation of a productive metalimnion during this period, probably due to a clear-water phase (low catchment erosion, increased temperatures, and a steep gradient between the phosphorus enriched hypolimnion and the oligotrophic epilimnion. Meltwater impacts from an

  2. Stochastic Climate Theory and Modelling

    CERN Document Server

    Franzke, Christian L E; Berner, Judith; Williams, Paul D; Lucarini, Valerio

    2014-01-01

    Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations as well as for model error representation, uncertainty quantification, data assimilation and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochast...

  3. Validating energy-oriented CGE models

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, Jayson, E-mail: JBeckman@ers.usda.gov [Economic Research Service, USDA, Washington DC, 20036 (United States); Hertel, Thomas; Tyner, Wallace [Purdue University (United States)

    2011-09-15

    Although CGE models have received heavy usage - particularly in the analysis of broad-based policies relating to energy, climate and trade, they are often criticized as being insufficiently validated. Key parameters are often not econometrically estimated, and the performance of the model as a whole is rarely checked against historical outcomes. As a consequence, questions frequently arise as to how much faith one can put in CGE results. In this paper, we employ a novel approach to the validation of a widely utilized global CGE model - GTAP-E. By comparing the variance of model-generated petroleum price distributions - driven by historical demand and supply shocks to the model - with observed five-year moving average price distributions, we conclude that energy demand in GTAP-E is far too price-elastic over this medium run time frame. After incorporating the latest econometric estimates of energy demand and supply elasticities, we revisit the validation question and find the model to perform more satisfactorily. As a further check, we compare a deterministic global general equilibrium simulation, based on historical realizations over the five year period: 2001-2006, during which petroleum prices rose sharply, along with growing global energy demands. As anticipated by the stochastic simulations, the revised model parameters perform much better than the original GTAP-E parameters in this global, general equilibrium context.

  4. Validating energy-oriented CGE models

    International Nuclear Information System (INIS)

    Although CGE models have received heavy usage - particularly in the analysis of broad-based policies relating to energy, climate and trade, they are often criticized as being insufficiently validated. Key parameters are often not econometrically estimated, and the performance of the model as a whole is rarely checked against historical outcomes. As a consequence, questions frequently arise as to how much faith one can put in CGE results. In this paper, we employ a novel approach to the validation of a widely utilized global CGE model - GTAP-E. By comparing the variance of model-generated petroleum price distributions - driven by historical demand and supply shocks to the model - with observed five-year moving average price distributions, we conclude that energy demand in GTAP-E is far too price-elastic over this medium run time frame. After incorporating the latest econometric estimates of energy demand and supply elasticities, we revisit the validation question and find the model to perform more satisfactorily. As a further check, we compare a deterministic global general equilibrium simulation, based on historical realizations over the five year period: 2001-2006, during which petroleum prices rose sharply, along with growing global energy demands. As anticipated by the stochastic simulations, the revised model parameters perform much better than the original GTAP-E parameters in this global, general equilibrium context.

  5. Key problems in validation of intelligent models

    Institute of Scientific and Technical Information of China (English)

    LIU Fei; MA Ping; YANG Ming; WANG Zi-cai

    2009-01-01

    To provide a realistic simulation environment for users, intelligent models have become key compo-nents in military simulations. After the analysis of modeling nature of intelligent models, the validation criteria for defining the validation points and validation metrics for measuring the agreements between human expertsand intelligent models were presented. Further, such methods as graphical comparison, feature analysis and face validation were discussed according to the characteristics of intelligent models. Based on the validation cri-teria, validation metrics and validation methods, the intelligent models can be effectively validated, which has been proved in current developed intelligent models.

  6. Validity of Classroom Climate Measures as a Function of the Unit of Analysis and Sample.

    Science.gov (United States)

    Haladyna, Thomas

    The evidence for the construct validity of classroom climate measures was examined within a theoretical model where several affective measures served as criterion variables. The patterns of social-psychological and management-organization structural dimensions differed when the unit of analysis varied from the individual to the class. The…

  7. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and...... the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model...

  8. Validation process of simulation model

    International Nuclear Information System (INIS)

    It is presented a methodology on empirical validation about any detailed simulation model. This king of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparisons between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posterior experiments. Three steps can be well differentiated: Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. Residual analysis. This analysis has been made on the time domain and on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, Esp., studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author) 17 refs

  9. Turbulence Modeling Verification and Validation

    Science.gov (United States)

    Rumsey, Christopher L.

    2014-01-01

    Computational fluid dynamics (CFD) software that solves the Reynolds-averaged Navier-Stokes (RANS) equations has been in routine use for more than a quarter of a century. It is currently employed not only for basic research in fluid dynamics, but also for the analysis and design processes in many industries worldwide, including aerospace, automotive, power generation, chemical manufacturing, polymer processing, and petroleum exploration. A key feature of RANS CFD is the turbulence model. Because the RANS equations are unclosed, a model is necessary to describe the effects of the turbulence on the mean flow, through the Reynolds stress terms. The turbulence model is one of the largest sources of uncertainty in RANS CFD, and most models are known to be flawed in one way or another. Alternative methods such as direct numerical simulations (DNS) and large eddy simulations (LES) rely less on modeling and hence include more physics than RANS. In DNS all turbulent scales are resolved, and in LES the large scales are resolved and the effects of the smallest turbulence scales are modeled. However, both DNS and LES are too expensive for most routine industrial usage on today's computers. Hybrid RANS-LES, which blends RANS near walls with LES away from walls, helps to moderate the cost while still retaining some of the scale-resolving capability of LES, but for some applications it can still be too expensive. Even considering its associated uncertainties, RANS turbulence modeling has proved to be very useful for a wide variety of applications. For example, in the aerospace field, many RANS models are considered to be reliable for computing attached flows. However, existing turbulence models are known to be inaccurate for many flows involving separation. Research has been ongoing for decades in an attempt to improve turbulence models for separated and other nonequilibrium flows. When developing or improving turbulence models, both verification and validation are important

  10. Do regional climate models represent regional climate?

    Science.gov (United States)

    Maraun, Douglas; Widmann, Martin

    2014-05-01

    When using climate change scenarios - either from global climate models or further downscaled - to assess localised real world impacts, one has to ensure that the local simulation indeed correctly represents the real world local climate. Representativeness has so far mainly been discussed as a scale issue: simulated meteorological variables in general represent grid box averages, whereas real weather is often expressed by means of point values. As a result, in particular simulated extreme values are not directly comparable with observed local extreme values. Here we argue that the issue of representativeness is more general. To illustrate this point, assume the following situations: first, the (GCM or RCM) simulated large scale weather, e.g., the mid-latitude storm track, might be systematically distorted compared to observed weather. If such a distortion at the synoptic scale is strong, the simulated local climate might be completely different from the observed. Second, the orography even of high resolution RCMs is only a coarse model of true orography. In particular in mountain ranges the simulated mesoscale flow might therefore considerably deviate from the observed flow, leading to systematically displaced local weather. In both cases, the simulated local climate does not represent observed local climate. Thus, representativeness also encompasses representing a particular location. We propose to measure this aspect of representativeness for RCMs driven with perfect boundary conditions as the correlation between observations and simulations at the inter-annual scale. In doing so, random variability generated by the RCMs is largely averaged out. As an example, we assess how well KNMIs RACMO2 RCM at 25km horizontal resolution represents winter precipitation in the gridded E-OBS data set over the European domain. At a chosen grid box, RCM precipitation might not be representative of observed precipitation, in particular in the rain shadow of major moutain ranges

  11. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 1. Model and validation

    Science.gov (United States)

    Guo, Ying; Shen, Yanjun

    2015-09-01

    We have developed an operational model to simulate water and energy fluxes in the Haihe River Basin (231,800 km2 in size) for the past 28 years. This model is capable of estimating water and energy fluxes of irrigated croplands and heterogeneous grids. The model was validated using actual evapotranspiration (ETa) measured by an eddy covariance system, measured soil moisture in croplands, groundwater level measurements over the piedmont plain and runoff observations in a mountainous catchment. A long-term time series of water and energy balance components were then simulated at a daily time step by integrating remotely sensed information and meteorological data to examine the spatial and temporal distribution and changes in water and energy fluxes in the basin over the past 28 years. The results show that net radiation (Rn) in the mountainous regions is generally higher than that in the plain regions. ETa in the plain regions is higher than that in the mountainous regions mostly because of higher air temperature and larger areas of irrigated farmland. Higher sensible heat flux (H) and lower ETa in the urban areas are possibly due to less vegetation cover, an impervious surface, rapid drainage, and the heat island effect of cities. During the study period, a water deficit continuously occurred in the plain regions because of extensive pumping of groundwater for irrigation to meet the crop water requirements. Irrigation has led to significant groundwater depletion, which poses a substantial challenge to the sustainability of water resources in this basin.

  12. Modeling Earth's Climate

    Science.gov (United States)

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  13. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  14. Validating Savings Claims of Cold Climate Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, S. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-05

    This study was intended to validate actual performance of three ZERHs in the Northeast to energy models created in REM/Rate v14.5 (one of the certified software programs used to generate a HERS Index) and the National Renewable Energy Laboratory’s Building Energy Optimization (BEopt™) v2.3 E+ (a more sophisticated hourly energy simulation software). This report details the validation methods used to analyze energy consumption at each home.

  15. Regional climate simulations over Vietnam using the WRF model

    Science.gov (United States)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2015-07-01

    We present an analysis of the present-day (1961-1990) regional climate simulations over Vietnam. The regional climate model Weather Research and Forecasting (WRF) was driven by the global reanalysis ERA40. The performance of the regional climate model in simulating the observed climate is evaluated with a main focus on precipitation and temperature. The regional climate model was able to reproduce the observed spatial patterns of the climate, although with some biases. The model also performed better in reproducing the extreme precipitation and the interannual variability. Overall, the WRF model was able to simulate the main regional signatures of climate variables, seasonal cycles, and frequency distributions. This study is an evaluation of the present-day climate simulations of a regional climate model at a resolution of 25 km. Given that dynamical downscaling has become common for studying climate change and its impacts, the study highlights that much more improvements in modeling might be necessary to yield realistic simulations of climate at high resolutions before they can be used for impact studies at a local scale. The need for a dense network of observations is also realized as observations at high resolutions are needed when it comes to evaluations and validations of models at sub-regional and local scales.

  16. A Pedagogical "Toy" Climate Model

    OpenAIRE

    Katz, J. I.

    2010-01-01

    A "toy" model, simple and elementary enough for an undergraduate class, of the temperature dependence of the greenhouse (mid-IR) absorption by atmospheric water vapor implies a bistable climate system. The stable states are glaciation and warm interglacials, while intermediate states are unstable. This is in qualitative accord with the paleoclimatic data. The present climate may be unstable, with or without anthropogenic interventions such as CO$_2$ emission, unless there is additional stabil...

  17. A Pedagogical "Toy" Climate Model

    CERN Document Server

    Katz, J I

    2010-01-01

    A "toy" model, simple and elementary enough for an undergraduate class, of the temperature dependence of the greenhouse (mid-IR) absorption by atmospheric water vapor implies a bistable climate system. The stable states are glaciation and warm interglacials, while intermediate states are unstable. This is in qualitative accord with the paleoclimatic data. The present climate may be unstable, with or without anthropogenic interventions such as CO$_2$ emission, unless there is additional stabilizing feedback such as "geoengineering".

  18. A Climate System Model, Numerical Simulation and Climate Predictability

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingcun; WANG Huijun; LIN Zhaohui; ZHOU Guangqing; YU Yongqiang

    2007-01-01

    @@ The implementation of the project has lasted for more than 20 years. As a result, the following key innovative achievements have been obtained, ranging from the basic theory of climate dynamics, numerical model development and its related computational theory to the dynamical climate prediction using the climate system models:

  19. Development and validation of a measure of workplace climate for healthy weight maintenance.

    Science.gov (United States)

    Sliter, Katherine A

    2013-07-01

    Due to the obesity epidemic, an increasing amount of research is being conducted to better understand the antecedents and consequences of excess employee weight. One construct often of interest to researchers in this area is organizational climate. Unfortunately, a viable measure of climate, as related to employee weight, does not exist. The purpose of this study was to remedy this by developing and validating a concise, psychometrically sound measure of climate for healthy weight. An item pool was developed based on surveys of full-time employees, and a sorting task was used to eliminate ambiguous items. Items were pilot tested by a sample of 338 full-time employees, and the item pool was reduced through item response theory (IRT) and reliability analyses. Finally, the retained 14 items, comprising 3 subscales, were completed by a sample of 360 full-time employees, representing 26 different organizations from across the United States. Multilevel modeling indicated that sufficient variance was explained by group membership to support aggregation, and confirmatory factor analysis (CFA) supported the hypothesized model of 3 subscale factors and an overall climate factor. Nine hypotheses specific to construct validation were tested. Scores on the new scale correlated significantly with individual-level reports of psychological constructs (e.g., health motivation, general leadership support for health) and physiological phenomena (e.g., body mass index [BMI], physical health problems) to which they should theoretically relate, supporting construct validity. Implications for the use of this scale in both applied and research settings are discussed. PMID:23834449

  20. Energy-balance climate models

    Science.gov (United States)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  1. Quantifying sources of uncertainty in regional climate model scenarios for Ireland

    OpenAIRE

    Foley, Aideen

    2010-01-01

    This thesis develops a novel framework for model skill assessment and the generation of probabilistic future climate scenarios. Traditional approaches to model validation assume that skill in simulating the mean climate is a valid indicator of skill in modelling the climate system. However, without information about how errors arise, conclusions cannot be drawn about whether models are genuinely skilful. Initially, verification statistics are used to assess model skill in simul...

  2. A transient stochastic weather generator incorporating climate model uncertainty

    Science.gov (United States)

    Glenis, Vassilis; Pinamonti, Valentina; Hall, Jim W.; Kilsby, Chris G.

    2015-11-01

    Stochastic weather generators (WGs), which provide long synthetic time series of weather variables such as rainfall and potential evapotranspiration (PET), have found widespread use in water resources modelling. When conditioned upon the changes in climatic statistics (change factors, CFs) predicted by climate models, WGs provide a useful tool for climate impacts assessment and adaption planning. The latest climate modelling exercises have involved large numbers of global and regional climate models integrations, designed to explore the implications of uncertainties in the climate model formulation and parameter settings: so called 'perturbed physics ensembles' (PPEs). In this paper we show how these climate model uncertainties can be propagated through to impact studies by testing multiple vectors of CFs, each vector derived from a different sample from a PPE. We combine this with a new methodology to parameterise the projected time-evolution of CFs. We demonstrate how, when conditioned upon these time-dependent CFs, an existing, well validated and widely used WG can be used to generate non-stationary simulations of future climate that are consistent with probabilistic outputs from the Met Office Hadley Centre's Perturbed Physics Ensemble. The WG enables extensive sampling of natural variability and climate model uncertainty, providing the basis for development of robust water resources management strategies in the context of a non-stationary climate.

  3. Regionalization of climate model results for the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Kauker, F.

    1999-07-01

    A dynamical downscaling is presented that allows an estimation of potential effects of climate change on the North Sea. Therefore, the ocean general circulation model OPYC is adapted for application on a shelf by adding a lateral boundary formulation and a tide model. In this set-up the model is forced, first, with data from the ECMWF reanalysis for model validation and the study of the natural variability, and, second, with data from climate change experiments to estimate the effects of climate change on the North Sea. (orig.)

  4. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  5. Geochemistry Model Validation Report: External Accumulation Model

    International Nuclear Information System (INIS)

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  6. Climate system model, numerical simulation and climate predictability

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Thanks to its work of past more than 20 years,a research team led by Prof.ZENG Qingcun and Prof.WANG Huijun from the CAS Institute of Atmospheric Physics (IAP) has scored innovative achievements in their studies of basic theory of climate dynamics,numerical model development,its related computational theory,and the dynamical climate prediction using the climate system models.Their work received a second prize of the National Award for Natural Sciences in 2005.

  7. Likelihood-Based Climate Model Evaluation

    Science.gov (United States)

    Braverman, Amy; Cressie, Noel; Teixeira, Joao

    2012-01-01

    Climate models are deterministic, mathematical descriptions of the physics of climate. Confidence in predictions of future climate is increased if the physics are verifiably correct. A necessary, (but not sufficient) condition is that past and present climate be simulated well. Quantify the likelihood that a (summary statistic computed from a) set of observations arises from a physical system with the characteristics captured by a model generated time series. Given a prior on models, we can go further: posterior distribution of model given observations.

  8. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    Science.gov (United States)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  9. On validation of multibody musculoskeletal models

    DEFF Research Database (Denmark)

    Lund, Morten Enemark; de Zee, Mark; Andersen, Michael Skipper; Rasmussen, John

    2012-01-01

    This paper reviews the opportunities to validate multibody musculoskeletal models in view of the current transition of musculoskeletal modelling from a research topic to a practical simulation tool in product design, healthcare and other important applications. This transition creates a new need...... practical steps for improvement of the validation of multibody musculoskeletal models are pointed out and directions for future research in the field are proposed. It is our hope that a more structured approach to model validation can help to improve the credibility of musculoskeletal models....

  10. Uncertainty Quantification in Climate Modeling

    Science.gov (United States)

    Sargsyan, K.; Safta, C.; Berry, R.; Debusschere, B.; Najm, H.

    2011-12-01

    We address challenges that sensitivity analysis and uncertainty quantification methods face when dealing with complex computational models. In particular, climate models are computationally expensive and typically depend on a large number of input parameters. We consider the Community Land Model (CLM), which consists of a nested computational grid hierarchy designed to represent the spatial heterogeneity of the land surface. Each computational cell can be composed of multiple land types, and each land type can incorporate one or more sub-models describing the spatial and depth variability. Even for simulations at a regional scale, the computational cost of a single run is quite high and the number of parameters that control the model behavior is very large. Therefore, the parameter sensitivity analysis and uncertainty propagation face significant difficulties for climate models. This work employs several algorithmic avenues to address some of the challenges encountered by classical uncertainty quantification methodologies when dealing with expensive computational models, specifically focusing on the CLM as a primary application. First of all, since the available climate model predictions are extremely sparse due to the high computational cost of model runs, we adopt a Bayesian framework that effectively incorporates this lack-of-knowledge as a source of uncertainty, and produces robust predictions with quantified uncertainty even if the model runs are extremely sparse. In particular, we infer Polynomial Chaos spectral expansions that effectively encode the uncertain input-output relationship and allow efficient propagation of all sources of input uncertainties to outputs of interest. Secondly, the predictability analysis of climate models strongly suffers from the curse of dimensionality, i.e. the large number of input parameters. While single-parameter perturbation studies can be efficiently performed in a parallel fashion, the multivariate uncertainty analysis

  11. An Overview of BCC Climate System Model Development and Application for Climate Change Studies

    Institute of Scientific and Technical Information of China (English)

    WU Tongwen; WU Fanghua; LIU Yiming; ZHANG Fang; SHI Xueli; CHU Min; ZHANG Jie; FANG Yongjie; WANG Fang; LU Yixiong; LIU Xiangwen; SONG Lianchun; WEI Min; LIU Qianxia; ZHOU Wenyan; DONG Min; ZHAO Qigeng; JI Jinjun; Laurent LI; ZHOU Mingyu; LI Weiping; WANG Zaizhi; ZHANG Hua; XIN Xiaoge; ZHANG Yanwu; ZHANG Li; LI Jianglong

    2014-01-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC-CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC-CSM1.1 with coarse resolution (approximately 2.8125◦×2.8125◦) and BCC-CSM1.1(m) with moderate resolution (approximately 1.125◦×1.125◦). Both versions are fully cou-pled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase fi ve (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate pro jections. Simulations of the 20th century climate using BCC-CSM1.1 and BCC-CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and pro jections of climate change during the next century are also presented and discussed. Both BCC-CSM1.1 and BCC-CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses in-dicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSM1.1, particularly on regional scales.

  12. A National Strategy for Advancing Climate Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dunlea, Edward; Elfring, Chris

    2012-12-04

    Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nation’s capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committee’s report is a high level analysis, providing a strategic framework to guide progress in the nation’s climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.

  13. Permafrost, climate, and change: predictive modelling approach.

    Science.gov (United States)

    Anisimov, O.

    2003-04-01

    of the ACIA (Arctic Climate Impact Assessment) because they account for many key processes in the Arctic and provide reasonable fit to historical data. Permafrost model of intermediate complexity was validated by the data from Circumpolar Active Layer Monitoring (CALM) program and used to calculate ALT, temperature and distribution of permafrost under GCM's forcing. Results were used to construct predictive hemispheric-scale maps of ALT and "permafrost hazards index" characterizing threats to constructions built on frozen ground for the 11-year time slices centered on 2030, 2050, and 2080. The major conclusions of this study are the following. Reduction of the total (continuous) permafrost area in the northern hemisphere by 2030, 2050, and 2080 is likely to be 10%-18% (15%- 25%); 15%-30%(20%-40%), and 20%-35%(25%-50%), respectively. Changes of the ALT are not uniform in both space and time. In the following three decades they will be relatively small, typically within 10%-15%. By the middle of the century ALT may increase on average by 15%-25%, and by 50% and more in the northernmost locations. By 2080 active layer will become markedly thicker (by 30%-50% and more) all over the permafrost area. Deeper seasonal thawing and higher temperature of the frozen ground will stimulate development of the destructive geocryological processes, particularly thermokarst, that may cause detrimental impacts on northern infrastructure.

  14. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  15. Model Validation in Ontology Based Transformations

    Directory of Open Access Journals (Sweden)

    Jesús M. Almendros-Jiménez

    2012-10-01

    Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.

  16. A broad view of model validation

    International Nuclear Information System (INIS)

    The safety assessment of a nuclear waste repository requires the use of models. Such models need to be validated to ensure, as much as possible, that they are a good representation of the actual processes occurring in the real system. In this paper we attempt to take a broad view by reviewing step by step the modeling process and bringing out the need to validating every step of this process. This model validation includes not only comparison of modeling results with data from selected experiments, but also evaluation of procedures for the construction of conceptual models and calculational models as well as methodologies for studying data and parameter correlation. The need for advancing basic scientific knowledge in related fields, for multiple assessment groups, and for presenting our modeling efforts in open literature to public scrutiny is also emphasized. 16 refs

  17. Validating the Psychological Climate Scale in Voluntary Child Welfare

    Science.gov (United States)

    Zeitlin, Wendy; Claiborne, Nancy; Lawrence, Catherine K.; Auerbach, Charles

    2016-01-01

    Objective: Organizational climate has emerged as an important factor in understanding and addressing the complexities of providing services in child welfare. This research examines the psychometric properties of each of the dimensions of Parker and colleagues' Psychological Climate Survey in a sample of voluntary child welfare workers. Methods:…

  18. Systematic Independent Validation of Inner Heliospheric Models

    Science.gov (United States)

    MacNeice, P. J.; Takakishvili, Alexandre

    2008-01-01

    This presentation is the first in a series which will provide independent validation of community models of the outer corona and inner heliosphere. In this work we establish a set of measures to be used in validating this group of models. We use these procedures to generate a comprehensive set of results from the Wang- Sheeley-Arge (WSA) model which will be used as a baseline, or reference, against which to compare all other models. We also run a test of the validation procedures by applying them to a small set of results produced by the ENLIL Magnetohydrodynamic (MHD) model. In future presentations we will validate other models currently hosted by the Community Coordinated Modeling Center(CCMC), including a comprehensive validation of the ENLIL model. The Wang-Sheeley-Arge (WSA) model is widely used to model the Solar wind, and is used by a number of agencies to predict Solar wind conditions at Earth as much as four days into the future. Because it is so important to both the research and space weather forecasting communities, it is essential that its performance be measured systematically, and independently. In this paper we offer just such an independent and systematic validation. We report skill scores for the model's predictions of wind speed and IMF polarity for a large set of Carrington rotations. The model was run in all its routinely used configurations. It ingests line of sight magnetograms. For this study we generated model results for monthly magnetograms from the National Solar Observatory (SOLIS), Mount Wilson Observatory and the GONG network, spanning the Carrington rotation range from 1650 to 2068. We compare the influence of the different magnetogram sources, performance at quiet and active times, and estimate the effect of different empirical wind speed tunings. We also consider the ability of the WSA model to identify sharp transitions in wind speed from slow to fast wind. These results will serve as a baseline against which to compare future

  19. Essays on Economic Modeling of Climate Change

    OpenAIRE

    Engström, Gustav

    2012-01-01

    Structural change in a two-sector model of the climate and the economy introduces issues concerning substitutability among goods in a two-sector economic growth model where emissions from fossil fuels give rise to a climate externality. Substitution is modeled using a CES-production function where the intermediate inputs differ only in their technologies and the way they are affected by the climate externality. I derive a simple formula for optimal taxes and resource allocation over time and ...

  20. Tracer travel time and model validation

    International Nuclear Information System (INIS)

    The performance assessment of a nuclear waste repository demands much more in comparison to the safety evaluation of any civil constructions such as dams, or the resource evaluation of a petroleum or geothermal reservoir. It involves the estimation of low probability (low concentration) of radionuclide transport extrapolated 1000's of years into the future. Thus models used to make these estimates need to be carefully validated. A number of recent efforts have been devoted to the study of this problem. Some general comments on model validation were given by Tsang. The present paper discusses some issues of validation in regards to radionuclide transport. 5 refs

  1. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of...

  2. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  3. Algorithm for Model Validation: Theory and Implementation

    CERN Document Server

    Sornette, D; Ide, K; Kamm, J R; Pisarenko, V; Vixie, K R

    2005-01-01

    Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. We propose to formulate the validation of a given model/code as an iterative construction process that mimics the often implicit process occurring in the minds of scientists. We offer a formal representation of the progressive build-up of trust in the model. We thus replace static claims on the impossibility of validating a given model/code by a dynamic process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the new methodology first with the maturation of ...

  4. A Regional Climate Model Evaluation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a packaged data management infrastructure for the comparison of generated climate model output to existing observational datasets that includes...

  5. Model validation: Correlation for updating

    Indian Academy of Sciences (India)

    D J Ewins

    2000-06-01

    In this paper, a review is presented of the various methods which are available for the purpose of performing a systematic comparison and correlation between two sets of vibration data. In the present case, the application of interest is in conducting this correlation process as a prelude to model correlation or updating activity.

  6. Validating the passenger traffic model for Copenhagen

    DEFF Research Database (Denmark)

    Overgård, Christian Hansen; VUK, Goran

    2006-01-01

    matched the observed traffic better than those of the transit assignment model. With respect to the metro forecasts, the model over-predicts metro passenger flows by 10% to 50%. The wide range of findings from the project resulted in two actions. First, a project was started in January 2005 to upgrade the......The paper presents a comprehensive validation procedure for the passenger traffic model for Copenhagen based on external data from the Danish national travel survey and traffic counts. The model was validated for the years 2000 to 2004, with 2004 being of particular interest because the Copenhagen...

  7. Emulation of MIROC5 with a simple climate model

    Science.gov (United States)

    Ishizaki, Yasuhiro; Emori, Seita; Shiogama, Hideo; Takahashi, Kiyoshi; Yokohata, Tokuta; Yoshimori, Masakazu

    2014-05-01

    We developed a simple climate model based on MAGICC6, and investigated the ability of the simple climate model to emulate global mean surface air temperature (SAT) changes of an atmosphere-ocean general circulation model (MIROC5) in the twenty-first century in representative concentration pathways (RCPs). Some previous research indicated that climate sensitivity, ocean vertical diffusion and forcing of anthropogenic aerosols (direct and indirect effects of sulfate aerosol, black carbon and organic carbon) are important factors to emulate global mean SAT changes of atmosphere-ocean general circulation models CMIP3. We therefore estimate these important parameters in the simple climate model using a Metropolis-Hastings Markov chain Monte Carlo (MCMC) approach. The estimated values of the important parameters by the MCMC are physically valid, and our simple climate model can successfully emulate global mean SAT changes of MIROC5 in RCPs with the estimated parameters by the MCMC approach. In addition, we estimated the relative contributions f each important parameter in sensitivity experiments, in which we change the value of an important parameter from the estimated one by the MCMC to the default value of MAGICC6. As a result, we found that the estimation of climate sensitivity is the most important factor for the emulation of the AOGCM, and the stimation of ocean vertical diffusion is also important factor. Although the estimations of the anthropogenic aerosols forcing are very important for the emulation of the AOGCM in the twenty century, the influence of them on the emulation of the AOGCM in the twenty first century is very small. This is because emissions of anthropogenic aerosols are projected to decrease in the twenty first century, and relative contributions of the forcing of anthropogenic aerosols also decrease. Carbon cycle models are not incorporated into our simple climate model yet. A sophisticated carbon cycle model is required to be incorporated into

  8. Factorial validity and internal consistency of the motivational climate in pysical education scale

    OpenAIRE

    Soini, Markus; Liukkonen, Jarmo; Watt, Athony P.P.; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A ...

  9. Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale

    OpenAIRE

    Markus Soini; Jarmo Liukkonen; Anthony Watt; Sami Yli-Piipari; Timo Jaakkola

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Gra...

  10. Validating a work group climate assessment tool for improving the performance of public health organizations

    Directory of Open Access Journals (Sweden)

    Tracy Allison

    2005-10-01

    Full Text Available Abstract Background This article describes the validation of an instrument to measure work group climate in public health organizations in developing countries. The instrument, the Work Group Climate Assessment Tool (WCA, was applied in Brazil, Mozambique, and Guinea to assess the intermediate outcomes of a program to develop leadership for performance improvement. Data were collected from 305 individuals in 42 work groups, who completed a self-administered questionnaire. Methods The WCA was initially validated using Cronbach's alpha reliability coefficient and exploratory factor analysis. This article presents the results of a second validation study to refine the initial analyses to account for nested data, to provide item-level psychometrics, and to establish construct validity. Analyses included eigenvalue decomposition analysis, confirmatory factor analysis, and validity and reliability analyses. Results This study confirmed the validity and reliability of the WCA across work groups with different demographic characteristics (gender, education, management level, and geographical location. The study showed that there is agreement between the theoretical construct of work climate and the items in the WCA tool across different populations. The WCA captures a single perception of climate rather than individual sub-scales of clarity, support, and challenge. Conclusion The WCA is useful for comparing the climates of different work groups, tracking the changes in climate in a single work group over time, or examining differences among individuals' perceptions of their work group climate. Application of the WCA before and after a leadership development process can help work groups hold a discussion about current climate and select a target for improvement. The WCA provides work groups with a tool to take ownership of their own group climate through a process that is simple and objective and that protects individual confidentiality.

  11. Climate predictions: the chaos and complexity in climate models

    CERN Document Server

    Mihailović, Dragutin T; Arsenić, Ilija

    2013-01-01

    Some issues which are relevant for the recent state in climate modeling have been considered. A detailed overview of literature related to this subject is given. The concept in modeling of climate, as a complex system, seen through Godel's Theorem and Rosen's definition of complexity and predictability is discussed. It is pointed out to occurrence of chaos in computing the environmental interface temperature from the energy balance equation given in a difference form. A coupled system of equations, often used in climate models is analyzed. It is shown that the Lyapunov exponent mostly has positive values allowing presence of chaos in this systems. The horizontal energy exchange between environmental interfaces, which is described by the dynamics of driven coupled oscillators, is analyzed. Their behavior and synchronization, when a perturbation is introduced in the system, as a function of the coupling parameters, the logistic parameter and the parameter of exchange, was studied calculating the Lyapunov expone...

  12. Mediterranean climate modelling: variability and climate change scenarios

    International Nuclear Information System (INIS)

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  13. BIOMOVS: an international model validation study

    International Nuclear Information System (INIS)

    BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (author)

  14. BIOMOVS: An international model validation study

    International Nuclear Information System (INIS)

    BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (orig.)

  15. On validation and invalidation of biological models

    Directory of Open Access Journals (Sweden)

    Anderson James

    2009-05-01

    Full Text Available Abstract Background Very frequently the same biological system is described by several, sometimes competing mathematical models. This usually creates confusion around their validity, ie, which one is correct. However, this is unnecessary since validity of a model cannot be established; model validation is actually a misnomer. In principle the only statement that one can make about a system model is that it is incorrect, ie, invalid, a fact which can be established given appropriate experimental data. Nonlinear models of high dimension and with many parameters are impossible to invalidate through simulation and as such the invalidation process is often overlooked or ignored. Results We develop different approaches for showing how competing ordinary differential equation (ODE based models of the same biological phenomenon containing nonlinearities and parametric uncertainty can be invalidated using experimental data. We first emphasize the strong interplay between system identification and model invalidation and we describe a method for obtaining a lower bound on the error between candidate model predictions and data. We then turn to model invalidation and formulate a methodology for discrete-time and continuous-time model invalidation. The methodology is algorithmic and uses Semidefinite Programming as the computational tool. It is emphasized that trying to invalidate complex nonlinear models through exhaustive simulation is not only computationally intractable but also inconclusive. Conclusion Biological models derived from experimental data can never be validated. In fact, in order to understand biological function one should try to invalidate models that are incompatible with available data. This work describes a framework for invalidating both continuous and discrete-time ODE models based on convex optimization techniques. The methodology does not require any simulation of the candidate models; the algorithms presented in this paper have a

  16. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  17. Faculty Teaching Climate: Scale Construction and Initial Validation

    Science.gov (United States)

    Knorek, John Kenneth

    2012-01-01

    The concept "academic culture" has been used as a framework to understand faculty work in higher education. Academic culture research builds on organizational psychology concepts of culture and climate to better understand employee practices and work phenomenon. Ample research has investigated faculty teaching at the disciplinary and…

  18. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  19. Feature extraction for structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Nishio, Mayuko [UNIV OF TOKYO; Worden, Keith [UNIV OF SHEFFIELD; Takeda, Nobuo [UNIV OF TOKYO

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  20. Coastal Ecosystems and Climate Change: Is Modeling and Monitoring Enough?

    Science.gov (United States)

    Cronin, T. M.; Walker, H. A.

    2005-05-01

    Many coastal ecosystems are severely degraded due to a variety of human factors, requiring large and expensive monitoring and modeling efforts for restoration and management. Climate variability, including abrupt climate change, is seldom factored into coastal ecosystem management despite growing evidence for climate forcing of precipitation, river discharge, water quality, salinity, turbidity, faunal and phytoplankton dynamics, dissolved oxygen, and other ecosystem processes. We will review evidence from long-term monitoring records, multi-proxy paleoclimatic and paleoecological records, and climatic modeling that suggests that the effects of climate can override local and regional human activities and may potentially diminish the success of restoration efforts. Because ecosystem restoration often involves long-term objectives requiring decades to achieve, our focus will be on examples from sub-tropical and temperate estuaries in North America that show ecosystem response over decadal timescales to variability related to El Niño-Southern Oscillation, the Pacific Decadal Oscillation and the North Atlantic Oscillation. Climatic variability evident from paleo-records of the past few centuries exceeds that recorded in most 20th century monitoring records. This raises issues about the efficacy of local and regional ecosystem and hydrodynamic models designed to simulate ecosystem response to anthropogenic changes in sediment and nutrient input, fresh-water discharge, and land-use because such models, though tested with rigorous validation procedures, use calibration data sets limited to a few years. Thus, they might not be appropriate for simulating response to climatic extremes on the scale and duration of past events outside their calibration range. Understanding the complexities of ecosystem response to climatic forcing, especially in the context of local and regional ecosystem disturbance, raises formidable challenges, but attempts to integrate climate

  1. An Appraisal of Coupled Climate Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K

    2004-02-24

    In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''

  2. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  3. Modeling local paleoclimates and validation in the southwest United States

    International Nuclear Information System (INIS)

    In order to evaluate the spatial and seasonal variations of paleoclimate in the southwest US, a local climate model (LCM) is developed that computes modern and 18,000 yr B.P. (18 ka) monthly temperature and precipitation from a set of independent variables. Independent variables include: terrain elevation, insolation, CO2 concentration, January and July winds, and January and July sea-surface temperatures. Solutions are the product of a canonical regression function which is calibrated using climate data from 641 stations from AZ, CA, CO, NM, NV, UT in the National Weather Service Cooperative observer network. Validation of the LCH, using climate data at 98 climate stations from the period 1980--1984, indicates no significant departures of LCM solutions from climate data. LCM solutions of modern and 18 ka climate are computed at a 15 km spacing over a rectangular domain extending 810 km east, 360 km west, 225 km north and 330 km south of the approximate location of Yucca Mt., KV. Solutions indicate mean annual temperature was 5 degrees C cooler at 18 ka and mean annual precipitation increased 68%. The annual cycle of temperature and precipitation at 18 ka was amplified with summers about 1 degrees C cooler and 71% drier, and winters about 11 degrees C colder and 35% wetter than the modern. Model results compare quite reasonably with proxy paleoclimate estimates from glacial deposits, pluvial lake deposits, pollen records, ostracodes records and packrat madden records from the southwest US However, bias (+5 degrees C to +10 degrees C) is indicated for LCM solutions of summer temperatures at 18 ka

  4. MODEL VALIDATION AND THE PHILIPPINE PROGRAMMING MODEL

    OpenAIRE

    Rodriguez, Gil R. Jr.; Kunkel, David E.

    1980-01-01

    This research demonstrates the need and the procedure for testing sector programming models It compares the model estimates of endogenous variables to carefully selected base period parameters It uses an operational, static, deterministic, and highly aggregate programming model of Philippine agriculture as the framework Alternative formulations of the Philippine model are also examined for possible errors In the consumption, production, and objective function data sets

  5. Model biases in rice phenology under warmer climates

    Science.gov (United States)

    Zhang, Tianyi; Li, Tao; Yang, Xiaoguang; Simelton, Elisabeth

    2016-06-01

    Climate-induced crop yields model projections are constrained by the accuracy of the phenology simulation in crop models. Here, we use phenology observations from 775 trials with 19 rice cultivars in 5 Asian countries to compare the performance of four rice phenology models (growing-degree-day (GDD), exponential, beta and bilinear models) when applied to warmer climates. For a given cultivar, the difference in growing season temperature (GST) varied between 2.2 and 8.2 °C in different trials, which allowed us to calibrate the models for lower GST and validate under higher GST, with three calibration experiments. The results show that in warmer climates the bilinear and beta phenology models resulted in gradually increasing bias for phenology predication and double yield bias per percent increase in phenology simulation bias, while the GDD and exponential models maintained a comparatively constant bias. The phenology biases were primarily attributed to varying phenological patterns to temperature in models, rather than on the size of the calibration dataset. Additionally, results suggest that model simulations based on multiple cultivars provide better predictability than using one cultivar. Therefore, to accurately capture climate change impacts on rice phenology, we recommend simulations based on multiple cultivars using the GDD and exponential phenology models.

  6. CLIMBER-2: a climate system model of intermediate complexity. Pt. 1. Model description and performance for present climate

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, V.; Ganopolski, A.; Brovkin, V.; Claussen, M.; Eliseev, A.; Kubatzki, C.; Rahmstorf, S.

    1998-02-01

    A 2.5-dimensional climate system model of intermediate complexity CLIMBER-2 and its performance for present climate conditions are presented. The model consists of modules describing atmosphere, ocean, sea ice, land surface processes, terrestrial vegetation cover, and global carbon cycle. The modules interact (on-line) through the fluxes of momentum, energy, water and carbon. The model has a coarse spatial resolution, allowing nevertheless to capture the major features of the Earth`s geography. The model describes temporal variability of the system on seasonal and longer time scales. Due to the fact that the model does not employ any type of flux adjustment and has fast turnaround time, it can be used for study of climates significantly different from the present one and allows to perform long-term (multimillennia) simulations. The constraints for coupling the atmosphere and ocean without flux adjustment are discussed. The results of a model validation against present climate data show that the model successfully describes the seasonal variability of a large set of characteristics of the climate system, including radiative balance, temperature, precipitation, ocean circulation and cryosphere. (orig.) 62 refs.

  7. The climatic-altitude chamber as development and validation tool

    NARCIS (Netherlands)

    Gompel, P.H.C. van; Koornneef, G.P.

    2010-01-01

    Two major trends can be identified for powertrain control in the next decade. The legislation will more and more focus on in-use emissions. Together with the global trend to reduce the CO 2 emissions, this will lead to an integral drive train approach. To develop and validate this integral drive tra

  8. Modeling and assessing international climate financing

    Science.gov (United States)

    Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng

    2016-06-01

    Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.

  9. Evaluating models of climate and forest vegetation

    Science.gov (United States)

    Clark, James S.

    1992-01-01

    Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.

  10. The transferability of hydrological models under nonstationary climatic conditions

    Directory of Open Access Journals (Sweden)

    C. Z. Li

    2012-04-01

    Full Text Available This paper investigates issues involved in calibrating hydrological models against observed data when the aim of the modelling is to predict future runoff under different climatic conditions. To achieve this objective, we tested two hydrological models, DWBM and SIMHYD, using data from 30 unimpaired catchments in Australia which had at least 60 yr of daily precipitation, potential evapotranspiration (PET, and streamflow data. Nash-Sutcliffe efficiency (NSE, modified index of agreement (d1 and water balance error (WBE were used as performance criteria. We used a differential split-sample test to split up the data into 120 sub-periods and 4 different climatic sub-periods in order to assess how well the calibrated model could be transferred different periods. For each catchment, the models were calibrated for one sub-period and validated on the other three. Monte Carlo simulation was used to explore parameter stability compared to historic climatic variability. The chi-square test was used to measure the relationship between the distribution of the parameters and hydroclimatic variability. The results showed that the performance of the two hydrological models differed and depended on the model calibration. We found that if a hydrological model is set up to simulate runoff for a wet climate scenario then it should be calibrated on a wet segment of the historic record, and similarly a dry segment should be used for a dry climate scenario. The Monte Carlo simulation provides an effective and pragmatic approach to explore uncertainty and equifinality in hydrological model parameters. Some parameters of the hydrological models are shown to be significantly more sensitive to the choice of calibration periods. Our findings support the idea that when using conceptual hydrological models to assess future climate change impacts, a differential split-sample test and Monte Carlo simulation should be used to quantify uncertainties due to

  11. Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings

    OpenAIRE

    O. Morgenstern; M. A. Giorgetta; Shibata, K; Eyring, V.; D. W. Waugh; T. G. Shepherd; H. Akiyoshi; Austin, J; Baumgaertner, A.J.G.; Bekki, S.; P. Braesicke; Brühl, C.; Chipperfield, M. P.; Cugnet, D.; M. Dameris

    2010-01-01

    The goal of the Chemistry-Climate Model Validation (CCMVal) activity is to improve understanding of chemistry-climate models (CCMs) through process-oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozone-depleting substances, and hence for understanding the ozone and climate fore...

  12. A climate robust integrated modelling framework for regional impact assessment of climate change

    Science.gov (United States)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  13. Concepts of Model Verification and Validation

    International Nuclear Information System (INIS)

    Model verification and validation (VandV) is an enabling methodology for the development of computational models that can be used to make engineering predictions with quantified confidence. Model VandV procedures are needed by government and industry to reduce the time, cost, and risk associated with full-scale testing of products, materials, and weapon systems. Quantifying the confidence and predictive accuracy of model calculations provides the decision-maker with the information necessary for making high-consequence decisions. The development of guidelines and procedures for conducting a model VandV program are currently being defined by a broad spectrum of researchers. This report reviews the concepts involved in such a program. Model VandV is a current topic of great interest to both government and industry. In response to a ban on the production of new strategic weapons and nuclear testing, the Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship Program (SSP). An objective of the SSP is to maintain a high level of confidence in the safety, reliability, and performance of the existing nuclear weapons stockpile in the absence of nuclear testing. This objective has challenged the national laboratories to develop high-confidence tools and methods that can be used to provide credible models needed for stockpile certification via numerical simulation. There has been a significant increase in activity recently to define VandV methods and procedures. The U.S. Department of Defense (DoD) Modeling and Simulation Office (DMSO) is working to develop fundamental concepts and terminology for VandV applied to high-level systems such as ballistic missile defense and battle management simulations. The American Society of Mechanical Engineers (ASME) has recently formed a Standards Committee for the development of VandV procedures for computational solid mechanics models. The Defense Nuclear Facilities Safety Board (DNFSB) has been a proponent of model

  14. Validating Savings Claims of Cold Climate Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, S. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-01

    This report details the validation methods used to analyze consumption at each of these homes. It includes a detailed end-use examination of consumptions from the following categories: 1) Heating, 2) Cooling, 3) Lights, Appliances, and Miscellaneous Electric Loads (LAMELS) along with Domestic Hot Water Use, 4) Ventilation, and 5) PV generation. A utility bill disaggregation method, which allows a crude estimation of space conditioning loads based on outdoor air temperature, was also performed and the results compared to the actual measured data.

  15. Using Model Checking to Validate AI Planner Domain Models

    Science.gov (United States)

    Penix, John; Pecheur, Charles; Havelund, Klaus

    1999-01-01

    This report describes an investigation into using model checking to assist validation of domain models for the HSTS planner. The planner models are specified using a qualitative temporal interval logic with quantitative duration constraints. We conducted several experiments to translate the domain modeling language into the SMV, Spin and Murphi model checkers. This allowed a direct comparison of how the different systems would support specific types of validation tasks. The preliminary results indicate that model checking is useful for finding faults in models that may not be easily identified by generating test plans.

  16. Climate Modeling with a Million CPUs

    Science.gov (United States)

    Tobis, M.; Jackson, C. S.

    2010-12-01

    Michael Tobis, Ph.D. Research Scientist Associate University of Texas Institute for Geophysics Charles S. Jackson Research Scientist University of Texas Institute for Geophysics Meteorological, oceanographic, and climatological applications have been at the forefront of scientific computing since its inception. The trend toward ever larger and more capable computing installations is unabated. However, much of the increase in capacity is accompanied by an increase in parallelism and a concomitant increase in complexity. An increase of at least four additional orders of magnitude in the computational power of scientific platforms is anticipated. It is unclear how individual climate simulations can continue to make effective use of the largest platforms. Conversion of existing community codes to higher resolution, or to more complex phenomenology, or both, presents daunting design and validation challenges. Our alternative approach is to use the expected resources to run very large ensembles of simulations of modest size, rather than to await the emergence of very large simulations. We are already doing this in exploring the parameter space of existing models using the Multiple Very Fast Simulated Annealing algorithm, which was developed for seismic imaging. Our experiments have the dual intentions of tuning the model and identifying ranges of parameter uncertainty. Our approach is less strongly constrained by the dimensionality of the parameter space than are competing methods. Nevertheless, scaling up remains costly. Much could be achieved by increasing the dimensionality of the search and adding complexity to the search algorithms. Such ensemble approaches scale naturally to very large platforms. Extensions of the approach are anticipated. For example, structurally different models can be tuned to comparable effectiveness. This can provide an objective test for which there is no realistic precedent with smaller computations. We find ourselves inventing new code to

  17. A methodology for PSA model validation

    International Nuclear Information System (INIS)

    This document reports Phase 2 of work undertaken by Science Applications International Corporation (SAIC) in support of the Atomic Energy Control Board's Probabilistic Safety Assessment (PSA) review. A methodology is presented for the systematic review and evaluation of a PSA model. These methods are intended to support consideration of the following question: To within the scope and depth of modeling resolution of a PSA study, is the resultant model a complete and accurate representation of the subject plant? This question was identified as a key PSA validation issue in SAIC's Phase 1 project. The validation methods are based on a model transformation process devised to enhance the transparency of the modeling assumptions. Through conversion to a 'success-oriented' framework, a closer correspondence to plant design and operational specifications is achieved. This can both enhance the scrutability of the model by plant personnel, and provide an alternative perspective on the model that may assist in the identification of deficiencies. The model transformation process is defined and applied to fault trees documented in the Darlington Probabilistic Safety Evaluation. A tentative real-time process is outlined for implementation and documentation of a PSA review based on the proposed methods. (author). 11 refs., 9 tabs., 30 refs

  18. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions

    Directory of Open Access Journals (Sweden)

    Asma Foughali

    2015-07-01

    Full Text Available This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2 in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT from the European program ENSEMBLES, forced by two global climate models (GCM: ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to

  19. Validation of the CHYMES mixing model

    International Nuclear Information System (INIS)

    This paper contains a discussion of the work being performed in the UK to validate the CHYMES coarse mixing model. Attention is focussed on the MIXA experiments performed at Winfrith Technology Centre in which 3 kg of molten fuel simulant were released into water. The validation of CHYMES against one of these experiments (MIXA06) is discussed in detail. It is concluded that CHYMES can reproduce some features of the experiment (such as the existence of steam chimney around the mixture and the steam production rate within a factor of two) but it does not predict the observed mixture development (the radial spreading and the deceleration of the first melt arriving at the surface) well. Additional model development and experimental analysis underway to resolve these differences is discussed

  20. An analytical model for climatic predictions

    International Nuclear Information System (INIS)

    A climatic model based upon analytical expressions is presented. This model is capable of making long-range predictions of heat energy variations on regional or global scales. These variations can then be transformed into corresponding variations of some other key climatic parameters since weather and climatic changes are basically driven by differential heating and cooling around the earth. On the basis of the mathematical expressions upon which the model is based, it is shown that the global heat energy structure (and hence the associated climatic system) are characterized by zonally as well as latitudinally propagating fluctuations at frequencies downward of 0.5 day-1. We have calculated the propagation speeds for those particular frequencies that are well documented in the literature. The calculated speeds are in excellent agreement with the measured speeds. (author). 13 refs

  1. SPR Hydrostatic Column Model Verification and Validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [Gram, Inc. Albuquerque, NM (United States)

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  2. Thermodynamically valid noise models for nonlinear devices

    Science.gov (United States)

    Coram, Geoffrey J.

    2000-11-01

    Noise has been a concern from the very beginning of signal processing and electrical engineering in general, although it was perhaps of less interest until vacuum- tube amplifiers made it audible just after 1900. Rigorous noise models for linear resistors were developed in 1927 by Nyquist and Johnson [1, 2]. However, the intervening years have not brought similarly well-established models for noise in nonlinear devices. This thesis proposes using thermodynamic principles to determine whether a given nonlinear device noise model is physically valid. These tests are applied to several models. One conclusion is that the standard Gaussian noise models for nonlinear devices predict thermodynamically impossible circuit behavior: these models should be abandoned. But the nonlinear shot-noise model predicts thermodynamically acceptable behavior under a constraint derived here. This thesis shows how the thermodynamic requirements can be reduced to concise mathematical tests, involving no approximations, for the Gaussian and shot-noise models. When the above-mentioned constraint is satisfied, the nonlinear shot-noise model specifies the current noise amplitude at each operating point from knowledge of the device v - i curve alone. This relation between the dissipative behavior and the noise fluctuations is called, naturally enough, a fluctuation- dissipation relation. This thesis further investigates such FDRs, including one for linear resistors in nonlinear circuits that was previously unexplored. The aim of this thesis is to provide thermodynamically solid foundations for noise models. It is hoped that hypothesized noise models developed to match experiment will be validated against the concise mathematical tests of this thesis. Finding a correct noise model will help circuit designers and physicists understand the actual processes causing the noise, and perhaps help them minimize the noise or its effect in the circuit. (Copies available exclusively from MIT Libraries, Rm

  3. Modeling Renewable Water Resources under Climate Change

    Science.gov (United States)

    Liu, X.; Tang, Q.

    2014-12-01

    The impacts of climate change on renewable water resources are usually assessed using hydrological models driven by downscaled climate outputs from global climate models. Most hydrological models do not have explicit parameterization of vegetation and thus are unable to assess the effects of elevated atmospheric CO2 on stomatal conductance and water loss of leaf. The response of vegetation to elevated atmospheric CO2 would reduce evaporation and affect runoff and renewable water resources. To date, the impacts of elevated CO2 on vegetation transpiration were not well addressed in assessment of water resources under climate change. In this study, the distributed biosphere-hydrological (DBH) model, which incorporates a simple biosphere model into a distributed hydrological scheme, was used to assess the impacts of elevated CO2 on vegetation transpiration and consequent runoff. The DBH model was driven by five General Circulation Models (GCMs) under four Representative Concentration Pathways (RCPs). For each climate scenario, two model experiments were conducted. The atmospheric CO2 concentration in one experiment was assumed to remain at the level of 2000 and increased as described by the RCPs in the other experiment. The results showed that the elevated CO2 would result in decrease in evapotranspiration, increase in runoff, and have considerable impacts on water resources. However, CO2 induced runoff change is generally small in dry areas likely because vegetation is usually sparse in the arid area.

  4. Regional Climate Model Aladin-Climate - a Tool for Regionalization of Climate Change Estimates in Central Europe: First Results

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan; Metelka, L.; Kliegerová, S.; Sedlák, Pavel; Kyselý, Jan; Mládek, R.; Halenka, T.; Kalvová, J.

    Bratislava: Geophysical Institute of SAS, Slovak Hydrometeorological Institute, Slovak Mining Society, Slovak Meteorological Society, 2001 - (Matejka, F.; Ostrožlík, M.), s. - ISBN 80-85754-10-X. [150 years of the meteorological service in central Europe. Stará Lesná (SK), 09.10.2001-11.10.2001] R&D Projects: GA ČR GA205/01/0804 Institutional research plan: CEZ:AV0Z3042911 Keywords : Regional Climate Model * validation * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology

  5. Natural analogues and radionuclide transport model validation

    International Nuclear Information System (INIS)

    In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)

  6. The Community Climate System Model: CCSM3

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W D; Blackmon, M; Bitz, C; Bonan, G; Bretherton, C S; Carton, J A; Chang, P; Doney, S; Hack, J J; Kiehl, J T; Henderson, T; Large, W G; McKenna, D; Santer, B D; Smith, R D

    2004-12-27

    A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates several significant improvements in the scientific formulation. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice thickness, polar radiation budgets, equatorial sea-surface temperatures, ocean currents, cloud radiative effects, and ENSO teleconnections. CCSM3 can produce stable climate simulations of millenial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean-atmosphere fluxes in western coastal regions, the spectrum of ENSO variability, the spatial distribution of precipitation in the Pacific and Indian Oceans, and the continental precipitation and surface air temperatures. We conclude with the prospects for extending CCSM to a more comprehensive model of the Earth's climate system.

  7. Seclazone Reactor Modeling And Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Osinga, T. [ETH-Zuerich (Switzerland); Olalde, G. [CNRS Odeillo (France); Steinfeld, A. [PSI and ETHZ (Switzerland)

    2005-03-01

    A numerical model is formulated for the SOLZINC solar chemical reactor for the production of Zn by carbothermal reduction of ZnO. The model involves solving, by the finite-volume technique, a 1D unsteady state energy equation that couples heat transfer to the chemical kinetics for a shrinking packed bed exposed to thermal radiation. Validation is accomplished by comparison with experimentally measured temperature profiles and Zn production rates as a function of time, obtained for a 5-kW solar reactor tested at PSI's solar furnace. (author)

  8. Validation Framework for USGS Landsat-derived Essential Climate Variables: the Burned Area Product Example

    Science.gov (United States)

    Mladinich, C. S.; Brunner, N. M.; Beal, Y. G.

    2013-12-01

    The U.S. Geological Survey (USGS) is generating a suite of Essential Climate Variables (ECVs), as defined by the Global Climate Observing System program, from the Landsat data archive. The Landsat archive will provide high spatial resolution (30 m) and long-term (1972 to present) global land products, meeting the needs of climate and ecological studies at global, national, and regional scales. Validation protocols for these products are being established, paralleling the Committee on Earth Observing Satellites (CEOS) Calibration/Validation Working Groups' best practice guidelines, but also being modified to account for the unique characteristics of the Landsat data. The USGS validation plan is unique in that it incorporates protocols that span not only the breadth of ecoregions but the timespan of the ECV products and Landsat satellite sensors (MSS, TM, TM+, and OLI). To achieve these goals, the incorporation of existing data bases is essential. Protocols are being developed to perform a CEOS Working Group on Calibration/Validation Stage 2 validation with plans on performing a full Stage 4 validation ensuring the spatial and temporal consistency of the ECV products. A Stage 2 validation reports product accuracies over a large number of locations and time periods by comparison with in situ or other suitable reference data. The Stage 3 validation reports product uncertainties in a statistically robust way over multiple locations and time periods representing global conditions. Validation at this stage reports on the accuracies and confidence of products for the user communities as well as to the algorithm developers. The Stage 4 validation calls for continual assessments as new product versions of the algorithms are released. This presentation will report on the validation protocols used for the Burned Area ECV product. The burned area ECV product is unique from other ECV products such as land cover or LAI because of the transitory nature of fires. In the United

  9. Development and validation of the Spanish version of the Team Climate Inventory: a measurement invariance test

    Directory of Open Access Journals (Sweden)

    Mirko Antino

    2014-05-01

    Full Text Available The present study analyzed the psychometric properties and the validity of the Spanish version of the Team Climate Inventory (TCI. The TCI is a measure of climate for innovation within groups at work and is based on the four-factor theory of climate for innovation (West, 1990. Cronbach's alpha and omega indexes revealed satisfactory reliabilities and exploratory factor analysis extracted the four original factors with the fifth factor as reported in other studies. Confirmatory factorial analysis confirmed that the five-factor solution presented the best fit to our data. Two samples (Spanish health care teams and Latin American software development teams for a total of 1099 participants were compared, showing metric measurement invariance. Evidences for validity based on team performance and team satisfaction prediction are offered.

  10. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability

    Science.gov (United States)

    Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.

    2016-06-01

    This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse ~1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to ~0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent

  11. An Independent Validation of Vulnerability Discovery Models

    CERN Document Server

    Nguyen, Viet Hung

    2012-01-01

    Having a precise vulnerability discovery model (VDM) would provide a useful quantitative insight to assess software security. Thus far, several models have been proposed with some evidence supporting their goodness-of-fit. In this work we describe an independent validation of the applicability of six existing VDMs in seventeen releases of the three popular browsers Firefox, Google Chrome and Internet Explorer. We have collected five different kinds of data sets based on different definitions of a vulnerability. We introduce two quantitative metrics, goodness-of-fit entropy and goodness-of-fit quality, to analyze the impact of vulnerability data sets to the stability as well as quality of VDMs in the software life cycles. The experiment result shows that the "confirmed-by-vendors' advisories" data sets apparently yields more stable and better results for VDMs. And the performance of the s-shape logistic model (AML) seems to be superior performance in overall. Meanwhile, Anderson thermodynamic model (AT) is ind...

  12. Future meteorological drought: projections of regional climate models for Europe

    Science.gov (United States)

    Stagge, James; Tallaksen, Lena; Rizzi, Jonathan

    2015-04-01

    In response to the major European drought events of the last decade, projecting future drought frequency and severity in a non-stationary climate is a major concern for Europe. Prior drought studies have identified regional hotspots in the Mediterranean and Eastern European regions, but have otherwise produced conflicting results with regard to future drought severity. Some of this disagreement is likely related to the relatively coarse resolution of Global Climate Models (GCMs) and regional averaging, which tends to smooth extremes. This study makes use of the most current Regional Climate Models (RCMs) forced with CMIP5 climate projections to quantify the projected change in meteorological drought for Europe during the next century at a fine, gridded scale. Meteorological drought is quantified using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI), which normalize accumulated precipitation and climatic water balance anomaly, respectively, for a specific location and time of year. By comparing projections for these two indices, the importance of precipitation deficits can be contrasted with the importance of evapotranspiration increases related to temperature changes. Climate projections are based on output from CORDEX (the Coordinated Regional Climate Downscaling Experiment), which provides high resolution regional downscaled climate scenarios that have been extensively tested for numerous regions around the globe, including Europe. SPI and SPEI are then calculated on a gridded scale at a spatial resolution of either 0.44 degrees (~50 km) or 0.11 degrees (~12.5km) for the three projected emission pathways (rcp26, rcp45, rcp85). Analysis is divided into two major sections: first validating the models with respect to observed historical trends in meteorological drought from 1970-2005 and then comparing drought severity and frequency during three future time periods (2011-2040, 2041-2070, 2071-2100) to the

  13. Climate stability and sensitivity in some simple conceptual models

    Science.gov (United States)

    Bates, J. Ray

    2012-02-01

    A theoretical investigation of climate stability and sensitivity is carried out using three simple linearized models based on the top-of-the-atmosphere energy budget. The simplest is the zero-dimensional model (ZDM) commonly used as a conceptual basis for climate sensitivity and feedback studies. The others are two-zone models with tropics and extratropics of equal area; in the first of these (Model A), the dynamical heat transport (DHT) between the zones is implicit, in the second (Model B) it is explicitly parameterized. It is found that the stability and sensitivity properties of the ZDM and Model A are very similar, both depending only on the global-mean radiative response coefficient and the global-mean forcing. The corresponding properties of Model B are more complex, depending asymmetrically on the separate tropical and extratropical values of these quantities, as well as on the DHT coefficient. Adopting Model B as a benchmark, conditions are found under which the validity of the ZDM and Model A as climate sensitivity models holds. It is shown that parameter ranges of physical interest exist for which such validity may not hold. The 2 × CO2 sensitivities of the simple models are studied and compared. Possible implications of the results for sensitivities derived from GCMs and palaeoclimate data are suggested. Sensitivities for more general scenarios that include negative forcing in the tropics (due to aerosols, inadvertent or geoengineered) are also studied. Some unexpected outcomes are found in this case. These include the possibility of a negative global-mean temperature response to a positive global-mean forcing, and vice versa.

  14. Climate model uncertainty vs. conceptual geological uncertainty in hydrological modeling

    Directory of Open Access Journals (Sweden)

    T. O. Sonnenborg

    2015-04-01

    Full Text Available Projections of climate change impact are associated with a cascade of uncertainties including CO2 emission scenario, climate model, downscaling and impact model. The relative importance of the individual uncertainty sources is expected to depend on several factors including the quantity that is projected. In the present study the impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Each projection of future climate is a result of a GCM-RCM model combination (from the ENSEMBLES project forced by the same CO2 scenario (A1B. The changes from the reference period (1991–2010 to the future period (2081–2100 in projected hydrological variables are evaluated and the effects of geological model and climate model uncertainties are quantified. The results show that uncertainty propagation is context dependent. While the geological conceptualization is the dominating uncertainty source for projection of travel time and capture zones, the uncertainty on the climate models is more important for groundwater hydraulic heads and stream flow.

  15. Climate model uncertainty versus conceptual geological uncertainty in hydrological modeling

    Science.gov (United States)

    Sonnenborg, T. O.; Seifert, D.; Refsgaard, J. C.

    2015-09-01

    Projections of climate change impact are associated with a cascade of uncertainties including in CO2 emission scenarios, climate models, downscaling and impact models. The relative importance of the individual uncertainty sources is expected to depend on several factors including the quantity that is projected. In the present study the impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Each projection of future climate is a result of a GCM-RCM model combination (from the ENSEMBLES project) forced by the same CO2 scenario (A1B). The changes from the reference period (1991-2010) to the future period (2081-2100) in projected hydrological variables are evaluated and the effects of geological model and climate model uncertainties are quantified. The results show that uncertainty propagation is context-dependent. While the geological conceptualization is the dominating uncertainty source for projection of travel time and capture zones, the uncertainty due to the climate models is more important for groundwater hydraulic heads and stream flow.

  16. Climate and ozone change effects on ultraviolet radiation and risks (COEUR). Using and validating earth observation

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, A; Den Outer, P.N.; Slaper, H.

    2008-06-15

    The AMOUR2.0 (Assessment Model for Ultraviolet radiation and Risks) model is presented. With this model it is possible to relate ozone depletion scenarios to (changes in) skin cancer incidence. The estimation of UV maps is integrated in the model. The satellite-based method to estimate UV maps is validated for EPTOMS (Earth Probe - Total Ozone Mapping Spectrometer) data against ground measurements for 17 locations in Europe. For most ground stations the estimates for the yeardose agree within 5%. Deviations are related to high ground albedo. A suggestion has been made for improvement of the albedo-correction. The AMOUR2.0 UV estimate was found to correspond better with ground measurements than the models from NASA (National Aeronautics and Space Administration in the USA), TEMIS (Tropospheric Emission Monitoring Internet Service of the European Space Agency ESA) and FMI (Finnish Meteorological Institute). The EPTOMS-UV product and the FMI model overestimate the UV dose. The TEMIS model has a good clear-sky correspondence with ground measurement, but overestimates UV in clouded situations. Satellite measurements of ozone and historic chlorine level have been used to make global estimates for future ozone levels for a collection of emission scenarios for ozone depleting substances. Analysis of the 'best guess' scenario, shows that the minimum in ozone level will be reached within 15 years from now. In 2050 the UV dose for Europe will to a large extent have returned to the values observed in 1980 if there is no climate-change driven alteration in cloud patterns. Future incidence maps up to the year 2100 are estimated with the dose-effect relation presented in an earlier study. This is done for three UV related types of skin-cancer: Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC) and Cutaneous Malignant Melanoma (CMM). For a stationary population, global incidences of BCC and CMM are expected to peak around the year 2065 and for SCC around 2040.

  17. Challenges in Modeling Regional Climate Change (Invited)

    Science.gov (United States)

    Leung, L.

    2013-12-01

    Precipitation, soil moisture, and runoff are vital to ecosystems and human activities. Predicting changes in the space-time characteristics of these water cycle processes has been a longstanding challenge in climate modeling. Different modeling approaches have been developed to allow high resolution to be achieved using available computing resources. Although high resolution is necessary to better resolve regional forcing and processes, improvements in simulating water cycle response are difficult to demonstrate and climate models have so far shown irreducible sensitivity to model resolution, dynamical framework, and physics parameterizations that confounds reliable predictions of regional climate change. Additionally, regional climate responds to both regional and global forcing but predicting changes in regional and global forcing such as related to land use/land cover and aerosol requires improved understanding and modeling of the dynamics of human-earth system interactions. Furthermore, regional response and regional forcing may be related through complex interactions that are dependent on the regional climate regimes, making decisions on regional mitigation and adaptation more challenging. Examples of the aforementioned challenges from on-going research and possible future directions will be discussed.

  18. Ionospheric climate and weather modeling

    International Nuclear Information System (INIS)

    Simulations of the ionospheric model of Schunk et al. (1986) have been used for climatology and weather modeling. Steady state empirical models were used in the climatology model to provide plasma convection and particle precipitation patterns in the northern high-latitude region. The climatology model also depicts the ionospheric electron density and ion and electron temperatures for solar maximum, winter solstice, and strong geomagnetic activity conditions. The weather model describes the variations of ionospheric features during the solar cycle, seasonal changes, and geomagnetic activity. Prospects for future modeling are considered. 23 references

  19. Modeling Water, Climate, Agriculture, and the Economy

    OpenAIRE

    Yu, Winston; Yang, Yi-chen; Savitsky, Andre; Alford, Donald; Brown, Casey; Wescoat, James; Debowicz, Dario; Robinson, Sherman

    2013-01-01

    Describes two models used in the integrated modeling framework designed to study water, climate, agriculture and the economy in Pakistan's Indus Basin: (1) the Indus Basin Model Revised (IBMR-1012), a hydro-economic optimization model that takes a variety of inputs (such as agronomic information, irrigation system data, and water inflows) to generate the optimal crop production across the provinces (subject to a variety of physical and political constraints) for every month of the year; and (...

  20. GLOBAL ANALYSIS OF AGRICULTURAL TRADE LIBERALIZATION: ASSESSING MODEL VALIDITY

    OpenAIRE

    Hertel, Thomas W.; Keeney, Roman; Valenzuela, Ernesto

    2004-01-01

    This paper presents a validation experiment of a global CGE trade model widely used for analysis of trade liberalization. We focus on the ability of the model to reproduce price volatility in wheat markets. The literature on model validation is reviewed with an eye towards designing an appropriate methodology for validating large scale CGE models. The validation experiment results indicate that in its current form, the GTAP-AGR model is incapable of reproducing wheat market price volatility a...

  1. Wind climate from the regional climate model REMO

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Berg, Jacob;

    2010-01-01

    Selected outputs from simulations with the regional climate model REMO from the Max Planck Institute, Hamburg, Germany were studied in connection with wind energy resource assessment. It was found that the mean wind characteristics based on observations from six mid-latitude stations are well...... described by the standard winds derived from the REMO pressure data. The mean wind parameters include the directional wind distribution, directional and omni-directional mean values and Weibull fitting parameters, spectral analysis and interannual variability of the standard winds. It was also found that...

  2. Modelling and observing urban climate in the Netherlands

    International Nuclear Information System (INIS)

    The main aims of the present study are: (1) to evaluate the performance of two well-known mesoscale NWP (numerical weather prediction) models coupled to a UCM (Urban Canopy Models), and (2) to develop a proper measurement strategy for obtaining meteorological data that can be used in model evaluation studies. We choose the mesoscale models WRF (Weather Research and Forecasting Model) and RAMS (Regional Atmospheric Modeling System), respectively, because the partners in the present project have a large expertise with respect to these models. In addition WRF and RAMS have been successfully used in the meteorology and climate research communities for various purposes, including weather prediction and land-atmosphere interaction research. Recently, state-of-the-art UCM's were embedded within the land surface scheme of the respective models, in order to better represent the exchange of heat, momentum, and water vapour in the urban environment. Key questions addressed here are: What is the general model performance with respect to the urban environment?; How can useful and observational data be obtained that allow sensible validation and further parameterization of the models?; and Can the models be easily modified to simulate the urban climate under Dutch climatic conditions, urban configuration and morphology? Chapter 2 reviews the available Urban Canopy Models; we discuss their theoretical basis, the different representations of the urban environment, the required input and the output. Much of the information was obtained from the Urban Surface Energy Balance: Land Surface Scheme Comparison project (PILPS URBAN, PILPS stands for Project for Inter-comparison of Land-Surface Parameterization Schemes). This project started in March 2008 and was coordinated by the Department of Geography, King's College London. In order to test the performance of our models we participated in this project. Chapter 3 discusses the main results of the first phase of PILPS URBAN. A first

  3. Prediction of future climate change for the Blue Nile, using a nested Regional Climate Model

    Science.gov (United States)

    Soliman, E.; Jeuland, M.

    2009-04-01

    Although the Nile River Basin is rich in natural resources, it faces many challenges. Rainfall is highly variable across the region, on both seasonal and inter-annual scales. This variability makes the region vulnerable to droughts and floods. Many development projects involving Nile waters are currently underway, or being studied. These projects will lead to land-use patterns changes and water distribution and availability. It is thus important to assess the effects of a) these projects and b) evolving water resource management and policies, on regional hydrological processes. This paper seeks to establish a basis for evaluation of such impacts within the Blue Nile River sub-basin, using the RegCM3 Regional Climate Model to simulate interactions between the land surface and climatic processes. We first present results from application of this RCM model nested with downscaled outputs obtained from the ECHAM5/MPI-OM1 transient simulations for the 20th Century. We then investigate changes associated with mid-21st century emissions forcing of the SRES A1B scenario. The results obtained from the climate model are then fed as inputs to the Nile Forecast System (NFS), a hydrologic distributed rainfall runoff model of the Nile Basin, The interaction between climatic and hydrological processes on the land surface has been fully coupled. Rainfall patterns and evaporation rates have been generated using RegCM3, and the resulting runoff and Blue Nile streamflow patterns have been simulated using the NFS. This paper compares the results obtained from the RegCM3 climate model with observational datasets for precipitation and temperature from the Climate Research Unit (UK) and the NASA Goddard Space Flight Center GPCP (USA) for 1985-2000. The validity of the streamflow predictions from the NFS is assessed using historical gauge records. Finally, we present results from modeling of the A1B emissions scenario of the IPCC for the years 2034-2055. Our results indicate that future

  4. Getting warmer? Can models predict the future of the earth's climate?

    International Nuclear Information System (INIS)

    Climate modelers are most confident about the radiative heating by greenhouse gases and cooling by industrial, and other, aerosols. We have considerable confidence about our ability to simulate the large scale circulation of the atmosphere and oceans but as yet have little prediction skill for near-surface continental climates, extreme events or knowledge of the sensitivity to socio-economic forcing functions which drive climate change. As yet no formalism exists for validation of coupled climate models but evaluation and confirmation can and must be attempted by examination of the results of fully coupled simulations; model component intercomparisons; and sensitivity studies of interactions between numerical model components. Modelling and observation communities must jointly strive for improved accuracy (determined by more careful validation against high quality data); enhanced regional to local specificity (gained by model improvements and enhanced validation); and by increasing the skill with which we can detect climate change (observationally driven enhanced by model- based sampling strategies and scenarios). In this paper, specific examples of these three challenges to climate prediction improvement were discused: better accuracy in terms of continental surface climate prediction; enhanced specificity in terms of tropical cyclone predictions; and improved detection in terms of increased understanding. of the global carbon cycle

  5. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  6. Hydrological Response to Climate Change over the Blue Nile Basin Distributed hydrological modeling based on surrogate climate change scenarios

    Science.gov (United States)

    Berhane, F. G.; Anyah, R. O.

    2010-12-01

    The program Soil and Water Assessment Tool (SWAT2009) model has been applied to the Blue Nile Basin to study the hydrological response to surrogate climate changes over the Blue Nile Basin (Ethiopia) by downscaling gridded weather data. The specific objectives of the study include (i) examining the performance of the SWAT model in simulating hydrology-climate interactions and feedbacks within the entire Blue Nile Basin, and (ii) investigating the response of hydrological variables to surrogate climate changes. Monthly weather data from the Climate Research Unit (CRU) are converted to daily values as input into the SWAT using Monthly to Daily Weather Converter (MODAWEC). Using the program SUFI-2 (Sequential Uncertainty Fitting Algorithm), data from 1979 to 1983 are applied for sensitivity analysis and calibration (P-factor = 90%, R-factor =0.7, R2 =0.93 and NS=0.93) and subsequently to validate hindcasts over the period 1984-1989 (R2 =0.92 and NS=0.92). The period from 1960-2000 was used as baseline and has been used to determine the changes and the effect of the surrogate climate changes over the Blue Nile Basin. Overall, our surrogate climate change based simulations indicate the hydrology of the Blue Nile catchment is very sensitive to potential climate change with 100%, 34% and 51% increase to the surface runoff, lateral flow and water yield respectively for the A2 scenario surrogate. Key Words: SWAT, MODAWEC, Blue Nile Basin, SUFI-2, climate change, hydrological modeling, CRU

  7. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    Science.gov (United States)

    Romanach, Stephanie; Watling, James I.; Fletcher, Robert J., Jr.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  8. On coupling global biome models with climate models

    International Nuclear Information System (INIS)

    The BIOME model of Prentice et al. (1992), which predicts global vegetation patterns in equilibrium with climate, is coupled with the ECHAM climate model of the Max-Planck-Institut fuer Meteorologie, Hamburg. It is found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only between the initial biome distribution and the biome distribution computed after the first simulation period, provided that the climate-biome model is started from a biome distribution that resembles the present-day distribution. After the first simulation period, there is no significant shrinking, expanding, or shifting of biomes. Likewise, no trend is seen in global averages of land-surface parameters and climate variables. (orig.)

  9. High dimensional decision dilemmas in climate models

    Directory of Open Access Journals (Sweden)

    A. Bracco

    2013-10-01

    Full Text Available An important source of uncertainty in climate models is linked to the calibration of model parameters. Interest in systematic and automated parameter optimization procedures stems from the desire to improve the model climatology and to quantify the average sensitivity associated with potential changes in the climate system. Building upon on the smoothness of the response of an atmospheric circulation model (AGCM to changes of four adjustable parameters, Neelin et al. (2010 used a quadratic metamodel to objectively calibrate the AGCM. The metamodel accurately estimates global spatial averages of common fields of climatic interest, from precipitation, to low and high level winds, from temperature at various levels to sea level pressure and geopotential height, while providing a computationally cheap strategy to explore the influence of parameter settings. Here, guided by the metamodel, the ambiguities or dilemmas related to the decision making process in relation to model sensitivity and optimization are examined. Simulations of current climate are subject to considerable regional-scale biases. Those biases may vary substantially depending on the climate variable considered, and/or on the performance metric adopted. Common dilemmas are associated with model revisions yielding improvement in one field or regional pattern or season, but degradation in another, or improvement in the model climatology but degradation in the interannual variability representation. Challenges are posed to the modeler by the high dimensionality of the model output fields and by the large number of adjustable parameters. The use of the metamodel in the optimization strategy helps visualize trade-offs at a regional level, e.g., how mismatches between sensitivity and error spatial fields yield regional errors under minimization of global objective functions.

  10. High dimensional decision dilemmas in climate models

    Directory of Open Access Journals (Sweden)

    A. Bracco

    2013-05-01

    Full Text Available An important source of uncertainty in climate models is linked to the calibration of model parameters. Interest in systematic and automated parameter optimization procedures stems from the desire to improve the model climatology and to quantify the average sensitivity associated with potential changes in the climate system. Neelin et al. (2010 used a quadratic metamodel to objectively calibrate an atmospheric circulation model (AGCM around four adjustable parameters. The metamodel accurately estimates global spatial averages of common fields of climatic interest, from precipitation, to low and high level winds, from temperature at various levels to sea level pressure and geopotential height, while providing a computationally cheap strategy to explore the influence of parameter settings. Here, guided by the metamodel, the ambiguities or dilemmas related to the decision making process in relation to model sensitivity and optimization are examined. Simulations of current climate are subject to considerable regional-scale biases. Those biases may vary substantially depending on the climate variable considered, and/or on the performance metric adopted. Common dilemmas are associated with model revisions yielding improvement in one field or regional pattern or season, but degradation in another, or improvement in the model climatology but degradation in the interannual variability representation. Challenges are posed to the modeler by the high dimensionality of the model output fields and by the large number of adjustable parameters. The use of the metamodel in the optimization strategy helps visualize trade-offs at a regional level, e.g. how mismatches between sensitivity and error spatial fields yield regional errors under minimization of global objective functions.

  11. Mapping model agreement on future climate projections

    Science.gov (United States)

    Tebaldi, Claudia; Arblaster, Julie M.; Knutti, Reto

    2011-12-01

    Climate change projections are often based on simulations from multiple global climate models and are presented as maps with some form of stippling or measure of robustness to indicate where different models agree on the projected anthropogenically forced changes. The criteria used to determine model agreement, however, often ignore the presence of natural internal variability. We demonstrate that this leads to misleading presentations of the degree of model consensus on the sign and magnitude of the change if the ratio of the signal from the externally forced change to internal variability is low. We present a simple alternative method of depicting multimodel projections which clearly separates lack of climate change signal from lack of model agreement by assessing the degree of consensus on the significance of the change as well as the sign of the change. Our results demonstrate that the common interpretation of lack of model agreement in precipitation projections is largely an artifact of the large noise from climate variability masking the signal, an issue exacerbated by performing analyses at the grid point scale. We argue that separating more clearly the case of lack of agreement from the case of lack of signal will add valuable information for stake-holders' decision making, since adaptation measures required in the two cases are potentially very different.

  12. The Community Climate System Model, Version 2.

    Science.gov (United States)

    Kiehl, Jeffrey T.; Gent, Peter R.

    2004-10-01

    The Community Climate System Model, version 2 (CCSM2) is briefly described. A 1000-yr control simulation of the present day climate has been completed without flux adjustments. Minor modifications were made at year 350, which included all five components using the same physical constants. There are very small trends in the upper-ocean, sea ice, atmosphere, and land fields after year 150 of the control simulation. The deep ocean has small but significant trends; however, these are not large enough that the control simulation could not be continued much further. The equilibrium climate sensitivity of CCSM2 is 2.2 K, which is slightly larger than the Climate System Model, version 1 (CSM1) value of 2.0 K.Several aspects of the control simulation's mean climate and interannual variability are described, and good and bad properties of the control simulation are documented. In particular, several aspects of the simulation, especially in the Arctic region, are much improved over those obtained in CSM1. Other aspects, such as the tropical Pacific region simulation, have not been improved much compared to those in CSM1. Priorities for further model development are discussed in the conclusions section.HR ALIGN="center" WIDTH="30%">

  13. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  14. Validation of static gravity field models using GRACE K-band ranging and GOCE gradiometry data

    OpenAIRE

    Hashemi Farahani, H.; Ditmar, P.G.; Klees, R.; De Teixeira da Encarnacao, J.G.; Liu, X.; Zhao, Q.; Guo, J.

    2013-01-01

    The ability of satellite gravimetry data to validate global static models of the Earth’s gravity field is studied. Two types of data are considered: K-band ranging (KBR) data from the Gravity Recovery and Climate Experiment (GRACE) mission and Satellite Gravity Gradiometry (SGG) data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission. The validation is based on analysis of misfits obtained as the differences between the data observed and those computed with a fo...

  15. Utilizing Cloud Computing to Improve Climate Modeling and Studies

    Science.gov (United States)

    Li, Z.; Yang, C.; Liu, K.; Sun, M.; XIA, J.; Huang, Q.

    2013-12-01

    Climate studies have become increasingly important due to the global climate change, one of the biggest challenges for the human in the 21st century. Climate data, not only observations data collected from various sensors but also simulated data generated from diverse climate models, are essential for scientists to explore the potential climate change patterns and analyze the complex climate dynamics. Climate modeling and simulation, a critical methodology for simulating the past and predicting the future climate conditions, can produce huge amount of data that contains potentially valuable information for climate studies. However, using modeling method in climate studies poses at least two challenges for scientists. First, running climate models is a computing intensive process, which requires large amounts of computation resources. Second, running climate models is also a data intensive process generating Big geospatial Data (model output), which demands large storage for managing the data and large computing power to process and analyze these data. This presentation introduces a novel framework to tackle the two challenges by 1) running climate models in a cloud environment in an automated fashion, and 2) managing and parallel processing Big model output Data by leveraging cloud computing technologies. A prototype system is developed based on the framework using ModelE as the climate model. Experiment results show that this framework can improve climate modeling in the research cycle by accelerating big data generation (model simulation), big data management (storage and processing) and on demand big data analytics.

  16. Assessment model validity document FARF31

    International Nuclear Information System (INIS)

    The prime goal of model validation is to build confidence in the model concept and that the model is fit for its intended purpose. In other words: Does the model predict transport in fractured rock adequately to be used in repository performance assessments. Are the results reasonable for the type of modelling tasks the model is designed for. Commonly, in performance assessments a large number of realisations of flow and transport is made to cover the associated uncertainties. Thus, the flow and transport including radioactive chain decay are preferably calculated in the same model framework. A rather sophisticated concept is necessary to be able to model flow and radionuclide transport in the near field and far field of a deep repository, also including radioactive chain decay. In order to avoid excessively long computational times there is a need for well-based simplifications. For this reason, the far field code FARF31 is made relatively simple, and calculates transport by using averaged entities to represent the most important processes. FARF31 has been shown to be suitable for the performance assessments within the SKB studies, e.g. SR 97. Among the advantages are that it is a fast, simple and robust code, which enables handling of many realisations with wide spread in parameters in combination with chain decay of radionuclides. Being a component in the model chain PROPER, it is easy to assign statistical distributions to the input parameters. Due to the formulation of the advection-dispersion equation in FARF31 it is possible to perform the groundwater flow calculations separately.The basis for the modelling is a stream tube, i.e. a volume of rock including fractures with flowing water, with the walls of the imaginary stream tube defined by streamlines. The transport within the stream tube is described using a dual porosity continuum approach, where it is assumed that rock can be divided into two distinct domains with different types of porosity

  17. Development and initial validation of the Classroom Motivational Climate Questionnaire (CMCQ).

    Science.gov (United States)

    Alonso Tapia, Jesús; Fernández Heredia, Blanca

    2008-11-01

    Research on classroom goal-structures (CGS) has shown the usefulness of assessing the classroom motivational climate to evaluate educational interventions and to promote changes in teachers' activity. So, the Classroom Motivational Climate Questionnaire for Secondary and High-School students was developed. To validate it, confirmatory factor analysis and correlation and regression analyses were performed. Results showed that the CMCQ is a highly reliable instrument that covers many of the types of teaching patterns that favour motivation to learn, correlates as expected with other measures of CGS, predicts satisfaction with teacher's work well, and allows detecting teachers who should revise their teaching. PMID:18940098

  18. Examine Climate Models by Using Infrared Spectrum

    OpenAIRE

    Yi Huang; Ramaswamy, V.

    2008-01-01

    We examine global climate models by comparing the satellite-observed high resolution global infrared spectra with the model-simulated counterpart. Because the topof-the-atmosphere outgoing Earth thermal emission at different frequencies is sensitive to different geophysical variables (temperature, water vapor and other greenhouse gas concentrations, clouds, etc.) at various levels, a comparison of observed and simulated spectra is as challenging as examining a variety of model-simulated geoph...

  19. Simulation of the arid climate of the southern great basin using a regional climate model

    International Nuclear Information System (INIS)

    As part of the development effort of a regional climate model (RCM) for the southern Great Basin, this paper presents a validation analysis of the climatology generated by a high-resolution RCM driven by observations. Two multiyear simulations were performed over the western United States with the RCM driven by European Centre for Medium-Range Weather Forecasts analyses of observations. This validation analysis is the first phase of a project to produce simulations of future climate scenarios over a region surrounding Yucca Mountain, Nevada, the only location currently being considered as a potential high-level nuclear-waste repository site. Model-produced surface air temperatures and precipitation were compared with observations from five southern Nevada stations located in the vicinity of Yucca Mountain. The seasonal cycles of temperature and precipitation were simulated well. Monthly and seasonal temperature biases were generally negative and largely explained by differences in elevation between the observing stations and the model topography. The model-simulated precipitation captured the extreme dryness of the Great Basin. Average yearly precipitation biases were mostly negative in the summer and positive in the winter. The number of simulated daily precipitation events for various precipitation intervals was within factors of 1.5-3.5 of observed. Overall, the model tended to overestimate the number of light precipitation events and underestimate the number of heavy precipitation events. At Yucca Mountain, simulated precipitation, soil moisture content, and water infiltration below the root zone (top 1 m) were maximized in the winter. Evaporation peaked in the spring after temperatures began to increase. The conclusion drawn from this validation analysis is that this high-resolution RCM simulates the regional surface climatology of the southern Great Basin reasonably well when driven by meteorological fields derived from observations. 26 refs., 9 figs., 4 tabs

  20. Atmospheric corrosion: statistical validation of models

    International Nuclear Information System (INIS)

    In this paper we discuss two different methods for validation of regression models, applied to corrosion data. One of them is based on the correlation coefficient and the other one is the statistical test of lack of fit. Both methods are used here to analyse fitting of bi logarithmic model in order to predict corrosion for very low carbon steel substrates in rural and urban-industrial atmospheres in Uruguay. Results for parameters A and n of the bi logarithmic model are reported here. For this purpose, all repeated values were used instead of using average values as usual. Modelling is carried out using experimental data corresponding to steel substrates under the same initial meteorological conditions ( in fact, they are put in the rack at the same time). Results of correlation coefficient are compared with the lack of it tested at two different signification levels (α=0.01 and α=0.05). Unexpected differences between them are explained and finally, it is possible to conclude, at least in the studied atmospheres, that the bi logarithmic model does not fit properly the experimental data. (Author) 18 refs

  1. A model approach to climate change

    International Nuclear Information System (INIS)

    The Earth is warming up, with potentially disastrous consequences. Computer climate models based on physics are our best hope of predicting and managing climate change, as Adam Scaife, Chris Folland and John Mitchell explain. This month scientists from over 60 nations on the Intergovernmental Panel on Climate Change (IPCC) released the first part of their latest report on global warming. In the report the panel concludes that it is very likely that most of the 0.5 deg. C increase in global temperature over the last 50 years is due to man-made emissions of greenhouse gases. And the science suggests that much greater changes are in store: by 2100 anthropogenic global warming could be comparable to the warming of about 6 deg. C since the last ice age. The consequences of global warming could be catastrophic. As the Earth continues to heat up, the frequency of floods and droughts is likely to increase, water supplies and ecosystems will be placed under threat, agricultural practices will have to be changed and millions of people may be displaced as the sea level rises. The global economy could also be severely affected. The scientific consensus is that the observed warming of the Earth during the past half-century is mostly due to human emissions of greenhouse gases. Predicting climate change depends on sophisticated computer models developed over the past 50 years. Climate models are based on the Navier-Stokes equations for fluid flow, which are solved numerically on a grid covering the globe. These models have been very successful in simulating the past climate, giving researchers confidence in their predictions. The most likely value for the global temperature increase by 2100 is in the range 1.4-5.8 deg. C, which could have catastrophic consequences. (U.K.)

  2. Modelling hydrological responses of Nerbioi River Basin to Climate Change

    Science.gov (United States)

    Mendizabal, Maddalen; Moncho, Roberto; Chust, Guillem; Torp, Peter

    2010-05-01

    basin (Basque Country, North of Spain). So that adaptation strategies can be defined. In order to fulfil this objective four subobjectives are defined: (1)selection of the future climate projections for the case study area from a wide spectrum of possibilities; (2) model the hydrological processes of the basin with a physically distributed complex hydrological model; (3) validation of the hydrological model with observation data; and (4) runoff simulation introducing regional climate model data selected. The analysis of climate models suggests that extreme precipitation in the Basque Country increased by about 10% during the twenty-first century. This increase of extreme precipitations raised discharge and water level in Nerbioi river basin. That is why in the 21st century it is expected that the flood-prone area will expand for precipitation with a return period of 50 years. In this context, it is necessary to define and evaluate different adaptation options which are already in practice or conceivable according to the current scientific knowledge. As well as evaluate the adaptation measures in terms of their ability to lower the vulnerability of water resources to climate change. For example, land use change could be a useful tool to adapt our basin systems. The land use plays an important role on the water balance of a river by varying the proportion of precipitation that runs off and the fraction that is lost by evapotranspiration. Therefore, both climate change and adaptation strategies will have an impact on the hydrodynamic conditions of rivers; particularly the changes in flow conditions will have a severe ecological, economical and social impact. As future work, adaptation measures will introduce in the future runoff simulation in order to evaluate the effectiveness and as a decision-making tool to operational organisations.

  3. Modelling the wind climate of Ireland

    DEFF Research Database (Denmark)

    Frank, H.P.; Landberg, L.

    1997-01-01

    The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The climatology is represented by 65 frequency classes of geostrophic wind that were selected as equiangular direction sectors and speed intervals with equal frequency in a sector. The results are...

  4. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  5. Unit testing, model validation, and biological simulation

    Science.gov (United States)

    Watts, Mark D.; Ghayoomie, S. Vahid; Larson, Stephen D.; Gerkin, Richard C.

    2016-01-01

    The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  6. Validation and application of the SCALP model

    Science.gov (United States)

    Smith, D. A. J.; Martin, C. E.; Saunders, C. J.; Smith, D. A.; Stokes, P. H.

    The Satellite Collision Assessment for the UK Licensing Process (SCALP) model was first introduced in a paper presented at IAC 2003. As a follow-on, this paper details the steps taken to validate the model and describes some of its applications. SCALP was developed for the British National Space Centre (BNSC) to support liability assessments as part of the UK's satellite license application process. Specifically, the model determines the collision risk that a satellite will pose to other orbiting objects during both its operational and post-mission phases. To date SCALP has been used to assess several LEO and GEO satellites for BNSC, and subsequently to provide the necessary technical basis for licenses to be issued. SCALP utilises the current population of operational satellites residing in LEO and GEO (extracted from ESA's DISCOS database) as a starting point. Realistic orbital dynamics, including the approximate simulation of generic GEO station-keeping strategies are used to propagate the objects over time. The method takes into account all of the appropriate orbit perturbations for LEO and GEO altitudes and allows rapid run times for multiple objects over time periods of many years. The orbit of a target satellite is also propagated in a similar fashion. During these orbital evolutions, a collision prediction and close approach algorithm assesses the collision risk posed to the satellite population. To validate SCALP, specific cases were set up to enable the comparison of collision risk results with other established models, such as the ESA MASTER model. Additionally, the propagation of operational GEO satellites within SCALP was compared with the expected behaviour of controlled GEO objects. The sensitivity of the model to changing the initial conditions of the target satellite such as semi-major axis and inclination has also been demonstrated. A further study shows the effect of including extra objects from the GTO population (which can pass through the LEO

  7. Analysis of a high-resolution regional climate simulation for Alpine temperature. Validation and influence of the NAO

    Energy Technology Data Exchange (ETDEWEB)

    Proemmel, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2008-11-06

    To determine whether the increase in resolution of climate models improves the representation of climate is a crucial topic in regional climate modelling. An improvement over coarser-scale models is expected especially in areas with complex orography or along coastlines. However, some studies have shown no clear added value for regional climate models. In this study a high-resolution regional climate model simulation performed with REMO over the period 1958-1998 is analysed for 2m temperature over the orographically complex European Alps and their surroundings called the Greater Alpine Region (GAR). The model setup is in hindcast mode meaning that the simulation is driven with perfect boundary conditions by the ERA40 reanalysis through prescribing the values at the lateral boundaries and spectral nudging of the large-scale wind field inside the model domain. The added value is analysed between the regional climate simulation with a resolution of 1/6 and the driving reanalysis with a resolution of 1.125 . Before analysing the added value both the REMO simulation and the ERA40 reanalysis are validated against different station datasets of monthly and daily mean 2m temperature. The largest dataset is the dense, homogenised and quality controlled HISTALP dataset covering the whole GAR, which gave the opportunity for the validation undertaken in this study. The temporal variability of temperature, as quantified by correlation, is well represented by both REMO and ERA40. However, both show considerable biases. The REMO bias reaches 3 K in summer in regions known to experience a problem with summer drying in a number of regional models. In winter the bias is strongly influenced by the choice of the temperature lapse rate, which is applied to compare grid box and station data at different altitudes, and has the strongest influence on inner Alpine subregions where the altitude differences are largest. By applying a constant lapse rate the REMO bias in winter in the high

  8. The Software Architecture of Global Climate Models

    Science.gov (United States)

    Alexander, K. A.; Easterbrook, S. M.

    2011-12-01

    It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.

  9. Hydroclimatology of the Nile: results from a regional climate model

    Science.gov (United States)

    Mohamed, Y. A.; van den Hurk, B. J. J. M.; Savenije, H. H. G.; Bastiaanssen, W. G. M.

    2005-09-01

    This paper presents the result of the regional coupled climatic and hydrologic model of the Nile Basin. For the first time the interaction between the climatic processes and the hydrological processes on the land surface have been fully coupled. The hydrological model is driven by the rainfall and the energy available for evaporation generated in the climate model, and the runoff generated in the catchment is again routed over the wetlands of the Nile to supply moisture for atmospheric feedback. The results obtained are quite satisfactory given the extremely low runoff coefficients in the catchment. The paper presents the validation results over the sub-basins: Blue Nile, White Nile, Atbara river, the Sudd swamps, and the Main Nile for the period 1995 to 2000. Observational datasets were used to evaluate the model results including radiation, precipitation, runoff and evaporation data. The evaporation data were derived from satellite images over a major part of the Upper Nile. Limitations in both the observational data and the model are discussed. It is concluded that the model provides a sound representation of the regional water cycle over the Nile. The sources of atmospheric moisture to the basin, and location of convergence/divergence fields could be accurately illustrated. The model is used to describe the regional water cycle in the Nile basin in terms of atmospheric fluxes, land surface fluxes and land surface-climate feedbacks. The monthly moisture recycling ratio (i.e. locally generated/total precipitation) over the Nile varies between 8 and 14%, with an annual mean of 11%, which implies that 89% of the Nile water resources originates from outside the basin physical boundaries. The monthly precipitation efficiency varies between 12 and 53%, and the annual mean is 28%. The mean annual result of the Nile regional water cycle is compared to that of the Amazon and the Mississippi basins.

  10. Hydroclimatology of the Nile: results from a regional climate model

    Directory of Open Access Journals (Sweden)

    Y. A. Mohamed

    2005-01-01

    Full Text Available This paper presents the result of the regional coupled climatic and hydrologic model of the Nile Basin. For the first time the interaction between the climatic processes and the hydrological processes on the land surface have been fully coupled. The hydrological model is driven by the rainfall and the energy available for evaporation generated in the climate model, and the runoff generated in the catchment is again routed over the wetlands of the Nile to supply moisture for atmospheric feedback. The results obtained are quite satisfactory given the extremely low runoff coefficients in the catchment. The paper presents the validation results over the sub-basins: Blue Nile, White Nile, Atbara river, the Sudd swamps, and the Main Nile for the period 1995 to 2000. Observational datasets were used to evaluate the model results including radiation, precipitation, runoff and evaporation data. The evaporation data were derived from satellite images over a major part of the Upper Nile. Limitations in both the observational data and the model are discussed. It is concluded that the model provides a sound representation of the regional water cycle over the Nile. The sources of atmospheric moisture to the basin, and location of convergence/divergence fields could be accurately illustrated. The model is used to describe the regional water cycle in the Nile basin in terms of atmospheric fluxes, land surface fluxes and land surface-climate feedbacks. The monthly moisture recycling ratio (i.e. locally generated/total precipitation over the Nile varies between 8 and 14%, with an annual mean of 11%, which implies that 89% of the Nile water resources originates from outside the basin physical boundaries. The monthly precipitation efficiency varies between 12 and 53%, and the annual mean is 28%. The mean annual result of the Nile regional water cycle is compared to that of the Amazon and the Mississippi basins.

  11. Comparison of 20th century and pre-industrial climate over South America in regional model simulations

    OpenAIRE

    Wagner, S.; Fast, I.; F. Kaspar

    2012-01-01

    In this study, we assess how the anthropogenically induced increase in greenhouse gas concentrations affects the climate of central and southern South America. We utilise two regional climate simulations for present day (PD) and pre-industrial (PI) times. These simulations are compared to historical reconstructions in order to investigate the driving processes responsible for climatic changes between the different periods. The regional climate model is validated against observations for both ...

  12. Comparison of 20th century and pre-industrial climate over South America in regional model simulations

    OpenAIRE

    Wagner, S.; Fast, I.; F. Kaspar

    2012-01-01

    In this study, we assess how the anthropogenically induced increase in greenhouse gas concentrations affects the climate of central and southern South America. We utilise two regional climate simulations for present day (PD) and pre-industrial (PI) times. These simulations are compared to historical reconstructions in order to investigate the driving processes responsible for climatic changes between the different periods. The regional climate model is validated against obse...

  13. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  14. Global comparison of three greenhouse climate models

    OpenAIRE

    Bavel, van, M.A.H.J.; Takakura, T.; Bot, G.P.A.

    1985-01-01

    Three dynamic simulation models for calculating the greenhouse climate and its energy requirements for both heating and cooling were compared by making detailed computations for each of seven sets of data. The data sets ranged from a cold winter day, requiring heating, to a hot summer day, requiring cooling. On the whole, the models agreed in regard to calculated air temperature, humidity, and heating requirements. Significant differences were found between the estimates of fan-and-pad (evapo...

  15. Advance in Application of Regional Climate Models in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; YAN Minhua; CHEN Panqin; XU Helan

    2008-01-01

    Regional climate models have become the powerful tools for simulating regional climate and its changeprocess and have been widely used in China. Using regional climate models, some research results have been obtainedon the following aspects: 1) the numerical simulation of East Asian monsoon climate, including exceptional monsoonprecipitation, summer precipitation distribution, East Asian circulation, multi-year climate average condition, summerrain belt and so on; 2) the simulation of arid climate of the western China, including thermal effect of the Qing-hai-Tibet Plateau, the plateau precipitation in the Qilian Mountains; and the impacts of greenhouse effects (CO2 dou-bling) upon climate in the western China; and 3) the simulation of the climate effect of underlying surface changes, in-cluding the effect of soil on climate formation, the influence of terrain on precipitation, the effect of regional soil deg-radation on regional climate, the effect of various underlying surfaces on regional climate, the effect of land-sea con-trast on the climate formulation, the influence of snow cover over the plateau regions on the regional climate, the effectof vegetation changes on the regional climate, etc. In the process of application of regional climate models, the prefer-ences of the models are improved so that better simulation results are gotten. At last, some suggestions are made aboutthe application of regional climate models in regional climate research in the future.

  16. A Practical Philosophy of Complex Climate Modelling

    Science.gov (United States)

    Schmidt, Gavin A.; Sherwood, Steven

    2014-01-01

    We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP).We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work.

  17. Validation of HEDR models. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1994-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid.

  18. Climate-based models for understanding and forecasting dengue epidemics.

    Directory of Open Access Journals (Sweden)

    Elodie Descloux

    Full Text Available BACKGROUND: Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia, and to provide an early warning system. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March-April lagged the warmest temperature by 1-2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January-February-March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October-November-December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively. CONCLUSIONS/SIGNIFICANCE: The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was

  19. Model improvement by model validation - lesson learned by model validation exercise for a deterministic river model

    International Nuclear Information System (INIS)

    A deterministic model for transport of radionuclides in rivers was used for prediction of the activity concentration of radionuclides in scenarios as Clinch-Tennessee rivers and Dnjepr river, as experimental data were provided in a VAMP subgroup. Different runs of the calculation with data fitting and adaption of parameter lead to improved results. The model gives reasonable agreement with experimental data

  20. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    OpenAIRE

    Hagemann, S.; Chen, Cui; Clark, D.B.; S. Folwell; Gosling, S.; Haddeland, I.; Hanasaki, N.; J. Heinke; F. Ludwig

    2012-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically assess the hydrological response to climate change and project the future state of global water resources. The results show a large spread in projected changes in water resources within the climat...

  1. Validating agent based models through virtual worlds.

    Energy Technology Data Exchange (ETDEWEB)

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  2. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    Science.gov (United States)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  3. Constraining climate model parameters from observed 20th century changes

    OpenAIRE

    Forest, Chris E.; Stone, Peter H; Sokolov, Andrei P.

    2008-01-01

    We present revised probability density functions for climate model parameters (effective climate sensitivity, the rate of deep-ocean heat uptake, and the strength of the net aerosol forcing) that are based on climate change observations from the 20th century. First, we compare observed changes in surface, upper-air, and deep-ocean temperature changes against simulations of 20th century climate in which the climate model parameters were systematically varied. The estimated 90% range of effecti...

  4. Climate-methane cycle feedback in global climate model model simulations forced by RCP scenarios

    Science.gov (United States)

    Eliseev, Alexey V.; Denisov, Sergey N.; Arzhanov, Maxim M.; Mokhov, Igor I.

    2013-04-01

    Methane cycle module of the global climate model of intermediate complexity developed at the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM) is extended by coupling with a detailed module for thermal and hydrological processes in soil (Deep Soil Simulator, (Arzhanov et al., 2008)). This is an important improvement with respect with the earlier IAP RAS CM version (Eliseev et al., 2008) which has employed prescribed soil hydrology to simulate CH4 emissions from soil. Geographical distribution of water inundated soil in the model was also improved by replacing the older Olson's ecosystem data base by the data based on the SCIAMACHY retrievals (Bergamaschi et al., 2007). New version of the IAP RAS CM module for methane emissions from soil is validated by using the simulation protocol adopted in the WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project). In addition, atmospheric part of the IAP RAS CM methane cycle is extended by temperature dependence of the methane life-time in the atmosphere in order to mimic the respective dependence of the atmospheric methane chemistry (Denisov et al., 2012). The IAP RAS CM simulations are performed for the 18th-21st centuries according with the CMIP5 protocol taking into account natural and anthropogenic forcings. The new IAP RAS CM version realistically reproduces pre-industrial and present-day characteristics of the global methane cycle including CH4 concentration qCH4 in the atmosphere and CH4 emissions from soil. The latter amounts 150 - 160 TgCH4-yr for the late 20th century and increases to 170 - 230 TgCH4-yr in the late 21st century. Atmospheric methane concentration equals 3900 ppbv under the most aggressive anthropogenic scenario RCP 8.5 and 1850 - 1980 ppbv under more moderate scenarios RCP 6.0 and RCP 4.5. Under the least aggressive scenario RCP 2.6 qCH4 reaches maximum 1730 ppbv in 2020s and declines afterwards. Climate change impact on the methane emissions from

  5. Performance of ENSEMBLES regional climate models over Central Europe using various metrics

    Science.gov (United States)

    Holtanová, Eva; Mikšovský, Jiří; Kalvová, Jaroslava; Pišoft, Petr; Motl, Martin

    2012-05-01

    We show the evaluation of ENSEMBLES regional climate models (RCMs) driven by reanalysis ERA40 over a region centered at the Czech Republic. Attention is paid especially to the model ALADIN-CLIMATE/CZ, being used as the basis of the new climate change scenarios simulation for the Czech Republic. The validation criteria used here are based on monthly or seasonal mean air temperature and precipitation. We concentrate not only on spatiotemporal mean values but also on temporal standard deviation, inter-annual variability, the mean annual cycle, and the skill of the models to represent the observed spatial patterns of these quantities. Model ALADIN-CLIMATE/CZ performs quite well in comparison to the other RCMs; we find its performance satisfactory for further use for impact studies. However, it is also shown that the results of evaluation of the RCMs' skill in simulating observed climate strongly depend on the criteria incorporated for the evaluation.

  6. Validation of CMIP5 multimodel ensembles through the smoothness of climate variables

    Directory of Open Access Journals (Sweden)

    Myoungji Lee

    2015-05-01

    Full Text Available Smoothness is an important characteristic of a spatial process that measures local variability. If climate model outputs are realistic, then not only the values at each grid pixel but also the relative variation over nearby pixels should represent the true climate. We estimate the smoothness of long-term averages for land surface temperature anomalies in the Coupled Model Intercomparison Project Phase 5 (CMIP5, and compare them by climate regions and seasons. We also compare the estimated smoothness of the climate outputs in CMIP5 with those of reanalysis data. The estimation is done through the composite likelihood approach for locally self-similar processes. The composite likelihood that we consider is a product of conditional likelihoods of neighbouring observations. We find that the smoothness of the surface temperature anomalies in CMIP5 depends primarily on the modelling institution and on the climate region. The seasonal difference in the smoothness is generally small, except for some climate regions where the average temperature is extremely high or low.

  7. Validation of CMIP5 multimodel ensembles through the smoothness of climate variables

    KAUST Repository

    Lee, Myoungji

    2015-05-14

    Smoothness is an important characteristic of a spatial process that measures local variability. If climate model outputs are realistic, then not only the values at each grid pixel but also the relative variation over nearby pixels should represent the true climate. We estimate the smoothness of long-term averages for land surface temperature anomalies in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and compare them by climate regions and seasons. We also compare the estimated smoothness of the climate outputs in CMIP5 with those of reanalysis data. The estimation is done through the composite likelihood approach for locally self-similar processes. The composite likelihood that we consider is a product of conditional likelihoods of neighbouring observations. We find that the smoothness of the surface temperature anomalies in CMIP5 depends primarily on the modelling institution and on the climate region. The seasonal difference in the smoothness is generally small, except for some climate regions where the average temperature is extremely high or low.

  8. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  9. Comparison of two soya bean simulation models under climate change : II Application of climate change scenarios

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for 2050 compared to ambient climate) and change in climatic variability on soya bean growth and production at 3 sites in the EU have been calculated. These calculations have been done with both a simple growth model, SOYBEANW, and a comprehensive model, CROPGRO. Compa

  10. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  11. Uncertain climate change in an intergenerational planning model

    International Nuclear Information System (INIS)

    A three-generation planning model incorporating uncertain climate change is developed. Each generation features a production activity based on capital and an exhaustible resource. An irreversible climate change may occur in period two or three, reducing the productivity for this and the remaining generation. The model is solved by stochastic dynamic programming. If the climate impact and climate change probability is constant, the optimal period one (and two) resource extraction is larger than for the reference case of climate stability. If, however, climate impact and climate change probability increases with increased aggregate resource use, this result is reversed. 5 tabs., 1 appendix, 22 refs

  12. Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments

    Science.gov (United States)

    Coron, L.; AndréAssian, V.; Perrin, C.; Lerat, J.; Vaze, J.; Bourqui, M.; Hendrickx, F.

    2012-05-01

    This paper investigates the actual extrapolation capacity of three hydrological models in differing climate conditions. We propose a general testing framework, in which we perform series of split-sample tests, testing all possible combinations of calibration-validation periods using a 10 year sliding window. This methodology, which we have called the generalized split-sample test (GSST), provides insights into the model's transposability over time under various climatic conditions. The three conceptual rainfall-runoff models yielded similar results over a set of 216 catchments in southeast Australia. First, we assessed the model's efficiency in validation using a criterion combining the root-mean-square error and bias. A relation was found between this efficiency and the changes in mean rainfall (P) but not with changes in mean potential evapotranspiration (PE) or air temperature (T). Second, we focused on average runoff volumes and found that simulation biases are greatly affected by changes in P. Calibration over a wetter (drier) climate than the validation climate leads to an overestimation (underestimation) of the mean simulated runoff. We observed different magnitudes of these models deficiencies depending on the catchment considered. Results indicate that the transfer of model parameters in time may introduce a significant level of errors in simulations, meaning increased uncertainty in the various practical applications of these models (flow simulation, forecasting, design, reservoir management, climate change impact assessments, etc.). Testing model robustness with respect to this issue should help better quantify these uncertainties.

  13. Climate Modeling with a Linux Cluster

    Science.gov (United States)

    Renold, M.; Beyerle, U.; Raible, C. C.; Knutti, R.; Stocker, T. F.; Craig, T.

    2004-08-01

    Until recently, computationally intensive calculations in many scientific disciplines have been limited to institutions which have access to supercomputing centers. Today, the computing power of PC processors permits the assembly of inexpensive PC clusters that nearly approach the power of supercomputers. Moreover, the combination of inexpensive network cards and Open Source software provides an easy linking of standard computer equipment to enlarge such clusters. Universities and other institutions have taken this opportunity and built their own mini-supercomputers on site. Computing power is a particular issue for the climate modeling and impacts community. The purpose of this article is to make available a Linux cluster version of the Community Climate System Model developed by the National Center for Atmospheric Research (NCAR; http://www.cgd.ucar.edu/csm).

  14. Precalibrating an intermediate complexity climate model

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Neil R. [The Open University, Earth and Environmental Sciences, Milton Keynes (United Kingdom); Cameron, David [Centre for Ecology and Hydrology, Edinburgh (United Kingdom); Rougier, Jonathan [University of Bristol, Department of Mathematics, Bristol (United Kingdom)

    2011-10-15

    Credible climate predictions require a rational quantification of uncertainty, but full Bayesian calibration requires detailed estimates of prior probability distributions and covariances, which are difficult to obtain in practice. We describe a simplified procedure, termed precalibration, which provides an approximate quantification of uncertainty in climate prediction, and requires only that uncontroversially implausible values of certain inputs and outputs are identified. The method is applied to intermediate-complexity model simulations of the Atlantic meridional overturning circulation (AMOC) and confirms the existence of a cliff-edge catastrophe in freshwater-forcing input space. When uncertainty in 14 further parameters is taken into account, an implausible, AMOC-off, region remains as a robust feature of the model dynamics, but its location is found to depend strongly on values of the other parameters. (orig.)

  15. Geochemistry Model Validation Report: Material Degradation and Release Model

    Energy Technology Data Exchange (ETDEWEB)

    H. Stockman

    2001-09-28

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17).

  16. Geochemistry Model Validation Report: Material Degradation and Release Model

    International Nuclear Information System (INIS)

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17)

  17. Climate change policymaking: Three explanatory models

    OpenAIRE

    Bang, Guri

    2000-01-01

    This paper gives an outline of three explanatory approaches to policymaking processes that allow the development of a rich set of non-trivial, probable assumptions. These assumptions provide a foundation for understanding climate policymaking behavior. First, the Unitary Rational Actor model provides a set of assumptions about the state’s interest in calculating costs and benefits as a basis for decision-making. By avoiding the inclusion of sub-actors in the analysis, it is possible to analyz...

  18. Modelling Complexity: the case of Climate Science

    OpenAIRE

    Lucarini, Valerio

    2011-01-01

    We briefly review some of the scientific challenges and epistemological issues related to climate science. We discuss the formulation and testing of theories and numerical models, which, given the presence of unavoidable uncertainties in observational data, the non-repeatability of world-experiments, and the fact that relevant processes occur in a large variety of spatial and temporal scales, require a rather different approach than in other scientific contexts. A brief discussion of the intr...

  19. Groundwater flow across spatial scales: importance for climate modeling

    International Nuclear Information System (INIS)

    Current regional and global climate models generally do not represent groundwater flow between grid cells as a component of the water budget. We estimate the magnitude of between-cell groundwater flow as a function of grid cell size by aggregating results from a numerical model of equilibrium groundwater flow run and validated globally. We find that over a broad range of cell sizes spanning that of state-of-the-art regional and global climate models, mean between-cell groundwater flow magnitudes scale with the reciprocal of grid cell length. We also derive this scaling a priori from a simple statistical model of a flow network. We offer operational definitions of ‘significant’ groundwater flow contributions to the grid cell water budget in both relative and absolute terms (between-cell flow magnitude exceeding 10% of local recharge or 10 mm y−1, respectively). Groundwater flow is a significant part of the water budget, as measured by a combined test requiring both relative and absolute significance, over 42% of the land area at 0.1° grid cell size (typical of regional and mesoscale models), decreasing to 1.5% at 1° (typical of global models). Based on these findings, we suggest that between-cell groundwater flow should be represented in regional and mesoscale climate models to ensure realistic water budgets, but will have small effects on water exchanges in current global models. As well, parameterization of subgrid moisture heterogeneity should include the effects of within-cell groundwater flow. (paper)

  20. SVC PSCAD model validation testing in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Kell, D. [TransGrid Solutions, Winnipeg, MB (Canada); Jacobson, D. [Manitoba Hydro, Winnipeg, MB (Canada); Oheidhin, G. [Areva T and D, Staffordshire (United Kingdom)

    2007-07-01

    The paper described some of the main technical aspects of the commissioning of the Ponton static var compensator (SVC) to Manitoba Hydro's electrical system. Off-line simulations were performed to gain confidence in the system tests and to deliver a validated EMT-type model. The peak load of Manitoba Hydro is approximately 4200 MW with an installed generating capacity of 5700 MW. Approximately 70 per cent of the power is generated from 3 hydraulic stations on the Nelson River in northern Manitoba. This power is transmitted for 900 km via the Nelson River high voltage direct current (HVDC) transmission to the Dorsey switching station near the major load centre of Winnipeg. The AC system is interconnected with Saskatchewan to the west with four 230 kV AC lines, and with Ontario to the east by two 230 kV AC lines. There are three 230 kV and one 500 kV AC inter-ties between Manitoba Hydro and the power system in the United States. One 230 kV line travels south from the northern generators and inter-connects into the Ponton busbar where an SVC with a supplementary damping controller was recently installed to improve system stability. 7 figs.

  1. Model Validation Using Coordinate Distance with Performance Sensitivity

    Directory of Open Access Journals (Sweden)

    Jiann-Shiun Lew

    2008-01-01

    Full Text Available This paper presents an innovative approach to model validation for a structure with significant parameter variations. Model uncertainty of the structural dynamics is quantified with the use of a singular value decomposition technique to extract the principal components of parameter change, and an interval model is generated to represent the system with parameter uncertainty. The coordinate vector, corresponding to the identified principal directions, of the validation system is computed. The coordinate distance between the validation system and the identified interval model is used as a metric for model validation. A beam structure with an attached subsystem, which has significant parameter uncertainty, is used to demonstrate the proposed approach.

  2. Economic impact of climate change : simulations with a regionalized climate-economy model

    OpenAIRE

    Deke, Oliver; Hooss, Kurt Georg; Kasten, Christiane; Klepper, Gernot; Springer, Katrin

    2001-01-01

    Climate change affects the physical and biological system in many regions of the world. The extent to which human systems will suffer economically from climate change depends on the adaptive capabilities within a region as well as across regions. We use an economic General-Equilibrium model and an Ocean-Atmosphere model in a regionally and sectorally disaggregated framework to analyze adaptation to climate change in different regions of the world. It turns out that vulnerability to climate im...

  3. Possible (water sensitive) mitigation strategies for the urban climate in a regional climate modelling context

    OpenAIRE

    Demuzere, Matthias; Coutts, Andrew; Van Lipzig, Nicole

    2012-01-01

    Urban climate models provide a useful tool for assessing the impacts of urban land surface modification on urban climates. It provides a mechanism for trialling different scenarios for urban heat island mitigation. Only recently, urban land surfaces have been included in global and regional climate models. Often they represent a trade-off between the complexity of the biophysical processes of the urban canopy layer and the computational demands in order to be workable on regional climate time...

  4. Explosive cyclones in CMIP5 climate models

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.

    2014-12-01

    Explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. A better understanding of the potential impacts of climate change on these so called meteorological bombs is therefore of great societal relevance. This study evaluates how well CMIP5 climate models reproduce explosive cyclones in the extratropics of the northern hemisphere, and how these bombs respond to global warming. For this purpose an objective-feature tracking algorithm was used to identify and track extratropical cyclones from 25 CMIP5 models and 3 reanalysis products for the periods 1980 to 2005 and 2070 to 2099. Cyclones were identified as the maxima of T42 vorticity of 6h wind speed at 850 hPa. Explosive and non-explosive cyclones were separated based on the corresponding deepening rates of mean sea level pressure. Most models accurately reproduced the spatial distribution of bombs when compared to results from reanalysis data (R2 = 0.84, p-value = 0.00), with high frequencies along the Kuroshio Current and the Gulf Stream, as well as the exit regions of the polar jet streaks. Most models however significantly underestimated bomb frequencies by a third on average, and by 74% in the most extreme case. This negative frequency bias coincided with significant underestimations of either meridional sea surface temperature (SST) gradients, or wind speeds of the polar jet streaks. Bomb frequency biases were significantly correlated with the number vertical model levels (R2= 0.36, p-value = 0.001), suggesting that the vertical atmospheric model resolution is crucial for simulating bomb frequencies accurately. The impacts of climate change on the location, frequency, and intensity of explosive cyclones were then explored for the Representative Concentration Pathway 8.5. Projections were related to model bias, resolution, projected changes of SST gradients, and wind speeds

  5. Simulation of the Arid Climate of the Southern Great Basin Using a Regional Climate Model.

    Science.gov (United States)

    Giorgi, Filippo; Bates, Gary T.; Nieman, Steven J.

    1992-11-01

    As part of the development effort of a regional climate model (RCM)for the southern Great Basin, this paper present savalidation analysis of the climatology generated by a high-resolution RCM driven by observations. The RCM is aversion of the National Center for atmospheric Research-Pennsylvania State University mesoscale model, version 4 (MM4), modified for application to regional climate simulation. Two multiyear simulations, for the periods 1 January 1982 to 31 December 1983 and 1 January 1988 to 25 April 1989, were performed over the western United States with the RCM driven by European Centre for Medium-Range Weather Forecasts analyses of observations. The model resolution is 60 km. This validation analysis is the first phase of a project to produce simulations of future climate scenarios over a region surrounding Yucca Mountain, Nevada, the only location currently being considered as a potential high-level nuclear-waste repository site.Model-produced surface air temperatures and precipitation were compared with observations from five southern Nevada stations located in the vicinity of Yucca Mountain. The seasonal cycles of temperature and precipitation were simulated well. Monthly and seasonal temperature biases were generally negative and largely explained by differences in elevation between the observing stations and the model topography. The model-simulated precipitation captured the extreme dryness of the Great Basin. Average yearly precipitation was generally within 30% of observed and the range of monthly precipitation amounts was the same as in the observations. Precipitation biases were mostly negative in the summer and positive in the winter. The number of simulated daily precipitation events for various precipitation intervals was within factors of 1.5-3.5 of observed. Overall, the model tended to overestimate the number of light precipitation events and underestimate the number of heavy precipitation events. At Yucca Mountain, simulated

  6. Harnessing Human Capital in Large Scale Projects - Towards an Elaborated Model of Organizational Climate for Project Organizations

    OpenAIRE

    2012-01-01

    The aim of the present study was to uncover the important dimensions of organizational climate for project organizations, and to explore which organizational levels are most important, to use this as the basis for developing an elaborated model of organizational climate for project organizations. Interviews with employees in a project organization in the Norwegian oil sector were coded onto two models, the general and validated Organizational Climate Measure (OCM), and the best-practice proje...

  7. Cloud-radiation interactions and their parameterization in climate models

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This report contains papers from the International Workshop on Cloud-Radiation Interactions and Their Parameterization in Climate Models met on 18--20 October 1993 in Camp Springs, Maryland, USA. It was organized by the Joint Working Group on Clouds and Radiation of the International Association of Meteorology and Atmospheric Sciences. Recommendations were grouped into three broad areas: (1) general circulation models (GCMs), (2) satellite studies, and (3) process studies. Each of the panels developed recommendations on the. themes of the workshop. Explicitly or implicitly, each panel independently recommended observations of basic cloud microphysical properties (water content, phase, size) on the scales resolved by GCMs. Such observations are necessary to validate cloud parameterizations in GCMs, to use satellite data to infer radiative forcing in the atmosphere and at the earth`s surface, and to refine the process models which are used to develop advanced cloud parameterizations.

  8. MECCA coordinated research program: analysis of climate models uncertainties used for climatic changes study

    International Nuclear Information System (INIS)

    An international consortium, called MECCA, (Model Evaluation Consortium for Climate Assessment) has been created in 1991 by different partners including electric utilities, government and academic groups to make available to the international scientific community, a super-computer facility for climate evolution studies. The first phase of the program consists to assess uncertainties of climate model simulations in the framework of global climate change studies. Fourteen scientific projects have been accepted on an international basis in this first phase. The second phase of the program will consist in the evaluation of a set of long climate simulations realized with coupled ocean/atmosphere models, in order to study the transient aspects of climate changes and the associated uncertainties. A particular attention will be devoted, on the consequences of these assessments on climate impact studies, and on the regional aspects of climate changes

  9. Validation technique using mean and variance of kriging model

    International Nuclear Information System (INIS)

    To validate rigorously the accuracy of metamodel is an important research area in metamodel techniques. A leave-k-out cross-validation technique not only requires considerable computational cost but also cannot measure quantitatively the fidelity of metamodel. Recently, the average validation technique has been proposed. However the average validation criterion may stop a sampling process prematurely even if kriging model is inaccurate yet. In this research, we propose a new validation technique using an average and a variance of response during a sequential sampling method, such as maximum entropy sampling. The proposed validation technique becomes more efficient and accurate than cross-validation technique, because it integrates explicitly kriging model to achieve an accurate average and variance, rather than numerical integration. The proposed validation technique shows similar trend to root mean squared error such that it can be used as a strop criterion for sequential sampling

  10. Climate change impacts in computable general equilibrium models: An overview

    OpenAIRE

    Döll, Sebastian

    2009-01-01

    This paper gives an overview about existing Computable General Equilibrium (CGE) models dealing with climate impacts focusing on damage calculations and adaptation modelling. Empirical CGE models are used in a broad field of policy analysis. With respect to climate change applications have been focused on the calculation of climate damages and the mitigation of these damages. Facing the non-preventable damages from climate change that occur already in the next decades adaptation is becoming a...

  11. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.; Larsen, Morten Andreas Dahl; Drews, Martin; Lerer, Sara Maria; Overgaard, J.; Grooss, J.; Rosbjerg, Dan; Christensen, J.H.; Refsgaard, J. C.

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated with...... coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  12. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  13. Modelling Complexity: the case of Climate Science

    CERN Document Server

    Lucarini, Valerio

    2011-01-01

    We briefly review some of the scientific challenges and epistemological issues related to climate science. We discuss the formulation and testing of theories and numerical models, which, given the presence of unavoidable uncertainties in observational data, the non-repeatability of world-experiments, and the fact that relevant processes occur in a large variety of spatial and temporal scales, require a rather different approach than in other scientific contexts. A brief discussion of the intrinsic limitations of geo-engineering solutions to global warming is presented, and a framework of investigation based upon non-equilibrium thermodynamics is proposed. We also critically discuss recently proposed perspectives of development of climate science based purely upon massive use of supercomputer and centralized planning of scientific priorities.

  14. Modeling forest dynamics along climate gradients in Bolivia

    Science.gov (United States)

    Seiler, C.; Hutjes, R. W. A.; Kruijt, B.; Quispe, J.; Añez, S.; Arora, V. K.; Melton, J. R.; Hickler, T.; Kabat, P.

    2014-05-01

    Dynamic vegetation models have been used to assess the resilience of tropical forests to climate change, but the global application of these modeling experiments often misrepresents carbon dynamics at a regional level, limiting the validity of future projections. Here a dynamic vegetation model (Lund Potsdam Jena General Ecosystem Simulator) was adapted to simulate present-day potential vegetation as a baseline for climate change impact assessments in the evergreen and deciduous forests of Bolivia. Results were compared to biomass measurements (819 plots) and remote sensing data. Using regional parameter values for allometric relations, specific leaf area, wood density, and disturbance interval, a realistic transition from the evergreen Amazon to the deciduous dry forest was simulated. This transition coincided with threshold values for precipitation (1400 mm yr-1) and water deficit (i.e., potential evapotranspiration minus precipitation) (-830 mm yr-1), beyond which leaf abscission became a competitive advantage. Significant correlations were found between modeled and observed values of seasonal leaf abscission (R2 = 0.6, p <0.001) and vegetation carbon (R2 = 0.31, p <0.01). Modeled Gross Primary Productivity (GPP) and remotely sensed normalized difference vegetation index showed that dry forests were more sensitive to rainfall anomalies than wet forests. GPP was positively correlated to the El Niño-Southern Oscillation index in the Amazon and negatively correlated to consecutive dry days. Decreasing rainfall trends were simulated to reduce GPP in the Amazon. The current model setup provides a baseline for assessing the potential impacts of climate change in the transition zone from wet to dry tropical forests in Bolivia.

  15. Validating the dynamic downscaling ability of WRF for East Asian summer climate

    Science.gov (United States)

    Gao, Jiangbo; Hou, Wenjuan; Xue, Yongkang; Wu, Shaohong

    2015-12-01

    To better understand the regional climate model (RCM) performance for East Asian summer climate and the influencing factors, this study evaluated the dynamic downscaling ability of the Weather Research Forecast (WRF) RCM. According to the comprehensive comparison studies on different physical processes and experimental settings, the optimal combination of WRF model setups can be obtained for East Asian precipitation and temperature simulations. Furthermore, based on the optimal combination, when compared with climate observations, WRF shows high ability to downscale NCEP DOE Reanalysis-2, which provided initial and lateral boundary conditions for the WRF, especially for the precipitation simulation due to the better simulated low-level water vapor flux. However, the strengthened Western North Pacific Subtropical High (WPSH) from WRF simulation results in the positive anomaly for summer rainfall.

  16. Coupling Climate Models and Forward-Looking Economic Models

    Science.gov (United States)

    Judd, K.; Brock, W. A.

    2010-12-01

    Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward

  17. Modeling climatic effects of anthropogenic CO2 emissions: Unknowns and uncertainties

    Science.gov (United States)

    Soon, W.; Baliunas, S.; Idso, S.; Kondratyev, K. Ya.; Posmentier, E. S.

    2001-12-01

    A likelihood of disastrous global environmental consequences has been surmised as a result of projected increases in anthropogenic greenhouse gas emissions. These estimates are based on computer climate modeling, a branch of science still in its infancy despite recent, substantial strides in knowledge. Because the expected anthropogenic climate forcings are relatively small compared to other background and forcing factors (internal and external), the credibility of the modeled global and regional responses rests on the validity of the models. We focus on this important question of climate model validation. Specifically, we review common deficiencies in general circulation model calculations of atmospheric temperature, surface temperature, precipitation and their spatial and temporal variability. These deficiencies arise from complex problems associated with parameterization of multiply-interacting climate components, forcings and feedbacks, involving especially clouds and oceans. We also review examples of expected climatic impacts from anthropogenic CO2 forcing. Given the host of uncertainties and unknowns in the difficult but important task of climate modeling, the unique attribution of observed current climate change to increased atmospheric CO2 concentration, including the relatively well-observed latest 20 years, is not possible. We further conclude that the incautious use of GCMs to make future climate projections from incomplete or unknown forcing scenarios is antithetical to the intrinsically heuristic value of models. Such uncritical application of climate models has led to the commonly-held but erroneous impression that modeling has proven or substantiated the hypothesis that CO2 added to the air has caused or will cause significant global warming. An assessment of the positive skills of GCMs and their use in suggesting a discernible human influence on global climate can be found in the joint World Meteorological Organisation and United Nations

  18. New validation metrics for models with multiple correlated responses

    International Nuclear Information System (INIS)

    Validating models with correlated multivariate outputs involves the comparison of multiple stochastic quantities. Considering both uncertainty and correlations among multiple responses from model and physical observations imposes challenges. Existing marginal comparison methods and the hypothesis testing-based methods either ignore correlations among responses or only reach Boolean conclusions (yes or no) without accounting for the amount of discrepancy between a model and the underlying reality. A new validation metric is needed to quantitatively characterize the overall agreement of multiple responses considering correlations among responses and uncertainty in both model predictions and physical observations. In this paper, by extending the concept of “area metric” and the “u-pooling method” developed for validating a single response, we propose new model validation metrics for validating correlated multiple responses using the multivariate probability integral transformation (PIT). One new metric is the PIT area metric for validating multi-responses at a single validation site. The other is the t-pooling metric that allows for pooling observations of multiple responses observed at multiple validation sites to assess the global predictive capability. The proposed metrics have many favorable properties that are well suited for validation assessment of models with correlated responses. The two metrics are examined and compared with the direct area metric and the marginal u-pooling method respectively through numerical case studies and an engineering example to illustrate their validity and potential benefits

  19. SDG-based Model Validation in Chemical Process Simulation

    Institute of Scientific and Technical Information of China (English)

    张贝克; 许欣; 马昕; 吴重光

    2013-01-01

    Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a soft-ware environment that can automate the validation activity. This paper is concentrated on the pretreatment of the model validation. We use the validation scenarios and standard sequences generated by well-established SDG model to validate the trends fitted from the simulation model. The results are helpful to find potential problems, as-sess possible bugs in the simulation model and solve the problem effectively. A case study on a simulation model of boiler is presented to demonstrate the effectiveness of this method.

  20. Multi-model approach to assess the impact of climate change on runoff

    Science.gov (United States)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    decrease of the lowest flows, except for the SWAT model with the mean hydrological impact climate change scenario. The results of this study indicate that besides the uncertainty introduced by the climate change scenarios also the hydrological model structure uncertainty should be taken into account in the assessment of climate change impacts on hydrology. To make it more straightforward and transparent to include model structural uncertainty in hydrological impact studies, there is a need for hydrological modelling tools that allow flexible structures and methods to validate model structures in their ability to assess impacts under unobserved future climatic conditions.

  1. Modelling the hydrological cycle in assessments of climate change

    Science.gov (United States)

    Rind, D.; Rosenzweig, C.; Goldberg, R.

    1992-01-01

    The predictions of climate change studies depend crucially on the hydrological cycles embedded in the different models used. It is shown here that uncertainties in hydrological processes and inconsistencies in both climate and impact models limit confidence in current assessments of climate change. A future course of action to remedy this problem is suggested.

  2. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2012-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  3. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  4. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  5. Very high resolution regional climate model simulations over Greenland: Identifying added value

    DEFF Research Database (Denmark)

    Lucas-Picher, P.; Wulff-Nielsen, M.; Christensen, J.H.;

    2012-01-01

    meteorological stations (Danish Meteorological Institute) at the coast and automatic weather stations on the ice sheet (Greenland Climate Network). Generally, the temperature and precipitation biases are small, indicating a realistic simulation of the climate over Greenland that is suitable to drive ice sheet......This study presents two simulations of the climate over Greenland with the regional climate model (RCM) HIRHAM5 at 0.05° and 0.25° resolution driven at the lateral boundaries by the ERA-Interim reanalysis for the period 1989–2009. These simulations are validated against observations from...... models. However, the bias between the simulations and the few available observations does not reduce with higher resolution. This is partly explained by the lack of observations in regions where the higher resolution is expected to improve the simulated climate. The RCM simulations show that the...

  6. Construction of a novel economy-climate model

    Institute of Scientific and Technical Information of China (English)

    CHOU JieMing; DONG WenJie; YE DuZheng

    2007-01-01

    An attempt has been made to construct a novel economy-climate model by combining climate change research with agricultural economy research to evaluate the influence of global climate change on grain yields. The insertion of a climate change factor into the economic C-D (Cobb-Dauglas) production function model yields a novel evaluation model, which connects the climate change factor to the economic variation factor, and the performance and reasonableness of the novel evaluation model are also preliminarily simulated and verified.

  7. Development and validation of computational models of cellular interaction

    OpenAIRE

    Smallwood, R H; Holcombe, W.M.L.; Walker, D C

    2004-01-01

    In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of soft...

  8. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    OpenAIRE

    Hagemann, S.; Chen, C.; Clark, D.B.; S. Folwell; Gosling, S.N.; Haddeland, I.; Hanasaki, N.; J. Heinke; F. Ludwig; Voß, F.; A. J. Wiltshire

    2012-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological models (eight) were used to systematically assess the hydrological response to climate change and project the future state of global water resources. The results show a large spread in projected changes in water resources within the climate–...

  9. Statistical Validation of Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schilstra, Cornelis [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Radiotherapy Institute Friesland, Leeuwarden (Netherlands)

    2012-09-01

    Purpose: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. Methods and Materials: A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Results: Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Conclusion: Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use.

  10. Challenges in combining projections from multiple climate models

    OpenAIRE

    J. Cermak; Furrer, R.; Knutti, R.; Meehl, G. A.; Tebaldi, C.

    2010-01-01

    Recent coordinated efforts, in which numerous general circulation climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multimodel ensembles sample initial conditions, parameters, and structural uncertainties in the model design, and they have prompted a variety of approaches to quantifying uncertainty in future climate change. International climate change assessments also rely heavily on these ...

  11. Modelling precipitation extremes in climate change scenarios

    Czech Academy of Sciences Publication Activity Database

    Kyselý, Jan; Gaál, Ladislav; Beranová, Romana; Plavcová, Eva

    Patras: University of Patras, 2010 - (Argiriou, A.; Kazantzidis, A.), s. 833-838 ISBN 978-960-99254-0-2. [International Conference of Meteorology, Climatology and Atmospheric Physics (COMECAP2010) /10./. Patras (GR), 25.05.2010-28.05.2010] R&D Projects: GA AV ČR KJB300420801 Grant ostatní: ENSEMBLES(XE) 505539 Institutional research plan: CEZ:AV0Z30420517 Keywords : precipitation extremes * region-of-influence method * regional climate models Subject RIV: DG - Athmosphere Sciences, Meteorology

  12. Mixing parameterizations in ocean climate modeling

    Science.gov (United States)

    Moshonkin, S. N.; Gusev, A. V.; Zalesny, V. B.; Byshev, V. I.

    2016-03-01

    Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin-Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.

  13. Sensitivity of climate models: Comparison of simulated and observed patterns for past climates

    International Nuclear Information System (INIS)

    Predicting the potential climatic effects of increased concentrations of atmospheric carbon dioxide requires the continuing development of climate models. Confidence in the predictions will be much enhanced once the models are thoroughly tested in terms of their ability to simulate climates that differ significantly from today's climate. As one index of the magnitude of past climate change, the global mean temperature increase during the past 18,000 years is similar to that predicted for carbon dioxide--doubling. Simulating the climatic changes of the past 18,000 years, as well as the warmer-than-present climate of 6000 years ago and the climate of the last interglacial, around 126,000 years ago, provides an excellent opportunity to test the models that are being used in global climate change research. During the past several years, we have used paleoclimatic data to test the accuracy of the National Center for Atmospheric Research, Community Climate Model, Version 0, after changing its boundary conditions to those appropriate for past climates. We have assembled regional and near-global paleoclimatic data sets of pollen, lake level, and marine plankton data and calibrated many of the data in terms of climatic variables. We have also developed methods that permit direct quantitative comparisons between the data and model results. Our research has shown that comparing the model results with the data is an evolutionary process, because the models, the data, and the methods for comparison are continually being improved. During 1992, we have completed new modeling experiments, further analyzed previous model experiments, compiled new paleodata, made new comparisons between data and model results, and participated in workshops on paleoclimatic modeling

  14. Models for Validation of Prior Learning (VPL)

    DEFF Research Database (Denmark)

    Ehlers, Søren

    would have been categorized as utopian can become realpolitik. Validation of Prior Learning (VPL) was in Europe mainly regarded as utopian while universities in the United States of America (USA) were developing ways to obtain credits to those students which was coming with experiences from working life....

  15. Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis

    Science.gov (United States)

    Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.

    2013-12-01

    Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.

  16. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change

    KAUST Repository

    Villarino, E

    2015-07-02

    Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).

  17. Analysis of extreme climatic features over South America from CLARIS-LPB ensemble of regional climate models for future conditions

    Science.gov (United States)

    Sanchez, E.; Zaninelli, P.; Carril, A.; Menendez, C.; Dominguez, M.

    2012-04-01

    An ensemble of seven regional climate models (RCM) included in the European CLARIS-LPB project (A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin) are used to study how some features related to climatic extremes are projected to be changed by the end of XXIst century. These RCMs are forced by different IPCC-AR4 global climate models (IPSL, ECHAM5 and HadCM3), covering three different 30-year periods: present (1960-1990), near future (2010-2040) and distant future (2070-2100), with 50km of horizontal resolution. These regional climate models have previously been forced with ERA-Interim reanalysis, in a consistent procedure with CORDEX (A COordinated Regional climate Downscaling EXperiment) initiative for the South-America domain. The analysis shows a good agreement among them and the available observational databases to describe the main features of the mean climate of the continent. Here we focus our analysis on some topics of interest related to extreme events, such as the development of diagnostics related to dry-spells length, the structure of the frequency distribution functions over several subregions defined by more or less homogeneous climatic conditions (four sub-basins over the La Plata Basin, the southern part of the Amazon basin, Northeast Brazil, and the South Atlantic Convergence Zone (SACZ)), the structure of the annual cycle and their main features and relation with the length of the seasons, or the frequency of anomalous hot or cold events. One shortcoming that must be considered is the lack of observational databases with both time and spatial frequency to validate model outputs. At the same time, one challenging issue of this study is the regional modelling description of a continent where a huge variety of climates are present, from desert to mountain conditions, and from tropical to subtropical regimes. Another basic objective of this preliminary work is also to obtain a measure of the spread among

  18. A 'Common Information Model' for the climate modelling process

    Science.gov (United States)

    Treshansky, Allyn; Devine, Gerard

    2010-05-01

    The Common Information Model (CIM), developed by the EU-funded METAFOR project (http://metaforclimate.eu), is a formal model of the climate modeling process. It provides a rich structured description of not only climate data but also the "provenance" of that data: the software models and tools used to generate that data, the simulations those models implement, the experiments those simulations conform to, etc.. This formal metadata model is expected to add value to those datasets by firstly codifying what is currently found only in the heads of climate experts (the aforementioned provenance of climate datasets), and secondly by allowing tools to be developed that make searching for and analysing climate datasets a much more intuitive process than it has been in the past. This paper will describe the structure of the CIM, concentrating on how it works with and what it adds to other metadata standards. As alluded to above, current metadata standards concentrate on the contents of a climate dataset. Scientific detail and relevance of the model components that generated that data as well as the context for why it was run are missing. The CIM addresses this gap. However, it does not aim to replace existing standards. Rather, wherever possible it re-uses them. It also attempts to standardise our understanding of climate modeling at a very high level, at a conceptual level. This results in a UML description of climate modeling, the CONCIM. METAFOR extracts from this high-level UML the bits of the CIM that we want to use in our applications; These bits get converted into a set of XSD application schemas, the APPCIM. Other user groups may derive a different APPCIM (in a different format) that suits them from the same CONCIM. Thus there is a common understanding of the concepts used in climate modeling even if the implementation differs. In certain key places the CIM describes a general structure over which a specific Controlled Vocabulary (CV) can be applied. For example

  19. Foundational Issues in Statistical Modeling: Statistical Model Specification and Validation

    Directory of Open Access Journals (Sweden)

    Aris Spanos

    2011-01-01

    Full Text Available Statistical model specification and validation raise crucial foundational problems whose pertinent resolution holds the key to learning from data by securing the reliability of frequentist inference. The paper questions the judiciousness of several current practices, including the theory-driven approach, and the Akaike-type model selection procedures, arguing that they often lead to unreliable inferences. This is primarily due to the fact that goodness-of-fit/prediction measures and other substantive and pragmatic criteria are of questionable value when the estimated model is statistically misspecified. Foisting one's favorite model on the data often yields estimated models which are both statistically and substantively misspecified, but one has no way to delineate between the two sources of error and apportion blame. The paper argues that the error statistical approach can address this Duhemian ambiguity by distinguishing between statistical and substantive premises and viewing empirical modeling in a piecemeal way with a view to delineate the various issues more effectively. It is also argued that Hendry's general to specific procedures does a much better job in model selection than the theory-driven and the Akaike-type procedures primary because of its error statistical underpinnings.

  20. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N;

    2012-01-01

    illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...... in this paper, applied to relative humidity, but it could be adopted to other variables if needed....

  1. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  2. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Auffhammer, Maximilian [University of California at Berkeley; Hsiang, Solomon M. [Princeton University; Schlenker, Wolfram [Columbia University; Sobel, Adam H. [Columbia University

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

  3. Developing a Common Information Model for climate models and data

    Science.gov (United States)

    Valcke, S.; Balaji, V.; Bentley, P.; Guilyardi, E.; Lawrence, B.; Pascoe, C.; Steenman-Clark, L.; Toussaint, F.; Treshansky, A.

    2009-04-01

    The Metafor project, funded under the EU Framework Programme 7, proposes a Common Information Model (CIM) to describe in a standard way climate data and the models and modelling environments that produced this data. To establish the CIM, Metafor first considered the metadata models developed by other groups engaged in similar efforts in Europe and worlwide, such as the US Earth System Curator, explored fragmentation and gaps as well as duplication of information present in these metadata models, and reviewed current problems in identifying, accessing or using climate data present in existing repositories. Based on this analysis and on different use cases, the first version of the CIM is composed of 5 packages. The "data" package is used to describe the data objects that can be collected and stored in any number of ways; the "activity" package details the simulations and experiments and related requirements that were performed with numerical (possibly coupled) models described with the "software" packages. Both data and models can be associated with numerical grids represented by the "grid" package and finally the "shared" package gathers concepts shared among the other packages. The CIM is defined and implemented in the Unified Modelling Language (UML) and application schema have been generated in XML schema. Aiming at a wide adoption of the CIM, Metafor will optimize the way climate data infrastructures are used to store knowledge, thereby adding value to primary research data and information, and providing an essential asset for the numerous stakeholders actively engaged in climate change issues (policy, research, impacts, mitigation, private sector).

  4. Evaluating cloud tuning in a climate model with satellite observations

    Science.gov (United States)

    Suzuki, K.; Golaz, J.; Stephens, G. L.

    2013-12-01

    Climate model representation of the aerosol indirect effect is largely dependent on how to tune uncertain parameters in the models. The threshold particle radius triggering the warm rain formation, among others, is one particular 'tunable knob' that severely affects the indirect radiative forcing. Alternate values of the model's particular parameter within uncertainty have been shown to produce severely different historical temperature tends due to differing magnitude of aerosol indirect forcing. This study examines the validity of three different threshold radii assumed in GFDL CM3 with satellite observations in an attempt to constrain which value is more plausible than others. For this purpose, the methodologies developed to analyze multi-sensor satellite observations are employed to construct the statistics that fingerprint process-level signatures of the warm rain formation. The statistics are then used as observation-based metrics and compared between the model and satellite observations to examine how the alternate model configurations lead to different microphysical characteristics and to evaluate how they compare to satellite observations. The results show that the threshold radius that best reproduces satellite-observed microphysical statistics leads to the historical temperature trend that worst matches to observed trend and vice-versa. This inconsistency between the 'bottom-up' process-based constraint and the 'top-down' temperature trend constraint implies the presence of compensating errors in the model. This study underscores the importance of observation-based, process-level constraints on model microphysics uncertainties for more reliable predictions of aerosol indirect forcing.

  5. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  6. Estimating climate change impact on irrigation demand using integrated modelling

    International Nuclear Information System (INIS)

    Water is basic element in agriculture, and along with the soil characteristics, it remains the essential for the growth and evolution of plants. Trends of air temperature and precipitation for Slovenia indicate the increase of the air temperature and reduction of precipitation during the vegetation period, which will have a substantial impact on rural economy in Slovenia. The impact of climate change will be substantial for soil the water balance. Distinctive drought periods in past years had great impact on rural plants in light soils. Climate change will most probably also result in drought in soils which otherwise provide optimal water supply for plants. Water balance in the cross section of the rooting depth is significant for the agriculture. Mathematical models enable smaller amount of measurements in a certain area by means of measurements carried out only in characteristic points serving for verification and calibration of the model. Combination of on site measurements and mathematical modelling proved to be an efficient method for understanding of processes in nature. Climate scenarios made for the estimation of the impact of climate change are based on the general circulation models. A study based on a hundred year set of monthly data showed that in Slovenia temperature would increase at min. by 2.3o C, and by 5.6oC at max and by 4.5oC in average. Valid methodology for the estimate of the impact of climate change applies the model using a basic set of data for a thirty year period (1961-1990) and a changed set of climate input parameters on one hand, and, on the other, a comparison of output results of the model. Estimating climate change impact on irrigation demand for West Slovenia for peaches and nectarines grown on Cambisols and Fluvisols was made using computer model SWAP. SWAP is a precise and power too[ for the estimation of elements of soil water balance at the level of cross section of the monitored and studied profile from the soil surface to

  7. Coupled Climate Model Appraisal a Benchmark for Future Studies

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; AchutaRao, K; Bader, D; Covey, C; Doutriaux, C M; Fiorino, M; Gleckler, P J; Sperber, K R; Taylor, K E

    2005-08-22

    The Program for Climate Model Diagnosis and Intercomparison (PCMDI) has produced an extensive appraisal of simulations of present-day climate by eleven representative coupled ocean-atmosphere general circulation models (OAGCMs) which were developed during the period 1995-2002. Because projections of potential future global climate change are derived chiefly from OAGCMs, there is a continuing need to test the credibility of these predictions by evaluating model performance in simulating the historically observed climate. For example, such an evaluation is an integral part of the periodic assessments of climate change that are reported by the Intergovernmental Panel on Climate Change. The PCMDI appraisal thus provides a useful benchmark for future studies of this type. The appraisal mainly analyzed multi-decadal simulations of present-day climate by models that employed diverse representations of climate processes for atmosphere, ocean, sea ice, and land, as well as different techniques for coupling these components (see Table). The selected models were a subset of those entered in phase 2 of the Coupled Model Intercomparison Project (CMIP2, Covey et al. 2003). For these ''CMIP2+ models'', more atmospheric or oceanic variables were provided than the minimum requirements for participation in CMIP2. However, the appraisal only considered those climate variables that were supplied from most of the CMIP2+ models. The appraisal focused on three facets of the simulations of current global climate: (1) secular trends in simulation time series which would be indicative of a problematical ''coupled climate drift''; (2) comparisons of temporally averaged fields of simulated atmospheric and oceanic climate variables with available observational climatologies; and (3) correspondences between simulated and observed modes of climatic variability. Highlights of these climatic aspects manifested by different CMIP2+ simulations are briefly

  8. Development of Ensemble Neural Network Convection Parameterizations for Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovitz, M. S.; Krasnopolsky, V. M.

    2012-05-02

    The novel neural network (NN) approach has been formulated and used for development of a NN ensemble stochastic convection parametrization for climate models. This fast parametrization is built based on data from Cloud Resolving Model (CRM) simulations initialized with and forced by TOGA-COARE data. The SAM (System for Atmospheric Modeling), developed by D. Randall, M. Khairoutdinov, and their collaborators, has been used for CRM simulations. The observational data are also used for validation of model simulations. The SAM-simulated data have been averaged and projected onto the GCM space of atmospheric states to implicitly define a stochastic convection parametrization. This parametrization is emulated using an ensemble of NNs. An ensemble of NNs with different NN parameters has been trained and tested. The inherent uncertainty of the stochastic convection parametrization derived in such a way is estimated. Due to these inherent uncertainties, NN ensemble is used to constitute a stochastic NN convection parametrization. The developed NN convection parametrization have been validated in a diagnostic CAM (CAM-NN) run vs. the control CAM run. Actually, CAM inputs have been used, at every time step of the control/original CAM integration, for parallel calculations of the NN convection parametrization (CAM-NN) to produce its outputs as a diagnostic byproduct. Total precipitation (P) and cloudiness (CLD) time series, diurnal cycles, and P and CLD distributions for the large Tropical Pacific Ocean for the parallel CAM-NN and CAM runs show similarity and consistency with the NCEP reanalysis. The P and CLD distributions for the tropical area for the parallel runs have been analyzed first for the TOGA-COARE boreal winter season (November 1992 through February 1993) and then for the winter seasons of the follow-up parallel decadal simulations. The obtained results are encouraging and practically meaningful. They show the validity of the NN approach. This constitutes an

  9. Organizational Diversity Climate: Review of Models and Measurement

    OpenAIRE

    Goyal, Saumya; Shrivastava, Dr.Sangya

    2013-01-01

    As organizational climate represents the culture of an organization, similarly diversity climate represents the culture of diversity and inclusion of an organization. Every best practice in diversity management and diversity initiatives and programs are essentially implemented in order to improve the overall organizational diversity climate. Various models exist in literature which illustrates how diversity climate of a company impacts various employee and organizational measures. Over the ye...

  10. A framework for testing the ability of models to project climate change and its impacts

    DEFF Research Database (Denmark)

    Refsgaard, J. C.; Madsen, H.; Andréassian, V.;

    2014-01-01

    a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in...... relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best......Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents...

  11. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    International Nuclear Information System (INIS)

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a digital elevation model using GIS tools. Application of the resulting map to several groundwater case studies in spain has shown it to be useful as a reference of the input function to recharge. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is ongoing through comparison of model results with isotope data from the GNIP database and from isotope studies in hydrogeology and climate change taking place in spain. (author)

  12. Using virtual reality to validate system models

    Energy Technology Data Exchange (ETDEWEB)

    Winter, V.L.; Caudell, T.P.

    1999-12-09

    To date most validation techniques are highly biased towards calculations involving symbolic representations of problems. These calculations are either formal (in the case of consistency and completeness checks), or informal in the case of code inspections. The authors believe that an essential type of evidence of the correctness of the formalization process must be provided by (i.e., must originate from) human-based calculation. They further believe that human calculation can by significantly amplified by shifting from symbolic representations to graphical representations. This paper describes their preliminary efforts in realizing such a representational shift.

  13. Validation of models for radionuclide migration in rivers and reservoirs

    International Nuclear Information System (INIS)

    The IAEA-CEC co-ordinated research programme on Validation of Environmental Model Predictions (VAMP) was a good opportunity to validate assessment models on the basis of data from environmental releases of radionuclides. After the Chernobyl accident, a set of mathematical models was developed in the Cybernetics Centre, Kiev, to simulate radionuclide dispersion in the Pripyat-Dnieper river/reservoir system. 1 ref., 2 figs

  14. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Science.gov (United States)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  15. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  16. Developing better and more valid animal models of brain disorders.

    Science.gov (United States)

    Stewart, Adam Michael; Kalueff, Allan V

    2015-01-01

    Valid sensitive animal models are crucial for understanding the pathobiology of complex human disorders, such as anxiety, autism, depression and schizophrenia, which all have the 'spectrum' nature. Discussing new important strategic directions of research in this field, here we focus i) on cross-species validation of animal models, ii) ensuring their population (external) validity, and iii) the need to target the interplay between multiple disordered domains. We note that optimal animal models of brain disorders should target evolutionary conserved 'core' traits/domains and specifically mimic the clinically relevant inter-relationships between these domains. PMID:24384129

  17. Cross-validation criteria for SETAR model selection

    NARCIS (Netherlands)

    J.G. de Gooijer

    2001-01-01

    Three cross-validation criteria, denoted C, C_c, and C_u are proposed for selecting the orders of a self-exciting threshold autoregressive SETAR) model when both the delay and the threshold value are unknown. The derivatioon of C is within a natural cross-validation framework. The crietion C_c is si

  18. Adolescent Personality: A Five-Factor Model Construct Validation

    Science.gov (United States)

    Baker, Spencer T.; Victor, James B.; Chambers, Anthony L.; Halverson, Jr., Charles F.

    2004-01-01

    The purpose of this study was to investigate convergent and discriminant validity of the five-factor model of adolescent personality in a school setting using three different raters (methods): self-ratings, peer ratings, and teacher ratings. The authors investigated validity through a multitrait-multimethod matrix and a confirmatory factor…

  19. Validation of a heteroscedastic hazards regression model.

    Science.gov (United States)

    Wu, Hong-Dar Isaac; Hsieh, Fushing; Chen, Chen-Hsin

    2002-03-01

    A Cox-type regression model accommodating heteroscedasticity, with a power factor of the baseline cumulative hazard, is investigated for analyzing data with crossing hazards behavior. Since the approach of partial likelihood cannot eliminate the baseline hazard, an overidentified estimating equation (OEE) approach is introduced in the estimation procedure. It by-product, a model checking statistic, is presented to test for the overall adequacy of the heteroscedastic model. Further, under the heteroscedastic model setting, we propose two statistics to test the proportional hazards assumption. Implementation of this model is illustrated in a data analysis of a cancer clinical trial. PMID:11878222

  20. Modelling Hydrological Consequences of Climate Change-Progress and Challenges

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases,(2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods)for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales.Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.

  1. Exploring the Validity of Valproic Acid Animal Model of Autism

    OpenAIRE

    Darine Froy N. Mabunga; Gonzales, Edson Luck T.; Kim, Ji-Woon; Kim, Ki Chan; Shin, Chan Young

    2015-01-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmenta...

  2. Exploring the Validity of Valproic Acid Animal Model of Autism.

    Science.gov (United States)

    Mabunga, Darine Froy N; Gonzales, Edson Luck T; Kim, Ji-Woon; Kim, Ki Chan; Shin, Chan Young

    2015-12-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  3. Gear Windage Modeling Progress - Experimental Validation Status

    Science.gov (United States)

    Kunz, Rob; Handschuh, Robert F.

    2008-01-01

    In the Subsonics Rotary Wing (SRW) Project being funded for propulsion work at NASA Glenn Research Center, performance of the propulsion system is of high importance. In current rotorcraft drive systems many gearing components operate at high rotational speed (pitch line velocity > 24000 ft/ min). In our testing of high speed helical gear trains at NASA Glenn we have found that the work done on the air - oil mist within the gearbox can become a significant part of the power loss of the system. This loss mechanism is referred to as windage. The effort described in this presentation is to try to understand the variables that affect windage, develop a good experimental data base to validate, the analytical project being conducted at Penn State University by Dr. Rob Kunz under a NASA SRW NRA. The presentation provides an update to the status of these efforts.

  4. Linking Output from regional Climat Models with Cryosphere Models

    Science.gov (United States)

    Winter, S.

    2003-04-01

    This study has the objective of linking the results of a low-resolution regional climate model (RCM) with high-resolution cryosphere models in order to determine the manner in which Alpine snow, ice and permafrost is likely to respond to enhanced atmospheric warming resulting from an increase in anthropogenic greenhouse gases. There are several constraints that need to be overcome prior to applying solutions to this problem. Firstly, as a result of the long response time of glaciers and alpine permafrost to climate change, long-term simulations of at least 30 years are required. Secondly, the smallest possible spatial resolution of current RCM still remains quite coarse (~ 50 km) because of the complex mathematical equations to be resolved in the RCM, the limited computer performance and the above mentioned long simulation period. On the other hand, cryosphere models used in the present study require gridded input climate variables with a typical mesh width of 50 m. The proposed solution consists in combining climate change data based on RCM scenarios with meteorological data of high elevation Alpine stations measured during a reference period. A RCM control run matching this reference period is required in order to quantify the expected change for each climate parameter. This approach allows breaking down the initial downscaling problem into two separate steps. First, the quantified change derived from RCM-control and scenario simulations is used to predict change for meteorological stations. Second, data sets of predicted change and meteorological measures of these stations are summed and then regionalized for the study area based on advanced algorithms and GIS techniques. Selecting a case study area close to one or more meteorological stations should minimize the associated regionalization error. A pilot study for a small area at Piz Corvatsch in the Eastern Swiss Alps has been designed. The A2 scenario of the IPCC (Intergovernmental Panel on Climate Change

  5. Linking seasonal climate forecasts with crop models in Iberian Peninsula

    Science.gov (United States)

    Capa, Mirian; Ines, Amor; Baethgen, Walter; Rodriguez-Fonseca, Belen; Han, Eunjin; Ruiz-Ramos, Margarita

    2015-04-01

    Translating seasonal climate forecasts into agricultural production forecasts could help to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. In this study, we use seasonal rainfall forecasts and crop models to improve predictability of wheat yield in the Iberian Peninsula (IP). Additionally, we estimate economic margins and production risks associated with extreme scenarios of seasonal rainfall forecast. This study evaluates two methods for disaggregating seasonal climate forecasts into daily weather data: 1) a stochastic weather generator (CondWG), and 2) a forecast tercile resampler (FResampler). Both methods were used to generate 100 (with FResampler) and 110 (with CondWG) weather series/sequences for three scenarios of seasonal rainfall forecasts. Simulated wheat yield is computed with the crop model CERES-wheat (Ritchie and Otter, 1985), which is included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at two locations in northeastern Spain where the crop model was calibrated and validated with independent field data. Once simulated yields were obtained, an assessment of farmer's gross margin for different seasonal climate forecasts was accomplished to estimate production risks under different climate scenarios. This methodology allows farmers to assess the benefits and risks of a seasonal weather forecast in IP prior to the crop growing season. The results of this study may have important implications on both, public (agricultural planning) and private (decision support to farmers, insurance companies) sectors. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Hoogenboom, G. et al., 2010. The Decision

  6. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C;

    2001-01-01

    Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect inc...

  7. Enabling the use of climate model data in the Dutch climate effect community

    Science.gov (United States)

    Som de Cerff, Wim; Plieger, Maarten

    2010-05-01

    Within the climate effect community the usage of climate model data is emerging. Where mostly climate time series and weather generators were used, there is a shift to incorporate climate model data into climate effect models. The use of climate model data within the climate effect models is difficult, due to missing metadata, resolution and projection issues, data formats and availability of the parameters of interest. Often the climate effect modelers are not aware of available climate model data or are not aware of how they can use it. Together with seven other partners (CERFACS, CNR-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 IS ENES (http://www.enes.org) project work package 10/JRA5 ‘Bridging Climate Research Data and the Needs of the Impact Community. The aims of this work package are to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. Phase one is to define use cases together with the Dutch climate effect community, which describe the intended use of climate model data in climate effect models. We defined four use cases: 1) FEWS hydrological Framework (Deltares) 2) METAPHOR, a plants and species dispersion model (Wageningen University) 3) Natuurplanner, an Ecological model suite (Wageningen University) 4) Land use models (Free University/JRC). Also the other partners in JRA5 have defined use cases, which are representative for the climate effect and impact communities in their country. Goal is to find commonalities between all defined use cases. The common functionality will be implemented as e-tools and incorporated in the IS-ENES data portal. Common issues relate to e.g., need for high resolution: downscaling from GCM to local scale (also involves interpolation); parameter selection; finding extremes; averaging methods. At the conference we will describe the FEWS case in more detail: Delft FEWS is an open shell system (in development since 1995) for performing

  8. Statistical Validation of Engineering and Scientific Models: Background

    International Nuclear Information System (INIS)

    A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made

  9. Guidelines for validation of chemometric models for food authentication

    OpenAIRE

    Veer, van der, P.; Ruth, van, A.; Akkermans, W.

    2011-01-01

    The aim of this report is to describe a set of generic guidelines for in-house validation of a method for authenticity testing that are based on a combination of chemical fingerprinting techniques and chemometric classification models.

  10. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  11. EMMD-Prony approach for dynamic validation of simulation models

    Institute of Scientific and Technical Information of China (English)

    Ruiyang Bai

    2015-01-01

    Model validation and updating is critical to model credi-bility growth. In order to assess model credibility quantitatively and locate model error precisely, a new dynamic validation method based on extremum field mean mode decomposition (EMMD) and the Prony method is proposed in this paper. Firstly, complex dy-namic responses from models and real systems are processed into stationary components by EMMD. These components always have definite physical meanings which can be the evidence about rough model error location. Secondly, the Prony method is applied to identify the features of each EMMD component. Amplitude si-milarity, frequency similarity, damping similarity and phase simi-larity are defined to describe the similarity of dynamic responses. Then quantitative validation metrics are obtained based on the improved entropy weight and energy proportion. Precise model error location is realized based on the physical meanings of these features. The application of this method in aircraft control er design provides evidence about its feasibility and usability.

  12. Development and validation of Apros multigroup nodal diffusion model

    OpenAIRE

    Rintala, Antti

    2015-01-01

    The development of a steady state and transient multigroup nodal diffusion model for process simulation software Apros was continued and the models were validated. The initial implementation of the model was performed in 2009 and it has not been under continuous development afterwards. Some errors in the steady state model were corrected. The transient model was found to be incorrect. The solution method of the transient model was derived, and the program code not common with the steady s...

  13. Validation of the General Electric pressure suppression analytical model

    International Nuclear Information System (INIS)

    The GE Company's analytical model for pressure suppression system transient response has evolved over more than 15 years. This paper describes the validation process and results from qualification of the latest version of this model. A general description of the model, validation activities, test data used for qualification, and model/data comparisons are included. Based on drywell pressure response, the model is shown to be about 3% conservative when run in the best estimate mode, and approximately 15% conservative when run in the design basis mode. (orig.)

  14. Geospatial Issues in Energy-Climate Modeling: Implications for Modelers, Economists, Climate Scientists and Policy Makers

    Science.gov (United States)

    Newmark, R. L.; Arent, D.; Sullivan, P.; Short, W.

    2010-12-01

    Accurate characterizations of renewable energy technologies, particularly wind, solar, geothermal, and biomass, require an increasingly sophisticated understanding of location-specific attributes, including generation or production costs and the cost of transmission or transportation to a point of use, and climate induced changes to the resource base. Capturing these site-specific characteristics in national and global models presents both unique opportunities and challenges. National and global decisions, ideally, should be informed by geospatially rich data and analysis. Here we describe issues related to and initial advances in representing renewable energy technologies in global models, and the resulting implications for climate stabilization analysis and global assessments, including IPCC’s Assessment Round 5 and IEA’s World Energy Outlook.

  15. Integrating components of the earth system to model global climate changes: implications for the simulation of the climate of the next million years

    International Nuclear Information System (INIS)

    The climate system is complex because it is made up of several components (atmosphere, ocean, sea ice, continental surface, ice sheets), each of which has its own response time. The paleo-climate record provides ample evidence that these components interact nonlinearly with each other and also with global biogeochemical cycles, which drive greenhouse gas concentration in the atmosphere. Forecasting the evolution of future climate is therefore an extremely complex problem. In addition, since the nineteenth century, human activities are releasing great quantities of greenhouse gases (CO2, CH4, CFC, etc.) into the atmosphere. As a consequence, the atmospheric content of these gases has tremendously increased. As they have a strong greenhouse effect, their concentration is now large enough to perturb the natural evolution of the earth's climate. In this paper, we shall review the strategy which has been used to develop and validate tools that would allow to simulate the future long-term behaviour of the Earth's climate. This strategy rests on two complementary approaches: developing numerical models of the climate system and validating them by comparing their output with present-day meteorological data and paleo-climatic reconstructions. We shall then evaluate the methods available to simulate climate at the regional scale and the major uncertainties that must be solved to reasonable estimate the long-term evolution of a region, which would receive a geological repository for nuclear wastes. (author)

  16. Usage of web-GIS platform Climate to prepare specialists in climate changes modeling and analysis

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A web-GIS based platform "Climate" developed in our institute (http://climate.scert.ru/) has a set of tools and data bases to perform climate changes analysis on the selected territory. The platform is functioning and open for registration and all these tools are available. Besides that the platform has a potential to be used in education. It contains several educational courses followed by tests and trainings which are performed within the platform "Climate" using its web-gis tools. The main purpose of a new "Climatic and environmental modeling" module course is to enable students and graduates meteorological departments to improve their knowledge and skills in modern climatology. Although the emphasis is on climate science, the course is directly related to the part of the ecological science, which refers to the environment. This is due to the fact that the current global climate models have become models of the Earth system and include models of environment as well. The module includes a main course of lectures devoted to basic aspects of modern climatology , including analysis of the current climate change and its possible consequences , a special course on geophysical hydrodynamics, several on-line computing labs dedicated to specific monitoring and modeling of climate and climate change , as well as information kit , which not only includes the usual list of recommended reading, but also contains the files of many publications , the distribution of which is not limited by copyright law. Laboratory exercises are designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate". The results obtained on laboratory work are presented as reports with the statement of the problem, the results of calculations and logically justified conclusion. Now the following labs are used to train and prepare young

  17. A framework for modeling uncertainty in regional climate change (Invited)

    Science.gov (United States)

    Monier, E.; Gao, X.; Scott, J. R.; Sokolov, A. P.; Schlosser, C. A.

    2013-12-01

    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the United States associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework are the emissions projections (using different climate policies), the climate system response (represented by different values of climate sensitivity and net aerosol forcing), natural variability (by perturbing initial conditions) and structural uncertainty (using different climate models). The modeling framework revolves around the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model with an intermediate complexity earth system model (with a two-dimensional zonal-mean atmosphere). Regional climate change over the United States is obtained through a two-pronged approach. First, we use the IGSM-CAM framework which links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Secondly, we use a pattern-scaling method that extends the IGSM zonal mean based on climate change patterns from various climate models. Results show that uncertainty in temperature changes are mainly driven by policy choices and the range of climate sensitivity considered. Meanwhile, the four sources of uncertainty contribute more equally to precipitation changes, with natural variability having a large impact in the first part of the 21st century. Overall, the choice of policy is the largest driver of uncertainty in future projections of climate change over the United States. In light of these results, we recommend that when investigating climate change impacts over specific regions, studies consider all four sources of uncertainty analyzed in this paper.

  18. Predictive modelling of climate suitability for Pinus halepensis in Spain

    OpenAIRE

    Gastón González, Aitor; Garcia Viñas, Juan Ignacio

    2010-01-01

    The response of Mediterranean pine species distribution to global change is a key feature of forest management in a changing environment. Climate suitability models are valuable tools for understanding and anticipating the effects of climate change on species distributions. Logistic regression was used to model climate suitability for Pinus halepensis in Spain, using National Forest Inventory as training sample. Predictive performance was evaluated using ICP Forests Level I grid as independen...

  19. Climate-based risk models for Fasciola hepatica in Colombia

    Directory of Open Access Journals (Sweden)

    Natalia Valencia-López

    2012-09-01

    Full Text Available A predictive Fasciola hepatica model, based on the growing degree day-water budget (GDD-WB concept and the known biological requirements of the parasite, was developed within a geographical information system (GIS in Colombia. Climate-based forecast index (CFI values were calculated and represented in a national-scale, climate grid (18 x 18 km using ArcGIS 9.3. A mask overlay was used to exclude unsuitable areas where mean annual temperature exceeded 25 °C, the upper threshold for development and propagation of the F. hepatica life cycle. The model was then validated and further developed by studies limited to one department in northwest Colombia. F. hepatica prevalence data was obtained from a 2008-2010 survey in 10 municipalities of 6,016 dairy cattle at 673 herd study sites, for which global positioning system coordinates were recorded. The CFI map results were compared to F. hepatica environmental risk models for the survey data points that had over 5% prevalence (231 of the 673 sites at the 1 km2 scale using two independent approaches: (i a GIS map query based on satellite data parameters including elevation, enhanced vegetation index and land surface temperature day-night difference; and (ii an ecological niche model (MaxEnt, for which geographic point coordinates of F. hepatica survey farms were used with BioClim data as environmental variables to develop a probability map. The predicted risk pattern of both approaches was similar to that seen in the forecast index grid. The temporal risk, evaluated by the monthly CFIs and a daily GDD-WB forecast software for 2007 and 2008, revealed a major July-August to January transmission period with considerable inter-annual differences.

  20. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes

    International Nuclear Information System (INIS)

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  1. Climate projections of the ALARO-0 model on the EURO-CORDEX domain

    Science.gov (United States)

    Van Schaeybroeck, Bert; Berckmans, Julie; Caluwaerts, Steven; De Troch, Rozemien; De Cruz, Lesley; Duchêne, François; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet

    2016-04-01

    Results of the future scenario runs are presented within the EURO-CORDEX framework using the regional climate model ALARO-0. This model has been primarily developed for operational numerical weather predictions and is therefore not tuned specifically for climate purposes. It features a new microphysics scheme called 3MT, which allows for a more sophisticated representation of convective precipitation. In Giot et al. (2015) validation results were presented for the 12.5-km and 50-km resolution runs forced by ERA-Interim reanalysis. It was shown that ALARO-0 is well capable of representing the European climate. More specifically, most of the ALARO-0 scores were within the existing EURO-CORDEX ensemble. For precipitation, due to the 3MT scheme, the ALARO-0 model produces some of the best scores within the ensemble. The comparison of the historical run with the climate scenarios runs (RCP8.5, RCP4.5) allows the determination of the ALARO-0 climate changes. These runs are all coupled to the GCM of Météo-France, namely CNRM-CM5. The climate-change signals are investigated with a focus on heavy precipitation and heat wave changes and the signals are put against the ones of the other EURO-CORDEX models (Jacob et al., 2013). Giot, O., Termonia, P., Degrauwe, D., De Troch, R., Caluwaerts, S., Smet, G., Berckmans, J., Deckmyn, A., De Cruz, L., De Meutter, P., Duerinckx, A., Gerard, L., Hamdi, R., Van den Bergh, J., Van Ginderachter, M., and Van Schaeybroeck, B.: Validation of the ALARO-0 model within the EURO-CORDEX framework, Geosci. Model Dev. Discuss., 8, 8387-8409, 2015. Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., et al., 2014. EURO-CORDEX: new high-resolution climate change projections for european impact research. Regional Environmental Change 14 (2), 563-578.

  2. Global climate models: Past, present, and future

    OpenAIRE

    Stute, Martin; Clement, Amy; Lohmann, Gerrit

    2001-01-01

    One of the main features of climate spectra is their redness which originates from stochastic mechanisms (see e.g. the time scale arguments of Hasselmann, 1976). The variance increases toward the longer time scales and is limited by the negative feedback mechanisms in the climate system. Apart from this there is climate variability at distinct time scales due to external forcing (e.g. Milankowitch cycles), or internal oscillations (e.g. ENSO, decadal oscillations). The understanding of long-t...

  3. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE

    Science.gov (United States)

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-01-01

    Background: The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran’s universities. Methods: This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran’s public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. Results: of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran’s libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Conclusions: Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries. PMID:26622203

  4. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?

    Science.gov (United States)

    Sagoo, Navjit; Valdes, Paul; Flecker, Rachel; Gregoire, Lauren J

    2013-10-28

    Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4. PMID:24043872

  5. Development and Implementation of a Comprehensive Radiometric Validation Protocol for the CERES Earth Radiation Budget Climate Record Sensors

    Science.gov (United States)

    Priestley, K. J.; Matthews, G.; Thomas, S.

    2006-01-01

    The CERES Flight Models 1 through 4 instruments were launched aboard NASA's Earth Observing System (EOS) Terra and Aqua Spacecraft into 705 Km sun-synchronous orbits with 10:30 a.m. and 1:30 p.m. equatorial crossing times. These instruments supplement measurements made by the CERES Proto Flight Model (PFM) instrument launched aboard NASA's Tropical Rainfall Measuring Mission (TRMM) into a 350 Km, 38-degree mid-inclined orbit. CERES Climate Data Records consist of geolocated and calibrated instantaneous filtered and unfiltered radiances through temporally and spatially averaged TOA, Surface and Atmospheric fluxes. CERES filtered radiance measurements cover three spectral bands including shortwave (0.3 to 5 microns), total (0.3 to 100 microns) and an atmospheric window channel (8 to 12 microns). The CERES Earth Radiation Budget measurements represent a new era in radiation climate data, realizing a factor of 2 to 4 improvement in calibration accuracy and stability over the previous ERBE climate records, while striving for the next goal of 0.3-percent per decade absolute stability. The current improvement is derived from two sources: the incorporation of lessons learned from the ERBE mission in the design of the CERES instruments and the development of a rigorous and comprehensive radiometric validation protocol consisting of individual studies covering different spatial, spectral and temporal time scales on data collected both pre and post launch. Once this ensemble of individual perspectives is collected and organized, a cohesive and highly rigorous picture of the overall end-to-end performance of the CERES instrument's and data processing algorithms may be clearly established. This approach has resulted in unprecedented levels of accuracy for radiation budget instruments and data products with calibration stability of better than 0.2-percent and calibration traceability from ground to flight of 0.25-percent. The current work summarizes the development, philosophy

  6. Storm Water Management Model Climate Adjustment Tool (SWMM-CAT)

    Science.gov (United States)

    The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations. SWMM, first released in 1971, models hydrology and hydrauli...

  7. Arctic Climate Change Analysed By Two 30-year Scenario Regional Climate Model Runs

    Science.gov (United States)

    Kiilsholm, S.; Christensen, J. H.

    High-resolution climate change simulations for an area covering the entire Arctic have been conducted with the regional climate model (RCM) HIRHAM. The emission sce- narios used were the IPCC SRES1 marker scenarios A2 and B2. Three 30-year time slice experiments were conducted with HIRHAM for periods representing present-day (1961-1990) and the future (2071-2100) in the two scenarios. Changes of the climate between these two periods will be presented with special emphasize on the climate of Greenland.

  8. Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling

    NARCIS (Netherlands)

    Lenaerts, J.T.M.; van den Broeke, M.R.; van Wessem, J.M.; van de Berg, W.J.; van Meijgaard, E.; van Ulft, L.H.; Schaefer, M.

    2014-01-01

    This study uses output of a high-resolution (5.5 km) regional atmospheric climate model to describe the present-day (1979–2012) climate of Patagonia, with a particular focus on the surface mass balance (SMB) of the Patagonian ice fields. Through a comparison with available in situ observations, it i

  9. Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models

    Czech Academy of Sciences Publication Activity Database

    Gaál, Ľ.; Beranová, R.; Hlavčová, K.; Kyselý, Jan

    2014-01-01

    Roč. 2014, č. 943487 (2014), s. 1-14. ISSN 1687-9309 Institutional support: RVO:67179843 ; RVO:68378289 Keywords : precipitation extremes * regional climate models * climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 0.946, year: 2014

  10. Quantitative system validation in model driven design

    DEFF Research Database (Denmark)

    Hermanns, Hilger; Larsen, Kim Guldstrand; Raskin, Jean-Francois;

    2010-01-01

    The European STREP project Quasimodo1 develops theory, techniques and tool components for handling quantitative constraints in model-driven development of real-time embedded systems, covering in particular real-time, hybrid and stochastic aspects. This tutorial highlights the advances made, focus...

  11. Validation of the NATO-standard ship signature model (SHIPIR)

    Science.gov (United States)

    Vaitekunas, David A.; Fraedrich, Douglas S.

    1999-07-01

    An integrated naval infrared target, threat and countermeasure simulator (SHIPIR/NTCS) has been developed. The SHIPIR component of the model has been adopted by both NATO and the US Navy as a common tool for predicting the infrared (IR) signature of naval ships in their background. The US Navy has taken a lead role in further developing and validating SHIPIR for use in the Twenty-First Century Destroyer (DD-21) program. As a result, the US Naval Research Laboratory (NRL) has performed an in-depth validation of SHIPIR. This paper presents an overview of SHIPIR, the model validation methodology developed by NRL, and the results of the NRL validation study. The validation consists of three parts: a review of existing validation information, the design, execution, and analysis of a new panel test experiment, and the comparison of experiment with predictions from the latest version of SHIPIR (v2.5). The results show high levels of accuracy in the radiometric components of the model under clear-sky conditions, but indicate the need for more detailed measurement of solar irradiance and cloud model data for input to the heat transfer and in-band sky radiance sub-models, respectively.

  12. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  13. Evaluation of global climate models for Indian monsoon climatology

    International Nuclear Information System (INIS)

    The viability of global climate models for forecasting the Indian monsoon is explored. Evaluation and intercomparison of model skills are employed to assess the reliability of individual models and to guide model selection strategies. Two dominant and unique patterns of Indian monsoon climatology are trends in maximum temperature and periodicity in total rainfall observed after 30 yr averaging over India. An examination of seven models and their ensembles reveals that no single model or model selection strategy outperforms the rest. The single-best model for the periodicity of Indian monsoon rainfall is the only model that captures a low-frequency natural climate oscillator thought to dictate the periodicity. The trend in maximum temperature, which most models are thought to handle relatively better, is best captured through a multimodel average compared to individual models. The results suggest a need to carefully evaluate individual models and model combinations, in addition to physical drivers where possible, for regional projections from global climate models. (letter)

  14. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  15. The Meriden School Climate Survey-Student Version: Preliminary Evidence of Reliability and Validity

    Science.gov (United States)

    Gage, Nicholas A.; Larson, Alvin; Chafouleas, Sandra M.

    2016-01-01

    School climate has been linked with myriad positive student outcomes and the measurement of school climate is widely advocated at the national and state level. However, districts have little guidance about how to define and measure school climate. This study examines the psychometric properties of a district-developed school climate measure that…

  16. Modelling interactions of carbon dioxide, forests, and climate

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. [Oak Ridge National Lab., TN (United States); Baldocchi, D.D. [National Oceanic and Atmospheric Administration, Oak Ridge, TN (United States)

    1994-09-01

    Atmospheric carbon dioxide is rising and forests and climate is changing! This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken.

  17. Enhancements to modeling regional climate response and global variability; FINAL

    International Nuclear Information System (INIS)

    Efforts during this grant period focused on three main considerations: (a) developing and testing various climate scenarios with SEAM, a newly created model (b) model reconstruction efforts to speed up computations and (c) optimum realization statistics

  18. Modeling key processes causing climate change and variability

    Energy Technology Data Exchange (ETDEWEB)

    Henriksson, S.

    2013-09-01

    Greenhouse gas warming, internal climate variability and aerosol climate effects are studied and the importance to understand these key processes and being able to separate their influence on the climate is discussed. Aerosol-climate model ECHAM5-HAM and the COSMOS millennium model consisting of atmospheric, ocean and carbon cycle and land-use models are applied and results compared to measurements. Topics at focus are climate sensitivity, quasiperiodic variability with a period of 50-80 years and variability at other timescales, climate effects due to aerosols over India and climate effects of northern hemisphere mid- and high-latitude volcanic eruptions. The main findings of this work are (1) pointing out the remaining challenges in reducing climate sensitivity uncertainty from observational evidence, (2) estimates for the amplitude of a 50-80 year quasiperiodic oscillation in global mean temperature ranging from 0.03 K to 0.17 K and for its phase progression as well as the synchronising effect of external forcing, (3) identifying a power law shape S(f) {proportional_to} f-{alpha} for the spectrum of global mean temperature with {alpha} {approx} 0.8 between multidecadal and El Nino timescales with a smaller exponent in modelled climate without external forcing, (4) separating aerosol properties and climate effects in India by season and location (5) the more efficient dispersion of secondary sulfate aerosols than primary carbonaceous aerosols in the simulations, (6) an increase in monsoon rainfall in northern India due to aerosol light absorption and a probably larger decrease due to aerosol dimming effects and (7) an estimate of mean maximum cooling of 0.19 K due to larger northern hemisphere mid- and high-latitude volcanic eruptions. The results could be applied or useful in better isolating the human-caused climate change signal, in studying the processes further and in more detail, in decadal climate prediction, in model evaluation and in emission policy

  19. Biases in simulation of the rice phenology models when applied in warmer climates

    Science.gov (United States)

    Zhang, T.; Li, T.; Yang, X.; Simelton, E.

    2015-12-01

    The current model inter-comparison studies highlight the difference in projections between crop models when they are applied to warmer climates, but these studies do not provide results on how the accuracy of the models would change in these projections because the adequate observations under largely diverse growing season temperature (GST) are often unavailable. Here, we investigate the potential changes in the accuracy of rice phenology models when these models were applied to a significantly warmer climate. We collected phenology data from 775 trials with 19 cultivars in 5 Asian countries (China, India, Philippines, Bangladesh and Thailand). Each cultivar encompasses the phenology observations under diverse GST regimes. For a given rice cultivar in different trials, the GST difference reaches 2.2 to 8.2°C, which allows us to calibrate the models under lower GST and validate under higher GST (i.e., warmer climates). Four common phenology models representing major algorithms on simulations of rice phenology, and three model calibration experiments were conducted. The results suggest that the bilinear and beta models resulted in gradually increasing phenology bias (Figure) and double yield bias per percent increase in phenology bias, whereas the growing-degree-day (GDD) and exponential models maintained a comparatively constant bias when applied in warmer climates (Figure). Moreover, the bias of phenology estimated by the bilinear and beta models did not reduce with increase in GST when all data were used to calibrate models. These suggest that variations in phenology bias are primarily attributed to intrinsic properties of the respective phenology model rather than on the calibration dataset. Therefore we conclude that using the GDD and exponential models has more chances of predicting rice phenology correctly and thus, production under warmer climates, and result in effective agricultural strategic adaptation to and mitigation of climate change.

  20. Climate modelling, uncertainty and responses to predictions of change

    International Nuclear Information System (INIS)

    Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by, inter alia, incorporating climate change risk assessment into development planning processes, i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. An urgent issue is the mismatch between the predictions of global climatic change and the need for information on local to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. And, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. But, climate models can't yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes

  1. Modeling of climate change impacts on agriculture, forestry and fishery

    International Nuclear Information System (INIS)

    Changes in climate affect agriculture, forest and fisheries. This paper examines the climate change impact on crop production, fishery and forestry using state - of - the - art modeling technique. Crop growth model InfoCrop was used to predict the climate change impacts on the yields of rice, wheat and maize in Bangladesh. Historical climate change scenario has little or no negative impacts on rice and wheat yields in Mymensingh and Dinajpur but IPCC climate change scenario has higher negative impacts. There is almost no change in the yields of maize for the historical climate change scenario in the Chittagong, Hill Tracts of but there is a small decrease in the yields of rice and maize for IPCC climate change scenario. A new statistical model to forecast climate change impacts on fishery in the world oceans has been developed. Total climate change impact on fishery in the Indian Ocean is negative and the predictor power is 94.14% for eastern part and 98.59% for the western part. Two models are presented for the mangrove forests of the Sundarbans. To bole volumes of the pioneer, intermediate and climax are simulated for three different logging strategies and the results have been discussed in this paper. (author)

  2. North American vegetation model for land-use planning in a changing climate: a solution to large classification problems.

    Science.gov (United States)

    Rehfeldt, Gerald E; Crookston, Nicholas L; Sáenz-Romero, Cuauhtémoc; Campbell, Elizabeth M

    2012-01-01

    Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of prediction from the statistical model averaged 3.7%, but for individual biomes, ranged from 0% to 21.5%. In validating the ability of the model to identify climates without analogs, 78% of 1528 locations outside North America and 81% of land area of the Caribbean Islands were predicted to have no analogs among the 46 biomes. Biome climates were projected into the future according to low and high greenhouse gas emission scenarios of three General Circulation Models for three periods, the decades surrounding 2030, 2060, and 2090. Prominent in the projections were (1) expansion of climates suitable for the tropical dry deciduous forests of Mexico, (2) expansion of climates typifying desertscrub biomes of western USA and northern Mexico, (3) stability of climates typifying the evergreen-deciduous forests of eastern USA, and (4) northward expansion of climates suited to temperate forests, Great Plains grasslands, and montane forests to the detriment of taiga and tundra climates. Maps indicating either poor agreement among projections or climates without contemporary analogs identify geographic areas where land management programs would be most equivocal. Concentrating efforts and resources where projections are more certain can assure land managers a greater likelihood of success. PMID:22471079

  3. Systematic review and validation of prognostic models in liver transplantation.

    Science.gov (United States)

    Jacob, Matthew; Lewsey, James D; Sharpin, Carlos; Gimson, Alexander; Rela, Mohammed; van der Meulen, Jan H P

    2005-07-01

    A model that can accurately predict post-liver transplant mortality would be useful for clinical decision making, would help to provide patients with prognostic information, and would facilitate fair comparisons of surgical performance between transplant units. A systematic review of the literature was carried out to assess the quality of the studies that developed and validated prognostic models for mortality after liver transplantation and to validate existing models in a large data set of patients transplanted in the United Kingdom (UK) and Ireland between March 1994 and September 2003. Five prognostic model papers were identified. The quality of the development and validation of all prognostic models was suboptimal according to an explicit assessment tool of the internal, external, and statistical validity, model evaluation, and practicality. The discriminatory ability of the identified models in the UK and Ireland data set was poor (area under the receiver operating characteristic curve always smaller than 0.7 for adult populations). Due to the poor quality of the reporting, the methodology used for the development of the model could not always be determined. In conclusion, these findings demonstrate that currently available prognostic models of mortality after liver transplantation can have only a limited role in clinical practice, audit, and research. PMID:15973726

  4. Validation of remotely sensed rainfall over major climatic regions in Northeast Tanzania

    Science.gov (United States)

    Mashingia, Fredrick; Mtalo, Felix; Bruen, Michael

    Increase in population has resulted in pressure for more land and water use for food security in Northeast Tanzania. This calls for proper understanding of spatial-temporal variations of quality and quantity of water to ensure sustainable management. The number of hydro-meteorological stations such as rainfall stations and flow measuring stations has not increased and even the functioning of the existing ones is deteriorating. Satellite rainfall estimates (SRE) are being used widely in place of gauge observations or to supplement gauge observations. However, rigorous validation is necessary to have some level of confidence in using the satellite products for different applications. This paper discusses the results of application of SRE over a data scarce tropical complex region in Northeast Tanzania. We selected river catchments found in two different climatological zones: the inland region mountains (i.e. Kikuletwa and Ruvu basins) and the coastal region mountains (i.e. Mkomazi, Luengera and Zigi basins), characterized by semi arid, sub-humid to humid tropical climate. Thus, the validation sites were ideal for testing the different SRE products. In this study, we evaluated two gauge corrected high resolution SRE products which combine both infrared and passive-microwave estimates; the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) African Rainfall Estimation (RFE2) and the Tropical Rainfall Measuring Mission product 3B42 (TRMM-3B42) using station network. The accuracy of the products was evaluated through a comparison with available gauge data. The comparison was made on pair-wise (point to pixel) and sub-basin level with the reproduction of rainfall volume, rainfall intensity and consistency of rain and no-rain days. The SRE products performed reasonably well over both regions in detecting the occurrence of rainfall. The underestimation was mainly ascribed to topology and the coastal effect. Whereas, the overestimation

  5. Validating the organizational climate measure for Norwegian universities and colleges (NOCM_UH)

    OpenAIRE

    2011-01-01

    Abstract: Organizational climate predicts individual and organizational outcomes. One established measure of organizational climate is the organizational climate measure (OCM) developed by Patterson et al. (2005). However, Patterson and colleagues argue that climate measures have little descriptive power and that respondents often are confused when answering climate questionnaires as to which target they should answer according to. To ensure the questionnaire’s descriptive power and applicabi...

  6. Development and Theoretic Validation of Model of Drum Level Sloshing

    Institute of Scientific and Technical Information of China (English)

    CAO Xiao-ling; LIU Xiao-feng; SU Ming

    2007-01-01

    In order to develop a feasible model of drum level sloshing, the mechanism of drum level sloshing was analyzed, and the model of drum level sloshing was developed on the Easy5 software flat. The thermodynamic property of the model was validated by using the reference model, which was set up by using the method of lump parameter. The results indicate that the model can precisely reflect the phenomena of thermodynamic property inside drum, and the numeric error is within 1 %. And the hydraulic property of the model was validated by the analytical theory of liquid sloshing, and the results indicate that the hydraulic property inside drum can also be correctly reflected by the model, and the sloshing period error is within 5 %. The important work was done for exploring modeling for drum level sloshing, research of drum level sloshing and precision controlling of drum level.

  7. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  8. Analysis of climate change effects on runoff conditions of two small catchments using climate-runoff models

    Science.gov (United States)

    Csóka, Gergely; Béla Brolly, Gábor; Czimber, Kornél; Gálos, Borbála; Kalicz, Péter; Gribovszki, Zoltán

    2014-05-01

    Nowadays global climate change is one of the most discussed scientific topic. According to prognosis (both optimistic and pessimistic) Hungarian economy will have to deal with serious difficulties in consequence of air temperature and precipitation changes. Preparing for climate change inducing problems in this paper climate-runoff (Budyko type) models were employed for two small catchments (Béci- and Kürtös-creek) in South Western Hungary. There were trusty long term runoff and precipitation time series, as well as spatially-distributed precipitation and evapotranspiration maps (validated by locally measured precipitation and runoff data) available. The climate change dataset was calculated on the basis of the prognosis of twelve regional climate models. Spatially-distributed calibration parameter of Budyko-model was calculated by using temperature, precipitation and areal ET maps. The parameter map aggregates all of the factors affecting ET. This map is used for evaluating future ET and runoff in spatially-distributed mode. In spite of the fact results have some inaccuracy, in the order of magnitude they reliably show that annual runoff of analysed catchments will have strong recession (46% for Béci and 51% for Kürtös creek) to the end of the 21st century. This publication has been supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0013 project. The research of Zoltán Gribovszki was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program'.

  9. Dynamic Model Validation with Governor Deadband on the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Gefei [ORNL; Hadley, Stanton W [ORNL; Liu, Yilu [ORNL

    2014-04-01

    This report documents the efforts to perform dynamic model validation on the Eastern Interconnection (EI) by modeling governor deadband. An on-peak EI dynamic model is modified to represent governor deadband characteristics. Simulation results are compared with synchrophasor measurements collected by the Frequency Monitoring Network (FNET/GridEye). The comparison shows that by modeling governor deadband the simulated frequency response can closely align with the actual system response.

  10. DIY the Integrated Climate Model and its computational performance

    OpenAIRE

    Wang, Pengfei

    2014-01-01

    This article describes the software engineering framework and computation performance of a global climate system model which helps the user to understand the step-by-step technical to DIY(do it yourself) a climate model by your own. The model integrates ECHAM5 and NEMO2.3 using OASIS3 as the coupler. The program skill of the Integrated global Climate Model (ICM) is demonstrated here, including the porting of NEMO into the COSMOS framework, the organization of variable exchange, and component ...

  11. Climate modeling - a tool for the assessment of the paleodistribution of source and reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Roscher, M.; Schneider, J.W. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Geologie; Berner, U. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany). Referat Organische Geochemie/Kohlenwasserstoff-Forschung

    2008-10-23

    In an on-going project of BGR and TU Bergakademie Freiberg, numeric paleo-climate modeling is used as a tool for the assessment of the paleo-distribution of organic rich deposits as well as of reservoir rocks. This modeling approach is based on new ideas concerning the formation of the Pangea supercontinent. The new plate tectonic concept is supported by paleo- magnetic data as it fits the 95% confidence interval of published data. Six Permocarboniferous time slices (340, 320, 300, 290, 270, 255 Ma) were chosen within a first paleo-climate modeling approach as they represent the most important changes of the Late Paleozoic climate development. The digital maps have a resolution of 2.8 x 2.8 (T42), suitable for high-resolution climate modeling, using the PLASIM model. CO{sub 2} concentrations of the paleo-atmosphere and paleo-insolation values have been estimated by published methods. For the purpose of validation, quantitative model output, had to be transformed into qualitative parameters in order to be able to compare digital data with qualitative data of geologic indicators. The model output of surface temperatures and precipitation was therefore converted into climate zones. The reconstructed occurrences of geological indicators like aeolian sands, evaporites, reefs, coals, oil source rocks, tillites, phosphorites and cherts were then compared to the computed paleo-climate zones. Examples of the Permian Pangea show a very good agreement between model results and geological indicators. From the modeling approach we are able to identify climatic processes which lead to the deposition of hydrocarbon source and reservoir rocks. The regional assessment of such atmospheric processes may be used for the identification of the paleo-distribution of organic rich deposits or rock types suitable to form hydrocarbon reservoirs. (orig.)

  12. A coupled climate model simulation of Marine Isotope Stage 3 stadial climate

    Directory of Open Access Journals (Sweden)

    J. Brandefelt

    2011-01-01

    Full Text Available We present a coupled global climate model (CGCM simulation, integrated for 1500 years to quasi-equilibrium, of a stadial (cold period within Marine Isotope Stage 3 (MIS 3. The simulated Greenland stadial 12 (GS12; ~44 ka BP annual global mean surface temperature (Ts is 5.5 °C higher than in the simulated recent past (RP climate and 1.3 °C lower than in the simulated Last Glacial Maximum (LGM; 21 ka BP climate. The simulated GS12 climate is evaluated against proxy data of sea surface temperature (SST. Simulated SSTs fall within the uncertainty range of the proxy SSTs for 30–50% of the sites depending on season. Proxy SSTs are higher than simulated SSTs in the Central North Atlantic, in contrast to earlier simulations of MIS 3 stadial climate in which proxy SSTs were found to be lower than simulated SST. The annual global mean Ts only changes by 0.10 °C from model years 500–599 to the last century of the simulation, indicating that the climate system may be close to equilibrium already after 500 years of integration. However, significant regional differences between the last century of the simulation and model years 500–599, with a maximum of 8 °C in temperature and 65% in precipitation in Southeastern Greenland in boreal winter, exist. Further, the agreement between simulated and proxy SST is improved from model years 500–599 to the last century of the simulation. El-Niño-Southern Oscillation (ENSO teleconnections in mean sea level pressure (MSLP are analysed for the last 300 years of the GS12, LGM and RP climate simulations. In agreement with an earlier study, we find that GS12 and LGM forcing and boundary conditions induce major modifications to ENSO teleconnections. However, significant differences in the teleconnection patterns are found between a 300-year time-slice starting after 195 model years and the last 300 years of the simulation. Thus we conclude that both the mean state and the

  13. Validation of computer models of an artificial hip joint

    Directory of Open Access Journals (Sweden)

    S. Ziemba

    2007-05-01

    Full Text Available Purpose: Problems of the modelling of the surgical cement behaviour during implantation have been presented in the paper. The purpose was to validate the FEM model describing the temperature fields in the bone during the surgery treatment.Design/methodology/approach: The physical laboratory modelling has been used to perform validation of the model that makes it possible to predict the temperature influence on the bone tissue during polymerization process.Findings: Due to its non-invasive nature, the computer models’ validation method applied in the study seems to be the right solution for the research on surgical procedures of endoprosthesis implantation. However, a particular emphasis should be placed on a correct selection of thermophysical properties of the designed laboratory models. Relying on the calculations and research results, similar local values of maximum temperatures were obtained. Practical implications: The computer modelling methods presented in the paper together with the analytical approach are of great importance to both forecasting the implants’ behaviour during a surgical procedure and in their operational conditions, as well as in the selection and modification process of surgical cements’ material properties. The analysis carried out makes it possible to determine the location of zones most threatened with an adverse effect of an elevated temperature. They are located in the vicinity of the top of the endoprosthesis stem.Originality/value: The work presents the own method of validation of the FEM model used for heat flow modelling.

  14. Validating a Technology Enhanced Student-Centered Learning Model

    Science.gov (United States)

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  15. Child human model development: a hybrid validation approach

    NARCIS (Netherlands)

    Forbes, P.A.; Rooij, L. van; Rodarius, C.; Crandall, J.

    2008-01-01

    The current study presents a development and validation approach of a child human body model that will help understand child impact injuries and improve the biofidelity of child anthropometric test devices. Due to the lack of fundamental child biomechanical data needed to fully develop such models a

  16. Validation of an Efficient Outdoor Sound Propagation Model Using BEM

    DEFF Research Database (Denmark)

    Quirós-Alpera, S.; Henriquez, Vicente Cutanda; Jacobsen, Finn

    An approximate, simple and practical model for prediction of outdoor sound propagation exists based on ray theory, diffraction theory and Fresnel-zone considerations [1]. This model, which can predict sound propagation over non-flat terrain, has been validated for combinations of flat ground, hills...

  17. Validation of 1-D transport and sawtooth models for ITER

    International Nuclear Information System (INIS)

    In this paper the authors describe progress on validating a number of local transport models by comparing their predictions with relevant experimental data from a range of tokamaks in the ITER profile database. This database, the testing procedure and results are discussed. In addition a model for sawtooth oscillations is used to investigate their effect in an ITER plasma with alpha-particles

  18. A Formal Approach to Empirical Dynamic Model Optimization and Validation

    Science.gov (United States)

    Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.

  19. Solar spectral irradiance model validation using Solar Spectral Irradiance and Solar Radius measurements

    Science.gov (United States)

    Thuillier, Gérard; Zhu, Ping; Shapiro, Alexander; Sofia, Sabatino; Tagirov, Rinat; Van Ruymbeke, Michel; Schmutz, Werner

    2016-04-01

    The importance of the reliable solar spectral irradiance (SSI) data for solar and climate physics is now well acknowledged. In particular, the irradiance time series are necessary for most of the current studies concerning climate evolution. However, space instruments are vulnerable to the degradation due to the environment while ground based measurements are limited in wavelength range and need atmospheric effects corrections. This is why SSI modeling is necessary to understand the mechanism of the solar irradiance variability and to provide long and uninterrupted irradiance records to climate and Earth atmosphere scientists. Here we present COSI (COde for Solar Irradiance) model of the SSI variability. The COSI model is based on the Non local thermodynamic Equilibrium Spectral SYnthesis Code (NESSY). We validate NESSY by two independent datasets: - The SSI at solar minimum occurring in 2008, - The radius variation with wavelength and absolute values determined from PREMOS and BOS instruments onboard the PICARD spacecraft. Comparisons between modeling and measured SSI will be shown. However, since SSI measurements have an accuracy estimated between 2 to 3%, the comparison with the solar radius data provides a very important additional constrains on model. For that, 17 partial solar occultations by the Moon are used providing solar radii clearly showing the dependence of the solar radius with wavelength. These results are compared with the NESSY predictions. The agreement between NESSY and observations is within the model and measurements accuracy.

  20. The Urgent Need for Improved Climate Models and Predictions

    Science.gov (United States)

    Goddard, Lisa; Baethgen, Walter; Kirtman, Ben; Meehl, Gerald

    2009-09-01

    An investment over the next 10 years of the order of US$2 billion for developing improved climate models was recommended in a report (http://wcrp.wmo.int/documents/WCRP_WorldModellingSummit_Jan2009.pdf) from the May 2008 World Modelling Summit for Climate Prediction, held in Reading, United Kingdom, and presented by the World Climate Research Programme. The report indicated that “climate models will, as in the past, play an important, and perhaps central, role in guiding the trillion dollar decisions that the peoples, governments and industries of the world will be making to cope with the consequences of changing climate.” If trillions of dollars are going to be invested in making decisions related to climate impacts, an investment of $2 billion, which is less than 0.1% of that amount, to provide better climate information seems prudent. One example of investment in adaptation is the World Bank's Climate Investment Fund, which has drawn contributions of more than $6 billion for work on clean technologies and adaptation efforts in nine pilot countries and two pilot regions. This is just the beginning of expenditures on adaptation efforts by the World Bank and other mechanisms, focusing on only a small fraction of the nations of the world and primarily aimed at anticipated anthropogenic climate change. Moreover, decisions are being made now, all around the world—by individuals, companies, and governments—that affect people and their livelihoods today, not just 50 or more years in the future. Climate risk management, whether related to projects of the scope of the World Bank's or to the planning and decisions of municipalities, will be best guided by meaningful climate information derived from observations of the past and model predictions of the future.

  1. Model validation and calibration based on component functions of model output

    International Nuclear Information System (INIS)

    The target in this work is to validate the component functions of model output between physical observation and computational model with the area metric. Based on the theory of high dimensional model representations (HDMR) of independent input variables, conditional expectations are component functions of model output, and the conditional expectations reflect partial information of model output. Therefore, the model validation of conditional expectations tells the discrepancy between the partial information of the computational model output and that of the observations. Then a calibration of the conditional expectations is carried out to reduce the value of model validation metric. After that, a recalculation of the model validation metric of model output is taken with the calibrated model parameters, and the result shows that a reduction of the discrepancy in the conditional expectations can help decrease the difference in model output. At last, several examples are employed to demonstrate the rationality and necessity of the methodology in case of both single validation site and multiple validation sites. - Highlights: • A validation metric of conditional expectations of model output is proposed. • HDRM explains the relationship of conditional expectations and model output. • An improved approach of parameter calibration updates the computational models. • Validation and calibration process are applied at single site and multiple sites. • Validation and calibration process show a superiority than existing methods

  2. The use of multi-model ensembles from global climate models for impact assessment of climate change

    Science.gov (United States)

    Semenov, M. A.

    2009-04-01

    The IPCC 4th Assessment Report was based on large datasets of projections of future climate produced by eighteen modelling groups worldwide who performed a set of coordinated climate experiments in which numerous global climate models (GCMs) have been run for a common set of experiments and various emission scenarios. These datasets are freely available form the IPCC Data Distribution Centre (www.ipcc-data.org) and can be used by the research community to assess the impact of changing climate on various systems of interest including impacts on agricultural crops and natural ecosystems, biodiversity and plant diseases. Multi-model ensembles (MME) emphasize the uncertainty in climate predictions resulting from structural differences in the global climate model design as well as uncertainty to variations of initial conditions or model parameters. This paper describes a methodology based on a stochastic weather generator for linking MME of predictions from GCMs with process-based impact models to assess impacts of climate change on biological or ecological systems. The latest version of the LARS-WG weather generator is described which allows seamlessly generating daily site-specific climate scenarios worldwide by utilising local daily weather and MME from GCMs. Examples of impacts on wheat in Europe, based on MME, are discussed, including changes in severity of drought and heat stress around flowering.

  3. Statistical Properties of Downscaled CMIP3 Global Climate Model Simulations

    Science.gov (United States)

    Duffy, P.; Tyan, S.; Thrasher, B.; Maurer, E. P.; Tebaldi, C.

    2009-12-01

    Spatial downscaling of global climate model projections adds physically meaningful spatial detail, and brings the results down to a scale that is more relevant to human and ecological systems. Statistical/empirical downscaling methods are computationally inexpensive, and thus can be applied to large ensembles of global climate model projections. Here we examine some of the statistical properties of a large ensemble of empirically downscale global climate projections. The projections are the CMIP3 global climate model projections that were performed by modeling groups around the world and archived by the Program for Climate Model Diagnosis and Intercomparison at Lawrence Livermore National Laboratory. Downscaled versions of 112 of these simulations were created on 2007 and are archived at http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html. The downscaling methodology employed, “Bias Correction/Spatial Downscaling” (BCSD), includes a correction of GCM biases relative to observations during a historical reference period, as well as empirical downscaling to grid scale of ~12 km. We analyzed these downscaled projections and some of the original global model results to assess effects of the bias correction and downscaling on the statistical properties of the ensemble. We also assessed uncertainty in the climate response to increased greenhouse gases from initial conditions relative to the uncertainty introduced by choice of global climate model.

  4. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and

  5. A prediction model for ocular damage - Experimental validation.

    Science.gov (United States)

    Heussner, Nico; Vagos, Márcia; Spitzer, Martin S; Stork, Wilhelm

    2015-08-01

    With the increasing number of laser applications in medicine and technology, accidental as well as intentional exposure of the human eye to laser sources has become a major concern. Therefore, a prediction model for ocular damage (PMOD) is presented within this work and validated for long-term exposure. This model is a combination of a raytracing model with a thermodynamical model of the human and an application which determines the thermal damage by the implementation of the Arrhenius integral. The model is based on our earlier work and is here validated against temperature measurements taken with porcine eye samples. For this validation, three different powers were used: 50mW, 100mW and 200mW with a spot size of 1.9mm. Also, the measurements were taken with two different sensing systems, an infrared camera and a fibre optic probe placed within the tissue. The temperatures were measured up to 60s and then compared against simulations. The measured temperatures were found to be in good agreement with the values predicted by the PMOD-model. To our best knowledge, this is the first model which is validated for both short-term and long-term irradiations in terms of temperature and thus demonstrates that temperatures can be accurately predicted within the thermal damage regime. PMID:26267496

  6. Terrestrial biogeochemistry in the community climate system model (CCSM)

    International Nuclear Information System (INIS)

    Described here is the formulation of the CASA' biogeochemistry model of Fung, et al., which has recently been coupled to the Community Land Model Version 3 (CLM3) and the Community Climate System Model Version 3 (CCSM3). This model is presently being used for Coupled Climate/Carbon Cycle Model Intercomparison Project (C4MIP) Phase 1 experiments. In addition, CASA' is one of three models - in addition to CN (Thornton, et al.) and IBIS (Thompson, et al.) - that are being run within CCSM to investigate their suitability for use in climate change predictions in a future version of CCSM. All of these biogeochemistry experiments are being performed on the Computational Climate Science End Station (Dr. Warren Washington, Principle Investigator) at the National Center for Computational Sciences at Oak Ridge National Laboratory

  7. Large-scale Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: Modeling and Validation

    Science.gov (United States)

    Senay, G. B.; Velpuri, N.; Singh, R. K.; Bohms, S.; Verdin, J. P.

    2013-12-01

    We present a simple but robust method that uses remotely sensed thermal data and model-assimilated weather fields to produce actual evapotranspiration (ET) for the contiguous United States (CONUS) at monthly and seasonal time scales. The method is based on the Simplified Surface Energy Balance (SSEB) model which is now parameterized for operational applications, and renamed as SSEBop. The innovative aspect of the SSEBop is that it uses pre-defined, boundary conditions that are unique to each pixel for the 'hot' and 'cold' reference end members. We used SSEBop to compute 13 years (2000-2012) of monthly ET using MODIS and data streams provided by Global Data Assimilation System (GDAS). Validation of SSEBop performance (model to observed as well as model to model) was performed over the CONUS at both point and basin scales. Point scale model to observed validation was performed using eddy covariance FLUXNET ET (FLET) data (2001-2007) aggregated by year, land cover, elevation and climate zone. Basin scale model to observed validation was performed using annual gridded FLUXNET ET (GFET) and annual basin water balance ET (WBET) data aggregated by various Hydrologic Unit Code (HUC) levels. Model-to-model comparison was also performed by comparing SSEBop ET with MOD16 ET. Point scale validation using monthly data aggregated by years revealed that the MOD16 ET and SSEBop ET products compared well with observations at comparable accuracies annually. Both ET products showed comparable results by most land cover types and by climate zones. However, SSEBop performed better for Grassland and Forest classeswhereasMOD16 performed better for the woody savanna class. Validation results at different HUC levels over 2000-2011 using GFET as a reference indicated higher accuracies for MOD16 ET data. MOD16, SSEBop and GFET data were validated against WBET (2000-2009), and results indicate that both MOD16 and SSEBop ET matched the accuracies of the global GFET dataset at HUC levels. Our

  8. Agricultural climate impacts assessment for economic modeling and decision support

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  9. Analysing climate impact on energy demand using the MOLAND model

    OpenAIRE

    Liu, Xiaochen; Twumasi, Bright Osei

    2008-01-01

    The importance and contribution of climate to energy demand are discussed. A linear regression model is developed to analyse future energy demand corresponding to climate change. The methodology for spatial analysis and integration to MOLAND are also provided in order to investigate possible consequences of different urban development paths on energy consumption patterns.

  10. Drivers of stability of climate coalitions in the STACO model

    NARCIS (Netherlands)

    Dellink, R.B.

    2011-01-01

    This paper investigates which drivers affect the formation and stability of international climate agreements (ICAs). The applied model STACO is used to project costs and benefits of an international agreement on climate change mitigation activities. The simulation results show that an incentive-base

  11. Detecting Warming Hiatus Periods in CMIP5 Climate Model Projections

    OpenAIRE

    Li, Tony W.; Baker, Noel C.

    2016-01-01

    The observed slow-down in the global-mean surface temperature (GST) warming from 1998 to 2012 has been called a “warming hiatus.” Certain climate models, operating under experiments which simulate warming by increasing radiative forcing, have been shown to reproduce periods which resemble the observed hiatus. The present study provides a comprehensive analysis of 38 CMIP5 climate models to provide further evidence that models produce warming hiatus periods during warming experiments. GST rate...

  12. European Climate - Energy Security Nexus. A model based scenario analysis

    International Nuclear Information System (INIS)

    In this research, we have provided an overview of the climate-security nexus in the European sector through a model based scenario analysis with POLES model. The analysis underline that under stringent climate policies, Europe take advantage of a double dividend in its capacity to develop a new cleaner energy model and in lower vulnerability to potential shocks on the international energy markets. (authors)

  13. Mathematical model for the formulation of runoff scenarios before possible variants of the climatic change

    International Nuclear Information System (INIS)

    The application of mathematical modelling to evaluate the hydrological response of different river basins under multiple climate scenarios has become a wide spread tool. However, most of the existing models demand high volumes of data and high data quality. Usually, in Latin America not only the amount of data is scarce, but also the quality of it is very poor, so it is difficult to implement mathematical models with good validation results. Additionally, those models have to be applied over big geographical regions making the hydrological modelling process an almost impossible task. All these factors are pointing to the necessity to develop low data demanding models with few data quality requirements. In this light, this paper shows an attempt to develop a hydrological model under these restrictions. The results shown are concerned with the validation assessment of a study case in Colombia over an extensive region for the Catatumbo watershed. Finally, the improvements currently under implementation are shown

  14. Importance of Computer Model Validation in Pyroprocessing Technology Development

    International Nuclear Information System (INIS)

    In this research, we developed a plan for experimental validation of one of the computer models developed for ER process modeling, i. e., the ERAD code. Several candidate surrogate materials are selected for the experiment considering the chemical and physical properties. Molten salt-based pyroprocessing technology is being examined internationally as an alternative to treat spent nuclear fuel over aqueous technology. The central process in pyroprocessing is electrorefining(ER) which separates uranium from transuranic elements and fission products present in spent nuclear fuel. ER is a widely used process in the minerals industry to purify impure metals. Studies of ER by using actual spent nuclear fuel materials are problematic for both technical and political reasons. Therefore, the initial effort for ER process optimization is made by using computer models. A number of models have been developed for this purpose. But as validation of these models is incomplete and often times problematic, the simulation results from these models are inherently uncertain

  15. A dynamic, climate-driven model of Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Joseph Leedale

    2016-03-01

    Full Text Available Outbreaks of Rift Valley fever (RVF in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  16. The turbulent viscosity models and their experimental validation; Les modeles de viscosite turbulente et leur validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on turbulent viscosity models and on their experimental validation was organized by the `convection` section of the French society of thermal engineers. From the 9 papers presented during this workshop, 8 deal with the modeling of turbulent flows inside combustion chambers, turbo-machineries or in other energy-related applications, and have been selected for ETDE. (J.S.)

  17. Validation of DWPF MOG dynamics model -- Phase 1

    International Nuclear Information System (INIS)

    The report documents the results of a study to validate the DWPF melter off-gas system dynamics model using the data collected during the Waste Qualification Runs in 1995. The study consisted of: (1) calibration of the model using one set of melter idling data, (2) validation of the calibrated model using three sets of steady feeding and one set of transient data, and (3) application of the validated model to simulate the melter overfeeding incident which took place on 7/5.95. All the controller tuning constants and control logic used in the validated model are identical to those used in the DCS in 1995. However, the model does not reflect any design and/or operational changes made in 1996 to alleviate the glass pouring problem. Based on the results of the overfeeding simulation, it is concluded that the actual feed rates during that incident were about 2.75 times the indicated readings and that the peak concentration of combustible gases remained below 15% of the lower flammable limit during the entire one-hour duration

  18. Assessing Climate Impacts on Air Pollution from Models and Measurements

    Science.gov (United States)

    Holloway, T.; Plachinski, S. D.; Morton, J. L.; Spak, S.

    2011-12-01

    It is well known that large-scale patterns in temperature, humidity, solar radiation and atmospheric circulation affect formation and transport of atmospheric constituents. These relationships have supported a growing body of work projecting changes in ozone (O3), and to a lesser extent aerosols, as a function of changing climate. Typically, global and regional chemical transport models are used to quantify climate impacts on air pollution, but the ability of these models to assess weather-dependent chemical processes has not been thoroughly evaluated. Quantifying model sensitivity to climate poses the additional challenge of isolating the local to synoptic scale effects of meteorological conditions on chemistry and transport from concurrent trends in emissions, hemispheric background concentrations, and land cover change. Understanding how well models capture historic climate-chemistry relationships is essential in projecting future climate impacts, in that it allows for better evaluation of model skill and improved understanding of climate-chemistry relationships. We compare the sensitivity of chemistry-climate relationships, as simulated by the EPA Community Multiscale Air Quality (CMAQ) model, with observed historical response characteristics from EPA Air Quality System (AQS) monitoring data. We present results for O3, sulfate and nitrate aerosols, and ambient mercury concentrations. Despite the fact that CMAQ over-predicts daily maximum 8-hour ground-level O3 concentrations relative to AQS data, the model does an excellent job at simulating the response of O3 to daily maximum temperature. In both model and observations, we find that higher temperatures produce higher O3 across most of the U.S., as expected in summertime conditions. However, distinct regions appear in both datasets where temperature and O3 are anti-correlated - for example, over the Upper Midwestern U.S. states of Iowa, Missouri, Illinois, and Indiana in July 2002. Characterizing uncertainties

  19. Assessing Global CGE Model Validity Using Agricultural Price Volatility

    OpenAIRE

    Valenzuela, Ernesto; Hertel, Thomas; Keeney, Roman; Reimer, Jeff

    2005-01-01

    Computable General Equilibrium (CGE) models are commonly used for global agricultural market analysis. However, concerns are sometimes raised about the quality of their output since key parameters may not be econometrically estimated and little emphasis is generally given to model assessment. This article addresses the latter issue by developing an approach to validating CGE models based on the ability to reproduce observed price volatility in agricultural markets. We show how patterns in the...

  20. Ventilation of a nuclear space: modelling, experimental validation and consequences

    International Nuclear Information System (INIS)

    The present problems raised by ventilation are stated, and a review is made of the models of contamination dispersion and calculation of the contaminant concentrations and their validity as to the data collected during radiological events. A model more suitable to the conditions prevailing in installations has been derived from these models in order to describe the evolution of contaminant concentrations in a ventilated space

  1. Computer experiments with a coarse-grid hydrodynamic climate model

    International Nuclear Information System (INIS)

    A climate model is developed on the basis of the two-level Mintz-Arakawa general circulation model of the atmosphere and a bulk model of the upper layer of the ocean. A detailed model of the spectral transport of shortwave and longwave radiation is used to investigate the radiative effects of greenhouse gases. The radiative fluxes are calculated at the boundaries of five layers, each with a pressure thickness of about 200 mb. The results of the climate sensitivity calculations for mean-annual and perpetual seasonal regimes are discussed. The CCAS (Computer Center of the Academy of Sciences) climate model is used to investigate the climatic effects of anthropogenic changes of the optical properties of the atmosphere due to increasing CO2 content and aerosol pollution, and to calculate the sensitivity to changes of land surface albedo and humidity

  2. Construction and Validation of the Lesbian, Gay, Bisexual, and Transgendered Climate Inventory

    Science.gov (United States)

    Liddle, Becky J.; Luzzo, Darrell Anthony; Hauenstein, Anita L.; Schuck, Kelly

    2004-01-01

    Workplace climate refers to formal and informal organizational characteristics contributing to employee welfare. Workplace climates for lesbian, gay, bisexual, and transgendered (LGBT) employees range from actively supportive to openly hostile. An instrument measuring LGBT workplace climate will enable research on vocational adjustment of LGBT…

  3. Modelling the Responses of Carbon Fluxes to Climate Change in Northeast China Forests using IBIS

    Directory of Open Access Journals (Sweden)

    Jingwei Liu

    2013-06-01

    Full Text Available Assessing the long-term exchange of carbon dioxide between terrestrial and the atmosphere is an important priority of the current climate change research. In this regard, it is particularly significant to provide valid data on fluxes of carbon over representative ecosystems. In this study, we used a modified process-based terrestrial ecosystem model (Integrated Biosphere Simulator, IBIS, which represents biogeochemical and biophysical process, coupling the carbon, nitrogen and water cycles on each specific time steps, to generalize our understanding of the temporal and spatial variability of Net Primary Productivity (NPP, Net Ecosystem Productivity (NEP and Soil Respiration (RS over northeast China to climate change for the period 1961 to 2080. The model results demonstrate a powerful approach to integrate and expand our knowledge of climate changes on northeast China forest carbon dynamics now and in the future.

  4. Constraining climate model parameters from observed 20th century changes

    Science.gov (United States)

    Forest, Chris E.; Stone, Peter H.; Sokolov, Andrei P.

    2008-10-01

    We present revised probability density functions for climate model parameters (effective climate sensitivity, the rate of deep-ocean heat uptake, and the strength of the net aerosol forcing) that are based on climate change observations from the 20th century. First, we compare observed changes in surface, upper-air, and deep-ocean temperature changes against simulations of 20th century climate in which the climate model parameters were systematically varied. The estimated 90% range of effective climate sensitivity is 2-5 K but no corresponding upper bound can be placed on the equilibrium climate sensitivity. The net aerosol forcing strength for the 1980s has 90% bounds of -0.70 to -0.27 Wm-2. The rate of deep-ocean heat uptake corresponds to an effective diffusivity, Kv, with a 90% range of 0.04-4.1 cm2s-1. Second, we estimate the effective climate sensitivity and rate of deep-ocean heat uptake for 11 of the IPCC AR4 AOGCMs. By comparing against the acceptable combinations inferred from the observations, we conclude that the rates of deep-ocean heat uptake for the majority of AOGCMs lie above the observationally based median value. This implies a bias in the predictions inferred from the IPCC models alone.

  5. Constraining climate model parameters from observed 20th century changes

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Chris E.; Stone, Peter H.; Sokolov, Andrei P. (Massachusetts Inst. of Technology, Cambridge, MA 02139 (United States)). e-mail: ceforest@mit.edu

    2008-07-01

    We present revised probability density functions for climate model parameters (effective climate sensitivity, the rate of deep-ocean heat uptake, and the strength of the net aerosol forcing) that are based on climate change observations from the 20th century. First, we compare observed changes in surface, upper-air, and deep-ocean temperature changes against simulations of 20th century climate in which the climate model parameters were systematically varied. The estimated 90% range of effective climate sensitivity is 2-5 K but no corresponding upper bound can be placed on the equilibrium climate sensitivity. The net aerosol forcing strength for the 1980s has 90% bounds of -0.70 to -0.27 W/m2. The rate of deep-ocean heat uptake corresponds to an effective diffusivity, Kv , with a 90% range of 0.04-4.1 cm2/s. Second, we estimate the effective climate sensitivity and rate of deep-ocean heat uptake for 11 of the IPCC AR4 AOGCMs. By comparing against the acceptable combinations inferred from the observations, we conclude that the rates of deep-ocean heat uptake for the majority of AOGCMs lie above the observationally based median value. This implies a bias in the predictions inferred from the IPCC models alone

  6. Constraining climate model parameters from observed 20th century changes

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Chris E.; Stone, Peter H.; Sokolov, Andrei P. (Massachusetts Inst. of Technology, Cambridge, MA 02139 (US)). e-mail: ceforest@mit.edu

    2008-07-01

    We present revised probability density functions for climate model parameters (effective climate sensitivity, the rate of deep-ocean heat uptake, and the strength of the net aerosol forcing) that are based on climate change observations from the 20th century. First, we compare observed changes in surface, upper-air, and deep-ocean temperature changes against simulations of 20th century climate in which the climate model parameters were systematically varied. The estimated 90% range of effective climate sensitivity is 2-5 K but no corresponding upper bound can be placed on the equilibrium climate sensitivity. The net aerosol forcing strength for the 1980s has 90% bounds of -0.70 to -0.27 W/m2. The rate of deep-ocean heat uptake corresponds to an effective diffusivity, K_v , with a 90% range of 0.04-4.1 cm2/s. Second, we estimate the effective climate sensitivity and rate of deep-ocean heat uptake for 11 of the IPCC AR4 AOGCMs. By comparing against the acceptable combinations inferred from the observations, we conclude that the rates of deep-ocean heat uptake for the majority of AOGCMs lie above the observationally based median value. This implies a bias in the predictions inferred from the IPCC models alone

  7. Combining Global Climate Model Outputs and Insights from Downscaling for Australian Climate Projections

    Science.gov (United States)

    Grose, M. R.; Timbal, B.; Katzfey, J. J.; Moise, A. F.; Eksrtrom, M.; Whetton, P.

    2013-12-01

    Dynamical and statistical downscaling of global climate model (GCM) outputs has the potential to provide valuable insights when making regional climate projections. It may reveal regional detail in the projected climate change signal through higher resolution and accounting for local influences such as topography and coastlines. However, climate change adaptation research and planning desires a coherent view of possible future climate that accounts for the various sources of uncertainty and at a relevant spatial scale. This means there is value in combining the most useful insights from all available downscaling with a more comprehensive set of designed global climate model (GCM) projections (e.g. the CMIP5 archive), and this is done for the next set of national climate projections products in Australia. There are several practical considerations in this process that affect the process, primarily because downscaling is done using various disparate methods for a limited set of models and scenarios. There is no objective framework to combine different sets of ad hoc downscaling simulations with a set of GCMs, so some degree of expert judgment is used. We emphasize cases where there is the most apparent ';added value' and report these insights in complement, and in some cases in preference to, GCM projections. Confidence in such insights first requires understanding of what input data is used from the host model, what biases are reduced and what new biases are potentially introduced. We then seek an understanding of how the climate change signal differs from that of the host model, and an attribution of the cause of this difference. Several case studies within Australia are discussed.

  8. Data for model validation summary report. A summary of data for validation and benchmarking of recovery boiler models

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.; Lien, S.; Schmidl, W.; Salcudean, M.; Abdullah, Z.

    1997-07-01

    One of the tasks in the project was to obtain data from operating recovery boilers for the purpose of model validation. Another task was to obtain water model data and computer output from University of British Columbia for purposes of benchmarking the UBC model against other codes. In the course of discussions on recovery boiler modeling over the course of this project, it became evident that there would be value in having some common cases for carrying out benchmarking exercises with different recovery boiler models. In order to facilitate such a benchmarking exercise, the data that was obtained on this project for validation and benchmarking purposes has been brought together in a single, separate report. The intent is to make this data available to anyone who may want to use it for model validation. The report contains data from three different cases. Case 1 is an ABBCE recovery boiler which was used for model validation. The data are for a single set of operating conditions. Case 2 is a Babcock & Wilcox recovery boiler that was modified by Tampella. In this data set, several different operating conditions were employed. The third case is water flow data supplied by UBC, along with computational output using the UBC code, for benchmarking purposes.

  9. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    Science.gov (United States)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian; Trolle, Dennis; Børgesen, Christen Duus; Olesen, Jørgen E.; Jeppesen, Erik; Jensen, Karsten H.

    2016-04-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice remained the dominant factor for mean discharge, low and high flows as well as hydraulic head at the end of the century.

  10. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  11. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G.; Gavin, J. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Geological Observatory

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  12. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  13. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    CERN Document Server

    Apostolakis, J; Bagulya, A; Brown, J M C; Burkhardt, H; Chikuma, N; Cortes-Giraldo, M A; Elles, S; Grichine, V; Guatelli, S; Incerti, S; Ivanchenko, V N; Jacquemier, J; Kadri, O; Maire, M; Pandola, L; Sawkey, D; Toshito, T; Urban, L; Yamashita, T

    2015-01-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed.

  14. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    Science.gov (United States)

    Apostolakis, J.; Asai, M.; Bagulya, A.; Brown, J. M. C.; Burkhardt, H.; Chikuma, N.; Cortes-Giraldo, M. A.; Elles, S.; Grichine, V.; Guatelli, S.; Incerti, S.; Ivanchenko, V. N.; Jacquemier, J.; Kadri, O.; Maire, M.; Pandola, L.; Sawkey, D.; Toshito, T.; Urban, L.; Yamashita, T.

    2015-12-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed.

  15. Intercomparison of 20th century tropical climate model hindcasts and coral δ18O data using a forward proxy model

    Science.gov (United States)

    Thompson, D. M.; Evans, M. N.; Ault, T. R.; Cole, J. E.; Emile-Geay, J.

    2009-12-01

    Forward modeling of climate proxies enables identification of uncertainties in the interpretation of high resolution proxy archives in a manner that is complementary to classical inverse methods. By coupling proxy models to climate model output driven with realistic external forcings, a framework for assessment of their consistency with proxy observations over long timescales is created. Here we model reef coral oxygen isotopic composition (δ18O) as a function of sea-surface temperature (SST) and sea-surface salinity (SSS), the latter a linear proxy for the isotopic composition of seawater in the tropics. We first validate this model against a comprehensive network of 20th century coral δ18O measurements. When driven with historical SST and SSS data for the last ~50 years, the forward model is able to capture the spatial and temporal pattern of ENSO variability observed in the corals better than a univariate SST-based model, hence establishing the skill of this bivariate model. We then drive the forward model with SST and SSS from 20th-century simulations of state-of-the-art climate models, such as GFDL CM2.0 (run 1 c3m; Delworth et al, 2006, Wittenberg et al, 2006), to assess the ability of climate models to reproduce tropical climate variability. GFDL CM2.0 forward modeled coral δ18O accurately reproduces the spatio-temporal pattern of the observed coral δ18O trend over the 20th century, and furthermore suggests the trend was primarily driven by increased SSTs. However, the magnitude of the modeled trend is smaller than observed in the corals, suggesting that coral physiology has reacted in a non-linear fashion to the observed climatic forcing, or that GFDL CM2.0's tropical response to external climate forcing is too small. Instead, variance in GFDL modeled corals is dominated by strong interannual variability that is much greater than that observed in corals. The temporal evolution of modeled ENSO variance and frequency over the 20th century is also markedly

  16. Twenty first century climate change as simulated by European climate models

    International Nuclear Information System (INIS)

    Full text: Climate change simulation results for seven European state-of-the-art climate models, participating in the European research project ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts), will be presented. Models from Norway, France, Germany, Denmark, and Great Britain, representing a sub-ensemble of the models contributing to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), are included. Climate simulations are conducted with all the models for present-day climate and for future climate under the SRES A1B, A2, and B1 scenarios. The design of the simulations follows the guidelines of the IPCC AR4. The 21st century projections are compared to the corresponding present-day simulations. The ensemble mean global mean near surface temperature rise for the year 2099 compared to the 1961-1990 period amounts to 3.2Kforthe A1B scenario, to 4.1 K for the A2 scenario, and to 2.1 K for the B1 scenario. The spatial patterns of temperature change are robust among the contributing models with the largest temperature increase over the Arctic in boreal winter, stronger warming overland than over ocean, and little warming over the southern oceans. The ensemble mean globally averaged precipitation increases for the three scenarios (5.6%, 5.7%, and 3.8% for scenarios A1B, A2, and B1, respectively). The precipitation signals of the different models display a larger spread than the temperature signals. In general, precipitation increases in the Intertropical Convergence Zone and the mid- to high latitudes (most pronounced during the hemispheric winter) and decreases in the subtropics. Sea-level pressure decreases over the polar regions in all models and all scenarios, which is mainly compensated by a pressure increase in the subtropical highs. These changes imply an intensification of the Southern and Northern Annular Modes

  17. Development of formal dynamic models with Microsoft Excel for greenhouse climate control.

    OpenAIRE

    Valiño López, Vanesa; Perdigones Borderias, Alicia; Cerro Giner, Jaime del; García Fernández, José Luis

    2008-01-01

    Simple climate models performed with a widespread computer tool (Microsoft® Excel) could be useful for researchers or even greenhouse growers. A model of this type was used in three independent studies (heating, ventilation and cooling). The error in the calculation of temperature was lower than 2.5 ºC, and the error in the calculation of relative humidity was lower than 9%, in the validation of the model. The main advantage of the method of modelling is the possibility of fitting the coeffic...

  18. Validation of the coupled Eta/SSiB model over South America

    Science.gov (United States)

    Chou, Sin Chan; Tanajura, Clemente A. S.; Xue, Yongkang; Nobre, Carlos A.

    2002-10-01

    Two 1-month integrations were performed with the regional Eta model coupled with the Simplified Simple Biosphere model (SSiB) over South America. The goal of the present work is to validate the model and to investigate its biases and skill on the simulations of South American climate. This is an initial step on the use of this model for climate research. The Eta model was set up with 80-km horizontal resolution and 38 vertical layers over the South American continent and part of the adjacent oceans. Analyses from the National Centers for Environmental Prediction (NCEP) were used as initial and lateral boundary conditions. The selected months were August and November 1997, which are in opposite phases of the precipitation annual cycle observed in the central part of South America. The model was integrated continuously for each 1-month period. Monthly means and daily variations of simulated precipitation and surface temperature compare well with observations. The patterns of simulated outgoing longwave radiation are also similar to the observed ones. However, a positive bias is verified in the simulations. The model shows a positive bias in latent and sensible heat surface fluxes due to an excessive shortwave incoming radiation at the surface. Comparisons with a version of the Eta model coupled with the bucket model shows that the Eta/SSiB version improves the surface temperature and increases precipitation in the interior of the continent during wet months.

  19. Historical and idealized climate model experiments: an EMIC intercomparison

    Directory of Open Access Journals (Sweden)

    M. Eby

    2012-08-01

    Full Text Available Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes seem to be underestimated. It is possible that recent modelled climate trends or climate-carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated.

    Several one thousand year long, idealized, 2x and 4x CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate-carbon feedbacks. The values from EMICs generally fall within the range given by General Circulation Models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows considerable synergy between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given

  20. Comparison of corrected and uncorrected model simulations in the perspective of climate change in the area of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Farda, Aleš; Zahradníček, Pavel; Skalák, Petr

    Brno: Global change research centre, Academy of Sciences of the Czech Republic, v. v. i, 2013 - (Stojanov, R.; Žalud, Z.; Cudlín, P.; Farda, A.; Urban, O.; Trnka, M.), s. 115-119 ISBN 978-80-904351-8-6. [Global Change and Resilience. Brno (CZ), 22.05.2013-24.05.2013] Institutional support: RVO:67179843 Keywords : RCM simulations * future climate * validation of regional climate model outputs Subject RIV: EH - Ecology, Behaviour

  1. Assessing the Capabilities of Three Regional Climate Models over CORDEX Africa in Simulating West African Summer Monsoon Precipitation

    OpenAIRE

    Akinsanola, A. A.; K. O. Ogunjobi; Gbode, I. E.; Ajayi, V. O.

    2015-01-01

    This study evaluates the ability of three Regional Climate Models (RCMs) used in Coordinated Regional Climate Downscaling Experiment (CORDEX) to simulate the characteristics of rainfall pattern during the West Africa Summer Monsoon from 1998 to 2008. The seasonal climatology, annual rainfall cycles, and wind fields of the RCMs output were assessed over three homogenous subregions and validated using precipitation data from eighty-one (81) ground observation stations and TRMM satellite data. F...

  2. Coupled Climate Model Simulations of a Late Cretaceous (Maastrichtian) Greenhouse Climate: Comparison with Proxy Data

    Science.gov (United States)

    Upchurch, G. R.; Kiehl, J. T.; Shields, C. A.; Scotese, C.

    2009-12-01

    Earth’s future climate is expected to warm considerably due to increased atmospheric carbon dioxide. Paleoclimate records indicate that pre-Quaternary time periods provide the best possible view of Earth under warm greenhouse conditions. Thus, past warm greenhouse climates provide an important tool to evaluate fully coupled climate models that are currently used to study future climate change. In this study, we use the Community Climate System Model (CCSM3) to investigate the climate of the latest Cretaceous (Maastrichtian). CCSM3 is a fully coupled three-dimensional global model that includes atmospheric, oceanic, sea-ice and terrestrial processes. The CCSM3 simulations employ slight modifications of the paleogeographic and global vegetation reconstructions used in earlier simulations of the late Maastrichtian with the GENESIS Earth System Model (Upchurch, Otto-Bliesner, and Scotese, 1999). CCSM3 simulations include two levels of atmospheric carbon dioxide (2XPAL and 6XPAL), best estimates of atmospheric methane, changes to low level liquid cloud properties based on the hypothesis of Kump and Pollard (2008), and different paleoelevations for the interior of Siberia. A coupled simulation of multi-century length is carried out to study steady state conditions for the surface ocean. For terrestrial regions, model mean annual temperatures and seasonality are compared with data from angiosperm leaf physiognomy, plant life form distribution, and other climatic indicators to determine how well the model represents high latitude warmth on a zonal and regional basis. Model precipitation is compared with a database of climatically restricted sediments and angiosperm leaf physiognomy for specific sites. For oceanic regions, the CCSM3 simulations are compared to marine proxies of surface and benthic temperatures, especially the δ18O of exceptionally preserved carbonate. Our simulations reproduce many features of Maastrichtian climate, such as the latitudinal gradient of

  3. Multi-wheat-model ensemble responses to interannual climatic variability

    DEFF Research Database (Denmark)

    Ruane, A C; Hudson, N I; Asseng, S;

    2016-01-01

    common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 ≤ 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long......We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and we...... evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...

  4. A probabilistic model of ecosystem response to climate change

    International Nuclear Information System (INIS)

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold

  5. Cross-validation model assessment for modular networks

    CERN Document Server

    Kawamoto, Tatsuro

    2016-01-01

    Model assessment of the stochastic block model is a crucial step in identification of modular structures in networks. Although this has typically been done according to the principle that a parsimonious model with a large marginal likelihood or a short description length should be selected, another principle is that a model with a small prediction error should be selected. We show that the leave-one-out cross-validation estimate of the prediction error can be efficiently obtained using belief propagation for sparse networks. Furthermore, the relations among the objectives for model assessment enable us to determine the exact cause of overfitting.

  6. Verification and Validation of Model-Based Autonomous Systems

    Science.gov (United States)

    Pecheur, Charles; Koga, Dennis (Technical Monitor)

    2001-01-01

    This paper presents a three year project (FY99 to FY01) on the verification and validation of model based autonomous systems. The topics include: 1) Project Profile; 2) Model-Based Autonomy; 3) The Livingstone MIR; 4) MPL2SMV; 5) Livingstone to SMV Translation; 6) Symbolic Model Checking; 7) From Livingstone Models to SMV Models; 8) Application In-Situ Propellant Production; 9) Closed-Loop Verification Principle; 10) Livingstone PathFinder (LPF); 11) Publications and Presentations; and 12) Future Directions. This paper is presented in viewgraph form.

  7. Description and validation of realistic and structured endourology training model

    OpenAIRE

    Soria, Federico; Morcillo, Esther; Sanz, Juan Luis; Budia, Alberto; Serrano, Alvaro; Sanchez-Margallo, Francisco M

    2014-01-01

    Purpose: The aim of the present study was to validate a model of training, which combines the use of non-biological and ex vivo biological bench models, as well as the modelling of urological injuries for endourological treatment in a porcine animal model. Material and Methods: A total of 40 participants took part in this study. The duration of the activity was 16 hours. The model of training was divided into 3 levels: level I, concerning the acquisition of basic theoretical knowledge; level ...

  8. Modelling and experimental validation of a car starting system

    Energy Technology Data Exchange (ETDEWEB)

    Amato, F.; Celentano, G.; Iervolino, R. [Univ. degli Studi di Napoli (Italy). Dipt. di Informatica e Sistemistica; Freni, D. [ELASIS-Sistemi di Controllo, Pomigliano d' Arco (Italy)

    2001-07-01

    In this paper a new approach to the dynamic modelling of a car starting system is proposed. The system model is the composition of three interacting parts: the battery, the starter and the internal combustion engine. Each part is modelled by a small number of parameters and by a relatively simple mathematical structure, in order to attain a trade-off between adequate modelling accuracy and parameter identification via simple dynamical experiments proposed by the authors. The obtained model is validated by a real starting experiment conducted on a FIAT car. (orig.)

  9. Validation of the dynamic model for a pressurized water reactor

    International Nuclear Information System (INIS)

    Dynamic model validation is a necessary procedure to assure that the developed empirical or physical models are satisfactorily representing the dynamic behavior of the actual plant during normal or abnormal transients. For small transients, physical models which represent isolated core, isolated steam generator and the overall pressurized water reactor are described. Using data collected during the step power changes that occured during the startup procedures, comparisons of experimental and actual transients are given at 30% and 100% of full power. The agreement between the transients derived from the model and those recorded on the plant indicates that the developed models are well suited for use for functional or control studies

  10. Modeling European ruminant prodcuction systems: facing the challenges of climate change

    DEFF Research Database (Denmark)

    Kipling, Richard Philip; Bannink, Andre; Bellocchi, Gianni;

    2016-01-01

    , yield and GHG emissions from mono-specific swards, but modeling multi-species swards, grassland quality and the impact of management changes requires further development. Current livestock models provide a good basis for predicting animal production; linking these with models of animal health and...... changes affect a range of economic and environmental variables at regional, national and European scales. Models at larger scales generally utilise more empirical approaches than those applied at animal, field and farm-scales and include assumptions which may not be valid under climate change conditions...... gas (GHG) emissions, while intensification of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the relationships between climate change, management and policy choices, food production, and the maintenance of...

  11. Using airborne laser scanning profiles to validate marine geoid models

    Science.gov (United States)

    Julge, Kalev; Gruno, Anti; Ellmann, Artu; Liibusk, Aive; Oja, Tõnis

    2014-05-01

    Airborne laser scanning (ALS) is a remote sensing method which utilizes LiDAR (Light Detection And Ranging) technology. The datasets collected are important sources for large range of scientific and engineering applications. Mostly the ALS is used to measure terrain surfaces for compilation of Digital Elevation Models but it can also be used in other applications. This contribution focuses on usage of ALS system for measuring sea surface heights and validating gravimetric geoid models over marine areas. This is based on the ALS ability to register echoes of LiDAR pulse from the water surface. A case study was carried out to analyse the possibilities for validating marine geoid models by using ALS profiles. A test area at the southern shores of the Gulf of Finland was selected for regional geoid validation. ALS measurements were carried out by the Estonian Land Board in spring 2013 at different altitudes and using different scan rates. The one wavelength Leica ALS50-II laser scanner on board of a small aircraft was used to determine the sea level (with respect to the GRS80 reference ellipsoid), which follows roughly the equipotential surface of the Earth's gravity field. For the validation a high-resolution (1'x2') regional gravimetric GRAV-GEOID2011 model was used. This geoid model covers the entire area of Estonia and surrounding waters of the Baltic Sea. The fit between the geoid model and GNSS/levelling data within the Estonian dry land revealed RMS of residuals ±1… ±2 cm. Note that such fitting validation cannot proceed over marine areas. Therefore, an ALS observation-based methodology was developed to evaluate the GRAV-GEOID2011 quality over marine areas. The accuracy of acquired ALS dataset were analyzed, also an optimal width of nadir-corridor containing good quality ALS data was determined. Impact of ALS scan angle range and flight altitude to obtainable vertical accuracy were investigated as well. The quality of point cloud is analysed by cross

  12. Simulation of convective and stratiform precipitation in regional climate models

    Czech Academy of Sciences Publication Activity Database

    Rulfová, Zuzana; Kyselý, Jan

    Washington: Association of American Geographers, 2014. [AAG Annual Meeting /59./. 08.04.2014-12.04.2014, Tampa] Institutional support: RVO:68378289 Keywords : climate model * convective precipitation * stratiform precipitation * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology

  13. California Basin Characterization Model Downscaled Climate and Hydrology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The California Basin Characterization Model (CA-BCM 2014) dataset provides historical and projected climate and hydrologic surfaces for the region that encompasses...

  14. A site characterization and validation - Porous media modelling of validation tracer experiments

    International Nuclear Information System (INIS)

    A three dimensional porous media model of the SCV site was developed to predict the observed hydraulic head distribution in the SCV site as well as the measured flux to the D boreholes during the simulated drift experiment (SDE) and the flux to the Validation drift. The SCV flux model was calibrated to reproduce the observed distribution of flux in the D boreholes and the validation drift and was used as the basis for simulating the solute transport of the tracer experiments carried out in the SCV site. The SCV transport model was calibrated using the measured breakthrough curves for the saline tracer tests. The porous media numerical simulations of the validation tracer experiments were designed to predict the transport of conservative tracers through the rock mass from selected boreholes in the SCV site. This prediction consisted of computing the tracer breakthrough curves for the validation drift as well as predicting t5 and t50, time to reach 5% and 50% of the 'steady state' breakthrough, and Css/Co, the normalized steady state breakthrough concentrations for each experiment. The computed distribution of hydraulic heads and tracer concentrations indicates that there is a relatively strong horizontal as well as vertical gradient in the H zone. Tracer from the more distant boreholes appears to bypass the drift and only appears in the drift as a result of lateral dispersion. A preliminary comparison of the predicted tracer results with the measured results, based on the breakthrough curves and values of t5, shows that in general the predicted tracer arrival times at the drift were too early and the predicted steady state relative concentrations of tracer were lower than measured. (au)

  15. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  16. Future extreme events in European climate: an exploration of regional climate model projections

    OpenAIRE

    Beniston, Martin; Stephenson, David B.; Christensen, Ole B.; Ferro, Christopher A. T.; Frei, Christoph; Goyette, Stéphane; Halsnaes, Kirsten; Holt, Tom; Jylhä, Kirsti; Koffi, Brigitte; Palutikof, Jean; Schöll, Regina; Semmler, Tido; Woth, Katja

    2007-01-01

    This paper presents an overview of changes in the extreme events that are most likely to affect Europe in forthcoming decades. A variety of diagnostic methods are used to determine how heat waves, heavy precipitation, drought, wind storms, and storm surges change between present (1961–90) and future (2071–2100) climate on the basis of regional climate model simulations produced by the PRUDENCE project. A summary of the main results follows. Heat waves – Regional surface warming causes the fre...

  17. Long-term Archiving of Climate Model Data at WDC Climate and DKRZ

    OpenAIRE

    M. Lautenschlager; Stahl, W

    2007-01-01

    The computing capabilities for production of Earth system model data are growing faster than the prices for mass storage media sink. If the archive philosophy left unchanged during the migration to the next compute server generation consequently the amount of money for long-term archiving rises and the total amount of money for archiving tends to exceed the money which is left for compute services. At WDCC (World Data Center Climate) and DKRZ (German Climate Computing Centre) a new conc...

  18. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    Science.gov (United States)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  19. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  20. Modelling for water supply of irrigated cropping systems on climate change

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2012-03-01

    Full Text Available The vulnerability of Mediterranean environment due to climatic changes makes necessary to define the effects of the increase of CO2 atmospheric concentration and the consequent alterations of temperature and precipitation variations upon the processes which regulate the plants’ water supply. The traditional research can not meet the needs of this information because of the difficulty of carrying out the experiments. Therefore, it is necessary to use models based upon mathematical representation of the processes and interactions between climatic scenarios, plant and soil, with which to simulate different agronomic situations. The integration of global circulation models with water balance models is a valid tool for studying the influence of climatic changes on water supply. This study took into account the influence of climatic changes on water supply of poly-annual (artichoke and asparagus and annual (potato and broccoli crops with the CRITERIA simulation model of water balance. The simulations were performed with two future climate scenarios (A2 and B1. The results of the simulations highlight how the A2 scenario gives a greater influence on cycle length of crops which develop in summer time determining a reduction of crop cycle from 15 to 20% compared to the observed data, and so, as a consequence in the future, the crops with a summer crop cycle will be subjected to reductions of water supply up to 25%.

  1. Climate simulations for 1880-2003 with GISS modelE

    CERN Document Server

    Hansen, J; Bauer, S; Baum, E; Cairns, B; Canuto, V; Chandler, M; Cheng, Y; Cohen, A; Faluvegi, G; Fleming, E; Friend, A; Genio, A D; Hall, T; Jackman, C; Jonas, J; Kelley, M; Kharecha, P; Kiang, N Y; Koch, D; Labow, G; Lacis, A; Lerner, J; Lo, K; Menon, S; Miller, R; Nazarenko, L; Novakov, T; Oinas, V; Perlwitz, J; Rind, D; Romanou, A; Ruedy, R; Russell, G; Sato, M; Schmidt, G A; Schmunk, R; Shindell, D; Stone, P; Streets, D; Sun, S; Tausnev, N; Thresher, D; Unger, N; Yao, M; Zhang, S; Perlwitz, Ja.; Perlwitz, Ju.

    2006-01-01

    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies...

  2. Urban Climate Resilience - Connecting climate models with decision support cyberinfrastructure using open standards

    Science.gov (United States)

    Bermudez, L. E.; Percivall, G.; Idol, T. A.

    2015-12-01

    Experts in climate modeling, remote sensing of the Earth, and cyber infrastructure must work together in order to make climate predictions available to decision makers. Such experts and decision makers worked together in the Open Geospatial Consortium's (OGC) Testbed 11 to address a scenario of population displacement by coastal inundation due to the predicted sea level rise. In a Policy Fact Sheet "Harnessing Climate Data to Boost Ecosystem & Water Resilience", issued by White House Office of Science and Technology (OSTP) in December 2014, OGC committed to increase access to climate change information using open standards. In July 2015, the OGC Testbed 11 Urban Climate Resilience activity delivered on that commitment with open standards based support for climate-change preparedness. Using open standards such as the OGC Web Coverage Service and Web Processing Service and the NetCDF and GMLJP2 encoding standards, Testbed 11 deployed an interoperable high-resolution flood model to bring climate model outputs together with global change assessment models and other remote sensing data for decision support. Methods to confirm model predictions and to allow "what-if-scenarios" included in-situ sensor webs and crowdsourcing. A scenario was in two locations: San Francisco Bay Area and Mozambique. The scenarios demonstrated interoperation and capabilities of open geospatial specifications in supporting data services and processing services. The resultant High Resolution Flood Information System addressed access and control of simulation models and high-resolution data in an open, worldwide, collaborative Web environment. The scenarios examined the feasibility and capability of existing OGC geospatial Web service specifications in supporting the on-demand, dynamic serving of flood information from models with forecasting capacity. Results of this testbed included identification of standards and best practices that help researchers and cities deal with climate-related issues

  3. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.

    2012-01-01

    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided i

  4. Validation of a cholangiographic prognostic model in primary sclerosing cholangitis

    NARCIS (Netherlands)

    C.Y. Ponsioen; J.B. Reitsma; K.M. Boberg; L. Aabakken; E.A. Rauws; E. Schrumpf

    2010-01-01

    Background and study aims: We previously developed a prognostic model for primary sclerosing cholangitis (PSC), which was primarily based on a cholangiographic classification of the intra- and extrahepatic biliary tree lesions. The aim of the present study was to validate the performance of this mod

  5. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  6. Bibliometric Modeling Processes and the Empirical Validity of Lotka's Law.

    Science.gov (United States)

    Nicholls, Paul Travis

    1989-01-01

    Examines the elements involved in fitting a bibliometric model to empirical data, proposes a consistent methodology for applying Lotka's law, and presents the results of an empirical test of the methodology. The results are discussed in terms of the validity of Lotka's law and the suitability of the proposed methodology. (49 references) (CLB)

  7. Empirical validation data sets for double skin facade models

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2008-01-01

    During recent years application of double skin facades (DSF) has greatly increased. However, successful application depends heavily on reliable and validated models for simulation of the DSF performance and this in turn requires access to high quality experimental data. Three sets of accurate emp...

  8. ID Model Construction and Validation: A Multiple Intelligences Case

    Science.gov (United States)

    Tracey, Monica W.; Richey, Rita C.

    2007-01-01

    This is a report of a developmental research study that aimed to construct and validate an instructional design (ID) model that incorporates the theory and practice of multiple intelligences (MI). The study consisted of three phases. In phase one, the theoretical foundations of multiple Intelligences and ID were examined to guide the development…

  9. Requirements Validation: Execution of UML Models with CPN Tools

    DEFF Research Database (Denmark)

    Machado, Ricardo J.; Lassen, Kristian Bisgaard; Oliveira, Sérgio; Couto, Marco; Pinto, Patrícia

    2007-01-01

    Requirements validation is a critical task in any engineering project. The confrontation of stakeholders with static requirements models is not enough, since stakeholders with non-computer science education are not able to discover all the inter-dependencies between the elicited requirements. Eve...

  10. Modeling Surgery: A New Way Toward Understanding Earth Climate Variability

    Institute of Scientific and Technical Information of China (English)

    WU Lixin; LIU Zhengyu; Robert Gallimore; Michael Notaro; Robert Jacob

    2005-01-01

    A new modeling concept, referred to as Modeling Surgery, has been recently developed at University of Wisconsin-Madison. It is specifically designed to diagnose coupled feedbacks between different climate components as well as climatic teleconnections within a specific component through systematically modifying the coupling configurations and teleconnective pathways. It thus provides a powerful means for identifying the causes and mechanisms of low-frequency variability in the Earth's climate system. In this paper, we will give a short review of our recent progress in this new area.

  11. Verification of regional climate models over the territory of Ukraine

    Science.gov (United States)

    Krakovska, S.; Palamarchuk, L.; Shedemenko, I.; Djukel, G.; Gnatjuk, N.

    2009-04-01

    Verification of regional climate models (RCMs) over the territory of Ukraine was the first stage of the National project for assessment of possible climate change and its impact on the economic and social life in Ukraine in XXI century. Since Ukraine has pretty different climates in different parts, the territory of Ukraine was divided on 11 regions with more or less uniform climate conditions: 7 almost equal in space regions in plain terrain, 2 - in coastal zones near the Black and Azov seas and 2 - in the Carpathian and the Crimean mountains. Verification of RCMs for climate characteristics was carried out for each defined region separately. Data of meteorological network in Ukraine (187 stations) and the Climate Research Unit (CRU 10-min global data-set) for multy-year monthly, season and annual means of temperature and precipitation for the period 1961-90 were used for verification of models' results. Two RCMs were used in the analysis of the past climate of Ukraine: REMO (MPI-M, Hamburg) and RegCM3 (ICTP, Trieste). Both models were constructed with initial and boundary conditions from ERA-40 data-set with horizontal spacing of ~25 km and vertically 27 (REMO) and 18 (RegCM3) Z-σ levels. In a whole, both models demonstrated better ability for temperature than precipitation characteristics. Very high correlation of 0.9 was found between models, network and CRU for temperatures and 0.7-0.8 for precipitation. Generally, models were warmer especially for summer months up to 2 oC. More precipitation in the models was found for winter season and less - for summer and in the mountainous subregions comparably with observations. In perspective we intend to run RCMs initialized with GCMs for the same period and for XXI century and account for the obtained systematic models' errors in the analysis of possible climate change over the territory of Ukraine.

  12. Validated TRNSYS Model for Forced Circulation Solar Water Heating Systems with Flat Plate and Heat Pipe Evacuated Tube Collectors

    OpenAIRE

    Ayompe, Lacour; Duffy, Aidan; MCCORMACK, SARAH; Conlon, Michael

    2011-01-01

    This paper presents a validated TRNSYS model for forced circulation solar water heating systems used in temperate climates. The systems consist of two flat plate collectors (FPC) and a heat pipe evacuated tube collector (ETC) as well as identical auxiliary components. The systems were fitted with an automated unit that controlled the immersion heaters and hot water demand profile to mimic hot water usage in a typical European domestic dwelling. The main component of the TRNSYS model was the T...

  13. Links between atmospheric circulation and surface air temperature in climate models in control climate and future scenarios

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan

    Bern: Swiss Climate Research, 2011, s. 84-85. [International NCCR Climate Summer School "Climate Change, Extremes and Ecosystem Services" /10./. Grindelwald (CH), 04.09.2001-09.09.2011] R&D Projects: GA ČR GAP209/10/2265 Institutional research plan: CEZ:AV0Z30420517 Keywords : regional climate models * air temperature * atmospheric circulation * future climate change scenarios Subject RIV: DG - Athmosphere Sciences, Meteorology

  14. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  15. The METAFOR project: providing community metadata standards for climate models, simulations and CMIP5

    Science.gov (United States)

    Callaghan, Sarah; Guilyardi, Eric

    2010-05-01

    The results of climate models are now of more than purely academic interest: governments and the private sector also have a need to discover the results in order to prepare for and mitigate against the potentially severe impacts of global climate change. Climate modelling is a complex process, which requires accurate and complete metadata (data describing data) in order to identify, assess and use the climate data stored in digital repositories. The EU funded METAFOR project has developed a Common Information Model (CIM) to describe in a standard way climate data and the models and modelling environments that produce this data. To establish the CIM, METAFOR first considered the metadata models developed by many groups engaged in similar efforts in Europe and worldwide (for example the US Earth System Curator), explored fragmentation and gaps as well as duplication of information present in these metadata models, and reviewed current problems in identifying, accessing or using climate data present in existing repositories. The CIM documents the "simulation context and models", i.e. the whys and wherefores and issues associated with any particular simulation. Climate modelling is a complex process with a wide degree of variability between different models and different modelling groups. To accommodate this, the CIM has been designed to be highly generic and flexible. The climate modelling process which is "an activity undertaken using software on computers to produce data" is described as separate UML packages. This fairly generic structure can be paired with more specific "controlled vocabularies" in order to restrict the range of valid CIM instances. METAFOR has been charged by the Working Group on Coupled Modelling (WGCM) via the Coupled Model Inter-comparison Project (CMIP) panel to define and collect model and experiment metadata for CMIP5. To do this, a web-based questionnaire will collect information and metadata from the CMIP5 modelling groups on the details

  16. Validating firn compaction model with remote sensing data

    DEFF Research Database (Denmark)

    Simonsen, S. B.; Stenseng, Lars; Sørensen, Louise Sandberg;

    A comprehensive understanding of firn processes is of outmost importance, when estimating present and future changes of the Greenland Ice Sheet. Especially, when remote sensing altimetry is used to assess the state of ice sheets and their contribution to global sea level rise, firn compaction...... models have been shown to be a key component. Now, remote sensing data can also be used to validate the firn models. Radar penetrating the upper part of the firn column in the interior part of Greenland shows a clear layering. The observed layers from the radar data can be used as an in-situ validation...... correction relative to the changes in the elevation of the surface observed with remote sensing altimetry? What model time resolution is necessary to resolved the observed layering? What model refinements are necessary to give better estimates of the surface mass balance of the Greenland ice sheet from...

  17. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  18. Multi-model assessment of water scarcity under climate change

    Science.gov (United States)

    Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N. W.; Clark, D. B.; Dankers, R.; Eisner, S.; Fekete, B. M.; Colon-Gonzalez, F. J.; Gosling, S. N.; KIM, H.; Liu, X.; Masaki, Y.; Portmann, F. T.; Satoh, Y.; Stacke, T.; Tang, Q.; Wada, Y.; Wisser, D.; albrecht, T.; Frieler, K.; Piontek, F.; Warszawski, L.; Kabat, P.

    2013-12-01

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. In the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) we use a large ensemble of global hydrological models (GHMs) forced by five global climate models (GCMs) and the latest greenhouse--gas concentration scenarios (RCPs) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that up to a global warming of 2°C above present (approx. 2.7°C above pre--industrial), each additional degree of warming will confront an additional approx. 7% of the global population with a severe decrease in water resources; and that climate change will increase the number of people living under absolute water scarcity (five global climate models (GCMs). Color hues show the multi-model mean change, and saturation shows the agreement on the sign of change across all GHM-GCM combinations (percentage of model runs agreeing on the sign).

  19. A coupled climate model simulation of Marine Isotope Stage 3 stadial climate

    Directory of Open Access Journals (Sweden)

    J. Brandefelt

    2011-06-01

    Full Text Available We present a coupled global climate model (CGCM simulation, integrated for 1500 yr to quasi-equilibrium, of a stadial (cold period within Marine Isotope Stage 3 (MIS 3. The simulated Greenland stadial 12 (GS12; ~44 ka BP annual global mean surface temperature (Ts is 5.5 °C lower than in the simulated recent past (RP climate and 1.3 °C higher than in the simulated Last Glacial Maximum (LGM; 21 ka BP climate. The simulated GS12 is evaluated against proxy data and previous modelling studies of MIS3 stadial climate. We show that the simulated MIS 3 climate, and hence conclusions drawn regarding the dynamics of this climate, is highly model-dependent. The main findings are: (i Proxy sea surface temperatures (SSTs are higher than simulated SSTs in the central North Atlantic, in contrast to earlier simulations of MIS 3 stadial climate in which proxy SSTs were found to be lower than simulated SST. (ii The Atlantic Meridional Overturning Circulation (AMOC slows down by 50 % in the GS12 climate as compared to the RP climate. This slowdown is attained without freshwater forcing in the North Atlantic region, a method used in other studies to force an AMOC shutdown. (iii El-Niño-Southern Oscillation (ENSO teleconnections in mean sea level pressure (MSLP are significantly modified by GS12 and LGM forcing and boundary conditions. (iv Both the mean state and variability of the simulated GS12 is dependent on the equilibration. The annual global mean Ts only changes by 0.10 °C from model years 500–599 to the last century of the simulation, indicating that the climate system may be close to equilibrium already after 500 yr of integration. However, significant regional differences between the last century of the simulation and model years 500–599 exist. Further, the difference between simulated and proxy SST is reduced from model years 500–599 to the last century of the simulation. The results of the ENSO variability

  20. Developing and investigating validity of a knowledge management game simulation model

    OpenAIRE

    Tsjernikova, Irina Ivanovna

    2009-01-01

    The goals of this research project were to develop a game simulation model which supports learning knowledge management in a game environment and to investigate the validity of that model. The validity of the model is approached from two perspectives: educational validity and representational validity, and, in addition, possible relationships between those two types of validity. The representational validity of the model is investigated in an explorative study with subject matter experts in t...

  1. Empirical Validation of Daylight Simulation Tool with Physical Model Measurement

    OpenAIRE

    Yaik-Wah Lim; Mohd H. Ahmad; Dilshan R. Ossen

    2010-01-01

    Problem statement: In recent years, daylighting simulation tools have been increasingly used by many architects, engineers and researchers to evaluate the day lighting performances of building design. Most of these tools employ CIE sky models for simulation. However, the accuracy and applicability of these tools for tropical sky are doubtable. The aim of this study was to validate the computer simulated result with scaled physical model results measured under real tropical...

  2. Validating a spatially distributed hydrological model with soil morphology data

    OpenAIRE

    Doppler, T.; M. Honti; U. Zihlmann; P. Weisskopf; Stamm, C

    2013-01-01

    Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be j...

  3. Validation of a Business Model for Cultural Heritage Institutions

    OpenAIRE

    Cristian CIUREA; Florin Gheorghe FILIP

    2015-01-01

    The paper proposes a business model for the efficiency optimization of the interaction between all actors involved in cultural heritage sector, such as galleries, libraries, archives and museums (GLAM). The validation of the business model is subject of analyses and implementations in a real environment made by different cultural institutions. The implementation of virtual exhibitions on mobile devices is described and analyzed as a key factor for increasing the cultural heritage visibility. ...

  4. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  5. Simulations of LGM climate of East Asia by regional climate model

    Institute of Scientific and Technical Information of China (English)

    郑益群; 于革; 王苏民; 薛滨; 刘华强; 曾新民

    2003-01-01

    Climate conditions in the Last Glacial Maximum (LGM) were remarkably different from the present ones. Adopting a regional climate model (RCM) which has included a detailed land surface scheme, LGM climate of East Asia has been simulated. The effects of vegetation changes on LGM climate have been diagnosed by adding forces of LGM paleovegetation reconstructed from the geological records. The results of the simulations by RCM indicate that large decreases in whole year temperature of East Asia continent caused strongly enhanced winter monsoon and weakened summer monsoon. The strengthening and westward-stretching of the Subtropical High of West-Pacific are the key reasons of decreases of LGM summer precipitation in eastern China. Precipitation and effective precipitation were increased in the Tibetan Plateau and Middle-Asia, while the humid condition in the Tibetan Plateau was mainly caused by increase of precipitation. Accumulated snow of LGM was also increased in the Tibetan Plateau, which was helpful to developing glacier and permafrost. This experiment has simulated that the frozen soil areas extend southward to 30°N. In LGM climate simulation, climate effects caused by external forces were amplified by added paleovegetation, therefore, decreases of temperature, changes of precipitation and snowfall, and other climatic parameters were further strengthened, making the simulation results more approach to geological evidences.

  6. Contribution to a decision making model for analogical measurement validation

    International Nuclear Information System (INIS)

    In limits of studies taken on validity of analogic measures in nuclear power plant's operation, the present thesis takes aim at establishment of a model to reaching a decision on the indice of probability on measures obtained by preliminary validation system. In a first step, it is proposed to retain a system made by redundant measures in which the calcul of measures is based on the coherence between measures themselves and logic vote. In the second step, one equation is proposed to compute the index of probability of measures taken in account, the characteristics of the system

  7. Planetary boundary layer energetics simulated from a regional climate model over Europe for present climate and climate change conditions

    Science.gov (United States)

    Sánchez, E.; Yagüe, C.; Gaertner, M. A.

    2007-01-01

    This paper presents a description of the planetary boundary layer (PBL) for current (1960-1990) and future (2070-2100) climate periods as obtained from a regional climate model (RCM) centered on the Mediterranean basin. Vertically integrated turbulent kinetic energy (TKEZ) and boundary layer height (z i ) are used to describe PBL energetics. Present climate shows a TKEZ annual cycle with a clear summer maximum for southern regions, while northern regions of Europe exhibit a smoother or even a lack of cycle. Future climate conditions exhibit a similar behaviour, with an increase in the summer maximum peaks. A detailed analysis of summer surface climate change energetics over land shows an increased Bowen ratio and decreases in the evaporative fraction. The enhanced sensible heat flux responsible for these results causes an energy surplus inside the PBL, resulting in increased convective activity and corresponding TKEZ. These results are consistent with temperature increases obtained by several other model simulations, and also indicate that changes in the turbulent transport from the PBL to the free troposphere can affect atmospheric circulations.

  8. Validation of models with constant bias: an applied approach

    Directory of Open Access Journals (Sweden)

    Salvador Medina-Peralta

    2014-06-01

    Full Text Available Objective. This paper presents extensions to the statistical validation method based on the procedure of Freese when a model shows constant bias (CB in its predictions and illustrate the method with data from a new mechanistic model that predict weight gain in cattle. Materials and methods. The extensions were the hypothesis tests and maximum anticipated error for the alternative approach, and the confidence interval for a quantile of the distribution of errors. Results. The model evaluated showed CB, once the CB is removed and with a confidence level of 95%, the magnitude of the error does not exceed 0.575 kg. Therefore, the validated model can be used to predict the daily weight gain of cattle, although it will require an adjustment in its structure based on the presence of CB to increase the accuracy of its forecasts. Conclusions. The confidence interval for the 1-α quantile of the distribution of errors after correcting the constant bias, allows determining the top limit for the magnitude of the error of prediction and use it to evaluate the evolution of the model in the forecasting of the system. The confidence interval approach to validate a model is more informative than the hypothesis tests for the same purpose.

  9. Evaluation of the Australian Community Climate and Earth-System Simulator Chemistry-Climate Model

    Directory of Open Access Journals (Sweden)

    K. A. Stone

    2015-07-01

    Full Text Available Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter and stratospheric cold biases (up to 10.1 K at the South Pole outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM index compares well with ERA-Interim data. Accompanying

  10. Experimental Validation of a New Dynamic Muscle Fatigue Model

    OpenAIRE

    Seth, Deep; Chablat, Damien; Sakka, Sophie; Bennis, Fouad

    2016-01-01

    Muscle fatigue is considered as one of the major risk factor causing Musculo-Skeletal Disorder (MSD). To avoid MSD the study of muscle fatigue is very important. For the study of muscle fatigue a new model is developed by modifying the Ruina Ma's dynamic muscle fatigue model and introducing the muscle co-contraction factor 'n' in this model.The aim of this paper is to experimentally validate a dynamic muscle fatigue model using Electromyography (EMG) and Maximum Voluntary Contraction (MVC) da...

  11. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    International Nuclear Information System (INIS)

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  12. Computer Model for Automobile Climate Control System Simulation and Application

    Directory of Open Access Journals (Sweden)

    Emin Oker

    1999-06-01

    Full Text Available A software to simulate the dynamic operation of climate control system for a generic automobile has been developed. The transient nature of passenger cabin temperature and relative humidity are predicted using the principles of thermodynamics. Analysis include detailed simulations of every component of the automobile air conditioning network. The methodology is validated by comparing the simulation results with the experimental results.

  13. Using a Global Climate Model in an On-line Climate Change Course

    Science.gov (United States)

    Randle, D. E.; Chandler, M. A.; Sohl, L. E.

    2012-12-01

    Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that

  14. Local perceptions of climate change validated by scientific evidence in the Himalayas

    OpenAIRE

    Chaudhary, Pashupati; Bawa, Kamaljit S.

    2011-01-01

    The Himalayas are assumed to be undergoing rapid climate change, with serious environmental, social and economic consequences for more than two billion people. However, data on the extent of climate change or its impact on the region are meagre. Based on local knowledge, we report perceived changes in climate and consequences of such changes for biodiversity and agriculture. Our analyses are based on 250 household interviews administered in 18 villages, and focused group discussions conducted...

  15. Modelling of labour productivity loss due to climate change: HEAT-SHIELD

    Science.gov (United States)

    Kjellstrom, Tord; Daanen, Hein

    2016-04-01

    Climate change will bring higher heat levels (temperature and humidity combined) to large parts of the world. When these levels reach above thresholds well defined by human physiology, the ability to maintain physical activity levels decrease and labour productivity is reduced. This impact is of particular importance in work situations in areas with long high intensity hot seasons, but also affects cooler areas during heat waves. Our modelling of labour productivity loss includes climate model data of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP), calculations of heat stress indexes during different months, estimations of work capacity loss and its annual impacts in different parts of the world. Different climate models will be compared for the Representative Concentration Pathways (RCPs) and the outcomes of the 2015 Paris Climate Conference (COP21) agreements. The validation includes comparisons of modelling outputs with actual field studies using historical heat data. These modelling approaches are a first stage contribution to the European Commission funded HEAT-SHIELD project.

  16. On the importance of paleoclimate modelling for improving predictions of future climate change

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2009-12-01

    Full Text Available We use an ensemble of runs from the MIROC3.2 AGCM with slab-ocean to explore the extent to which mid-Holocene simulations are relevant to predictions of future climate change. The results are compared with similar analyses for the Last Glacial Maximum (LGM and pre-industrial control climate. We suggest that the paleoclimate epochs can provide some independent validation of the models that is also relevant for future predictions. Considering the paleoclimate epochs, we find that the stronger global forcing and hence larger climate change at the LGM makes this likely to be the more powerful one for estimating the large-scale changes that are anticipated due to anthropogenic forcing. The phenomena in the mid-Holocene simulations which are most strongly correlated with future changes (i.e., the mid to high northern latitude land temperature and monsoon precipitation do, however, coincide with areas where the LGM results are not correlated with future changes, and these are also areas where the paleodata indicate significant climate changes have occurred. Thus, these regions and phenomena for the mid-Holocene may be useful for model improvement and validation.

  17. Climate-based models for West Nile Culex mosquito vectors in the Northeastern US

    Science.gov (United States)

    Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.

    2011-05-01

    Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.

  18. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  19. A modelling methodology for assessing the impact of climate variability and climatic change on hydroelectric generation

    International Nuclear Information System (INIS)

    A new methodology relating basic climatic variables to hydroelectric generation was developed. The methodology can be implemented in large or small basins with any number of hydro plants. The method was applied to the Sacramento, Eel and Russian river basins in northern California where more than 100 hydroelectric plants are located. The final model predicts the availability of hydroelectric generation for the entire basin provided present and near past climate conditions, with about 90% accuracy. The results can be used for water management purposes or for analyzing the effect of climate variability on hydrogeneration availability in the basin. A wide range of results can be obtained depending on the climate change scenario used. (Author)

  20. Exploitation of parallelism in climate models. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Ferdinand; Tribbia, Joseph J.; Williamson, David L.

    2001-02-05

    This final report includes details on the research accomplished by the grant entitled 'Exploitation of Parallelism in Climate Models' to the University of Maryland. The purpose of the grant was to shed light on (a) how to reconfigure the atmospheric prediction equations such that the time iteration process could be compressed by use of MPP architecture; (b) how to develop local subgrid scale models which can provide time and space dependent parameterization for a state-of-the-art climate model to minimize the scale resolution necessary for a climate model, and to utilize MPP capability to simultaneously integrate those subgrid models and their statistics; and (c) how to capitalize on the MPP architecture to study the inherent ensemble nature of the climate problem. In the process of addressing these issues, we created parallel algorithms with spectral accuracy; we developed a process for concurrent climate simulations; we established suitable model reconstructions to speed up computation; we identified and tested optimum realization statistics; we undertook a number of parameterization studies to better understand model physics; and we studied the impact of subgrid scale motions and their parameterization in atmospheric models.

  1. Climatic Classification over Asia during the Middle Holocene Climatic Optimum Based on PMIP Models

    Institute of Scientific and Technical Information of China (English)

    Hyuntaik Oh; Ho-Jeong Shin

    2016-01-01

    ABSTRACT:When considering potential global warming projections, it is useful to understand the im-pact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project (PMIP) models. The reconstructed winter (summer) surface air temperature at 6 kyr before present was 0.85 ºC (0.21 ºC) lower (higher) than the present day over Asia, 60ºE–150ºE, 10ºN–60ºN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1 larger than present day, respectively. The Group B climate, which means the dry climates based on Köppen climate classification, at 6 kyr before present decreased 17%compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.

  2. NPP simulator NSSS model validation the Krsko example

    International Nuclear Information System (INIS)

    NPP Krsko has obtained, as part of the plant modernization, a plant-specific full scope simulator with the capability to support in real-time, training for the complete range of operations which can be performed from the main control room and from other selected plant areas (remote shutdown panels, etc). Due to the requested approach the simulator was developed and validated in two distinct steps. First, it was validated for plant conditions in effect before SG replacement and power uprate (Cycle 15 and before); then a second step of validation was performed before and after initial startup in Cycle 17 (after SG replacement and power uprate). This approach gave NEK and CAE the opportunity to test extensively and validate the simulator based on real plant data as well as on the results of design basis accidents, i.e. transients. In this paper we focus on the validation of the NSSS model, based on real plant transients only. For comparison we also provide results obtained using more sophisticated thermohydraulic analysis tools, such as RELAP 5/mod2. (author)

  3. Validation of the Osteopenia Sheep Model for Orthopaedic Biomaterial Research

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, C.C.; Cheng, L.;

    2009-01-01

    resemble osteoporosis in humans. This study aimed to validate glucocorticoid-induced osteopenia sheep model for orthopaedic implant and biomaterial research. We hypothesized that a 7-month GC treatment together with restricted diet but without OVX would induce osteopenia. Materials and Methods: Eighteen......Validation of the Osteopenia Sheep Model for Orthopaedic Biomaterial Research +1Ding, M; 2Danielsen, CC; 1Cheng, L; 3Bollen, P; 4Schwarz, P; 1Overgaard, S +1Dept of Orthopaedics O, Odense University Hospital, Denmark, 2Dept of Connective Tissue Biology, University of Aarhus, Denmark, 3Biomedicine...... patients do not have a normal bone quality that in many cases are due to osteoporosis (OP) even in osteoarthritic joints. Although a variety of ovariectomized (OVX) animals has been used to study osteoporosis, there is a great need for suitable large animal models with adequate bone size that closely...

  4. Dynamic validation of the Planck/LFI thermal model

    CERN Document Server

    Tomasi, M; Gregorio, A; Colombo, F; Lapolla, M; Terenzi, L; Morgante, G; Bersanelli, M; Butler, R C; Galeotta, S; Mandolesi, N; Maris, M; Mennella, A; Valenziano, L; Zacchei, A; 10.1088/1748-0221/5/01/T01002

    2010-01-01

    The Low Frequency Instrument (LFI) is an array of cryogenically cooled radiometers on board the Planck satellite, designed to measure the temperature and polarization anisotropies of the cosmic microwave backgrond (CMB) at 30, 44 and 70 GHz. The thermal requirements of the LFI, and in particular the stringent limits to acceptable thermal fluctuations in the 20 K focal plane, are a critical element to achieve the instrument scientific performance. Thermal tests were carried out as part of the on-ground calibration campaign at various stages of instrument integration. In this paper we describe the results and analysis of the tests on the LFI flight model (FM) performed at Thales Laboratories in Milan (Italy) during 2006, with the purpose of experimentally sampling the thermal transfer functions and consequently validating the numerical thermal model describing the dynamic response of the LFI focal plane. This model has been used extensively to assess the ability of LFI to achieve its scientific goals: its valid...

  5. Validation of a finite element model of the human metacarpal.

    Science.gov (United States)

    Barker, D S; Netherway, D J; Krishnan, J; Hearn, T C

    2005-03-01

    Implant loosening and mechanical failure of components are frequently reported following metacarpophalangeal (MCP) joint replacement. Studies of the mechanical environment of the MCP implant-bone construct are rare. The objective of this study was to evaluate the predictive ability of a finite element model of the intact second human metacarpal to provide a validated baseline for further mechanical studies. A right index human metacarpal was subjected to torsion and combined axial/bending loading using strain gauge (SG) and 3D finite element (FE) analysis. Four different representations of bone material properties were considered. Regression analyses were performed comparing maximum and minimum principal surface strains taken from the SG and FE models. Regression slopes close to unity and high correlation coefficients were found when the diaphyseal cortical shell was modelled as anisotropic and cancellous bone properties were derived from quantitative computed tomography. The inclusion of anisotropy for cortical bone was strongly influential in producing high model validity whereas variation in methods of assigning stiffness to cancellous bone had only a minor influence. The validated FE model provides a tool for future investigations of current and novel MCP joint prostheses. PMID:15642506

  6. Attempted validation of ICRP 30 and ICRP 66 respiratory models

    International Nuclear Information System (INIS)

    The validation of human biological models for inhaled radionuclides is nearly impossible. Requirements for validation are: (1) the measurement of the relevant human tissue data and (2) valid exposure measurements over the interval known to apply to tissue uptake. Two lung models, ICRP 30(1) and ICRP 66(2), are widely used to estimate lung doses following acute occupational or environmental exposure. Both ICRP 30 and 66 lung models are structured to estimate acute rather than chronic exposure. Two sets of human tissue measurements are available: 210Po accumulated in tissue from inhaled cigarettes and ingested in diet and airborne global fallout 239,240Pu accumulated in the lungs from inhalation. The human tissue measurements include pulmonary and bronchial tissue in smokers, ex-smokers and non-smokers analysed radiochemically for 210Po, and pulmonary, bronchial and lymph nodes analysed for 239,240Pu in lung tissue collected by the New York City Medical Examiner from 1972 to 1974. Both ICRP 30 and 66 models were included in a programme to accommodate chronic uptake. Neither lung model accurately described the estimated tissue concentrations but was within a factor of 2 from measurements. ICRP 66 was the exception and consistently overestimated the bronchial concentrations probably because of its assumption of an overly long 23-d clearance half-time in the bronchi and bronchioles. (authors)

  7. Advances in ocean modeling for climate change research

    Science.gov (United States)

    Holland, William R.; Capotondi, Antonietta; Holland, Marika M.

    1995-07-01

    An adequate understanding of climate variability and the eventual prediction of climate change are among the most urgent and far-reaching efforts of the scientific community. The climate system is in an ever-changing state with vast impact on mankind in all his activities. Both short and long-term aspects of climate variability are of concern, and the unravelling of "natural" variability from "man-induced" climate change is required to prepare for and ameliorate, if possible, the potentially devastating aspects of such change. In terms of scientific effort, the climate community can be thought of as the union of the disciplinary sciences of meteorology, oceanography, sea ice and glaciology, and land surface processes. Since models are based upon mathematical and numerical constructs, mathematics and computer sciences are also directly involved. In addition, some of the problems of man-induced climate change (release of greenhouse gases, the ozone-hole problem, etc.) are basically chemical in nature, and the expertise of the atmospheric and oceanic chemist is also required. In addition, some part of the response to climate perturbations will arise in the biological world, due to upsetting the balance in the great food web that binds communities together on both the land and the sea. Thus, the problems to be solved are extraordinarily complex and require the efforts of many kinds of scientist.

  8. Beyond Corroboration: Strengthening Model Validation by Looking for Unexpected Patterns.

    Directory of Open Access Journals (Sweden)

    Guillaume Chérel

    Full Text Available Models of emergent phenomena are designed to provide an explanation to global-scale phenomena from local-scale processes. Model validation is commonly done by verifying that the model is able to reproduce the patterns to be explained. We argue that robust validation must not only be based on corroboration, but also on attempting to falsify the model, i.e. making sure that the model behaves soundly for any reasonable input and parameter values. We propose an open-ended evolutionary method based on Novelty Search to look for the diverse patterns a model can produce. The Pattern Space Exploration method was tested on a model of collective motion and compared to three common a priori sampling experiment designs. The method successfully discovered all known qualitatively different kinds of collective motion, and performed much better than the a priori sampling methods. The method was then applied to a case study of city system dynamics to explore the model's predicted values of city hierarchisation and population growth. This case study showed that the method can provide insights on potential predictive scenarios as well as falsifiers of the model when the simulated dynamics are highly unrealistic.

  9. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    Science.gov (United States)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  10. Performance and Economic Modeling of Horizontally Drilled Ground-Source Heat Pumps in Select California Climates

    Science.gov (United States)

    Wiryadinata, Steven

    Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.

  11. Evaluation of the transferability of hydrological model parameters for simulations under changed climatic conditions

    Directory of Open Access Journals (Sweden)

    S. Bastola

    2011-06-01

    Full Text Available Conceptual hydrological models are widely used for climate change impact assessment. The implicit assumption in most such work is that the parameters estimated from observations remain valid for future climatic conditions. This paper evaluates a simple threshold based approach for testing this assumption, where a set of behavioural simulators are identified for different climatic conditions for the future simulation i.e. wet, average and dry conditions. These simulators were derived using three different data sets that are generated by sampling a block of one year of data without replacement from the observations such that they define the different climatic conditions. The simulators estimated from the wet climatic data set showed the tendency to underestimate flow when applied to dry data set and vice versa. However, the performances of the three sets of basin simulators on chronologically coherent data are identical to the simulators identified from a sufficiently long data series that contains both wet and dry climatic conditions. The results presented suggest that the issue of time invariance in the value of parameters has a minimal effect on the simulation if the change in precipitation is less than 10 % of the data used for calibration.

  12. Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change

    OpenAIRE

    Green, Rhys E.; Collingham, Yvonne C.; Willis, Stephen G; Gregory, Richard D; Smith, Ken W.; Huntley, Brian

    2008-01-01

    Twenty-five-year population trends of 42 bird species rare as breeders in the UK were examined in relation to changes in climatic suitability simulated using climatic envelope models. The effects of a series of potential ‘nuisance’ variables were also assessed. A statistically significant positive correlation was found across species between population trend and climate suitability trend. The demonstration that climate envelope models are able to retrodict species' population trends provides ...

  13. Comparative calculations and validation studies with atmospheric dispersion models

    International Nuclear Information System (INIS)

    This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP)

  14. The origins of computer weather prediction and climate modeling

    Science.gov (United States)

    Lynch, Peter

    2008-03-01

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.

  15. The origins of computer weather prediction and climate modeling

    International Nuclear Information System (INIS)

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed

  16. Do bioclimate variables improve performance of climate envelope models?

    Science.gov (United States)

    Watling, James I.; Romañach, Stephanie S.; Bucklin, David N.; Speroterra, Carolina; Brandt, Laura A.; Pearlstine, Leonard G.; Mazzotti, Frank J.

    2012-01-01

    Climate envelope models are widely used to forecast potential effects of climate change on species distributions. A key issue in climate envelope modeling is the selection of predictor variables that most directly influence species. To determine whether model performance and spatial predictions were related to the selection of predictor variables, we compared models using bioclimate variables with models constructed from monthly climate data for twelve terrestrial vertebrate species in the southeastern USA using two different algorithms (random forests or generalized linear models), and two model selection techniques (using uncorrelated predictors or a subset of user-defined biologically relevant predictor variables). There were no differences in performance between models created with bioclimate or monthly variables, but one metric of model performance was significantly greater using the random forest algorithm compared with generalized linear models. Spatial predictions between maps using bioclimate and monthly variables were very consistent using the random forest algorithm with uncorrelated predictors, whereas we observed greater variability in predictions using generalized linear models.

  17. A description of persistent climatic anomalies in a 1000-year climatic model simulation

    Science.gov (United States)

    Hunt, B. G.

    The Mark 2 version of the CSIRO coupled global climatic model has been used to generate a 1000-year simulation of natural (i.e. unforced) climatic variability representative of ``present conditions''. The annual mean output from the simulation has been used to investigate the occurrence of decadal and longer trends over the globe for a number of climatic variables. Here trends are defined to be periods of years with a climatic anomaly of a given sign. The analysis reveals substantial differences between the trend characteristics of the various climatic variables. Trends longer than 12years duration were unusual for rainfall. Such trends were fairly uniformly distributed over the globe and had an asymmetry in the rate of occurrence for wet or dry conditions. On the other hand, trends in surface wind stress, and especially the atmospheric screen temperature, were of longer duration but primarily confined to oceanic regions. The trends in the atmospheric screen temperature could be traced deep into the oceanic mixed layer, implying large changes in oceanic thermal inertia. This thermal inertia then constituted an important component of the `memory' of the climatic system. While the geographic region associated with a given trend could be identified over several adjacent grid boxes of the model, regional plots for individual years of the trend revealed a range of variations, suggesting that a consistent forcing mechanism may not be responsible for a trend at a given location. Typical return periods for 12-year rainfall trends were once in 1000years, highlighting the rarity of such events. Using a looser definition of a trend revealed that drying trends up to 50 years duration were also possible, attributable solely to natural climatic variability. Significant ( 20% to 40%) rainfall reductions per year can be associated with a long-term drying trend, hence such events are of considerable climatic significance. It can take more than 100years for the hydrologic losses

  18. A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations

    Czech Academy of Sciences Publication Activity Database

    Kyselý, Jan; Plavcová, Eva

    2010-01-01

    Roč. 115, - (2010), D23118/1-D23118/14. ISSN 0148-0227 R&D Projects: GA ČR GAP209/10/2265 Grant ostatní: ENSEMBLES(XE) 505539; EURO4M(XE) 242093 Institutional research plan: CEZ:AV0Z30420517 Keywords : daily air temperature * interpolation * gridded data * regional climate models * control climate * Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.303, year: 2010

  19. The Development and Validation of the Online Learning Climate Scale (OLCS)

    Science.gov (United States)

    Kaufmann, Renee; Sellnow, Deanna D.; Frisby, Brandi N.

    2016-01-01

    With the increasing popularity of online learning in higher education comes a need to examine students' perceptions about classroom climate in these environments. This two-part study proposes the online learning climate scale (OLCS) for doing so. Informed by both instructional communication and education, the scale consists of several variables…

  20. Historical and idealized climate model experiments: an EMIC intercomparison

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.;

    2012-01-01

    forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and...... continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures...

  1. Modeling of the climate system and of its response to a greenhouse effect increase

    International Nuclear Information System (INIS)

    The anthropic disturbance of the Earth's greenhouse effect is already visible and will enhance in the coming years or decades. In front of the rapidity and importance of the global warming effect, the socio-economical management of this change will rise problems and must be studied by the scientific community. At the modeling level, finding a direct strategy for the validation of climate models is not easy: many uncertainties exist because energy transformations take place at a low level and several processes take place at the same time. The variability observed at the seasonal, inter-annual or paleo- scales allows to validate the models at the process level but not the evolution of the whole system. The management of these uncertainties is an integral part of the global warming problem. Thus, several scenarios can be proposed and their risk of occurrence must be estimated. This paper presents first the greenhouse effect, the climatic changes during geologic times, the anthropic disturbance of the greenhouse effect, the modeling of climate and the forecasting of its evolution. (J.S.)

  2. Improvement and Validation of Weld Residual Stress Modelling Procedure

    International Nuclear Information System (INIS)

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  3. Improvement and Validation of Weld Residual Stress Modelling Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Weilin; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden)); Dong, Pingsha; Hong, Jeong K. (Center for Welded Structures Research, Battelle, Columbus, OH (United States))

    2009-06-15

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  4. KINEROS2-AGWA: Model Use, Calibration, and Validation

    Science.gov (United States)

    Goodrich, D C.; Burns, I. S.; Unkrich, C. L.; Semmens, D. J.; Guertin, D. P.; Hernandez, M.; Yatheendradas, S.; Kennedy, J. R.; Levick, L. R..

    2013-01-01

    KINEROS (KINematic runoff and EROSion) originated in the 1960s as a distributed event-based model that conceptualizes a watershed as a cascade of overland flow model elements that flow into trapezoidal channel model elements. KINEROS was one of the first widely available watershed models that interactively coupled a finite difference approximation of the kinematic overland flow equations to a physically based infiltration model. Development and improvement of KINEROS continued from the 1960s on a variety of projects for a range of purposes, which has resulted in a suite of KINEROS-based modeling tools. This article focuses on KINEROS2 (K2), a spatially distributed, event-based watershed rainfall-runoff and erosion model, and the companion ArcGIS-based Automated Geospatial Watershed Assessment (AGWA) tool. AGWA automates the time-consuming tasks of watershed delineation into distributed model elements and initial parameterization of these elements using commonly available, national GIS data layers. A variety of approaches have been used to calibrate and validate K2 successfully across a relatively broad range of applications (e.g., urbanization, pre- and post-fire, hillslope erosion, erosion from roads, runoff and recharge, and manure transport). The case studies presented in this article (1) compare lumped to stepwise calibration and validation of runoff and sediment at plot, hillslope, and small watershed scales; and (2) demonstrate an uncalibrated application to address relative change in watershed response to wildfire.

  5. Verifying and Validating Proposed Models for FSW Process Optimization

    Science.gov (United States)

    Schneider, Judith

    2008-01-01

    This slide presentation reviews Friction Stir Welding (FSW) and the attempts to model the process in order to optimize and improve the process. The studies are ongoing to validate and refine the model of metal flow in the FSW process. There are slides showing the conventional FSW process, a couple of weld tool designs and how the design interacts with the metal flow path. The two basic components of the weld tool are shown, along with geometries of the shoulder design. Modeling of the FSW process is reviewed. Other topics include (1) Microstructure features, (2) Flow Streamlines, (3) Steady-state Nature, and (4) Grain Refinement Mechanisms

  6. Dynamically combining climate models to "supermodel" the tropical Pacific

    Science.gov (United States)

    Shen, Mao-Lin; Keenlyside, Noel; Selten, Frank; Wiegerinck, Wim; Duane, Gregory S.

    2016-01-01

    We construct an interactive ensemble of two different climate models to improve simulation of key aspects of tropical Pacific climate. Our so-called supermodel is based on two atmospheric general circulation models (AGCMs) coupled to a single ocean GCM, which is driven by a weighted average of the air-sea fluxes. Optimal weights are determined using a machine learning algorithm to minimize sea surface temperature errors over the tropical Pacific. This coupling strategy synchronizes atmospheric variability in the two AGCMs over the equatorial Pacific, where it improves the representation of ocean-atmosphere interaction and the climate state. In particular, the common double Intertropical Convergence Zone error is suppressed, and the positive Bjerknes feedback improves substantially to match observations well, and the negative heat flux feedback is also much improved. This study supports the concept of supermodeling as a promising multimodel ensemble strategy to improve weather and climate predictions.

  7. Development and validation of a building design waste reduction model.

    Science.gov (United States)

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. PMID:27292581

  8. Multi-model drought estimation using regional climate model output

    Science.gov (United States)

    McCabe, M. F.; Sung, B.; Evans, J. P.; Sheffield, J.

    2012-12-01

    Drought is a recurring climatic phenomenon in Australia and many other regions of the world. Apart from the considerable social and health repercussions that widespread drought has at a community level, there are major implications to the landscape, economy and water resources sectors. One of the key outputs in drought characterisation is determining the degree, extent and severity of the actual drought. However, there exist a range of techniques to quantify drought (each with its own definition) that adds to the level of uncertainty in accurate estimation. To examine the range and variability in multi-model drought prediction, a study of drought characteristics is undertaken, focusing on one of Australia's most significant agricultural regions: the Murray Darling Basin (MDB). Common drought indices including the Reconnaissance Drought Index (RDI), Standard Runoff Index (SRI), Soil Moisture Percentiles (SMP) and Palmer Drought Severity Index (PDSI) were derived using output from a high resolution regional climate simulation of the MDB for the period from 1985 to 2008. Spatial and temporal analyses were conducted by comparing these indices across regional scales. A severity-area-duration analysis and drought clustering approach were also used to characterize the extent and severity of these events across south-eastern Australia. Overall it was found that the four drought indices responded similarly to precipitation anomalies and successfully captured the major droughts over the nearly 25 years of simulation. The recent Australian drought from 2002-2008 was the most severe as shown by various analyses. Indeed, the Murray Darling Basin experienced contiguous moderate to extreme drought conditions for long periods, covering almost 100% of both the Darling and Murray Basins. Analysis of results also showed that the duration of droughts varied greatly between indices, as drought assessments using soil moisture parameters tended to recover in response to precipitation at

  9. Model for Predicting Climatic Yield of Sugarcane in Nanning City

    OpenAIRE

    Lan, Zhanggui; Li, Guanghai; Liand, Yulian; Yand, Yuhong; Li, Xiaoping

    2014-01-01

    According to spatial distribution of climate disasters in Nanning City and physiological and ecological indicator demands of sugarcane, with the aid of HJ-1 CCD satellite remote sensing images, basic meteorological data and geographic information data, this paper established the model for predicting climatic yield of sugarcane in Nanning City, to predict total yield of sugarcane in Nanning City. Results indicated that the distribution of sugarcane in Nanning City is greatly influenced by drou...

  10. Induced innovation in a decentralized model of climate change

    OpenAIRE

    Jérémy Laurent-Lucchetti; Andrew Leach

    2006-01-01

    We propose a model of climate change consistent with four principal stylized facts. First, the benefits and costs of climate change mitigation policies are not evenly distributed across generations. Second, capital accumulation is not determined jointly with emissions policy, but rather as a choice made by self-interested economic agents. Third, most research and development activity in the energy sector is undertaken by private firms. Fourth, significant imperfections exist in the market for...

  11. Partnership Models for Climate Compatible Development: Experiences from Zambia

    OpenAIRE

    Dyer, Jen; Leventon, Julia; Stringer, Lindsay; Dougill, Andrew; Syampungani, Stephen; Nshimbi, Muleba; Chama, Francis; Kafwifwi, Ackson

    2013-01-01

    Partnership working is necessary to allow nations to harness the evolving opportunities presented by climate finance and to progress towards climate compatible development (CCD). However, the new multi-stakeholder partnerships being formed and the factors affecting their outcomes remain poorly understood. This paper aims to identify the characteristics of partnership models that can lead to successful delivery of CCD projects by analyzing case study data from two projects in Zambia. The proje...

  12. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE

    OpenAIRE

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-01-01

    Background: The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran’s universities. Methods: This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran’s public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For pr...

  13. Climate Model Intercomparison at the Dynamics Level (Invited)

    Science.gov (United States)

    Tsonis, A.; Steinhaeuser, K.

    2013-12-01

    Until now, climate model intercomparison has focused primarily on annual and global averages of various quantities or on specific components, not on how well the general dynamics in the models compare to each other. In order to address how well models agree when it comes to dynamics they generate, we have adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs as well as 70 20th-century forced runs from 23 climate models and have constructed networks for the 500 hPa, surface air temperature (SAT), sea level pressure (SLP), and precipitation fields for each run. Then we employed a widely used algorithm to derive the community structure in these networks. Communities separate 'nodes' in the network sharing similar dynamics. It has been shown that these communities, or sub-systems, in the climate system are associated with major climate modes and physics of the atmosphere. Once the community structure for all runs is derived, we use a pattern matching statistic to obtain a measure of how well any two models agree with each other. We find that, with possibly the exception of the 500 hPa field, the consistency for the SAT, SLP, and precipitation fields is questionable. More importantly, none of the models comes close to the community structure of the actual observations (reality). This is a significant finding especially for the temperature and precipitation fields, as these are the fields widely used to produce future projections in time and in space.

  14. Soil moisture and root water uptake in climate models. Research Programme Climate Changes Spatial Planning

    OpenAIRE

    Dam, van, P.H.A.; Metselaar, K.; Wipfler, E.L.; Feddes, R.A.; Meijgaard, van, E.; Hurk, van den, B.J.J.M.

    2011-01-01

    More accurate simulation of the energy and water balance near the Earth surface is important to improve the performance of regional climate models. We used a detailed ecohydrological model to rank the importance of vegetation and soil factors with respect to evapotranspiration modeling. The results show that type of lower boundary condition, root zone depth, and temporal course of leaf area index have the strongest effect on yearly and monthly evapotranspiration. Soil texture data from the WI...

  15. Parallel community climate model: Description and user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.; Worley, P.H. [and others

    1996-07-15

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain into geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.

  16. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  17. Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models

    Science.gov (United States)

    Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya

    2016-01-01

    Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere–ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave–turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave–turbulence interaction effects in both general ocean circulation models and atmosphere–ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability. PMID:26953182

  18. A benchmark for the validation of solidification modelling algorithms

    Science.gov (United States)

    Kaschnitz, E.; Heugenhauser, S.; Schumacher, P.

    2015-06-01

    This work presents two three-dimensional solidification models, which were solved by several commercial solvers (MAGMASOFT, FLOW-3D, ProCAST, WinCast, ANSYS, and OpenFOAM). Surprisingly, the results show noticeable differences. The results are analyzed similar to a round-robin test procedure to obtain reference values for temperatures and their uncertainties at selected positions in the model. The first model is similar to an adiabatic calorimeter with an aluminum alloy solidifying in a copper block. For this model, an analytical solution for the overall temperature at steady state can be calculated. The second model implements additional heat transfer boundary conditions at outer faces. The geometry of the models, the initial and boundary conditions as well as the material properties are kept as simple as possible but, nevertheless, close to a realistic solidification situation. The gained temperature results can be used to validate self-written solidification solvers and check the accuracy of commercial solidification programs.

  19. First steps of the regional climate model MAR over the Euro-CORDEX domain

    Science.gov (United States)

    Scholzen, Chloé; Fettweis, Xavier

    2016-04-01

    In the framework of the Euro-CORDEX initiative, the Laboratory of Climatology of the University of Liège, Belgium, is currently using the regional climate model MAR (for "Modèle Atmosphérique Régional") to simulate the past, present and future climate over Europe. Simulations are being performed for both available resolutions over the Euro-CORDEX domain, namely 0.11 deg. (12.5 km) and 0.44 deg. (50 km). Historical and present-day runs (1979-2015) use the ERA-Interim and the NCEP/NCAR-v1 reanalyses as boundary conditions, whereas future projections are driven by two selected GCMs from the CMIP5 database: NorESM1-M and MIROC5. All CMIP5-GCMs were previously compared against ERA-Interim reanalysis data in terms of their ability to represent the current mean climate over Europe. The GCMs also underwent a statistical classification based on the calculation of skill-scores evaluating for instance 850 hPa temperature and 500 hPa geopotential height. Several settings and parameters were tested in order to calibrate the regional climate model MAR over the Euro-CORDEX domain. MAR was validated with respect to observations from the European Climate Assessment & Dataset (ECA&D). The aim of this study is to assess the performance of MAR in comparing its results to other RCMs used within the Euro-CORDEX initiative.

  20. Aerosols and clouds in chemical transport models and climate models.

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann,U.; Schwartz, S. E.

    2008-03-02

    Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

  1. Validation of a leaf area prediction model proposed for rose

    OpenAIRE

    Giancarlo Fascella; Salem Darwich; Youssef Rouphael

    2013-01-01

    Leaf area (LA) is a valuable key for evaluating plant growth, therefore accurate, simple, and nondestructive methods for LA determination are important for physiological and agronomic studies. A LA prediction model based on leaf length (L) and width (W) and developed under greenhouse on 14 cultivars of rose (Rosa hybr.*) was validated on a different cultivar of R. hybrida 'Red France' and on a wild rose species (Rosa sempervirens L.) grown under open-field conditions with two light environmen...

  2. Experimental Validation of a Permeability Model for Enrichment Membranes

    International Nuclear Information System (INIS)

    An experimental loop with a real scale diffuser, in a single enrichment-stage configuration, was operated with air at different process conditions, in order to characterize the membrane permeability.Using these experimental data, an analytical geometric-and-morphologic-based model was validated.It is conclude that a new set of independent measurements, i.e. enrichment, is necessary in order to fully characterize diffusers, because of its internal parameters are not univocally determinated with permeability experimental data only

  3. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    2001-12-18

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.

  4. In-Drift Microbial Communities Model Validation Calculations

    International Nuclear Information System (INIS)

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS MandO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS MandO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS MandO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS MandO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data

  5. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    International Nuclear Information System (INIS)

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M andO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M andO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M andO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M andO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data

  6. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    Science.gov (United States)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  7. A review on regional convection permitting climate modeling

    Science.gov (United States)

    van Lipzig, Nicole; Prein, Andreas; Brisson, Erwan; Van Weverberg, Kwinten; Demuzere, Matthias; Saeed, Sajjad; Stengel, Martin

    2016-04-01

    With the increase of computational resources, it has recently become possible to perform climate model integrations where at least part the of convection is resolved. Since convection-permitting models (CPMs) are performing better than models where convection is parameterized, especially for high-impact weather like extreme precipitation, there is currently strong scientific progress in this research domain (Prein et al., 2015). Another advantage of CPMs, that have a horizontal grid spacing scientists. This presentation consists of an overview of the recent progress in CPM, with a focus on COSMO-CLM. It consists of three parts, namely the discussion of i) critical components of CPM, ii) the added value of CPM in the present-day climate and iii) the difference in climate sensitivity in CPM compared to coarser scale models. In terms of added value, the CPMs especially improve the representation of precipitation's, diurnal cycle, intensity and spatial distribution. However, an in depth-evaluation of cloud properties with CCLM over Belgium indicates a strong underestimation of the cloud fraction, causing an overestimation of high temperature extremes (Brisson et al., 2016). In terms of climate sensitivity, the CPMs indicate a stronger increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains compared to coarser scale models. In conclusion, CPMs are a very promising tool for future climate research. However, additional efforts are necessary to overcome remaining deficiencies, like improving the cloud characteristics. This will be a challenging task due to compensating deficiencies that currently exist in `state-of-the-art' models, yielding a good representation of average climate conditions. In the light of using CPMs to study climate change it is necessary that these deficiencies are addressed in future research. Coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and

  8. A Review on Evaluation Methods of Climate Modeling

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Zong-Ci; LUO; Yong; HUANG; Jian-Bin

    2013-01-01

    There is scientific progress in the evaluation methods of recent Earth system models(ESMs).Methods range from single variable to multi-variables,multi-processes,multi-phenomena quantitative evaluations in five layers(spheres)of the Earth system,from climatic mean assessment to climate change(such as trends,periodicity,interdecadal variability),extreme values,abnormal characters and quantitative evaluations of phenomena,from qualitative assessment to quantitative calculation of reliability and uncertainty for model simulations.Researchers started considering independence and similarity between models in multi-model use,as well as the quantitative evaluation of climate prediction and projection efect and the quantitative uncertainty contribution analysis.In this manuscript,the simulations and projections by both CMIP5 and CMIP3 that have been published after 2007 are reviewed and summarized.

  9. Historical and idealized climate model experiments: an EMIC intercomparison

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.; Zickfeld, K.; Abe-Ouchi, A.; Cimatoribus, A. A.; Crespin, E.; Drijfhout, S. S.; Edwards, N. R.; Eliseev, A. V.; Feulner, G.; Fichefet, T.; Forest, C. E.; Goosse, H.; Holden, P. B.; Joos, F.; Kawamiya, M.; Kicklighter, D.; Kienert, H.; Matsumoto, K.; Mokhov, I. I.; Monier, E.; Olsen, S. M.; Pedersen, Jens Olaf Pepke; Perrette, M.; Philippon-Berthier, G.; Ridgwell, A.; Schlosser, A.; Deimling, T. Schneider von; Shaffer, G.; Smith, R. S.; Spahni, R.; Sokolov, A. P.; Steinacher, M.; Tachiiri, K.; Tokos, K.; Yoshimori, M.; Zeng, N.; Zhao, F.

    2012-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and...... continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures......> between the Medieval Climate Anomaly and the Little Ice Age estimated from paleoclimate reconstructions. This in turn could be a result of errors in the reconstructions of volcanic and/or solar radiative forcing used to drive the models or the incomplete representation of certain processes or variability...

  10. Detailed Urban Heat Island Projections for Cities Worldwide: Dynamical Downscaling CMIP5 Global Climate Models

    OpenAIRE

    Dirk Lauwaet; Hans Hooyberghs; Bino Maiheu; Wouter Lefebvre; Guy Driesen; Stijn Van Looy; Koen De Ridder

    2015-01-01

    A new dynamical downscaling methodology to analyze the impact of global climate change on the local climate of cities worldwide is presented. The urban boundary layer climate model UrbClim is coupled to 11 global climate models contained in the Coupled Model Intercomparison Project 5 archive, conducting 20-year simulations for present (1986–2005) and future (2081–2100) climate conditions, considering the Representative Concentration Pathway 8.5 climate scenario. The evolution of t...

  11. Multicomponent aerosol dynamics model UHMA: model development and validation

    OpenAIRE

    Korhonen, H.; Lehtinen, K. E. J.; Kulmala, M.

    2004-01-01

    A size-segregated aerosol dynamics model UHMA (University of Helsinki Multicomponent Aerosol model) was developed for studies of multicomponent tropospheric aerosol particles. The model includes major aerosol microphysical processes in the atmosphere with a focus on new particle formation and growth; thus it incorporates particle coagulation and multicomponent condensation, applying a revised treatment of condensation flux onto free molecular regime particles and the activation of nanosi...

  12. The role of the Model Validation function to manage and mitigate model risk

    OpenAIRE

    Alberto Elices

    2012-01-01

    This paper describes the current taxonomy of model risk, ways for its mitigation and management and the importance of the model validation function in collaboration with other departments to design and implement them.

  13. Methods for Geometric Data Validation of 3d City Models

    Science.gov (United States)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  14. Production functions for climate policy modeling. An empirical analysis

    International Nuclear Information System (INIS)

    Quantitative models for climate policy modeling differ in the production structure used and in the sizes of the elasticities of substitution. The empirical foundation for both is generally lacking. This paper estimates the parameters of 2-level CES production functions with capital, labour and energy as inputs, and is the first to systematically compare all nesting structures. Using industry-level data from 12 OECD countries, we find that the nesting structure where capital and labour are combined first, fits the data best, but for most countries and industries we cannot reject that all three inputs can be put into one single nest. These two nesting structures are used by most climate models. However, while several climate policy models use a Cobb-Douglas function for (part of the) production function, we reject elasticities equal to one, in favour of considerably smaller values. Finally we find evidence for factor-specific technological change. With lower elasticities and with factor-specific technological change, some climate policy models may find a bigger effect of endogenous technological change on mitigating the costs of climate policy. (author)

  15. Integrated science model for assessment of climate change. Revision 1

    International Nuclear Information System (INIS)

    Past measurements show that greenhouse gas concentrations, many of which are affected by human related activities, are increasing in the atmosphere. There is wide consensus that this increase influences related activities, are increasing the earth's energy balance and concern that this will cause significant change in climate. Many different policies could be adopted in response to the prospects of greenhouse warming. Models are used by policy markers to analyze the range of possible policy options developed as a response to concerns about climate change. A fully integrated assessment model that spans the many aspects of climate change, including economics, energy options, effects of climate, and impacts of climate change, would be a useful tool. With this goal in mind, the science modules which estimate the effect of emissions of greenhouse gasses on global temperature and sea level are being developed. This is a report of the current characteristics and performance of an Integrated Science Model which consists of coupled modules for carbon cycle, atmospheric chemistry of other trace gases, radiative forcing by greenhouse gases, energy balance model for global temperature, and a model for sea level response

  16. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    Science.gov (United States)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2016-02-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2 ), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  17. Curonian Lagoon drainage basin modelling and assessment of climate change impact

    Directory of Open Access Journals (Sweden)

    Natalja Čerkasova

    2016-04-01

    Full Text Available The Curonian Lagoon, which is the largest European coastal lagoon with a surface area of 1578 km2 and a drainage area of 100,458 km2, is facing a severe eutrophication problem. With its increasing water management difficulties, the need for a sophisticated hydrological model of the Curonian Lagoon's drainage area arose, in order to assess possible changes resulting from local and global processes. In this study, we developed and calibrated a sophisticated hydrological model with the required accuracy, as an initial step for the future development of a modelling framework that aims to correctly predict the movement of pesticides, sediments or nutrients, and to evaluate water-management practices. The Soil and Water Assessment Tool was used to implement a model of the study area and to assess the impact of climate-change scenarios on the run-off of the Nemunas River and the Minija River, which are located in the Curonian Lagoons drainage basin. The models calibration and validation were performed using monthly streamflow data, and evaluated using the coefficient of determination (R2 and the Nash-Sutcliffe model efficiency coefficient (NSE. The calculated values of the R2 and NSE for the Nemunas and Minija Rivers stations were 0.81 and 0.79 for the calibration, and 0.679 and 0.602 for the validation period. Two potential climate-change scenarios were developed within the general patterns of near-term climate projections, as defined by the Intergovernmental Panel on Climate Change Fifth Assessment Report: both pessimistic (substantial changes in precipitation and temperature and optimistic (insubstantial changes in precipitation and temperature. Both simulations produce similar general patterns in river-discharge change: a strong increase (up to 22% in the winter months, especially in February, a decrease during the spring (up to 10% and summer (up to 18%, and a slight increase during the autumn (up to 10%.

  18. Validation of fracture flow models in the Stripa project

    International Nuclear Information System (INIS)

    One of the objectives of Phase III of the Stripa Project is to develop and evaluate approaches for the prediction of groundwater flow and nuclide transport in a specific unexplored volume of the Stripa granite and make a comparison with data from field measurements. During the first stage of the project, a prediction of inflow to the D-holes, an array of six parallel closely spaced 100m boreholes, was made based on data from six other boreholes. This data included fracture geometry, stress, single borehole geophysical logging, crosshole and reflection radar and seismic tomogram, head monitoring and single hole packer test measurements. Maps of fracture traces on the drift walls have also been made. The D-holes are located along a future Validation Drift which will be excavated. The water inflow to the D-holes has been measured in an experiment called the Simulated Drift Experiment. The paper reviews the Simulated Drift Experiment validation exercise. Following a discussion of the approach to validation, the characterization data and its preliminary interpretation are summarised and commented upon. That work has proved feasible to carry through all the complex and interconnected tasks associated with the gathering and interpretation of characterization data, the development and application of complex models, and the comparison with measured inflows. This exercise has provided detailed feed-back to the experimental and theoretical work required for measurements and predictions of flow into the Validation Drift. Computer codes used: CHANGE, FRACMAN, MAFIC, NAPSAC and TRINET. 2 figs., 2 tabs., 19 refs

  19. Recent validation studies for two NRPB environmental transfer models

    International Nuclear Information System (INIS)

    The National Radiological Protection Board (NRPB) developed a dynamic model for the transfer of radionuclides through terrestrial food chains some years ago. This model, now called FARMLAND, predicts both instantaneous and time integrals of concentration of radionuclides in a variety of foods. The model can be used to assess the consequences of both accidental and routine releases of radioactivity to the environment; and results can be obtained as a function of time. A number of validation studies have been carried out on FARMLAND. In these the model predictions have been compared with a variety of sets of environmental measurement data. Some of these studies will be outlined in the paper. A model to predict external radiation exposure from radioactivity deposited on different surfaces in the environment has also been developed at NRPB. This model, called EXPURT (EXPosure from Urban Radionuclide Transfer), can be used to predict radiation doses as a function of time following deposition in a variety of environments, ranging from rural to inner-city areas. This paper outlines validation studies and future extensions to be carried out on EXPURT. (12 refs., 4 figs.)

  20. Reliability of regional climate model simulations of extremes and of long-term climate

    Directory of Open Access Journals (Sweden)

    U. Böhm

    2004-01-01

    Full Text Available We present two case studies that demonstrate how a common evaluation methodology can be used to assess the reliability of regional climate model simulations from different fields of research. In Case I, we focused on the agricultural yield loss risk for maize in Northeastern Brazil during a drought linked to an El-Niño event. In Case II, the present-day regional climatic conditions in Europe for a 10-year period are simulated. To comprehensively evaluate the model results for both kinds of investigations, we developed a general methodology. On its basis, we elaborated and implemented modules to assess the quality of model results using both advanced visualization techniques and statistical algorithms. Besides univariate approaches for individual near-surface parameters, we used multivariate statistics to investigate multiple near-surface parameters of interest together. For the latter case, we defined generalized quality measures to quantify the model's accuracy. Furthermore, we elaborated a diagnosis tool applicable for atmospheric variables to assess the model's accuracy in representing the physical processes above the surface under various aspects. By means of this evaluation approach, it could be demonstrated in Case Study I that the accuracy of the applied regional climate model resides at the same level as that we found for another regional model and a global model. Excessive precipitation during the rainy season in coastal regions could be identified as a major contribution leading to this result. In Case Study II, we also identified the accuracy of the investigated mean characteristics for near-surface temperature and precipitation to be comparable to another regional model. In this case, an artificial modulation of the used initial and boundary data during preprocessing could be identified as the major source of error in the simulation. Altogether, the achieved results for the presented investigations indicate the potential of our