WorldWideScience

Sample records for climate model validation

  1. Validating predictions from climate envelope models

    Science.gov (United States)

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  2. The Validation of Climate Models: The Development of Essential Practice

    Science.gov (United States)

    Rood, R. B.

    2011-12-01

    It is possible from both a scientific and philosophical perspective to state that climate models cannot be validated. However, with the realization that the scientific investigation of climate change is as much a subject of politics as of science, maintaining this formal notion of "validation" has significant consequences. For example, it relegates the bulk of work of many climate scientists to an exercise of model evaluation that can be construed as ill-posed. Even within the science community this motivates criticism of climate modeling as an exercise of weak scientific practice. Stepping outside of the science community, statements that validation is impossible are used in political arguments to discredit the scientific investigation of climate, to maintain doubt about projections of climate change, and hence, to prohibit the development of public policy to regulate the emissions of greenhouse gases. With the acceptance of the impossibility of validation, scientists often state that the credibility of models can be established through an evaluation process. A robust evaluation process leads to the quantitative description of the modeling system against a standard set of measures. If this process is standardized as institutional practice, then this provides a measure of model performance from one modeling release to the next. It is argued, here, that such a robust and standardized evaluation of climate models can be structured and quantified as "validation." Arguments about the nuanced meaning of validation and evaluation are a subject about which the climate modeling community needs to develop a standard. It does injustice to a body of science-based knowledge to maintain that validation is "impossible." Rather than following such a premise, which immediately devalues the knowledge base, it is more useful to develop a systematic, standardized approach to robust, appropriate validation. This stands to represent the complexity of the Earth's climate and its

  3. The international coordination of climate model validation and intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Gates, W.L. [Lawrence Livermore National Lab. Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison

    1995-12-31

    Climate modeling, whereby basic physical laws are used to integrate the physics and dynamics of climate into a consistent system, plays a key role in climate research and is the medium through. Depending upon the portion(s) of the climate system being considered, climate models range from those concerned only with the equilibrium globally-averaged surface temperature to those depicting the 3-dimensional time-dependent evolution of the coupled atmosphere, ocean, sea ice and land surface. Here only the latter class of models are considered, which are commonly known as general circulation models (or GCMs). (author)

  4. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  5. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  6. Cross-validation analysis of bias models in Bayesian multi-model projections of climate

    Science.gov (United States)

    Huttunen, J. M. J.; Räisänen, J.; Nissinen, A.; Lipponen, A.; Kolehmainen, V.

    2017-03-01

    Climate change projections are commonly based on multi-model ensembles of climate simulations. In this paper we consider the choice of bias models in Bayesian multimodel predictions. Buser et al. (Clim Res 44(2-3):227-241, 2010a) introduced a hybrid bias model which combines commonly used constant bias and constant relation bias assumptions. The hybrid model includes a weighting parameter which balances these bias models. In this study, we use a cross-validation approach to study which bias model or bias parameter leads to, in a specific sense, optimal climate change projections. The analysis is carried out for summer and winter season means of 2 m-temperatures spatially averaged over the IPCC SREX regions, using 19 model runs from the CMIP5 data set. The cross-validation approach is applied to calculate optimal bias parameters (in the specific sense) for projecting the temperature change from the control period (1961-2005) to the scenario period (2046-2090). The results are compared to the results of the Buser et al. (Clim Res 44(2-3):227-241, 2010a) method which includes the bias parameter as one of the unknown parameters to be estimated from the data.

  7. Climate model validation and selection for hydrological applications in representative Mediterranean catchments

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-07-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22-degree (about 24 km rotated grid over Europe and the Mediterranean. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the E-OBS dataset, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of 4 RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the XXI century. We present and discuss the validation setting, as well as the obtained results and, to some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and hint for an audience of researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more in general, climate change impact studies in the Mediterranean.

  8. Potential climate effect of mineral aerosols over West Africa. Part I: model validation and contemporary climate evaluation

    Science.gov (United States)

    Ji, Zhenming; Wang, Guiling; Pal, Jeremy S.; Yu, Miao

    2016-02-01

    Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.

  9. Validation and quantification of uncertainty in coupled climate models using network analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, Annalisa [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-08-10

    We developed a fast, robust and scalable methodology to examine, quantify, and visualize climate patterns and their relationships. It is based on a set of notions, algorithms and metrics used in the study of graphs, referred to as complex network analysis. This approach can be applied to explain known climate phenomena in terms of an underlying network structure and to uncover regional and global linkages in the climate system, while comparing general circulation models outputs with observations. The proposed method is based on a two-layer network representation, and is substantially new within the available network methodologies developed for climate studies. At the first layer, gridded climate data are used to identify ‘‘areas’’, i.e., geographical regions that are highly homogeneous in terms of the given climate variable. At the second layer, the identified areas are interconnected with links of varying strength, forming a global climate network. The robustness of the method (i.e. the ability to separate between topological distinct fields, while identifying correctly similarities) has been extensively tested. It has been proved that it provides a reliable, fast framework for comparing and ranking the ability of climate models of reproducing observed climate patterns and their connectivity. We further developed the methodology to account for lags in the connectivity between climate patterns and refined our area identification algorithm to account for autocorrelation in the data. The new methodology based on complex network analysis has been applied to state-of-the-art climate model simulations that participated to the last IPCC (International Panel for Climate Change) assessment to verify their performances, quantify uncertainties, and uncover changes in global linkages between past and future projections. Network properties of modeled sea surface temperature and rainfall over 1956–2005 have been constrained towards observations or reanalysis data sets

  10. Climate Models

    Science.gov (United States)

    Druyan, Leonard M.

    2012-01-01

    Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.

  11. Validation of EURO-CORDEX regional climate models in reproducing the variability of precipitation extremes in Romania

    Science.gov (United States)

    Dumitrescu, Alexandru; Busuioc, Aristita

    2016-04-01

    EURO-CORDEX is the European branch of the international CORDEX initiative that aims to provide improved regional climate change projections for Europe. The main objective of this paper is to document the performance of the individual models in reproducing the variability of precipitation extremes in Romania. Here three EURO-CORDEX regional climate models (RCMs) ensemble (scenario RCP4.5) are analysed and inter-compared: DMI-HIRHAM5, KNMI-RACMO2.2 and MPI-REMO. Compared to previous studies, when the RCM validation regarding the Romanian climate has mainly been made on mean state and at station scale, a more quantitative approach of precipitation extremes is proposed. In this respect, to have a more reliable comparison with observation, a high resolution daily precipitation gridded data set was used as observational reference (CLIMHYDEX project). The comparison between the RCM outputs and observed grid point values has been made by calculating three extremes precipitation indices, recommended by the Expert Team on Climate Change Detection Indices (ETCCDI), for the 1976-2005 period: R10MM, annual count of days when precipitation ≥10mm; RX5DAY, annual maximum 5-day precipitation and R95P%, precipitation fraction of annual total precipitation due to daily precipitation > 95th percentile. The RCMs capability to reproduce the mean state for these variables, as well as the main modes of their spatial variability (given by the first three EOF patterns), are analysed. The investigation confirms the ability of RCMs to simulate the main features of the precipitation extreme variability over Romania, but some deficiencies in reproducing of their regional characteristics were found (for example, overestimation of the mea state, especially over the extra Carpathian regions). This work has been realised within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian

  12. Alternative Parameterization of the 3-PG Model for Loblolly Pine: A Regional Validation and Climate Change Assessment on Stand Productivity

    Science.gov (United States)

    Yang, J.; Gonzalez-Benecke, C. A.; Teskey, R. O.; Martin, T.; Jokela, E. J.

    2015-12-01

    Loblolly pine (Pinus taeda L.) is one of the fastest growing pine species. It has been planted on more than 10 million ha in the southeastern U.S., and also been introduced into many countries. Using data from the literature and long-term productivity studies, we re-parameterized the 3-PG model for loblolly pine stands. We developed new functions for estimating NPP allocation dynamics, canopy cover and needlefall dynamics, effects of frost on production, density-independent and density-dependent tree mortality, biomass pools at variable starting ages, and the fertility rating. New functions to estimate merchantable volume partitioning were also included, allowing for economic analyses. The fertility rating was determined as a function of site index (mean height of dominant trees at age=25 years). We used the largest and most geographically extensive validation dataset for this species ever used (91 pots in 12 states in U.S. and 10 plots in Uruguay). Comparison of modeled to measured data showed robust agreement across the natural range in the U.S., as well as in Uruguay, where the species is grown as an exotic. Using the new set of functions and parameters with downscaled projections from twenty different climate models, the model was applied to assess the impact of future climate change scenarios on stand productivity in the southeastern U.S.

  13. Does safety climate predict safety performance in Italy and the USA? Cross-cultural validation of a theoretical model of safety climate.

    Science.gov (United States)

    Barbaranelli, Claudio; Petitta, Laura; Probst, Tahira M

    2015-04-01

    Previous studies have acknowledged the relevance of assessing the measurement equivalence of safety related measures across different groups, and demonstrating whether the existence of disparities in safety perceptions might impair direct group comparisons. The Griffin and Neal (2000) model of safety climate, and the accompanying measure (Neal et al. [NGH], 2000), are both widely cited and utilized. Yet neither the model in its entirety nor the measure have been previously validated across different national contexts. The current study is the first to examine the NGH measurement equivalence by testing whether their model of safety climate predicting safety performance is tenable in both English speaking and non-English speaking countries. The study involved 616 employees from 21 organizations in the US, and 738 employees from 20 organizations in Italy. A multi-group confirmatory factor analytic approach was used to assess the equivalence of the measures across the two countries. Similarly, the structural model of relations among the NGH variables was examined in order to demonstrate its cross-country invariance. Results substantially support strict invariance across groups for the NGH safety scales. Moreover, the invariance across countries is also demonstrated for the effects of safety climate on safety knowledge and motivation, which in turn positively relate to both compliance and participation. Our findings have relevant theoretical implications by establishing measurement and relational equivalence of the NGH model. Practical implications are discussed for managers and practitioners dealing with multi-national organizational contexts. Future research should continue to investigate potential differences in safety related perceptions across additional non-English speaking countries.

  14. Validation of precipitation over Japan during 1985-2004 simulated by three regional climate models and two multi-model ensemble means

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, Yasuhiro [Meteorological Research Institute, Tsukuba (Japan); National Institute for Environmental Studies, Tsukuba (Japan); Nakaegawa, Toshiyuki; Takayabu, Izuru [Meteorological Research Institute, Tsukuba (Japan)

    2012-07-15

    We dynamically downscaled Japanese reanalysis data (JRA-25) for 60 regions of Japan using three regional climate models (RCMs): the Non-Hydrostatic Regional Climate Model (NHRCM), modified RAMS version 4.3 (NRAMS), and modified Weather Research and Forecasting model (TWRF). We validated their simulations of the precipitation climatology and interannual variations of summer and winter precipitation. We also validated precipitation for two multi-model ensemble means: the arithmetic ensemble mean (AEM) and an ensemble mean weighted according to model reliability. In the 60 regions NRAMS simulated both the winter and summer climatological precipitation better than JRA-25, and NHRCM simulated the wintertime precipitation better than JRA-25. TWRF, however, overestimated precipitation in the 60 regions in both the winter and summer, and NHRCM overestimated precipitation in the summer. The three RCMs simulated interannual variations, particularly summer precipitation, better than JRA-25. AEM simulated both climatological precipitation and interannual variations during the two seasons more realistically than JRA-25 and the three RCMs overall, but the best RCM was often superior to the AEM result. In contrast, the weighted ensemble mean skills were usually superior to those of the best RCM. Thus, both RCMs and multi-model ensemble means, especially multi-model ensemble means weighted according to model reliability, are powerful tools for simulating seasonal and interannual variability of precipitation in Japan under the current climate. (orig.)

  15. Validating a physics-based back-of-the-envelope climate model with state-of-the-art data

    CERN Document Server

    Benestad, Rasmus E

    2013-01-01

    An old conceptual physics-based back-of-the-envelope model for greenhouse effect is revisited and validated against state-of-the-art reanalyses. Untraditional diagnostics show a physically consistent picture, for which the state of earth's climate is constrained by well-known physical principles, such as energy balance, flow and, conservation. Greenhouse gas concentrations affect the atmospheric optical depth for infrared radiation, and increased opacity implies higher altitude from which earth's equivalent bulk heat loss takes place without being re-absorbed. Such increase is seen in the reanalyses. There has also been a reduction in the correlation between the spatial structure of outgoing long-wave radiation and surface temperature, consistent with increasingly more processes interfering with the upwelling infrared light before it reaches the top of the atmosphere. State-of-the-art reanalyses further imply increases in the overturning in the troposphere, consistent with a constant and continuous vertical e...

  16. A validation methodology aid for improving a thermal building model: Case of diffuse radiation accounting in a tropical climate

    CERN Document Server

    Lauret, A J P; Boyer, H; Adelard, L; Garde, F

    2012-01-01

    As part of our efforts to complete the software CODYRUN validation, we chose as test building a block of flats constructed in Reunion Island, which has a humid tropical climate. The sensitivity analysis allowed us to study the effects of both diffuse and direct solar radiation on our model of this building. With regard to the choice and location of sensors, this stage of the study also led us to measure the solar radiation falling on the windows. The comparison of measured and predicted radiation clearly showed that our predictions over-estimated the incoming solar radiation, and we were able to trace the problem to the algorithm which calculates diffuse solar radiation. By calculating view factors between the windows and the associated shading devices, changes to the original program allowed us to improve the predictions, and so this article shows the importance of sensitivity analysis in this area of research.

  17. Stochastic spatial disaggregation of extreme precipitation to validate a Regional Climate Model and to evaluate climate change impacts over a small watershed

    Directory of Open Access Journals (Sweden)

    P. Gagnon

    2013-06-01

    Full Text Available Regional Climate Models (RCMs are valuable tools to evaluate impacts of climate change (CC at regional scale. However, as the size of the area of interest decreases, the ability of a RCM to simulate extreme precipitation events decreases due to the spatial resolution. Thus, it is difficult to evaluate whether a RCM bias on localized extreme precipitation is caused by the spatial resolution or by a misrepresentation of the physical processes in the model. Thereby, it is difficult to trust the CC impact projections for localized extreme precipitation. Stochastic spatial disaggregation models can bring the RCM precipitation data at a finer scale and reduce the bias caused by spatial resolution. In addition, disaggregation models can generate an ensemble of outputs, producing an interval of possible values instead of a unique discrete value. The objective of this work is to evaluate whether a stochastic spatial disaggregation model applied on annual maximum daily precipitation: (i enables the validation of a RCM for a period of reference, and (ii modifies the evaluation of CC impacts over a small area. Three simulations of the Canadian RCM (CRCM covering the period 1961–2099 are used over a small watershed (130 km2 located in southern Québec, Canada. The disaggregation model applied is based on Gibbs sampling and accounts for physical properties of the event (wind speed, wind direction, and convective available potential energy (CAPE, leading to realistic spatial distributions of precipitation. The results indicate that disaggregation has a significant impact on the validation. However it does not provide a precise estimate of the simulation bias because of the difference in resolution between disaggregated values (4 km and observations, and because of the underestimation of the spatial variability by the disaggregation model for the most convective events. Nevertheless, disaggregation permits to determine that the simulations used mostly

  18. An Experimental Facility to Validate Ground Source Heat Pump Optimisation Models for the Australian Climate

    Directory of Open Access Journals (Sweden)

    Yuanshen Lu

    2017-01-01

    Full Text Available Ground source heat pumps (GSHPs are one of the most widespread forms of geothermal energy technology. They utilise the near-constant temperature of the ground below the frost line to achieve energy-efficiencies two or three times that of conventional air-conditioners, consequently allowing a significant offset in electricity demand for space heating and cooling. Relatively mature GSHP markets are established in Europe and North America. GSHP implementation in Australia, however, is limited, due to high capital price, uncertainties regarding optimum designs for the Australian climate, and limited consumer confidence in the technology. Existing GSHP design standards developed in the Northern Hemisphere are likely to lead to suboptimal performance in Australia where demand might be much more cooling-dominated. There is an urgent need to develop Australia’s own GSHP system optimisation principles on top of the industry standards to provide confidence to bring the GSHP market out of its infancy. To assist in this, the Queensland Geothermal Energy Centre of Excellence (QGECE has commissioned a fully instrumented GSHP experimental facility in Gatton, Australia, as a publically-accessible demonstration of the technology and a platform for systematic studies of GSHPs, including optimisation of design and operations. This paper presents a brief review on current GSHP use in Australia, the technical details of the Gatton GSHP facility, and an analysis on the observed cooling performance of this facility to date.

  19. Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha.

    Directory of Open Access Journals (Sweden)

    Katie Leach

    Full Text Available Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs have been used widely to project changes in species' bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed 'modellable' within our framework were projected under future climate scenarios (58 species. Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov's Pika (Ochotona koslowi. Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of

  20. TRACKING CLIMATE MODELS

    Data.gov (United States)

    National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...

  1. Biases of the Arctic climate in a regional ocean-sea ice-atmosphere coupled model:an annual validation

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying

    2014-01-01

    The Coupling of three model components, WRF/PCE (polar climate extension version of weather research and forecasting model ( WRF)), ROMS (regional ocean modeling system), and CICE (community ice code), has been implemented, and the regional atmosphere-ocean-sea ice coupled model named WRF/PCE-ROMS-CICE has been validated against ERA-interim reanalysis data sets for 1989. To better understand the reasons that generate model biases, the WRF/PCE-ROMS-CICE results were compared with those of its components, the WRF/PCE and the ROMS-CICE. There are cold biases in surface air temperature (SAT) over the Arctic Ocean, which contribute to the sea ice concentration (SIC) and sea surface temperature (SST) biases in the results of the WRF/PCE-ROMS-CICE. The cold SAT biases also appear in results of the atmo-spheric component with a mild temperature in winter and similar temperature in summer. Compared to results from the WRF/PCE, due to influences of different distributions of the SIC and the SST and inclusion of interactions of air-sea-sea ice in the WRF/PCE-ROMS-CICE, the simulated SAT has new features. These influences also lead to apparent differences at higher levels of the atmosphere, which can be thought as responses to biases in the SST and sea ice extent. There are similar atmospheric responses in feature of distribution to sea ice biases at 700 and 500 hPa, and the strength of responses weakens when the pressure decreases in January. The atmospheric responses in July reach up to 200 hPa. There are surplus sea ice ex-tents in the Greenland Sea, the Barents Sea, the Davis Strait and the Chukchi Sea in winter and in the Beau-fort Sea, the Chukchi Sea, the East Siberian Sea and the Laptev Sea in summer in the ROMS-CICE. These differences in the SIC distribution can all be explained by those in the SST distributions. These features in the simulated SST and SIC from ROMS-CICE also appear in the WRF/PCE-ROMS-CICE. It is shown that the performance of the WRF/PCE-ROMS-CICE is

  2. Validation of two high‐resolution climate simulations over Scandinavia

    DEFF Research Database (Denmark)

    Mayer, Stephanie; Maule, Cathrine Fox; Sobolowski, Stefan

    2014-01-01

    Before running climate projections with numerical models it is important to validate their performance under present climate conditions. Within the RiskChange project two high‐resolution regional climate models were run as a perfect boundary experiment over Scandinavia. The simulations are valida......Before running climate projections with numerical models it is important to validate their performance under present climate conditions. Within the RiskChange project two high‐resolution regional climate models were run as a perfect boundary experiment over Scandinavia. The simulations...... are validated with respect to timing, location and intensity of extreme events. The main objective of the RiskChange project (www.riskchange.dhigroup.com) is to establish a consistent scientifically‐based framework for risk‐based design using state‐of‐the‐art knowledge of future changes in climate extreme...... statistics. Very high resolution is required in impact models that are employed to address particular societal needs and risks in terms of adaptation to future climate challenges, (e.g. future storm surge protection of coastlines and low‐level lands or drainage systems in urban areas). The purpose...

  3. On the development of a coupled regional climate-vegetation model RCM-CLM-CN-DV and its validation in Tropical Africa

    Science.gov (United States)

    Wang, Guiling; Yu, Miao; Pal, Jeremy S.; Mei, Rui; Bonan, Gordon B.; Levis, Samuel; Thornton, Peter E.

    2016-01-01

    This paper presents a regional climate system model RCM-CLM-CN-DV and its validation over Tropical Africa. The model development involves the initial coupling between the ICTP regional climate model RegCM4.3.4 (RCM) and the Community Land Model version 4 (CLM4) including models of carbon-nitrogen dynamics (CN) and vegetation dynamics (DV), and further improvements of the models. Model improvements derive from the new parameterization from CLM4.5 that addresses the well documented overestimation of gross primary production (GPP), a refinement of stress deciduous phenology scheme in CN that addresses a spurious LAI fluctuation for drought-deciduous plants, and the incorporation of a survival rule into the DV model to prevent tropical broadleaf evergreens trees from growing in areas with a prolonged drought season. The impact of the modifications on model results is documented based on numerical experiments using various subcomponents of the model. The performance of the coupled model is then validated against observational data based on three configurations with increasing capacity: RCM-CLM with prescribed leaf area index and fractional coverage of different plant functional types (PFTs); RCM-CLM-CN with prescribed PFTs coverage but prognostic plant phenology; RCM-CLM-CN-DV in which both the plant phenology and PFTs coverage are simulated by the model. Results from these three models are compared against the FLUXNET up-scaled GPP and ET data, LAI and PFT coverages from remote sensing data including MODIS and GIMMS, University of Delaware precipitation and temperature data, and surface radiation data from MVIRI and SRB. Our results indicate that the models perform well in reproducing the physical climate and surface radiative budgets in the domain of interest. However, PFTs coverage is significantly underestimated by the model over arid and semi-arid regions of Tropical Africa, caused by an underestimation of LAI in these regions by the CN model that gets exacerbated

  4. A regional climate palaeosimulation for Europe in the period 1500–1990 – Part 1: Model validation

    Directory of Open Access Journals (Sweden)

    J. J. Gómez-Navarro

    2013-04-01

    Full Text Available We present and analyse a high-resolution regional climate palaeosimulation encompassing the European region for the period 1500–1990. We use the regional model MM5 coupled to the global model ECHO-G. Both models were driven by reconstructions of three external factors: greenhouse gas concentrations, Total Solar Irradiance and volcanic activity. The simulation has been assessed in a recent period by comparing the model results with the Climate Research Unit (CRU database. The results show that although the regional model is tightly driven by the boundary conditions, it is able to improve the reliability of the simulations, narrowing the differences to the observations, especially in areas of complex topography. Additionally, the evolution of the spatial distributions of temperature and precipitation through the last five centuries has been analysed. The mean values of temperature reflects the influence of the external forcings but, contrary to the results obtained under climate change scenario conditions, we found that higher-order momenta of the probability distribution of seasonal temperature and precipitation are hardly affected by changes in the external forcings

  5. The influence of synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation

    Energy Technology Data Exchange (ETDEWEB)

    Maraun, Douglas [Leibniz Institute of Marine Sciences (IFM-GEOMAR), Duesternbrooker Weg 20, 24105, Kiel (Germany); Osborn, Timothy J. [School of Environmental Sciences, Climatic Research Unit, Norwich (United Kingdom); Rust, Henning W. [Freie Universitaet Berlin, Institut fuer Meteorologie, Berlin (Germany)

    2012-07-15

    We investigate how well the variability of extreme daily precipitation events across the United Kingdom is represented in a set of regional climate models and the E-OBS gridded data set. Instead of simply evaluating the climatologies of extreme precipitation measures, we develop an approach to validate the representation of physical mechanisms controlling extreme precipitation variability. In part I of this study we applied a statistical model to investigate the influence of the synoptic scale atmospheric circulation on extreme precipitation using observational rain gauge data. More specifically, airflow strength, direction and vorticity are used as predictors for the parameters of the generalised extreme value (GEV) distribution of local precipitation extremes. Here we employ this statistical model for our validation study. In a first step, the statistical model is calibrated against a gridded precipitation data set provided by the UK Met Office. In a second step, the same statistical model is calibrated against 14 ERA40 driven 25 km resolution RCMs from the ENSEMBLES project and the E-OBS gridded data set. Validation indices describing relevant physical mechanisms are derived from the statistical models for observations and RCMs and are compared using pattern standard deviation, pattern correlation and centered pattern root mean squared error as validation measures. The results for the different RCMs and E-OBS are visualised using Taylor diagrams. We show that the RCMs adequately simulate moderately extreme precipitation and the influence of airflow strength and vorticity on precipitation extremes, but show deficits in representing the influence of airflow direction. Also very rare extremes are misrepresented, but this result is afflicted with a high uncertainty. E-OBS shows considerable biases, in particular in regions of sparse data. The proposed approach might be used to validate other physical relationships in regional as well as global climate models. (orig.)

  6. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  7. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    of models with regards to their purpose, character, field of application and time dimension inherently calls for a similar diversity in validation approaches. A classification of models in terms of the mentioned elements is presented and used to shed light on possible types of validation leading...... of models has been somewhat narrow-minded reducing the notion of validation to establishment of truth. This article puts forward the diversity in applications of simulation models that demands a corresponding diversity in the notion of validation....

  8. Model Validation Status Review

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  9. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  10. A method of validating climate models in climate research with a view to extreme events; Eine Methode zur Validierung von Klimamodellen fuer die Klimawirkungsforschung hinsichtlich der Wiedergabe extremer Ereignisse

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, U.

    2000-08-01

    A method is presented to validate climate models with respect to extreme events which are suitable for risk assessment in impact modeling. The algorithm is intended to complement conventional techniques. These procedures mainly compare simulation results with reference data based on single or only a few climatic variables at the same time under the aspect how well a model performs in reproducing the known physical processes of the atmosphere. Such investigations are often based on seasonal or annual mean values. For impact research, however, extreme climatic conditions with shorter typical time scales are generally more interesting. Furthermore, such extreme events are frequently characterized by combinations of individual extremes which require a multivariate approach. The validation method presented here basically consists of a combination of several well-known statistical techniques, completed by a newly developed diagnosis module to quantify model deficiencies. First of all, critical threshold values of key climatic variables for impact research have to be derived serving as criteria to define extreme conditions for a specific activity. Unlike in other techniques, the simulation results to be validated are interpolated to the reference data sampling points in the initial step of this new technique. Besides that fact that the same spatial representation is provided in this way in both data sets for the next diagnostic steps, this procedure also enables to leave the reference basis unchanged for any type of model output and to perform the validation on a real orography. To simultaneously identify the spatial characteristics of a given situation regarding all considered extreme value criteria, a multivariate cluster analysis method for pattern recognition is separately applied to both simulation results and reference data. Afterwards, various distribution-free statistical tests are applied depending on the specific situation to detect statistical significant

  11. Validation of an organizational communication climate assessment toolkit.

    Science.gov (United States)

    Wynia, Matthew K; Johnson, Megan; McCoy, Thomas P; Griffin, Leah Passmore; Osborn, Chandra Y

    2010-01-01

    Effective communication is critical to providing quality health care and can be affected by a number of modifiable organizational factors. The authors performed a prospective multisite validation study of an organizational communication climate assessment tool in 13 geographically and ethnically diverse health care organizations. Communication climate was measured across 9 discrete domains. Patient and staff surveys with matched items in each domain were developed using a national consensus process, which then underwent psychometric field testing and assessment of domain coherence. The authors found meaningful within-site and between-site performance score variability in all domains. In multivariable models, most communication domains were significant predictors of patient-reported quality of care and trust. The authors conclude that these assessment tools provide a valid empirical assessment of organizational communication climate in 9 domains. Assessment results may be useful to track organizational performance, to benchmark, and to inform tailored quality improvement interventions.

  12. Validating the Implementation Climate Scale (ICS) in child welfare organizations.

    Science.gov (United States)

    Ehrhart, Mark G; Torres, Elisa M; Wright, Lisa A; Martinez, Sandra Y; Aarons, Gregory A

    2016-03-01

    There is increasing emphasis on the use of evidence-based practices (EBPs) in child welfare settings and growing recognition of the importance of the organizational environment, and the organization's climate in particular, for how employees perceive and support EBP implementation. Recently, Ehrhart, Aarons, and Farahnak (2014) reported on the development and validation of a measure of EBP implementation climate, the Implementation Climate Scale (ICS), in a sample of mental health clinicians. The ICS consists of 18 items and measures six critical dimensions of implementation climate: focus on EBP, educational support for EBP, recognition for EBP, rewards for EBP, selection or EBP, and selection for openness. The goal of the current study is to extend this work by providing evidence for the factor structure, reliability, and validity of the ICS in a sample of child welfare service providers. Survey data were collected from 215 child welfare providers across three states, 12 organizations, and 43 teams. Confirmatory factor analysis demonstrated good fit to the six-factor model and the alpha reliabilities for the overall measure and its subscales was acceptable. In addition, there was general support for the invariance of the factor structure across the child welfare and mental health sectors. In conclusion, this study provides evidence for the factor structure, reliability, and validity of the ICS measure for use in child welfare service organizations.

  13. Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose with this deliverable 2.5 is to use fresh experimental data for validation and selection of a flow model to be used for control design in WP3-4. Initially the idea was to investigate the models developed in WP2. However, in the project it was agreed to include and focus on a additive...... model turns out not to be useful for prediction of the flow. Moreover, standard Box Jenkins model structures and multiple output auto regressive models proves to be superior as they can give useful predictions of the flow....

  14. Compilation and Validation of SAR and Optical Data Products for a Complete and Global Map of Inland/Ocean Water Tailored to the Climate Modeling Community

    Directory of Open Access Journals (Sweden)

    Céline Lamarche

    2017-01-01

    Full Text Available Accurate maps of surface water extent are of paramount importance for water management, satellite data processing and climate modeling. Several maps of water bodies based on remote sensing data have been released during the last decade. Nonetheless, none has a truly (90 ∘ N/90 ∘ S global coverage while being thoroughly validated. This paper describes a global, spatially-complete (void-free and accurate mask of inland/ocean water for the 2000–2012 period, built in the framework of the European Space Agency (ESA Climate Change Initiative (CCI. This map results from the synergistic combination of multiple individual SAR and optical water body and auxiliary datasets. A key aspect of this work is the original and rigorous stratified random sampling designed for the quality assessment of binary classifications where one class is marginally distributed. Input and consolidated products were assessed qualitatively and quantitatively against a reference validation database of 2110 samples spread throughout the globe. Using all samples, overall accuracy was always very high among all products, between 98 % and 100 % . The CCI global map of open water bodies provided the best water class representation (F-score of 89 % compared to its constitutive inputs. When focusing on the challenging areas for water bodies’ mapping, such as shorelines, lakes and river banks, all products yielded substantially lower accuracy figures with overall accuracies ranging between 74 % and 89 % . The inland water area of the CCI global map of open water bodies was estimated to be 3.17 million km 2 ± 0.24 million km 2 . The dataset is freely available through the ESA CCI Land Cover viewer.

  15. On validation of the rain climatic zone designations for Nigeria

    Science.gov (United States)

    Obiyemi, O. O.; Ibiyemi, T. S.; Ojo, J. S.

    2016-04-01

    In this paper, validation of rain climatic zone classifications for Nigeria is presented based on global radio-climatic models by the International Telecommunication Union-Radiocommunication (ITU-R) and Crane. Rain rate estimates deduced from several ground-based measurements and those earlier estimated from the precipitation index on the Tropical Rain Measurement Mission (TRMM) were employed for the validation exercise. Although earlier classifications indicated that Nigeria falls into zones P, Q, N, and K for the ITU-R designations, and zones E and H for Crane's climatic zone designations, the results however confirmed that the rain climatic zones across Nigeria can only be classified into four, namely P, Q, M, and N for the ITU-R designations, while the designations by Crane exhibited only three zones, namely E, G, and H. The ITU-R classification was found to be more suitable for planning microwave and millimeter wave links across Nigeria. The research outcomes are vital in boosting the confidence level of system designers in using the ITU-R designations as presented in the map developed for the rain zone designations for estimating the attenuation induced by rain along satellite and terrestrial microwave links over Nigeria.

  16. Model confirmation in climate economics.

    Science.gov (United States)

    Millner, Antony; McDermott, Thomas K J

    2016-08-01

    Benefit-cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth-one of its most important economic components-had questionable predictive power over the 20th century.

  17. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  18. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  19. Snow Metamorphism and Albedo Process (SMAP) model for climate studies: Model validation using meteorological and snow impurity data measured at Sapporo, Japan

    Science.gov (United States)

    Niwano, Masashi; Aoki, Teruo; Kuchiki, Katsuyuki; Hosaka, Masahiro; Kodama, Yuji

    2012-09-01

    We developed a multilayered physical snowpack model named Snow Metamorphism and Albedo Process (SMAP), which is intended to be incorporated into general circulation models for climate simulations. To simulate realistic physical states of snowpack, SMAP incorporates a state-of-the-art physically based snow albedo model, which calculates snow albedo and solar heating profile in snowpack considering effects of snow grain size and snow impurities explicitly. We evaluated the performance of SMAP with meteorological and snow impurities (black carbon and dust) input data measured at Sapporo, Japan during two winters: 2007-2008 and 2008-2009, and found SMAP successfully reproduced all observed variations of physical properties of snowpack for both winters. We have thus confirmed that SMAP is suitable for climate simulations. With SMAP, we also investigated the effects of snow impurities on snowmelt at Sapporo during the two winters. We found that snowpack durations at Sapporo were shortened by 19 days during the 2007-2008 winter and by 16 days during the 2008-2009 winter due to radiative forcings caused by snow impurities. The estimated radiative forcings due to snow impurities during the accumulation periods were 3.7 W/m2 (it corresponds to albedo reduction in 0.05) and 3.2 W/m2 (albedo reduction in 0.05) for the 2007-2008 and 2008-2009 winters, respectively. While during the ablation periods they were 25.9 W/m2 (albedo reduction in 0.18) and 21.0 W/m2 (albedo reduction in 0.17) for each winter, respectively.

  20. Modelling Interglacial Climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Anker

    , with maximum warming occurring in winter. The three scenarios all affect the climate beyond the Arctic, especially the mid-latitude circulation which is sensitive to the location of the ice loss. Together, the results presented in this thesis illustrate that the changes in the Arctic sea ice cover......, while the insolation appears to be the dominant cause of the expected ice sheet reduction. The second part explores the atmospheric sensitivity to the location of sea ice loss. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming...... involves some of the same mechanisms in the two climate states. This thesis aims to investigate these mechanisms through climate model experiments. This two-part study has a special focus on the Arctic region, and the main paleoclimate experiments are supplemented by idealized experiments detailing...

  1. Validation of the regional climate model MAR over the CORDEX Africa domain and comparison with other regional models using unpublished data set

    Science.gov (United States)

    Prignon, Maxime; Agosta, Cécile; Kittel, Christoph; Fettweis, Xavier; Michel, Erpicum

    2016-04-01

    In the framework of the CORDEX project, we have applied the regional model MAR over the Africa domain at a resolution of 50 km. ERA-Interim and NCEP-NCAR reanalysis have been used as 6 hourly forcing at the MAR boundaries over 1950-2015. While MAR was already been validated over the West Africa, it is the first time that MAR simulations are carried out at the scale of the whole continent. Unpublished daily measurements, covering the Sahel and more areas up South, with a large set of variables, are used as validation of MAR, other CORDEX-Africa RCMs and both reanalyses. Comparisons with the CRU and the ECA&D databases are also performed. The unpublished daily data set covers the period 1884-2006 and comes from 1460 stations. The measured variables are wind, evapotranspiration, relative humidity, insolation, rain, surface pressure, temperature, vapour pressure and visibility. It covers 23 countries: Algeria, Benin, Burkina, Canary Islands, Cap Verde, Central Africa, Chad, Congo, Ivory Coast, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Mali, Mauritania, Morocco, Niger, Nigeria, Senegal, Sudan and Togo.

  2. School Climate of Educational Institutions: Design and Validation of a Diagnostic Scale

    Science.gov (United States)

    Becerra, Sandra

    2016-01-01

    School climate is recognized as a relevant factor for the improvement of educative processes, favoring the administrative processes and optimum school performance. The present article is the result of a quantitative research model which had the objective of psychometrically designing and validating a scale to diagnose the organizational climate of…

  3. Model validation, science and application

    NARCIS (Netherlands)

    Builtjes, P.J.H.; Flossmann, A.

    1998-01-01

    Over the last years there is a growing interest to try to establish a proper validation of atmospheric chemistry-transport (ATC) models. Model validation deals with the comparison of model results with experimental data, and in this way adresses both model uncertainty and uncertainty in, and adequac

  4. Validating Animal Models

    Directory of Open Access Journals (Sweden)

    Nina Atanasova

    2015-06-01

    Full Text Available In this paper, I respond to the challenge raised against contemporary experimental neurobiology according to which the field is in a state of crisis because of the multiple experimental protocols employed in different laboratories and strengthening their reliability that presumably preclude the validity of neurobiological knowledge. I provide an alternative account of experimentation in neurobiology which makes sense of its experimental practices. I argue that maintaining a multiplicity of experimental protocols and strengthening their reliability are well justified and they foster rather than preclude the validity of neurobiological knowledge. Thus, their presence indicates thriving rather than crisis of experimental neurobiology.

  5. Factorial validity and internal consistency of the motivational climate in physical education scale.

    Science.gov (United States)

    Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo

    2014-01-01

    The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key PointsThis study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories.The statistical fit of the four-factor model of the

  6. A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates

    NARCIS (Netherlands)

    Vanthoor, B.H.E.; Stanghellini, C.; Henten, van E.J.; Visser, de P.H.B.

    2011-01-01

    With the aim of developing a model-based method to design greenhouses for a broad range of climatic and economic conditions, a greenhouse climate model has been developed and validated. This model describes the effects of the outdoor climate and greenhouse design on the indoor greenhouse climate. Fo

  7. Stochastic Climate Theory and Modelling

    CERN Document Server

    Franzke, Christian L E; Berner, Judith; Williams, Paul D; Lucarini, Valerio

    2014-01-01

    Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations as well as for model error representation, uncertainty quantification, data assimilation and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochast...

  8. Testing and validating environmental models

    Science.gov (United States)

    Kirchner, J.W.; Hooper, R.P.; Kendall, C.; Neal, C.; Leavesley, G.

    1996-01-01

    Generally accepted standards for testing and validating ecosystem models would benefit both modellers and model users. Universally applicable test procedures are difficult to prescribe, given the diversity of modelling approaches and the many uses for models. However, the generally accepted scientific principles of documentation and disclosure provide a useful framework for devising general standards for model evaluation. Adequately documenting model tests requires explicit performance criteria, and explicit benchmarks against which model performance is compared. A model's validity, reliability, and accuracy can be most meaningfully judged by explicit comparison against the available alternatives. In contrast, current practice is often characterized by vague, subjective claims that model predictions show 'acceptable' agreement with data; such claims provide little basis for choosing among alternative models. Strict model tests (those that invalid models are unlikely to pass) are the only ones capable of convincing rational skeptics that a model is probably valid. However, 'false positive' rates as low as 10% can substantially erode the power of validation tests, making them insufficiently strict to convince rational skeptics. Validation tests are often undermined by excessive parameter calibration and overuse of ad hoc model features. Tests are often also divorced from the conditions under which a model will be used, particularly when it is designed to forecast beyond the range of historical experience. In such situations, data from laboratory and field manipulation experiments can provide particularly effective tests, because one can create experimental conditions quite different from historical data, and because experimental data can provide a more precisely defined 'target' for the model to hit. We present a simple demonstration showing that the two most common methods for comparing model predictions to environmental time series (plotting model time series

  9. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is the systematic "building-block" validation of CFD/turbulence models employing a GUI driven CFD code (RPFM) and existing as well as new data sets to...

  10. Holism, entrenchment, and the future of climate model pluralism

    Science.gov (United States)

    Lenhard, Johannes; Winsberg, Eric

    In this paper, we explore the extent to which issues of simulation model validation take on novel characteristics when the models in question become particularly complex. Our central claim is that complex simulation models in general, and global models of climate in particular, face a form of confirmation holism. This holism, moreover, makes analytic understanding of complex models of climate either extremely difficult or even impossible. We argue that this supports a position we call convergence skepticism: the belief that the existence of a plurality of different models making a plurality of different forecasts of future climate is likely to be a persistent feature of global climate science.

  11. Do regional climate models represent regional climate?

    Science.gov (United States)

    Maraun, Douglas; Widmann, Martin

    2014-05-01

    When using climate change scenarios - either from global climate models or further downscaled - to assess localised real world impacts, one has to ensure that the local simulation indeed correctly represents the real world local climate. Representativeness has so far mainly been discussed as a scale issue: simulated meteorological variables in general represent grid box averages, whereas real weather is often expressed by means of point values. As a result, in particular simulated extreme values are not directly comparable with observed local extreme values. Here we argue that the issue of representativeness is more general. To illustrate this point, assume the following situations: first, the (GCM or RCM) simulated large scale weather, e.g., the mid-latitude storm track, might be systematically distorted compared to observed weather. If such a distortion at the synoptic scale is strong, the simulated local climate might be completely different from the observed. Second, the orography even of high resolution RCMs is only a coarse model of true orography. In particular in mountain ranges the simulated mesoscale flow might therefore considerably deviate from the observed flow, leading to systematically displaced local weather. In both cases, the simulated local climate does not represent observed local climate. Thus, representativeness also encompasses representing a particular location. We propose to measure this aspect of representativeness for RCMs driven with perfect boundary conditions as the correlation between observations and simulations at the inter-annual scale. In doing so, random variability generated by the RCMs is largely averaged out. As an example, we assess how well KNMIs RACMO2 RCM at 25km horizontal resolution represents winter precipitation in the gridded E-OBS data set over the European domain. At a chosen grid box, RCM precipitation might not be representative of observed precipitation, in particular in the rain shadow of major moutain ranges

  12. JaqEngine Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Rademakers, C.

    2009-03-15

    The JaqEngine is a concept engine. It runs on the two stroke internal combustion principle, but is based on an uncommon piston setup and a unique mechanical conversion system. The design of the current prototype of the JaqEngine is (partially) based on two thermodynamic models: A numeric combustion cycle (NCC) model and a computational fluid dynamics (CFD) model. The NCC model simulates multiple combustion cycles and determines global parameters such as cylinder pressure, engine power and overall efficiency. The CFD model simulates the turbulent flow of gasses running through the engine. It provides more detailed information at the cost of increased computational demands. Changes made to the design of the JaqEngine are based on the results of these thermodynamic models. To ensure their results are accurate and reliable, the models need to be validated. Validation consists of checking the input, the used modelling density (e.g. step size or grid size), the working principles of the various components and the implementation of the underlying physical phenomena. After the models are functionally validated they can be verified and corrected using real life data. Eventually the thermodynamics models are a valuable component during redesigning prototypes and programming the engine management system. This report covers the validation of both thermodynamic models of the JaqEngine. The characteristics of the JaqEngine, its benefits and its disadvantages are summed up, with special attention to the usability of the thermodynamic models. The NCC model is rewritten into a more practical format and each component is individually analyzed and checked. The stability and grid quality of the CFD model are investigated and the solver is validated using a backward facing step. Also the usability of the CFD model is investigated by analyzing the performance of the ports and manifolds. In the final part of the report the requirements and setup of the engine test bed is given along with

  13. Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations

    Energy Technology Data Exchange (ETDEWEB)

    Forster, P M A F; Taylor, K E

    2006-07-25

    A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled Atmosphere Ocean General Circulation Models (AOGCMs). This 'climate forcing' differs from the conventionally defined radiative forcing as it includes semi-direct effects that account for certain short timescale responses in the troposphere. Firstly, we calculate a climate feedback term from reported values of 2 x CO{sub 2} radiative forcing and surface temperature time series from 70-year simulations by twenty AOGCMs. In these simulations carbon dioxide is increased by 1%/year. The derived climate feedback agrees well with values that we diagnose from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. We find partial compensation between longwave and shortwave feedback terms that lessens the inter-model differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in 20th and 21st Century simulations in the AOGCMs. We validate the technique using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings we diagnose agree with the conventional forcing time series within {approx}10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of two differences in the longwave climate forcing time series, which may indicate

  14. A Climate System Model, Numerical Simulation and Climate Predictability

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingcun; WANG Huijun; LIN Zhaohui; ZHOU Guangqing; YU Yongqiang

    2007-01-01

    @@ The implementation of the project has lasted for more than 20 years. As a result, the following key innovative achievements have been obtained, ranging from the basic theory of climate dynamics, numerical model development and its related computational theory to the dynamical climate prediction using the climate system models:

  15. A Pedagogical "Toy" Climate Model

    CERN Document Server

    Katz, J I

    2010-01-01

    A "toy" model, simple and elementary enough for an undergraduate class, of the temperature dependence of the greenhouse (mid-IR) absorption by atmospheric water vapor implies a bistable climate system. The stable states are glaciation and warm interglacials, while intermediate states are unstable. This is in qualitative accord with the paleoclimatic data. The present climate may be unstable, with or without anthropogenic interventions such as CO$_2$ emission, unless there is additional stabilizing feedback such as "geoengineering".

  16. Regional climate simulations over Vietnam using the WRF model

    Science.gov (United States)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2016-10-01

    We present an analysis of the present-day (1961-1990) regional climate simulations over Vietnam. The regional climate model Weather Research and Forecasting (WRF) was driven by the global reanalysis ERA40. The performance of the regional climate model in simulating the observed climate is evaluated with a main focus on precipitation and temperature. The regional climate model was able to reproduce the observed spatial patterns of the climate, although with some biases. The model also performed better in reproducing the extreme precipitation and the interannual variability. Overall, the WRF model was able to simulate the main regional signatures of climate variables, seasonal cycles, and frequency distributions. This study is an evaluation of the present-day climate simulations of a regional climate model at a resolution of 25 km. Given that dynamical downscaling has become common for studying climate change and its impacts, the study highlights that much more improvements in modeling might be necessary to yield realistic simulations of climate at high resolutions before they can be used for impact studies at a local scale. The need for a dense network of observations is also realized as observations at high resolutions are needed when it comes to evaluations and validations of models at sub-regional and local scales.

  17. Validating Savings Claims of Cold Climate Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, S. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-05

    This study was intended to validate actual performance of three ZERHs in the Northeast to energy models created in REM/Rate v14.5 (one of the certified software programs used to generate a HERS Index) and the National Renewable Energy Laboratory’s Building Energy Optimization (BEopt™) v2.3 E+ (a more sophisticated hourly energy simulation software). This report details the validation methods used to analyze energy consumption at each home.

  18. Data assimilation experiments with MPIESM climate model

    Directory of Open Access Journals (Sweden)

    Belyaev Konstantin

    2016-01-01

    Full Text Available Further development of data assimilation technique and its application in numerical experiments with state-of-the art Max Plank Institute Earth System model have been carried out. In particularly, the stability problem of assimilation is posed and discussed In the experiments the sea surface height data from archive Archiving, Validating and Interpolating Satellite Ocean have been used. All computations have been realized on cluster system of German Climate Computing Center. The results of numerical experiments with and without assimilation were recorded and analyzed. A special attention has been focused on the Arctic zone. It is shown that there is a good coincidence of model tendencies and independent data.

  19. Cross-cultural adaptation and validation of the teamwork climate scale

    Science.gov (United States)

    Silva, Mariana Charantola; Peduzzi, Marina; Sangaleti, Carine Teles; da Silva, Dirceu; Agreli, Heloise Fernandes; West, Michael A; Anderson, Neil R

    2016-01-01

    ABSTRACT OBJECTIVE To adapt and validate the Team Climate Inventory scale, of teamwork climate measurement, for the Portuguese language, in the context of primary health care in Brazil. METHODS Methodological study with quantitative approach of cross-cultural adaptation (translation, back-translation, synthesis, expert committee, and pretest) and validation with 497 employees from 72 teams of the Family Health Strategy in the city of Campinas, SP, Southeastern Brazil. We verified reliability by the Cronbach’s alpha, construct validity by the confirmatory factor analysis with SmartPLS software, and correlation by the job satisfaction scale. RESULTS We problematized the overlap of items 9, 11, and 12 of the “participation in the team” factor and the “team goals” factor regarding its definition. The validation showed no overlapping of items and the reliability ranged from 0.92 to 0.93. The confirmatory factor analysis indicated suitability of the proposed model with distribution of the 38 items in the four factors. The correlation between teamwork climate and job satisfaction was significant. CONCLUSIONS The version of the scale in Brazilian Portuguese was validated and can be used in the context of primary health care in the Country, constituting an adequate tool for the assessment and diagnosis of teamwork. PMID:27556966

  20. Cross-cultural adaptation and validation of the teamwork climate scale

    Directory of Open Access Journals (Sweden)

    Mariana Charantola Silva

    2016-01-01

    Full Text Available ABSTRACT OBJECTIVE To adapt and validate the Team Climate Inventory scale, of teamwork climate measurement, for the Portuguese language, in the context of primary health care in Brazil. METHODS Methodological study with quantitative approach of cross-cultural adaptation (translation, back-translation, synthesis, expert committee, and pretest and validation with 497 employees from 72 teams of the Family Health Strategy in the city of Campinas, SP, Southeastern Brazil. We verified reliability by the Cronbach’s alpha, construct validity by the confirmatory factor analysis with SmartPLS software, and correlation by the job satisfaction scale. RESULTS We problematized the overlap of items 9, 11, and 12 of the “participation in the team” factor and the “team goals” factor regarding its definition. The validation showed no overlapping of items and the reliability ranged from 0.92 to 0.93. The confirmatory factor analysis indicated suitability of the proposed model with distribution of the 38 items in the four factors. The correlation between teamwork climate and job satisfaction was significant. CONCLUSIONS The version of the scale in Brazilian Portuguese was validated and can be used in the context of primary health care in the Country, constituting an adequate tool for the assessment and diagnosis of teamwork.

  1. Development and validation of a measure of workplace climate for healthy weight maintenance.

    Science.gov (United States)

    Sliter, Katherine A

    2013-07-01

    Due to the obesity epidemic, an increasing amount of research is being conducted to better understand the antecedents and consequences of excess employee weight. One construct often of interest to researchers in this area is organizational climate. Unfortunately, a viable measure of climate, as related to employee weight, does not exist. The purpose of this study was to remedy this by developing and validating a concise, psychometrically sound measure of climate for healthy weight. An item pool was developed based on surveys of full-time employees, and a sorting task was used to eliminate ambiguous items. Items were pilot tested by a sample of 338 full-time employees, and the item pool was reduced through item response theory (IRT) and reliability analyses. Finally, the retained 14 items, comprising 3 subscales, were completed by a sample of 360 full-time employees, representing 26 different organizations from across the United States. Multilevel modeling indicated that sufficient variance was explained by group membership to support aggregation, and confirmatory factor analysis (CFA) supported the hypothesized model of 3 subscale factors and an overall climate factor. Nine hypotheses specific to construct validation were tested. Scores on the new scale correlated significantly with individual-level reports of psychological constructs (e.g., health motivation, general leadership support for health) and physiological phenomena (e.g., body mass index [BMI], physical health problems) to which they should theoretically relate, supporting construct validity. Implications for the use of this scale in both applied and research settings are discussed.

  2. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  3. [Measuring workplace climate: reliability and validity of the 12-item Organizational Climate Scale (OCS-12)].

    Science.gov (United States)

    Fukui, Satoe; Haratani, Takashi; Toshima, Yutaka; Shima, Satoru; Takahashi, Masaya; Nakata, Akinori; Fukasawa, Kenji; Ohba, Sayo; Sato, Emi; Hirota, Yasuko

    2004-11-01

    In order to investigate the reliability and validity of the short version of the 30-item Organizational Climate Scale (OCS-30; Toshima and Matsuda, 1992, 1995), a self-administered questionnaire was conducted in a sample of 819 employees of two medium-sized private companies in Japan by using the OCS-30, the Generic Job Stress Questionnaire (GJSQ), and the 12-item General Health Questionnaire (GHQ-12). The OCS has two subscales, i.e., the Tradition Scale (TS) and the Organizational Environment Scale (OES). The organizational climate perceived by each worker can be grouped into four categories based on the subscale scores: low TS and high OES (Active), high TS and high OES (Governed), low TS and low OES (Disorganized), and high TS and low OES (Reluctant). Principal component analysis for the OCS-30 was submitted (varimax rotation, the number of factors = 2), and 6 items for each factor, with factor loadings greater than 0.50, were selected for the short version, which constituted the 12-item Organizational Climate Scale (OCS-12). Cronbach's alpha reliability coefficients of the two subscales of the OCS-12 were acceptable; 0.63 for the TS and 0.71 for the OES. Both two subscales of the OCS-12 were significantly correlated with the GHQ-12 and many subscales of the GJSQ, which indicated the good constructive validity of the OCS-12. Among 4 types of organizational climate categorized by the OCS-12, the "Active" group showed the lowest job stress scores. It is suggested that the OCS-12 could be a reliable and valid instrument for assessing workers' perception of workplace climate.

  4. Validation for a recirculation model.

    Science.gov (United States)

    LaPuma, P T

    2001-04-01

    Recent Clean Air Act regulations designed to reduce volatile organic compound (VOC) emissions have placed new restrictions on painting operations. Treating large volumes of air which contain dilute quantities of VOCs can be expensive. Recirculating some fraction of the air allows an operator to comply with environmental regulations at reduced cost. However, there is a potential impact on employee safety because indoor pollutants will inevitably increase when air is recirculated. A computer model was developed, written in Microsoft Excel 97, to predict compliance costs and indoor air concentration changes with respect to changes in the level of recirculation for a given facility. The model predicts indoor air concentrations based on product usage and mass balance equations. This article validates the recirculation model using data collected from a C-130 aircraft painting facility at Hill Air Force Base, Utah. Air sampling data and air control cost quotes from vendors were collected for the Hill AFB painting facility and compared to the model's predictions. The model's predictions for strontium chromate and isocyanate air concentrations were generally between the maximum and minimum air sampling points with a tendency to predict near the maximum sampling points. The model's capital cost predictions for a thermal VOC control device ranged from a 14 percent underestimate to a 50 percent overestimate of the average cost quotes. A sensitivity analysis of the variables is also included. The model is demonstrated to be a good evaluation tool in understanding the impact of recirculation.

  5. Validation of Magnetospheric Magnetohydrodynamic Models

    Science.gov (United States)

    Curtis, Brian

    Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions. We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar

  6. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...... to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and recipitation between the two models are included...

  7. Hierarchical Climate Modeling for Cosmoclimatology

    Science.gov (United States)

    Ohfuchi, Wataru

    2010-05-01

    It has been reported that there are correlations among solar activity, amount of galactic cosmic ray, amount of low clouds and surface air temperature (Svensmark and Friis-Chistensen, 1997). These correlations seem to exist for current climate change, Little Ice Age, and geological time scale climate changes. Some hypothetic mechanisms have been argued for the correlations but it still needs quantitative studies to understand the mechanism. In order to decrease uncertainties, only first principles or laws very close to first principles should be used. Our group at Japan Agency for Marine-Earth Science and Technology has started modeling effort to tackle this problem. We are constructing models from galactic cosmic ray inducing ionization, to aerosol formation, to cloud formation, to global climate. In this talk, we introduce our modeling activities. For aerosol formation, we use molecular dynamics. For cloud formation, we use a new cloud microphysics model called "super droplet method". We also try to couple a nonhydrostatic atmospheric regional cloud resolving model and a hydrostatic atmospheric general circulation model.

  8. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  9. Software Validation via Model Animation

    Science.gov (United States)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  10. The Monash University Interactive Simple Climate Model

    Science.gov (United States)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  11. Climate system model, numerical simulation and climate predictability

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Thanks to its work of past more than 20 years,a research team led by Prof.ZENG Qingcun and Prof.WANG Huijun from the CAS Institute of Atmospheric Physics (IAP) has scored innovative achievements in their studies of basic theory of climate dynamics,numerical model development,its related computational theory,and the dynamical climate prediction using the climate system models.Their work received a second prize of the National Award for Natural Sciences in 2005.

  12. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  13. Obstructive lung disease models: what is valid?

    Science.gov (United States)

    Ferdinands, Jill M; Mannino, David M

    2008-12-01

    Use of disease simulation models has led to scrutiny of model methods and demand for evidence that models credibly simulate health outcomes. We sought to describe recent obstructive lung disease simulation models and their validation. Medline and EMBASE were used to identify obstructive lung disease simulation models published from January 2000 to June 2006. Publications were reviewed to assess model attributes and four types of validation: first-order (verification/debugging), second-order (comparison with studies used in model development), third-order (comparison with studies not used in model development), and predictive validity. Six asthma and seven chronic obstructive pulmonary disease models were identified. Seven (54%) models included second-order validation, typically by comparing observed outcomes to simulations of source study cohorts. Seven (54%) models included third-order validation, in which modeled outcomes were usually compared qualitatively for agreement with studies independent of the model. Validation endpoints included disease prevalence, exacerbation, and all-cause mortality. Validation was typically described as acceptable, despite near-universal absence of criteria for judging adequacy of validation. Although over half of recent obstructive lung disease simulation models report validation, inconsistencies in validation methods and lack of detailed reporting make assessing adequacy of validation difficult. For simulation modeling to be accepted as a tool for evaluating clinical and public health programs, models must be validated to credibly simulate health outcomes of interest. Defining the required level of validation and providing guidance for quantitative assessment and reporting of validation are important future steps in promoting simulation models as practical decision tools.

  14. A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models. Final report, September 15, 1990--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, R.G.; Baer, F.

    1998-09-01

    DOE has launched a major initiative -- the Atmospheric Radiation Measurements (ARM) Program -- directed at improving the parameterization of the physics governing cloud and radiative processes in general circulation models (GCMs). One specific goal of ARM is to improve the treatment of radiative transfer in GCMs under clear-sky, general overcast and broken cloud conditions. In 1990, the authors proposed to contribute to this goal by attacking major problems connected with one of the dominant radiation components of the problem -- longwave radiation. In particular, their long-term research goals are to: develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations, assess the impact of the longwave radiative forcing in a GCM, determine the sensitivity of a GCM to the radiative model used in it, and determine how the longwave radiative forcing contributes relatively when compared to shortwave radiative forcing, sensible heating, thermal advection and expansion.

  15. Selecting global climate models for regional climate change studies

    OpenAIRE

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simula...

  16. Incorporating vegetation feedbacks in regional climate modeling over West Africa

    Science.gov (United States)

    Erfanian, A.; Wang, G.; Yu, M.; Ahmed, K. F.; Anyah, R. O.

    2015-12-01

    Despite major advancements in modeling of the climate system, incorporating vegetation dynamics into climate models is still at the initial stages making it an ongoing research topic. Only few of GCMs participating in CMIP5 simulations included the vegetation dynamics component. Consideration for vegetation dynamics is even less common in RCMs. In this study, RegCM4.3.4-CLM4-CN-DV, a regional climate model synchronously coupled with a land surface component that includes both Carbon-Nitrogen (CN) and Dynamic-Vegetation (DV) processes is used to simulate and project regional climate over West Africa. Due to its unique regional features, West Africa climate is known for being susceptible to land-atmosphere interactions, enhancing the importance of including vegetation dynamics in modeling climate over this region. In this study the model is integrated for two scenarios (present-day and future) using outputs from four GCMs participating in CMIP5 (MIROC, CESM, GFDL and CCSM4) as lateral boundary conditions, which form the basis of a multi-model ensemble. Results of model validation indicates that ensemble of all models outperforms each of individual models in simulating present-day temperature and precipitation. Therefore, the ensemble set is used to analyze the impact of including vegetation dynamics in the RCM on future projection of West Africa's climate. Results from the ensemble analysis will be presented, together with comparison among individual models.

  17. Uncertainty Quantification in Climate Modeling

    Science.gov (United States)

    Sargsyan, K.; Safta, C.; Berry, R.; Debusschere, B.; Najm, H.

    2011-12-01

    We address challenges that sensitivity analysis and uncertainty quantification methods face when dealing with complex computational models. In particular, climate models are computationally expensive and typically depend on a large number of input parameters. We consider the Community Land Model (CLM), which consists of a nested computational grid hierarchy designed to represent the spatial heterogeneity of the land surface. Each computational cell can be composed of multiple land types, and each land type can incorporate one or more sub-models describing the spatial and depth variability. Even for simulations at a regional scale, the computational cost of a single run is quite high and the number of parameters that control the model behavior is very large. Therefore, the parameter sensitivity analysis and uncertainty propagation face significant difficulties for climate models. This work employs several algorithmic avenues to address some of the challenges encountered by classical uncertainty quantification methodologies when dealing with expensive computational models, specifically focusing on the CLM as a primary application. First of all, since the available climate model predictions are extremely sparse due to the high computational cost of model runs, we adopt a Bayesian framework that effectively incorporates this lack-of-knowledge as a source of uncertainty, and produces robust predictions with quantified uncertainty even if the model runs are extremely sparse. In particular, we infer Polynomial Chaos spectral expansions that effectively encode the uncertain input-output relationship and allow efficient propagation of all sources of input uncertainties to outputs of interest. Secondly, the predictability analysis of climate models strongly suffers from the curse of dimensionality, i.e. the large number of input parameters. While single-parameter perturbation studies can be efficiently performed in a parallel fashion, the multivariate uncertainty analysis

  18. An Overview of BCC Climate System Model Development and Application for Climate Change Studies

    Institute of Scientific and Technical Information of China (English)

    WU Tongwen; WU Fanghua; LIU Yiming; ZHANG Fang; SHI Xueli; CHU Min; ZHANG Jie; FANG Yongjie; WANG Fang; LU Yixiong; LIU Xiangwen; SONG Lianchun; WEI Min; LIU Qianxia; ZHOU Wenyan; DONG Min; ZHAO Qigeng; JI Jinjun; Laurent LI; ZHOU Mingyu; LI Weiping; WANG Zaizhi; ZHANG Hua; XIN Xiaoge; ZHANG Yanwu; ZHANG Li; LI Jianglong

    2014-01-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC-CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC-CSM1.1 with coarse resolution (approximately 2.8125◦×2.8125◦) and BCC-CSM1.1(m) with moderate resolution (approximately 1.125◦×1.125◦). Both versions are fully cou-pled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase fi ve (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate pro jections. Simulations of the 20th century climate using BCC-CSM1.1 and BCC-CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and pro jections of climate change during the next century are also presented and discussed. Both BCC-CSM1.1 and BCC-CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses in-dicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSM1.1, particularly on regional scales.

  19. Climate Sensitivity and Solar Cycle Response in Climate Models

    Science.gov (United States)

    Liang, M.; Lin, L.; Tung, K. K.; Yung, Y. L.

    2011-12-01

    Climate sensitivity, broadly defined, is a measure of the response of the climate system to the changes of external forcings such as anthropogenic greenhouse emissions and solar radiation, including climate feedback processes. General circulation models provide a means to quantitatively incorporate various feedback processes, such as water-vapor, cloud and albedo feedbacks. Less attention is devoted so far to the role of the oceans in significantly affecting these processes and hence the modelled transient climate sensitivity. Here we show that the oceanic mixing plays an important role in modifying the multi-decadal to centennial oscillations of the sea surface temperature, which in turn affect the derived climate sensitivity at various phases of the oscillations. The eleven-year solar cycle forcing is used to calibrate the response of the climate system. The GISS-EH coupled atmosphere-ocean model was run twice in coupled mode for more than 2000 model years, each with a different value for the ocean eddy mixing parameter. In both runs, there is a prominent low-frequency oscillation with a period of 300-500 years, and depending on the phase of such an oscillation, the derived climate gain factor varies by a factor of 2. The run with the value of the eddy ocean mixing parameter that is half that used in IPCC AR4 study has the more realistic low-frequency variability in SST and in the derived response to the known solar-cycle forcing.

  20. Shifts of climate zones in multi-model climate change experiments using the Koeppen climate classification

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Franziska; Koerper, Janina; Spangehl, Thomas; Cubash, Ulrich [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie

    2012-04-15

    This study investigates the future changes in the climate zones' distribution of the Earth's land area due to increasing atmospheric greenhouse gas concentrations in three IPCC SRES emissions scenarios (A1B, A2 and B1). The Koeppen climate classification is applied to climate simulations of seven atmosphere-ocean general circulation models (AOGCMs) and their multi-model mean. The evaluation of the skill of the individual climate models compared to an observation-reanalysis-based climate classification provides a first order estimate of relevant model uncertainties and serves as assessment for the confidence in the scenario projections. Uncertainties related to differences in simulation pathways of the future projections are estimated by both, the multi-model ensemble spread of the climate change signals for a given scenario and differences between different scenarios. For the recent climate the individual models fail to capture the exact Koeppen climate types in about 24-39 % of the global land area excluding Antarctica due to temperature and precipitation biases, while the multi-model ensemble mean simulates the present day observation-reanalysis-based distribution of the climate types more accurately. For the end of the 21{sup st} century compared to the present day climate the patterns of change are similar across the three scenarios, while the magnitude of change is largest for the highest emission scenario. Moreover, the temporal development of the climate shifts from the end of the 20st century and during the 21{sup st} century show that changes of the multi-model ensemble mean for the A2 and B1 scenario are generally within the ensemble spread of the individual models for the A1B scenario, illustrating that for the given range of scenarios the model uncertainty is even larger than the spread given by the different GHG concentration pathways. The multi-model ensemble mean's projections show climate shifts to dryer climates in the subtropics

  1. On validation of multibody musculoskeletal models

    DEFF Research Database (Denmark)

    Lund, Morten Enemark; de Zee, Mark; Andersen, Michael Skipper;

    2012-01-01

    This paper reviews the opportunities to validate multibody musculoskeletal models in view of the current transition of musculoskeletal modelling from a research topic to a practical simulation tool in product design, healthcare and other important applications. This transition creates a new need...... for improvement of the validation of multibody musculoskeletal models are pointed out and directions for future research in the field are proposed. It is our hope that a more structured approach to model validation can help to improve the credibility of musculoskeletal models....

  2. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  3. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  4. Optimal Data Split Methodology for Model Validation

    CERN Document Server

    Morrison, Rebecca; Terejanu, Gabriel; Miki, Kenji; Prudhomme, Serge

    2011-01-01

    The decision to incorporate cross-validation into validation processes of mathematical models raises an immediate question - how should one partition the data into calibration and validation sets? We answer this question systematically: we present an algorithm to find the optimal partition of the data subject to certain constraints. While doing this, we address two critical issues: 1) that the model be evaluated with respect to predictions of a given quantity of interest and its ability to reproduce the data, and 2) that the model be highly challenged by the validation set, assuming it is properly informed by the calibration set. This framework also relies on the interaction between the experimentalist and/or modeler, who understand the physical system and the limitations of the model; the decision-maker, who understands and can quantify the cost of model failure; and the computational scientists, who strive to determine if the model satisfies both the modeler's and decision maker's requirements. We also note...

  5. Selecting global climate models for regional climate change studies

    Science.gov (United States)

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  6. A Regional Climate Model Evaluation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a packaged data management infrastructure for the comparison of generated climate model output to existing observational datasets that includes capabilities...

  7. Validating the Psychological Climate Scale in Voluntary Child Welfare

    Science.gov (United States)

    Zeitlin, Wendy; Claiborne, Nancy; Lawrence, Catherine K.; Auerbach, Charles

    2016-01-01

    Objective: Organizational climate has emerged as an important factor in understanding and addressing the complexities of providing services in child welfare. This research examines the psychometric properties of each of the dimensions of Parker and colleagues' Psychological Climate Survey in a sample of voluntary child welfare workers. Methods:…

  8. Impacts of Climate Change on Stream Flow in the Upper Mississippi River Basin: A Regional Climate Model Perspective, The

    OpenAIRE

    Manoj Jha; Zaitao Pan; Takle, Eugene S.; Roy Gu

    2003-01-01

    We evaluate the impact of climate change on stream flow in the Upper Mississippi River Basin (UMRB) by using a regional climate model (RCM) coupled with a hydrologic model, the Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated and validated against measured stream flow data using observed weather data and inputs from the Environmental Protection Agency's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) geographical information/database system. The c...

  9. Validation of systems biology models

    NARCIS (Netherlands)

    Hasdemir, D.

    2015-01-01

    The paradigm shift from qualitative to quantitative analysis of biological systems brought a substantial number of modeling approaches to the stage of molecular biology research. These include but certainly are not limited to nonlinear kinetic models, static network models and models obtained by the

  10. Emulation of MIROC5 with a simple climate model

    Science.gov (United States)

    Ishizaki, Yasuhiro; Emori, Seita; Shiogama, Hideo; Takahashi, Kiyoshi; Yokohata, Tokuta; Yoshimori, Masakazu

    2014-05-01

    We developed a simple climate model based on MAGICC6, and investigated the ability of the simple climate model to emulate global mean surface air temperature (SAT) changes of an atmosphere-ocean general circulation model (MIROC5) in the twenty-first century in representative concentration pathways (RCPs). Some previous research indicated that climate sensitivity, ocean vertical diffusion and forcing of anthropogenic aerosols (direct and indirect effects of sulfate aerosol, black carbon and organic carbon) are important factors to emulate global mean SAT changes of atmosphere-ocean general circulation models CMIP3. We therefore estimate these important parameters in the simple climate model using a Metropolis-Hastings Markov chain Monte Carlo (MCMC) approach. The estimated values of the important parameters by the MCMC are physically valid, and our simple climate model can successfully emulate global mean SAT changes of MIROC5 in RCPs with the estimated parameters by the MCMC approach. In addition, we estimated the relative contributions f each important parameter in sensitivity experiments, in which we change the value of an important parameter from the estimated one by the MCMC to the default value of MAGICC6. As a result, we found that the estimation of climate sensitivity is the most important factor for the emulation of the AOGCM, and the stimation of ocean vertical diffusion is also important factor. Although the estimations of the anthropogenic aerosols forcing are very important for the emulation of the AOGCM in the twenty century, the influence of them on the emulation of the AOGCM in the twenty first century is very small. This is because emissions of anthropogenic aerosols are projected to decrease in the twenty first century, and relative contributions of the forcing of anthropogenic aerosols also decrease. Carbon cycle models are not incorporated into our simple climate model yet. A sophisticated carbon cycle model is required to be incorporated into

  11. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  12. Model Validation in Ontology Based Transformations

    Directory of Open Access Journals (Sweden)

    Jesús M. Almendros-Jiménez

    2012-10-01

    Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.

  13. Development and Validation of an Instrument for Assessing Climate Change Knowledge and Perceptions: The Climate Stewardship Survey (CSS)

    OpenAIRE

    Scott L. WALKER; McNeal, Karen S

    2013-01-01

    The Climate Stewardship Survey (CSS) was developed to measure knowledge and perceptions of global climate change, while also considering information sources that respondents ‘trust.’ The CSS was drafted using a three-stage approach: development of salient scales, writing individual items, and field testing and analyses. Construct validity and alpha-level reliability was conducted on the 122-item test instrument to produce a refined 84-item CSS.  The field tested C...

  14. Climate predictions: the chaos and complexity in climate models

    CERN Document Server

    Mihailović, Dragutin T; Arsenić, Ilija

    2013-01-01

    Some issues which are relevant for the recent state in climate modeling have been considered. A detailed overview of literature related to this subject is given. The concept in modeling of climate, as a complex system, seen through Godel's Theorem and Rosen's definition of complexity and predictability is discussed. It is pointed out to occurrence of chaos in computing the environmental interface temperature from the energy balance equation given in a difference form. A coupled system of equations, often used in climate models is analyzed. It is shown that the Lyapunov exponent mostly has positive values allowing presence of chaos in this systems. The horizontal energy exchange between environmental interfaces, which is described by the dynamics of driven coupled oscillators, is analyzed. Their behavior and synchronization, when a perturbation is introduced in the system, as a function of the coupling parameters, the logistic parameter and the parameter of exchange, was studied calculating the Lyapunov expone...

  15. Children in residential care: development and validation of a group climate instrument

    NARCIS (Netherlands)

    E.L.L. Strijbosch; G.H.P. van der Helm; M.E.T van Brandenburg; M. Mecking; I.B. Wissink; G.J.J.M. Stams

    2013-01-01

    Purpose: This study describes the development and validation of the Group Climate Instrument for Children aged 8 to 15 years (GCIC 8-15), which purports to measure the quality of group climate in residential care. Methods: A confirmatory factor analysis was performed on data of 117 children in Dutch

  16. Children in residential care: development and validation of a group climate instrument

    NARCIS (Netherlands)

    Strijbosch, E.L.L.; van der Helm, G.H.P.; van Brandenburg, M.E.T; Mecking, M.; Wissink, I.B.; Stams, G.J.J.M.

    2014-01-01

    Purpose: This study describes the development and validation of the Group Climate Instrument for Children aged 8 to 15 years (GCIC 8-15), which purports to measure the quality of group climate in residential care. Methods: A confirmatory factor analysis was performed on data of 117 children in Dutch

  17. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  18. Quantitative model validation techniques: new insights

    CERN Document Server

    Ling, You

    2012-01-01

    This paper develops new insights into quantitative methods for the validation of computational model prediction. Four types of methods are investigated, namely classical and Bayesian hypothesis testing, a reliability-based method, and an area metric-based method. Traditional Bayesian hypothesis testing is extended based on interval hypotheses on distribution parameters and equality hypotheses on probability distributions, in order to validate models with deterministic/stochastic output for given inputs. Two types of validation experiments are considered - fully characterized (all the model/experimental inputs are measured and reported as point values) and partially characterized (some of the model/experimental inputs are not measured or are reported as intervals). Bayesian hypothesis testing can minimize the risk in model selection by properly choosing the model acceptance threshold, and its results can be used in model averaging to avoid Type I/II errors. It is shown that Bayesian interval hypothesis testing...

  19. Validating a work group climate assessment tool for improving the performance of public health organizations

    Directory of Open Access Journals (Sweden)

    Tracy Allison

    2005-10-01

    Full Text Available Abstract Background This article describes the validation of an instrument to measure work group climate in public health organizations in developing countries. The instrument, the Work Group Climate Assessment Tool (WCA, was applied in Brazil, Mozambique, and Guinea to assess the intermediate outcomes of a program to develop leadership for performance improvement. Data were collected from 305 individuals in 42 work groups, who completed a self-administered questionnaire. Methods The WCA was initially validated using Cronbach's alpha reliability coefficient and exploratory factor analysis. This article presents the results of a second validation study to refine the initial analyses to account for nested data, to provide item-level psychometrics, and to establish construct validity. Analyses included eigenvalue decomposition analysis, confirmatory factor analysis, and validity and reliability analyses. Results This study confirmed the validity and reliability of the WCA across work groups with different demographic characteristics (gender, education, management level, and geographical location. The study showed that there is agreement between the theoretical construct of work climate and the items in the WCA tool across different populations. The WCA captures a single perception of climate rather than individual sub-scales of clarity, support, and challenge. Conclusion The WCA is useful for comparing the climates of different work groups, tracking the changes in climate in a single work group over time, or examining differences among individuals' perceptions of their work group climate. Application of the WCA before and after a leadership development process can help work groups hold a discussion about current climate and select a target for improvement. The WCA provides work groups with a tool to take ownership of their own group climate through a process that is simple and objective and that protects individual confidentiality.

  20. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of high-fidelity...

  1. An Appraisal of Coupled Climate Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K

    2004-02-24

    In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''

  2. Uncertainty Quantification in Climate Modeling and Projection

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Jackson, Charles; Giorgi, Filippo; Booth, Ben; Duan, Qingyun; Forest, Chris; Higdon, Dave; Hou, Z. Jason; Huerta, Gabriel

    2016-05-01

    The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change information for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for

  3. Model validation: Correlation for updating

    Indian Academy of Sciences (India)

    D J Ewins

    2000-06-01

    In this paper, a review is presented of the various methods which are available for the purpose of performing a systematic comparison and correlation between two sets of vibration data. In the present case, the application of interest is in conducting this correlation process as a prelude to model correlation or updating activity.

  4. An Analog Earth Climate Model

    Science.gov (United States)

    Varekamp, J. C.

    2010-12-01

    The earth climate is broadly governed by the radiative power of the sun as well as the heat retention and convective cooling of the atmosphere. I have constructed an analog earth model for an undergraduate climate class that simulates mean climate using these three parameters. The ‘earth’ is a hollow, black, bronze sphere (4 cm diameter) mounted on a thin insulated rod, and illuminated by two opposite optic fibers, with light focused on the sphere by a set of lenses. The sphere is encased in a large double-walled aluminum cylinder (34 cm diameter by 26 cm high) with separate water cooling jackets at the top, bottom, and sides. The cylinder can be filled with a gas of choice at a variety of pressures or can be run in vacuum. The exterior is cladded with insulation, and the temperature of the sphere, atmosphere and walls is monitored with thermocouples. The temperature and waterflow of the three cooling jackets can be monitored to establish the energy output of the whole system; the energy input is the energy yield of the two optic fibers. A small IR transmissive lens at the top provides the opportunity to hook up the fiber of a hyper spectrometer to monitor the emission spectrum of the black ‘earth’ sphere. A pressure gauge and gas inlet-outlet system for flushing of the cell completes it. The heat yield of the cooling water at the top is the sum of the radiative and convective components, whereas the bottom jacket only carries off the radiative heat of the sphere. Undergraduate E&ES students at Wesleyan University have run experiments with dry air, pure CO2, N2 and Ar at 1 atmosphere, and a low vacuum run was accomplished to calibrate the energy input. For each experiment, the lights are flipped on, the temperature acquisition routine is activated, and the sphere starts to warm up until an equilibrium temperature has been reached. The lights are then flipped off and the cooling sequence towards ambient is registered. The energy input is constant for a given

  5. Faculty Teaching Climate: Scale Construction and Initial Validation

    Science.gov (United States)

    Knorek, John Kenneth

    2012-01-01

    The concept "academic culture" has been used as a framework to understand faculty work in higher education. Academic culture research builds on organizational psychology concepts of culture and climate to better understand employee practices and work phenomenon. Ample research has investigated faculty teaching at the disciplinary and…

  6. Modeling and assessing international climate financing

    Science.gov (United States)

    Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng

    2016-06-01

    Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.

  7. Simulation and Validation of Cisco Lethal Conditions in Minnesota Lakes under Past and Future Climate Scenarios Using Constant Survival Limits

    Directory of Open Access Journals (Sweden)

    Liping Jiang

    2016-07-01

    Full Text Available Fish habitat in lakes is strongly constrained by water temperature (T and available dissolved oxygen (DO that are changed under climate warming. A one dimensional, dynamic water quality model MINLAKE2012 was used for T and DO simulation over 48 years. A fish habitat model FishHabitat2013 using simulated T and DO profiles as input was developed to determine lethal conditions of cisco Corgenous artedi in Minnesota lakes. Twenty-three lakes that had observations of cisco mortality or survival in the unusually warm summer of 2006 were used for model validation. The cisco habitat model used a lethal temperature of 22.1 °C and DO survival limit of 3 mg/L determined through model validation and sensitivity analysis. Cisco lethal conditions in 12 shallow, 16 medium-depth, and 30 deep virtual lakes were then simulated. Isopleths of total number of years with cisco kill and average cisco kill days for the years with kills under past (1961–2008 and future climate were generated to understand/extrapolate climate impacts on cisco in 620 Minnesota lakes. Shallow and medium-depth lakes are projected to not be good candidates for cisco refuge lakes, but deep lakes are possible cisco refuge lakes based on lethal condition projection under future warmer climate.

  8. Model biases in rice phenology under warmer climates.

    Science.gov (United States)

    Zhang, Tianyi; Li, Tao; Yang, Xiaoguang; Simelton, Elisabeth

    2016-06-07

    Climate-induced crop yields model projections are constrained by the accuracy of the phenology simulation in crop models. Here, we use phenology observations from 775 trials with 19 rice cultivars in 5 Asian countries to compare the performance of four rice phenology models (growing-degree-day (GDD), exponential, beta and bilinear models) when applied to warmer climates. For a given cultivar, the difference in growing season temperature (GST) varied between 2.2 and 8.2 °C in different trials, which allowed us to calibrate the models for lower GST and validate under higher GST, with three calibration experiments. The results show that in warmer climates the bilinear and beta phenology models resulted in gradually increasing bias for phenology predication and double yield bias per percent increase in phenology simulation bias, while the GDD and exponential models maintained a comparatively constant bias. The phenology biases were primarily attributed to varying phenological patterns to temperature in models, rather than on the size of the calibration dataset. Additionally, results suggest that model simulations based on multiple cultivars provide better predictability than using one cultivar. Therefore, to accurately capture climate change impacts on rice phenology, we recommend simulations based on multiple cultivars using the GDD and exponential phenology models.

  9. Model biases in rice phenology under warmer climates

    Science.gov (United States)

    Zhang, Tianyi; Li, Tao; Yang, Xiaoguang; Simelton, Elisabeth

    2016-06-01

    Climate-induced crop yields model projections are constrained by the accuracy of the phenology simulation in crop models. Here, we use phenology observations from 775 trials with 19 rice cultivars in 5 Asian countries to compare the performance of four rice phenology models (growing-degree-day (GDD), exponential, beta and bilinear models) when applied to warmer climates. For a given cultivar, the difference in growing season temperature (GST) varied between 2.2 and 8.2 °C in different trials, which allowed us to calibrate the models for lower GST and validate under higher GST, with three calibration experiments. The results show that in warmer climates the bilinear and beta phenology models resulted in gradually increasing bias for phenology predication and double yield bias per percent increase in phenology simulation bias, while the GDD and exponential models maintained a comparatively constant bias. The phenology biases were primarily attributed to varying phenological patterns to temperature in models, rather than on the size of the calibration dataset. Additionally, results suggest that model simulations based on multiple cultivars provide better predictability than using one cultivar. Therefore, to accurately capture climate change impacts on rice phenology, we recommend simulations based on multiple cultivars using the GDD and exponential phenology models.

  10. COP21 climate negotiators' responses to climate model forecasts

    Science.gov (United States)

    Bosetti, Valentina; Weber, Elke; Berger, Loïc; Budescu, David V.; Liu, Ning; Tavoni, Massimo

    2017-02-01

    Policymakers involved in climate change negotiations are key users of climate science. It is therefore vital to understand how to communicate scientific information most effectively to this group. We tested how a unique sample of policymakers and negotiators at the Paris COP21 conference update their beliefs on year 2100 global mean temperature increases in response to a statistical summary of climate models' forecasts. We randomized the way information was provided across participants using three different formats similar to those used in Intergovernmental Panel on Climate Change reports. In spite of having received all available relevant scientific information, policymakers adopted such information very conservatively, assigning it less weight than their own prior beliefs. However, providing individual model estimates in addition to the statistical range was more effective in mitigating such inertia. The experiment was repeated with a population of European MBA students who, despite starting from similar priors, reported conditional probabilities closer to the provided models' forecasts than policymakers. There was also no effect of presentation format in the MBA sample. These results highlight the importance of testing visualization tools directly on the population of interest.

  11. CLIMBER-2: a climate system model of intermediate complexity. Pt. 1. Model description and performance for present climate

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, V.; Ganopolski, A.; Brovkin, V.; Claussen, M.; Eliseev, A.; Kubatzki, C.; Rahmstorf, S.

    1998-02-01

    A 2.5-dimensional climate system model of intermediate complexity CLIMBER-2 and its performance for present climate conditions are presented. The model consists of modules describing atmosphere, ocean, sea ice, land surface processes, terrestrial vegetation cover, and global carbon cycle. The modules interact (on-line) through the fluxes of momentum, energy, water and carbon. The model has a coarse spatial resolution, allowing nevertheless to capture the major features of the Earth`s geography. The model describes temporal variability of the system on seasonal and longer time scales. Due to the fact that the model does not employ any type of flux adjustment and has fast turnaround time, it can be used for study of climates significantly different from the present one and allows to perform long-term (multimillennia) simulations. The constraints for coupling the atmosphere and ocean without flux adjustment are discussed. The results of a model validation against present climate data show that the model successfully describes the seasonal variability of a large set of characteristics of the climate system, including radiative balance, temperature, precipitation, ocean circulation and cryosphere. (orig.) 62 refs.

  12. Modeling of Soybean under Present and Future Climates in Mozambique

    Directory of Open Access Journals (Sweden)

    Manuel António Dina Talacuece

    2016-06-01

    Full Text Available This study aims to calibrate and validate the generic crop model (CROPGRO-Soybean and estimate the soybean yield, considering simulations with different sowing times for the current period (1990–2013 and future climate scenario (2014–2030. The database used came from observed data, nine climate models of CORDEX (Coordinated Regional climate Downscaling Experiment-Africa framework and MERRA (Modern Era Retrospective-Analysis for Research and Applications reanalysis. The calibration and validation data for the model were acquired in field experiments, carried out in the 2009/2010 and 2010/2011 growing seasons in the experimental area of the International Institute of Tropical Agriculture (IITA in Angónia, Mozambique. The yield of two soybean cultivars: Tgx 1740-2F and Tgx 1908-8F was evaluated in the experiments and modeled for two distinct CO2 concentrations. Our model simulation results indicate that the fertilization effect leads to yield gains for both cultivars, ranging from 11.4% (Tgx 1908-8F to 15% (Tgx 1740-2Fm when compared to the performance of those cultivars under current CO2 atmospheric concentration. Moreover, our results show that MERRA, the RegCM4 (Regional Climatic Model version 4 and CNRM-CM5 (Centre National de Recherches Météorologiques – Climatic Model version 5 models provided more accurate estimates of yield, while others models underestimate yield as compared to observations, a fact that was demonstrated to be related to the model’s capability of reproducing the precipitation and the surface radiation amount.

  13. Exploitation of Parallelism in Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Baer, F.; Tribbia, J.J.; Williamson, D.L.

    1999-03-01

    The US Department of Energy (DOE), through its CHAMMP initiative, hopes to develop the capability to make meaningful regional climate forecasts on time scales exceeding a decade, such capability to be based on numerical prediction type models. We propose research to contribute to each of the specific items enumerated in the CHAMMP announcement (Notice 91-3); i.e., to consider theoretical limits to prediction of climate and climate change on appropriate time scales, to develop new mathematical techniques to utilize massively parallel processors (MPP), to actually utilize MPPs as a research tool, and to develop improved representations of some processes essential to climate prediction. In particular, our goals are to: (1) Reconfigure the prediction equations such that the time iteration process can be compressed by use of MMP architecture, and to develop appropriate algorithms. (2) Develop local subgrid scale models which can provide time and space dependent parameterization for a state- of-the-art climate model to minimize the scale resolution necessary for a climate model, and to utilize MPP capability to simultaneously integrate those subgrid models and their statistics. (3) Capitalize on the MPP architecture to study the inherent ensemble nature of the climate problem. By careful choice of initial states, many realizations of the climate system can be determined concurrently and more realistic assessments of the climate prediction can be made in a realistic time frame. To explore these initiatives, we will exploit all available computing technology, and in particular MPP machines. We anticipate that significant improvements in modeling of climate on the decadal and longer time scales for regional space scales will result from our efforts.

  14. Connections between simulations and observation in climate computer modeling. Scientist's practices and "bottom-up epistemology" lessons

    Science.gov (United States)

    Guillemot, Hélène

    Climate modeling is closely tied, through its institutions and practices, to observations from satellites and to the field sciences. The validity, quality and scientific credibility of models are based on interaction between models and observation data. In the case of numerical modeling of climate and climate change, validation is not solely a scientific interest: the legitimacy of computer modeling, as a tool of knowledge, has been called into question in order to deny the reality of any anthropogenic climate change; model validations thereby bring political issues into play as well. There is no systematic protocol of validation: one never validates a model in general, but the capacity of a model to account for a defined climatic phenomenon or characteristic. From practices observed in the two research centers developing and using a climate model in France, this paper reviews different ways in which the researchers establish links between models and empirical data (which are not reduced to the latter validating the former) and convince themselves that their models are valid. The analysis of validation practices-relating to parametrization, modes of variability, climatic phenomena, etc.-allows us to highlight some elements of the epistemology of modeling.

  15. Validation of the Hot Strip Mill Model

    Energy Technology Data Exchange (ETDEWEB)

    Richard Shulkosky; David Rosberg; Jerrud Chapman

    2005-03-30

    The Hot Strip Mill Model (HSMM) is an off-line, PC based software originally developed by the University of British Columbia (UBC) and the National Institute of Standards and Technology (NIST) under the AISI/DOE Advanced Process Control Program. The HSMM was developed to predict the temperatures, deformations, microstructure evolution and mechanical properties of steel strip or plate rolled in a hot mill. INTEG process group inc. undertook the current task of enhancing and validating the technology. With the support of 5 North American steel producers, INTEG process group tested and validated the model using actual operating data from the steel plants and enhanced the model to improve prediction results.

  16. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, L.F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  17. A climate robust integrated modelling framework for regional impact assessment of climate change

    Science.gov (United States)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  18. The climatic-altitude chamber as development and validation tool

    NARCIS (Netherlands)

    Gompel, P.H.C. van; Koornneef, G.P.

    2010-01-01

    Two major trends can be identified for powertrain control in the next decade. The legislation will more and more focus on in-use emissions. Together with the global trend to reduce the CO 2 emissions, this will lead to an integral drive train approach. To develop and validate this integral drive tra

  19. The ventilation and climate modelling of rapid development tunnel drivages

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, I.S.; Crossley, A.J.; Yang, Z.Y. [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental & Mining Engineering

    2004-03-01

    The extraction of minerals and coal at greater depth, employing higher-powered machinery to increase production levels, has imposed an increased burden on ventilation systems to maintain an acceptable working environment. There may be an economic or practical limit to the climatic improvement that may be obtained by the sole use of ventilation air. Where this limit is identified, there may be the need to consider the selective application of air-cooling systems. This paper details the construction of a computer based climatic prediction tool developed at the University of Nottingham. The current model predicts the psychrometric and thermodynamic conditions within long rapid development single entry tunnel drivages. The model takes into account the mass and heat transfer between the strata, water, machinery and the ventilation air. The results produced by the model have been correlated against ventilation, climatic and operational data, obtained from a number of rapid tunnel developments within UK deep coalmines. The paper details the results of a series of correlation and validation studies conducted against the ventilation and climate survey data measured within 105s district Tail Gate tunnel development at Maltby Colliery, UK. The paper concludes by presenting the results of a case study that illustrate the application of the validated model to the design and operation of an integrated mine ventilation and cooling system. The case study illustrates the effect that an increased depth and hence increased virgin strata temperature has on the climate experienced within rapid tunnel developments. Further investigations were performed to identify the optimum cooling strategy that should be adopted to maintain a satisfactory climate at the head of the drivage.

  20. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  1. Validating the passenger traffic model for Copenhagen

    DEFF Research Database (Denmark)

    Overgård, Christian Hansen; VUK, Goran

    2006-01-01

    The paper presents a comprehensive validation procedure for the passenger traffic model for Copenhagen based on external data from the Danish national travel survey and traffic counts. The model was validated for the years 2000 to 2004, with 2004 being of particular interest because the Copenhagen...... Metro became operational in autumn 2002. We observed that forecasts from the demand sub-models agree well with the data from the 2000 national travel survey, with the mode choice forecasts in particular being a good match with the observed modal split. The results of the 2000 car assignment model...... matched the observed traffic better than those of the transit assignment model. With respect to the metro forecasts, the model over-predicts metro passenger flows by 10% to 50%. The wide range of findings from the project resulted in two actions. First, a project was started in January 2005 to upgrade...

  2. Feature extraction for structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Nishio, Mayuko [UNIV OF TOKYO; Worden, Keith [UNIV OF SHEFFIELD; Takeda, Nobuo [UNIV OF TOKYO

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  3. Development and validation of the ACSI : measuring students' science attitudes, pro-environmental behaviour, climate change attitudes and knowledge

    NARCIS (Netherlands)

    Dijkstra, E. M.; Goedhart, M. J.

    2012-01-01

    This article describes the development and validation of the Attitudes towards Climate Change and Science Instrument. This 63-item questionnaire measures students' pro-environmental behaviour, their climate change knowledge and their attitudes towards school science, societal implications of science

  4. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  5. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions

    Directory of Open Access Journals (Sweden)

    Asma Foughali

    2015-07-01

    Full Text Available This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2 in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT from the European program ENSEMBLES, forced by two global climate models (GCM: ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to

  6. Regional Climate Model Intercomparison Project for Asia.

    Science.gov (United States)

    Fu, Congbin; Wang, Shuyu; Xiong, Zhe; Gutowski, William J.; Lee, Dong-Kyou; McGregor, John L.; Sato, Yasuo; Kato, Hisashi; Kim, Jeong-Woo; Suh, Myoung-Seok

    2005-02-01

    Improving the simulation of regional climate change is one of the high-priority areas of climate study because regional information is needed for climate change impact assessments. Such information is especially important for the region covered by the East Asian monsoon where there is high variability in both space and time. To this end, the Regional Climate Model Intercomparison Project (RMIP) for Asia has been established to evaluate and improve regional climate model (RCM) simulations of the monsoon climate. RMIP operates under joint support of the Asia-Pacific Network for Global Change Research (APN), the Global Change System for Analysis, Research and Training (START), the Chinese Academy of Sciences, and several projects of participating nations. The project currently involves 10 research groups from Australia, China, Japan, South Korea, and the United States, as well as scientists from India, Italy, Mongolia, North Korea, and Russia.RMIP has three simulation phases: March 1997-August 1998, which covers a full annual cycle and extremes in monsoon behavior; January 1989-December 1998, which examines simulated climatology; and a regional climate change scenario, involving nesting with a global model. This paper is a brief report of RMIP goals, implementation design, and some initial results from the first phase studies.

  7. Modeling of Past Climates: Some Perspectives

    Science.gov (United States)

    Kutzbach, J. E.

    2008-12-01

    Important new ideas related to modeling of past climates go hand in hand with new observations, with advances in our understanding and ability to represent physical and biogeochemical processes, and with advances in computer capacity and speed. Important first steps in quantitative climate modeling using energy balance models were underway in the early 20th century. Dynamical climate models began to be used to study past climates in the 1970s and 1980s, with a focus first on the atmosphere, and then on coupled models of atmosphere and upper ocean. In the past decades, coupled dynamical models include atmosphere, global ocean, vegetation, cryosphere and carbon cycle components. This astonishingly rapid development in modeling potential has been greatly facilitated by the rapid increase in computational power. Equally important is the rapid development of more diverse, accurate and worldwide observations of present and past environments from land, lakes, oceans and ice. The topics of early, more recent, and current research on modeling of past climates come from a diverse range of ideas about the mechanisms that might force fundamental changes in climate - for example: changes in greenhouse gases, changes in insolation caused by orbital changes, changes in land-sea distribution, changes in orography, and changes in ocean gateways. Past and current research on these topics, using climate models, illustrates the process and the progress. Certain fundamental principles of modeling and analysis have been important in the past, are important now, and most likely will continue to be important. These principles will be enumerated. Looking toward the future, new observations, improved models and even faster computers are to be expected. But there will also be new challenges: intermodel comparisons and analysis and correction of model bias, understanding feedback processes, understanding non-linear responses, understanding the response to combinations of forcing, and studying

  8. Hydrologic modeling using elevationally adjusted NARR and NARCCAP regional climate-model simulations: Tucannon River, Washington

    Science.gov (United States)

    Praskievicz, Sarah; Bartlein, Patrick

    2014-09-01

    An emerging approach to downscaling the projections from General Circulation Models (GCMs) to scales relevant for basin hydrology is to use output of GCMs to force higher-resolution Regional Climate Models (RCMs). With spatial resolution often in the tens of kilometers, however, even RCM output will likely fail to resolve local topography that may be climatically significant in high-relief basins. Here we develop and apply an approach for downscaling RCM output using local topographic lapse rates (empirically-estimated spatially and seasonally variable changes in climate variables with elevation). We calculate monthly local topographic lapse rates from the 800-m Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset, which is based on regressions of observed climate against topographic variables. We then use these lapse rates to elevationally correct two sources of regional climate-model output: (1) the North American Regional Reanalysis (NARR), a retrospective dataset produced from a regional forecasting model constrained by observations, and (2) a range of baseline climate scenarios from the North American Regional Climate Change Assessment Program (NARCCAP), which is produced by a series of RCMs driven by GCMs. By running a calibrated and validated hydrologic model, the Soil and Water Assessment Tool (SWAT), using observed station data and elevationally-adjusted NARR and NARCCAP output, we are able to estimate the sensitivity of hydrologic modeling to the source of the input climate data. Topographic correction of regional climate-model data is a promising method for modeling the hydrology of mountainous basins for which no weather station datasets are available or for simulating hydrology under past or future climates.

  9. Validating Savings Claims of Cold Climate Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, S. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-01

    This report details the validation methods used to analyze consumption at each of these homes. It includes a detailed end-use examination of consumptions from the following categories: 1) Heating, 2) Cooling, 3) Lights, Appliances, and Miscellaneous Electric Loads (LAMELS) along with Domestic Hot Water Use, 4) Ventilation, and 5) PV generation. A utility bill disaggregation method, which allows a crude estimation of space conditioning loads based on outdoor air temperature, was also performed and the results compared to the actual measured data.

  10. Very high resolution regional climate model simulations over Greenland: Identifying added value

    DEFF Research Database (Denmark)

    Lucas-Picher, P.; Wulff-Nielsen, M.; Christensen, J.H.;

    2012-01-01

    This study presents two simulations of the climate over Greenland with the regional climate model (RCM) HIRHAM5 at 0.05° and 0.25° resolution driven at the lateral boundaries by the ERA-Interim reanalysis for the period 1989–2009. These simulations are validated against observations from meteorol...

  11. The Community Climate System Model: CCSM3

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W D; Blackmon, M; Bitz, C; Bonan, G; Bretherton, C S; Carton, J A; Chang, P; Doney, S; Hack, J J; Kiehl, J T; Henderson, T; Large, W G; McKenna, D; Santer, B D; Smith, R D

    2004-12-27

    A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates several significant improvements in the scientific formulation. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice thickness, polar radiation budgets, equatorial sea-surface temperatures, ocean currents, cloud radiative effects, and ENSO teleconnections. CCSM3 can produce stable climate simulations of millenial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean-atmosphere fluxes in western coastal regions, the spectrum of ENSO variability, the spatial distribution of precipitation in the Pacific and Indian Oceans, and the continental precipitation and surface air temperatures. We conclude with the prospects for extending CCSM to a more comprehensive model of the Earth's climate system.

  12. Regimes of validity for balanced models

    Science.gov (United States)

    Gent, Peter R.; McWilliams, James C.

    1983-07-01

    Scaling analyses are presented which delineate the atmospheric and oceanic regimes of validity for the family of balanced models described in Gent and McWilliams (1983a). The analyses follow and extend the classical work of Charney (1948) and others. The analyses use three non-dimensional parameters which represent the flow scale relative to the Earth's radius, the dominance of turbulent or wave-like processes, and the dominant component of the potential vorticity. For each regime, the models that are accurate both at leading order and through at least one higher order of accuracy in the appropriate small parameter are then identified. In particular, it is found that members of the balanced family are the appropriate models of higher-order accuracy over a broad range of parameter regimes. Examples are also given of particular atmospheric and oceanic phenomena which are in the regimes of validity for the different balanced models.

  13. Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation

    Science.gov (United States)

    Sein, Dmitry V.; Mikolajewicz, Uwe; Gröger, Matthias; Fast, Irina; Cabos, William; Pinto, Joaquim G.; Hagemann, Stefan; Semmler, Tido; Izquierdo, Alfredo; Jacob, Daniela

    2015-03-01

    The general circulation models used to simulate global climate typically feature resolution too coarse to reproduce many smaller-scale processes, which are crucial to determining the regional responses to climate change. A novel approach to downscale climate change scenarios is presented which includes the interactions between the North Atlantic Ocean and the European shelves as well as their impact on the North Atlantic and European climate. The goal of this paper is to introduce the global ocean-regional atmosphere coupling concept and to show the potential benefits of this model system to simulate present-day climate. A global ocean-sea ice-marine biogeochemistry model (MPIOM/HAMOCC) with regionally high horizontal resolution is coupled to an atmospheric regional model (REMO) and global terrestrial hydrology model (HD) via the OASIS coupler. Moreover, results obtained with ROM using NCEP/NCAR reanalysis and ECHAM5/MPIOM CMIP3 historical simulations as boundary conditions are presented and discussed for the North Atlantic and North European region. The validation of all the model components, i.e., ocean, atmosphere, terrestrial hydrology, and ocean biogeochemistry is performed and discussed. The careful and detailed validation of ROM provides evidence that the proposed model system improves the simulation of many aspects of the regional climate, remarkably the ocean, even though some biases persist in other model components, thus leaving potential for future improvement. We conclude that ROM is a powerful tool to estimate possible impacts of climate change on the regional scale.

  14. Satellite information of sea ice for model validation

    Science.gov (United States)

    Saheed, P. P.; Mitra, Ashis K.; Momin, Imranali M.; Mahapatra, Debasis K.; Rajagopal, E. N.

    2016-05-01

    Emergence of extensively large computational facilities have enabled the scientific world to use earth system models for understating the prevailing dynamics of the earth's atmosphere, ocean and cryosphere and their inter relations. The sea ice in the arctic and the Antarctic has been identified as one of the main proxies to study the climate changes. The rapid sea-ice melting in the Arctic and disappearance of multi-year sea ice has become a matter of concern. The earth system models couple the ocean, atmosphere and sea-ice in order to bring out the possible inter connections between these three very important components and their role in the changing climate. The Indian monsoon is seen to be subjected to nonlinear changes in the recent years. The rapid ice melt in the Arctic sea ice is apparently linked to the changes in the weather and climate of the Indian subcontinent. The recent findings reveal the relation between the high events occurs in the Indian subcontinent and the Arctic sea ice melt episodes. The coupled models are being used in order to study the depth of these relations. However, the models have to be validated extensively by using measured parameters. The satellite measurements of sea-ice starts from way back in 1979. There have been many data sets available since then. Here in this study, an evaluation of the existing data sets is conducted. There are some uncertainties in these data sets. It could be associated with the absence of a single sensor for a long period of time and also the absence of accurate in-situ measurements in order to validate the satellite measurements.

  15. Future meteorological drought: projections of regional climate models for Europe

    Science.gov (United States)

    Stagge, James; Tallaksen, Lena; Rizzi, Jonathan

    2015-04-01

    In response to the major European drought events of the last decade, projecting future drought frequency and severity in a non-stationary climate is a major concern for Europe. Prior drought studies have identified regional hotspots in the Mediterranean and Eastern European regions, but have otherwise produced conflicting results with regard to future drought severity. Some of this disagreement is likely related to the relatively coarse resolution of Global Climate Models (GCMs) and regional averaging, which tends to smooth extremes. This study makes use of the most current Regional Climate Models (RCMs) forced with CMIP5 climate projections to quantify the projected change in meteorological drought for Europe during the next century at a fine, gridded scale. Meteorological drought is quantified using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI), which normalize accumulated precipitation and climatic water balance anomaly, respectively, for a specific location and time of year. By comparing projections for these two indices, the importance of precipitation deficits can be contrasted with the importance of evapotranspiration increases related to temperature changes. Climate projections are based on output from CORDEX (the Coordinated Regional Climate Downscaling Experiment), which provides high resolution regional downscaled climate scenarios that have been extensively tested for numerous regions around the globe, including Europe. SPI and SPEI are then calculated on a gridded scale at a spatial resolution of either 0.44 degrees (~50 km) or 0.11 degrees (~12.5km) for the three projected emission pathways (rcp26, rcp45, rcp85). Analysis is divided into two major sections: first validating the models with respect to observed historical trends in meteorological drought from 1970-2005 and then comparing drought severity and frequency during three future time periods (2011-2040, 2041-2070, 2071-2100) to the

  16. Climate model uncertainty vs. conceptual geological uncertainty in hydrological modeling

    Directory of Open Access Journals (Sweden)

    T. O. Sonnenborg

    2015-04-01

    Full Text Available Projections of climate change impact are associated with a cascade of uncertainties including CO2 emission scenario, climate model, downscaling and impact model. The relative importance of the individual uncertainty sources is expected to depend on several factors including the quantity that is projected. In the present study the impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Each projection of future climate is a result of a GCM-RCM model combination (from the ENSEMBLES project forced by the same CO2 scenario (A1B. The changes from the reference period (1991–2010 to the future period (2081–2100 in projected hydrological variables are evaluated and the effects of geological model and climate model uncertainties are quantified. The results show that uncertainty propagation is context dependent. While the geological conceptualization is the dominating uncertainty source for projection of travel time and capture zones, the uncertainty on the climate models is more important for groundwater hydraulic heads and stream flow.

  17. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents

    OpenAIRE

    Vetter, T.; Huang, S.; Aich, V.; Yang, T; X. Wang; Krysanova, V.; Hattermann, F.

    2015-01-01

    Climate change impacts on hydrological processes should be simulated for river basins using validated models and multiple climate scenarios in order to provide reliable results for stakeholders. In the last 10–15 years, climate impact assessment has been performed for many river basins worldwide using different climate scenarios and models. However, their results are hardly comparable, and do not allow one to create a full picture of impacts and uncertainties. Therefore, a s...

  18. Development and validation of the Spanish version of the Team Climate Inventory: a measurement invariance test

    Directory of Open Access Journals (Sweden)

    Mirko Antino

    2014-05-01

    Full Text Available The present study analyzed the psychometric properties and the validity of the Spanish version of the Team Climate Inventory (TCI. The TCI is a measure of climate for innovation within groups at work and is based on the four-factor theory of climate for innovation (West, 1990. Cronbach's alpha and omega indexes revealed satisfactory reliabilities and exploratory factor analysis extracted the four original factors with the fifth factor as reported in other studies. Confirmatory factorial analysis confirmed that the five-factor solution presented the best fit to our data. Two samples (Spanish health care teams and Latin American software development teams for a total of 1099 participants were compared, showing metric measurement invariance. Evidences for validity based on team performance and team satisfaction prediction are offered.

  19. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    Science.gov (United States)

    Romanach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  20. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  1. Full-scale validation of a model of algal productivity.

    Science.gov (United States)

    Béchet, Quentin; Shilton, Andy; Guieysse, Benoit

    2014-12-02

    While modeling algal productivity outdoors is crucial to assess the economic and environmental performance of full-scale cultivation, most of the models hitherto developed for this purpose have not been validated under fully relevant conditions, especially with regard to temperature variations. The objective of this study was to independently validate a model of algal biomass productivity accounting for both light and temperature and constructed using parameters experimentally derived using short-term indoor experiments. To do this, the accuracy of a model developed for Chlorella vulgaris was assessed against data collected from photobioreactors operated outdoor (New Zealand) over different seasons, years, and operating conditions (temperature-control/no temperature-control, batch, and fed-batch regimes). The model accurately predicted experimental productivities under all conditions tested, yielding an overall accuracy of ±8.4% over 148 days of cultivation. For the purpose of assessing the feasibility of full-scale algal cultivation, the use of the productivity model was therefore shown to markedly reduce uncertainty in cost of biofuel production while also eliminating uncertainties in water demand, a critical element of environmental impact assessments. Simulations at five climatic locations demonstrated that temperature-control in outdoor photobioreactors would require tremendous amounts of energy without considerable increase of algal biomass. Prior assessments neglecting the impact of temperature variations on algal productivity in photobioreactors may therefore be erroneous.

  2. SPR Hydrostatic Column Model Verification and Validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [Gram, Inc. Albuquerque, NM (United States)

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  3. High dimensional decision dilemmas in climate models

    Directory of Open Access Journals (Sweden)

    A. Bracco

    2013-10-01

    Full Text Available An important source of uncertainty in climate models is linked to the calibration of model parameters. Interest in systematic and automated parameter optimization procedures stems from the desire to improve the model climatology and to quantify the average sensitivity associated with potential changes in the climate system. Building upon on the smoothness of the response of an atmospheric circulation model (AGCM to changes of four adjustable parameters, Neelin et al. (2010 used a quadratic metamodel to objectively calibrate the AGCM. The metamodel accurately estimates global spatial averages of common fields of climatic interest, from precipitation, to low and high level winds, from temperature at various levels to sea level pressure and geopotential height, while providing a computationally cheap strategy to explore the influence of parameter settings. Here, guided by the metamodel, the ambiguities or dilemmas related to the decision making process in relation to model sensitivity and optimization are examined. Simulations of current climate are subject to considerable regional-scale biases. Those biases may vary substantially depending on the climate variable considered, and/or on the performance metric adopted. Common dilemmas are associated with model revisions yielding improvement in one field or regional pattern or season, but degradation in another, or improvement in the model climatology but degradation in the interannual variability representation. Challenges are posed to the modeler by the high dimensionality of the model output fields and by the large number of adjustable parameters. The use of the metamodel in the optimization strategy helps visualize trade-offs at a regional level, e.g., how mismatches between sensitivity and error spatial fields yield regional errors under minimization of global objective functions.

  4. High dimensional decision dilemmas in climate models

    Directory of Open Access Journals (Sweden)

    A. Bracco

    2013-05-01

    Full Text Available An important source of uncertainty in climate models is linked to the calibration of model parameters. Interest in systematic and automated parameter optimization procedures stems from the desire to improve the model climatology and to quantify the average sensitivity associated with potential changes in the climate system. Neelin et al. (2010 used a quadratic metamodel to objectively calibrate an atmospheric circulation model (AGCM around four adjustable parameters. The metamodel accurately estimates global spatial averages of common fields of climatic interest, from precipitation, to low and high level winds, from temperature at various levels to sea level pressure and geopotential height, while providing a computationally cheap strategy to explore the influence of parameter settings. Here, guided by the metamodel, the ambiguities or dilemmas related to the decision making process in relation to model sensitivity and optimization are examined. Simulations of current climate are subject to considerable regional-scale biases. Those biases may vary substantially depending on the climate variable considered, and/or on the performance metric adopted. Common dilemmas are associated with model revisions yielding improvement in one field or regional pattern or season, but degradation in another, or improvement in the model climatology but degradation in the interannual variability representation. Challenges are posed to the modeler by the high dimensionality of the model output fields and by the large number of adjustable parameters. The use of the metamodel in the optimization strategy helps visualize trade-offs at a regional level, e.g. how mismatches between sensitivity and error spatial fields yield regional errors under minimization of global objective functions.

  5. Model validation in soft systems practice

    Energy Technology Data Exchange (ETDEWEB)

    Checkland, P. [Univ. of Lancaster (United Kingdom)

    1995-03-01

    The concept of `a model` usually evokes the connotation `model of part of the real world`. That is an almost automatic response. It makes sense especially in relation to the way the concept has been developed and used in natural science. Classical operational research (OR), with its scientific aspirations, and systems engineering, use the concept in the same way and in addition use models as surrogates for the real world, on which experimentation is cheap. In these fields the key feature of a model is representativeness. In soft systems methodology (SSM) models are not of part of the world; they are only relevant to debate about the real world and are used in a cyclic learning process. The paper shows how the different concepts of validation in classical OR and SSM lead to a way of sharply defining the nature of `soft OR`. 21 refs.

  6. Global Climate Models of the Terrestrial Planets

    Science.gov (United States)

    Forget, F.; Lebonnois, S.

    On the basis of the global climate models (GCMs) originally developed for Earth, several teams around the world have been able to develop GCMs for the atmospheres of the other terrestrial bodies in our solar system: Venus, Mars, Titan, Triton, and Pluto. In spite of the apparent complexity of climate systems and meteorology, GCMs are based on a limited number of equations. In practice, relatively complete climate simulators can be developed by combining a few components such as a dynamical core, a radiative transfer solver, a parameterization of turbulence and convection, a thermal ground model, and a volatile phase change code, possibly completed by a few specific schemes. It can be shown that many of these GCM components are "universal" so that we can envisage building realistic climate models for any kind of terrestrial planets and atmospheres that we can imagine. Such a tool is useful for conducting scientific investigations on the possible climates of terrestrial extrasolar planets, or to study past environments in the solar system. The ambition behind the development of GCMs is high: The ultimate goal is to build numerical simulators based only on universal physical or chemical equations, yet able to reproduce or predict all the available observations on a given planet, without any ad hoc forcing. In other words, we aim to virtually create in our computers planets that "behave" exactly like the actual planets themselves. In reality, of course, nature is always more complex than expected, but we learn a lot in the process. In this chapter we detail some lessons learned in the solar system: In many cases, GCMs work. They have been able to simulate many aspects of planetary climates without difficulty. In some cases, however, problems have been encountered, sometimes simply because a key process has been forgotten in the model or is not yet correctly parameterized, but also because sometimes the climate regime seems to be result of a subtle balance between

  7. Development and initial validation of the Classroom Motivational Climate Questionnaire (CMCQ).

    Science.gov (United States)

    Alonso Tapia, Jesús; Fernández Heredia, Blanca

    2008-11-01

    Research on classroom goal-structures (CGS) has shown the usefulness of assessing the classroom motivational climate to evaluate educational interventions and to promote changes in teachers' activity. So, the Classroom Motivational Climate Questionnaire for Secondary and High-School students was developed. To validate it, confirmatory factor analysis and correlation and regression analyses were performed. Results showed that the CMCQ is a highly reliable instrument that covers many of the types of teaching patterns that favour motivation to learn, correlates as expected with other measures of CGS, predicts satisfaction with teacher's work well, and allows detecting teachers who should revise their teaching.

  8. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  9. Information systems validation using formal models

    Directory of Open Access Journals (Sweden)

    Azadeh Sarram

    2014-03-01

    Full Text Available During the past few years, there has been growing interest to use unified modeling language (UML to consider the functional requirements. However, lacking a tool to detect the accuracy and the logic of diagrams in this language makes a formal model indispensable. In this study, conversion of primary UML model of a system to a colored Petri net has been accomplished in order to examine the precision of the model. For this purpose, first the definition of priority and implementation tags for UML activity diagram are provided; then it is turned into colored Petri net. Second, the proposed model provides translated tags in terms of net transitions and some monitoring are used to control the system characteristics. Finally, an executable model of UML activity diagram is provided so that the designer could simulate the model by using the simulation results to detect and to refine the problems of the model. In addition, by checking the results, we find out the proposed method enhances authenticity and accuracy of early models and the ratio of system validation increases compared with previous methods.

  10. Modeling the climatic response to orbital variations.

    Science.gov (United States)

    Imbrie, J; Imbrie, J Z

    1980-02-29

    According to the astronomical theory of climate, variations in the earth's orbit are the fundamental cause of the succession of Pleistocene ice ages. This article summarizes how the theory has evolved since the pioneer studies of James Croll and Milutin Milankovitch, reviews recent evidence that supports the theory, and argues that a major opportunity is at hand to investigate the physical mechanisms by which the climate system responds to orbital forcing. After a survey of the kinds of models that have been applied to this problem, a strategy is suggested for building simple, physically motivated models, and a time-dependent model is developed that simulates the history of planetary glaciation for the past 500,000 years. Ignoring anthropogenic and other possible sources of variation acting at frequencies higher than one cycle per 19,000 years, this model predicts that the long-term cooling trend which began some 6000 years ago will continue for the next 23,000 years.

  11. Seine estuary modelling and AirSWOT measurements validation

    Science.gov (United States)

    Chevalier, Laetitia; Lyard, Florent; Laignel, Benoit

    2013-04-01

    In the context of global climate change, knowing water fluxes and storage, from the global scale to the local scale, is a crucial issue. The future satellite SWOT (Surface Water and Ocean Topography) mission, dedicated to the surface water observation, is proposed to meet this challenge. SWOT main payload will be a Ka-band Radar Interferometer (KaRIn). To validate this new kind of measurements, preparatory airborne campaigns (called AirSWOT) are currently being designed. AirSWOT will carry an interferometer similar to Karin: Kaspar-Ka-band SWOT Phenomenology Airborne Radar. Some campaigns are planned in France in 2014. During these campaigns, the plane will fly over the Seine River basin, especially to observe its estuary, the upstream river main channel (to quantify river-aquifer exchange) and some wetlands. The present work objective is to validate the ability of AirSWOT and SWOT, using a Seine estuary hydrodynamic modelling. In this context, field measurements will be collected by different teams such as GIP (Public Interest Group) Seine Aval, the GPMR (Rouen Seaport), SHOM (Hydrographic and Oceanographic Service of the Navy), the IFREMER (French Research Institute for Sea Exploitation), Mercator-Ocean, LEGOS (Laboratory of Space Study in Geophysics and Oceanography), ADES (Data Access Groundwater) ... . These datasets will be used first to validate locally AirSWOT measurements, and then to improve a hydrodynamic simulations (using tidal boundary conditions, river and groundwater inflows ...) for AirSWOT data 2D validation. This modelling will also be used to estimate the benefit of the future SWOT mission for mid-latitude river hydrology. To do this modelling,the TUGOm barotropic model (Toulouse Unstructured Grid Ocean model 2D) is used. Preliminary simulations have been performed by first modelling and then combining to different regions: first the Seine River and its estuarine area and secondly the English Channel. These two simulations h are currently being

  12. Advance in Application of Regional Climate Models in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; YAN Minhua; CHEN Panqin; XU Helan

    2008-01-01

    Regional climate models have become the powerful tools for simulating regional climate and its changeprocess and have been widely used in China. Using regional climate models, some research results have been obtainedon the following aspects: 1) the numerical simulation of East Asian monsoon climate, including exceptional monsoonprecipitation, summer precipitation distribution, East Asian circulation, multi-year climate average condition, summerrain belt and so on; 2) the simulation of arid climate of the western China, including thermal effect of the Qing-hai-Tibet Plateau, the plateau precipitation in the Qilian Mountains; and the impacts of greenhouse effects (CO2 dou-bling) upon climate in the western China; and 3) the simulation of the climate effect of underlying surface changes, in-cluding the effect of soil on climate formation, the influence of terrain on precipitation, the effect of regional soil deg-radation on regional climate, the effect of various underlying surfaces on regional climate, the effect of land-sea con-trast on the climate formulation, the influence of snow cover over the plateau regions on the regional climate, the effectof vegetation changes on the regional climate, etc. In the process of application of regional climate models, the prefer-ences of the models are improved so that better simulation results are gotten. At last, some suggestions are made aboutthe application of regional climate models in regional climate research in the future.

  13. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  14. Validation of SWAT simulated streamflow in the Eastern Nile and sensitivity to climate change

    Directory of Open Access Journals (Sweden)

    D. T. Mengistu

    2011-10-01

    Full Text Available The hydrological model SWAT was calibrated with daily station based precipitation and temperature data for the whole Eastern Nile basin including the three subbasins: the Blue Nile, Baro Akobo and Tekeze. The daily and monthly streamflow was calibrated and validated at six outlets in the three different subbasins. The model performed very well in simulating the monthly variability of the Eastern Nile streamflow while comparison to daily data revealed a more diverse performance for the extreme events.

    Of the Eastern Nile average annual rainfall it was estimated that around 60% is lost through evaporation and estimated runoff coefficients were 0.24, 0.30 and 0.18 for Blue Nile, Baro Akobo and Tekeze subbasins, respectively. About half to two-thirds of the runoff could be attributed to surface runoff while the remaining contributions were from groundwater.

    The annual streamflow sensitivity to changes in precipitation and temperature differed among the basins and the dependence of the response on the strength of the changes was not linear. On average the annual streamflow responses to a change in precipitation with no temperature change was 19%, 17%, and 26% per 10% change in precipitation while the average annual streamflow responses to a change in temperature and no precipitation change was −4.4% K−1, −6.4% K−1, and −1.3% K−1 for Blue Nile, Baro Akobo and Tekeze river basin, respectively.

    While we show the Eastern Nile to be very sensitive to precipitation changes, using 47 temperature and precipitation scenarios from 19 AOGCMs participating in IPCC AR4 we estimated the future change in streamflow to be strongly dependent on the choice of climate model as the climate models disagree on both the strength and the direction of future precipitation changes. Thus, no clear conclusions can be made about the future changes in Eastern Nile streamflow.

  15. Bayesian structural equation modeling method for hierarchical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xiaomo [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: xiaomo.jiang@vanderbilt.edu; Mahadevan, Sankaran [Department of Civil and Environmental Engineering, Vanderbilt University, Box 1831-B, Nashville, TN 37235 (United States)], E-mail: sankaran.mahadevan@vanderbilt.edu

    2009-04-15

    A building block approach to model validation may proceed through various levels, such as material to component to subsystem to system, comparing model predictions with experimental observations at each level. Usually, experimental data becomes scarce as one proceeds from lower to higher levels. This paper presents a structural equation modeling approach to make use of the lower-level data for higher-level model validation under uncertainty, integrating several components: lower-level data, higher-level data, computational model, and latent variables. The method proposed in this paper uses latent variables to model two sets of relationships, namely, the computational model to system-level data, and lower-level data to system-level data. A Bayesian network with Markov chain Monte Carlo simulation is applied to represent the two relationships and to estimate the influencing factors between them. Bayesian hypothesis testing is employed to quantify the confidence in the predictive model at the system level, and the role of lower-level data in the model validation assessment at the system level. The proposed methodology is implemented for hierarchical assessment of three validation problems, using discrete observations and time-series data.

  16. A Practical Philosophy of Complex Climate Modelling

    Science.gov (United States)

    Schmidt, Gavin A.; Sherwood, Steven

    2014-01-01

    We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP).We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work.

  17. Analysis of a high-resolution regional climate simulation for Alpine temperature. Validation and influence of the NAO

    Energy Technology Data Exchange (ETDEWEB)

    Proemmel, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2008-11-06

    To determine whether the increase in resolution of climate models improves the representation of climate is a crucial topic in regional climate modelling. An improvement over coarser-scale models is expected especially in areas with complex orography or along coastlines. However, some studies have shown no clear added value for regional climate models. In this study a high-resolution regional climate model simulation performed with REMO over the period 1958-1998 is analysed for 2m temperature over the orographically complex European Alps and their surroundings called the Greater Alpine Region (GAR). The model setup is in hindcast mode meaning that the simulation is driven with perfect boundary conditions by the ERA40 reanalysis through prescribing the values at the lateral boundaries and spectral nudging of the large-scale wind field inside the model domain. The added value is analysed between the regional climate simulation with a resolution of 1/6 and the driving reanalysis with a resolution of 1.125 . Before analysing the added value both the REMO simulation and the ERA40 reanalysis are validated against different station datasets of monthly and daily mean 2m temperature. The largest dataset is the dense, homogenised and quality controlled HISTALP dataset covering the whole GAR, which gave the opportunity for the validation undertaken in this study. The temporal variability of temperature, as quantified by correlation, is well represented by both REMO and ERA40. However, both show considerable biases. The REMO bias reaches 3 K in summer in regions known to experience a problem with summer drying in a number of regional models. In winter the bias is strongly influenced by the choice of the temperature lapse rate, which is applied to compare grid box and station data at different altitudes, and has the strongest influence on inner Alpine subregions where the altitude differences are largest. By applying a constant lapse rate the REMO bias in winter in the high

  18. Climate change hotspots in the CMIP5 global climate model ensemble

    OpenAIRE

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-01

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots thro...

  19. Climate Modeling Computing Needs Assessment

    Science.gov (United States)

    Petraska, K. E.; McCabe, J. D.

    2011-12-01

    This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.

  20. Climate-based models for understanding and forecasting dengue epidemics.

    Directory of Open Access Journals (Sweden)

    Elodie Descloux

    Full Text Available BACKGROUND: Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia, and to provide an early warning system. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March-April lagged the warmest temperature by 1-2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January-February-March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October-November-December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively. CONCLUSIONS/SIGNIFICANCE: The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was

  1. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  2. A Model for Climate Change Adaptation

    Science.gov (United States)

    Pasqualini, D.; Keating, G. N.

    2009-12-01

    Climate models predict serious impacts on the western U.S. in the next few decades, including increased temperatures and reduced precipitation. In combination, these changes are linked to profound impacts on fundamental systems, such as water and energy supplies, agriculture, population stability, and the economy. Global and national imperatives for climate change mitigation and adaptation are made actionable at the state level, for instance through greenhouse gas (GHG) emission regulations and incentives for renewable energy sources. However, adaptation occurs at the local level, where energy and water usage can be understood relative to local patterns of agriculture, industry, and culture. In response to the greenhouse gas emission reductions required by California’s Assembly Bill 32 (2006), Sonoma County has committed to sharp emissions reductions across several sectors, including water, energy, and transportation. To assist Sonoma County develop a renewable energy (RE) portfolio to achieve this goal we have developed an integrated assessment model, CLEAR (CLimate-Energy Assessment for Resiliency) model. Building on Sonoma County’s existing baseline studies of energy use, carbon emissions and potential RE sources, the CLEAR model simulates the complex interactions among technology deployment, economics and social behavior. This model enables assessment of these and other components with specific analysis of their coupling and feedbacks because, due to the complex nature of the problem, the interrelated sectors cannot be studied independently. The goal is an approach to climate change mitigation and adaptation that is replicable for use by other interested communities. The model user interfaces helps stakeholders and policymakers understand options for technology implementation.

  3. Validation of the filament winding process model

    Science.gov (United States)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  4. Assessment model validity document FARF31

    Energy Technology Data Exchange (ETDEWEB)

    Elert, Mark; Gylling Bjoern; Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden)

    2004-08-01

    The prime goal of model validation is to build confidence in the model concept and that the model is fit for its intended purpose. In other words: Does the model predict transport in fractured rock adequately to be used in repository performance assessments. Are the results reasonable for the type of modelling tasks the model is designed for. Commonly, in performance assessments a large number of realisations of flow and transport is made to cover the associated uncertainties. Thus, the flow and transport including radioactive chain decay are preferably calculated in the same model framework. A rather sophisticated concept is necessary to be able to model flow and radionuclide transport in the near field and far field of a deep repository, also including radioactive chain decay. In order to avoid excessively long computational times there is a need for well-based simplifications. For this reason, the far field code FARF31 is made relatively simple, and calculates transport by using averaged entities to represent the most important processes. FARF31 has been shown to be suitable for the performance assessments within the SKB studies, e.g. SR 97. Among the advantages are that it is a fast, simple and robust code, which enables handling of many realisations with wide spread in parameters in combination with chain decay of radionuclides. Being a component in the model chain PROPER, it is easy to assign statistical distributions to the input parameters. Due to the formulation of the advection-dispersion equation in FARF31 it is possible to perform the groundwater flow calculations separately.The basis for the modelling is a stream tube, i.e. a volume of rock including fractures with flowing water, with the walls of the imaginary stream tube defined by streamlines. The transport within the stream tube is described using a dual porosity continuum approach, where it is assumed that rock can be divided into two distinct domains with different types of porosity

  5. Impact of climate Change on Groundwater Recharge in the Tiber River Basin (Central Italy) Using Regional Climate model Outputs

    Science.gov (United States)

    Muluneh, F. B.; Setegn, S. G.; Melesse, A. M.; Fiori, A.

    2011-12-01

    Quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by many internal and external drivers. Changes in climate variables can affect the quantity and quality of various components of hydrological cycle. Among others, the local effects of climate change on groundwater resources were not fully studied in different part of the world as compared to the surface water. Moreover, understanding the potential impact of climate change on groundwater is more complex than surface water. The main objective of this study is to analyze the potential impact of climate change on Groundwater recharge in the Tiber River Basin using outputs from Regional Climate model. In this study, a physically-based watershed model called Soil Water Assessment Tool (SWAT) was used to estimate recharge characteristics and its response to climate change in Tiber River Basin (central Italy). The SWAT model was successfully calibrated and validated using observed weather and flow data for the period of 1963-1970 and 1971-1978 respectively. During calibration, the model was highly sensitivity to groundwater flow parameters. Dynamically downscaled rainfall and temperature datasets from ten Regional Climate Models (RCM) archived in 'Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects (PRUDENCE)' were used to force the model to assess the climate change impact on the study area. A quantile-mapping statistical correction procedure was applied to the RCM dataset to correct the inherent systematic biases. The climate change analysis indicated that by the end of 2080s the rainfall was found to decrease nearly up to 40% in dry period and there was an increase in temperature that could reach as high as 3 to 5 oC. By the end of 2080s the ground water recharge shows a decreasing trend as a response to changes in rainfall. However as the timing of both precipitation and

  6. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  7. Drifting snow climate of the Greenland ice sheet: a study with a regional climate model

    NARCIS (Netherlands)

    Lenaerts, J.T.M.; van den Broeke, M.R.; van Angelen, J.H.; van Meijgaard, E.; Déry, S.J.

    2012-01-01

    This paper presents the drifting snow climate of the Greenland ice sheet, using output from a high-resolution ( 11 km) regional climate model. Because reliable direct observations of drifting snow do not exist, we evaluate the modeled near-surface climate instead, using automatic weather station (AW

  8. [Catalonia's primary healthcare accreditation model: a valid model].

    Science.gov (United States)

    Davins, Josep; Gens, Montserrat; Pareja, Clara; Guzmán, Ramón; Marquet, Roser; Vallès, Roser

    2014-07-01

    There are few experiences of accreditation models validated by primary care teams (EAP). The aim of this study was to detail the process of design, development, and subsequent validation of the consensus EAP accreditation model of Catalonia. An Operating Committee of the Health Department of Catalonia revised models proposed by the European Foundation for Quality Management, the Joint Commission International and the Institut Català de la Salut and proposed 628 essential standards to the technical group (25 experts in primary care and quality of care), to establish consensus standards. The consensus document was piloted in 30 EAP for the purpose of validating the contents, testing standards and identifying evidence. Finally, we did a survey to assess acceptance and validation of the document. The Technical Group agreed on a total of 414 essential standards. The pilot selected a total of 379. Mean compliance with the standards of the final document in the 30 EAP was 70.4%. The standards results were the worst fulfilment percentage. The survey target that 83% of the EAP found it useful and 78% found the content of the accreditation manual suitable as a tool to assess the quality of the EAP, and identify opportunities for improvement. On the downside they highlighted its complexity and laboriousness. We have a model that fits the reality of the EAP, and covers all relevant issues for the functioning of an excellent EAP. The model developed in Catalonia is a model for easy understanding.

  9. Load-balancing algorithms for climate models

    Energy Technology Data Exchange (ETDEWEB)

    Foster, I.T.; Toonen, B.R.

    1994-06-01

    Implementations of climate models on scalable parallel computer systems can suffer from load imbalances due to temporal and spatial variations in the amount of computation required for physical parameterizations such as solar radiation and convective adjustment. We have developed specialized techniques for correcting such imbalances. These techniques are incorporated in a general-purpose, programmable load-balancing library that allows the mapping of computation to processors to be specified as a series of maps generated by a programmer-supplied load-balancing module. The communication required to move from one map to another is performed automatically by the library, without programmer intervention. In this paper, we de scribe the load-balancing problem and the techniques that we have developed to solve it. We also describe specific load-balancing algorithms that we have developed for PCCM2, a scalable parallel implementation of the community Climate Model, and present experimental results that demonstrate the effectiveness of these algorithms on parallel computers.

  10. Load-balancing algorithms for climate models

    Science.gov (United States)

    Foster, I. T.; Toonen, B. R.

    Implementations of climate models on scalable parallel computer systems can suffer from load imbalances due to temporal and spatial variations in the amount of computation required for physical parameterizations such as solar radiation and convective adjustment. We have developed specialized techniques for correcting such imbalances. These techniques are incorporated in a general-purpose, programmable load-balancing library that allows the mapping of computation to processors to be specified as a series of maps generated by a programmer-supplied load-balancing module. The communication required to move from one map to another is performed automatically by the library, without programmer intervention. In this paper, we describe the load-balancing problem and the techniques that we have developed to solve it. We also describe specific load-balancing algorithms that we have developed for PCCM2, a scalable parallel implementation of the community climate model, and present experimental results that demonstrate the effectiveness of these algorithms on parallel computers.

  11. Hurricane Footprints in Global Climate Models

    Directory of Open Access Journals (Sweden)

    Francisco J. Tapiador

    2008-11-01

    Full Text Available This paper addresses the identification of hurricanes in low-resolution global climate models (GCM. As hurricanes are not fully resolvable at the coarse resolution of the GCMs (typically 2.5 × 2.5 deg, indirect methods such as analyzing the environmental conditions favoring hurricane formation have to be sought. Nonetheless, the dynamical cores of the models have limitations in simulating hurricane formation, which is a far from fully understood process. Here, it is shown that variations in the specific entropy rather than in dynamical variables can be used as a proxy of the hurricane intensity as estimated by the Accumulated Cyclone Energy (ACE. The main application of this research is to ascertain the changes in the hurricane frequency and intensity in future climates.

  12. Climate Modeling with a Linux Cluster

    Science.gov (United States)

    Renold, M.; Beyerle, U.; Raible, C. C.; Knutti, R.; Stocker, T. F.; Craig, T.

    2004-08-01

    Until recently, computationally intensive calculations in many scientific disciplines have been limited to institutions which have access to supercomputing centers. Today, the computing power of PC processors permits the assembly of inexpensive PC clusters that nearly approach the power of supercomputers. Moreover, the combination of inexpensive network cards and Open Source software provides an easy linking of standard computer equipment to enlarge such clusters. Universities and other institutions have taken this opportunity and built their own mini-supercomputers on site. Computing power is a particular issue for the climate modeling and impacts community. The purpose of this article is to make available a Linux cluster version of the Community Climate System Model developed by the National Center for Atmospheric Research (NCAR; http://www.cgd.ucar.edu/csm).

  13. Precalibrating an intermediate complexity climate model

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Neil R. [The Open University, Earth and Environmental Sciences, Milton Keynes (United Kingdom); Cameron, David [Centre for Ecology and Hydrology, Edinburgh (United Kingdom); Rougier, Jonathan [University of Bristol, Department of Mathematics, Bristol (United Kingdom)

    2011-10-15

    Credible climate predictions require a rational quantification of uncertainty, but full Bayesian calibration requires detailed estimates of prior probability distributions and covariances, which are difficult to obtain in practice. We describe a simplified procedure, termed precalibration, which provides an approximate quantification of uncertainty in climate prediction, and requires only that uncontroversially implausible values of certain inputs and outputs are identified. The method is applied to intermediate-complexity model simulations of the Atlantic meridional overturning circulation (AMOC) and confirms the existence of a cliff-edge catastrophe in freshwater-forcing input space. When uncertainty in 14 further parameters is taken into account, an implausible, AMOC-off, region remains as a robust feature of the model dynamics, but its location is found to depend strongly on values of the other parameters. (orig.)

  14. Validation of CMIP5 multimodel ensembles through the smoothness of climate variables

    KAUST Repository

    Lee, Myoungji

    2015-05-14

    Smoothness is an important characteristic of a spatial process that measures local variability. If climate model outputs are realistic, then not only the values at each grid pixel but also the relative variation over nearby pixels should represent the true climate. We estimate the smoothness of long-term averages for land surface temperature anomalies in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and compare them by climate regions and seasons. We also compare the estimated smoothness of the climate outputs in CMIP5 with those of reanalysis data. The estimation is done through the composite likelihood approach for locally self-similar processes. The composite likelihood that we consider is a product of conditional likelihoods of neighbouring observations. We find that the smoothness of the surface temperature anomalies in CMIP5 depends primarily on the modelling institution and on the climate region. The seasonal difference in the smoothness is generally small, except for some climate regions where the average temperature is extremely high or low.

  15. Unit testing, model validation, and biological simulation

    Science.gov (United States)

    Watts, Mark D.; Ghayoomie, S. Vahid; Larson, Stephen D.; Gerkin, Richard C.

    2016-01-01

    The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models. PMID:27635225

  16. Modeling the biogeomorphic evolutions of coastal dunes in response to climate change

    NARCIS (Netherlands)

    Keijsers, J.G.S.; Groot, de A.V.; Riksen, M.J.P.M.

    2016-01-01

    Coastal dunes form in many parts of the world the first flood defense line against the sea. To study effects of climate change on coastal dune evolution, we used a cellular model of dune, beach and vegetation development (DUBEVEG). The model was calibrated and validated against field measurements of

  17. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program.

  18. The Development in modeling Tibetan Plateau Land/Climate Interaction

    Science.gov (United States)

    Xue, Yongkang; Liu, Ye; li, qian; Maheswor Shrestha, Maheswor; Ma, Hsi-Yen; Cox, Peter; Sun, shufen; Koike, Toshio

    2015-04-01

    Tibetan Plateau (TP) plays an important role in influencing the continental and planetary scale climate, including East Asian and South Asian monsoon, circulation and precipitation over West Pacific and Indian Oceans. The numerical study has identified TP as the area with strongest land/atmosphere interactions over the midlatitude land. The land degradation there has also affected the monsoon precipitation in TP along the monsoon pathway. The water cycle there affects water sources for major Asian river systems, which include the Tarim, Amu Darya, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtze Rivers. Despite the importance of TP land process in the climate system, the TP land surface processes are poorly modeled due to lack of data available for model validation. To better understand, simulate, and project the role of Tibetan Plateau land surface processes, better parameterization of the Tibetan Land surface processes have been developed and evaluated. The recently available field measurement there and satellite observation have greatly helped this development. This paper presents these new developments and preliminary results using the newly developed biophysical/dynamic vegetation model, frozen soil model, and glacier model. In recent CMIP5 simulation, the CMIP5 models with dynamic vegetation model show poor performance in simulating the TP vegetation and climate. To better simulate the TP vegetation condition and its interaction with climate, we have developed biophysical/dynamic vegetation model, the Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), based on water, carbon, and energy balance. The simulated vegetation variables are updates, driven by carbon assimilation, allocation, and accumulation, as well as competition between plant functional types. The model has been validated with the station data, including those measured over the TP

  19. Climate change impact on shallow groundwater conditions in Hungary: Conclusions from a regional modelling study

    Science.gov (United States)

    Kovács, Attila; Marton, Annamária; Tóth, György; Szöcs, Teodóra

    2016-04-01

    A quantitative methodology has been developed for the calculation of groundwater table based on measured and simulated climate parameters. The aim of the study was to develop a toolset which can be used for the calculation of shallow groundwater conditions for various climate scenarios. This was done with the goal of facilitating the assessment of climate impact and vulnerability of shallow groundwater resources. The simulated groundwater table distributions are representative of groundwater conditions at the regional scale. The introduced methodology is valid for modelling purposes at various scales and thus represents a versatile tool for the assessment of climate vulnerability of shallow groundwater bodies. The calculation modules include the following: 1. A toolset to calculate climate zonation from climate parameter grids, 2. Delineation of recharge zones (Hydrological Response Units, HRUs) based on geology, landuse and slope conditions, 3. Calculation of percolation (recharge) rates using 1D analytical hydrological models, 4. Simulation of the groundwater table using numerical groundwater flow models. The applied methodology provides a quantitative link between climate conditions and shallow groundwater conditions, and thus can be used for assessing climate impacts. The climate data source applied in our calculation comprised interpolated daily climate data of the Central European CARPATCLIM database. Climate zones were determined making use of the Thorntwaite climate zonation scheme. Recharge zones (HRUs) were determined based on surface geology, landuse and slope conditions. The HELP hydrological model was used for the calculation of 1D water balance for hydrological response units. The MODFLOW numerical groundwater modelling code was used for the calculation of the water table. The developed methodology was demonstrated through the simulation of regional groundwater table using spatially averaged climate data and hydrogeological properties for various time

  20. Validation of HEDR models. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1994-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid.

  1. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  2. Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-12-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22° (about 24 km rotated grid over Europe and the Mediterranean region. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the observed data fields (E-OBS data set, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best-performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of four RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the 21st century. We present and discuss the validation setting, as well as the obtained results and, in some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and advice for researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more generally, climate change impact studies in the Mediterranean region.

  3. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  4. Development and validation of the Survey of Organizational Research Climate (SORC).

    Science.gov (United States)

    Martinson, Brian C; Thrush, Carol R; Lauren Crain, A

    2013-09-01

    Development and targeting efforts by academic organizations to effectively promote research integrity can be enhanced if they are able to collect reliable data to benchmark baseline conditions, to assess areas needing improvement, and to subsequently assess the impact of specific initiatives. To date, no standardized and validated tool has existed to serve this need. A web- and mail-based survey was administered in the second half of 2009 to 2,837 randomly selected biomedical and social science faculty and postdoctoral fellows at 40 academic health centers in top-tier research universities in the United States. Measures included the Survey of Organizational Research Climate (SORC) as well as measures of perceptions of organizational justice. Exploratory and confirmatory factor analyses yielded seven subscales of organizational research climate, all of which demonstrated acceptable internal consistency (Cronbach's α ranging from 0.81 to 0.87) and adequate test-retest reliability (Pearson r ranging from 0.72 to 0.83). A broad range of correlations between the seven subscales and five measures of organizational justice (unadjusted regression coefficients ranging from 0.13 to 0.95) document both construct and discriminant validity of the instrument. The SORC demonstrates good internal (alpha) and external reliability (test-retest) as well as both construct and discriminant validity.

  5. Validating agent based models through virtual worlds.

    Energy Technology Data Exchange (ETDEWEB)

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  6. Abilities and limitations in the use of regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Koeltzov, Morten Andreas Oedegaard

    2012-11-01

    In order to say something about the effect of climate change at the regional level, one takes in use regional climate models. In these models the thesis introduce regional features, which are not included in the global climate models (which are basically in climate research). Regional models can provide good and useful climate projections that add more value than the global climate models, but also introduces an uncertainty in the calculations. How should this uncertainty affect the use of regional climate models?The most common methodology for calculating potential future climate developments are based on different scenarios of possible emissions of greenhouse gases. These scenarios operates as global climate models using physical laws and calculate possible future developments. This is considered mathematical complexed and processes with limited supercomputing capacity calculates the global models for the larger scale of the climate system. To study the effects of climate change are regional details required and the regional models used therefore in a limited area of the climate system. These regional models are driven by data from the global models and refines and improves these data. Impact studies can then use the data from the regional models or data which are further processed to provide more local details using geo-statistical methods. In the preparation of the climate projections is there a minimum of 4 sources of uncertainty. This uncertainty is related to the provision of emission scenarios of greenhouse gases, uncertainties related to the use of global climate models, uncertainty related to the use of regional climate models and the uncertainty of internal variability in the climate system. This thesis discusses the use of regional climate models, and illustrates how the regional climate model adds value to climate projections, and at the same time introduce uncertainty in the calculations. It discusses in particular the importance of the choice of

  7. Modeling lakes and reservoirs in the climate system

    NARCIS (Netherlands)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L.N.; Fang, X.; Gal, G.; Jöhnk, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere–land surface–lake climate models that could be used for both of these types of study simu

  8. Hortisim: a model for greenhouse crops and greenhouse climate

    NARCIS (Netherlands)

    Gijzen, H.; Heuvelink, E.; Challa, H.; Dayan, E.; Marcelis, L.F.M.; Cohen, S.; Fuchs, M.

    1998-01-01

    A combined model for crop production and climate in greenhouses, HORTISIM, was developed. Existing models, developed by several research groups, of various aspects of crop growth and greenhouse climate have been integrated. HORTISIM contains 7 submodels (Weather, Greenhouse Climate, Soil, Crop, Gree

  9. Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?

    Science.gov (United States)

    Tabari, Hossein; De Troch, Rozemien; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet; Saeed, Sajjad; Brisson, Erwan; Van Lipzig, Nicole; Willems, Patrick

    2016-09-01

    This study explores whether climate models with higher spatial resolutions provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3-4 km are compared with those from the coarse-scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. Validation of historical design precipitation statistics derived from intensity-duration-frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics compared to the driving GCMs and reanalysis data. This is the case for simulation of local sub-daily precipitation extremes during the summer season, while the convection-permitting models do not appear to bring added value to simulation of daily precipitation extremes. Results moreover indicate that one has to be careful in assuming spatial-scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the timescale, since such intensification is not observed for daily timescales for both the ALARO and CCLM models.

  10. Interpolation of climate variables and temperature modeling

    Science.gov (United States)

    Samanta, Sailesh; Pal, Dilip Kumar; Lohar, Debasish; Pal, Babita

    2012-01-01

    Geographic Information Systems (GIS) and modeling are becoming powerful tools in agricultural research and natural resource management. This study proposes an empirical methodology for modeling and mapping of the monthly and annual air temperature using remote sensing and GIS techniques. The study area is Gangetic West Bengal and its neighborhood in the eastern India, where a number of weather systems occur throughout the year. Gangetic West Bengal is a region of strong heterogeneous surface with several weather disturbances. This paper also examines statistical approaches for interpolating climatic data over large regions, providing different interpolation techniques for climate variables' use in agricultural research. Three interpolation approaches, like inverse distance weighted averaging, thin-plate smoothing splines, and co-kriging are evaluated for 4° × 4° area, covering the eastern part of India. The land use/land cover, soil texture, and digital elevation model are used as the independent variables for temperature modeling. Multiple regression analysis with standard method is used to add dependent variables into regression equation. Prediction of mean temperature for monsoon season is better than winter season. Finally standard deviation errors are evaluated after comparing the predicted temperature and observed temperature of the area. For better improvement, distance from the coastline and seasonal wind pattern are stressed to be included as independent variables.

  11. Downscaling GISS ModelE Boreal Summer Climate over Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2015-01-01

    The study examines the perceived added value of downscaling atmosphere-ocean global climate model simulations over Africa and adjacent oceans by a nested regional climate model. NASA/Goddard Institute for Space Studies (GISS) coupled ModelE simulations for June- September 1998-2002 are used to form lateral boundary conditions for synchronous simulations by the GISS RM3 regional climate model. The ModelE computational grid spacing is 2deg latitude by 2.5deg longitude and the RM3 grid spacing is 0.44deg. ModelE precipitation climatology for June-September 1998-2002 is shown to be a good proxy for 30-year means so results based on the 5-year sample are presumed to be generally representative. Comparison with observational evidence shows several discrepancies in ModelE configuration of the boreal summer inter-tropical convergence zone (ITCZ). One glaring shortcoming is that ModelE simulations do not advance the West African rain band northward during the summer to represent monsoon precipitation onset over the Sahel. Results for 1998-2002 show that onset simulation is an important added value produced by downscaling with RM3. ModelE Eastern South Atlantic Ocean computed sea-surface temperatures (SST) are some 4 K warmer than reanalysis, contributing to large positive biases in overlying surface air temperatures (Tsfc). ModelE Tsfc are also too warm over most of Africa. RM3 downscaling somewhat mitigates the magnitude of Tsfc biases over the African continent, it eliminates the ModelE double ITCZ over the Atlantic and it produces more realistic orographic precipitation maxima. Parallel ModelE and RM3 simulations with observed SST forcing (in place of the predicted ocean) lower Tsfc errors but have mixed impacts on circulation and precipitation biases. Downscaling improvements of the meridional movement of the rain band over West Africa and the configuration of orographic precipitation maxima are realized irrespective of the SST biases.

  12. Downscaling GISS ModelE boreal summer climate over Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2016-12-01

    The study examines the perceived added value of downscaling atmosphere-ocean global climate model simulations over Africa and adjacent oceans by a nested regional climate model. NASA/Goddard Institute for Space Studies (GISS) coupled ModelE simulations for June-September 1998-2002 are used to form lateral boundary conditions for synchronous simulations by the GISS RM3 regional climate model. The ModelE computational grid spacing is 2° latitude by 2.5° longitude and the RM3 grid spacing is 0.44°. ModelE precipitation climatology for June-September 1998-2002 is shown to be a good proxy for 30-year means so results based on the 5-year sample are presumed to be generally representative. Comparison with observational evidence shows several discrepancies in ModelE configuration of the boreal summer inter-tropical convergence zone (ITCZ). One glaring shortcoming is that ModelE simulations do not advance the West African rain band northward during the summer to represent monsoon precipitation onset over the Sahel. Results for 1998-2002 show that onset simulation is an important added value produced by downscaling with RM3. ModelE Eastern South Atlantic Ocean computed sea-surface temperatures (SST) are some 4 K warmer than reanalysis, contributing to large positive biases in overlying surface air temperatures (Tsfc). ModelE Tsfc are also too warm over most of Africa. RM3 downscaling somewhat mitigates the magnitude of Tsfc biases over the African continent, it eliminates the ModelE double ITCZ over the Atlantic and it produces more realistic orographic precipitation maxima. Parallel ModelE and RM3 simulations with observed SST forcing (in place of the predicted ocean) lower Tsfc errors but have mixed impacts on circulation and precipitation biases. Downscaling improvements of the meridional movement of the rain band over West Africa and the configuration of orographic precipitation maxima are realized irrespective of the SST biases.

  13. Construction of a novel economy-climate model

    Institute of Scientific and Technical Information of China (English)

    CHOU JieMing; DONG WenJie; YE DuZheng

    2007-01-01

    An attempt has been made to construct a novel economy-climate model by combining climate change research with agricultural economy research to evaluate the influence of global climate change on grain yields. The insertion of a climate change factor into the economic C-D (Cobb-Dauglas) production function model yields a novel evaluation model, which connects the climate change factor to the economic variation factor, and the performance and reasonableness of the novel evaluation model are also preliminarily simulated and verified.

  14. Validation of Biomarker-based risk prediction models

    OpenAIRE

    Taylor, Jeremy M.G.; Ankerst, Donna P.; Andridge, Rebecca R.

    2008-01-01

    The increasing availability and use of predictive models to facilitate informed decision making highlights the need for careful assessment of the validity of these models. In particular, models involving biomarkers require careful validation for two reasons: issues with overfitting when complex models involve a large number of biomarkers, and inter-laboratory variation in assays used to measure biomarkers. In this paper we distinguish between internal and external statistical validation. Inte...

  15. Empirical data validation for model building

    Science.gov (United States)

    Kazarian, Aram

    2008-03-01

    Optical Proximity Correction (OPC) has become an integral and critical part of process development for advanced technologies with challenging k I requirements. OPC solutions in turn require stable, predictive models to be built that can project the behavior of all structures. These structures must comprehend all geometries that can occur in the layout in order to define the optimal corrections by feature, and thus enable a manufacturing process with acceptable margin. The model is built upon two main component blocks. First, is knowledge of the process conditions which includes the optical parameters (e.g. illumination source, wavelength, lens characteristics, etc) as well as mask definition, resist parameters and process film stack information. Second, is the empirical critical dimension (CD) data collected using this process on specific test features the results of which are used to fit and validate the model and to project resist contours for all allowable feature layouts. The quality of the model therefore is highly dependent on the integrity of the process data collected for this purpose. Since the test pattern suite generally extends to below the resolution limit that the process can support with adequate latitude, the CD measurements collected can often be quite noisy with marginal signal-to-noise ratios. In order for the model to be reliable and a best representation of the process behavior, it is necessary to scrutinize empirical data to ensure that it is not dominated by measurement noise or flyer/outlier points. The primary approach for generating a clean, smooth and dependable empirical data set should be a replicated measurement sampling that can help to statistically reduce measurement noise by averaging. However, it can often be impractical to collect the amount of data needed to ensure a clean data set by this method. An alternate approach is studied in this paper to further smooth the measured data by means of curve fitting to identify remaining

  16. Subtask 2.4 - Integration and Synthesis in Climate Change Predictive Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav Solc

    2009-06-01

    The Energy & Environmental Research Center (EERC) completed a brief evaluation of the existing status of predictive modeling to assess options for integration of our previous paleohydrologic reconstructions and their synthesis with current global climate scenarios. Results of our research indicate that short-term data series available from modern instrumental records are not sufficient to reconstruct past hydrologic events or predict future ones. On the contrary, reconstruction of paleoclimate phenomena provided credible information on past climate cycles and confirmed their integration in the context of regional climate history is possible. Similarly to ice cores and other paleo proxies, acquired data represent an objective, credible tool for model calibration and validation of currently observed trends. It remains a subject of future research whether further refinement of our results and synthesis with regional and global climate observations could contribute to improvement and credibility of climate predictions on a regional and global scale.

  17. Towards Systematic Benchmarking of Climate Model Performance

    Science.gov (United States)

    Gleckler, P. J.

    2014-12-01

    The process by which climate models are evaluated has evolved substantially over the past decade, with the Coupled Model Intercomparison Project (CMIP) serving as a centralizing activity for coordinating model experimentation and enabling research. Scientists with a broad spectrum of expertise have contributed to the CMIP model evaluation process, resulting in many hundreds of publications that have served as a key resource for the IPCC process. For several reasons, efforts are now underway to further systematize some aspects of the model evaluation process. First, some model evaluation can now be considered routine and should not require "re-inventing the wheel" or a journal publication simply to update results with newer models. Second, the benefit of CMIP research to model development has not been optimal because the publication of results generally takes several years and is usually not reproducible for benchmarking newer model versions. And third, there are now hundreds of model versions and many thousands of simulations, but there is no community-based mechanism for routinely monitoring model performance changes. An important change in the design of CMIP6 can help address these limitations. CMIP6 will include a small set standardized experiments as an ongoing exercise (CMIP "DECK": ongoing Diagnostic, Evaluation and Characterization of Klima), so that modeling groups can submit them at any time and not be overly constrained by deadlines. In this presentation, efforts to establish routine benchmarking of existing and future CMIP simulations will be described. To date, some benchmarking tools have been made available to all CMIP modeling groups to enable them to readily compare with CMIP5 simulations during the model development process. A natural extension of this effort is to make results from all CMIP simulations widely available, including the results from newer models as soon as the simulations become available for research. Making the results from routine

  18. Assessment of rainfall-runoff modelling for climate change mitigation

    Science.gov (United States)

    Otieno, Hesbon; Han, Dawei; Woods, Ross

    2015-04-01

    Sustainable water resources management requires reliable methods for quantification of hydrological variables. This is a big challenge in developing countries, due to the problem of inadequate data as a result of sparse gauge networks. Successive occurrence of both abundance and shortage of water can arise in a catchment within the same year, with deficit situations becoming an increasingly occurring phenomenon in Kenya. This work compares the performance of two models in the Tana River catchment in Kenya, in generation of synthetic flow data. One of the models is the simpler USGS Thornthwaite monthly water balance model that uses a monthly time step and has three parameters. In order to explore alternative modelling schemes, the more complex Pitman model with 19 parameters was also applied in the catchment. It is uncertain whether the complex model (Pitman) will do better than the simple model, because a model with a large number of parameters may do well in the current system but poorly in future. To check this we have used old data (1970-1985) to calibrate the models and to validate with recent data (after 1985) to see which model is robust over time. This study is relevant and useful to water resources managers in scenario analysis for water resources management, planning and development in African countries with similar climates and catchment conditions.

  19. Geochemistry Model Validation Report: Material Degradation and Release Model

    Energy Technology Data Exchange (ETDEWEB)

    H. Stockman

    2001-09-28

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17).

  20. Mixing parameterizations in ocean climate modeling

    Science.gov (United States)

    Moshonkin, S. N.; Gusev, A. V.; Zalesny, V. B.; Byshev, V. I.

    2016-03-01

    Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin-Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.

  1. Effects of climate model interdependency on the uncertainty quantification of extreme reinfall projections

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Madsen, H.; Rosbjerg, Dan;

    The inherent uncertainty in climate models is one of the most important uncertainties in climate change impact studies. In recent years, several uncertainty quantification methods based on multi-model ensembles have been suggested. Most of these methods assume that the climate models...... are independent. This study investigates the validity of this assumption and its effects on the estimated probabilistic projections of the changes in the 95% quantile of wet days. The methodology is divided in two main parts. First, the interdependency of the ENSEMBLES RCMs is estimated using the methodology...... developed by Pennell and Reichler (2011). The results show that the projections from the ENSEMBLES RCMs cannot be assumed independent. This result is then used to estimate the uncertainty in climate model projections. A Bayesian approach has been developed using the procedure suggested by Tebaldi et al...

  2. The predictive skill of species distribution models for plankton in a changing climate

    DEFF Research Database (Denmark)

    Brun, Philipp Georg; Kiørboe, Thomas; Licandro, Priscilla;

    2016-01-01

    Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one...... null models, is essential to assess the robustness of projections of marine planktonic species under climate change....... Plankton may be particularly challenging to model, due to its short life span and the dispersive effects of constant water movements on all spatial scales, however there are few other studies against which to compare these results. We conclude that rigorous model validation, including comparison against...

  3. Mixing parametrizations for ocean climate modelling

    Science.gov (United States)

    Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir

    2016-04-01

    The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model

  4. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change

    KAUST Repository

    Villarino, E

    2015-07-02

    Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).

  5. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Auffhammer, M.; Hsiang, S. M.; Schlenker, W.; Sobel, A.

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

  6. Validation technique using mean and variance of kriging model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sung; Jung, Jae Jun; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2007-07-01

    To validate rigorously the accuracy of metamodel is an important research area in metamodel techniques. A leave-k-out cross-validation technique not only requires considerable computational cost but also cannot measure quantitatively the fidelity of metamodel. Recently, the average validation technique has been proposed. However the average validation criterion may stop a sampling process prematurely even if kriging model is inaccurate yet. In this research, we propose a new validation technique using an average and a variance of response during a sequential sampling method, such as maximum entropy sampling. The proposed validation technique becomes more efficient and accurate than cross-validation technique, because it integrates explicitly kriging model to achieve an accurate average and variance, rather than numerical integration. The proposed validation technique shows similar trend to root mean squared error such that it can be used as a strop criterion for sequential sampling.

  7. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  8. Nitrogen Controls on Climate Model Evapotranspiration.

    Science.gov (United States)

    Dickinson, Robert E.; Berry, Joseph A.; Bonan, Gordon B.; Collatz, G. James; Field, Christopher B.; Fung, Inez Y.; Goulden, Michael; Hoffmann, William A.; Jackson, Robert B.; Myneni, Ranga; Sellers, Piers J.; Shaikh, Muhammad

    2002-02-01

    Most evapotranspiration over land occurs through vegetation. The fraction of net radiation balanced by evapotranspiration depends on stomatal controls. Stomates transpire water for the leaf to assimilate carbon, depending on the canopy carbon demand, and on root uptake, if it is limiting. Canopy carbon demand in turn depends on the balancing between visible photon-driven and enzyme-driven steps in the leaf carbon physiology. The enzyme-driven component is here represented by a Rubisco-related nitrogen reservoir that interacts with plant-soil nitrogen cycling and other components of a climate model. Previous canopy carbon models included in GCMs have assumed either fixed leaf nitrogen, that is, prescribed photosynthetic capacities, or an optimization between leaf nitrogen and light levels so that in either case stomatal conductance varied only with light levels and temperature.A nitrogen model is coupled to a previously derived but here modified carbon model and includes, besides the enzyme reservoir, additional plant stores for leaf structure and roots. It also includes organic and mineral reservoirs in the soil; the latter are generated, exchanged, and lost by biological fixation, deposition and fertilization, mineralization, nitrification, root uptake, denitrification, and leaching. The root nutrient uptake model is a novel and simple, but rigorous, treatment of soil transport and root physiological uptake. The other soil components are largely derived from previously published parameterizations and global budget constraints.The feasibility of applying the derived biogeochemical cycling model to climate model calculations of evapotranspiration is demonstrated through its incorporation in the Biosphere-Atmosphere Transfer Scheme land model and a 17-yr Atmospheric Model Inter comparison Project II integration with the NCAR CCM3 GCM. The derived global budgets show land net primary production (NPP), fine root carbon, and various aspects of the nitrogen cycling are

  9. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  10. Climate model boundary conditions for four Cretaceous time slices

    NARCIS (Netherlands)

    Sewall, J.O.; Wal, R.S.W. van de; Zwan, C.J. van der; Oosterhout, C. van; Dijkstra, H.A.; Scotese, C.R.

    2007-01-01

    General circulation models (GCMs) are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth’s climate system. One of the most time consuming, and often daunting, tasks facing th

  11. Climate Modeling: Ocean Cavities below Ice Shelves

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Mark Roger [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-09-12

    The Accelerated Climate Model for Energy (ACME), a new initiative by the U.S. Department of Energy, includes unstructured-mesh ocean, land-ice, and sea-ice components using the Model for Prediction Across Scales (MPAS) framework. The ability to run coupled high-resolution global simulations efficiently on large, high-performance computers is a priority for ACME. Sub-ice shelf ocean cavities are a significant new capability in ACME, and will be used to better understand how changing ocean temperature and currents influence glacial melting and retreat. These simulations take advantage of the horizontal variable-resolution mesh and adaptive vertical coordinate in MPAS-Ocean, in order to place high resolution below ice shelves and near grounding lines.

  12. Test-driven verification/validation of model transformations

    Institute of Scientific and Technical Information of China (English)

    László LENGYEL; Hassan CHARAF

    2015-01-01

    Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans-formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/ validating model transformations. We provide a solution that makes it possible to automatically generate test input models for model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model transformations.

  13. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  14. SDG-based Model Validation in Chemical Process Simulation

    Institute of Scientific and Technical Information of China (English)

    张贝克; 许欣; 马昕; 吴重光

    2013-01-01

    Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a soft-ware environment that can automate the validation activity. This paper is concentrated on the pretreatment of the model validation. We use the validation scenarios and standard sequences generated by well-established SDG model to validate the trends fitted from the simulation model. The results are helpful to find potential problems, as-sess possible bugs in the simulation model and solve the problem effectively. A case study on a simulation model of boiler is presented to demonstrate the effectiveness of this method.

  15. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  16. Climate modelling: IPCC gazes into the future

    Science.gov (United States)

    Raper, Sarah

    2012-04-01

    In 2013, the Intergovernmental Panel on Climate Change will report on the next set of future greenhouse-gas emission scenarios, offering a rational alternative pathway for avoiding dangerous climate change.

  17. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Science.gov (United States)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  18. A model for evaluating stream temperature response to climate change in Wisconsin

    Science.gov (United States)

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Expected climatic changes in air temperature and precipitation patterns across the State of Wisconsin may alter future stream temperature and flow regimes. As a consequence of flow and temperature changes, the composition and distribution of fish species assemblages are expected to change. In an effort to gain a better understanding of how climatic changes may affect stream temperature, an approach was developed to predict and project daily summertime stream temperature under current and future climate conditions for 94,341 stream kilometers across Wisconsin. The approach uses a combination of static landscape characteristics and dynamic time-series climatic variables as input for an Artificial Neural Network (ANN) Model integrated with a Soil-Water-Balance (SWB) Model. Future climate scenarios are based on output from downscaled General Circulation Models (GCMs). The SWB model provided a means to estimate the temporal variability in groundwater recharge and provided a mechanism to evaluate the effect of changing air temperature and precipitation on groundwater recharge and soil moisture. The Integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) Model was used to simulate daily summertime stream temperature under current (1990–2008) climate and explained 76 percent of the variation in the daily mean based on validation at 67 independent sites. Results were summarized as July mean water temperature, and individual stream segments were classified by thermal class (cold, cold transition, warm transition, and warm) for comparison of current (1990–2008) with future climate conditions.

  19. Hybrid Surface Mesh Adaptation for Climate Modeling

    Institute of Scientific and Technical Information of China (English)

    Ahmed Khamayseh; Valmor de Almeida; Glen Hansen

    2008-01-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, lesspopular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is pro-duced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is de-signed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  20. Sensitivity of climate models: Comparison of simulated and observed patterns for past climates

    Energy Technology Data Exchange (ETDEWEB)

    Prell, W.L.; Webb, T. III; Oglesby, R.J.

    1991-10-01

    Predicting the potential climatic effects of increased concentrations of atmospheric carbon dioxide requires the continuing development of climate models. As one index of the magnitude of past climates change, the global mean temperature increase during the past 18,000 years is similar to that predicted for carbon dioxide doubling. Simulating the climate changes of the past 18,000 years, as well as the warmer-than-present climate of 6000 years ago and the climate of the last interglacial, around 126,000 years ago, provides an excellent opportunity to test the models that are being used in global climate change research. During the past several years, we have used paleoclimatic data to test the accuracy of the NCAR CCMO (National Center for Atmospheric Research, Community Climate Model, Version 0), after changing its boundary conditions to those appropriate for past climates. We have assembled near-global paleoclimatic data sets of pollen, lake level, and marine plankton data and calibrated many of the data in terms of climatic variables. We have also developed methods that permit direct quantitative comparisons between the data and model results. Our comparisons have shown both some of the strengths and weaknesses of the model. The research so far has shown the feasibility of our methods for comparing paleoclimatic data and model results. Our research has also shown that comparing the model results with the data is an evolutionary process, because the models, the data, and the methods for comparison are continually being improved. During 1991, we have continued our studies and this Progress Report documents the results to date. During this year, we have completed new modeling experiments, compiled new data sets, made new comparisons between data and model results, and participated in workshops on paleoclimatic modeling. 37 refs.

  1. Measure the climate, model the city

    NARCIS (Netherlands)

    Boufidou, E.; Commandeur, T.J.F.; Nedkov, S.B.; Zlatanova, S.

    2011-01-01

    Modern large cities are characterized by a high building concentration, little aeration and lack of green spaces. Such characteristics create an urban climate which is different from the climate outside of cities. An example of an urban climate effect is the so-called Urban Heat Island: cities tend

  2. Comparing the effects of climate and impact model uncertainty on climate impacts estimates for grain maize

    Science.gov (United States)

    Holzkämper, Annelie; Honti, Mark; Fuhrer, Jürg

    2015-04-01

    Crop models are commonly applied to estimate impacts of projected climate change and to anticipate suitable adaptation measures. Thereby, uncertainties from global climate models, regional climate models, and impacts models cascade down to impact estimates. It is essential to quantify and understand uncertainties in impact assessments in order to provide informed guidance for decision making in adaptation planning. A question that has hardly been investigated in this context is how sensitive climate impact estimates are to the choice of the impact model approach. In a case study for Switzerland we compare results of three different crop modelling approaches to assess the relevance of impact model choice in relation to other uncertainty sources. The three approaches include an expert-based, a statistical and a process-based model. With each approach impact model parameter uncertainty and climate model uncertainty (originating from climate model chain and downscaling approach) are accounted for. ANOVA-based uncertainty partitioning is performed to quantify the relative importance of different uncertainty sources. Results suggest that uncertainty in estimated yield changes originating from the choice of the crop modelling approach can be greater than uncertainty from climate model chains. The uncertainty originating from crop model parameterization is small in comparison. While estimates of yield changes are highly uncertain, the directions of estimated changes in climatic limitations are largely consistent. This leads us to the conclusion that by focusing on estimated changes in climate limitations, more meaningful information can be provided to support decision making in adaptation planning - especially in cases where yield changes are highly uncertain.

  3. Statistical Validation of Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schilstra, Cornelis [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Radiotherapy Institute Friesland, Leeuwarden (Netherlands)

    2012-09-01

    Purpose: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. Methods and Materials: A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Results: Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Conclusion: Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use.

  4. Modelling Hydrological Consequences of Climate Change-Progress and Challenges

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases,(2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods)for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales.Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.

  5. A potato model intercomparison across varying climates and productivity levels

    DEFF Research Database (Denmark)

    H. Fleisher, David; Condori, Bruno; Quiroz, Roberto

    2017-01-01

    A potato crop multi-model assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States...

  6. Potato model uncertainty across common datasets and varying climate

    Science.gov (United States)

    A potato crop multi-model assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low- (Chinoli, Bolivia and Gisozi, Burundi) and high- (Jyndevad, Denmark and Washington, United States) ...

  7. Validation and Adaptation of Router and Switch Models

    NARCIS (Netherlands)

    Boltjes, B.; Fernandez Diaz, I.; Kock, B.A.; Langeveld, R.J.G.M.; Schoenmaker, G.

    2003-01-01

    This paper describes validating OPNET models of key devices for the next generation IP-based tactical network of the Royal Netherlands Army (RNLA). The task of TNO-FEL is to provide insight in scalability and performance of future deployed networks. Because validated models ol key Cisco equipment we

  8. Requirements Validation: Execution of UML Models with CPN Tools

    DEFF Research Database (Denmark)

    Machado, Ricardo J.; Lassen, Kristian Bisgaard; Oliveira, Sérgio

    2007-01-01

    with simple unified modelling language (UML) requirements models, it is not easy for the development team to get confidence on the stakeholders' requirements validation. This paper describes an approach, based on the construction of executable interactive prototypes, to support the validation of workflow...

  9. Cuckoo Search Optimization for Reduction of a Greenhouse Climate Model

    Directory of Open Access Journals (Sweden)

    Hasni Abdelhafid

    2016-07-01

    Full Text Available Greenhouse climate and crop models and specially reduced models are necessary for bettering environmental management and control ability. In this paper, we present a new metaheuristic method, called Cuckoo Search (CS algorithm, established on the life of a bird family for selecting the parameters of a reduced model which optimizes their choice by minimizing a cost function. The reduced model was already developed for control purposes and published in the literature. The proposed models target at simulating and predicting the greenhouse environment. [?]. This study focuses on the dynamical behaviors of the inside air temperature and pressure using ventilation. Some experimental results are used for model validation, the greenhouse being automated with actuators and sensors connected to a greenhouse control system on the cuckoo search methods to determine the best set of parameters allowing for the convergence of a criteria based on the difference between calculated and observed state variables (inside air temperature and water vapour pressure content. The results shown that the tested Cuckoo Search algorithm allows for a faster convergence towards the optimal solution than classical optimization methods.

  10. Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis

    Science.gov (United States)

    Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.

    2013-12-01

    Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.

  11. Models for Validation of Prior Learning (VPL)

    DEFF Research Database (Denmark)

    Ehlers, Søren

    would have been categorized as utopian can become realpolitik. Validation of Prior Learning (VPL) was in Europe mainly regarded as utopian while universities in the United States of America (USA) were developing ways to obtain credits to those students which was coming with experiences from working life....

  12. Modeling and Simulation Behavior Validation Methodology and Extension Model Validation for the Individual Soldier

    Science.gov (United States)

    2015-03-01

    Historical Methods The three historical methods of validation are rationalism, empiricism , and positive economics. Rationalism requires that... Empiricism requires every assumption and outcome to be empirically validated. Positive economics requires only that the model’s outcome(s) be correct...historical methods of rationalism, empiricism , and positive economics into a multistage process of validation. This validation method consists of (1

  13. Toward Validation of the Diagnostic-Prescriptive Model

    Science.gov (United States)

    Ysseldyke, James E.; Sabatino, David A.

    1973-01-01

    Criticized are recent research efforts to validate the diagnostic prescriptive model of remediating learning disabilities, and proposed is a 6-step psychoeducational model designed to ascertain links between behavioral differences and instructional outcomes. (DB)

  14. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2013-08-01

    Full Text Available The assessment of climate change impacts on the risk for pesticide leaching needs careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-west Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO-model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-west Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios could provide robust probabilistic estimates of future pesticide losses and assessments of changes in pesticide leaching risks.

  15. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  16. Foundational Issues in Statistical Modeling: Statistical Model Specification and Validation

    Directory of Open Access Journals (Sweden)

    Aris Spanos

    2011-01-01

    Full Text Available Statistical model specification and validation raise crucial foundational problems whose pertinent resolution holds the key to learning from data by securing the reliability of frequentist inference. The paper questions the judiciousness of several current practices, including the theory-driven approach, and the Akaike-type model selection procedures, arguing that they often lead to unreliable inferences. This is primarily due to the fact that goodness-of-fit/prediction measures and other substantive and pragmatic criteria are of questionable value when the estimated model is statistically misspecified. Foisting one's favorite model on the data often yields estimated models which are both statistically and substantively misspecified, but one has no way to delineate between the two sources of error and apportion blame. The paper argues that the error statistical approach can address this Duhemian ambiguity by distinguishing between statistical and substantive premises and viewing empirical modeling in a piecemeal way with a view to delineate the various issues more effectively. It is also argued that Hendry's general to specific procedures does a much better job in model selection than the theory-driven and the Akaike-type procedures primary because of its error statistical underpinnings.

  17. Deficiencies in the simulation of the geographic distribution of climate types by global climate models

    Science.gov (United States)

    Zhang, Xianliang; Yan, Xiaodong

    2016-05-01

    The performances of General Circulation Models (GCMs) when checked with conventional methods (i.e. correlation, bias, root-mean-square error) can only be evaluated for each variable individually. The geographic distribution of climate type in GCM simulations, which reflects the spatial attributes of models and is related closely to the terrestrial biosphere, has not yet been evaluated. Thus, whether the geographic distribution of climate types was well simulated by GCMs was evaluated in this study for nine GCMs. The results showed that large areas of climate zones classified by the GCMs were allocated incorrectly when compared to the basic climate zones established by observed data. The percentages of wrong areas covered approximately 30-50 % of the total land area for most models. In addition, the temporal shift in the distribution of climate zones according to the GCMs was found to be inaccurate. Not only were the locations of shifts poorly simulated, but also the areas of shift in climate zones. Overall, the geographic distribution of climate types was not simulated well by the GCMs, nor was the temporal shift in the distribution of climate zones. Thus, a new method on how to evaluate the simulated distribution of climate types for GCMs was provided in this study.

  18. Geospatial Issues in Energy-Climate Modeling: Implications for Modelers, Economists, Climate Scientists and Policy Makers

    Science.gov (United States)

    Newmark, R. L.; Arent, D.; Sullivan, P.; Short, W.

    2010-12-01

    Accurate characterizations of renewable energy technologies, particularly wind, solar, geothermal, and biomass, require an increasingly sophisticated understanding of location-specific attributes, including generation or production costs and the cost of transmission or transportation to a point of use, and climate induced changes to the resource base. Capturing these site-specific characteristics in national and global models presents both unique opportunities and challenges. National and global decisions, ideally, should be informed by geospatially rich data and analysis. Here we describe issues related to and initial advances in representing renewable energy technologies in global models, and the resulting implications for climate stabilization analysis and global assessments, including IPCC’s Assessment Round 5 and IEA’s World Energy Outlook.

  19. Integrated hydrological SVAT model for climate change studies in Denmark

    Science.gov (United States)

    Mollerup, M.; Refsgaard, J.; Sonnenborg, T. O.

    2010-12-01

    hydrological impacts of characterising climate change in terms of changes in the reference evapotranspiration or in the individual climate variables have been analysed. References Abrahamsen, P., and Hansen, S. (2000) Daisy: An Open Soil-Crop-Atmosphere System Model. Environ. Model. Software 15, 313-330. Hansen, S., Jensen, H. E., Nielsen, N. E., and Svendsen, H. (1990). Daisy - soil plant atmostphere system model. Technical Report A10, Miljostyrelsen. Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C. and Madsen, B. (2003) Methodology for construction, calibration and validation of a national hydrological model for Denmark. Journal of Hydrology 280(1-4), 52-71. Henriksen, H. J., Troldborg, L., Hojberg, A. L. and Refsgaard, J. C. (2008) Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater-surface water model. Journal of Hydrology 348(1-2), 224-240.

  20. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios

    Science.gov (United States)

    Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain

    2011-12-01

    Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.

  1. Evaluation of climate extremes in the CMIP5 model simulations

    Science.gov (United States)

    Sillmann, J.; Kharin, S.; Zhang, X.; Zwiers, F. W.

    2011-12-01

    Climate extremes manifest an important aspect of natural climate variability and anthropogenic climate change. To minimize human and financial losses caused by extreme events it is important to have reliable projections of their occurrence and intensity. State-of-the-art global climate models represented by the CMIP5 model ensemble are widely used as tools to simulate the present and project the future climate. Thus, it is crucial to get an understanding of how well climate extremes are simulated by these models in the present climate to be able to appraise their usefulness for future projections. We calculated a global set of well-defined indices for climate extremes based on daily temperature and precipitation data with the available CMIP5 models and use the indices to present a first-order evaluation of the model performance in comparison with re-analysis and a gridded observational dataset. We also focus our analysis on regional aspects of the model performance. Some of the indices are based on threshold exceedance, i.e. percentage of days below the 10th or above the 90th percentile of the maximum and minimum temperature. These indices require special attention for model evaluation as by definition the threshold exceedance is approximately 10% for individual models, re-analysis, and observations. We introduce a novel method to evaluate the model performance particular for these indices.

  2. Measurements for validation of high voltage underground cable modelling

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Gudmundsdottir, Unnur Stella; Wiechowski, Wojciech Tomasz;

    2009-01-01

    This paper discusses studies concerning cable modelling for long high voltage AC cable lines. In investigating the possibilities of using long cables instead of overhead lines, the simulation results must be trustworthy. Therefore a model validation is of great importance. This paper describes...... field test setups and measurements on an already installed cable line with several cross bonding points. These measurements are to be used for cable model validation, which are prepared using simulations. The proposed field tests should be used to validate the cable model for overvoltage problems...

  3. Assessing performance and seasonal bias of pollen-based climate reconstructions in a perfect model world

    Science.gov (United States)

    Rehfeld, Kira; Trachsel, Mathias; Telford, Richard J.; Laepple, Thomas

    2016-12-01

    Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators such as pollen, foraminifera or chironomids are routinely used in climate model-proxy data comparison studies. Most reconstruction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the reconstructions. They rely on the space-for-time substitution and the specific assumption that environmental variables other than those reconstructed are not important or that their relationship with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset. Here we test the implications of this "correlative uniformitarianism" assumption on climate reconstructions in an ideal model world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts and allow us to establish, apply and evaluate transfer functions in the modeled world. We find that in our model experiments the transfer function cross validation r2 is of limited use to identify reconstructible climate variables, as it only relies on the modern spatial climate-vegetation relationship. However, ordination approaches that assess the amount of fossil vegetation variance explained by the reconstructions are promising. We furthermore show that correlations between climate variables in the modern climate-vegetation relationship are systematically extended into the reconstructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling between the mid-Holocene and present day is overestimated and similar to the summer trend in magnitude. This effect occurs because

  4. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  5. Climate-based risk models for Fasciola hepatica in Colombia

    Directory of Open Access Journals (Sweden)

    Natalia Valencia-López

    2012-09-01

    Full Text Available A predictive Fasciola hepatica model, based on the growing degree day-water budget (GDD-WB concept and the known biological requirements of the parasite, was developed within a geographical information system (GIS in Colombia. Climate-based forecast index (CFI values were calculated and represented in a national-scale, climate grid (18 x 18 km using ArcGIS 9.3. A mask overlay was used to exclude unsuitable areas where mean annual temperature exceeded 25 °C, the upper threshold for development and propagation of the F. hepatica life cycle. The model was then validated and further developed by studies limited to one department in northwest Colombia. F. hepatica prevalence data was obtained from a 2008-2010 survey in 10 municipalities of 6,016 dairy cattle at 673 herd study sites, for which global positioning system coordinates were recorded. The CFI map results were compared to F. hepatica environmental risk models for the survey data points that had over 5% prevalence (231 of the 673 sites at the 1 km2 scale using two independent approaches: (i a GIS map query based on satellite data parameters including elevation, enhanced vegetation index and land surface temperature day-night difference; and (ii an ecological niche model (MaxEnt, for which geographic point coordinates of F. hepatica survey farms were used with BioClim data as environmental variables to develop a probability map. The predicted risk pattern of both approaches was similar to that seen in the forecast index grid. The temporal risk, evaluated by the monthly CFIs and a daily GDD-WB forecast software for 2007 and 2008, revealed a major July-August to January transmission period with considerable inter-annual differences.

  6. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  7. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  8. Storm Water Management Model Climate Adjustment Tool (SWMM-CAT)

    Science.gov (United States)

    The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations. SWMM, first released in 1971, models hydrology and hydrauli...

  9. A potato model intercomparison across varying climates and productivity levels

    NARCIS (Netherlands)

    Fleisher, David H.; Condori, Bruno; Quiroz, Roberto; Alva, Ashok; Asseng, Senthold; Barreda, Carolina; Bindi, Marco; Boote, Kenneth J.; Ferrise, Roberto; Franke, Angelinus C.; Govindakrishnan, Panamanna M.; Harahagazwe, Dieudonne; Hoogenboom, Gerrit; Naresh Kumar, Soora; Merante, Paolo; Nendel, Claas; Olesen, Jorgen E.; Parker, Phillip S.; Raes, Dirk; Raymundo, Rubi; Ruane, Alex C.; Stockle, Claudio; Supit, Iwan; Vanuytrecht, Eline; Wolf, Joost; Woli, Prem

    2016-01-01

    A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United

  10. The influence of HBV model calibration on flood predictions for future climate

    Science.gov (United States)

    Osuch, Marzena; Romanowicz, Renata

    2014-05-01

    The temporal variability of HBV rainfall-runoff model parameters was tested to address the influence of climate characteristics on the values of model optimal parameters. HBV is a conceptual model with a physically-based structure that takes into account soil moisture, snow-melt and dynamic runoff components. The model parameters were optimized by the DEGL method (Differential Evolution with Global and Local neighbours) for a set of catchments located in Poland. The methodology consisted of the calibration and cross-validation of the HBV models on a series of five-year periods within a moving window. The optimal parameter values show large temporal variability and dependence on climatic conditions described by the mean and standard deviation of precipitation, air temperature and PET. Derived regressions models between parameters and climatic indices were statistically significant at the 0.05 level. The set of model optimal values was applied to simulate future flows in a changed climate. We used the precipitation and temperature series from 6 RCM/GCM models for 2071-2100 following the A1B climate change scenario. The climatic variables were obtained from the KLIMADA project. The resulting flow series for the future climate scenario were used to derive flow indices, including the flood quantiles. Results indicate a large influence of climatic variability on flow indices. This work was partly supported by the project "Stochastic flood forecasting system (The River Vistula reach from Zawichost to Warsaw)" carried out by the Institute of Geophysics, Polish Academy of Sciences by order of the National Science Centre (contract No. 2011/01/B/ST10/06866). The rainfall and flow data were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  11. Validation of Numerical Shallow Water Models for Tidal Lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Eliason, D.; Bourgeois, A.

    1999-11-01

    An analytical solution is presented for the case of a stratified, tidally forced lagoon. This solution, especially its energetics, is useful for the validation of numerical shallow water models under stratified, tidally forced conditions. The utility of the analytical solution for validation is demonstrated for a simple finite difference numerical model. A comparison is presented of the energetics of the numerical and analytical solutions in terms of the convergence of model results to the analytical solution with increasing spatial and temporal resolution.

  12. Using virtual reality to validate system models

    Energy Technology Data Exchange (ETDEWEB)

    Winter, V.L.; Caudell, T.P.

    1999-12-09

    To date most validation techniques are highly biased towards calculations involving symbolic representations of problems. These calculations are either formal (in the case of consistency and completeness checks), or informal in the case of code inspections. The authors believe that an essential type of evidence of the correctness of the formalization process must be provided by (i.e., must originate from) human-based calculation. They further believe that human calculation can by significantly amplified by shifting from symbolic representations to graphical representations. This paper describes their preliminary efforts in realizing such a representational shift.

  13. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  14. Climate Change Hotspots Identification in China through the CMIP5 Global Climate Model Ensemble

    Directory of Open Access Journals (Sweden)

    Huanghe Gu

    2014-01-01

    Full Text Available China is one of the countries vulnerable to adverse climate changes. The potential climate change hotspots in China throughout the 21st century are identified in this study by using a multimodel, multiscenario climate model ensemble that includes Phase Five of the Coupled Model Intercomparison Project (CMIP5 atmosphere-ocean general circulation models. Both high (RCP8.5 and low (RCP4.5 greenhouse gas emission trajectories are tested, and both the mean and extreme seasonal temperature and precipitation are considered in identifying regional climate change hotspots. Tarim basin and Tibetan Plateau in West China are identified as persistent regional climate change hotspots in both the RCP4.5 and RCP8.5 scenarios. The aggregate impacts of climate change increase throughout the 21st century and are more significant in RCP8.5 than in RCP4.5. Extreme hot event and mean temperature are two climate variables that greatly contribute to the hotspots calculation in all regions. The contribution of other climate variables exhibits a notable subregional variability. South China is identified as another hotspot based on the change of extreme dry event, especially in SON and DJF, which indicates that such event will frequently occur in the future. Our results can contribute to the designing of national and cross-national adaptation and mitigation policies.

  15. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian;

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  16. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  17. Extending Model Checking to Object Process Validation

    NARCIS (Netherlands)

    Rein, van H.

    2002-01-01

    Object-oriented techniques allow the gathering and modelling of system requirements in terms of an application area. The expression of data and process models at that level is a great asset in communication with non-technical people in that area, but it does not necessarily lead to consistent models

  18. A practical approach to validating a PD model

    NARCIS (Netherlands)

    Medema, Lydian; Koning, Ruud H.; Lensink, Robert; Medema, M.

    2009-01-01

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their credi

  19. A Practical Approach to Validating a PD Model

    NARCIS (Netherlands)

    Medema, L.; Koning, de R.; Lensink, B.W.

    2009-01-01

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their credi

  20. Cross-validation criteria for SETAR model selection

    NARCIS (Netherlands)

    de Gooijer, J.G.

    2001-01-01

    Three cross-validation criteria, denoted C, C_c, and C_u are proposed for selecting the orders of a self-exciting threshold autoregressive SETAR) model when both the delay and the threshold value are unknown. The derivatioon of C is within a natural cross-validation framework. The crietion C_c is si

  1. Climate modelling, uncertainty and responses to predictions of change

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A. [Climatic Impacts Centre, Macquarie University, Sydney (Australia)

    1996-12-31

    Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by, inter alia, incorporating climate change risk assessment into development planning processes, i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. An urgent issue is the mismatch between the predictions of global climatic change and the need for information on local to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. And, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. But, climate models can`t yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes.

  2. Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model

    Science.gov (United States)

    Morin, Cory W.; Comrie, Andrew C.

    2010-09-01

    Climate can strongly influence the population dynamics of disease vectors and is consequently a key component of disease ecology. Future climate change and variability may alter the location and seasonality of many disease vectors, possibly increasing the risk of disease transmission to humans. The mosquito species Culex quinquefasciatus is a concern across the southern United States because of its role as a West Nile virus vector and its affinity for urban environments. Using established relationships between atmospheric variables (temperature and precipitation) and mosquito development, we have created the Dynamic Mosquito Simulation Model (DyMSiM) to simulate Cx. quinquefasciatus population dynamics. The model is driven with climate data and validated against mosquito count data from Pasco County, Florida and Coachella Valley, California. Using 1-week and 2-week filters, mosquito trap data are reproduced well by the model ( P climate projection data generated by the National Center for Atmospheric Research CCSM3 general circulation model, we applied temperature and precipitation offsets to the climate data at each location to evaluate mosquito population sensitivity to possible future climate conditions. We found that temperature and precipitation shifts act interdependently to cause remarkable changes in modeled mosquito population dynamics. Impacts include a summer population decline from drying in California due to loss of immature mosquito habitats, and in Florida a decrease in late-season mosquito populations due to drier late summer conditions.

  3. A 30+ Year AVHRR LAI and FAPAR Climate Data Record: Algorithm Description and Validation

    Directory of Open Access Journals (Sweden)

    Martin Claverie

    2016-03-01

    Full Text Available In- land surface models, which are used to evaluate the role of vegetation in the context of global climate change and variability, LAI and FAPAR play a key role, specifically with respect to the carbon and water cycles. The AVHRR-based LAI/FAPAR dataset offers daily temporal resolution, an improvement over previous products. This climate data record is based on a carefully calibrated and corrected land surface reflectance dataset to provide a high-quality, consistent time-series suitable for climate studies. It spans from mid-1981 to the present. Further, this operational dataset is available in near real-time allowing use for monitoring purposes. The algorithm relies on artificial neural networks calibrated using the MODIS LAI/FAPAR dataset. Evaluation based on cross-comparison with MODIS products and in situ data show the dataset is consistent and reliable with overall uncertainties of 1.03 and 0.15 for LAI and FAPAR, respectively. However, a clear saturation effect is observed in the broadleaf forest biomes with high LAI (>4.5 and FAPAR (>0.8 values.

  4. Production and use of regional climate model projections - A Swedish perspective on building climate services.

    Science.gov (United States)

    Kjellström, Erik; Bärring, Lars; Nikulin, Grigory; Nilsson, Carin; Persson, Gunn; Strandberg, Gustav

    2016-09-01

    We describe the process of building a climate service centred on regional climate model results from the Rossby Centre regional climate model RCA4. The climate service has as its central facility a web service provided by the Swedish Meteorological and Hydrological Institute where users can get an idea of various aspects of climate change from a suite of maps, diagrams, explaining texts and user guides. Here we present the contents of the web service and how this has been designed and developed in collaboration with users of the service in a dialogue reaching over more than a decade. We also present the ensemble of climate projections with RCA4 that provides the fundamental climate information presented at the web service. In this context, RCA4 has been used to downscale nine different coupled atmosphere-ocean general circulation models (AOGCMs) from the 5th Coupled Model Intercomparison Project (CMIP5) to 0.44° (c. 50 km) horizontal resolution over Europe. Further, we investigate how this ensemble relates to the CMIP5 ensemble. We find that the iterative approach involving the users of the climate service has been successful as the service is widely used and is an important source of information for work on climate adaptation in Sweden. The RCA4 ensemble samples a large degree of the spread in the CMIP5 ensemble implying that it can be used to illustrate uncertainties and robustness in future climate change in Sweden. The results also show that RCA4 changes results compared to the underlying AOGCMs, sometimes in a systematic way.

  5. Biases in simulation of the rice phenology models when applied in warmer climates

    Science.gov (United States)

    Zhang, T.; Li, T.; Yang, X.; Simelton, E.

    2015-12-01

    The current model inter-comparison studies highlight the difference in projections between crop models when they are applied to warmer climates, but these studies do not provide results on how the accuracy of the models would change in these projections because the adequate observations under largely diverse growing season temperature (GST) are often unavailable. Here, we investigate the potential changes in the accuracy of rice phenology models when these models were applied to a significantly warmer climate. We collected phenology data from 775 trials with 19 cultivars in 5 Asian countries (China, India, Philippines, Bangladesh and Thailand). Each cultivar encompasses the phenology observations under diverse GST regimes. For a given rice cultivar in different trials, the GST difference reaches 2.2 to 8.2°C, which allows us to calibrate the models under lower GST and validate under higher GST (i.e., warmer climates). Four common phenology models representing major algorithms on simulations of rice phenology, and three model calibration experiments were conducted. The results suggest that the bilinear and beta models resulted in gradually increasing phenology bias (Figure) and double yield bias per percent increase in phenology bias, whereas the growing-degree-day (GDD) and exponential models maintained a comparatively constant bias when applied in warmer climates (Figure). Moreover, the bias of phenology estimated by the bilinear and beta models did not reduce with increase in GST when all data were used to calibrate models. These suggest that variations in phenology bias are primarily attributed to intrinsic properties of the respective phenology model rather than on the calibration dataset. Therefore we conclude that using the GDD and exponential models has more chances of predicting rice phenology correctly and thus, production under warmer climates, and result in effective agricultural strategic adaptation to and mitigation of climate change.

  6. Gear Windage Modeling Progress - Experimental Validation Status

    Science.gov (United States)

    Kunz, Rob; Handschuh, Robert F.

    2008-01-01

    In the Subsonics Rotary Wing (SRW) Project being funded for propulsion work at NASA Glenn Research Center, performance of the propulsion system is of high importance. In current rotorcraft drive systems many gearing components operate at high rotational speed (pitch line velocity > 24000 ft/ min). In our testing of high speed helical gear trains at NASA Glenn we have found that the work done on the air - oil mist within the gearbox can become a significant part of the power loss of the system. This loss mechanism is referred to as windage. The effort described in this presentation is to try to understand the variables that affect windage, develop a good experimental data base to validate, the analytical project being conducted at Penn State University by Dr. Rob Kunz under a NASA SRW NRA. The presentation provides an update to the status of these efforts.

  7. Amendment to Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...... excitations from the Thanet farm are used for trying to update some of the models discussed in D2.5. Because of very limited amount of data only simple dynamic transfer function models can be obtained. The three obtained data series are somewhat different. Only the first data set seems to have the front...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading....

  8. A coupled climate model simulation of Marine Isotope Stage 3 stadial climate

    Directory of Open Access Journals (Sweden)

    J. Brandefelt

    2011-01-01

    Full Text Available We present a coupled global climate model (CGCM simulation, integrated for 1500 years to quasi-equilibrium, of a stadial (cold period within Marine Isotope Stage 3 (MIS 3. The simulated Greenland stadial 12 (GS12; ~44 ka BP annual global mean surface temperature (Ts is 5.5 °C higher than in the simulated recent past (RP climate and 1.3 °C lower than in the simulated Last Glacial Maximum (LGM; 21 ka BP climate. The simulated GS12 climate is evaluated against proxy data of sea surface temperature (SST. Simulated SSTs fall within the uncertainty range of the proxy SSTs for 30–50% of the sites depending on season. Proxy SSTs are higher than simulated SSTs in the Central North Atlantic, in contrast to earlier simulations of MIS 3 stadial climate in which proxy SSTs were found to be lower than simulated SST. The annual global mean Ts only changes by 0.10 °C from model years 500–599 to the last century of the simulation, indicating that the climate system may be close to equilibrium already after 500 years of integration. However, significant regional differences between the last century of the simulation and model years 500–599, with a maximum of 8 °C in temperature and 65% in precipitation in Southeastern Greenland in boreal winter, exist. Further, the agreement between simulated and proxy SST is improved from model years 500–599 to the last century of the simulation. El-Niño-Southern Oscillation (ENSO teleconnections in mean sea level pressure (MSLP are analysed for the last 300 years of the GS12, LGM and RP climate simulations. In agreement with an earlier study, we find that GS12 and LGM forcing and boundary conditions induce major modifications to ENSO teleconnections. However, significant differences in the teleconnection patterns are found between a 300-year time-slice starting after 195 model years and the last 300 years of the simulation. Thus we conclude that both the mean state and the

  9. Assessing Students' Views of School Climate: Developing and Validating the What's Happening in This School? (WHITS) Questionnaire

    Science.gov (United States)

    Aldridge, Jill; Ala'I, Kate

    2013-01-01

    This article describes the development and validation of a six-scale survey to assess school climate in terms of students' perceptions of the degree to which they feel welcome and connected, together with a scale to assess students' perceptions of bullying. The development of each survey involved a multi-stage approach, including: 1) an extensive…

  10. The Meriden School Climate Survey-Student Version: Preliminary Evidence of Reliability and Validity

    Science.gov (United States)

    Gage, Nicholas A.; Larson, Alvin; Chafouleas, Sandra M.

    2016-01-01

    School climate has been linked with myriad positive student outcomes and the measurement of school climate is widely advocated at the national and state level. However, districts have little guidance about how to define and measure school climate. This study examines the psychometric properties of a district-developed school climate measure that…

  11. Climate modeling - a tool for the assessment of the paleodistribution of source and reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Roscher, M.; Schneider, J.W. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Geologie; Berner, U. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany). Referat Organische Geochemie/Kohlenwasserstoff-Forschung

    2008-10-23

    In an on-going project of BGR and TU Bergakademie Freiberg, numeric paleo-climate modeling is used as a tool for the assessment of the paleo-distribution of organic rich deposits as well as of reservoir rocks. This modeling approach is based on new ideas concerning the formation of the Pangea supercontinent. The new plate tectonic concept is supported by paleo- magnetic data as it fits the 95% confidence interval of published data. Six Permocarboniferous time slices (340, 320, 300, 290, 270, 255 Ma) were chosen within a first paleo-climate modeling approach as they represent the most important changes of the Late Paleozoic climate development. The digital maps have a resolution of 2.8 x 2.8 (T42), suitable for high-resolution climate modeling, using the PLASIM model. CO{sub 2} concentrations of the paleo-atmosphere and paleo-insolation values have been estimated by published methods. For the purpose of validation, quantitative model output, had to be transformed into qualitative parameters in order to be able to compare digital data with qualitative data of geologic indicators. The model output of surface temperatures and precipitation was therefore converted into climate zones. The reconstructed occurrences of geological indicators like aeolian sands, evaporites, reefs, coals, oil source rocks, tillites, phosphorites and cherts were then compared to the computed paleo-climate zones. Examples of the Permian Pangea show a very good agreement between model results and geological indicators. From the modeling approach we are able to identify climatic processes which lead to the deposition of hydrocarbon source and reservoir rocks. The regional assessment of such atmospheric processes may be used for the identification of the paleo-distribution of organic rich deposits or rock types suitable to form hydrocarbon reservoirs. (orig.)

  12. Validation of a national hydrological model

    Science.gov (United States)

    McMillan, H. K.; Booker, D. J.; Cattoën, C.

    2016-10-01

    Nationwide predictions of flow time-series are valuable for development of policies relating to environmental flows, calculating reliability of supply to water users, or assessing risk of floods or droughts. This breadth of model utility is possible because various hydrological signatures can be derived from simulated flow time-series. However, producing national hydrological simulations can be challenging due to strong environmental diversity across catchments and a lack of data available to aid model parameterisation. A comprehensive and consistent suite of test procedures to quantify spatial and temporal patterns in performance across various parts of the hydrograph is described and applied to quantify the performance of an uncalibrated national rainfall-runoff model of New Zealand. Flow time-series observed at 485 gauging stations were used to calculate Nash-Sutcliffe efficiency and percent bias when simulating between-site differences in daily series, between-year differences in annual series, and between-site differences in hydrological signatures. The procedures were used to assess the benefit of applying a correction to the modelled flow duration curve based on an independent statistical analysis. They were used to aid understanding of climatological, hydrological and model-based causes of differences in predictive performance by assessing multiple hypotheses that describe where and when the model was expected to perform best. As the procedures produce quantitative measures of performance, they provide an objective basis for model assessment that could be applied when comparing observed daily flow series with competing simulated flow series from any region-wide or nationwide hydrological model. Model performance varied in space and time with better scores in larger and medium-wet catchments, and in catchments with smaller seasonal variations. Surprisingly, model performance was not sensitive to aquifer fraction or rain gauge density.

  13. EMMD-Prony approach for dynamic validation of simulation models

    Institute of Scientific and Technical Information of China (English)

    Ruiyang Bai

    2015-01-01

    Model validation and updating is critical to model credi-bility growth. In order to assess model credibility quantitatively and locate model error precisely, a new dynamic validation method based on extremum field mean mode decomposition (EMMD) and the Prony method is proposed in this paper. Firstly, complex dy-namic responses from models and real systems are processed into stationary components by EMMD. These components always have definite physical meanings which can be the evidence about rough model error location. Secondly, the Prony method is applied to identify the features of each EMMD component. Amplitude si-milarity, frequency similarity, damping similarity and phase simi-larity are defined to describe the similarity of dynamic responses. Then quantitative validation metrics are obtained based on the improved entropy weight and energy proportion. Precise model error location is realized based on the physical meanings of these features. The application of this method in aircraft control er design provides evidence about its feasibility and usability.

  14. Quantification of Modeled Streamflow under Climate Change over the Flint River Watershed in Northern Alabama

    Science.gov (United States)

    Acharya, A.; Tadesse, W.; Lemke, D.; Subedi, S.

    2015-12-01

    This study is carried out to quantify the impacts of climate change and land use change on water availability over the Flint River watershed (FRW) located in the wheeler lake watershed in Northern Alabama. The FRW directly drains into the Tennessee River, which is a major source of water supply for the Southern States. The observed precipitation and temperature data are obtained from the Alabama Mesonet Stations which are also a part of National Resources Conservation Service (USDA NRCS) Soil Climate Analysis Network (SCAN). The GCM simulated climate data are obtained from the WCRP CMIP5 ensemble that consists of 234 downscaled climate projections from four emission scenarios and 37 GCMs. The hydrologic model SWAT is calibrated and validated for a period of 2004 to 2014, based on daily meteorological forcing and monthly streamflow data for the FRW. A total of 15 parameters that directly influences the surface/base flow and basin response are selected and calibrated. The anticipated change in future climate (2030s, 2050s, 2070s, 2090s) with respect to baseline period (2004-2014/2010s) for each emission scenario are introduced into baseline climate to perturb it to future climate pattern. Various climate scenarios based on future climate are forced into the calibrated SWAT model to quantify future water availability over the basin and compared with the baseline period. This is a part of the Geospatial Education and Research Center (GERC) project and the major research findings from this project will help decision makers in evaluating the combined impacts of climate change and land use change on water availability, and developing strategies to sustain available natural resources.

  15. The Urgent Need for Improved Climate Models and Predictions

    Science.gov (United States)

    Goddard, Lisa; Baethgen, Walter; Kirtman, Ben; Meehl, Gerald

    2009-09-01

    An investment over the next 10 years of the order of US$2 billion for developing improved climate models was recommended in a report (http://wcrp.wmo.int/documents/WCRP_WorldModellingSummit_Jan2009.pdf) from the May 2008 World Modelling Summit for Climate Prediction, held in Reading, United Kingdom, and presented by the World Climate Research Programme. The report indicated that “climate models will, as in the past, play an important, and perhaps central, role in guiding the trillion dollar decisions that the peoples, governments and industries of the world will be making to cope with the consequences of changing climate.” If trillions of dollars are going to be invested in making decisions related to climate impacts, an investment of $2 billion, which is less than 0.1% of that amount, to provide better climate information seems prudent. One example of investment in adaptation is the World Bank's Climate Investment Fund, which has drawn contributions of more than $6 billion for work on clean technologies and adaptation efforts in nine pilot countries and two pilot regions. This is just the beginning of expenditures on adaptation efforts by the World Bank and other mechanisms, focusing on only a small fraction of the nations of the world and primarily aimed at anticipated anthropogenic climate change. Moreover, decisions are being made now, all around the world—by individuals, companies, and governments—that affect people and their livelihoods today, not just 50 or more years in the future. Climate risk management, whether related to projects of the scope of the World Bank's or to the planning and decisions of municipalities, will be best guided by meaningful climate information derived from observations of the past and model predictions of the future.

  16. Toward a validation process for model based safety analysis

    OpenAIRE

    Adeline, Romain; Cardoso, Janette; Darfeuil, Pierre; Humbert, Sophie; Seguin, Christel

    2010-01-01

    Today, Model Based processes become more and more widespread to achieve the analysis of a system. However, there is no formal testing approach to ensure that the formal model is compliant with the real system. In the paper, we choose to study AltaRica model. We present a general process to well construct and validate an AltaRica formal model. The focus is made on this validation phase, i.e. verifying the compliance between the model and the real system. For it, the proposed process recommends...

  17. Can a regional climate model reproduce observed extreme temperatures?

    Directory of Open Access Journals (Sweden)

    Peter F. Craigmile

    2013-10-01

    Full Text Available Using output from a regional Swedish climate model and observations from the Swedish synoptic observational network, we compare seasonal minimum temperatures from model output and observations using marginal extreme value modeling techniques. We make seasonal comparisons using generalized extreme value models and empirically estimate the shift in the distribution as a function of the regional climate model values, using the Doksum shift function. Spatial and temporal comparisons over south central Sweden are made by building hierarchical Bayesian generalized extreme value models for the observed minima and regional climate model output. Generally speaking the regional model is surprisingly well calibrated for minimum temperatures. We do detect a problem in the regional model to produce minimum temperatures close to 0◦C. The seasonal spatial effects are quite similar between data and regional model. The observations indicate relatively strong warming, especially in the northern region. This signal is present in the regional model, but is not as strong.

  18. Validation of Modeling Flow Approaching Navigation Locks

    Science.gov (United States)

    2013-08-01

    instrumentation, direction vernier . ........................................................................ 8  Figure 11. Plan A lock approach, upstream approach...13-9 8 Figure 9. Tools and instrumentation, bracket attached to rail. Figure 10. Tools and instrumentation, direction vernier . Numerical model

  19. Regional Climate Modeling over South America: A Review

    Directory of Open Access Journals (Sweden)

    Silvina A. Solman

    2013-01-01

    Full Text Available This review summarizes the progress achieved on regional climate modeling activities over South America since the early efforts at the beginning of the 2000s until now. During the last 10 years, simulations with regional climate models (RCMs have been performed for several purposes over the region. Early efforts were mainly focused on sensitivity studies to both physical mechanisms and technical aspects of RCMs. The last developments were focused mainly on providing high-resolution information on regional climate change. This paper describes the most outstanding contributions from the isolated efforts to the ongoing coordinated RCM activities in the framework of the CORDEX initiative, which represents a major endeavor to produce ensemble climate change projections at regional scales and allows exploring the associated range of uncertainties. The remaining challenges in modeling South American climate features are also discussed.

  20. Agricultural climate impacts assessment for economic modeling and decision support

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  1. A framework for modeling uncertainty in regional climate change

    Science.gov (United States)

    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the United States associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework ...

  2. Drivers of stability of climate coalitions in the STACO model

    NARCIS (Netherlands)

    Dellink, R.B.

    2011-01-01

    This paper investigates which drivers affect the formation and stability of international climate agreements (ICAs). The applied model STACO is used to project costs and benefits of an international agreement on climate change mitigation activities. The simulation results show that an incentive-base

  3. Validation of Model Forecasts of the Ambient Solar Wind

    Science.gov (United States)

    Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.

    2009-01-01

    Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.

  4. Traffic modelling validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Tongeren, R. van; Gietelink, O.J.; Schutter, B. de; Verhaegen, M.

    2007-01-01

    This paper presents a microscopic traffic model for the validation of advanced driver assistance systems. This model describes single-lane traffic and is calibrated with data from a field operational test. To illustrate the use of the model, a Monte Carlo simulation of single-lane traffic scenarios

  5. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    incomplete knowledge of the characteristics inherent to each model. During water immersion, the hydrostatic pressure lowers the peripheral vascular capacity and causes increased thoracic blood volume and high vascular perfusion. In turn, these changes lead to high urinary flow, low vasomotor tone, and a high...... rate of water exchange between interstitium and plasma. In contrast, the increase in thoracic blood volume during a space mission is combined with stimulated orthosympathetic tone and lowered urine flow. During bed rest, body tissues are compressed by pressure from gravity, whereas microgravity causes......Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect...

  6. Validation of limited sampling models (LSM) for estimating AUC in therapeutic drug monitoring - is a separate validation group required?

    NARCIS (Netherlands)

    Proost, J. H.

    2007-01-01

    Objective: Limited sampling models (LSM) for estimating AUC in therapeutic drug monitoring are usually validated in a separate group of patients, according to published guidelines. The aim of this study is to evaluate the validation of LSM by comparing independent validation with cross-validation us

  7. A dynamic, climate-driven model of Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Joseph Leedale

    2016-03-01

    Full Text Available Outbreaks of Rift Valley fever (RVF in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  8. A dynamic, climate-driven model of Rift Valley fever.

    Science.gov (United States)

    Leedale, Joseph; Jones, Anne E; Caminade, Cyril; Morse, Andrew P

    2016-03-31

    Outbreaks of Rift Valley fever (RVF) in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF) model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  9. Soil moisture and root water uptake in climate models. Research Programme Climate Changes Spatial Planning

    NARCIS (Netherlands)

    Dam, van J.C.; Metselaar, K.; Wipfler, E.L.; Feddes, R.A.; Meijgaard, van E.; Hurk, van den B.

    2011-01-01

    More accurate simulation of the energy and water balance near the Earth surface is important to improve the performance of regional climate models. We used a detailed ecohydrological model to rank the importance of vegetation and soil factors with respect to evapotranspiration modeling. The results

  10. Quantitative system validation in model driven design

    DEFF Research Database (Denmark)

    Hermanns, Hilger; Larsen, Kim Guldstrand; Raskin, Jean-Francois;

    2010-01-01

    The European STREP project Quasimodo1 develops theory, techniques and tool components for handling quantitative constraints in model-driven development of real-time embedded systems, covering in particular real-time, hybrid and stochastic aspects. This tutorial highlights the advances made, focus...

  11. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G.; Gavin, J. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Geological Observatory

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  12. Validation of Air Traffic Controller Workload Models

    Science.gov (United States)

    1979-09-01

    SAR) tapes dtirinq the data reduc- tion phase of the project. Kentron International Limited provided the software support for the oroject. This included... ETABS ) or to revised traffic control procedures. The models also can be used to verify productivity benefits after new configurations have been...col- lected and processed manually. A preliminary compari- son has been made between standard NAS Stage A and ETABS operations at Miami. 1.2

  13. Ensuring the Validity of the Micro Foundation in DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    The presence of i) stochastic trends, ii) deterministic trends, and/or iii) stochastic volatil- ity in DSGE models may imply that the agents' objective functions attain infinite values. We say that such models do not have a valid micro foundation. The paper derives sufficient condi- tions which...... ensure that the objective functions of the households and the firms are finite even when various trends and stochastic volatility are included in a standard DSGE model. Based on these conditions we test the validity of the micro foundation in six DSGE models from the literature. The models of Justiniano...... & Primiceri (American Economic Review, forth- coming) and Fernández-Villaverde & Rubio-Ramírez (Review of Economic Studies, 2007) do not satisfy these sufficient conditions, or any other known set of conditions ensuring finite values for the objective functions. Thus, the validity of the micro foundation...

  14. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    Science.gov (United States)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian; Trolle, Dennis; Børgesen, Christen Duus; Olesen, Jørgen E.; Jeppesen, Erik; Jensen, Karsten H.

    2016-04-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice remained the dominant factor for mean discharge, low and high flows as well as hydraulic head at the end of the century.

  15. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  16. Experiments for foam model development and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F. (Honeywell Federal Manufacturing and Technologies, Kansas City Plant, Kansas City, MO); Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.

    2008-09-01

    A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

  17. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21(st) century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20(th)-century baseline), but not at the higher levels of global warming that occur in the late-21(st)-century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  18. Historical and idealized climate model experiments: an EMIC intercomparison

    Directory of Open Access Journals (Sweden)

    M. Eby

    2012-08-01

    Full Text Available Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes seem to be underestimated. It is possible that recent modelled climate trends or climate-carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated.

    Several one thousand year long, idealized, 2x and 4x CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate-carbon feedbacks. The values from EMICs generally fall within the range given by General Circulation Models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows considerable synergy between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given

  19. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  20. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    Science.gov (United States)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  1. California Basin Characterization Model Downscaled Climate and Hydrology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The California Basin Characterization Model (CA-BCM 2014) dataset provides historical and projected climate and hydrologic surfaces for the region that encompasses...

  2. Modeling lakes and reservoirs in the climate system

    Science.gov (United States)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  3. Assessing climate model software quality: a defect density analysis of three models

    Directory of Open Access Journals (Sweden)

    J. Pipitone

    2012-08-01

    Full Text Available A climate model is an executable theory of the climate; the model encapsulates climatological theories in software so that they can be simulated and their implications investigated. Thus, in order to trust a climate model, one must trust that the software it is built from is built correctly. Our study explores the nature of software quality in the context of climate modelling. We performed an analysis of defect reports and defect fixes in several versions of leading global climate models by collecting defect data from bug tracking systems and version control repository comments. We found that the climate models all have very low defect densities compared to well-known, similarly sized open-source projects. We discuss the implications of our findings for the assessment of climate model software trustworthiness.

  4. Validation of Orthorectified Interferometric Radar Imagery and Digital Elevation Models

    Science.gov (United States)

    Smith Charles M.

    2004-01-01

    This work was performed under NASA's Verification and Validation (V&V) Program as an independent check of data supplied by EarthWatch, Incorporated, through the Earth Science Enterprise Scientific Data Purchase (SDP) Program. This document serves as the basis of reporting results associated with validation of orthorectified interferometric interferometric radar imagery and digital elevation models (DEM). This validation covers all datasets provided under the first campaign (Central America & Virginia Beach) plus three earlier missions (Indonesia, Red River: and Denver) for a total of 13 missions.

  5. Collaborative experiment on intercomparison of regional-scale hydrological models for climate impact assessment

    Science.gov (United States)

    Krysanova, Valentina; Hattermann, Fred

    2015-04-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) is a community-driven modelling effort bringing together impact modellers across sectors and scales to create more consistent and comprehensive projections of the impacts of climate change. This project is aimed in establishing a long-term, systematic, cross-sectoral impact model intercomparison process, including comparison of climate change impacts for multiple sectors using ensemble of climate scenarios and applying global and regional impact models. The project is coordinated by the Potsdam Institute for Climate Impact Research. An overview of this project and collaborative experiment related to the regional-scale water sector model intercomparison in ISI-MIP will be presented. The regional-scale water sector modelling includes eleven models applied to eleven large-scale river basins worldwide (not every model is applied to every of eleven basins). In total, 60-65 model applications will be done by several collaborating groups from different Institutions. The modelling tools include: ECOMAG, HBV, HBV-light, HYPE, LASCAM, LISFLOOD, mHM, SWAT, SWIM, VIC and WaterGAP. Eleven river basins chosen for the model application and intercomparison are: the Rhine and Tagus in Europe, the Niger and Blue Nile in Africa, the Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, the Upper Mississippi and Upper Amazon in America, and the Murray-Darling in Australia. Their drainage areas range between 67,490 km2 (Tagus) to 2,460,000 km2 (Lena). Data from global and regional datasets are used for the model setup and calibration. The model calibration and validation was done using the WATCH climate data for all cases, also checking the representation of high and low percentiles of river discharge. For most of the basins, also intermediate gauge stations were included in the calibration. The calibration and validation results, evaluated with the Nash and Sutcliffe efficiency (NSE) and percent bias (PBIAS), are mostly

  6. Modeling bulk canopy resistance from climatic variables for predicting hourly evapotranspiration of maize and buckwheat

    Science.gov (United States)

    Yan, Haofang; Shi, Haibin; Hiroki, Oue; Zhang, Chuan; Xue, Zhu; Cai, Bin; Wang, Guoqing

    2015-06-01

    This study presents models for predicting hourly canopy resistance ( r c) and evapotranspiration (ETc) based on Penman-Monteith approach. The micrometeorological data and ET c were observed during maize and buckwheat growing seasons in 2006 and 2009 in China and Japan, respectively. The proposed models of r c were developed by a climatic resistance ( r *) that depends on climatic variables. Non-linear relationships between r c and r * were applied. The measured ETc using Bowen ratio energy balance method was applied for model validation. The statistical analysis showed that there were no significant differences between predicted ETc by proposed models and measured ETc for both maize and buckwheat crops. The model for predicting ETc at maize field showed better performance than predicting ETc at buckwheat field, the coefficients of determination were 0.92 and 0.84, respectively. The study provided an easy way for the application of Penman-Monteith equation with only general available meteorological database.

  7. Modeling Surgery: A New Way Toward Understanding Earth Climate Variability

    Institute of Scientific and Technical Information of China (English)

    WU Lixin; LIU Zhengyu; Robert Gallimore; Michael Notaro; Robert Jacob

    2005-01-01

    A new modeling concept, referred to as Modeling Surgery, has been recently developed at University of Wisconsin-Madison. It is specifically designed to diagnose coupled feedbacks between different climate components as well as climatic teleconnections within a specific component through systematically modifying the coupling configurations and teleconnective pathways. It thus provides a powerful means for identifying the causes and mechanisms of low-frequency variability in the Earth's climate system. In this paper, we will give a short review of our recent progress in this new area.

  8. Validation of an Efficient Outdoor Sound Propagation Model Using BEM

    DEFF Research Database (Denmark)

    Quirós-Alpera, S.; Henriquez, Vicente Cutanda; Jacobsen, Finn

    2001-01-01

    An approximate, simple and practical model for prediction of outdoor sound propagation exists based on ray theory, diffraction theory and Fresnel-zone considerations [1]. This model, which can predict sound propagation over non-flat terrain, has been validated for combinations of flat ground, hills...... and barriers, but it still needs to be validated for configurations that involve combinations of valleys and barriers. In order to do this a boundary element model has been implemented in MATLAB to serve as a reliable reference....

  9. Validation of a Model of the Domino Effect?

    CERN Document Server

    Larham, Ron

    2008-01-01

    A recent paper proposing a model of the limiting speed of the domino effect is discussed with reference to its need and the need of models in general for validation against experimental data. It is shown that the proposed model diverges significantly from experimentally derived speed estimates over a significant range of domino spacing using data from the existing literature and this author's own measurements, hence if its use had had economic importance its use outside its range of validity could have led to loses of one sort or another to its users.

  10. Validation of a Model for Ice Formation around Finned Tubes

    Directory of Open Access Journals (Sweden)

    Kamal A. R. Ismai

    2016-09-01

    Full Text Available Phase change materials although attaractive option for thermal storage applications its main drawback is the slow thermal response during charging and discharging processes due to their low thermal conductivity. The present study validates a model developed by the authors some years ago on radial fins as a method to meliorate the thermal performance of PCM in horizontal storage system. The developed model for the radial finned tube is based on pure conduction, the enthalpy approach and was discretized by the finite difference method. Experiments were realized specifically to validate the model and its numerical predictions.

  11. Climate simulations for 1880-2003 with GISS modelE

    CERN Document Server

    Hansen, J; Bauer, S; Baum, E; Cairns, B; Canuto, V; Chandler, M; Cheng, Y; Cohen, A; Faluvegi, G; Fleming, E; Friend, A; Genio, A D; Hall, T; Jackman, C; Jonas, J; Kelley, M; Kharecha, P; Kiang, N Y; Koch, D; Labow, G; Lacis, A; Lerner, J; Lo, K; Menon, S; Miller, R; Nazarenko, L; Novakov, T; Oinas, V; Perlwitz, J; Rind, D; Romanou, A; Ruedy, R; Russell, G; Sato, M; Schmidt, G A; Schmunk, R; Shindell, D; Stone, P; Streets, D; Sun, S; Tausnev, N; Thresher, D; Unger, N; Yao, M; Zhang, S; Perlwitz, Ja.; Perlwitz, Ju.

    2006-01-01

    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies...

  12. Hydrological Modelling of Mountainous and Glacierised regions under Changing Climate

    OpenAIRE

    Li, Hong

    2015-01-01

    Climate change is one of the most serious environmental threats that humanity has ever been confronted to. Hydrological models are vital tools to asses its impacts on the water cycle and water resources. The goal of this project is to evaluate and improve the capacity of the HBV model (Hydrologiska Byr°ans Vattenbalansavdelning) in simulating hydrological processes in mountainous and glacierised regions under both the present and future climate. This goal is achieved in two steps: (1) impleme...

  13. Modeling climate change impacts on overwintering bald eagles

    OpenAIRE

    Chris J. Harvey; Moriarty, Pamela E.; Salathé Jr, Eric P

    2012-01-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperat...

  14. Modelling climate change impacts on mycotoxin contamination

    NARCIS (Netherlands)

    Fels, van der Ine; Liu, C.; Battilani, P.

    2016-01-01

    Projected climate change effects will influence primary agricultural systems and thus food security, directly via impacts on yields, and indirectly via impacts on its safety, with mycotoxins considered as crucial hazards. Mycotoxins are produced by a wide variety of fungal species, each having their

  15. Validation of a terrestrial food chain model.

    Science.gov (United States)

    Travis, C C; Blaylock, B P

    1992-01-01

    An increasingly important topic in risk assessment is the estimation of human exposure to environmental pollutants through pathways other than inhalation. The Environmental Protection Agency (EPA) has recently developed a computerized methodology (EPA, 1990) to estimate indirect exposure to toxic pollutants from Municipal Waste Combuster emissions. This methodology estimates health risks from exposure to toxic pollutants from the terrestrial food chain (TFC), soil ingestion, drinking water ingestion, fish ingestion, and dermal absorption via soil and water. Of these, one of the most difficult to estimate is exposure through the food chain. This paper estimates the accuracy of the EPA methodology for estimating food chain contamination. To our knowledge, no data exist on measured concentrations of pollutants in food grown around Municipal Waste Incinerators, and few field-scale studies have been performed on the uptake of pollutants in the food chain. Therefore, to evaluate the EPA methodology, we compare actual measurements of background contaminant levels in food with estimates made using EPA's computerized methodology. Background levels of contaminants in air, water, and soil were used as input to the EPA food chain model to predict background levels of contaminants in food. These predicted values were then compared with the measured background contaminant levels. Comparisons were performed for dioxin, pentachlorophenol, polychlorinated biphenyls, benzene, benzo(a)pyrene, mercury, and lead.

  16. Composing, Analyzing and Validating Software Models

    Science.gov (United States)

    Sheldon, Frederick T.

    1998-10-01

    This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.

  17. A coupled climate model simulation of Marine Isotope Stage 3 stadial climate

    Science.gov (United States)

    Brandefelt, J.; Kjellström, E.; Näslund, J.-O.; Strandberg, G.; Voelker, A. H. L.; Wohlfarth, B.

    2011-06-01

    We present a coupled global climate model (CGCM) simulation, integrated for 1500 yr to quasi-equilibrium, of a stadial (cold period) within Marine Isotope Stage 3 (MIS 3). The simulated Greenland stadial 12 (GS12; ~44 ka BP) annual global mean surface temperature (Ts) is 5.5 °C lower than in the simulated recent past (RP) climate and 1.3 °C higher than in the simulated Last Glacial Maximum (LGM; 21 ka BP) climate. The simulated GS12 is evaluated against proxy data and previous modelling studies of MIS3 stadial climate. We show that the simulated MIS 3 climate, and hence conclusions drawn regarding the dynamics of this climate, is highly model-dependent. The main findings are: (i) Proxy sea surface temperatures (SSTs) are higher than simulated SSTs in the central North Atlantic, in contrast to earlier simulations of MIS 3 stadial climate in which proxy SSTs were found to be lower than simulated SST. (ii) The Atlantic Meridional Overturning Circulation (AMOC) slows down by 50 % in the GS12 climate as compared to the RP climate. This slowdown is attained without freshwater forcing in the North Atlantic region, a method used in other studies to force an AMOC shutdown. (iii) El-Niño-Southern Oscillation (ENSO) teleconnections in mean sea level pressure (MSLP) are significantly modified by GS12 and LGM forcing and boundary conditions. (iv) Both the mean state and variability of the simulated GS12 is dependent on the equilibration. The annual global mean Ts only changes by 0.10 °C from model years 500-599 to the last century of the simulation, indicating that the climate system may be close to equilibrium already after 500 yr of integration. However, significant regional differences between the last century of the simulation and model years 500-599 exist. Further, the difference between simulated and proxy SST is reduced from model years 500-599 to the last century of the simulation. The results of the ENSO variability analysis is also shown to depend on the

  18. A coupled climate model simulation of Marine Isotope Stage 3 stadial climate

    Directory of Open Access Journals (Sweden)

    J. Brandefelt

    2011-06-01

    Full Text Available We present a coupled global climate model (CGCM simulation, integrated for 1500 yr to quasi-equilibrium, of a stadial (cold period within Marine Isotope Stage 3 (MIS 3. The simulated Greenland stadial 12 (GS12; ~44 ka BP annual global mean surface temperature (Ts is 5.5 °C lower than in the simulated recent past (RP climate and 1.3 °C higher than in the simulated Last Glacial Maximum (LGM; 21 ka BP climate. The simulated GS12 is evaluated against proxy data and previous modelling studies of MIS3 stadial climate. We show that the simulated MIS 3 climate, and hence conclusions drawn regarding the dynamics of this climate, is highly model-dependent. The main findings are: (i Proxy sea surface temperatures (SSTs are higher than simulated SSTs in the central North Atlantic, in contrast to earlier simulations of MIS 3 stadial climate in which proxy SSTs were found to be lower than simulated SST. (ii The Atlantic Meridional Overturning Circulation (AMOC slows down by 50 % in the GS12 climate as compared to the RP climate. This slowdown is attained without freshwater forcing in the North Atlantic region, a method used in other studies to force an AMOC shutdown. (iii El-Niño-Southern Oscillation (ENSO teleconnections in mean sea level pressure (MSLP are significantly modified by GS12 and LGM forcing and boundary conditions. (iv Both the mean state and variability of the simulated GS12 is dependent on the equilibration. The annual global mean Ts only changes by 0.10 °C from model years 500–599 to the last century of the simulation, indicating that the climate system may be close to equilibrium already after 500 yr of integration. However, significant regional differences between the last century of the simulation and model years 500–599 exist. Further, the difference between simulated and proxy SST is reduced from model years 500–599 to the last century of the simulation. The results of the ENSO variability

  19. Reverse electrodialysis : A validated process model for design and optimization

    NARCIS (Netherlands)

    Veerman, J.; Saakes, M.; Metz, S. J.; Harmsen, G. J.

    2011-01-01

    Reverse electrodialysis (RED) is a technology to generate electricity using the entropy of the mixing of sea and river water. A model is made of the RED process and validated experimentally. The model is used to design and optimize the RED process. It predicts very small differences between counter-

  20. Validation of a multi-objective, predictive urban traffic model

    NARCIS (Netherlands)

    Wilmink, I.R.; Haak, P. van den; Woldeab, Z.; Vreeswijk, J.

    2013-01-01

    This paper describes the results of the verification and validation of the ecoStrategic Model, which was developed, implemented and tested in the eCoMove project. The model uses real-time and historical traffic information to determine the current, predicted and desired state of traffic in a network

  1. Child human model development: a hybrid validation approach

    NARCIS (Netherlands)

    Forbes, P.A.; Rooij, L. van; Rodarius, C.; Crandall, J.

    2008-01-01

    The current study presents a development and validation approach of a child human body model that will help understand child impact injuries and improve the biofidelity of child anthropometric test devices. Due to the lack of fundamental child biomechanical data needed to fully develop such models a

  2. Reconciled climate response estimates from climate models and the energy budget of Earth

    Science.gov (United States)

    Richardson, Mark; Cowtan, Kevin; Hawkins, Ed; Stolpe, Martin B.

    2016-10-01

    Climate risks increase with mean global temperature, so knowledge about the amount of future global warming should better inform risk assessments for policymakers. Expected near-term warming is encapsulated by the transient climate response (TCR), formally defined as the warming following 70 years of 1% per year increases in atmospheric CO2 concentration, by which point atmospheric CO2 has doubled. Studies based on Earth's historical energy budget have typically estimated lower values of TCR than climate models, suggesting that some models could overestimate future warming. However, energy-budget estimates rely on historical temperature records that are geographically incomplete and blend air temperatures over land and sea ice with water temperatures over open oceans. We show that there is no evidence that climate models overestimate TCR when their output is processed in the same way as the HadCRUT4 observation-based temperature record. Models suggest that air-temperature warming is 24% greater than observed by HadCRUT4 over 1861-2009 because slower-warming regions are preferentially sampled and water warms less than air. Correcting for these biases and accounting for wider uncertainties in radiative forcing based on recent evidence, we infer an observation-based best estimate for TCR of 1.66 °C, with a 5-95% range of 1.0-3.3 °C, consistent with the climate models considered in the IPCC 5th Assessment Report.

  3. Simulations of LGM climate of East Asia by regional climate model

    Institute of Scientific and Technical Information of China (English)

    郑益群; 于革; 王苏民; 薛滨; 刘华强; 曾新民

    2003-01-01

    Climate conditions in the Last Glacial Maximum (LGM) were remarkably different from the present ones. Adopting a regional climate model (RCM) which has included a detailed land surface scheme, LGM climate of East Asia has been simulated. The effects of vegetation changes on LGM climate have been diagnosed by adding forces of LGM paleovegetation reconstructed from the geological records. The results of the simulations by RCM indicate that large decreases in whole year temperature of East Asia continent caused strongly enhanced winter monsoon and weakened summer monsoon. The strengthening and westward-stretching of the Subtropical High of West-Pacific are the key reasons of decreases of LGM summer precipitation in eastern China. Precipitation and effective precipitation were increased in the Tibetan Plateau and Middle-Asia, while the humid condition in the Tibetan Plateau was mainly caused by increase of precipitation. Accumulated snow of LGM was also increased in the Tibetan Plateau, which was helpful to developing glacier and permafrost. This experiment has simulated that the frozen soil areas extend southward to 30°N. In LGM climate simulation, climate effects caused by external forces were amplified by added paleovegetation, therefore, decreases of temperature, changes of precipitation and snowfall, and other climatic parameters were further strengthened, making the simulation results more approach to geological evidences.

  4. Model validation for karst flow using sandbox experiments

    Science.gov (United States)

    Ye, M.; Pacheco Castro, R. B.; Tao, X.; Zhao, J.

    2015-12-01

    The study of flow in karst is complex due of the high heterogeneity of the porous media. Several approaches have been proposed in the literature to study overcome the natural complexity of karst. Some of those methods are the single continuum, double continuum and the discrete network of conduits coupled with the single continuum. Several mathematical and computing models are available in the literature for each approach. In this study one computer model has been selected for each category to validate its usefulness to model flow in karst using a sandbox experiment. The models chosen are: Modflow 2005, Modflow CFPV1 and Modflow CFPV2. A sandbox experiment was implemented in such way that all the parameters required for each model can be measured. The sandbox experiment was repeated several times under different conditions. The model validation will be carried out by comparing the results of the model simulation and the real data. This model validation will allows ud to compare the accuracy of each model and the applicability in Karst. Also we will be able to evaluate if the results of the complex models improve a lot compared to the simple models specially because some models require complex parameters that are difficult to measure in the real world.

  5. Continental-scale convection-permitting modeling of the current and future climate of North America

    Science.gov (United States)

    Liu, Changhai; Ikeda, Kyoko; Rasmussen, Roy; Barlage, Mike; Newman, Andrew J.; Prein, Andreas F.; Chen, Fei; Chen, Liang; Clark, Martyn; Dai, Aiguo; Dudhia, Jimy; Eidhammer, Trude; Gochis, David; Gutmann, Ethan; Kurkute, Sopan; Li, Yanping; Thompson, Gregory; Yates, David

    2016-08-01

    Orographic precipitation and snowpack provide a vital water resource for the western U.S., while convective precipitation accounts for a significant part of annual precipitation in the eastern U.S. As a result, water managers are keenly interested in their fate under climate change. However, previous studies of water cycle changes in the U.S. have been conducted with climate models of relatively coarse resolution, leading to potential misrepresentation of key physical processes. This paper presents results from a high-resolution climate change simulation that permits convection and resolves mesoscale orography at 4-km grid spacing over much of North America using the Weather Research and Forecasting (WRF) model. Two 13-year simulations were performed, consisting of a retrospective simulation (October 2000-September 2013) with initial and boundary conditions from ERA-interim and a future climate sensitivity simulation with modified reanalysis-derived initial and boundary conditions through adding the CMIP5 ensemble-mean high-end emission scenario climate change. The retrospective simulation is evaluated by validating against Snowpack Telemetry (SNOTEL) and an ensemble of gridded observational datasets. It shows overall good performance capturing the annual/seasonal/sub-seasonal precipitation and surface temperature climatology except for a summer dry and warm bias in the central U.S. In particular, the WRF seasonal precipitation agrees with SNOTEL observations within a few percent over the mountain ranges, providing confidence in the model's estimation of western U.S. seasonal snowfall and snowpack. The future climate simulation forced with warmer and moister perturbed boundary conditions enhances annual and winter-spring-fall seasonal precipitation over most of the contiguous United States (CONUS), but suppresses summertime precipitation in the central U.S. The WRF-downscaled climate change simulations provide a high-resolution dataset (i.e., High-Resolution CONUS

  6. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  7. On the development and validation of QSAR models.

    Science.gov (United States)

    Gramatica, Paola

    2013-01-01

    The fundamental and more critical steps that are necessary for the development and validation of QSAR models are presented in this chapter as best practices in the field. These procedures are discussed in the context of predictive QSAR modelling that is focused on achieving models of the highest statistical quality and with external predictive power. The most important and most used statistical parameters needed to verify the real performances of QSAR models (of both linear regression and classification) are presented. Special emphasis is placed on the validation of models, both internally and externally, as well as on the need to define model applicability domains, which should be done when models are employed for the prediction of new external compounds.

  8. Evaluation of the Australian Community Climate and Earth-System Simulator Chemistry-Climate Model

    Directory of Open Access Journals (Sweden)

    K. A. Stone

    2015-07-01

    Full Text Available Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter and stratospheric cold biases (up to 10.1 K at the South Pole outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM index compares well with ERA-Interim data. Accompanying

  9. Pan evaporation modeling using six different heuristic computing methods in different climates of China

    Science.gov (United States)

    Wang, Lunche; Kisi, Ozgur; Zounemat-Kermani, Mohammad; Li, Hui

    2017-01-01

    Pan evaporation (Ep) plays important roles in agricultural water resources management. One of the basic challenges is modeling Ep using limited climatic parameters because there are a number of factors affecting the evaporation rate. This study investigated the abilities of six different soft computing methods, multi-layer perceptron (MLP), generalized regression neural network (GRNN), fuzzy genetic (FG), least square support vector machine (LSSVM), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference systems with grid partition (ANFIS-GP), and two regression methods, multiple linear regression (MLR) and Stephens and Stewart model (SS) in predicting monthly Ep. Long-term climatic data at various sites crossing a wide range of climates during 1961-2000 are used for model development and validation. The results showed that the models have different accuracies in different climates and the MLP model performed superior to the other models in predicting monthly Ep at most stations using local input combinations (for example, the MAE (mean absolute errors), RMSE (root mean square errors), and determination coefficient (R2) are 0.314 mm/day, 0.405 mm/day and 0.988, respectively for HEB station), while GRNN model performed better in Tibetan Plateau (MAE, RMSE and R2 are 0.459 mm/day, 0.592 mm/day and 0.932, respectively). The accuracies of above models ranked as: MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS and MLR. The overall results indicated that the soft computing techniques generally performed better than the regression methods, but MLR and SS models can be more preferred at some climatic zones instead of complex nonlinear models, for example, the BJ (Beijing), CQ (Chongqing) and HK (Haikou) stations. Therefore, it can be concluded that Ep could be successfully predicted using above models in hydrological modeling studies.

  10. Berry composition and climate: responses and empirical models

    Science.gov (United States)

    Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson

    2014-08-01

    Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry

  11. Multi-wheat-model ensemble responses to interannual climatic variability

    DEFF Research Database (Denmark)

    Ruane, A C; Hudson, N I; Asseng, S

    2016-01-01

    evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...... common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 ≤ 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long...

  12. Web Service Based Approach to Link Heterogeneous Climate-Energy-Economy Models for Climate Change Mitigation Analysis

    NARCIS (Netherlands)

    Belete, Getachew F.; Voinov, Alexey; Bulavskaya, Tatyana; Niamir, Leila; Dhavala, Kishore

    2016-01-01

    Climate change mitigation analysis requires understanding the causes and identifying the possible alternative actions that could be taken. We linked heterogeneous models that focus on climate, energy, and economy for the purpose of climate change mitigation. The models were originally developed to s

  13. Observationally-Based Data/Model Metrics from the Southern Ocean Climate Model Atlas

    Science.gov (United States)

    Abell, J.; Russell, J. L.; Goodman, P. J.

    2015-12-01

    The Southern Ocean Climate Model Atlas makes available observationally-based standardized data/model metrics of the latest simulations of climate and projections of climate change from available climate models. Global climate model simulations differ greatly in the Southern Ocean, so the development of consistent, observationally-based metrics, by which to assess the fidelity of model simulations is essential. We will present metrics showing and quantifying the results of the modern day climate simulations over the Southern Ocean from models submitted as part of the CMIP5/IPCC-AR5 process. Our analysis will focus on the simulations of the temperature, salinity and carbon at various depths and along significant hydrographic sections. The models exhibit different skill levels with various metrics between models and also within individual models.

  14. Using a Global Climate Model in an On-line Climate Change Course

    Science.gov (United States)

    Randle, D. E.; Chandler, M. A.; Sohl, L. E.

    2012-12-01

    Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that

  15. Post-2020 climate agreements in the major economies assessed in the light of global models

    NARCIS (Netherlands)

    Tavoni, M.; Kriegler, E.; Riahi, K.; van Vuuren, D.F.; Aboumahboub, T.; Bowen, A.; Calvin, K.; Campiglio, E.; Kober, T.; Jewell, J.; Luderer, G.; Marangoni, G.; McCollum, D.; van Sluisveld, M.; Zimmer, A.; van der Zwaan, B.

    2014-01-01

    Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced

  16. Post-2020 climate agreements in the major economies assessed in the light of global models

    NARCIS (Netherlands)

    Tavoni, Massimo; Kriegler, Elmar; Riahi, Keywan; Van Vuuren, Detlef P.; Aboumahboub, Tino; Bowen, Alex; Calvin, Katherine; Campiglio, Emanuele; Kober, Tom; Jewell, Jessica; Luderer, Gunnar; Marangoni, Giacomo; Mccollum, David; Van Sluisveld, Mariësse; Zimmer, Anne; Van Der Zwaan, Bob

    2015-01-01

    Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced

  17. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    Science.gov (United States)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated

  18. Climatic Classification over Asia during the Middle Holocene Climatic Optimum Based on PMIP Models

    Institute of Scientific and Technical Information of China (English)

    Hyuntaik Oh; Ho-Jeong Shin

    2016-01-01

    ABSTRACT:When considering potential global warming projections, it is useful to understand the im-pact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project (PMIP) models. The reconstructed winter (summer) surface air temperature at 6 kyr before present was 0.85 ºC (0.21 ºC) lower (higher) than the present day over Asia, 60ºE–150ºE, 10ºN–60ºN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1 larger than present day, respectively. The Group B climate, which means the dry climates based on Köppen climate classification, at 6 kyr before present decreased 17%compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.

  19. The hypothetical world of CoMFA and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Oprea, T.I. [Los Alamos National Lab., NM (United States)

    1996-12-31

    CoMFA is a technique used to establish the three-dimensional similarity of molecular structures, in relationship to a target property. Because the risk of chance correlation is high, validation is required for all CoMFA models. The following validation steps should be performed: the choice of alignment rules (superimposition and conformer criteria) has to use experimental data when available, or different (alternate) hypotheses; statistical methods (e.g., cross-validation with randomized groups), have to emphasize simplicity, robustness, predictivity and explanatory power. When several CoMFA-QSAR models on similar targets and/or structures are available, qualitative lateral validation can be applied. This meta-analysis for CoMFA models offers a broader perspective on the similarities and differences between compared biological targets, with potential applications in rational drug design [e.g., selectivity, efficacy] and environmental toxicology. Examples that focus on validation of CoMFA models include the following steroid-binding proteins: aromatase, the estrogen and the androgen receptors, a monoclonal antibody against progesterone and two steroid binding globulins.

  20. Observations that polar climate modelers use and want

    Science.gov (United States)

    Kay, J. E.; de Boer, G.; Hunke, E. C.; Bailey, D. A.; Schneider, D. P.

    2012-12-01

    Observations are essential for motivating and establishing improvement in the representation of polar processes within climate models. We believe that explicitly documenting the current methods used to develop and evaluate climate models with observations will help inform and improve collaborations between the observational and climate modeling communities. As such, we will present the current strategy of the Polar Climate Working Group (PCWG) to evaluate polar processes within Community Earth System Model (CESM) using observations. Our presentation will focus primarily on PCWG evaluation of atmospheric, sea ice, and surface oceanic processes. In the future, we hope to expand to include land surface, deep ocean, and biogeochemical observations. We hope our presentation, and a related working document developed by the PCWG (https://docs.google.com/document/d/1zt0xParsFeMYhlihfxVJhS3D5nEcKb8A41JH0G1Ic-E/edit) inspires new and useful interactions that lead to improved climate model representation of polar processes relevant to polar climate.

  1. Climatic Effects of Contrail Cirrus over the Western United States: A Regional Climate Model Investigation

    Science.gov (United States)

    Liou, K.; Ou, S. S.; Kim, J.; Gu, Y.; Yang, P.; Friedl, R. R.

    2009-12-01

    We investigate the impact of contrails and contrail induced cirrus clouds (CICC) on regional energy and water cycles over the Western United States (WUS), a region of both heavy air traffic and high climate sensitivity. Mountain snowpack in the WUS is a major source of warm-season water supply for Southern California and is highly sensitive to seasonal insolation variation, which can be significantly affected by the frequent presence of contrails/CICC. A regional climate model with an 18-km horizontal resolution based on the Weather Research and Forecast (WRF) model has been developed, which includes improved parameterizations of the optical properties of ice clouds and contrails in the Fu-Liou broadband radiative transfer model. The large-scale forcing data for driving regional climate simulations has been obtained from the NCEP/DOE re-analysis-2. We conduct multiple-year perpetual-spring climate runs to simulate the current climate conditions of the WUS and to investigate the climatic impact of contrails/CICC on radiative forcing, surface temperature, precipitation, and snowpack coverage. As a first approximation, we develop a linear correlation between available aviation emission data and contrail cover using the existing GCM results as proxy. Additionally, we use the ice crystal size spectrum and shape determined from the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) for calculations of the optical properties of contrails/CICC for input to the regional climate model. Preliminary simulation results and uncertainty analysis are presented in association with the effects of contrails/CICC cover and ice crystal size/shape on surface radiative forcing, surface temperature, and snow cover over the WUS in spring.

  2. SIMULATION OF PRESENT CLIMATE OVER EAST ASIA BY A REGIONAL CLIMATE MODEL

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong-feng; GAO Xue-jie; OUYANG Li-cheng; DONG Wen-jie

    2008-01-01

    A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of themodel in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. AS for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.

  3. Exploitation of parallelism in climate models. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Ferdinand; Tribbia, Joseph J.; Williamson, David L.

    2001-02-05

    This final report includes details on the research accomplished by the grant entitled 'Exploitation of Parallelism in Climate Models' to the University of Maryland. The purpose of the grant was to shed light on (a) how to reconfigure the atmospheric prediction equations such that the time iteration process could be compressed by use of MPP architecture; (b) how to develop local subgrid scale models which can provide time and space dependent parameterization for a state-of-the-art climate model to minimize the scale resolution necessary for a climate model, and to utilize MPP capability to simultaneously integrate those subgrid models and their statistics; and (c) how to capitalize on the MPP architecture to study the inherent ensemble nature of the climate problem. In the process of addressing these issues, we created parallel algorithms with spectral accuracy; we developed a process for concurrent climate simulations; we established suitable model reconstructions to speed up computation; we identified and tested optimum realization statistics; we undertook a number of parameterization studies to better understand model physics; and we studied the impact of subgrid scale motions and their parameterization in atmospheric models.

  4. Modelling of labour productivity loss due to climate change: HEAT-SHIELD

    Science.gov (United States)

    Kjellstrom, Tord; Daanen, Hein

    2016-04-01

    Climate change will bring higher heat levels (temperature and humidity combined) to large parts of the world. When these levels reach above thresholds well defined by human physiology, the ability to maintain physical activity levels decrease and labour productivity is reduced. This impact is of particular importance in work situations in areas with long high intensity hot seasons, but also affects cooler areas during heat waves. Our modelling of labour productivity loss includes climate model data of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP), calculations of heat stress indexes during different months, estimations of work capacity loss and its annual impacts in different parts of the world. Different climate models will be compared for the Representative Concentration Pathways (RCPs) and the outcomes of the 2015 Paris Climate Conference (COP21) agreements. The validation includes comparisons of modelling outputs with actual field studies using historical heat data. These modelling approaches are a first stage contribution to the European Commission funded HEAT-SHIELD project.

  5. On the importance of paleoclimate modelling for improving predictions of future climate change

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2009-12-01

    Full Text Available We use an ensemble of runs from the MIROC3.2 AGCM with slab-ocean to explore the extent to which mid-Holocene simulations are relevant to predictions of future climate change. The results are compared with similar analyses for the Last Glacial Maximum (LGM and pre-industrial control climate. We suggest that the paleoclimate epochs can provide some independent validation of the models that is also relevant for future predictions. Considering the paleoclimate epochs, we find that the stronger global forcing and hence larger climate change at the LGM makes this likely to be the more powerful one for estimating the large-scale changes that are anticipated due to anthropogenic forcing. The phenomena in the mid-Holocene simulations which are most strongly correlated with future changes (i.e., the mid to high northern latitude land temperature and monsoon precipitation do, however, coincide with areas where the LGM results are not correlated with future changes, and these are also areas where the paleodata indicate significant climate changes have occurred. Thus, these regions and phenomena for the mid-Holocene may be useful for model improvement and validation.

  6. Importance of Computer Model Validation in Pyroprocessing Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Li, Hui; Yim, M. S. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    In this research, we developed a plan for experimental validation of one of the computer models developed for ER process modeling, i. e., the ERAD code. Several candidate surrogate materials are selected for the experiment considering the chemical and physical properties. Molten salt-based pyroprocessing technology is being examined internationally as an alternative to treat spent nuclear fuel over aqueous technology. The central process in pyroprocessing is electrorefining(ER) which separates uranium from transuranic elements and fission products present in spent nuclear fuel. ER is a widely used process in the minerals industry to purify impure metals. Studies of ER by using actual spent nuclear fuel materials are problematic for both technical and political reasons. Therefore, the initial effort for ER process optimization is made by using computer models. A number of models have been developed for this purpose. But as validation of these models is incomplete and often times problematic, the simulation results from these models are inherently uncertain.

  7. Climate-based models for West Nile Culex mosquito vectors in the Northeastern US

    Science.gov (United States)

    Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.

    2011-05-01

    Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.

  8. The turbulent viscosity models and their experimental validation; Les modeles de viscosite turbulente et leur validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on turbulent viscosity models and on their experimental validation was organized by the `convection` section of the French society of thermal engineers. From the 9 papers presented during this workshop, 8 deal with the modeling of turbulent flows inside combustion chambers, turbo-machineries or in other energy-related applications, and have been selected for ETDE. (J.S.)

  9. Multi-wheat-model ensemble responses to interannual climate variability

    NARCIS (Netherlands)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos; Basso, Bruno; Bertuzzi, Patrick; Biernath, Christian; Brisson, Nadine; Challinor, Andrew J.; Doltra, Jordi; Gayler, Sebastian; Goldberg, Richard; Grant, Robert F.; Heng, Lee; Hooker, Josh; Hunt, Leslie A.; Ingwersen, Joachim; Izaurralde, Roberto C.; Kersebaum, Kurt Christian; Kumar, Soora Naresh; Müller, Christoph; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E.; Osborne, Tom M.; Palosuo, Taru; Priesack, Eckart; Ripoche, Dominique; Rötter, Reimund P.; Semenov, Mikhail A.; Shcherbak, Iurii; Steduto, Pasquale; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Travasso, Maria; Waha, Katharina; Wallach, Daniel; White, Jeffrey W.; Wolf, Joost

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-2010 grain yield, and

  10. Contact Modelling in Resistance Welding, Part II: Experimental Validation

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2006-01-01

    Contact algorithms in resistance welding presented in the previous paper are experimentally validated in the present paper. In order to verify the mechanical contact algorithm, two types of experiments, i.e. sandwich upsetting of circular, cylindrical specimens and compression tests of discs...... with a solid ring projection towards a flat ring, are carried out at room temperature. The complete algorithm, involving not only the mechanical model but also the thermal and electrical models, is validated by projection welding experiments. The experimental results are in satisfactory agreement...

  11. Human surrogate models of neuropathic pain: validity and limitations.

    Science.gov (United States)

    Binder, Andreas

    2016-02-01

    Human surrogate models of neuropathic pain in healthy subjects are used to study symptoms, signs, and the hypothesized underlying mechanisms. Although different models are available, different spontaneous and evoked symptoms and signs are inducible; 2 key questions need to be answered: are human surrogate models conceptually valid, ie, do they share the sensory phenotype of neuropathic pain states, and are they sufficiently reliable to allow consistent translational research?

  12. A Model for Teaching a Climate Change Elective Science Course at the Community College Level

    Science.gov (United States)

    Mandia, S. A.

    2012-12-01

    The impact of global climate change is far-reaching, both for humanity and for the environment. It is essential that our students be provided a strong scientific background for the role of natural and human caused climate change so that they are better prepared to become involved in the discussion. Here the author reveals a successful model designed for use with a diverse student body at the community college level. Teaching strategies beyond the traditional lecture and exam style include: web-based resources such as static websites along with dynamic blogging tools, post-lecture cooperative learning review sessions, weekly current event research projects, use of rubrics to assist students in their own project evaluation before submission, and a research paper utilizing the Skeptical Science website to examine the validity of the most common climate change myths.

  13. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    model, HIRHAM. The physics of the coupling is formulated using an energy-based SVAT (land surface) model while the numerical coupling exploits the OpenMI modelling interface. First, some investigations of the applicability of the SVAT model are presented, including our ability to characterise...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...

  14. VARIATIONAL ITERATION SOLVING METHOD FOR SEA-AIR OSCILLATOR MODEL OF INTERDECADAL CLIMATE FLUCTUATIONS

    Institute of Scientific and Technical Information of China (English)

    MO Jia-qi; LIN Yi-hua; WANG Hui

    2005-01-01

    Atmospheric physics is a very complicated natural phenomenon and needs to simplify its basic models for the sea-air oscillator. And it is solved by using the approximate method. The variational iteration method is a simple and valid method. In this paper the coupled system for a sea-air oscillator model of interdecadal climate fluctuations is considered. Firstly, through introducing a set of functions, and computing the variations, the Lagrange multipliers are obtained. And then, the generalized expressions of variational iteration are constructed. Finally, through selecting appropriate initial iteration from the iteration expressions, the approximations of solution for the sea-air oscillator model are solved successively.

  15. Validation techniques of agent based modelling for geospatial simulations

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2014-10-01

    Full Text Available One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS, biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI’s ArcGIS, OpenMap, GeoTools, etc for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  16. Validation techniques of agent based modelling for geospatial simulations

    Science.gov (United States)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  17. What Can Human Geography Offer Climate Change Modelling?

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2014-01-01

    The discipline of Geography may be one of the most prominent and oldest disciplines in the conceptualization of human–environment interactions that integrates elements from both natural and social sciences. Yet, much research on society–environment interactions on climate change reduces human...... conceptual modelling of climate change adaption and mitigation. In other words, geographical representations do matter. In the following we will first reflect upon what I shall call spatio-temporal tides and waves of the human environment theme to examine the methodological grounds on which climate change...

  18. MODEL-BASED VALIDATION AND VERIFICATION OF ANOMALIES IN LEGISLATION

    Directory of Open Access Journals (Sweden)

    Vjeran Strahonja

    2006-12-01

    Full Text Available An anomaly in legislation is absence of completeness, consistency and other desirable properties, caused by different semantic, syntactic or pragmatic reasons. In general, the detection of anomalies in legislation comprises validation and verification. The basic idea of research, as presented in this paper, is modelling legislation by capturing domain knowledge of legislation and specifying it in a generic way by using commonly agreed and understandable modelling concepts of the Unified Modelling Language (UML. Models of legislation enable to understand the system better, support the detection of anomalies and help to improve the quality of legislation by validation and verification. By implementing model-based approach, the object of validation and verification moves from legislation to its model. The business domain of legislation has two distinct aspects: a structural or static aspect (functionality, business data etc., and a behavioural or dynamic part (states, transitions, activities, sequences etc.. Because anomalism can occur on two different levels, on the level of a model, or on the level of legislation itself, a framework for validation and verification of legal regulation and its model is discussed. The presented framework includes some significant types of semantic and syntactic anomalies. Some ideas for assessment of pragmatic anomalies of models were found in the field of software quality metrics. Thus pragmatic features and attributes can be determined that could be relevant for evaluation purposes of models. Based on analogue standards for the evaluation of software, a qualitative and quantitative scale can be applied to determine the value of some feature for a specific model.

  19. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    Science.gov (United States)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  20. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  1. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  2. Spatio-temporal dynamic climate model for Neoleucinodes elegantalis using CLIMEX

    Science.gov (United States)

    da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; da Silva, Ezio Marques; da Silva Galdino, Tarcisio Visintin; Picanço, Marcelo Coutinho

    2016-10-01

    Seasonal variations are important components in understanding the ecology of insect population of crops. Ecological studies through modeling may be a useful tool for enhancing knowledge of seasonal patterns of insects on field crops as well as seasonal patterns of favorable climatic conditions for species. Recently CLIMEX, a semi-mechanistic niche model, was upgraded and enhanced to consider spatio-temporal dynamics of climate suitability through time. In this study, attempts were made to determine monthly variations of climate suitability for Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae) in five commercial tomato crop localities through the latest version of CLIMEX. We observed that N. elegantalis displays seasonality with increased abundance in tomato crops during summer and autumn, corresponding to the first 6 months of the year in monitored areas in this study. Our model demonstrated a strong accord between the CLIMEX weekly growth index (GIw) and the density of N. elegantalis for this period, thus indicating a greater confidence in our model results. Our model shows a seasonal variability of climatic suitability for N. elegantalis and provides useful information for initiating methods for timely management, such as sampling strategies and control, during periods of high degree of suitability for N. elegantalis. In this study, we ensure that the simulation results are valid through our verification using field data.

  3. Spatial-temporal assessment of climate model drifts

    Science.gov (United States)

    Zanchettin, Davide; Woldeyes Arisido, Maeregu; Gaetan, Carlo; Rubino, Angelo

    2016-04-01

    Decadal climate forecasts with full-field initialized coupled climate models are affected by a growing error signal that develops due to the adjustment of the simulations from the assimilated state consistent with observations to the state consistent with the biased model's climatology. Sea-surface temperature (SST) drifts and biases are a major concern due to the central role of SST properties for the dynamical coupling between the atmosphere and the ocean, and for the associated variability. Therefore, strong SST drifts complicate the initialization and assessment of decadal climate prediction experiments, and can be detrimental for their overall quality. We propose a dynamic linear model based on a state-space approach and developed within a Bayesian hierarchical framework for probabilistic assessment of spatial and temporal characteristics of SST drifts in ensemble climate simulations. The state-space approach uses unobservable state variables to directly model the processes generating the observed variability. The statistical model is based on a sequential definition of the process having a conditional dependency only on the previous time step, which therefore corresponds to the Kalman filter formulas. In our formulation, the statistical model distinguishes between seasonal and longer-term drift components, and between large-scale and local drifts. We apply the Bayesian method to make inferences on the variance components of the Gaussian errors in both the observation and system equations of the state-space model. To this purpose, we draw samples from their posterior distributions using a Monte Carlo Markov Chain simulation technique with a Gibbs sampler. In this contribution we illustrate a first application of the model using the MiKlip prototype system for decadal climate predictions. We focus on the tropical Atlantic Ocean - a region where climate models are typically affected by a severe warm SST bias - to demonstrate how our approach allows for a more

  4. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    CERN Document Server

    Apostolakis, J; Bagulya, A; Brown, J M C; Burkhardt, H; Chikuma, N; Cortes-Giraldo, M A; Elles, S; Grichine, V; Guatelli, S; Incerti, S; Ivanchenko, V N; Jacquemier, J; Kadri, O; Maire, M; Pandola, L; Sawkey, D; Toshito, T; Urban, L; Yamashita, T

    2015-01-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed.

  5. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    Science.gov (United States)

    Apostolakis, J.; Asai, M.; Bagulya, A.; Brown, J. M. C.; Burkhardt, H.; Chikuma, N.; Cortes-Giraldo, M. A.; Elles, S.; Grichine, V.; Guatelli, S.; Incerti, S.; Ivanchenko, V. N.; Jacquemier, J.; Kadri, O.; Maire, M.; Pandola, L.; Sawkey, D.; Toshito, T.; Urban, L.; Yamashita, T.

    2015-12-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed.

  6. External model validation of binary clinical risk prediction models in cardiovascular and thoracic surgery.

    Science.gov (United States)

    Hickey, Graeme L; Blackstone, Eugene H

    2016-08-01

    Clinical risk-prediction models serve an important role in healthcare. They are used for clinical decision-making and measuring the performance of healthcare providers. To establish confidence in a model, external model validation is imperative. When designing such an external model validation study, thought must be given to patient selection, risk factor and outcome definitions, missing data, and the transparent reporting of the analysis. In addition, there are a number of statistical methods available for external model validation. Execution of a rigorous external validation study rests in proper study design, application of suitable statistical methods, and transparent reporting.

  7. System Modeling, Validation, and Design of Shape Controllers for NSTX

    Science.gov (United States)

    Walker, M. L.; Humphreys, D. A.; Eidietis, N. W.; Leuer, J. A.; Welander, A. S.; Kolemen, E.

    2011-10-01

    Modeling of the linearized control response of plasma shape and position has become fairly routine in the last several years. However, such response models rely on the input of accurate values of model parameters such as conductor and diagnostic sensor geometry and conductor resistivity or resistance. Confidence in use of such a model therefore requires that some effort be spent in validating that the model has been correctly constructed. We describe the process of constructing and validating a response model for NSTX plasma shape and position control, and subsequent use of that model for the development of shape and position controllers. The model development, validation, and control design processes are all integrated within a Matlab-based toolset known as TokSys. The control design method described emphasizes use of so-called decoupling control, in which combinations of coil current modifications are designed to modify only one control parameter at a time, without perturbing any other control parameter values. Work supported by US DOE under DE-FG02-99ER54522 and DE-AC02-09CH11466.

  8. In-situ databases and comparison of ESA Ocean Colour Climate Change Initiative (OC-CCI) products with precursor data, towards an integrated approach for ocean colour validation and climate studies

    Science.gov (United States)

    Brotas, Vanda; Valente, André; Couto, André B.; Grant, Mike; Chuprin, Andrei; Jackson, Thomas; Groom, Steve; Sathyendranath, Shubha

    2014-05-01

    Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour CCI focuses on the production of Ocean Colour ECV uses remote sensing reflectances to derive inherent optical properties and chlorophyll a concentration from ESA's MERIS (2002-2012) and NASA's SeaWiFS (1997 - 2010) and MODIS (2002-2012) sensor archives. This work presents an integrated approach by setting up a global database of in situ measurements and by inter-comparing OC-CCI products with pre-cursor datasets. The availability of in situ databases is fundamental for the validation of satellite derived ocean colour products. A global distribution in situ database was assembled, from several pre-existing datasets, with data spanning between 1997 and 2012. It includes in-situ measurements of remote sensing reflectances, concentration of chlorophyll-a, inherent optical properties and diffuse attenuation coefficient. The database is composed from observations of the following datasets: NOMAD, SeaBASS, MERMAID, AERONET-OC, BOUSSOLE and HOTS. The result was a merged dataset tuned for the validation of satellite-derived ocean colour products. This was an attempt to gather, homogenize and merge, a large high-quality bio-optical marine in situ data, as using all datasets in a single validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. An inter-comparison analysis between OC-CCI chlorophyll-a product and satellite pre-cursor datasets was done with single missions and merged single mission products. Single mission datasets considered were SeaWiFS, MODIS-Aqua and MERIS; merged mission datasets were obtained from the GlobColour (GC) as well as the Making Earth Science

  9. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    Science.gov (United States)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Wada, Y.

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  10. Model Validation for Shipboard Power Cables Using Scattering Parameters%Model Validation for Shipboard Power Cables Using Scattering Parameters

    Institute of Scientific and Technical Information of China (English)

    Lukas Graber; Diomar Infante; Michael Steurer; William W. Brey

    2011-01-01

    Careful analysis of transients in shipboard power systems is important to achieve long life times of the com ponents in future all-electric ships. In order to accomplish results with high accuracy, it is recommended to validate cable models as they have significant influence on the amplitude and frequency spectrum of voltage transients. The authors propose comparison of model and measurement using scattering parameters. They can be easily obtained from measurement and simulation and deliver broadband information about the accuracy of the model. The measurement can be performed using a vector network analyzer. The process to extract scattering parameters from simulation models is explained in detail. Three different simulation models of a 5 kV XLPE power cable have been validated. The chosen approach delivers an efficient tool to quickly estimate the quality of a model.

  11. Cross-validation model assessment for modular networks

    CERN Document Server

    Kawamoto, Tatsuro

    2016-01-01

    Model assessment of the stochastic block model is a crucial step in identification of modular structures in networks. Although this has typically been done according to the principle that a parsimonious model with a large marginal likelihood or a short description length should be selected, another principle is that a model with a small prediction error should be selected. We show that the leave-one-out cross-validation estimate of the prediction error can be efficiently obtained using belief propagation for sparse networks. Furthermore, the relations among the objectives for model assessment enable us to determine the exact cause of overfitting.

  12. Effects of climate change on an emperor penguin population: analysis of coupled demographic and climate models.

    Science.gov (United States)

    Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Barbraud, Christophe; Weimerskirch, Henri; Serreze, Mark; Caswell, Hal

    2012-09-01

    Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage-structured, seasonal, nonlinear, two-sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture-mark-recapture analysis, we find that seasonal sea ice concentration anomalies (SICa ) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa , because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa . We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa , which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor

  13. Considerations for building climate-based species distribution models

    Science.gov (United States)

    Bucklin, David N; Basille, Mathieu; Romanach, Stephanie; Brandt, Laura A.; Mazzotti, Frank J.; Watling, James I.

    2016-01-01

    Climate plays an important role in the distribution of species. A given species may adjust to new conditions in-place, move to new areas with suitable climates, or go extinct. Scientists and conservation practitioners use mathematical models to predict the effects of future climate change on wildlife and plan for a biodiverse future. This 8-page fact sheet written by David N. Bucklin, Mathieu Basille, Stephanie S. Romañach, Laura A. Brandt, Frank J. Mazzotti, and James I. Watling and published by the Department of Wildlife Ecology and Conservation explains how, with a better understanding of species distribution models, we can predict how species may respond to climate change. The models alone cannot tell us how a certain species will actually respond to changes in climate, but they can inform conservation planning that aims to allow species to both adapt in place and (for those that are able to) move to newly suitable areas. Such planning will likely minimize loss of biodiversity due to climate change.

  14. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  15. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  16. Parallel community climate model: Description and user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.; Worley, P.H. [and others

    1996-07-15

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain into geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.

  17. Effects of climate model interdependency on the uncertainty quantification of extreme rainfall projections

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Madsen, H.; Rosbjerg, Dan;

    Changes in rainfall extremes under climate change conditions are subject to numerous uncertainties. One of the most important uncertainties arises from the inherent uncertainty in climate models. In recent years, many efforts have been made in creating large multi-model ensembles of both Regional...... Climate Models (RCMs) and General Circulation Models (GCMs). These multi-model ensembles provide the information needed to estimate probabilistic climate change projections. Several probabilistic methods have been suggested. One common assumption in most of these methods is that the climate models...... of accounting for the climate model interdependency when estimating the uncertainty of climate change projections....

  18. Land use effects on climate in China as simulated by a regional climate model

    Institute of Scientific and Technical Information of China (English)

    GAO XueJie; ZHANG DongFeng; CHEN ZhongXin; J.S.PAL; F. GIORGI

    2007-01-01

    A regional climate model (RegCM3)nested within ERA40 re-analyzed data is used to investigate the climate effects of land use change over China. Two 15-year simulations (1987-2001),one with current land use and the other with potential vegetation cover without human intervention, are conducted for a domain encompassing China. The climate impacts of land use change are assessed from the difference between the two simulations. Results show that the current land use (modified by anthropogenic activities) influences local climate as simulated by the model through the reinforcement of the monsoon circulation in both the winter and summer seasons and through changes of the surface energy budget. In winter. Land use change leads to reduced precipitation and decreased surface air temperature south of the Yangtze River, and increased precipitation north of the Yangtze River. Land use change significantly affects summer climate in southern China, yielding increased precipitation over the region, decreased temperature along the Yangtze River and increased temperature in the South China area (south-end of China).In summer, a reduction of precipitation over northern China and a temperature rise over Northwest China are also simulated. Both daily maximum and minimum temperatures are affected in the simulations. In general, the current land use in China leads to enhanced mean annual precipitation and decreased annual temperature over south China along with decreased precipitation over North China.

  19. Land use effects on climate in China as simulated by a regional climate model

    Institute of Scientific and Technical Information of China (English)

    J.S.PAL; F.GIORGI

    2007-01-01

    A regional climate model (RegCM3) nested within ERA40 re-analyzed data is used to investigate the climate effects of land use change over China. Two 15-year simulations (1987―2001), one with current land use and the other with potential vegetation cover without human intervention, are conducted for a domain encompassing China. The climate impacts of land use change are assessed from the difference between the two simulations. Results show that the current land use (modified by anthropogenic ac- tivities) influences local climate as simulated by the model through the reinforcement of the monsoon circulation in both the winter and summer seasons and through changes of the surface energy budget. In winter, land use change leads to reduced precipitation and decreased surface air temperature south of the Yangtze River, and increased precipitation north of the Yangtze River. Land use change signifi- cantly affects summer climate in southern China, yielding increased precipitation over the region, de- creased temperature along the Yangtze River and increased temperature in the South China area (south-end of China). In summer, a reduction of precipitation over northern China and a temperature rise over Northwest China are also simulated. Both daily maximum and minimum temperatures are affected in the simulations. In general, the current land use in China leads to enhanced mean annual precipitation and decreased annual temperature over south China along with decreased precipitation over North China.

  20. Contributions to Future Stratospheric Climate Change: An Idealized Chemistry-Climate Model Sensitivity Study

    Science.gov (United States)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Within the framework of an idealized model sensitivity study, three of the main contributors to future stratospheric climate change are evaluated: increases in greenhouse gas concentrations, ozone recovery, and changing sea surface temperatures (SSTs). These three contributors are explored in combination and separately, to test the interactions between ozone and climate; the linearity of their contributions to stratospheric climate change is also assessed. In a simplified chemistry-climate model, stratospheric global mean temperature is most sensitive to CO2 doubling, followed by ozone depletion, then by increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is more sensitive to changes in CO2, SSTs and O3 than is the Southern Hemisphere (SH); the opposing responses to ozone depletion under low or high background CO2 concentrations, as seen with present-day SSTs, are much weaker and are not statistically significant under enhanced SSTs. Consistent with previous studies, the strength of the Brewer-Dobson circulation is found to increase in an idealized future climate; SSTs contribute most to this increase in the upper troposphere/lower stratosphere (UT/LS) region, while CO2 and ozone changes contribute most in the stratosphere and mesosphere.

  1. Validation of a tuber blight (Phytophthora infestans) prediction model

    Science.gov (United States)

    Potato tuber blight caused by Phytophthora infestans accounts for significant losses in storage. There is limited published quantitative data on predicting tuber blight. We validated a tuber blight prediction model developed in New York with cultivars Allegany, NY 101, and Katahdin using independent...

  2. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  3. Empirical validation data sets for double skin facade models

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2008-01-01

    During recent years application of double skin facades (DSF) has greatly increased. However, successful application depends heavily on reliable and validated models for simulation of the DSF performance and this in turn requires access to high quality experimental data. Three sets of accurate emp...

  4. Bibliometric Modeling Processes and the Empirical Validity of Lotka's Law.

    Science.gov (United States)

    Nicholls, Paul Travis

    1989-01-01

    Examines the elements involved in fitting a bibliometric model to empirical data, proposes a consistent methodology for applying Lotka's law, and presents the results of an empirical test of the methodology. The results are discussed in terms of the validity of Lotka's law and the suitability of the proposed methodology. (49 references) (CLB)

  5. ID Model Construction and Validation: A Multiple Intelligences Case

    Science.gov (United States)

    Tracey, Monica W.; Richey, Rita C.

    2007-01-01

    This is a report of a developmental research study that aimed to construct and validate an instructional design (ID) model that incorporates the theory and practice of multiple intelligences (MI). The study consisted of three phases. In phase one, the theoretical foundations of multiple Intelligences and ID were examined to guide the development…

  6. Validation of Geant4 hadronic physics models at intermediate energies

    Science.gov (United States)

    Banerjee, Sunanda; Geant4 Hadronic Group

    2010-04-01

    GEANT4 provides a number of physics models at intermediate energies (corresponding to incident momenta in the range 1-20 GeV/c). Recently, these models have been validated with existing data from a number of experiments: (a) inclusive proton and neutron production with a variety of beams (π-, π+, p) at different energies between 1 and 9 GeV/c on a number of nuclear targets (from beryllium to uranium); (2) inclusive pion/kaon/proton production from 14.6 GeV/c proton beams on nuclear targets (from beryllium to gold); (3) inclusive pion production from pion beams between 3-13 GeV/c on a number of nuclear targets (from beryllium to lead). The results of simulation/data comparison for different GEANT4 models are discussed in the context of validating the models and determining their usage in physics lists for high energy application. Due to the increasing number of validations becoming available, and the requirement that they be done at regular intervals corresponding to the GEANT4 release schedule, automated methods of validation are being developed.

  7. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.

    2012-01-01

    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided i

  8. Improving Perovskite Solar Cells: Insights From a Validated Device Model

    NARCIS (Netherlands)

    Sherkar, Tejas S.; Momblona, Cristina; Gil-Escrig, Lidon; Bolink, Henk J.; Koster, L. Jan Anton

    2017-01-01

    To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of conta

  9. A review on regional convection permitting climate modeling

    Science.gov (United States)

    van Lipzig, Nicole; Prein, Andreas; Brisson, Erwan; Van Weverberg, Kwinten; Demuzere, Matthias; Saeed, Sajjad; Stengel, Martin

    2016-04-01

    With the increase of computational resources, it has recently become possible to perform climate model integrations where at least part the of convection is resolved. Since convection-permitting models (CPMs) are performing better than models where convection is parameterized, especially for high-impact weather like extreme precipitation, there is currently strong scientific progress in this research domain (Prein et al., 2015). Another advantage of CPMs, that have a horizontal grid spacing CPM simulations, due to its non-hydrostatic dynamics and open international network of scientists. This presentation consists of an overview of the recent progress in CPM, with a focus on COSMO-CLM. It consists of three parts, namely the discussion of i) critical components of CPM, ii) the added value of CPM in the present-day climate and iii) the difference in climate sensitivity in CPM compared to coarser scale models. In terms of added value, the CPMs especially improve the representation of precipitation's, diurnal cycle, intensity and spatial distribution. However, an in depth-evaluation of cloud properties with CCLM over Belgium indicates a strong underestimation of the cloud fraction, causing an overestimation of high temperature extremes (Brisson et al., 2016). In terms of climate sensitivity, the CPMs indicate a stronger increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains compared to coarser scale models. In conclusion, CPMs are a very promising tool for future climate research. However, additional efforts are necessary to overcome remaining deficiencies, like improving the cloud characteristics. This will be a challenging task due to compensating deficiencies that currently exist in `state-of-the-art' models, yielding a good representation of average climate conditions. In the light of using CPMs to study climate change it is necessary that these deficiencies are addressed in future research. Coordinated

  10. A Review on Evaluation Methods of Climate Modeling

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Zong-Ci; LUO; Yong; HUANG; Jian-Bin

    2013-01-01

    There is scientific progress in the evaluation methods of recent Earth system models(ESMs).Methods range from single variable to multi-variables,multi-processes,multi-phenomena quantitative evaluations in five layers(spheres)of the Earth system,from climatic mean assessment to climate change(such as trends,periodicity,interdecadal variability),extreme values,abnormal characters and quantitative evaluations of phenomena,from qualitative assessment to quantitative calculation of reliability and uncertainty for model simulations.Researchers started considering independence and similarity between models in multi-model use,as well as the quantitative evaluation of climate prediction and projection efect and the quantitative uncertainty contribution analysis.In this manuscript,the simulations and projections by both CMIP5 and CMIP3 that have been published after 2007 are reviewed and summarized.

  11. The Development and Validation of the Online Learning Climate Scale (OLCS)

    Science.gov (United States)

    Kaufmann, Renee; Sellnow, Deanna D.; Frisby, Brandi N.

    2016-01-01

    With the increasing popularity of online learning in higher education comes a need to examine students' perceptions about classroom climate in these environments. This two-part study proposes the online learning climate scale (OLCS) for doing so. Informed by both instructional communication and education, the scale consists of several variables…

  12. Process based model sheds light on climate sensitivity of Mediterranean tree-ring width

    Directory of Open Access Journals (Sweden)

    R. Touchan

    2012-03-01

    Full Text Available We use the process-based VS (Vaganov-Shashkin model to investigate whether a regional Pinus halepensis tree-ring chronology from Tunisia can be simulated as a function of climate alone by employing a biological model linking day length and daily temperature and precipitation (AD 1959–2004 from a climate station to ring-width variations. We check performance of the model on independent data by a validation exercise in which the model's parameters are tuned using data for 1982–2004 and the model is applied to generate tree-ring indices for 1959–1981. The validation exercise yields a highly significant positive correlation between the residual chronology and estimated growth curve (r=0.76 p<0.0001, n=23. The model shows that the average duration of the growing season is 191 days, with considerable variation from year to year. On average, soil moisture limits tree-ring growth for 128 days and temperature for 63 days. Model results depend on chosen values of parameters, in particular a parameter specifying a balance ratio between soil moisture and precipitation. Future work in the Mediterranean region should include multi-year natural experiments to verify patterns of cambial-growth variation suggested by the VS model.

  13. Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models.

    Science.gov (United States)

    Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya

    2016-04-13

    Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere-ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave-turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave-turbulence interaction effects in both general ocean circulation models and atmosphere-ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability.

  14. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    Science.gov (United States)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  15. Historical and idealized climate model experiments: an EMIC intercomparison

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.;

    2012-01-01

    and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures......Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE...

  16. Validating firn compaction model with remote sensing data

    DEFF Research Database (Denmark)

    Simonsen, S. B.; Stenseng, Lars; Sørensen, Louise Sandberg

    A comprehensive understanding of firn processes is of outmost importance, when estimating present and future changes of the Greenland Ice Sheet. Especially, when remote sensing altimetry is used to assess the state of ice sheets and their contribution to global sea level rise, firn compaction...... models have been shown to be a key component. Now, remote sensing data can also be used to validate the firn models. Radar penetrating the upper part of the firn column in the interior part of Greenland shows a clear layering. The observed layers from the radar data can be used as an in-situ validation...... correction relative to the changes in the elevation of the surface observed with remote sensing altimetry? What model time resolution is necessary to resolved the observed layering? What model refinements are necessary to give better estimates of the surface mass balance of the Greenland ice sheet from...

  17. Integrated climate and hydrology modelling - Coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Larsen, M.A. [Technical Univ. of Denmark. DTU Management Engineering, DTU Risoe Campus, Roskilde (Denmark)

    2013-10-15

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model (LSM), which is superior to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and precipitation between the two models are included. The preparation of the HIRHAM and MIKE SHE models for the coupled study revealed several findings. The performance of HIRHAM was highly affected by the domain size, domain

  18. Modeling the effects of climate change and acidification on global coral reefs

    Science.gov (United States)

    Logan, C. A.; Donner, S. D.; Eakin, C.; Dunne, J. P.

    2010-12-01

    Climate warming threatens to increase the frequency of mass coral bleaching events. Meanwhile, ocean acidification may increase susceptibility to these events and slow the recovery of corals following bleaching. Using future sea surface warming scenarios from global coupled climate models, previous studies have estimated that corals will experience biannual bleaching events by mid-century unless they are able to acclimatize or adapt at a rate of ~0.2-1.0°C per decade. Empirical studies also show that certain coral ecotypes may be more resistant to bleaching than others (e.g. massive vs. branching). Likewise, more variable thermal history may play a significant role in increasing resistance to bleaching. Better quantifying the impacts of climate change and ocean acidification on coral reefs under different future scenarios is critical to making proactive decisions about both mitigation of greenhouse gas emissions and adaptation to climate change. Proposed here is a model that uses two of the ESM2 GFDL models and combines several previous attempts at modeling climate change effects. This model incorporates thermal history and adaptability into a modified Degree Heating Week bleaching threshold. The model is designed to examine the effects of rising SSTs alone as well as in combination with ocean acidification and other factors to predict future global coral reef bleaching frequency and response by coral ecotype. The ESM2 GFDL models are validated for use in coral reef areas by comparing model results against historical SST satellite data for the years 1985-2006 at 4km and 50km spatial resolutions to assess the models’ reproducibility of mean annual temperature, range, and variability. The modified bleaching threshold is tested against observational bleaching records in well-documented areas (e.g., Great Barrier Reef).

  19. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  20. Evaluating the impacts of climate change on diurnal wind power cycles using multiple regional climate models

    KAUST Repository

    Goddard, Scott D.

    2015-05-01

    Electrical utility system operators must plan resources so that electricity supply matches demand throughout the day. As the proportion of wind-generated electricity in the US grows, changes in daily wind patterns have the potential either to disrupt the utility or increase the value of wind to the system over time. Wind power projects are designed to last many years, so at this timescale, climate change may become an influential factor on wind patterns. We examine the potential effects of climate change on the average diurnal power production cycles at 12 locations in North America by analyzing averaged and individual output from nine high-resolution regional climate models comprising historical (1971–1999) and future (2041–2069) periods. A semi-parametric mixed model is fit using cubic B-splines, and model diagnostics are checked. Then, a likelihood ratio test is applied to test for differences between the time periods in the seasonal daily averaged cycles, and agreement among the individual regional climate models is assessed. We investigate the significant changes by combining boxplots with a differencing approach and identify broad categories of changes in the amplitude, shape, and position of the average daily cycles. We then discuss the potential impact of these changes on wind power production.

  1. Climate of the Greenland ice sheet using a high-resolution climate model - Part 1: Evaluation

    NARCIS (Netherlands)

    Ettema, J.; van den Broeke, M.R.; van Meijgaard, E.; van de Berg, W.J.; Box, J.E.; Steffen, K.

    2010-01-01

    A simulation of 51 years (1957-2008) has been performed over Greenland using the regional atmospheric climate model (RACMO2/GR) at a horizontal grid spacing of 11 km and forced by ECMWF re-analysis products. To better represent processes affecting ice sheet surface mass balance, such as meltwater re

  2. Modeling Climate Change in the Absence of Climate Change Data. Editorial Comment

    Science.gov (United States)

    Skiles, J. W.

    1995-01-01

    Practitioners of climate change prediction base many of their future climate scenarios on General Circulation Models (GCM's), each model with differing assumptions and parameter requirements. For representing the atmosphere, GCM's typically contain equations for calculating motion of particles, thermodynamics and radiation, and continuity of water vapor. Hydrology and heat balance are usually included for continents, and sea ice and heat balance are included for oceans. The current issue of this journal contains a paper by Van Blarcum et al. (1995) that predicts runoff from nine high-latitude rivers under a doubled CO2 atmosphere. The paper is important since river flow is an indicator variable for climate change. The authors show that precipitation will increase under the imposed perturbations and that owing to higher temperatures earlier in the year that cause the snow pack to melt sooner, runoff will also increase. They base their simulations on output from a GCM coupled with an interesting water routing scheme they have devised. Climate change models have been linked to other models to predict deforestation.

  3. What do model results tell us regarding Climate Intervention (Geoengineering) strategies to counter high latitude climate change.

    Science.gov (United States)

    Rasch, P. J.

    2015-12-01

    A number of modeling studies at various levels of complexity have taken place to explore consequences of climate intervention in countering climate change. I will review results from some of those studies, cover some new analysis, and identify areas where more study is needed, with a focus on high latitude climate.

  4. Reconstructing the climate states of the Late Pleistocene with the MIROC climate model

    Science.gov (United States)

    Chan, Wing-Le; Abe-Ouchi, Ayako; O'ishi, Ryouta; Takahashi, Kunio

    2014-05-01

    The Late Pleistocene was a period which lasted from the Eemian interglacial period to the start of the warm Holocene and was characterized mostly by widespread glacial ice. It was also a period which saw modern humans spread throughout the world and other species of the same genus, like the Neanderthals, become extinct. Various hypotheses have been put forward to explain the extinction of Neanderthals, about 30,000 years ago. Among these is one which involves changes in past climate and the inability of Neanderthals to adapt to such changes. The last traces of Neanderthals coincide with the end of Marine Isotope Stage 3 (MIS3) which was marked by large fluctuations in temperature and so-called Heinrich events, as suggested by geochemical records from ice cores. It is thought that melting sea ice or icebergs originating from the Laurentide ice sheet led to a large discharge of freshwater into the North Atlantic Ocean during the Heinrich events and severely weakened the Atlantic meridional overturning circulation, with important environmental ramifications across parts of Europe such as sharp decreases in temperature and reduction in forest cover. In order to assess the effects of past climate change on past hominin migration and on the extinction of certain species, it is first important to have a good understanding of the past climate itself. In this study, we have used three variants of MIROC (The Model for Interdisciplinary Research on Climate), a global climate model, for a time slice experiment within the Late Pleistocene: two mid-resolution models (an atmosphere model and a coupled atmosphere-ocean model) and a high-resolution atmosphere model. To obtain a fuller picture, we also look at a cool stadial state as obtained from a 'freshwater hosing' coupled-model experiment, designed to mimic the effects of freshwater discharge in the North Atlantic. We next use the sea surface temperature response from this experiment to drive the atmosphere models. We discuss

  5. Validating firn compaction model with remote sensing data

    OpenAIRE

    2011-01-01

    A comprehensive understanding of firn processes is of outmost importance, when estimating present and future changes of the Greenland Ice Sheet. Especially, when remote sensing altimetry is used to assess the state of ice sheets and their contribution to global sea level rise, firn compaction models have been shown to be a key component. Now, remote sensing data can also be used to validate the firn models. Radar penetrating the upper part of the firn column in the interior part of Greenland ...

  6. Toward metrics and model validation in web-site QEM

    OpenAIRE

    Olsina Santos, Luis Antonio; Pons, Claudia; Rossi, Gustavo Héctor

    2000-01-01

    In this work, a conceptual framework and the associated strategies for metrics and model validation are analyzed regarding website measurement and evaluation. Particularly, we have conducted three case studies in different Web domains in order to evaluate and compare the quality of sites. For such an end the quantitative, model-based methodology, so-called Web-site QEM (Quality Evaluation Methodology), was utilized. In the assessment process of sites, definition of attributes and measurements...

  7. Validation of a Model for Ice Formation around Finned Tubes

    OpenAIRE

    Kamal A. R. Ismai; Fatima A. M. Lino

    2016-01-01

    Phase change materials although attaractive option for thermal storage applications its main drawback is the slow thermal response during charging and discharging processes due to their low thermal conductivity. The present study validates a model developed by the authors some years ago on radial fins as a method to meliorate the thermal performance of PCM in horizontal storage system. The developed model for the radial finned tube is based on pure conduction, the enthalpy approach and was di...

  8. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    Science.gov (United States)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2016-02-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2 ), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  9. Uncertainties in the regional climate models simulations of South-Asian summer monsoon and climate change

    Science.gov (United States)

    Syed, F. S.; Iqbal, Waheed; Syed, Ahsan Ali Bukhari; Rasul, G.

    2014-04-01

    The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971-2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071-2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.

  10. Regional climate modeling of heat stress, frost, and water stress events in the agricultural region of Southwest Western Australia under the current climate and future climate scenarios.

    Science.gov (United States)

    Kala, Jatin; Lyons, Tom J.; Abbs, Deborah J.; Foster, Ian J.

    2010-05-01

    Heat stress, frost, and water stress events have significant impacts on grain quality and production within the agricultural region (wheat-belt) of Southwest Western Australia (SWWA) (Cramb, 2000) and understanding how the frequency and intensity of these events will change in the future is crucial for management purposes. Hence, the Regional Atmospheric Modeling System (Pielke et al, 1992) (RAMS Version 6.0) is used to simulate the past 10 years of the climate of SWWA at a 20 km grid resolution by down-scaling the 6-hourly 1.0 by 1.0 degree National Center for Environmental Prediction Final Analyses from December 1999 to Present. Daily minimum and maximum temperatures, as well as daily rainfall are validated against observations. Simulations of future climate are carried out by down-scaling the Commonwealth Scientific and Industrial Research Organization (CSIRO) Mark 3.5 General Circulation Model (Gordon et al, 2002) for 10 years (2046-2055) under the SRES A2 scenario using the Cubic Conformal Atmospheric Model (CCAM) (McGregor and Dix, 2008). The 6-hourly CCAM output is then downscaled to a 20 km resolution using RAMS. Changes in extreme events are discussed within the context of the continued viability of agriculture in SWWA. Cramb, J. (2000) Climate in relation to agriculture in south-western Australia. In: The Wheat Book (Eds W. K. Anderson and J. R. Garlinge). Bulletin 4443. Department of Agriculture, Western Australia. Gordon, H. B., Rotstayn, L. D., McGregor, J. L., Dix, M. R., Kowalczyk, E. A., O'Farrell, S. P., Waterman, L. J., Hirst, A. C., Wilson, S. G., Collier, M. A., Watterson, I. G., and Elliott, T. I. (2002). The CSIRO Mk3 Climate System Model [Electronic publication]. Aspendale: CSIRO Atmospheric Research. (CSIRO Atmospheric Research technical paper; no. 60). 130 p McGregor, J. L., and Dix, M. R., (2008) An updated description of the conformal-cubic atmospheric model. High Resolution Simulation of the Atmosphere and Ocean, Hamilton, K. and Ohfuchi

  11. Optimising the FAMOUS climate model: inclusion of global carbon cycling

    Directory of Open Access Journals (Sweden)

    J. H. T. Williams

    2012-10-01

    Full Text Available FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.

  12. Diagnostic indicators for integrated assessment models of climate policy

    NARCIS (Netherlands)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Valeria Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Méjean, Aurélie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef P.

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economy systems can be performed by a variety of models with different functional structures. In order to provide insights into why results differ between models, this article proposes a diagnostic scheme that can be applied to a wid

  13. Curonian Lagoon drainage basin modelling and assessment of climate change impact

    Directory of Open Access Journals (Sweden)

    Natalja Čerkasova

    2016-04-01

    Full Text Available The Curonian Lagoon, which is the largest European coastal lagoon with a surface area of 1578 km2 and a drainage area of 100,458 km2, is facing a severe eutrophication problem. With its increasing water management difficulties, the need for a sophisticated hydrological model of the Curonian Lagoon's drainage area arose, in order to assess possible changes resulting from local and global processes. In this study, we developed and calibrated a sophisticated hydrological model with the required accuracy, as an initial step for the future development of a modelling framework that aims to correctly predict the movement of pesticides, sediments or nutrients, and to evaluate water-management practices. The Soil and Water Assessment Tool was used to implement a model of the study area and to assess the impact of climate-change scenarios on the run-off of the Nemunas River and the Minija River, which are located in the Curonian Lagoons drainage basin. The models calibration and validation were performed using monthly streamflow data, and evaluated using the coefficient of determination (R2 and the Nash-Sutcliffe model efficiency coefficient (NSE. The calculated values of the R2 and NSE for the Nemunas and Minija Rivers stations were 0.81 and 0.79 for the calibration, and 0.679 and 0.602 for the validation period. Two potential climate-change scenarios were developed within the general patterns of near-term climate projections, as defined by the Intergovernmental Panel on Climate Change Fifth Assessment Report: both pessimistic (substantial changes in precipitation and temperature and optimistic (insubstantial changes in precipitation and temperature. Both simulations produce similar general patterns in river-discharge change: a strong increase (up to 22% in the winter months, especially in February, a decrease during the spring (up to 10% and summer (up to 18%, and a slight increase during the autumn (up to 10%.

  14. Validation of models with constant bias: an applied approach

    Directory of Open Access Journals (Sweden)

    Salvador Medina-Peralta

    2014-06-01

    Full Text Available Objective. This paper presents extensions to the statistical validation method based on the procedure of Freese when a model shows constant bias (CB in its predictions and illustrate the method with data from a new mechanistic model that predict weight gain in cattle. Materials and methods. The extensions were the hypothesis tests and maximum anticipated error for the alternative approach, and the confidence interval for a quantile of the distribution of errors. Results. The model evaluated showed CB, once the CB is removed and with a confidence level of 95%, the magnitude of the error does not exceed 0.575 kg. Therefore, the validated model can be used to predict the daily weight gain of cattle, although it will require an adjustment in its structure based on the presence of CB to increase the accuracy of its forecasts. Conclusions. The confidence interval for the 1-α quantile of the distribution of errors after correcting the constant bias, allows determining the top limit for the magnitude of the error of prediction and use it to evaluate the evolution of the model in the forecasting of the system. The confidence interval approach to validate a model is more informative than the hypothesis tests for the same purpose.

  15. Validity of the Bersohn–Zewail model beyond justification

    DEFF Research Database (Denmark)

    Petersen, Jakob; Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2012-01-01

    The absorption of probe pulses in ultrafast pump–probe experiments can be determined from the Bersohn–Zewail (BZ) model. The model relies on classical mechanics to describe the dynamics of the nuclei in the excited electronic state prepared by the ultrashort pump pulse. The BZ model provides...... excellent agreement between the classical trajectory and the average position of the excited state wave packet. By investigating the approximations connecting the nuclear dynamics described by quantum mechanics and the BZ model, we conclude that this agreement goes far beyond the validity of the individual...

  16. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  17. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A.V.; Bezmenov, K.V.; Demchenko, P.F.; Mokhov, I.I.; Petoukhov, V.K. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  18. Validation of a Model for Teaching Canine Fundoscopy.

    Science.gov (United States)

    Nibblett, Belle Marie D; Pereira, Mary Mauldin; Williamson, Julie A; Sithole, Fortune

    2015-01-01

    A validated teaching model for canine fundoscopic examination was developed to improve Day One fundoscopy skills while at the same time reducing use of teaching dogs. This novel eye model was created from a hollow plastic ball with a cutout for the pupil, a suspended 20-diopter lens, and paint and paper simulation of relevant eye structures. This eye model was mounted on a wooden stand with canine head landmarks useful in performing fundoscopy. Veterinary educators performed fundoscopy using this model and completed a survey to establish face and content validity. Subsequently, veterinary students were randomly assigned to pre-laboratory training with or without the use of this teaching model. After completion of an ophthalmology laboratory on teaching dogs, student outcome was assessed by measuring students' ability to see a symbol inserted on the simulated retina in the model. Students also completed a survey regarding their experience with the model and the laboratory. Overall, veterinary educators agreed that this eye model was well constructed and useful in teaching good fundoscopic technique. Student performance of fundoscopy was not negatively impacted by the use of the model. This novel canine model shows promise as a teaching and assessment tool for fundoscopy.

  19. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  20. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  1. A Model for Collaborative Learning in Undergraduate Climate Change Courses

    Science.gov (United States)

    Teranes, J. L.

    2008-12-01

    Like several colleges and universities across the nation, the University of California, San Diego, has introduced climate change topics into many existing and new undergraduate courses. I have administered a program in this area at UCSD and have also developed and taught a new lower-division UCSD course entitled "Climate Change and Society", a general education course for non-majors. This class covers the basics of climate change, such as the science that explains it, the causes of climate change, climate change impacts, and mitigation strategies. The teaching methods for this course stress interdisciplinary approaches. I find that inquiry-based and collaborative modes of learning are particularly effective when applied to science-based climate, environmental and sustainability topics. Undergraduate education is often dominated by a competitive and individualistic approach to learning. In this approach, individual success is frequently perceived as contingent on others being less successful. Such a model is at odds with commonly stated goals of teaching climate change and sustainability, which are to equip students to contribute to the debate on global environmental change and societal adaptation strategies; and to help students become better informed citizens and decision makers. I present classroom-tested strategies for developing collaborative forms of learning in climate change and environmental courses, including team projects, group presentations and group assessment exercises. I show how critical thinking skills and long-term retention of information can benefit in the collaborative mode of learning. I find that a collaborative learning model is especially appropriate to general education courses in which the enrolled student body represents a wide diversity of majors, class level and expertise. I also connect collaborative coursework in interdisciplinary environmental topics directly to applications in the field, where so much "real-world" achievement in

  2. Propeller aircraft interior noise model utilization study and validation

    Science.gov (United States)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  3. Derivation of a climatic dataset for water balance modelling of Pacific atolls

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, Manuel [Univ. of Hamburg (Germany). Inst. of Soil Science; De Freitas, Chris R. [Univ. of Auckland (New Zealand). School of Environment; Matzarakis, Andreas [Freiburg Univ. (Germany). Meteorological Inst.

    2011-10-15

    There are a large number of low islands in the tropical Pacific region where fresh water resources are seriously limited by climate. The resource is coming under increasing pressure as populations grow and rates of development increase. This and the realisation of the possible impact of climate change have highlighted the sensitivity of island communities to the availability of water. However, to assess this sensitivity requires not only standard climatic data such as air temperature and rainfall, but also more specialised data on solar and longwave radiation. Therein lies a major problem as very little island-specific climatic data are available. The aim here is to identify data required for water balance assessments, then assemble and validate that database. It is argued that this is a crucial first step to successful modelling of the water balance of atolls. The study focuses on the vast area of the tropical Pacific bounded by latitudes 30 S to 30 N and longitudes 150 E to 120 W. ERA40 reanalysis data are identified as meeting the requirements both in terms of the number of climatic variables and length of time series. These data are compared with surface climate records of selected low islands. The results show that, although the reanalysis data do provide a reliable database for modelling the water balance of atolls, problems arise from overestimated precipitation and underestimated energy available for evapotranspiration. The significance of this is the aim of the second part of this work that aims to assess the sensitivity of water resources of atolls to climate change and variability at the regional scale. (orig.)

  4. An energy balance model of carbon's effect on climate change

    CERN Document Server

    Benney, Lucas

    2015-01-01

    Due to climate change, the interest of studying our climatic system using mathematical modeling has become tremendous in recent years. One well-known model is Budyko's system, which represents the coupled evolution of two variables, the ice-line and the average earth surface temperature. The system depends on natural parameters, such as the earth albedo, and the amount A of carbon in the atmosphere. We introduce a 3-dimensional extension of this model in which we regard A as the third coupled variable of the system. We analyze the phase space and dependence on parameters, looking for Hopf bifurcations and the birth of cycling behavior. We interpret the cycles as climatic oscillations triggered by the sensitivity in our regulation of carbon emissions at extreme temperatures.

  5. Modeling the water balance of sloped vineyards under various climate change scenarios

    Directory of Open Access Journals (Sweden)

    Hofmann Marco

    2015-01-01

    Full Text Available Grapes for wine production are a highly climate sensitive crop and vineyard water budget is a decisive factor in quality formation. In order to conduct risk assessments for climate change effects in viticulture, models are needed which can be applied to complete growing regions. We first modified an existing simplified geometric vineyard model of radiation interception and resulting water use to incorporate numerical Monte Carlo simulations and the physical aspects of radiation interactions between canopy and vineyard slope and azimuth. We then used four regional climate models to assess for possible effects on the water budget of selected vineyard sites up to 2100. The model was developed to describe the partitioning of short-wave radiation between grapevine canopy and soil surface, respectively green cover, necessary to calculate vineyard evapotranspiration. Soil water storage was allocated to two sub reservoirs. The model was adopted for steep slope vineyards based on coordinate transformation and validated against measurements of grapevine sap flow and soil water content determined down to 1.6 m depth at three different sites over two years. The results showed good agreement of modelled and observed soil water dynamics of vineyards with large variations in site specific soil water holding capacity and viticultural management. Simulated sap flow was in overall good agreement with measured sap flow but site-specific responses of sap flow to potential evapotranspiration were observed. The analyses of climate change impacts on vineyard water budget demonstrated the importance of site-specific assessment due to natural variations in soil water holding capacity. The model was capable of describing seasonal and site-specific dynamics in soil water content and could be used in an amended version to estimate changes in the water budget of entire grape growing areas due to evolving climatic changes.

  6. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The climate impact studies in hydrology often rely on climate change information at fine spatial resolution. However, the general circulation model (GCM), which is widely used to simulate future climate scenario, operates on a coarse scale and does not provide reliable data on local or regional scale for hydrological modeling. Therefore the outputs from GCM have to be downscaled to obtain the information fit for hydrologic studies. The variable infiltration capacity (VIC) distributed hydrological model with 9×9 km2 grid resolution was applied and calibrated in the Hanjiang Basin. Validation results show that SSVM can approximate observed precipitation and temperature data reasonably well, and that the VIC model can simulate runoff hydrograph with high model efficiency and low relative error. By applying the SSVM model, the trends of precipitation and temperature (including daily mean temperature, daily maximum temperature and daily minimum temperature) projected from CGCM2 under A2 and B2 scenarios will decrease in the 2020s (2011―2040), and increase in the 2080s (2071―2100). However, in the 2050s (2041―2070), the precipitation will be decreased under A2 scenario and no significant changes under B2 scenario, but the temperature will be not obviously changed under both climate change scenarios. Under both climate change scenarios, the impact analysis of runoff, made with the downscaled precipitation and temperature time series as input of the VIC distributed model, has resulted in a decreasing trend for the 2020s and 2050s, and an overall increasing trend for the 2080s.

  7. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin

    Institute of Scientific and Technical Information of China (English)

    GUO ShengLian; GUO Jing; ZHANG Jun; CHEN Hua

    2009-01-01

    The climate Impact studies In hydrology often rely on climate change information at fine spatial resolu-tion.However, the general circulation model (GCM), which is widely used to simulate future climate scenario, operates on a coarse scale and does not provide reliable data on local or regional scale for hydrological modeling.Therefore the outputs from GCM have to be downscaled to obtain the informa-tion fit for hydrologic studies.The variable infiltration capacity (VIC) distributed hydrological model with 9×9 km~2 grid resolution was applied and calibrated in the Hanjiang Basin.Validation results show that SSVM can approximate observed precipitation and temperature data reasonably well, and that the VIC model can simulate runoff hydrograph with high model efficiency and low relative error.By apply-Ing the SSVM model, the trends of precipitation and temperature (including daily mean temperature, daily maximum temperature and daily minimum temperature) projected from CGCM2 under A2 and B2 scenarios will decrease in the 2020s (2011-2040), and Increase in the 2080s (2071-2100).However, in the 2050s (2041-2070), the precipitation will be decreased under A2 scenario and no significant changes under B2 scenario, but the temperature will be not obviously changed under both climate change scenarios.Under both climate change scenarios, the impact analysis of runoff, made with the downscaled precipitation and temperature time series as input of the VIC distributed model, has re-sulted in a decreasing trend for the 2020s and 2050s, and an overall increasing trend for the 2080s.

  8. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    Science.gov (United States)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  9. Climate science: Unexpected fix for ocean models

    Science.gov (United States)

    Kelly, Kathryn A.; Thompson, Luanne

    2016-07-01

    Computational models persistently underestimate strong currents that redistribute ocean heat. This problem is solved in models in which ocean eddies are damped by coupling of the atmosphere with the sea. See Letter p.533

  10. Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model

    Institute of Scientific and Technical Information of China (English)

    高学杰; 罗勇; 林万涛; 赵宗慈; FilippoGIORGI

    2003-01-01

    Climate effects of land use change in China as simulated by a regional climate model (RegCM2)are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model(CSIRO R21L9 AOGCM). Two multi-year simulations, one with current land use and the other with potential vegetation cover, are conducted. Statistically significant changes of precipitation, surface air temperature, and daily maximum and daily minimum temperature are analyzed based on the difference between the two simulations. The simulated effects of land use change over China include a decrease of mean annual precipitation over Northwest China, a region with a prevalence of arid and semi-arid areas;an increase of mean annual surfaoe air temperature over some areas; and a decrease of temperature along coastal areas. Summer mean daily maximum temperature increases in many locations, while winter mean daily minimum temperature decreases in East China and increases in Northwest China. The upper soil moisture decreases significantly across China. The results indicate that the same land use change may cause different climate effects in different regions depending on the surrounding environment and climate characteristics.

  11. Dynamic validation of the Planck/LFI thermal model

    CERN Document Server

    Tomasi, M; Gregorio, A; Colombo, F; Lapolla, M; Terenzi, L; Morgante, G; Bersanelli, M; Butler, R C; Galeotta, S; Mandolesi, N; Maris, M; Mennella, A; Valenziano, L; Zacchei, A; 10.1088/1748-0221/5/01/T01002

    2010-01-01

    The Low Frequency Instrument (LFI) is an array of cryogenically cooled radiometers on board the Planck satellite, designed to measure the temperature and polarization anisotropies of the cosmic microwave backgrond (CMB) at 30, 44 and 70 GHz. The thermal requirements of the LFI, and in particular the stringent limits to acceptable thermal fluctuations in the 20 K focal plane, are a critical element to achieve the instrument scientific performance. Thermal tests were carried out as part of the on-ground calibration campaign at various stages of instrument integration. In this paper we describe the results and analysis of the tests on the LFI flight model (FM) performed at Thales Laboratories in Milan (Italy) during 2006, with the purpose of experimentally sampling the thermal transfer functions and consequently validating the numerical thermal model describing the dynamic response of the LFI focal plane. This model has been used extensively to assess the ability of LFI to achieve its scientific goals: its valid...

  12. Validation of a finite element model of the human metacarpal.

    Science.gov (United States)

    Barker, D S; Netherway, D J; Krishnan, J; Hearn, T C

    2005-03-01

    Implant loosening and mechanical failure of components are frequently reported following metacarpophalangeal (MCP) joint replacement. Studies of the mechanical environment of the MCP implant-bone construct are rare. The objective of this study was to evaluate the predictive ability of a finite element model of the intact second human metacarpal to provide a validated baseline for further mechanical studies. A right index human metacarpal was subjected to torsion and combined axial/bending loading using strain gauge (SG) and 3D finite element (FE) analysis. Four different representations of bone material properties were considered. Regression analyses were performed comparing maximum and minimum principal surface strains taken from the SG and FE models. Regression slopes close to unity and high correlation coefficients were found when the diaphyseal cortical shell was modelled as anisotropic and cancellous bone properties were derived from quantitative computed tomography. The inclusion of anisotropy for cortical bone was strongly influential in producing high model validity whereas variation in methods of assigning stiffness to cancellous bone had only a minor influence. The validated FE model provides a tool for future investigations of current and novel MCP joint prostheses.

  13. Integrated Modeling and Participatory Scenario Planning for Climate Adaptation: the Maui Groundwater Project

    Science.gov (United States)

    Keener, V. W.; Finucane, M.; Brewington, L.

    2014-12-01

    For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales

  14. Beyond Corroboration: Strengthening Model Validation by Looking for Unexpected Patterns.

    Directory of Open Access Journals (Sweden)

    Guillaume Chérel

    Full Text Available Models of emergent phenomena are designed to provide an explanation to global-scale phenomena from local-scale processes. Model validation is commonly done by verifying that the model is able to reproduce the patterns to be explained. We argue that robust validation must not only be based on corroboration, but also on attempting to falsify the model, i.e. making sure that the model behaves soundly for any reasonable input and parameter values. We propose an open-ended evolutionary method based on Novelty Search to look for the diverse patterns a model can produce. The Pattern Space Exploration method was tested on a model of collective motion and compared to three common a priori sampling experiment designs. The method successfully discovered all known qualitatively different kinds of collective motion, and performed much better than the a priori sampling methods. The method was then applied to a case study of city system dynamics to explore the model's predicted values of city hierarchisation and population growth. This case study showed that the method can provide insights on potential predictive scenarios as well as falsifiers of the model when the simulated dynamics are highly unrealistic.

  15. Evaluating the effect of climate change on areal reduction factors using regional climate model projections

    Science.gov (United States)

    Li, Jingwan; Sharma, Ashish; Johnson, Fiona; Evans, Jason

    2015-09-01

    Areal reduction factors (ARFs) are commonly used to transform point design rainfall to represent the average design rainfall for a catchment area. While there has been considerable attention paid in the research and engineering communities to the likely changes in rainfall intensity in future climates, the issue of changes to design areal rainfall has been largely ignored. This paper investigates the impact of climate change on ARFs. A new methodology for estimating changes in ARFs is presented. This method is used to assess changes in ARFs in the greater Sydney region using a high-resolution regional climate model (RCM). ARFs under present (1990-2009) and future (2040-2059) climate conditions were derived and compared for annual exceedance probabilities (AEPs) from 50% to 5% for durations ranging from 1 h to 120 h. The analysis shows two main trends in the future changes in ARFs. For the shortest duration events (1-h) the ARFs are found to increase which implies that these events will tend to have a larger spatial structure in the future than the current climate. In contrast, storms with durations between 6 and 72 h are likely to have decreased ARFs in the future, suggesting a more restricted spatial coverage of storms under a warming climate. The extent of the decrease varies with event frequency and catchment size. The largest decreases are found for large catchments and rare events. Although the results here are based on a single RCM and need to be confirmed in future work with multiple models, the framework that is proposed will be useful for future studies considering changes in the areal extent of rainfall extremes.

  16. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    Science.gov (United States)

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  17. Empirical correction of a toy climate model

    CERN Document Server

    Allgaier, Nicholas A; Danforth, Christopher M

    2011-01-01

    Improving the accuracy of forecast models for physical systems such as the atmosphere is a crucial ongoing effort. Errors in state estimation for these often highly nonlinear systems has been the primary focus of recent research, but as that error has been successfully diminished, the role of model error in forecast uncertainty has duly increased. The present study is an investigation of a particular empirical correction procedure that is of special interest because it considers the model a "black box", and therefore can be applied widely with little modification. The procedure involves the comparison of short model forecasts with a reference "truth" system during a training period in order to calculate systematic (1) state-independent model bias and (2) state-dependent error patterns. An estimate of the likelihood of the latter error component is computed from the current state at every timestep of model integration. The effectiveness of this technique is explored in two experiments: (1) a perfect model scen...

  18. Recursive inter-generational utility in global climate risk modeling

    Energy Technology Data Exchange (ETDEWEB)

    Minh, Ha-Duong [Centre International de Recherche sur l' Environnement et le Developpement (CIRED-CNRS), 75 - Paris (France); Treich, N. [Institut National de Recherches Agronomiques (INRA-LEERNA), 31 - Toulouse (France)

    2003-07-01

    This paper distinguishes relative risk aversion and resistance to inter-temporal substitution in climate risk modeling. Stochastic recursive preferences are introduced in a stylized numeric climate-economy model using preliminary IPCC 1998 scenarios. It shows that higher risk aversion increases the optimal carbon tax. Higher resistance to inter-temporal substitution alone has the same effect as increasing the discount rate, provided that the risk is not too large. We discuss implications of these findings for the debate upon discounting and sustainability under uncertainty. (author)

  19. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  20. How can we use MODIS land surface temperature to validate long-term urban model simulations?

    Science.gov (United States)

    Hu, Leiqiu; Brunsell, Nathaniel A.; Monaghan, Andrew J.; Barlage, Michael; Wilhelmi, Olga V.

    2014-03-01

    High spatial resolution urban climate modeling is essential for understanding urban climatology and predicting the human health impacts under climate change. Satellite thermal remote-sensing data are potential observational sources for urban climate model validation with comparable spatial scales, temporal consistency, broad coverage, and long-term archives. However, sensor view angle, cloud distribution, and cloud-contaminated pixels can confound comparisons between satellite land surface temperature (LST) and modeled surface radiometric temperature. The impacts of sensor view angles on urban LST values are investigated and addressed. Three methods to minimize the confounding factors of clouds are proposed and evaluated using 10years of Moderate Resolution Imaging Spectroradiometer (MODIS) data and simulations from the High-Resolution Land Data Assimilation System (HRLDAS) over Greater Houston, Texas, U.S. For the satellite cloud mask (SCM) method, prior to comparison, the cloud mask for each MODIS scene is applied to its concurrent HRLDAS simulation. For the max/min temperature (MMT) method, the 50 warmest days and coolest nights for each data set are selected and compared to avoid cloud impacts. For the high clear-sky fraction (HCF) method, only those MODIS scenes that have a high percentage of clear-sky pixels are compared. The SCM method is recommended for validation of long-term simulations because it provides the largest sample size as well as temporal consistency with the simulations. The MMT method is best for comparison at the extremes. And the HCF method gives the best absolute temperature comparison due to the spatial and temporal consistency between simulations and observations.

  1. Predicting the ungauged basin: model validation and realism assessment

    Science.gov (United States)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2016-04-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) [1] led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this study [2] we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. We do not present a generic approach that can be transferred to other ungauged catchments, but we aim to show how clever model design and alternative data acquisition can result in a valuable hydrological model for ungauged catchments. [1] Sivapalan, M., Takeuchi, K., Franks, S., Gupta, V., Karambiri, H., Lakshmi, V., et al. (2003). IAHS decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 48, 857-880. doi: 10.1623/hysj.48.6.857.51421 [2] van Emmerik, T., Mulder, G., Eilander, D., Piet, M. and Savenije, H. (2015). Predicting the ungauged basin: model validation and realism assessment

  2. A verification and validation process for model-driven engineering

    Science.gov (United States)

    Delmas, R.; Pires, A. F.; Polacsek, T.

    2013-12-01

    Model Driven Engineering practitioners already benefit from many well established verification tools, for Object Constraint Language (OCL), for instance. Recently, constraint satisfaction techniques have been brought to Model-Driven Engineering (MDE) and have shown promising results on model verification tasks. With all these tools, it becomes possible to provide users with formal support from early model design phases to model instantiation phases. In this paper, a selection of such tools and methods is presented, and an attempt is made to define a verification and validation process for model design and instance creation centered on UML (Unified Modeling Language) class diagrams and declarative constraints, and involving the selected tools. The suggested process is illustrated with a simple example.

  3. Climate change impact on freshwater resources in a deltaic environment: A groundwater modeling study

    Science.gov (United States)

    Matiatos, Ioannis; Alexopoulos, John D.; Panagopoulos, Andreas; Nastos, Panagiotis T.; Kotsopoulos, Spyros; Ghionis, George; Poulos, Serafim

    2016-04-01

    Climate change is expected to affect the hydrological cycle, altering seawater level and groundwater recharge to coastal aquifers with various other associated impacts on natural ecosystems and human activities. As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. This study investigates the impacts of climate change on the groundwater of the deltaic plain of River Pinios (Central Greece). Geophysical data processing indicates that the phreatic aquifer extends mainly in the central and northern parts of the region. A one-layer transient groundwater flow and contaminant mass transport model of the aquifer system is calibrated and validated. Impacts of climate change were evaluated by incorporating the estimated recharge input and sea level change of different future scenarios within the simulation models. The most noticeable and consistent result of the climate change impact simulations is a prominent sea water intrusion in the coastal aquifer mainly as a result of sea level change which underlines the need for a more effective planning of environmental measures.

  4. Climate change and N2O emissions from South West England grasslands: A modelling approach

    Science.gov (United States)

    Abalos, Diego; Cardenas, Laura M.; Wu, Lianhai

    2016-05-01

    Unravelling the impacts of climate change on agriculture becomes increasingly important, as the rates and magnitude of its effects are accelerating. Current estimates of the consequences of climate change on nitrous oxide (N2O) emissions remain largely uncertain; there is a need for more consistent and comprehensive assessments of this impact. In this study we explored the implications of two IPCC climate change projections (high and medium emissions scenarios) on N2O emissions from South West England grasslands for the time slices of a baseline, the 2020s, the 2050s and the 2080s, employing a process-based model (SPACSYS). The model was initially calibrated and validated using datasets collected from three grassland sites of the region. Statistical analysis showed that simulated results had no significant total error or bias compared to measured values. We found a consistent increase in N2O emissions of up to 94% under future climate change scenarios compared to those under the baseline, and warming rather than precipitation variability was the overriding factor controlling the N2O rise. Modelling fertilizer forms showed that replacing ammonium-nitrate fertilizers with urea or slurry significantly reduced N2O emissions (c. 30%). Our study highlights the urgent necessity to adopt viable N2O mitigation measures now in order to avoid higher emissions in the future.

  5. A New Method of Comparing Forcing Agents in Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.; Jarvis, Andrew

    2015-10-14

    We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approach for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.

  6. Climate simulations for the last interglacial period by means of climate models of different complexity

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.L. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    Climatic conditions during the lst interglacial (125,000 years before present) are investigated with two climate models of different complexity: The atmosphere-ocean general circulation model ECHAM-1/LSG and the climate system model of intermediate complexity CLIMBER-2. In particular the role of vegetation at the last interglacial maximum, and its importance for a consistent simulation of the Mid-Holocene climate, has been investigated (EU project ASPEN: Air-Sea Wave Processes in Climate Change Models). Comparison of the results of the two models reveals a broad agreement in most large-scale features. Nevertheless, discrepancies are also detected. Essentially, the models differ in their ocean circulation responses. Profiting of the fast turnaround time of CLIMBER-2, a number of sensitivity experiments have been performed to try to explain the possible reasons for these differences, and to analyze additional effects not included in the previous simulations. In particular, the role of vegetation at the last interglacial maximum has been investigated. Comparison of the simulated responses against CLIMAP reconstructed SSTs for Marine Isotope Stage 5e shows a satisfactory agreement within the data uncertainties. (orig.) [German] Die klimatischen Bedingungen waehrend der letzten interglazialen Periode (vor 125 000 Jahren) werden anhand zweier Klimamodelle unterschiedlicher Komplexitaet untersucht: Dem Ozean-Atmosphaere gekoppelten allgemeinen Zirkulationsmodell ECHAM-1/LSG und dem Klimasystemmodell mittlerer Komplexitaet CLIMBER-2. Inbesondere wurde die Rolle der Vegetation in der letzten interglazialen Periode und ihre Bedeutung fuer eine konsistente Simulation des mittelholozaenischen Klimas untersucht (EU-Projekt ASPEN: Air-Sea Wave Processes in Climate Change Models - 'Klimavariationen in historischen Zeiten'). Der Vergleich der Ergebnisse beider Modelle zeigt eine gute Uebereinstimmung der meisten der grossskaligen Eigenschaften, allerdings zeigen sich

  7. Testing an astronomically-based decadal-scale empirical harmonic climate model versus the IPCC (2007) general circulation climate models

    CERN Document Server

    Scafetta, Nicola

    2012-01-01

    We compare the performance of a recently proposed empirical climate model based on astronomical harmonics against all available general circulation climate models (GCM) used by the IPCC (2007) to interpret the 20th century global surface temperature. The proposed model assumes that the climate is resonating with, or synchronized to a set of natural harmonics that have been associated to the solar system planetary motion, mostly determined by Jupiter and Saturn. We show that the GCMs fail to reproduce the major decadal and multidecadal oscillations found in the global surface temperature record from 1850 to 2011. On the contrary, the proposed harmonic model is found to well reconstruct the observed climate oscillations from 1850 to 2011, and it is able to forecast the climate oscillations from 1950 to 2011 using the data covering the period 1850-1950, and vice versa. The 9.1-year cycle is shown to be likely related to a decadal Soli/Lunar tidal oscillation, while the 10-10.5, 20-21 and 60-62 year cycles are sy...

  8. Agent Model Development for Assessing Climate-Induced Geopolitical Instability.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B.; Backus, George A.

    2005-12-01

    We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such models do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3

  9. Climate information based streamflow and rainfall forecasts for Huai River Basin using Hierarchical Bayesian Modeling

    Directory of Open Access Journals (Sweden)

    X. Chen

    2013-09-01

    Full Text Available A Hierarchal Bayesian model for forecasting regional summer rainfall and streamflow season-ahead using exogenous climate variables for East Central China is presented. The model provides estimates of the posterior forecasted probability distribution for 12 rainfall and 2 streamflow stations considering parameter uncertainty, and cross-site correlation. The model has a multilevel structure with regression coefficients modeled from a common multivariate normal distribution results in partial-pooling of information across multiple stations and better representation of parameter and posterior distribution uncertainty. Covariance structure of the residuals across stations is explicitly modeled. Model performance is tested under leave-10-out cross-validation. Frequentist and Bayesian performance metrics used include Receiver Operating Characteristic, Reduction of Error, Coefficient of Efficiency, Rank Probability Skill Scores, and coverage by posterior credible intervals. The ability of the model to reliably forecast regional summer rainfall and streamflow season-ahead offers potential for developing adaptive water risk management strategies.

  10. Development and validation of a building design waste reduction model.

    Science.gov (United States)

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings.

  11. HESS Opinions "Should we apply bias correction to global and regional climate model data?"

    Directory of Open Access Journals (Sweden)

    J. Liebert

    2012-04-01

    Full Text Available Despite considerable progress in recent years, output of both Global and Regional Circulation Models is still afflicted with biases to a degree that precludes its direct use, especially in climate change impact studies. This is well known, and to overcome this problem bias correction (BC, i.e. the correction of model output towards observations in a post processing step for its subsequent application in climate change impact studies has now become a standard procedure. In this paper we argue that bias correction, which has a considerable influence on the results of impact studies, is not a valid procedure in the way it is currently used: it impairs the advantages of Circulation Models which are based on established physical laws by altering spatiotemporal field consistency, relations among variables and by violating conservation principles. Bias correction largely neglects feedback mechanisms and it is unclear whether bias correction methods are time-invariant under climate change conditions. Applying bias correction increases agreement of Climate Model output with observations in hind casts and hence narrows the uncertainty range of simulations and predictions without, however, providing a satisfactory physical justification. This is in most cases not transparent to the end user. We argue that this masks rather than reduces uncertainty, which may lead to avoidable forejudging of end users and decision makers. We present here a brief overview of state-of-the-art bias correction methods, discuss the related assumptions and implications, draw conclusions on the validity of bias correction and propose ways to cope with biased output of Circulation Models in the short term and how to reduce the bias in the long term. The most promising strategy for improved future Global and Regional Circulation Model simulations is the increase in model resolution to the convection-permitting scale in combination with ensemble predictions based on sophisticated

  12. Failure analysis of parameter-induced simulation crashes in climate models

    Directory of Open Access Journals (Sweden)

    D. D. Lucas

    2013-01-01

    Full Text Available Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2 component of the Community Climate System Model (CCSM4. About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We apply support vector machine (SVM classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicts model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC curve metric (AUC > 0.96. The causes of the simulation failures are determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations are the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.

  13. Finite Element Model and Validation of Nasal Tip Deformation.

    Science.gov (United States)

    Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian J F

    2017-03-01

    Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39 ± 1.04 mm and deviated up to 2 mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow.

  14. Calibration of Predictor Models Using Multiple Validation Experiments

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2015-01-01

    This paper presents a framework for calibrating computational models using data from several and possibly dissimilar validation experiments. The offset between model predictions and observations, which might be caused by measurement noise, model-form uncertainty, and numerical error, drives the process by which uncertainty in the models parameters is characterized. The resulting description of uncertainty along with the computational model constitute a predictor model. Two types of predictor models are studied: Interval Predictor Models (IPMs) and Random Predictor Models (RPMs). IPMs use sets to characterize uncertainty, whereas RPMs use random vectors. The propagation of a set through a model makes the response an interval valued function of the state, whereas the propagation of a random vector yields a random process. Optimization-based strategies for calculating both types of predictor models are proposed. Whereas the formulations used to calculate IPMs target solutions leading to the interval value function of minimal spread containing all observations, those for RPMs seek to maximize the models' ability to reproduce the distribution of observations. Regarding RPMs, we choose a structure for the random vector (i.e., the assignment of probability to points in the parameter space) solely dependent on the prediction error. As such, the probabilistic description of uncertainty is not a subjective assignment of belief, nor is it expected to asymptotically converge to a fixed value, but instead it casts the model's ability to reproduce the experimental data. This framework enables evaluating the spread and distribution of the predicted response of target applications depending on the same parameters beyond the validation domain.

  15. Formulation of an ocean model for global climate simulations

    Directory of Open Access Journals (Sweden)

    S. M. Griffies

    2005-01-01

    Full Text Available This paper summarizes the formulation of the ocean component to the Geophysical Fluid Dynamics Laboratory's (GFDL climate model used for the 4th IPCC Assessment (AR4 of global climate change. In particular, it reviews the numerical schemes and physical parameterizations that make up an ocean climate model and how these schemes are pieced together for use in a state-of-the-art climate model. Features of the model described here include the following: (1 tripolar grid to resolve the Arctic Ocean without polar filtering, (2 partial bottom step representation of topography to better represent topographically influenced advective and wave processes, (3 more accurate equation of state, (4 three-dimensional flux limited tracer advection to reduce overshoots and undershoots, (5 incorporation of regional climatological variability in shortwave penetration, (6 neutral physics parameterization for representation of the pathways of tracer transport, (7 staggered time stepping for tracer conservation and numerical efficiency, (8 anisotropic horizontal viscosities for representation of equatorial currents, (9 parameterization of exchange with marginal seas, (10 incorporation of a free surface that accomodates a dynamic ice model and wave propagation, (11 transport of water across the ocean free surface to eliminate unphysical ``virtual tracer flux' methods, (12 parameterization of tidal mixing on continental shelves. We also present preliminary analyses of two particularly important sensitivities isolated during the development process, namely the details of how parameterized subgridscale eddies transport momentum and tracers.

  16. Climate perceptions of local communities validated through scientific signals in Sikkim Himalaya, India.

    Science.gov (United States)

    Sharma, R K; Shrestha, D G

    2016-10-01

    Sikkim, a tiny Himalayan state situated in the north-eastern region of India, records limited research on the climate change. Understanding the changes in climate based on the perceptions of local communities can provide important insights for the preparedness against the unprecedented consequences of climate change. A total of 228 households in 12 different villages of Sikkim, India, were interviewed using eight climate change indicators. The results from the public opinions showed a significant increase in temperature compared to a decade earlier, winters are getting warmer, water springs are drying up, change in concept of spring-water recharge (locally known as Mul Phutnu), changes in spring season, low crop yields, incidences of mosquitoes during winter, and decrease in rainfall in last 10 years. In addition, study also showed significant positive correlations of increase in temperature with other climate change indicators viz. spring-water recharge concept (R (2) = 0.893), warmer winter (R (2) = 0.839), drying up of water springs (R (2) = 0.76), changes in spring season (R (2) = 0.68), low crop yields (R (2) = 0.68), decrease in rainfall (R (2) = 0.63), and incidences of mosquitoes in winter (R (2) = 0.50). The air temperature for two meteorological stations of Sikkim indicated statistically significant increasing trend in mean minimum temperature and mean minimum winter temperature (DJF). The observed climate change is consistent with the people perceptions. This information can help in planning specific adaptation strategies to cope with the impacts of climate change by framing village-level action plan.

  17. The Eemian climate simulated by two models of different complexities

    Science.gov (United States)

    Nikolova, Irina; Yin, Qiuzhen; Berger, Andre; Singh, Umesh; Karami, Pasha

    2013-04-01

    The Eemian period, also known as MIS-5, experienced warmer than today climate, reduction in ice sheets and important sea-level rise. These interesting features have made the Eemian appropriate to evaluate climate models when forced with astronomical and greenhouse gas forcings different from today. In this work, we present the simulated Eemian climate by two climate models of different complexities, LOVECLIM (LLN Earth system model of intermediate complexity) and CCSM3 (NCAR atmosphere-ocean general circulation model). Feedbacks from sea ice, vegetation, monsoon and ENSO phenomena are discussed to explain the regional similarities/dissimilarities in both models with respect to the pre-industrial (PI) climate. Significant warming (cooling) over almost all the continents during boreal summer (winter) leads to a largely increased (reduced) seasonal contrast in the northern (southern) hemisphere, mainly due to the much higher (lower) insolation received by the whole Earth in boreal summer (winter). The arctic is warmer than at PI through the whole year, resulting from its much higher summer insolation and its remnant effect in the following fall-winter through the interactions between atmosphere, ocean and sea ice. Regional discrepancies exist in the sea-ice formation zones between the two models. Excessive sea-ice formation in CCSM3 results in intense regional cooling. In both models intensified African monsoon and vegetation feedback are responsible for the cooling during summer in North Africa and on the Arabian Peninsula. Over India precipitation maximum is found further west, while in Africa the precipitation maximum migrates further north. Trees and grassland expand north in Sahel/Sahara, trees being more abundant in the results from LOVECLIM than from CCSM3. A mix of forest and grassland occupies continents and expand deep in the high northern latitudes in line with proxy records. Desert areas reduce significantly in Northern Hemisphere, but increase in North

  18. Validation of the Osteopenia Sheep Model for Orthopaedic Biomaterial Research

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, C.C.; Cheng, L.;

    2009-01-01

    Validation of the Osteopenia Sheep Model for Orthopaedic Biomaterial Research +1Ding, M; 2Danielsen, CC; 1Cheng, L; 3Bollen, P; 4Schwarz, P; 1Overgaard, S +1Dept of Orthopaedics O, Odense University Hospital, Denmark, 2Dept of Connective Tissue Biology, University of Aarhus, Denmark, 3Biomedicine...... Lab, University of Southern Denmark, 4Dept of Geriatrics, Glostrup University Hospital, Denmark ming.ding@ouh.regionsyddanmark.dk   Introduction:  Currently, majority orthopaedic prosthesis and biomaterial researches have been based on investigation in normal animals. In most clinical situations, most...... resemble osteoporosis in humans. This study aimed to validate glucocorticoid-induced osteopenia sheep model for orthopaedic implant and biomaterial research. We hypothesized that a 7-month GC treatment together with restricted diet but without OVX would induce osteopenia. Materials and Methods: Eighteen...

  19. Detecting Warming Hiatus Periods in CMIP5 Climate Model Projections

    Directory of Open Access Journals (Sweden)

    Tony W. Li

    2016-01-01

    Full Text Available The observed slow-down in the global-mean surface temperature (GST warming from 1998 to 2012 has been called a “warming hiatus.” Certain climate models, operating under experiments which simulate warming by increasing radiative forcing, have been shown to reproduce periods which resemble the observed hiatus. The present study provides a comprehensive analysis of 38 CMIP5 climate models to provide further evidence that models produce warming hiatus periods during warming experiments. GST rates are simulated in each model for the 21st century using two experiments: a moderate warming scenario (RCP4.5 and high-end scenario (RCP8.5. Warming hiatus periods are identified in model simulations by detecting (1 ≥15-year periods lacking a statistically meaningful trend and (2 rapid changes in the GST rate which resemble the observed 1998–2012 hiatus. Under the RCP4.5 experiment, all tested models produce warming hiatus periods. However, once radiative forcing exceeds 5 W/m2—about 2°C GST increase—as simulated in the RCP8.5 experiment after 2050, nearly all models produce only positive warming trends. All models show evidence of rapid changes in the GST rate resembling the observed hiatus, showing that the climate variations associated with warming hiatus periods are still evident in the models, even under accelerated warming conditions.

  20. Integration of climatic indices in an objective probabilistic model for establishing and mapping viticultural climatic zones in a region

    Science.gov (United States)

    Moral, Francisco J.; Rebollo, Francisco J.; Paniagua, Luis L.; García, Abelardo; Honorio, Fulgencio

    2016-05-01

    Different climatic indices have been proposed to determine the wine suitability in a region. Some of them are related to the air temperature, but the hydric component of climate should also be considered which, in turn, is influenced by the precipitation during the different stages of the grapevine growing and ripening periods. In this study, we propose using the information obtained from ten climatic indices [heliothermal index (HI), cool night index (CI), dryness index (DI), growing season temperature (GST), the Winkler index (WI), September mean thermal amplitude (MTA), annual precipitation (AP), precipitation during flowering (PDF), precipitation before flowering (PBF), and summer precipitation (SP)] as inputs in an objective and probabilistic model, the Rasch model, with the aim of integrating the individual effects of them, obtaining the climate data that summarize all main climatic indices, which could influence on wine suitability from a climate viewpoint, and utilizing the Rasch measures to generate homogeneous climatic zones. The use of the Rasch model to estimate viticultural climatic suitability constitutes a new application of great practical importance, enabling to rationally determine locations in a region where high viticultural potential exists and establishing a ranking of the climatic indices which exerts an important influence on wine suitability in a region. Furthermore, from the measures of viticultural climatic suitability at some locations, estimates can be computed using a geostatistical algorithm, and these estimates can be utilized to map viticultural climatic zones in a region. To illustrate the process, an application to Extremadura, southwestern Spain, is shown.

  1. Model Validation for a Noninvasive Arterial Stenosis Detection Problem

    Science.gov (United States)

    2013-06-09

    equation, Journal of Scientific Computing, 27 (2006), 5–40. 15 [2] M. Akay, Noninvasive detection of coronary artery disease using advanced signal...Model validation for a noninvasive arterial stenosis detection problem H.T. Banks, Shuhua Hu and Zackary R. Kenz Center for Research in Scientific...qmul.ac.uk Blizard Institute, Barts and the London School of Medicine and Dentistry , Queen Mary, University of London, England. M. J. Birch m.j.birch

  2. Trailing Edge Noise Model Validation and Application to Airfoil Optimization

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2010-01-01

    The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... across the boundary layer near the trailing edge and to a lesser extent by a smaller boundary layer displacement thickness. ©2010 American Society of Mechanical Engineers...

  3. Certified reduced basis model validation: A frequentistic uncertainty framework

    OpenAIRE

    Patera, A. T.; Huynh, Dinh Bao Phuong; Knezevic, David; Patera, Anthony T.

    2011-01-01

    We introduce a frequentistic validation framework for assessment — acceptance or rejection — of the consistency of a proposed parametrized partial differential equation model with respect to (noisy) experimental data from a physical system. Our method builds upon the Hotelling T[superscript 2] statistical hypothesis test for bias first introduced by Balci and Sargent in 1984 and subsequently extended by McFarland and Mahadevan (2008). Our approach introduces two new elements: a spectral repre...

  4. Validation of Atmospheric Dynamics (VADY) - representation of circulation types/dynamical modes in the decadal-prediction model system of MPI-ESM

    Science.gov (United States)

    Lang, Benjamin; Jacobeit, Jucundus; Beck, Christoph; Philipp, Andreas

    2016-04-01

    The climate research program "Medium-range Climate Predictions" (MiKlip), funded by the Federal Ministry of Education and Research in Germany (BMBF), has the aim to improve a climate model system (MPI-ESM) in such a way that it can provide reliable decadal predictions of climate, including extreme weather events. A substantial part of the development process is a comprehensive model validation. Within MiKlip, it includes comparisons of model simulations and observations in order to allow statements about the performance of the model and to give particular recommendations for the further development of the model. The research project "Validation of Atmospheric Dynamics" (VADY), conducted by the cooperation partners "Institute of Geography at the University of Augsburg" (IGUA) and the "German Aerospace Centre" (DLR), contributes to model validation within MiKlip with a special focus on atmospheric waves (DLR) and circulation dynamics (IGUA). Within the framework of VADY, DLR validates the representation of atmospheric waves on different levels and scales based on suitable activity indices (e.g. the so-called large-scale dynamical activity index (LDAI), which is a measure for the activity of planetary waves). The focus of IGUA is on the model validation with respect to the representation of atmospheric circulation types, dynamical modes and the teleconnectivity of the atmospheric circulation. The present contribution provides results of the model validation concerning circulation types/dynamical modes. Results are shown for both the frequency of occurrence and internal characteristics (e. g. persistence or intensity), and for different classification methods (e. g. based on PCA or clustering techniques). The representation of circulation types/dynamical modes will be compared for different generations of the MPI-ESM decadal-prediction model (baseline0, baseline1, prototype) in order to clarify both advances and limitations in the development of the model. Furthermore

  5. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: overview and description of models, simulations and climate diagnostics

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2012-08-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation o