WorldWideScience

Sample records for climate glacier mass

  1. Climate - glacier links on Bogerbreen, Svalbard : Glacier mass balance investigations in central Spitsbergen 2004 / 2005

    OpenAIRE

    2006-01-01

    Abstract Glaciers are key indicators for climate change. Mass balance studies form the important link between advances and retreats of glaciers to changes in climate. Mass balance studies were performed in the balance year 2004/05 on Bogerbreen as part of my Master thesis. Bogerbreen is a valley glacier with a size of 3.3 km² located in central Spitsbergen, Svalbard at 78 degrees north and 15 degrees east. The direct glaciological method was applied to measure winter mass balance using sno...

  2. Modelled mass balance of Xibu glacier, Tibetan Plateau: sensitivity to climate change

    OpenAIRE

    Caidong, Caidong; Sorteberg, Asgeir

    2010-01-01

    Due to a lack of in situ measurements, model-based studies of glacier mass balance in the Tibetan Plateau are very limited. An energy-balance model is applied to analyse the mass-balance sensitivity of Xibu glacier, in the Nyainqêntanglha mountain range, to climatic change. A sensitivity calculation shows that a temperature change of ±1°C or a precipitation change of ±35% changes the equilibrium-line altitude (ELA) by 140±125 m. We use a clustering method to link local weather parameter...

  3. Climatic Forcing of Glacier Surface Mass Balance Changes Along North-Central Peru: A Modeling Perspective

    Science.gov (United States)

    Mark, B. G.; Fernandez, A.

    2015-12-01

    Most tropical glaciers are Peru, where they are key water sources for communities in mountain environments and beyond. Thus, their sustained shrinkage portrays these glaciers as archetype of global warming impacts on the local scale. However, there is still no deep understanding on the mechanism connecting temperature and these glaciers. Among others, the effect of temperature on the glacier surface mass balance (GSMB) can be expressed within accumulation regimes and hence in surface albedo, or in ablation dynamics through incoming longwave energy (LE). Here, we report a study combining statistical analyses of reanalysis data (~30km grid-cell), regional climate modeling and glacier mass balance simulations at high resolution (2km) to analyze long-term (30 years) and seasonal GSMB along north-central Peru. Our goal is to mechanistically understand climate change impact on these glaciers. Results suggest temperature as the main factor controlling GSMB changes through the lapse rate (LR). Correlations of GSMB with LR, humidity and zonal wind point to vertical homogenization of temperature, causing LE to increase, despite this flux always remaining negative. This "less negative" LE multiplies the impact of the seasonal fluctuation in albedo, thereby enhancing total ablation. As this mechanism only needs a relative increase in temperature, it may even occur in subfreezing conditions. Model output also indicates that turbulent fluxes are small, largely cancelling out. This suggests that the impact of LE is more likely to occur compared to either turbulent fluxes changes or shifts in the proportion of sublimation versus melt, which we find to be regionally stable. These findings imply that glaciers in north-central Peru are sensitive to subtle changes in temperature. We discuss the implications for process-based understanding and how this non-linear and somewhat hidden effect of temperature reduces the skill of temperature index models to simulate GSMB in the Tropics.

  4. Climate, glacier mass balance and runoff (1993-2005) for the Mittivakkat Glacier catchment, Ammassalik Island, SE Greenland, and in a long term perspective (1898-1993)

    DEFF Research Database (Denmark)

    Mernild, Sebastian H.; Kane, D.L.; Hansen, Birger;

    2008-01-01

    Climate, glacier mass balance and runoff are investigated in the Low-Arctic Mittivakkat Glacier catchment on Ammassalik Island, Southeast Greenland. High-resolution meteorological data from the catchment covering 1993-2005 and standard synoptic meteorological data from the nearby town of Tasiilaq...... (Ammassalik) from 1898-2005 are used. Within the catchment, gradients and variations are observed in meteorological conditions between the coastal and the glacier areas. During the period 1993-2005 about 15% lower annual solar radiation was observed in the coastal area. Further, decreasing mean annual air...... temperatures (MAAT) occur in the coastal area, indicating an approximately 20-d shorter thawing period. The higher lying glacier area, in contrast, experiences an increasing MAAT, an approximately 40-d longer thawing period and a 60-d longer snow-free period. The Mittivakkat Glacier net mass balance has been...

  5. Surface melt dominates Alaska glacier mass balance

    Science.gov (United States)

    Larsen Chris F; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  6. Reconstructing glacier mass balances in the Central Andes of Chile and Argentina using local and regional hydro-climatic data

    Directory of Open Access Journals (Sweden)

    M. H. Masiokas

    2015-09-01

    Full Text Available Despite the great number and variety of glaciers in southern South America, in situ glacier mass balance records are extremely scarce and glacier–climate relationships are still poorly understood in this region. Here we use the longest (> 35 years and most complete in situ mass balance record, available for glaciar Echaurren Norte in the Andes at ~34° S, to develop a minimal glacier surface mass balance model that relies on nearby monthly precipitation and air temperature data as forcing. This basic model is able to explain 78 % of the variance in the annual glacier mass balance record over the 1978–2013 calibration period. An attribution assessment indicates that precipitation variability constitutes the most important forcing modulating annual glacier mass balances at this site. A regionally-averaged series of mean annual streamflow records from both sides of the Andes is then used to estimate, through simple linear regression, this glacier's annual mass balance variations since 1909. The reconstruction model captures 68 % of the observed glacier mass balance variability and shows three periods of sustained positive mass balances embedded in an overall negative trend totaling almost −42 m w.eq. over the past 105 years. The three periods of sustained positive mass balances (centered in the 1920s–1930s, in the 1980s and in the first decade of the 21st century coincide with several documented glacier advances in this region. Similar trends observed in other shorter glacier mass balance series suggest the glaciar Echaurren Norte reconstruction is representative of larger-scale conditions and could be useful for more detailed glaciological, hydrological and climatological assessments in this portion of the Andes.

  7. Climate regime of Asian glaciers revealed by GAMDAM glacier inventory

    Science.gov (United States)

    Sakai, A.; Nuimura, T.; Fujita, K.; Takenaka, S.; Nagai, H.; Lamsal, D.

    2015-05-01

    Among meteorological elements, precipitation has a large spatial variability and less observation, particularly in high-mountain Asia, although precipitation in mountains is an important parameter for hydrological circulation. We estimated precipitation contributing to glacier mass at the median elevation of glaciers, which is presumed to be at equilibrium-line altitude (ELA) such that mass balance is zero at that elevation, by tuning adjustment parameters of precipitation. We also made comparisons between the median elevation of glaciers, including the effect of drifting snow and avalanche, and eliminated those local effects. Then, we could obtain the median elevation of glaciers depending only on climate to estimate glacier surface precipitation. The calculated precipitation contributing to glacier mass can elucidate that glaciers in arid high-mountain Asia receive less precipitation, while much precipitation makes a greater contribution to glacier mass in the Hindu Kush, the Himalayas, and the Hengduan Shan due to not only direct precipitation amount but also avalanche nourishment. We classified glaciers in high-mountain Asia into summer-accumulation type and winter-accumulation type using the summer-accumulation ratio and confirmed that summer-accumulation-type glaciers have a higher sensitivity than winter-accumulation-type glaciers.

  8. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya

    Science.gov (United States)

    Rowan, Ann V.; Egholm, David L.; Quincey, Duncan J.; Glasser, Neil F.

    2015-11-01

    Many Himalayan glaciers are characterised in their lower reaches by a rock debris layer. This debris insulates the glacier surface from atmospheric warming and complicates the response to climate change compared to glaciers with clean-ice surfaces. Debris-covered glaciers can persist well below the altitude that would be sustainable for clean-ice glaciers, resulting in much longer timescales of mass loss and meltwater production. The properties and evolution of supraglacial debris present a considerable challenge to understanding future glacier change. Existing approaches to predicting variations in glacier volume and meltwater production rely on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. We developed a numerical model that couples the flow of ice and debris and includes important feedbacks between debris accumulation and glacier mass balance. To investigate the impact of debris transport on the response of a glacier to recent and future climate change, we applied this model to a large debris-covered Himalayan glacier-Khumbu Glacier in Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, Khumbu Glacier has lost 34% of its volume while its area has reduced by only 6%. We predict a decrease in glacier volume of 8-10% by AD2100, accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 yr. This detachment will accelerate rates of glacier decay, and similar changes are likely for other debris-covered glaciers in the Himalaya.

  9. The Orographic Climate Factors Contributing to the Mass Balance of Small Glaciers in North-Iceland

    OpenAIRE

    Halkola, Kaisa

    2005-01-01

    This report is a result of a master thesis project. The project was launched to get more information of the factors affecting the mass balance of small glaciers in Northern Iceland. Observations on the glaciers were analysed in comparison with previous estimations of mass balance (Eythorsson and Sigtryggsson, 1971), a degree-day mass-balance model (MBT) and an atmospheric model MM5 (National Centre for Atmospheric Research (NCAR) / Pennsylvania State University).

  10. Simulating the climatic mass balance of Svalbard glaciers from 2003 to 2013 with a high-resolution coupled atmosphere-glacier model

    Directory of Open Access Journals (Sweden)

    K. S. Aas

    2015-10-01

    Full Text Available In this study we simulate the climatic mass balance of Svalbard glaciers with a coupled atmosphere-glacier model with 3 km grid spacing, from September 2003 to September 2013. We find a mean specific net mass balance of −167 mm w.e. yr−1, corresponding to a mean annual mass loss of about 5.7 Gt, with large interannual variability. Our results are compared with a comprehensive set of mass balance, meteorological and satellite measurements. Model temperature biases of 0.17 and −1.9 °C are found at two glacier automatic weather station sites. Simulated climatic mass balance is mostly within about 0.1 m w.e. yr−1 of stake measurements, and simulated winter accumulation at the Austfonna ice cap shows mean absolute errors of 0.05 and 0.06 m w.e. yr−1 when compared to radar-derived values for the selected years 2004 and 2006. Comparison of surface height changes from 2003 to 2008 from model, and satellite altimetry reveals good agreement in both mean values and regional differences. The largest deviations from observations are found for winter accumulation at Hansbreen (up to around 1 m w.e. yr−1, a site where sub-grid topography and wind redistribution of snow are important factors. Comparison with simulations using a 9 km grid spacing reveal considerable differences on regional and local scales. In addition, the 3 km grid spacing allows for a much more detailed comparison with observations than what is possible with a 9 km grid spacing. Further decreasing the grid spacing to 1 km appears to be less significant, although in general precipitation amounts increase with resolution. Altogether, the model compares well with observations and offers possibilities for studying glacier climatic mass balance on Svalbard both historically as well as based on climate projections.

  11. Reanalysing glacier mass balance measurement series

    OpenAIRE

    Zemp, M.; E. Thibert; Huss, M.; Stumm, D.; Rolstad Denby, C.; Nuth, C.; S. U. Nussbaumer; G. Moholdt; A. Mercer; Mayer, C.; Joerg, P. C.; P. Jansson; B. Hynek; Fischer, A.; Escher-Vetter, H.

    2013-01-01

    Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until recently, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without consideration of errors. In this study, we propose a framework for reanalysing glacier mass balance series that includes conceptual and ...

  12. Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data

    Science.gov (United States)

    Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar

    2016-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.

  13. Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry

    OpenAIRE

    Raper, S.C.B.; R. J. Braithwaite

    2009-01-01

    Glacier volume response time is a measure of the time taken for a glacier to adjust its geometry to a climate change. It has been previously proposed that the volume response time is given approximately by the ratio of glacier thickness to ablation at the glacier terminus. We propose a new conceptual model of glacier hypsometry (area-altitude relation) and derive the volume response time where climatic and topographic parameters are separated. The former is expressed by mass balance gradients...

  14. The dynamic response of Kolohai Glacier to climate change

    Directory of Open Access Journals (Sweden)

    M. R. G. Sayyed

    2015-03-01

    Full Text Available Glaciers are one of the important components of local, regional and continental water resource and are also key indicators of climate change. Glaciers provide a wealth of information about how climatic components of the earth have changed in the past. Changes in weather condition year after year cause variations in the amount of snow deposited on the glacier and in the amount of ice lost by melting of glacier. Interest in worldwide monitoring of glaciers has grown as rapid glacier recessions in many regions of the world have been evidenced. This further recognized need for a comprehensive assessment of the world's glaciers in driving efforts to devise and refine methods of extracting glacier information from satellite data. Due to adverse weather conditions, limited time is available in summer for detailed glacier studies. Remote sensing is of immense value as a mapping tool for measuring the spatial extent, mass balance and variations in the terminus of the glacier. Present study was carried out for Kolohai glacier of Lidder valley concentrated near Kolohai Mountain. This study is an attempt to reconstruct glacier fluctuations in response to climate changes through time series. A series of multidate imageries since 1992 to 2006 was used for mapping the changes in geometry and dynamics of glacier. Topographic maps, Landsat ETM, LISS-III imageries and high resolution DEM were used to conduct this study. The core of the methodology is to calculate the changes in areal extent and ELA variations of the glacier over the referenced time period and to determine the AAR of glacier. This was done by manual delineation, segment ratio of images to delineate changes. The study revealed that the Kolohai Glacier shows recession in terms of spatial extent, and variations in the terminus of the glacier in response to climate change.

  15. Uncertainties and re-analysis of glacier mass balance measurements

    OpenAIRE

    Zemp, M.; E. Thibert; Huss, M.; Stumm, D.; Rolstad Denby, C.; Nuth, C.; S. U. Nussbaumer; G. Moholdt; A. Mercer; Mayer, C.; Joerg, P. C.; P. Jansson; B. Hynek; Fischer, A.; Escher-Vetter, H.

    2013-01-01

    Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until present, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without error considerations. In this study, we propose a framework for re-analyzing glacier mass balance series including conceptual and ...

  16. Calculating distributed glacier mass balance for the Swiss Alps from regional climate model output: A methodical description and interpretation of the results

    OpenAIRE

    Machguth, Horst; Paul, Frank; Kotlarski, Sven; Hoelzle, Martin

    2010-01-01

    This study aims at giving a methodical description of the use of gridded output from a regional climate model (RCM) for the calculation of glacier mass balance distribution for the perimeter of the Swiss Alps. The mass balance model runs at daily steps and 100 m spatial resolution, while the regional model (REMO) RCM provides daily grids (∼18 km resolution) of dynamically downscaled reanalysis data. A combination of interpolation techniques and simple subgrid parameterizations is applied to b...

  17. Calculating distributed glacier mass balance for the Swiss Alps from regional climate model output: a methodical description and interpretation of the results

    OpenAIRE

    H. Machguth; F. Paul; S. Kotlarski; M. Hoelzle

    2009-01-01

    This study aims at giving a methodical description of the use of gridded output from a regional climate model (RCM) for the calculation of glacier mass balance distribution for the perimeter of the Swiss Alps. The mass balance model runs at daily steps and 100 m spatial resolution, while the regional model (REMO) RCM provides daily grids (∼18 km resolution) of dynamically downscaled reanalysis data. A combination of interpolation techniques and simple subgrid parameterizations is applied to b...

  18. The influence of changes in glacier extent and surface elevation on modeled mass balance

    OpenAIRE

    Paul, F.

    2010-01-01

    Glaciers are widely recognized as unique demonstration objects for climate change impacts, mostly due to the strong change of glacier length in response to small climatic changes. However, glacier mass balance as the direct response to the annual atmospheric conditions can be better interpreted in meteorological terms. When the climatic signal is deduced from long-term mass balance data, changes in glacier geometry (i.e. surface extent and elevation) must be considered as such adjustments ...

  19. Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry

    Directory of Open Access Journals (Sweden)

    S. C. B. Raper

    2009-03-01

    Full Text Available Glacier volume response time is a measure of the time taken for a glacier to adjust its geometry to a climate change. It is currently believed that the volume response time is given approximately by the ratio of glacier thickness to ablation at the glacier terminus. We propose a new conceptual model of glacier hypsometry (area-altitude relation and derive the volume response time where climatic and topographic parameters are separated. The former is expressed by mass balance gradients which we derive from glacier-climate modelling and the latter are quantified with data from the World Glacier Inventory. Aside from the well-known scaling relation between glacier volume and area, we establish a new scaling relation between glacier altitude range and area, and evaluate it for seven regions. The presence of this scaling parameter in our response time formula accounts for the mass balance elevation feedback and leads to longer response times than given by the simple ratio of glacier thickness to ablation. Volume response times range from decades to thousands of years for glaciers in maritime (wet-warm and continental (dry-cold climates, respectively. The combined effect of volume-area and altitude-area scaling relations is such that volume response time can increase with glacier area (Axel Heiberg Island and Svalbard, hardly change (Northern Scandinavia, Southern Norway and the Alps or even get smaller (The Caucasus and New Zealand.

  20. The response of glaciers to climate change

    NARCIS (Netherlands)

    Klok, Elisabeth Jantina

    2003-01-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the glac

  1. A GRASS GIS module to obtain an estimation of glacier behavior under climate change: A pilot study on Italian glacier

    Science.gov (United States)

    Strigaro, Daniele; Moretti, Massimiliano; Mattavelli, Matteo; Frigerio, Ivan; Amicis, Mattia De; Maggi, Valter

    2016-09-01

    The aim of this work is to integrate the Minimal Glacier Model in a Geographic Information System Python module in order to obtain spatial simulations of glacier retreat and to assess the future scenarios with a spatial representation. The Minimal Glacier Models are a simple yet effective way of estimating glacier response to climate fluctuations. This module can be useful for the scientific and glaciological community in order to evaluate glacier behavior, driven by climate forcing. The module, called r.glacio.model, is developed in a GRASS GIS (GRASS Development Team, 2016) environment using Python programming language combined with different libraries as GDAL, OGR, CSV, math, etc. The module is applied and validated on the Rutor glacier, a glacier in the south-western region of the Italian Alps. This glacier is very large in size and features rather regular and lively dynamics. The simulation is calibrated by reconstructing the 3-dimensional dynamics flow line and analyzing the difference between the simulated flow line length variations and the observed glacier fronts coming from ortophotos and DEMs. These simulations are driven by the past mass balance record. Afterwards, the future assessment is estimated by using climatic drivers provided by a set of General Circulation Models participating in the Climate Model Inter-comparison Project 5 effort. The approach devised in r.glacio.model can be applied to most alpine glaciers to obtain a first-order spatial representation of glacier behavior under climate change.

  2. Reconstruction of Glacier Mass Balance and Sensitivity Tests to Climate Change: A case study of Ålfotbreen and Nigardsbreen

    OpenAIRE

    Wangdui, Wangdui

    2011-01-01

    A physically-based one dimensional CROCUS snow model was applied to simulate the surface mass balances of Ålfotbreen (1964-2009) and Nigardsbreen (1962-2009) in southern Norway. The required hourly meteorological input data (9 parameters) are obtained from daily data of meteorological observation from stations surrounding the glaciers combined with NCEP 6 hourly reanalysis data to get the diurnal cycle. The results of simulations show that the model was able to simulate the mass balance of Ål...

  3. Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India

    Science.gov (United States)

    Mandal, Arindan; Ramanathan, Alagappan; Farooq Azam, Mohd; Wagnon, Patrick; Vincent, Christian; Linda, Anurag; Sharma, Parmanand; Angchuk, Thupstan; Bahadur Singh, Virendra; Pottakkal, Jose George; Kumar, Naveen; Soheb, Mohd

    2015-04-01

    Several studies on Himalayan glaciers have been recently initiated as they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring program was initiated on Chhota Shigri Glacier (15.7 square km, 9 km long, 6263-4050 m a.s.l.) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) and is a representative glacier in Lahaul and Spiti Valley. While annual mass balances have been measured continuously since 2002 using the glaciological method, seasonal scale observations began in 2009. The annual and seasonal mass balances were then analyzed along with meteorological conditions in order to understand the role of winter and summer balances on annual glacier-wide mass balance of Chhota Shigri glacier. During the period 2002-2013, the glacier experienced a negative glacier-wide mass balance of -0.59±0.40 m w.e. a-1 with a cumulative glaciological mass balance of -6.45 m w.e. Annual glacier-wide mass balances were negative except for four years (2004/05, 2008/09, 2009/10 and 2010/11) where it was generally close to balanced conditions. Equilibrium line altitude (ELA) for steady state condition is calculated as 4950 m a.s.l. corresponding to an accumulation area ratio (AAR) of 62% using annual glacier-wide mass balance, ELA and AAR data between 2002 and 2013. The winter glacier-wide mass balance between 2009 and 2013 ranges from a maximum value of 1.38 m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas the summer glacier-wide mass balance varies from the highest value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. The mean vertical mass balance gradient between 2002 and 2013 was 0.66 m w.e. (100 m)-1 quite similar to Alps, Nepalese Himalayas etc. Over debris covered area, the gradients are highly variable with a negative mean value of -2.15 m w.e. (100 m)-1 over 2002

  4. Tropical glaciers and climate dynamics: Resolving the linkages

    Science.gov (United States)

    Mölg, Thomas

    2013-04-01

    Large-scale atmosphere/ocean circulation and mountain glaciers represent two entirely different scales in the climate system. Therefore, statistical linkages between the two mask a cascade of processes that act on different temporal and spatial dimensions. Low-latitude glaciers are particularly well suited for studying such processes, since these glaciers are situated in the "heart" of the global climate system (the tropics). This presentation gives an overview of a decade of research on tropical climate and glaciers on Kilimanjaro (East Africa), which is, to our knowledge, the only case where space/time linkages between high-altitude glaciers and climate dynamics have been investigated systematically throughout the main scales. This includes the complex modification of atmospheric flow when air masses impinge on high mountains, an aspect that has been widely neglected from a cryospheric viewpoint. The case of Kilimanjaro demonstrates (1) the great potential of learning about climate system processes and their connections, (2) advances in our understanding of the importance of moisture for glaciers that lie far above the mean freezing level, and (3) methodological advances in combining atmospheric and cryospheric modelling.

  5. Glacier Sensitivity to Climate Change in the Monsoonal Himalaya: Past, Present, and Future

    Science.gov (United States)

    Rupper, S.; Maurer, J.; Schaefer, J. M.; Cook, E. R.; Putnam, A. E.; Krusic, P.; Smith, R. G.

    2013-12-01

    Glaciers are particularly sensitive to climate change, making them vulnerable elements of the environment. Of potential concern for societies is the rapid glacier retreat of Himalayan glaciers. However, the temporally short and spatially sparse instrumental records of climate, and arguably shorter and sparser glacier records, make it extremely difficult to quantify glacier sensitivity to climatic change or to place recent glacier changes into a longer, historical context. Here we address many of these issues by quantifying the glacier-climate sensitivity in the Bhutanese Himalaya over the past 800 years using a combination of remote sensing data, paleoclimate data, glacier modeling, and glacial geochronology. Bhutan is chosen for two key reasons. First, Bhutan exemplifies an area where little data on glacier changes are available and where it is logistically difficult to obtain field-based studies, a common problem for many regions of the Himalayas. Thus the methods developed here will be directly applicable to other regions. Second, glaciers in Bhutan, just as neighboring glaciers in India, Nepal, and Southwest China, sit in the bulls-eye of high snow accumulation glaciers. Sensitivity tests using a surface energy- and mass-balance model show that high accumulation regions are extremely temperature-sensitive. Therefore, Bhutan's glaciers form a highly suitable natural laboratory to investigate glacier sensitivity and response to temperature change in the monsoonal Himalaya. In this study, we map Bhutan glacierized area and volume changes over the past forty years, and show significant changes and rapid retreat of these glaciers over this period of time. In addition, we map the former glacier extents for key glacierized regions of Bhutan, and produce a 10Be chronology for glacier fluctuations for one region. Finally, we model the glacierized changes over the past 800 years using Bhutan tree-ring temperature reconstructions as climate input. Our results show that

  6. Climate Change and Glacier Retreat: Scientific Fact and Artistic Opportunity

    Science.gov (United States)

    Fagre, D. B.

    2008-12-01

    Mountain glaciers continue to retreat rapidly over most of the globe. In North America, at Glacier National Park, Montana, recent research results from Sperry Glacier (2005-2007) indicate negative mass balances are now 3-4 times greater than in the 1950s. A geospatial model of glacier retreat in the Blackfoot-Jackson basin suggested all glaciers would be gone by 2030 but has proved too conservative. Accelerated glacier shrinkage since the model was developed has mirrored an increase in actual annual temperature that is almost twice the rate used in the model. The glaciers in Glacier National Park are likely to be gone well before 2030. A variety of media, curricula, and educational strategies have been employed to communicate the disappearance of the glaciers as a consequence of global warming. These have included everything from print media and television coverage to podcasts and wayside exhibits along roads in the park. However, a new thrust is to partner with artists to communicate climate change issues to new audiences and through different channels. A scientist-artist retreat was convened to explore the tension between keeping artistic products grounded in factually-based reality while providing for freedom to express artistic creativity. Individual artists and scientists have worked to create aesthetic and emotional images, using painting, poetry, music and photography, to convey core messages from research on mountain ecosystems. Finally, a traveling art exhibit was developed to highlight the photography that systematically documents glacier change through time. The aim was to select photographs that provide the most compelling visual experience for an art-oriented viewer and also accurately reflect the research on glacier retreat. The exhibit opens on January 11, 2009

  7. Climatic controls and climate proxy potential of Lewis Glacier, Mt Kenya

    Science.gov (United States)

    Prinz, Rainer; Nicholson, Lindsey; Gurgiser, Wolfgang; Mölg, Thomas; Kaser, Georg

    2016-04-01

    Glaciers in the tropics can provide information about regional climate, its dynamics, and its evolution over decadal and centennial time scales, if their interaction with the atmosphere is understood, and their changes are documented or reconstructed. The glaciers on Mount Kenya capture a climate signal from the mid troposphere at about 5 km a.s.l., where our knowledge of climate change is scarce and controversial. We use in-situ meteorological and glaciological observations to optimize and validate a physically-based, process-orientated energy and mass balance model to quantify the exchange processes between the glacier surface and the atmosphere above and to explore the sensitivity of energy and mass exchanges to changing climatic conditions. Currently the glacier loses mass due to the imbalance between insufficient accumulation and enhanced melt, because radiative energy gains cannot be compensated by turbulent energy sinks. Exchanging model input data with synthetic climate scenarios, which were sampled from the meteorological measurements and account for coupled climatic variable perturbations, reveal that the current mass balance is most sensitive to changes in atmospheric moisture (via its impact on solid precipitation, cloudiness and surface albedo). Scenarios with lower air temperatures are drier and associated with lower accumulation and increased net radiation due to reduced cloudiness and albedo. Hence, similar to the glaciers of nearby Kilimanjaro, the recession of Lewis Glacier is not because of increased air temperatures, but because of decreased atmospheric moisture. If the climate scenarios currently producing positive mass balances are applied to Lewis Glacier's late 19th century maximum extent (L19), negative mass balances are the result, meaning that the conditions required sustaining the glacier in its L19 extent are not reflected in today's climate observations. Alternatively, a balanced mass budget for the L19 extent can be explained by

  8. Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya

    Science.gov (United States)

    Prinz, R.; Nicholson, L. I.; Mölg, T.; Gurgiser, W.; Kaser, G.

    2016-01-01

    The Lewis Glacier on Mt. Kenya is one of the best studied tropical glaciers and has experienced considerable retreat since a maximum extent in the late 19th century (L19). From distributed mass and energy balance modelling, this study evaluates the current sensitivity of the surface mass and energy balance to climatic drivers, explores climate conditions under which the L19 maximum extent might have been sustained, and discusses the potential for using the glacier retreat to quantify climate change. Multi-year meteorological measurements at 4828 m provide data for input, optimization, and evaluation of a spatially distributed glacier mass balance model to quantify the exchanges of energy and mass at the glacier-atmosphere interface. Currently the glacier loses mass due to the imbalance between insufficient accumulation and enhanced melt, because radiative energy gains cannot be compensated by turbulent energy sinks. Exchanging model input data with synthetic climate scenarios, which were sampled from the meteorological measurements and account for coupled climatic variable perturbations, reveals that the current mass balance is most sensitive to changes in atmospheric moisture (via its impact on solid precipitation, cloudiness, and surface albedo). Positive mass balances result from scenarios with an increase of annual (seasonal) accumulation of 30 % (100 %), compared to values observed today, without significant changes in air temperature required. Scenarios with lower air temperatures are drier and associated with lower accumulation and increased net radiation due to reduced cloudiness and albedo. If the scenarios currently producing positive mass balances are applied to the L19 extent, negative mass balances are the result, meaning that the conditions required to sustain the glacier in its L19 extent are not reflected in today's meteorological observations using model parameters optimized for the present-day glacier. Alternatively, a balanced mass budget for the

  9. Ideal climatic variables for the present-day geometry of the Gregoriev Glacier, Inner Tien Shan, Kyrgyzstan, derived from GPS data and energy-mass balance measurements

    OpenAIRE

    Fujita, K.; Takeuchi, N.; S.A. Nikitin; A. B. Surazakov; Okamoto, S; V. B. Aizen; Kubota, J.

    2011-01-01

    We conducted 2 yr (2005–2007) of in situ meteorological and glaciological observations on the Gregoriev Glacier, a flat-top glacier within the Inner Tien Shan, Kyrgyzstan. Differential GPS surveys reveal a vertical surface deletion at the summit of the glacier. Based on snow density data and an energy-mass balance model, we estimate that the annual precipitation and summer mean temperature required to maintain the glacier in the modern state are 289 mm and −3.85 °C at the gl...

  10. North Cascade Glacier Annual Mass Balance Record Analysis 1984-2013

    Science.gov (United States)

    Pelto, M. S.

    2014-12-01

    The North Cascade Glacier Climate Project (NCGCP) was founded in 1983 to monitor 10 glaciers throughout the range and identify their response to climate change. The annual observations include mass balance, terminus behavior, glacier surface area and accumulation area ratio (AAR). Annual mass balance (Ba) measurements have been continued on the 8 original glaciers that still exist. Two glaciers have disappeared: the Lewis Glacier and Spider Glacier. In 1990, Easton Glacier and Sholes Glacier were added to the annual balance program to offset the loss. One other glacier Foss Glacier has declined to the extent that continued measurement will likely not be possible. Here we examine the 30 year long Ba time series from this project. All of the data have been reported to the World Glacier Monitoring Service (WGMS). This comparatively long record from glaciers in one region conducted by the same research program using the same methods offers some useful comparative data. Degree day factors for melt of 4.3 mm w.e.°C-1d-1 for snow and 6.6 mm w.e.°C-1d-1 for ice has been determined from 412 days of ablation observation. The variation in the AAR for equilibrium Ba is small ranging from 60 to 67. The mean annual balance of the glaciers from 1984-2013 is -0.45 ma-1, ranging from -0.31 to -0.57 ma-1 for individual glacier's. The correlation coefficient of Ba is above 0.80 between all glaciers including the USGS benchmark glacier, South Cascade Glacier. This indicates that the response is to regional climate change, not local factors. The mean annual balance of -0.45 ma-1 is close to the WGMS global average for this period -0.50 ma-1. The cumulative loss of 13.5 m w.e. and 15 m of ice thickness represents more than 20% of the volume of the glaciers.

  11. Preliminary results of mass-balance observations of Yala Glacier and analysis of temperature and precipitation gradients in Langtang Valley, Nepal

    OpenAIRE

    Baral, Prashant; Kayastha, Rijan B.; Immerzeel, Walter W.; Pradhananga, Niraj S.; Bhattarai, Bikas C.; Shahi, Sonika; Galos, Stephan; Springer, Claudia; Joshi, Sharad P.; Mool, Pradeep K.

    2014-01-01

    Monitoring the glacier mass balance of summer-accumulation-type Himalayan glaciers is critical to not only assess the impact of climate change on the volume of such glaciers but also predict the downstream water availability and the global sea-level change in future. To better understand the change in meteorological parameters related to glacier mass balance and runoff in a glacierized basin and to assess the highly heterogeneous glacier responses to climate change in the Nepal Himalaya and n...

  12. Ideal climatic variables for the present-day geometry of the Gregoriev Glacier, Inner Tien Shan, Kyrgyzstan, derived from GPS data and energy-mass balance measurements

    Directory of Open Access Journals (Sweden)

    K. Fujita

    2011-03-01

    Full Text Available We conducted 2 yr (2005–2007 of in situ meteorological and glaciological observations on the Gregoriev Glacier, a flat-top glacier within the Inner Tien Shan, Kyrgyzstan. Differential GPS surveys reveal a vertical surface deletion at the summit of the glacier. Based on snow density data and an energy-mass balance model, we estimate that the annual precipitation and summer mean temperature required to maintain the glacier in the modern state are 289 mm and −3.85 °C at the glacier summit (4600 m above sea level, a.s.l., respectively. The good agreement between the long-term estimated and observed precipitation at a nearby station in the Tien Shan (292 mm at 3614 m a.s.l. for the period 1930–2002 suggests that the glacier dynamics have been regulated by the long-term average accumulation. The glacier mass-balance, reconstructed based on meteorological data from the Tien Shan station for the past 80 yr, explains the observed fluctuations in glacier extent, particularly the negative mass balance in the 1990s.

  13. Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent

    OpenAIRE

    B. Marzeion; Leclercq, P.W.; Cogley, J. G.; A. H. Jarosch

    2015-01-01

    Recent estimates of the contribution of glaciers to sea-level rise during the 20th century are strongly divergent. Advances in data availability have allowed revisions of some of these published estimates. Here we show that outside of Antarctica, the global estimates of glacier mass change obtained from glacier-length-based reconstructions and from a glacier model driven by gridded climate observations are now consistent with each other, and also with an estimate for the yea...

  14. Quick ice mass loss and abrupt retreat of the maritime glaciers in the Kangri Karpo Mountains, southeast Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YANG Wei; YAO TanDong; XU BaiQing; WU GuangJian; MA LingLong; XIN XiaoDong

    2008-01-01

    The maritime glaciers are sensitive to climate change because of high annual precipitation and high air temperature in the region.A combined comprehensive study was carried out based on glacier mass balance observation,GPS-based glacier terminus position survey,glacier Ground Penetrating Radar,topography maps and RS satellite images in the Kangri Karpo Mountains,Southeast Tibet.The study revealed a strong ice mass loss and quick glacier retreat since the 1970s.Ata Glacier,one glacier from the south slope of the Kangri Karpo Mountains,has formed a 6-km-long terminal moraine zone at the end of the glacier since the 1970s,and the accelerating retreat is largely due to the strong glacier sur-face melting.Mass balance study on the other four glaciers on the northern side of the Kangri Karpo Mountains shows that they are in large negative mass balance and the glaciers had retreated 15-19 m from May 2006 to May 2007.The in-situ glacier observation also shows that the glacier retreat is more obvious in small glaciers.The enhanced ice mass deficit caused by climate warming and the ongoing extinction of many small glaciers in this region could seriously affect the water resources,environ-ments,local climate and regional sustainable development in the near future.

  15. Mass balance investigation of alpine glaciers through LANDSAT TM data

    Science.gov (United States)

    Bayr, Klaus J.

    1989-01-01

    An analysis of LANDSAT Thematic Mapper (TM) data of the Pasterze Glacier and the Kleines Fleisskees in the Austrian Alps was undertaken and compared with meteorological data of nearby weather stations. Alpine or valley glaciers can be used to study regional and worldwide climate changes. Alpine glaciers respond relatively fast to a warming or cooling trend in temperature through an advance or a retreat of the terminus. In addition, the mass balance of the glacier is being affected. Last year two TM scenes of the Pasterze Glacier of Aug. 1984 and Aug. 1986 were used to study the difference in reflectance. This year, in addition to the scenes from last year, one MSS scene of Aug. 1976 and a TM scene from 1988 were examined for both the Pasterze Glacier and the Kleines Fleisskees. During the overpass of the LANDSAT on 6 Aug. 1988 ground truthing on the Pasterze Glacier was undertaken. The results indicate that there was considerable more reflectance in 1976 and 1984 than in 1986 and 1988. The climatological data of the weather stations Sonnblick and Rudolfshuette were examined and compared with the results found through the LANDSAT data. There were relations between the meteorological and LANDSAT data: the average temperature over the last 100 years showed an increase of .4 C, the snowfall was declining during the same time period but the overall precipitation did not reveal any significant change over the same period. With the use of an interactive image analysis computer, the LANDSAT scenes were studied. The terminus of the Pasterze Glacier retreated 348 m and the terminus of the Kleines Fleisskees 121 m since 1965. This approach using LANDSAT MSS and TM digital data in conjunction with meteorological data can be effectively used to monitor regional and worldwide climate changes.

  16. What influences climate and glacier change in southwestern China?

    Science.gov (United States)

    Yasunari, Teppei J.

    2011-12-01

    The subject of climate change in the Tibetan Plateau (TP) and Himalayas has taken on increasing importance because of the availability of water resources from their mountain glaciers (Immerzeel et al 2010). Many of the glaciers over these regions have been retreating, while some are advancing and stable (Yao et al 2004, Scherler et al 2011). Other studies report that some glaciers in the Himalayas show acceleration of their shrinkage (e.g., Fujita and Nuimura 2011). However, the causes of glacier melting are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. Despite this, it is vital that we pursue further study to enable future predictions of glacier changes. The paper entitled 'Climate and glacier change in southwestern China during the past several decades' by Li et al (2011) provided carefully analyzed, quality controlled, long-term data on atmospheric temperature and precipitation during the period 1961-2008. The data were obtained from 111 Chinese stations. The researchers performed systematic analyses of temperature and precipitation over the whole southwestern Chinese domain. They discussed those changes in terms of other meteorological components such as atmospheric circulation patterns, radiation and altitude difference, and then showed how these factors could contribute to climate and glacier changes in the region. Air temperature and precipitation are strongly associated with glacier mass balance because of heat balance and the addition of mass when it snows. Temperature warming trends over many places in southwestern China were unequivocally dominant in all seasons and at higher altitudes. This indicates that the heat contribution to the glaciers has been increasing. On the other hand, precipitation has a wider variability in time and space. It is more difficult to clearly understand the effect of precipitation on the climate and glacier melting characteristics in the whole of southwestern China

  17. What Influences Climate and Glacier Change in the Southwestern China?

    Science.gov (United States)

    Yasunari, Teppei J.

    2012-01-01

    The subject of climate change in the areas of the Tibetan Plateau (TP) and the Himalayas has taken on increasing importance because of available water resources from their mountain glaciers. Many of these glaciers over the region have been retreating, while some are advancing and stable. Other studies report that some glaciers in the Himalayas show acceleration on their shrinkage. However, the causes of the glacier meltings are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. However, it is vital that we pursue further study to enable the future prediction on glacier changes.

  18. Climatic controls and climate proxy potential of Lewis Glacier, Mt Kenya

    Directory of Open Access Journals (Sweden)

    R. Prinz

    2015-07-01

    Full Text Available The Lewis Glacier on Mt Kenya is one of the best studied tropical glaciers and has experienced considerable retreat since a maximum extent in the late 19th century (L19. From distributed mass and energy balance modelling, this study evaluates the current sensitivity of the surface mass and energy balance to climatic drivers, explores climate conditions under which the L19 maximum extent might have sustained, and discusses the potential for using the glacier retreat to quantify climate change. Multiyear meteorological measurements at 4828 m provide data for input, optimization and evaluation of a spatially distributed glacier mass balance model to quantify the exchanges of energy and mass at the glacier–atmosphere interface. Currently the glacier loses mass due to the imbalance between insufficient accumulation and enhanced melt, because radiative energy gains cannot be compensated by turbulent energy sinks. Exchanging model input data with synthetic climate scenarios, which were sampled from the meteorological measurements and account for coupled climatic variable perturbations, reveal that the current mass balance is most sensitive to changes in atmospheric moisture (via its impact on solid precipitation, cloudiness and surface albedo. Positive mass balances result from scenarios with an increase of annual (seasonal accumulation of 30 % (100 %, compared to values observed today, without significant changes in air temperature required. Scenarios with lower air temperatures are drier and associated with lower accumulation and increased net radiation due to reduced cloudiness and albedo. If the scenarios currently producing positive mass balances are applied to the L19 extent, negative mass balances are the result, meaning that the conditions required to sustain the glacier in its L19 extent are not reflected in today's observations. Alternatively, a balanced mass budget for the L19 extent can be explained by changing model parameters that imply

  19. Regional Glacier Sensitivity to Climate Change in the Monsoonal Himalaya: Implications for Water Resources

    Science.gov (United States)

    Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Tsering, K.; Rinzin, T.; Dorji, C.; Johnson, E. S.; Cook, E. R.

    2014-12-01

    The rapid retreat of many glaciers in the monsoonal Himalaya is of potential societal concern. However, the retreat pattern in the region has been very heterogeneous, likely due in part to the inherent heterogeneity of climate and glaciers within the region. Assessing the impacts of glacier change on water resources, hydroelectric power, and hazard potential requires a detailed understanding of this potentially complex spatial pattern of glacier sensitivity to climate change. Here we quantify glacier surface-mass balance and meltwater flux across the entire glacierized region of the Bhutanese watershed using a full surface-energy and -mass balance model validated with field data. We then test the sensitivity of the glaciers to climatic change and compare the results to a thirty-year record of glacier volume changes. Bhutan is chosen because it (1) sits in the bulls-eye of the monsoon, (2) has >600 glaciers that exhibit the extreme glacier heterogeneity typical of the Himalayas, and (3) faces many of the economic and hazard challenges associated with glacier changes in the Himalaya. Therefore, the methods and results from this study should be broadly applicable to other regions of the monsoonal Himalaya. Our modeling results show a complex spatial pattern of glacier sensitivity to changes in climate across the Bhutanese Himalaya. However, our results also show that 90% of the total meltwater flux, and that these glaciers are uniformly the glaciers most sensitive to changes in temperature (and less sensitive to other climate variables). We compare these results to a thirty-year record of glacier volume changes over the same region. In particular, we extract DEMs and orthorectified imagery from 1976 historical spy satellite images and 2006 ASTER images. DEM differencing shows that the glaciers that have changed most over the past thirty years also have the highest modeled temperature sensitivity. These results suggest that, despite the complex glacier heterogeneity in

  20. Mass balance model parameter transferability on a tropical glacier

    Science.gov (United States)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  1. Mass balance of the Lambert Glacier basin, East Antarctica

    Institute of Scientific and Technical Information of China (English)

    REN; Jiawen(任贾文); Ian; Allison; XIAO; Cunde(效存德); QIN; Dahe(秦大河)

    2002-01-01

    Since it is the largest glacier system in Antarctica, the Lambert Glacier basin plays an important role in the mass balance of the overall Antarctic ice sheet. The observed data and shallow core studies from the inland traverse investigations in recent years show that there are noticeable differences in the distribution and variability of the snow accumulation rate between east and west sides. On the east side, the accumulation is higher on the average and has increased in the past decades, while on the west side it is contrary. The ice movement measurement and the ice flux calculation indicate that the ice velocity and the flux are larger in east than in west, meaning that the major part of mass supply for the glacier is from the east side. The mass budget estimate with the latest data gives that the integrated accumulation over the upstream area of the investigation traverse route is larger than the outflow ice flux by 13%, suggesting that the glacier basin is in a positive mass balance state and the ice thickness will increase if the present climate is keeping.

  2. Mass-balance parameters derived from a synthetic network of mass-balance glaciers

    OpenAIRE

    Machguth, Horst; Haeberli, Wilfried; Paul, Frank

    2012-01-01

    Glacier mass-balance parameters such as the equilibrium-line altitude (ELA) play an important role when working with large glacier samples. While the number of observational mass-balance series to derive such parameters is limited, more and more modeled data are becoming available. Here we explore the possibilities of analyzing such ‘synthetic’ mass-balance data with respect to mass-balance parameters. A simplified energy-balance model is driven by bias-corrected regional climate model output...

  3. Simulating the evolution of Himalayan glaciers with the regional climate model REMO

    Science.gov (United States)

    Kumar, P.; Kotlarski, S.; Sieck, K.; Frey, H.; Stoffel, M.; Jacob, D.

    2012-12-01

    The regional climate model REMO extended by a recently developed glacier parameterization scheme has been applied over the South Asian Himalayan mountain range. The glacier scheme interactively simulates the mass balance as well as changes of the areal extent of glaciers on a sub-grid scale. Various observational data sets, in particular a regional glacier inventory, have been compiled and were used to initialize glacier area and volume in the year 1989. A simulation for the period 1989-2008 using the ECMWF reanalysis as atmospheric boundary forcing was carried out. Preliminary results show a simulated decrease of glacier area of about 22% between 1989 and 2008. In contrast, the total ice volume in the model domain is showing an overall increase. This is due to the fact that several heavily glaciated grid cells experience a strong snow accumulation, which is subsequently turned into glacier ice and thereby increases the total ice volume. The major part of the simulation domain, however, experiences a strong decrease of both glacier area and glacier volume. Areas with local increases in glacier area and volume are found in the northern part of the model domain, in the Karakoram ranges and in some parts of the Kashmir Great Himalayan ranges. This feature is in good agreement with reported observations. Our results indicate that observed glacier changes can be approximately reproduced within a regional climate model based on simplified concepts of glacier-climate interaction. This, in turn, underlines the general applicability of the model system for scenarios of 21st century climate and glacier change.

  4. Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA

    Science.gov (United States)

    Josberger, Edward G.; Bidlake, William R.; March, Rod S.; Kennedy, Ben W.

    2007-10-01

    The more than 40 year record of net and seasonal mass-balance records from measurements made by the United States Geological Survey on South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, shows annual and interannual fluctuations that reflect changes in the controlling climatic conditions at regional and global scales. As the mass-balance record grows in length, it is revealing significant changes in previously described glacier mass-balance behavior, and both inter-glacier and glacier-climate relationships. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the northeast Pacific Ocean. Their net balances have generally been controlled by winter accumulation, with fluctuations that are strongly related to the Pacific Decadal Oscillation (PDO). Recently, warm dry summers have begun to dominate the net balance of the two maritime glaciers, with a weakening of the correlation between the winter balance fluctuations and the PDO. Non-synchronous periods of positive and negative net balance for each glacier prior to 1989 were followed by a 1989-2004 period of synchronous and almost exclusively negative net balances that averaged -0.8 m for the three glaciers.

  5. Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA

    Science.gov (United States)

    Josberger, E.G.; Bidlake, W.R.; March, R.S.; Kennedy, B.W.

    2007-01-01

    The more than 40 year record of net and seasonal mass-balance records from measurements made by the United States Geological Survey on South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, shows annual and interannual fluctuations that reflect changes in the controlling climatic conditions at regional and global scales. As the mass-balance record grows in length, it is revealing significant changes in previously described glacier mass-balance behavior, and both inter-glacier and glacier-climate relationships. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the northeast Pacific Ocean. Their net balances have generally been controlled by winter accumulation, with fluctuations that are strongly related to the Pacific Decadal Oscillation (PDO). Recently, warm dry summers have begun to dominate the net balance of the two maritime glaciers, with a weakening of the correlation between the winter balance fluctuations and the PDO. Non-synchronous periods of positive and negative net balance for each glacier prior to 1989 were followed by a 1989-2004 period of synchronous and almost exclusively negative net balances that averaged -0.8 m for the three glaciers.

  6. Mass balance gradients and climatic change

    OpenAIRE

    Oerlemans, J.; Hoogendoorn, N.C.

    1989-01-01

    It is generally assumed that the mass-balance gradient on glaciers is more or less conserved under climatic change. In studies of the dynamic response of glaciers to climatic change, one of the following assumptions is normally made: (i) the mass-balance perturbation is independent of altitude or (ii) the mass-balance profile does not change - it simply shifts up and down. Observational evidence for such an approach is not convincing; on some glaciers the inter-annual changes in mass balance ...

  7. Glacier and hydrology changes in future climate over western Canada

    Science.gov (United States)

    Winger, Katja; Sushama, Laxmi; Marshall, Shawn

    2016-04-01

    Glaciers are frozen fresh water reservoirs that respond to changes in temperature and snowfall. Concern is growing about the impact that changes in glaciers may have on water resources in regions such as western Canada that derive a lot of their summer streamflow from glacier melt. Given that RCM projections are an important tool and are increasingly being used in assessing projected changes to water resources, particularly due to its high resolution compared with GCMs, realistic representation of glaciers in RCMs is very important. Currently, glaciers are only represented in an extremely simplified way in the fifth generation Canadian Regional Climate Model (CRCM5). This simple approach of representing glaciers as static glacier masks is appropriate for short-term integrations, where the response of glacier to changing atmospheric conditions might still be small due to glacier response times and therefore the feedback of changing glacier extent on large-scale atmospheric flow conditions might be negligible. A new dynamic glacier scheme has been developed for use within CRCM5, based on volume-area relationships. Simulations have been performed with this glacier model and Land Surface Scheme CLASS for the 2000-2100 period over a domain covering western Canada. These simulations were driven by outputs from a CRCM5 transient climate change simulation driven by CanESM2 at the lateral boundaries, for RCPs 4.5 and 8.5. Preliminary results suggest significant decreases to glacier fractions in future climate. Though the glacier contribution to streamflows is found to dramatically decrease in future climate, the total streamflows did not show any dramatic decreases due to the increase in precipitation for these regions.

  8. Increased mass over the Tibetan Plateau: From lakes or glaciers?

    Science.gov (United States)

    Zhang, Guoqing; Yao, Tandong; Xie, Hongjie; Kang, Shichang; Lei, Yanbin

    2013-05-01

    mass balance in the Inner Tibet Plateau (ITP) derived from the Gravity Recovery and Climate Experiment (GRACE) showed a positive rate that was attributed to the glacier mass gain, whereas glaciers in the region, from other field-based studies, showed an overall mass loss. In this study, we examine lake's water level and mass changes in the Tibetan Plateau (TP) and suggest that the increased mass measured by GRACE was predominately due to the increased water mass in lakes. For the 200 lakes in the TP with 4 to 7 years of ICESat data available, the mean lake level and total mass change rates were +0.14 m/yr and +4.95 Gt/yr, respectively. Compared those in the TP, 118 lakes in the ITP showed higher change rates (+0.20 m/yr and +4.28 Gt/yr), accounting for 59% area and 86% mass increase of the 200 lakes. The lake's mass increase rate in the ITP explains the 61% increased mass (~7 Gt/yr) derived from GRACE [Jacob et al., 2012], while it only accounts for 53% of the total lake area in the ITP.

  9. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)

    Science.gov (United States)

    Sorg, A. F.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M.

    2012-12-01

    Climate-driven changes in glacier-fed streamflow regimes have direct implications on freshwater supply, irrigation and hydropower potential. Reliable information about current and future glaciation and runoff is crucial for water allocation and, hence, for social and ecological stability. Although the impacts of climate change on glaciation and runoff have been addressed in previous work undertaken in the Tien Shan (known as the 'water tower of Central Asia'), a coherent, regional perspective of these findings has not been presented until now. In our study, we explore the range of changes in glaciation in different climatic regions of the Tien Shan based on existing data. We show that the majority of Tien Shan glaciers experienced accelerated glacier wasting since the mid-1970s and that glacier shrinkage is most pronounced in peripheral, lower-elevation ranges near the densely populated forelands, where summers are dry and where snow and glacial meltwater is essential for water availability. The annual glacier area shrinkage rates since the middle of the twentieth century are 0.38-0.76% per year in the outer ranges, 0.15-0.40% per year in the inner ranges and 0.05-0.31% per year in the eastern ranges. This regionally non-uniform response to climate change implies that glacier shrinkage is less severe in the continental inner ranges than in the more humid outer ranges. Glaciers in the inner ranges react with larger time lags to climate change, because accumulation and thus mass turnover of the mainly cold glaciers are relatively small. Moreover, shrinkage is especially pronounced on small or fragmented glaciers, which are widely represented in the outer regions. The relative insensitivity of glaciers in the inner ranges is further accentuated by the higher average altitude, as the equilibrium line altitude ranges from 3'500 to 3'600 masl in the outer ranges to 4'400 masl in the inner ranges. For our study, we used glacier change assessments based both on direct data

  10. Recent evolution and mass balance of Cordón Martial glaciers, Cordillera Fueguina Oriental

    Science.gov (United States)

    Strelin, Jorge; Iturraspe, Rodolfo

    2007-10-01

    Past and present glacier changes have been studied at Cordón Martial, Cordillera Fueguina Oriental, Tierra del Fuego, providing novel data for the Holocene deglaciation history of southern South America and extrapolating as well its future behavior based on predicted climatic changes. Regional geomorphologic and stratigraphic correlations indicate that the last glacier advance deposited the ice-proximal ("internal") moraines of Cordón Martial, around 330 14C yr BP, during the Late Little Ice Age (LLIA). Since then glaciers have receded slowly, until 60 years ago, when major glacier retreat started. There is a good correspondence for the past 100 years between the surface area variation of four small cirque glaciers at Cordón Martial and the annual temperature and precipitation data of Ushuaia. Between 1984 and 1998, Martial Este Glacier lost 0.64 ± 0.02 × 10 6 m 3 of ice mass (0.59 ± 0.02 × 10 6 m 3 w.e.), corresponding to an average ice thinning of 7.0 ± 0.2 m (6.4 ± 0.2 m w.e), according to repeated topographic mapping. More detailed climatic data have been obtained since 1998 at the Martial Este Glacier, including air temperature, humidity and solar radiation. These records, together with the monthly mass balance measured since March 2000, document the annual response of the Martial Este Glacier to the climate variation. Mass balances during hydrological years were positive in 2000, negative in 2001 and near equilibrium in 2002. Finally, using these data and the regional temperature trend projections, modeled for different future scenarios by the Atmosphere-Ocean Model (GISS-NASA/GSFC), potential climatic-change effects on this mountain glacier were extrapolated. The analysis shows that only the Martial Este Glacier may survive this century.

  11. Past and future evolution of Himalayan glaciers: a regional climate model study

    Science.gov (United States)

    Kumar, Pankaj; Kotlarski, Sven; Moseley, Christopher; Sieck, Kevin; Frey, Holger; Stoffel, Markus; Jacob, Daniela

    2013-04-01

    Over 800 million people depend on glacier melt water runoff throughout the Hindu-Kush and Himalaya (HKH) region. The region, also called as "Water tower of Asia", is the location of several major rivers basins, like Ganges, Brahmaputra, and Indus etc. Glaciers in the HKH region are the primary source of water for the perennial rivers. Previous studies have assessed glacier areas and volumes in the HKH region by remote sensing techniques and slope-dependent thickness estimations. We here present a study in which, for the first time a glacier parameterization scheme is dynamically coupled to a regional climate model and applied over the South Asian Himalayan mountain range. The glacier scheme interactively simulates the mass balance as well as changes of the areal extent of glaciers on a sub-grid scale. Various observational data sets, in particular a regional glacier inventory, have been compiled and were used to initialize glacier area and volume in the year 1989. A simulation for the period 1989-2008 using the ECMWF ERA-Interim reanalysis as atmospheric boundary forcing was carried out. Preliminary results show a simulated decrease of glacier area of about 20% between 1989 and 2008. The spatial patterns of glacier area change show a remarkable decrease, but do show some regions of increase especially over the Karakoram (western Himalaya), a region for which available observations-based estimates also indicate a positive mass balance anomaly. The positive relation between altitude and mass balance is qualitatively reproduced by the model. The model is able to approximately represent the equilibrium line altitude (ELA) for selected sub-region when compared to observed values but simulated ELA's seem to have a systematic negative bias which, in turn, suggests an overestimation of the mean regional mass balance. Our results indicate that observed glacier changes can be approximately reproduced within a regional climate model based on simplified concepts of glacier-climate

  12. Surface energy budget and mass balance of Zhadang Glacier in the central Tibetan Plateau

    Science.gov (United States)

    Li, B.; Acharya, K.; Yu, Z.; Su, F.; liang, Z.

    2011-12-01

    It is difficult to clearly investigate the surface energy budget and glacier evolution under the changed climate environments, especially on accounts of limited data set. We attempted to calculate the summer mass balance of Zhadang Glacier (5710 m above sea level), located in the central Tibetan Plateau. This small and high-altitude glacier has been retreating during the previous decades. Energy balance was calculated on a 30 m square grid on the glacier for the summer periods in 2007 and 2008. On average, net radiation contributed more than 96% of the energy gain while only less than 4% was supplied by the sensible heat flux. Most energy loss on the glacier was contributed by the turbulent heat fluxes and only roughly 30% of the total energy was available for melting. A large deficit and a surplus summer mass balance were obtained for years 2006/07 and 2007/08, respectively. The switch in mass balance from negative to positive in the summer of 2008 is caused by early precipitation (mostly snow) resulting in low temperature on the glacier. Low temperature produces less energy that contributes to melting, whereas increased snow accumulation produces higher surface albedo reflecting away incoming solar radiation. The high sensitivity of air temperature may imply that the low temperature was more important than the increased precipitation in the mass balance switch in Zhadang Glacier. Despite a continuous negative mass balance for several decades in Zhadang Glacier 2008 may have brought a temporary relief.

  13. Glacier sensitivity to climate change in the Nepalese Himalaya quantified using higher-order modelling

    Science.gov (United States)

    Rowan, A. V.; Egholm, D. L.; Glasser, N. F.; Quincey, D. J.

    2013-12-01

    Recent studies of glaciers in the eastern Himalaya have identified rapid changes in ice volume with small changes in climate indicating that these glaciers are highly sensitive to primary climate variables (e.g. daily variations in air temperature and monsoon precipitation). However, quantifying Himalayan glacier sensitivity to climate change is challenging due to: (1) a lack of information about how glaciological and geomorphological factors influence the balance of large debris-covered glaciers; (2) the local modification of meteorological variables by the interaction of high topography with regional atmospheric circulation systems; and (3) the simple representation of ice dynamics in many numerical glacier models which limits their usefulness in regions with steep terrain. To quantify the sensitivity of Himalayan glaciers to climate change we apply the integrated second-order shallow ice approximation (iSOSIA) [Egholm et al. 2011, Journal of Geophysical Research-Earth Surface] to large debris-covered glaciers on the southern slopes of Mt. Everest in the Khumbu Himal, Nepal. iSOSIA considers both the longitudinal and transverse stresses that drive mountain glacier flow in regions with steep terrain--a more suitable approach for Himalayan glaciers than those models based on approximations developed for shallow ice sheets. We apply iSOSIA at a 100-m resolution on a regular grid using a daily timestep to Nepalese glaciers including Khumbu, Ngozumpa and Lhotse. Our mass balance model development has focused on the dynamic representation of snow avalanching onto the glacier surfaces as this accounts for up to 75% of accumulation. We investigate Himalayan glacier sensitivities to primary climatological, glaciological and geological variables including air temperature, supraglacial debris cover, and catchment hypsometry. Furthermore, we aim to improve the representation of climate in glacier models for the Himalaya by testing a range of methods to describe these

  14. Analysis of the mass balance time series of glaciers in the Italian Alps

    Science.gov (United States)

    Carturan, Luca; Baroni, Carlo; Brunetti, Michele; Carton, Alberto; Dalla Fontana, Giancarlo; Salvatore, Maria Cristina; Zanoner, Thomas; Zuecco, Giulia

    2016-03-01

    This work presents an analysis of the mass balance series of nine Italian glaciers, which were selected based on the length, continuity and reliability of observations. All glaciers experienced mass loss in the observation period, which is variable for the different glaciers and ranges between 10 and 47 years. The longest series display increasing mass loss rates, which were mainly due to increased ablation during longer and warmer ablation seasons. The mean annual mass balance (Ba) in the decade from 2004 to 2013 ranged from -1788 to -763 mm w.e. yr-1. Low-altitude glaciers with low range of elevation are more out of balance than the higher, larger and steeper glaciers, which maintain residual accumulation areas in their upper reaches. The response of glaciers is mainly controlled by the combination of October-May precipitations and June-September temperatures, but rapid geometric adjustments and atmospheric changes lead to modifications in their response to climatic variations. In particular, a decreasing correlation of Ba with the June-September temperatures and an increasing correlation with October-May precipitations are observed for some glaciers. In addition, the October-May temperatures tend to become significantly correlated with Ba, possibly indicating a decrease in the fraction of solid precipitation, and/or increased ablation, during the accumulation season. Because most of the monitored glaciers have no more accumulation area, their observations series are at risk due to their impending extinction, thus requiring a replacement soon.

  15. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data

    OpenAIRE

    Dumont, M; Gardelle, J.; P. Sirguey; A. Guillot; Six, D.; Rabatel, A.; Y. Arnaud

    2012-01-01

    Albedo is one of the variables controlling the mass balance of temperate glaciers. Multispectral imagers, such as MODerate Imaging Spectroradiometer (MODIS) on board the TERRA and AQUA satellites, provide a means to monitor glacier surface albedo. In this study, different methods to retrieve broadband glacier surface albedo from MODIS data are compared. The effect of multiple reflections due to the rugged topography and of the anisotropic reflection of snow and ...

  16. GIS analysis to apply theoretical Minimal Model on glacier flow line and assess glacier response in climate change scenarios

    OpenAIRE

    M. Moretti; Mattavelli, M; De Amicis, Mattia; Maggi, V

    2014-01-01

    The development of theoretical work about glacier dynamics has given rise to the construction of mathematical models to assess glacier response in climate change scenarios. Glacier are sentinels of climate condition and the Project of Interest NextData will favour new data production about the present and past climatic variability and future climate projections, as well as new assessments of the impact of climate change on environment. The aim of this specific research program is to develo...

  17. Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations

    Directory of Open Access Journals (Sweden)

    M. P. Lüthi

    2014-04-01

    Full Text Available Mountain glaciers sample a combination of climate fields – temperature, precipitation and radiation – by accumulation and melting of ice. Flow dynamics acts as a transfer function that maps volume changes to a length response of the glacier terminus. Long histories of terminus positions have been assembled for several glaciers in the Alps. Here I analyze terminus position histories from an ensemble of seven glaciers in the Alps with a macroscopic model of glacier dynamics to derive a history of glacier equilibrium line altitude (ELA for the time span 400–2010 C.E. The resulting climatic reconstruction depends only on records of glacier variations. The reconstructed ELA history is similar to recent reconstructions of Alpine summer temperature and Atlantic Multidecadal Oscillation (AMO index, but bears little resemblance to reconstructed precipitation variations. Most reconstructed low-ELA periods coincide with large explosive volcano eruptions, hinting at a direct effect of volcanic radiative cooling on mass balance. The glacier advances during the LIA, and the retreat after 1860, can thus be mainly attributed to temperature and volcanic radiative cooling.

  18. Gulkana Glacier, Alaska-Mass balance, meteorology, and water measurements, 1997-2001

    Science.gov (United States)

    March, Rod S.; O'Neel, Shad

    2011-01-01

    The measured winter snow, maximum winter snow, net, and annual balances for 1997-2001 in the Gulkana Glacier basin are determined at specific points and over the entire glacier area using the meteorological, hydrological, and glaciological data. We provide descriptions of glacier geometry to aid in estimation of conventional and reference surface mass balances and descriptions of ice motion to aid in the understanding of the glacier's response to its changing geometry. These data provide annual estimates for area altitude distribution, equilibrium line altitude, and accumulation area ratio during the study interval. New determinations of historical area altitude distributions are given for 1900 and annually from 1966 to 2001. As original weather instrumentation is nearing the end of its deployment lifespan, we provide new estimates of overlap comparisons and precipitation catch efficiency. During 1997-2001, Gulkana Glacier showed a continued and accelerated negative mass balance trend, especially below the equilibrium line altitude where thinning was pronounced. Ice motion also slowed, which combined with the negative mass balance, resulted in glacier retreat under a warming climate. Average annual runoff augmentation by glacier shrinkage for 1997-2001 was 25 percent compared to the previous average of 13 percent, in accordance with the measured glacier volume reductions.

  19. Glacier response to North Atlantic climate variability during the Holocene

    Directory of Open Access Journals (Sweden)

    N. L. Balascio

    2015-05-01

    Full Text Available Small glaciers and ice caps respond rapidly to climate variations and records of their past extent provide information on the natural envelope of past climate variability. Millennial-scale trends in Holocene glacier size are well documented and correspond with changes in Northern Hemisphere summer insolation. However, there is only sparse and fragmentary evidence for higher frequency variations in glacier size because in many Northern Hemisphere regions glacier advances of the past few hundred years were the most extensive and destroyed the geomorphic evidence of ice growth and retreat during the past several thousand years. Thus, most glacier records have been of limited use for investigating centennial scale climate forcing and feedback mechanisms. Here we report a continuous record of glacier activity for the last 9.5 ka from southeast Greenland, derived from high-resolution measurements on a proglacial lake sediment sequence. Physical and geochemical parameters show that the glaciers responded to previously documented Northern Hemisphere climatic excursions, including the "8.2 ka" cooling event, the Holocene Thermal Maximum, Neoglacial cooling, and 20th Century warming. In addition, the sediments indicate centennial-scale oscillations in glacier size during the late Holocene. Beginning at 4.1 ka, a series of abrupt glacier advances occurred, each lasting ~100 years and followed by a period of retreat, that were superimposed on a gradual trend toward larger glacier size. Thus, while declining summer insolation caused long-term cooling and glacier expansions during the late Holocene, climate system dynamics resulted in repeated episodes of glacier expansion and retreat on multi-decadal to centennial timescales. These episodes coincided with ice rafting events in the North Atlantic Ocean and periods of regional ice cap expansion, which confirms their regional significance and indicates that considerable glacier activity on these timescales is a

  20. New climate change scenarios reveal uncertain future for Central Asian glaciers

    Directory of Open Access Journals (Sweden)

    A. F. Lutz

    2012-11-01

    Full Text Available Central Asian water resources largely depend on (glacier melt water generated in the Pamir and Tien Shan mountain ranges, located in the basins of the Amu and Syr Darya rivers, important life lines in Central Asia and the prominent water source of the Aral Sea. To estimate future water availability in the region, it is thus necessary to project the future glacier extent and volume in the Amu and Syr Darya river basins. The aim of this study is to quantify the impact of uncertainty in climate change projections on the future glacier extent in the Amu and Syr Darya river basins. The latest climate change projections provided by the fifth Coupled Model Intercomparison Project (CMIP5 generated for the upcoming fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC are used to model future glacier extent in the Central Asian region for the two large river basins. The outcomes are compared to model results obtained with the climate change projections used for the fourth IPCC assessment (CMIP3. We use a regionalized glacier mass balance model to estimate changes in glacier extent as a function of glacier size and projections of temperature and precipitation. The model is developed for implementation in (large scale hydrological models, when the spatial model resolution does not allow for modelling of individual glaciers and data scarcity is an issue. Both CMIP3 and CMIP5 model simulations point towards a strong decline in glacier extent in Central Asia. However, compared to the CMIP3 projections, the CMIP5 projections of future glacier extent in Central Asia provide a wider range of outcomes, mostly owing to greater variability in precipitation projections among the latest suite of climate models. These findings have great impact on projections of the timing and quantity of water availability in glacier melt dominated rivers in the region. Uncertainty about the size of the decline in glacier extent remains large, making

  1. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    OpenAIRE

    Immerzeel, W. W.; N. Wanders; A. F. Lutz; J. M. Shea; M. F. P. Bierkens

    2015-01-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances t...

  2. Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya since 2007

    Directory of Open Access Journals (Sweden)

    P. Wagnon

    2013-07-01

    Full Text Available In the Everest region, Nepal, ground-based monitoring programs were started on the debris-free Mera Glacier (27.7° N, 86.9° E; 5.1 km2, 6420 to 4940 m a.s.l. in 2007 and on the small Pokalde Glacier (27.9° N, 86.8° E; 0.1 km2, 5690 to 5430 m a.s.l., ∼ 25 km North of Mera Glacier in 2009. These glaciers lie on the southern flank of the central Himalaya under the direct influence of the Indian monsoon and receive more than 80% of their annual precipitation in summer (June to September. Despite a large inter-annual variability with glacier-wide mass balances ranging from −0.77± 0.40 m w.e. in 2011–2012 (Equilibrium-line altitude (ELA at ∼ 6055 m a.s.l. to + 0.46 ± 0.40 m w.e. in 2010–2011 (ELA at ∼ 5340 m a.s.l., Mera Glacier has been shrinking at a moderate mass balance rate of −0.10± 0.40 m w.e. yr−1 since 2007. Ice fluxes measured at two distinct transverse cross sections at ∼ 5350 m a.s.l. and ∼ 5520 m a.s.l. confirm that the mean state of this glacier over the last one or two decades corresponds to a limited mass loss, in agreement with remotely-sensed region-wide mass balances of the Everest area. Seasonal mass balance measurements show that ablation and accumulation are concomitant in summer which in turn is the key season controlling the annual glacier-wide mass balance. Unexpectedly, ablation occurs at all elevations in winter due to wind erosion and sublimation, with remobilized snow likely being sublimated in the atmosphere. Between 2009 and 2012, the small Pokalde Glacier lost mass more rapidly than Mera Glacier with respective mean glacier-wide mass balances of −0.72 and −0.26 ± 0.40 m w.e. yr−1. Low-elevation glaciers, such as Pokalde Glacier, have been usually preferred for in-situ observations in Nepal and more generally in the Himalayas, which may explain why compilations of ground-based mass balances are biased toward negative values compared with the regional mean under the present-day climate.

  3. Comparison of the responses of two temperate Alpine valley glaciers to climate change at the decadal scale

    Science.gov (United States)

    Gabbud, Chrystelle; Tahir, Adnan Ahmad; Micheletti, Natan; Lane, Stuart

    2015-04-01

    Glacier advance and recession are considered as key indicators of climate change by the Intergovernmental Panel on Climate Change. Understanding the relationship between climatic variations and glacial responses is crucial. Here, we use archival photogrammetric methods to generate high resolution and precise Digital Elevation Models (DEMs) of two Alpine valley glaciers that have shown a contrasting response to recent climatic variability. Digital photogrammetry is well-established for glacier monitoring, mass balance determination and computation of the volumes of ice mass change. Reconstructions of the recent history of glaciers have been performed through and since the Little Ice Age and also more recently in relation to recent global warming. This study uses aerial imagery available from the early 1960s. Archival digital photogrammetry is applied to reconstruct the decadal scale glacial history of the Haut Glacier d'Arolla and the Glacier de Tsijiore Nouve in south western Switzerland. The data generated are used to explore the linkages between glacier changes and climate forcing. While both of the glaciers were subject to exactly the same climatic settings (they are only a few km apart), the responses to climatic variability have been markedly different. The data show continual recession of the Haut Glacier d'Arolla since 1967, associated with long-term climatic amelioration but only a weak response to shorter-term climatic deterioration. Glacier surface velocity estimates obtained using surface particle tracking showed that, unlike for most Swiss glaciers during the late 1970s and early 1980s, ice mass flux from the accumulation zone was too low to compensate for the effects of glacier thinning. Associated with glacier response time, that means that whilst there may have been a reduction in the ablation rate during the colder period, the flux did still not exceed the ablation rate, and hence snout advance was prevented. By contrast, the Tsijiore Nouve Glacier

  4. Towards remote monitoring of sub-seasonal glacier mass balance

    OpenAIRE

    Huss, Matthias; Sold, Leo; Hoelzle, Martin; Stokvis, Mazzal; Salzmann, Nadine; Farinotti Daniel; Zemp, Michael

    2013-01-01

    This study presents a method that allows continuous monitoring of mass balance for remote or inaccessible glaciers, based on repeated oblique photography. Hourly to daily pictures from two automatic cameras overlooking two large valley glaciers in the Swiss Alps are available for eight ablation seasons (2004–11) in total. We determine the fraction of snow-covered glacier surface from orthorectified and georeferenced images and combine this information with simple accumulation and melt modelli...

  5. Climate change implications for the glaciers of the Hindu-Kush, Karakoram and Himalayan region

    Directory of Open Access Journals (Sweden)

    A. J. Wiltshire

    2013-07-01

    Full Text Available The Hindu-Kush, Karakoram Himalaya (HKKH region has a negative average glacial mass balance despite anomalous possible gains in the Karakoram. However, changes in climate may influence the mass balance across the HKKH. We use high resolution climate modelling to analyse the implications of unmitigated climate change on precipitation, snowfall, air temperature and accumulated degree days for the Hindu Kush, Karakoram, Jammu-Kashmir, Himachal Pradesh and West Nepal regions, and East Nepal and Bhutan. In our analysis we focus on the climate drivers of change rather than the glaciological response. We find a complex regional response to climate change, with possible increases in snowfall over the western HKKH and decreases in the east. Accumulated degree days are less spatially variable than precipitation and show an increase in potential ablation in all regions. Overall, the eastern Himalayan glaciers are expected to be most sensitive to climate change due to the decreases in snowfall and increased ablation associated with warming. The eastern glaciers are therefore projected to decline over the 21st century despite increasing precipitation. The western glaciers are expected to decline at a slower rate over the 21st century as a response to unmitigated climate compared to the glaciers of the east. Importantly, the glacier response depends on important glaciological factors, such as the extent of debris cover, which may be of critical importance in moderating the response to climatic change. Decadal variability has a large effect highlighting the need for long-term observation records to fully understand the impact of climate on the glaciers of the HKKH cryosphere. Spatial variability in projected snowfall patterns are likely to be a key driver of glacier mass balance over the 21st century. Importantly, the regional trends in snowfall do not necessarily follow the trends in precipitation. A key change in the HKKH cryosphere is a switch from snowfall

  6. Climate change implications for the glaciers of the Hindu-Kush, Karakoram and Himalayan region

    Science.gov (United States)

    Wiltshire, A. J.

    2013-07-01

    The Hindu-Kush, Karakoram Himalaya (HKKH) region has a negative average glacial mass balance despite anomalous possible gains in the Karakoram. However, changes in climate may influence the mass balance across the HKKH. We use high resolution climate modelling to analyse the implications of unmitigated climate change on precipitation, snowfall, air temperature and accumulated degree days for the Hindu Kush, Karakoram, Jammu-Kashmir, Himachal Pradesh and West Nepal regions, and East Nepal and Bhutan. In our analysis we focus on the climate drivers of change rather than the glaciological response. We find a complex regional response to climate change, with possible increases in snowfall over the western HKKH and decreases in the east. Accumulated degree days are less spatially variable than precipitation and show an increase in potential ablation in all regions. Overall, the eastern Himalayan glaciers are expected to be most sensitive to climate change due to the decreases in snowfall and increased ablation associated with warming. The eastern glaciers are therefore projected to decline over the 21st century despite increasing precipitation. The western glaciers are expected to decline at a slower rate over the 21st century as a response to unmitigated climate compared to the glaciers of the east. Importantly, the glacier response depends on important glaciological factors, such as the extent of debris cover, which may be of critical importance in moderating the response to climatic change. Decadal variability has a large effect highlighting the need for long-term observation records to fully understand the impact of climate on the glaciers of the HKKH cryosphere. Spatial variability in projected snowfall patterns are likely to be a key driver of glacier mass balance over the 21st century. Importantly, the regional trends in snowfall do not necessarily follow the trends in precipitation. A key change in the HKKH cryosphere is a switch from snowfall to rainfall in the

  7. Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties

    Science.gov (United States)

    Hirabayashi, Yukiko; Nakano, Kazunari; Zhang, Yong; Watanabe, Satoshi; Tanoue, Masahiro; Kanae, Shinjiro

    2016-07-01

    Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range of natural internal climate variability. Here, we apply an optimal fingerprinting technique to observed and reconstructed mass losses as well as multi-model general circulation model (GCM) simulations of mountain glacier mass to detect and attribute past glacier mass changes. An 8,800-year control simulation of glaciers enabled us to evaluate detectability. The results indicate that human-induced increases in greenhouse gases have contributed to the decreased area-weighted average masses of 85 analyzed glaciers. The effect was larger than the mass increase caused by natural forcing, although the contributions of natural and anthropogenic forcing to decreases in mass varied at the local scale. We also showed that the detection of anthropogenic or natural influences could not be fully attributed when natural internal climate variability was taken into account.

  8. Contributions of natural and anthropogenic radiative forcing to mass loss of Northern Hemisphere mountain glaciers and quantifying their uncertainties.

    Science.gov (United States)

    Hirabayashi, Yukiko; Nakano, Kazunari; Zhang, Yong; Watanabe, Satoshi; Tanoue, Masahiro; Kanae, Shinjiro

    2016-01-01

    Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range of natural internal climate variability. Here, we apply an optimal fingerprinting technique to observed and reconstructed mass losses as well as multi-model general circulation model (GCM) simulations of mountain glacier mass to detect and attribute past glacier mass changes. An 8,800-year control simulation of glaciers enabled us to evaluate detectability. The results indicate that human-induced increases in greenhouse gases have contributed to the decreased area-weighted average masses of 85 analyzed glaciers. The effect was larger than the mass increase caused by natural forcing, although the contributions of natural and anthropogenic forcing to decreases in mass varied at the local scale. We also showed that the detection of anthropogenic or natural influences could not be fully attributed when natural internal climate variability was taken into account. PMID:27435236

  9. Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region

    Science.gov (United States)

    Wiltshire, A. J.

    2014-05-01

    The Hindu Kush, Karakoram, and Himalaya (HKH) region has a negative average glacial mass balance for the present day despite anomalous possible gains in the Karakoram. However, changes in climate over the 21st century may influence the mass balance across the HKH. This study uses regional climate modelling to analyse the implications of unmitigated climate change on precipitation, snowfall, air temperature and accumulated positive degree days for the Hindu Kush (HK), Karakoram (KK), Jammu-Kashmir (JK), Himachal Pradesh and West Nepal regions (HP), and East Nepal and Bhutan (NB). The analysis focuses on the climate drivers of change rather than the glaciological response. Presented is a complex regional pattern of climate change, with a possible increase in snowfall over the western HKH and decreases in the east. Accumulated degree days are less spatially variable than precipitation and show an increase in potential ablation in all regions combined with increases in the length of the seasonal melt period. From the projected change in regional climate the possible implications for future glacier mass balance are inferred. Overall, within the modelling framework used here the eastern Himalayan glaciers (Nepal-Bhutan) are the most vulnerable to climate change due to the decreased snowfall and increased ablation associated with warming. The eastern glaciers are therefore projected to decline over the 21st Century despite increasing precipitation. The western glaciers (Hindu Kush, Karakoram) are expected to decline at a slower rate over the 21st century in response to unmitigated climate compared to the glaciers of the east. Importantly, regional climate change is highly uncertain, especially in important cryospheric drivers such as snowfall timing and amounts, which are poorly constrained by observations. Data are available from the author on request.

  10. Climate- vs. Earthquake-induced Rock-Glacier Advances in the Tien Shan: Insights from Lichenometry

    Science.gov (United States)

    Rosenwinkel, Swenja; Landgraf, Angela; Korup, Oliver; Sorg, Annina

    2014-05-01

    Rock glaciers have been traditionally used as landform proxies of the distribution of sporadic alpine permafrost. In the northern Tien Shan mountains of Kyrgyzstan, most distinct lobes of >200 rock glaciers that we mapped from satellite imagery occur at two major elevation levels. However, a number of particularly low-lying lobes seem difficult to reconcile with palaeoclimatic fluctuations and commensurate changes of permafrost patterns: The minimum elevation of the majority of rock-glacier snouts lies between ~2500 up to ~3700 m a.s.l., but some 10% of rock-glaciers extend down to well below 3000 m a.s.l. We hypothesize that some of the rock glaciers in this area may have formed following strong earthquakes that could have triggered massive supraglacial rock-slope failures, which would have subsequently created sediment-rich rock glaciers from clear-ice glaciers. Our hypothesis is based on the observation that the tectonically active northern Tien Shan of Kyrgyzstan and Kazakhstan was affected by a series of major earthquakes in the late 19th and earliest 20th centuries, e.g. in 1885 (Ms 6.9), 1887 (Ms 7.3), 1889 (Ms 8.3), and 1911 (Ms 8.1). All of these earthquakes had triggered numerous landslides in the northern Tien Shan. It is also likely that similarly strong earthquakes had happened before, but their recurrence intervals are long and more palaeoseismological work is in progress. We test whether lichenometry of rock-glacier surfaces together with morphometric analysis are suitable methods to testing our hypothesis. We focus on assessing the possibility of earthquake-triggered rock-glacier advances, and use lichenometry to resolve age patterns of different rock-glacier lobes. We use a dataset of several thousand lichen diameter measurements encompassing seven different species calibrated by gravestones and dated mass-movement deposits. Data on four single and two merging rock glaciers in four selected valleys in Kyrgyzstan and Kazakhstan support the notion

  11. Glacier modeling in support of field observations of mass balance at South Cascade Glacier, Washington, USA

    Science.gov (United States)

    Josberger, Edward G.; Bidlake, William R.

    2010-01-01

    The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  12. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions

    Science.gov (United States)

    Luthcke, Scott B.; Arendt, Anthony A.; Rowlands, David D.; McCarthy, John J.; Larsen, Christopher F.

    The mass changes of the Gulf of Alaska (GoA) glaciers are computed from the Gravity Recovery and Climate Experiment (GRACE) inter-satellite range-rate data for the period April 2003-September 2007. Through the application of unique processing techniques and a surface mass concentration (mascon) parameterization, the mass variations in the GoA glacier regions have been estimated at high temporal (10 day) and spatial (2 × 2 arc-degrees) resolution. The mascon solutions are directly estimated from a reduction of the GRACE K-band inter-satellite range-rate data and, unlike previous GRACE solutions for the GoA glaciers, do not exhibit contamination by leakage from mass change occurring outside the region of interest. The mascon solutions reveal considerable temporal and spatial variation within the GoA glacier region, with the largest negative mass balances observed in the St Elias Mountains including the Yakutat and Glacier Bay regions. The most rapid losses occurred during the 2004 melt season due to record temperatures in Alaska during that year. The total mass balance of the GoA glacier region was -84 ± 5 Gt a-1 contributing 0.23 ± 0.01 mm a-1 to global sea-level rise from April 2003 through March 2007. Highlighting the large seasonal and interannual variability of the GoA glaciers, the rate determined over the period April 2003-March 2006 is -102 ± 5 Gt a-1, which includes the anomalously high temperatures of 2004 and does not include the large 2007 winter balance-year snowfall. The mascon solutions agree well with regional patterns of glacier mass loss determined from aircraft altimetry and in situ measurements.

  13. Vulnerability of mountain glaciers in China to climate change

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Ping; DING Yong-Jian; LIU Shi-Yin; TAN Chun-Ping

    2015-01-01

    Mountain glaciers in China are an important water source for both China and adjoining countries, and therefore their adaptation to glacier change is crucial in relation to maintaining populations. This study aims to improve our understanding of glacial vulnerability to climate change to establish adaptation strategies. A glacial numerical model is developed using spatial principle component analysis (SPCA) supported by remote sensing (RS) and geographical information system (GIS) technologies. The model contains nine factorsdslope, aspect, hillshade, elevation a.s.l., air temperature, precipitation, glacial area change percentage, glacial type and glacial area, describing topography, climate, and glacier characteristics. The vulnerability of glaciers to climate change is evaluated during the period of 1961e2007 on a regional scale, and in the 2030s and 2050s based on projections of air temperature and precipitation changes under the IPCC RCP6.0 scenario and of glacier change in the 21st century. Glacial vulnerability is graded into five levels:potential, light, medial, heavy, and very heavy, using natural breaks classification (NBC). The spatial distribution of glacial vulnerability and its temporal changes in the 21st century for the RCP6.0 scenario are analyzed, and the factors influencing vulnerability are discussed. Results show that mountain glaciers in China are very vulnerable to climate change, and 41.2% of glacial areas fall into the levels of heavy and very heavy vulnerability in the period 1961e2007. This is mainly explained by topographical exposure and the high sensitivity of glaciers to climate change. Trends of glacial vulnerability are projected to decline in the 2030s and 2050s, but a declining trend is still high in some regions. In addition to topographical factors, variation in precipitation in the 2030s and 2050s is found to be crucial.

  14. Density assumptions for converting geodetic glacier volume change to mass change

    Directory of Open Access Journals (Sweden)

    M. Huss

    2013-05-01

    Full Text Available The geodetic method is widely used for assessing changes in the mass balance of mountain glaciers. However, comparison of repeated digital elevation models only provides a glacier volume change that must be converted to a change in mass using a density assumption or model. This study investigates the use of a constant factor for the volume-to-mass conversion based on a firn compaction model applied to simplified glacier geometries with idealized climate forcing, and two glaciers with long-term mass balance series. It is shown that the "density" of geodetic volume change is not a constant factor and is systematically smaller than ice density in most cases. This is explained by the accretion/removal of low-density firn layers, and changes in the firn density profile with positive/negative mass balance. Assuming a value of 850 ± 60 kg m−3 to convert volume change to mass change is appropriate for a wide range of conditions. For short time intervals (≤3 yr, periods with limited volume change, and/or changing mass balance gradients, the conversion factor can however vary from 0–2000 kg m−3 and beyond, which requires caution when interpreting glacier mass changes based on geodetic surveys.

  15. The seasonal in-situ mass balance, temperature and precipitation of Yala Glacier, Langtang Valley, Nepal, from 2011 to 2015

    Science.gov (United States)

    Stumm, Dorothea; Fujita, Koji; Gurung, Tika; Joshi, Sharad; Litt, Maxime; Shea, Joseph; Sherpa, Mingma; Sinisalo, Anna; Wagnon, Patrick

    2016-04-01

    In-situ glacier mass balance measurements are still scarce in the Hindu Kush Himalayan (HKH) region and little is known about the seasonal balances. The glaciers in the Nepalese Himalaya have been considered summer accumulation glacier types because of the assumption that the majority of the accumulation occurs in the summer months during the monsoon. The glacier mass balance of Yala Glacier in the Langtang Valley of Nepal has been measured using the glaciological method since autumn 2011. Stakes were measured biannually in pre- and post-monsoon, usually in early May and in November, respectively. The measured mass balance gradient for the summer balance was larger than the winter balance, which is typical for glaciers with distinct ablation and accumulation seasons. On Yala Glacier, the summer balance was negative, and the winter balance was positive in all years with measurements. However, the annual net balance was negative for all four mass balance years from 2011 to 2015. The mass balances were further compared to temperature and precipitation data measured at nearby climate stations during the same time periods. In October 2013 and 2014, the Central Himalayas received large amounts of precipitation brought by the cyclones Phailin and Hudhud. These precipitation events contributed to the summer balance since the measurements were taken after the cyclones passed. In conclusion, on Yala Glacier accumulation processes dominated ablation processes during the winter, and ablation processes dominated during the summer, which could be explained by the low elevation range of Yala Glacier and precipitation from westerlies in the winter. Hence, this should be kept in mind when using the term 'summer accumulation glacier' for Yala Glacier. For future research in the HKH region, seasonal mass balances should be measured, and the processes impacting the mass balance and the role of winter precipitation should be investigated for other glaciers in the HKH region.

  16. Hydrologic vulnerability to climate change of the Mandrone glacier (Adamello-Presanella group, Italian Alps)

    Science.gov (United States)

    Grossi, Giovanna; Caronna, Paolo; Ranzi, Roberto

    2013-05-01

    In order to assess the annual mass balance of the Mandrone glacier in the Central Alps an energy-balance model was applied, supported by snowpack, meteorological and glaciological observations, together with satellite measurements of snow covered areas and albedo. The Physically based Distributed Snow Land and Ice Model (PDSLIM), a distributed multi-layer model for temperate glaciers, which was previously tested on both basin and point scales, was applied. Verification was performed with a network of ablation stakes over two summer periods. Satellite images processed within the Global Land Ice Measurements from Space (GLIMS) project were used to estimate the ice albedo and to verify the position of the simulated transient snowline on specific dates. The energy balance was estimated for the Mandrone and Presena glaciers in the Central Italian Alps. Their modeled balances (-1439 and -1503 mm w.e. year-1, respectively), estimated over a 15 year period, are in good agreement with those obtained with the glaciological method for the Caresèr glacier, a WGMS (World Glacier Monitoring Service) reference located in the nearby Ortles-Cevedale group. Projections according to the regional climate model COSMO-CLM (standing for COnsortium for Small-scale MOdeling model in CLimate Mode) indicate that the Mandrone glacier might not survive the current century and might be halved in size by 2050.

  17. Response sensitivities of a summer-accumulation type glacier to climate changes indicated with a glacier fluctuation model

    OpenAIRE

    NAITO, Nozomu; AGETA, Yutaka; Nakawo, Masayoshi; Edwin,D. Waddington; Charles,F. Raymond; Howard,Conway

    2001-01-01

    Sensitivities of a summer-accumulation type glacier in response to changes in air temperature and precipitation are investigated using a glacier fluctuation model. The model couples glacier dynamics to empirical mass balance equations obtained for a typical summer-accumulation type glacier in the eastern Nepal Himalayas. The geometry and seasonal variations in air temperature and precipitation are simplified in order to examine the principal characteristics of the sensitivities. The magnitude...

  18. Glacier albedo decrease in the European Alps: potential causes and links with mass balances

    Science.gov (United States)

    Di Mauro, Biagio; Julitta, Tommaso; Colombo, Roberto

    2016-04-01

    Both mountain glaciers and polar ice sheets are losing mass all over the Earth. They are highly sensitive to climate variation, and the widespread reduction of glaciers has been ascribed to the atmospheric temperature increase. Beside this driver, also ice albedo plays a fundamental role in defining mass balance of glaciers. In fact, dark ice absorbs more energy causing faster glacier melting, and this can drive to more negative balances. Previous studies showed that the albedo of Himalayan glaciers and the Greenland Ice Sheet is decreasing with important rates. In this contribution, we tested the hypothesis that also glaciers in the European Alps are getting darker. We analyzed 16-year time series of MODIS (MODerate resolution Imaging Spectrometer) snow albedo from Terra (MOD13A1, 2000-2015) and Aqua (MYD13A1, 2002-2015) satellites. These data feature a spatial resolution of 500m and a daily temporal resolution. We evaluated the existence of a negative linear and nonlinear trend of the summer albedo values both at pixel and at glacier level. We also calculated the correlation between MODIS summer albedo and glacier mass balances (from the World Glaciological Monitoring Service, WGMS database), for all the glaciers with available mass balance during the considered period. In order to estimate the percentage of the summer albedo that can be explained by atmospheric temperature, we correlated MODIS albedo and monthly air temperature extracted from the ERA-Interim reanalysis dataset. Results show that decreasing trends exist with a strong spatial variability in the whole Alpine chain. In large glaciers, such as the Aletch (Swiss Alps), the trend varies significantly also within the glacier, showing that the trend is higher in the area across the accumulation and ablation zone. Over the 17 glaciers with mass balance available in the WGMS data set, 11 gave significant relationship with the MODIS summer albedo. Moreover, the comparison between ERA-Interim temperature

  19. Development of GIS methods to assess glaciers response to climatic fluctuations: a Minimal Model approach

    OpenAIRE

    Strigaro, D; M. Moretti; Mattavelli, M.; De Amicis, M; V. Maggi; Provenzale, A.

    2015-01-01

    Theoretical work on glacier dynamics led to the construction of mathematical models for estimating glacier response to different climate change scenarios [2]. The aim of this work is to include a simple version of such models (the so-called Minimal Glacier Models [6]) within a GIS framework, to better understand, evaluate and reproduce the glacier response to climate fluctuations. Then, in this work three sections have been included: (I) the formulation of the Minimal Glacier Models, evalu...

  20. Contrasting response of glacierized catchments in the Central Himalaya and the Central Andes to climate change

    Science.gov (United States)

    Ragettli, Silvan; Pellicciotti, Francesca; Immerzeel, Walter

    2015-04-01

    The Andes of South America and the Himalaya in high-mountain Asia are two regions where advanced simulation models are of vital importance to anticipate the impacts of climate change on water resources. The two mountain systems hold the largest ice masses outside the polar regions. Major rivers originate here and downstream regions are densely populated. In the long run, glacier recession generates concerns about the sustainability of summer runoff. This study benefits from recent efforts of carefully planned short-term field experiments in two headwater catchments in the Central Andes of Chile and in the Central Himalaya in Nepal. The two study catchments contrast in terms of their climate and in the characteristics of their glaciers. A systematic approach is developed, built upon the available local data, to reduce the predictive uncertainty of a state-of-the-art glacio-hydrological model used for the projection of 21st century glacier changes and catchment runoff. The in-situ data are used for model development and step-wise, multivariate parameter calibration. Catchment runoff and remotely sensed MODIS and Landsat snow cover are used for model validation. The glacio-hydrological model simulates the water cycle with a high temporal (hourly time steps) and spatial (100 m grid cells) resolution and accounts for processes typical of both regions like glacier melt under debris cover or mass redistribution through avalanching. Future projections are based on the outputs of twelve stochastically downscaled global climate models for two emission scenarios (RCP 4.5 and RCP 8.5). This is one of the first truly intercomparative modeling studies at the catchment scale across mountain regions of the world to assess and compare future changes in glaciers and snow cover and associated impacts on streamflow production. Both catchments will experience significant glacier mass loss throughout the twenty-first century. However, the trajectories of simulated future runoff and

  1. Brief Communication: Global glacier mass loss reconstructions during the 20th century are consistent

    Directory of Open Access Journals (Sweden)

    B. Marzeion

    2015-07-01

    Full Text Available Estimates of the contribution of glaciers to sea-level rise during the 20th century that were published in recent years are strongly divergent. Advances in data availability have allowed revisions of some of these published estimates. Here we show that outside of Antarctica, the global estimates of glacier mass loss obtained from glacier-length-based reconstructions and from a glacier model driven by gridded climate observations are now consistent with each other, and also with an estimate for the years 2003–2009 that is mostly based on remotely sensed data. This consistency is found throughout the entire common periods of the respective data sets. Inconsistencies of reconstructions and observations persist in estimates on regional scales.

  2. Brief Communication: Global glacier mass loss reconstructions during the 20th century are consistent

    Science.gov (United States)

    Marzeion, B.; Leclercq, P. W.; Cogley, J. G.; Jarosch, A. H.

    2015-07-01

    Estimates of the contribution of glaciers to sea-level rise during the 20th century that were published in recent years are strongly divergent. Advances in data availability have allowed revisions of some of these published estimates. Here we show that outside of Antarctica, the global estimates of glacier mass loss obtained from glacier-length-based reconstructions and from a glacier model driven by gridded climate observations are now consistent with each other, and also with an estimate for the years 2003-2009 that is mostly based on remotely sensed data. This consistency is found throughout the entire common periods of the respective data sets. Inconsistencies of reconstructions and observations persist in estimates on regional scales.

  3. Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent

    Science.gov (United States)

    Marzeion, B.; Leclercq, P. W.; Cogley, J. G.; Jarosch, A. H.

    2015-12-01

    Recent estimates of the contribution of glaciers to sea-level rise during the 20th century are strongly divergent. Advances in data availability have allowed revisions of some of these published estimates. Here we show that outside of Antarctica, the global estimates of glacier mass change obtained from glacier-length-based reconstructions and from a glacier model driven by gridded climate observations are now consistent with each other, and also with an estimate for the years 2003-2009 that is mostly based on remotely sensed data. This consistency is found throughout the entire common periods of the respective data sets. Inconsistencies of reconstructions and observations persist in estimates on regional scales.

  4. A World of Changing Glaciers: Hazards, Opportunities, and Measures of Global Climate Change

    Science.gov (United States)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Glaciers around the world are, with rare exceptions, stagnating or in hasty retreat. Whether growing or shrinking, significant changes in the extent of glaciers have major impacts on nature and humanity in their immediate vicinity, because land uses are utterly different depending on whether the land is covered by ice. Upon glacier retreat, new land uses may become possible: (1) Transportation corridors may become feasible where previously there were barriers. (2) Exposure of the lithosphere may yield mineral riches that previously were inaccessible. (3) New wildlife habitat and migration routes may develop, thus promoting genetic diffusion/interbreeding of previously isolated populations. Glacier impacts go well beyond the locality where they occur. Many glaciers regulate water flow, and contribute to annual water availability and hydropower production. In some regions, such in the Hindu Kush-Himlaya (HKH), especially the western provinces of China, the carrying capacity of the land and further economic development and well-being of the populace is partly dependent on melting glaciers. In India, \\8 billion worth of hydroelectric power (at U.S. electric rates) is generated each year; 50% of that is attributable to runoff from Himalayan glaciers and high-altitude snow fields. Nearly \\1 billion worth of hydroelectric power is due to the current negative mass balance of glaciers. In Nepal, glaciogenic hydropower is even more crucial. Although it may be many decades in coming, the ongoing sharp reduction in glacier area in the HKH will eventually be reflected in heightened water shortages in a region where water already is in short supply. Other glaciers store large amounts of meltwater and release it suddenly, causing havoc and taking lives downstream. This is a major problem in the HKH region and is significant locally in other heavily glaciated regions, such as Alaska. Sea level is a global issue impacted significantly by melting glaciers wherever they occur

  5. Mass Balance of Glaciers In Southern Chile, Based On Dems From Aster and Aerial Photographs

    Science.gov (United States)

    Rivera, A.; Casassa, G.; Bown, F.; Fernandez, A.

    The glaciers located in the Chilean southern Andes region (41-51S) have been re- treating and shrinking during most of the last century, in response to a climate warm- ing trend recognised in many climatic stations of the country. During recent years, several calving and small mountain glaciers have been analysed, in an attempt to cor- relate the short historical glacier variation (no longer than 150 years) with long term dendrochronological series (from 300 to 1000 years). The aim of this analysis is to un- derstand climate change during the last millennia, as well as the mechanisms of glacier response to such climatic changes. In this context, mass balance studies are one of the most important approaches to determine the specific relationship of glaciers to annual and decadal climatic changes. In Chile, only one glacier (glaciar Echaurren, 33S) has been systematically measured since 1975, generating the longest mass balance series of the country. To account for the mass balance of glaciers in the southern region of Chile, a geodetic method is presented, based upon the comparison of digital elevation models (DEM) obtained from aerial photographs and ASTER imagery from different dates. This method have been applied to glaciar Chico located at 49S in the Southern Patagonia Icefield, where we have generated DEMs from aerial photographs of 1975 and 1995, as well as one DEM from an ASTER image of October 2001. The DEMs are geo-referenced to a network of GPS points, measured in several field campaigns carried out during recent years at rock outcrops and in the accumulation area of the glacier. The last campaign was done during September and October 2001, allowing a high accuracy ground control validation for DEM derived from the contemporary ASTER image. The mass balance analysis is complemented with frontal variations derived from Landsat TM imagery, as well as field data and aerial photographs. One preliminary result of this study shows a consistent ice thinning, at

  6. Surface Mass Balance of the Columbia Glacier, Alaska, 1978 and 2010 Balance Years

    Science.gov (United States)

    O'Neel, Shad

    2012-01-01

    Although Columbia Glacier is one of the largest sources of glacier mass loss in Alaska, surface mass balance measurements are sparse, with only a single data set available from 1978. The dearth of surface mass-balance data prohibits partitioning of the total mass losses between dynamics and surface forcing; however, the accurate inclusion of calving glaciers into predictive models requires both dynamic and climatic forcing of total mass balance. During 2010, the U.S. Geological Survey collected surface balance data at several locations distributed over the surface of Columbia Glacier to estimate the glacier-wide annual balance for balance year 2010 using the 2007 area-altitude distribution. This report also summarizes data collected in 1978, calculates the 1978 annual surface balance, and uses these observations to constrain the 2010 values, particularly the shape of the balance profile. Both years exhibit balances indicative of near-equilibrium surface mass-balance conditions, and demonstrate the importance of dynamic processes during the rapid retreat.

  7. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements

    International Nuclear Information System (INIS)

    Glacier mass changes are a valuable indicator of climate variability and monsoon oscillation on the underexplored Tibetan Plateau. In this study data from the Ice Cloud and Elevation Satellite (ICESat) is employed to estimate elevation and mass changes of glaciers on the Tibetan Plateau between 2003 and 2009. In order to get a representative sample size of ICESat measurements, glaciers on the Tibetan Plateau were grouped into eight climatically homogeneous sub-regions. Most negative mass budgets of − 0.77 ± 0.35 m w.e. a−1 were found for the Qilian Mountains and eastern Kunlun Mountains while a mass gain of + 0.37 ± 0.25 m w.e. a−1 was found in the westerly-dominated north-central part of the Tibetan Plateau. A total annual mass budget of − 15.6 ± 10.1 Gt a−1 was estimated for the eight sub-regions sufficiently covered by ICESat data which represents ∼80% of the glacier area on the Tibetan Plateau. 13.9 ± 8.9 Gt a−1 (or 0.04 ± 0.02 mm a−1 sea-level equivalent) of the total mass budget contributed ‘directly’ to the global sea-level rise while 1.7 ± 1.9 Gt a−1 drained into endorheic basins on the plateau. (paper)

  8. Herfried Hoinkes: pioneer of degree-day methods to calculate glacier mass-balance from air temperature

    OpenAIRE

    R. J. Braithwaite

    2015-01-01

    Herfried Hoinkes (1916 to 1975) was a glacier researcher and university teacher who made great contributions to the early development of modern glaciology but I concentrate on his work on the mass balance of an Austrian glacier Hintereisferner. In a series of paper from 1962 to 1975, he showed that the mass balance is strongly correlated with positive degree-day (PDD) totals extrapolated from a nearby climate station. He achieved further improvements in correlations by accounting for fresh sn...

  9. Reconstructing glacier-based climates of LGM Europe and Russia – Part 2: A dataset of LGM climates derived from degree-day modelling of palaeo glaciers

    Directory of Open Access Journals (Sweden)

    A. J. Payne

    2007-10-01

    Full Text Available The study of European and Russian Quaternary glacial-geological evidence during the last 15 years has generated sufficient to data to use former glacial extent as a proxy for Last Glacial Maximum (LGM climate at a continental scale. Utilisation of such data is relevant for two reasons. First, continental to global scale proxy reconstructions of past climate are an important tool in the assessment of retrospective general circulation model (GCM simulations. Second, the development of a multi-proxy approach will result in a more robust proxy based climate signal. A new and independent dataset of 36 LGM climate estimates derived from European and Russian mountain regions is presented in this paper. A simple glacier-climate model was used to establish the optimum LGM climate conditions for each region from a suite of over 4000 model climates using the principle of zero cumulative mass balance. Clear regional trends are present in the reconstructed LGM climates; temperature anomalies north of the Alps are 2°C and 5°C larger than those in the western and eastern Mediterranean, respectively. In Russia the model results suggest that both the Arctic Urals and Puterana Plateau were probably glaciated by small mountain glaciers during the LGM.

  10. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011

    Directory of Open Access Journals (Sweden)

    J. Gardelle

    2013-03-01

    Full Text Available The recent evolution of Pamir-Karakoram-Himalaya (PKH glaciers, widely acknowledged as valuable high-altitude as well as mid-latitude climatic indicators, remains poorly known. To overcome the lack of region-wide mass balance data, we compared the 2000 Shuttle Radar Topography Mission (SRTM digital elevation model (DEM to recent (2008–2011 DEMs derived from SPOT5 stereo-imagery for 8 sites spread from Pamir to eastern Himalaya. The region-wide glacier mass balances were contrasted during the last decade, with moderate mass losses in eastern and central Himalaya (−0.21 ± 0.10 m yr−1 w.e. to −0.29 ± 0.09 m yr−1 w.e. and larger losses in western Himalaya (−0.41 ± 0.11 m yr−1 w.e.. Recently reported slight mass gain of glaciers in central Karakoram is confirmed for a larger area (+0.10 ± 0.19 m yr−1 w.e. and, new, also observed for glaciers in western Pamir (+0.14 ± 0.10 m yr−1 w.e.. We propose that the "Karakoram anomaly" should be renamed the "Pamir-Karakoram anomaly", at least for the last decade. The overall mass balance of PKH glaciers is estimated at −0.12 ± 0.06 m yr−1 w.e. In contrast to Indus, the relative glacier imbalance contribution to Brahmaputra and Ganges discharges is higher than previously modeled glacier seasonal contribution.

  11. Comparing effects of gridded input data from different sources in glacier mass balance modelling using a minimal glacier model

    Science.gov (United States)

    Schröer, Katharina; Marzeion, Ben

    2014-05-01

    The knowledge of the development of glaciers in both past and future is valuable for understanding our climate system. The vast majority of the world's glaciers is poorly observed and often no data or resources are available to study them. Minimal modelling approaches requiring a minimal amount of easily available input data can be a valuable first step to gain valuable information at low cost. This study is concerned with the effects of the spatial and temporal resolution of gridded input data on the applicability of a minimal surface mass balance model. Three sources of temperature and precipitation data freely available for the Alpine region were used to drive a statistical multiple linear regression surface mass balance model (HISTALP 'grid mode 2' instrumental database, monthly, 5' spatial resolution (Auer et al., 2007); CRU TS 3.10.01 instrumental database, monthly, 0.5° spatial resolution (Harris et al., 2013); European temperature and precipitation reconstructions 1500-2000, seasonal, 0.5° spatial resolution (Luterbacher et al., 2004; Pauling et al., 2006)). The model is trained, tested and cross-validated to test the model's robustness using the different datasets. The surface mass balance model is coupled to a simple volume-area and volume-length scaling scheme to roughly include surface mass balance and glacier geometry feedbacks. Observed mass balance data of Hintereisferner in the Ötztal Alps (Austria) allow for a sound validation of the model. The findings of the study reveal that there is only a weak dependency of the reliability of the multiple linear regression model on the spatial resolution of the input data sets. The anomalies of the regional HISTALP 5' grid mode 2 data series were not found to lead to better model results than the anomalies of the 0.5° global CRU TS 3.10.01 data set. An artificial deterioration of the input data quality by aggregating the 5' data grid to 10' and 0.5° of spatial resolution did even lead to slightly enhanced

  12. 祁连山七一冰川物质平衡及其对气候变化的敏感性研究%Study of Mass Balance and Sensibility to Climate Change of Qiyi Glacier in Qilian Mountains

    Institute of Scientific and Technical Information of China (English)

    王盛; 蒲健辰; 王宁练

    2011-01-01

    依据2010年6月30日-9月5日考察期间获得的七一冰川物质平衡和气温降水等气象资料,运用度日物质平衡模型模拟了七一冰川的物质平衡变化状况.结果表明:七一冰川考察期间物质平衡为-856.2mm w.e..受气温、降水等气候因素的强烈影响,物质平衡过程明显分为"微弱积累-强烈消融-微弱消融"3个阶段.度日物质平衡模型模拟的冰川物质平衡与实测值的变化趋势基本一致,整体反映了冰川物质平衡随海拔上升而增大的空间分布特征.物质平衡的气候敏感性实验表明,物质平衡对气温升降的变化非常敏感,气温是影响冰川物质平衡的主导因素,当气温持续升高时,降水量的少量增加对物质平衡的影响将变得很小.%Based on glacier mass balance,air temperature and precipitation of the Qiyi Glacier from Jun.30 to Sept.5,2010,a degree-day mass balance model was established to imitate the change of mass balance during this period.Observation indicates that the value of mass balance was-856.2 mm w.e.,which is subjected to strong impact of air temperature and precipitation.The mass balance process can be divided into three stages,i.e.,exiguous accumulation,intensive ablation and exiguous ablation.The variation trend of mass balance simulated with the degree-day mass balance model is similar to the observed one.The simulation wholly reflects the spatial distribution characteristics of glacier mass balance which increases with the increase of altitude.The experiment on climate sensitivity of mass balance shows that mass balance is very sensitive to the change of air temperature;air temperature is the key factor which influences mass balance;when air temperature rises continuously,a little increase in precipitation will have a negligible effect on mass balance.

  13. Impacts of climate change on glaciers, rock glaciers and water availability in the Tien Shan, Central Asia

    OpenAIRE

    Sorg, Annina

    2013-01-01

    The Tien Shan ranges play a pivotal role in supplying freshwater for the Central Asian region. There, climate-driven streamflow changes have direct implications on freshwater supply, irrigation and hydropower potential. The objective of this thesis is to assess the impacts of climate change on glaciers, rock glaciers and water availability in the Tien Shan region. For this purpose, a comprehensive literature review has been carried out as a basis for a climate change impact case study. Modeli...

  14. Trends and variability in the global dataset of glacier mass balance

    Science.gov (United States)

    Medwedeff, William G.; Roe, Gerard H.

    2016-06-01

    Glacier mass balance (i.e., accumulation and ablation) is the most direct connection between climate and glaciers. We perform a comprehensive evaluation of the available global network of mass-balance measurements. Each mass-balance time series is decomposed into a trend and the variability about that trend. Observed variability ranges by an order of magnitude, depending on climate setting (i.e., maritime vs continental). For the great majority of glaciers, variability is well characterized by normally distributed, random fluctuations that are uncorrelated between seasons, or in subsequent years. The magnitude of variability for both summer and winter is well correlated with mean wintertime balance, which reflects the climatic setting. Collectively, summertime variability exceeds wintertime variability, except for maritime glaciers. Trends in annual mass balance are generally negative, driven primarily by summertime changes. Approximately 25 % of annual-mean records show statistically significant negative trends when judged in isolation. In aggregate, the global trend is negative and significant. We further evaluate the magnitude of trends relative to the variability. We find that, on average, trends are approximately -0.2 standard deviations per decade, although there is a broad spread among individual glaciers. Finally, for two long records we also compare mass-balance trends and variability with nearby meteorological stations. We find significant differences among stations meaning caution is warranted in interpreting any point measurement (such as mass balance) as representative of region-wide behavior. By placing observed trends in the context of natural variability, the results are useful for interpreting past glacial history, and for placing constraints on future predictability.

  15. Holocene glacier variability: three case studies using an intermediate-complexity climate model

    NARCIS (Netherlands)

    Weber, S.L.; Oerlemans, J.

    2003-01-01

    Synthetic glacier length records are generated for the Holocene epoch using a process-based glacier model coupled to the intermediate-complexity climate model ECBilt. The glacier model consists of a massbalance component and an ice-flow component. The climate model is forced by the insolation change

  16. Mass balance simulations with an energy-based glacier model for the Muji Glacier on the eastern edge of the Pamirs

    Science.gov (United States)

    Su, Fengge; Ren, Zheng; Xu, Baiqing; Kan, Baoyun; Xie, Ying

    2015-04-01

    A distributed energy-based glacier model coupled with a land surface hydrology model is developed and validated over the Muji Glacier (39.1865° N, 73.746°E, 5532-4715 m above sea level, 2.42 km2) on the eastern edge of the Pamirs with meteorological measurements and mass balance stake records on the glacier. Surface energy fluxes and melt rates are simulated for each 30m × 30m grid cell at a 3-hourly resolution for the period July 2011 to September 2014. The inputs of the coupled model include daily maximum and minimum air temperature, daily precipitation, wind speed, slope and aspect, and elevation of each grid cell. A new scheme of downward shortwave and longwave radiation is developed based on the limited climate inputs. The simulated incoming shortwave and longwave radiation, and albedo are compared with the measurements from 3 automatic weather stations during July 2011-September 2014. The mass balance over each 30m × 30m grid cell is simulated for the entire Muji Glacier with the distributed energy balance model for the three water years. The simulated mass balance is validated with the stake records for both melt and accumulation seasons and the validation results are plausible. The coupled energy-based-glacier-hydrology model will be further validated at the basin scale with measured glacier runoff.

  17. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium

    Science.gov (United States)

    Solomina, Olga; Bushueva, Irina; Dolgova, Ekaterina; Jomelli, Vincent; Alexandrin, Mikhail; Mikhalenko, Vladimir; Matskovsky, Vladimir

    2016-05-01

    In the Northern Caucasus, glacier and climatic variations over the past centuries remain insufficiently documented. In this review, we summarized the high-resolution information on glacier and climate fluctuations in the region for the past millennium and provided a synthesis of these two lines of evidence with respect to regional climate change. The key areas considered in the paper are the Elbrus area, the Teberda and Arkhyz valleys in the Western Caucasus and the Cherek Bezengiisky and Tsey valleys in the Eastern Caucasus, where the most paleoclimatic evidence has been retrieved. We focused on the fluctuation records of the ten glaciers that are best documented. To reconstruct changes in glacier length in the past, we used aerial photos, optical space images, repeated photographs and old maps. The ages of moraines were defined with the help of instrumental records, historical images, old maps, and tree-ring dating. Lichenometry was used as a supplementary tool to determine the relative ages of glacial landforms. We reviewed the collection of control points used for the lichenometric curves and determined the time limit of potential use of this method in the Caucasus to be up to one millennium. High-resolution tree-ring-based hydroclimatic reconstructions in the Northern Caucasus are presented based on the reconstruction of June-September temperature (1595-2012 CE), the mass balance reconstruction of the Garabashi Glacier (1800-2008 CE) and the runoff of the Teberda River (low-frequency variations) for May, July and August for 1850-2005 CE. The synthesis of all the available paleoclimatic records revealed several distinct climatic periods. Evidence of a warm interval (traditionally referred to as the "Arkhyz break in glaciation") preceding the Little Ice Age (LIA) in the Caucasus is based on archeological, palynological, geochemical and pedological data. However, the conclusions concerning the duration and magnitude of this warming are still vague due to the low

  18. Temperature-index modeling of mass balance and runoff in the Valdez Glacier catchment in 2012 and 2013

    Science.gov (United States)

    Davis, Jennifer L.

    Glaciers play an important role in both storage and generation of runoff within individual watersheds. The Valdez Glacier catchment (342 km2), located in southern Alaska in the Chugach mountains off of Prince William Sound, is characterized by large annual volumes of rain- and snowfall. As Valdez Glacier and other glaciers within the catchment (comprising 58% of the catchment area) continue to melt in a warming climate, it is unclear how the runoff will be affected. Temperature-index modeling is one method used to estimate glacier mass balance and runoff in highly glacierized catchments, and may be suitable for predicting future runoff regimes. In this study, we used a combination of field measurements (air temperature, glacier mass balance, streamflow, and ground-penetrating radar (GPR)-derived snow water equivalent (SWE) from a parallel study) and modeled climate data (PRISM) to a) calibrate a temperature-index model to glacier mass balance in 2012; b) validate the model to laser altimetry; and c) calibrate a temperature-index model to runoff measurements in fall of 2012 and in spring, summer and fall of 2013. We calibrated the snow-radiation coefficient (rsnow), ice-radiation coefficient (rice), and melt factor (MF) of the temperature-index model to glacier mass balance measurements from 2012. Using the calibrated- rsnow, r ice, and MF (i.e. rsnow, rice, and MF = 0.20, 0.50 and 4.0, respectively), we calculated 2012 annual glacier mass balance (Ba) at 0.05 +/- 0.49 meters water equivalent (m w.eq.). We next validated the model to 2012 laser altimetry annual glacier mass balance estimates (Ba = 0.20 +/- 0.6 m w.eq.). We then modeled glacier mass balance in 2013 using rsnow, rice, and MF from the 2012 calibration. The model underestimated summer glacier mass balance in 2013, resulting in annual glacier mass balance (Ba = 0.55 m w.eq.) that did not fall within the 2013 laser altimetry annual balance estimate (Ba = -1.15 +0.29/-0.30 m w.eq.). We therefore re

  19. Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes

    DEFF Research Database (Denmark)

    Nilsson, Johan; Sørensen, Louise Sandberg; Barletta, Valentina Roberta; Forsberg, René

    2015-01-01

    regional mass balance of Arctic ice caps and glaciers to different regionalization schemes. The sensitivity analysis is based on studying the spread of mass changes and their associated errors, and the suitability of the different regionalization techniques is assessed through cross validation.The cross-validation...... results shows comparable accuracies for all regionalization methods, but the inferred mass changein individual regions, such as Svalbard and Iceland, can vary up to 4 Gt a-1, which exceeds the estimated errors by roughly50 % for these regions. This study further finds that this spread in mass balance is......The mass balance of glaciers and ice caps is sensitive to changing climate conditions. The mass changes derived n this study are determined from elevation changes derived measured by the Ice, Cloud, and land Elevation Satellite (ICESat) for the time period 2003–2009. Four methods, based on...

  20. As climate changes, so do glaciers

    OpenAIRE

    Lowell, Thomas V.

    2000-01-01

    Understanding abrupt climate changes requires detailed spatial/temporal records of such changes, and to make these records, we need rapidly responding, geographically widespread climate trackers. Glacial systems are such trackers, and recent additions to the stratigraphic record show overall synchronous response of glacial systems to climate change reflecting global atmosphere conditions.

  1. Mass balance and near-surface ice temperature structure of Baishui Glacier No.1 in Mt.Yulong

    Institute of Scientific and Technical Information of China (English)

    DU Jiankuo; HE Yuanqing; LI Shuang; WANG Shijin; NIU Hewen; XIN Huijuan; PU Tao

    2013-01-01

    The accumulation and ablation of a glacier directly reflect its mass income and wastage,and ice temperature indicates glacier's climatic and dynamic conditions.Glaciological studies at Baishui Glacier No.1 in Mt.Yulong are important for estimating recent changes of the cryosphere in Hengduan Mountains.Increased glacier ablation and higher ice temperatures can cause the incidents of icefall.Therefore,it is important to conduct the study of glacier mass balance and ice temperature,but there are few studies in relation to glacier's mass balance and active-layer temperature in China's monsoonal temperate glacier region.Based on the field observations of mass balance and glacier temperature at Baishui Glacier No.1,its accumulation,ablation,net balance and near-surface ice temperature structure were analyzed and studied in this paper.Results showed that the accumulation period was ranged from October to the following mid-May,and the ablation period occurred from mid-May to October,suggesting that the ablation period of temperate glacier began about 15 days earlier than that of continental glaciers,while the accumulation period began about 15 days later.The glacier ablation rate was 6.47 cm d-1 at an elevation of 4600 m between June 23 and August 30,and it was 7.4 cm d-1 at 4800 m between June 26 and July 11 in 1982,moreover,they respectively increased to 9.2 cm d-1 and 10.8 cm d-1 in the corresponding period and altitude in 2009,indicating that glacier ablation has greatly intensified in the past years.The temperature of the main glacier body was close to melting point in summer,and it dropped from the glacier surface and reached a minimum value at a depth of 4-6 m in the ablation zone.The temperature then rose to around melting point with the depth increment.In winter,the ice temperature rose gradually with the increasing depth,and close to melting point at the depth of 10 m.Compared with the data from 1982,the glacier temperature has risen in the ablation zone in

  2. Accelerated wastage of the Monte Perdido Glacier in the Spanish Pyrenees during recent stationary climatic conditions

    Directory of Open Access Journals (Sweden)

    J. I. López-Moreno

    2015-09-01

    Full Text Available This paper analyzes the evolution of the Monte Perdido Glacier, the third largest glacier of the Pyrenees, from 1981 to the present. We assessed the evolution of the glacier's surface area by use of aerial photographs from 1981, 1999, and 2006, and changes in ice volume by geodetic methods with digital elevation models (DEMs generated from topographic maps (1981 and 1999, airborne LIDAR (2010 and terrestrial laser scanning (TLS, 2011, 2012, 2013, and 2014. We interpreted the changes in the glacier based on climate data from a nearby meteorological station. The results indicate an accelerated degradation of this glacier after 2000, with a rate of ice surface loss that was almost three-times greater from 2000 to 2006 than for earlier periods, and a doubling of the rate of ice volume loss from 1999 to 2010 (the ice depth decreased 8.98 ± 1.8 m, −0.72 ± 0.14 m w.e. yr−1 compared to 1981 to 1999 (the ice depth decreased 8.35 ± 2.12 m, −0.39 ± 0.1 m w.e. yr−1. This loss of glacial ice has continued from 2011 to 2014 (the ice depth decreased 2.1 ± 0.4 m, −0.64 ± 0.36 m w.e. yr−1. Local climatic changes during the study period cannot explain the acceleration in wastage rate of this glacier, because local precipitation and snow accumulation increased slightly, and local air temperature during the ablation period did not significantly increase. The accelerated degradation of this glacier in recent years can be explained by the lack of equilibrium between the glacier and the current climatic conditions. In particular, the average air temperature increased by at least 0.9 °C in this region since the end of the Little Ice Age (LIA in the mid-1800s. Thus, this glacier shrinks dramatically during years with low accumulation or high air temperatures during the ablation season, but cannot recover during years with high accumulation or low air temperatures during the ablation season. The most recent TLS data support this interpretation. These

  3. Frequency, triggering factors and possible consequences of mass movements on outlet glaciers in Iceland.

    Science.gov (United States)

    Saemundsson, Thorsteinn; Margeirsson, Guðbjörn

    2016-04-01

    During the last 15 years several mass movements of various size and origin, e.g. rock avalanches, rock slides and debris slides have been observed to have fall on outlet glaciers in Iceland. This should not come as a surprise in this type of glacial environment, but in a way it does. When looking at the history only few mass movements are recorded to have fall on outlet glaciers in Iceland, during the decades before the year 2000 or since 1960. This "lack of mass movements" can be explained by the fact that fewer observations and monitoring were done in the past, but is it so or are we seeing increasing activity? Looking at the distribution of the known mass movements, two activity periods cam be identified. The former one around 1970 and the second one starting around 2000 and is still ongoing. Both of these periods are characterized by warmer climate leading to retreating phases of glaciers. Two larger mass movements are known from these two retreating periods. The former one occurred in January 1967. Then a large rockslide fell on the snout and into the glacial lake of the Steinholtsjökull outlet glacier in the northern side of the Eyjafjallajökull ice cap. The rockslide broke up the snout of the glacier and caused large floodwave bursting down the Steinholtsdalur valley transporting large volume of sediments down its path. The later one occurred in 2007, when a large rockavalanche fell on the Morsárjökull outlet glacier, in the southern side of the Vatnajökull ice cap. The avalanche debris covered around 1/5 of the glacier surface. Today the retreat and thinning of glaciers in Iceland are extremely rapid. The consequences of such a rapid retreat are e.g. unstable valley slopes surrounding the outlet glaciers, both in loose sediments and bedrock, thawing of mountain permafrost and not least formation of glacial lakes in front of the rapid retreating ice margins. Such conditions can become extremely hazardous, as seen by the above mentioned examples, both

  4. Simulation and reconstruction of parameters of streamflow and glacier mass balance in the Northern Caucasus

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2014-01-01

    Full Text Available The work was aimed at numerical modeling of spatial-temporal variability of the river Terek seasonal (April to September streamflow characteristics and long-term fluctuations of components of annual glacier mass balances in this basin and on the adjacent territories. Mass balance of glaciers Djankuat and Garabashi was calculated. Simulation was performed by means of stochastic modeling and discrete data presenting fields of main meteorological parameters (precipitation, air temperature and humidity having effect on the streamflow. Realization of this approach is complicated by the fact that spatial representativeness of hydrological and meteorological sites are not corresponding one to another. Data on the runoff is clearly related to the total drainage area closed by a gauging station. And for this data we study a relationship with meteorological parameters which are measured at a non-regular observational network whose spatial representativeness is unknown. These stations are generally located beyond the area under investigation (Fig. 2. Similar problem exists when we analyze a relationship between components of the mass balance of individual glaciers (Djankuat and Garabashi and the above climate characteristics measured at some stations located on the whole Caucasus territory. The same takes place when long-term indices of width and density of tree annual rings obtained in upper reaches of the river Kuban’ are used for analysis of variations of the runoff and the glacier mass balance in the river Terek basin located at a distance of 100-150 km from the Kuban’ dendrologic sites.To solve the problem we used a wide number of factors which directly (various information about the climate or indirectly (indices of the climate dryness, wood ring characteristics characterize conditions of formation of annual and seasonal river runoff and components of glacier mass balance in the North Caucasus. Use of all obtained information made possible the

  5. A model study of the energy and mass balance of Chhota Shigri glacier in the Western Himalaya, India

    Directory of Open Access Journals (Sweden)

    F. Pithan

    2011-01-01

    Full Text Available The impact of climate change on Himalaya mountain glaciers is increasingly subject of public and scientific debate. However, observational data are sparse and important knowledge gaps remain in the understanding of what drives changes in these glaciers' mass balances. The present study investigates the glacier regime on Chhota Shigri, a benchmark glacier for the observation of climate change in the monsoon-arid transition zone of Western Himalaya. Results of an energy-balance model driven by reanalysis data and the observed mass balances from three years on 50 m altitude intervals across the glacier display a correlation coefficient of 0.974. Contrary to prior assumptions, monsoon precipitation accounts for a quarter to a third of total accumulation. It has an additional importance because it lowers the surface albedo during the ablation season. Results confirm radiation as the main energy source for melt on Himalaya glaciers. Latent heat flux acts as an important energy sink in the pre-monsoon season. Mass balance is most sensitive to changes in atmospheric humidity, changing by 900 mm w.e. per 10% change in humidity. Temperature sensitivity is 220 mm w.e.K−1. Model results using 21st century anomalies from a regional climate model based on the SRES A2 scenario suggest that a monsoon increase might offset the effect of warming.

  6. Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

    Science.gov (United States)

    U.S. Geological Survey

    2009-01-01

    Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

  7. Glacier annual balance measurement, prediction, forecasting and climate correlations, North Cascades, Washington 1984–2006

    Directory of Open Access Journals (Sweden)

    M. S. Pelto

    2007-06-01

    Full Text Available North Cascade glacier annual balance measured on 10 glaciers from 1984–2006 yielded mean annual balance (ba of –0.54 m/a, and –12.38 m cumulatively. This is a significant loss for glaciers that average 30–60 m in thickness, representing 20–40% of their entire volume. Two observed glaciers, Lewis Glacier and Spider Glacier, no longer exist. The ba of North Cascade glaciers is reliably calculated based on 1 April snowpack water equivalent and ablation season temperature. 1 May forecasting of ba using the Pacific Decadal Oscillation and the Multivariate El Nino Southern Oscillation circulation indices correctly determined the sign of mass balance in 42 of 47 years. Glacier annual balance forecasting is an important step for summer water resource management in glacier runoff dominated stream systems. The forecast for North Cascade glaciers in 2007 is for a negative annual balance.

  8. A comparison of different methods of evaluating glacier response characteristics: application to glacier AX010, Nepal Himalaya

    OpenAIRE

    Adhikari, S; Marshall, S. J.; Huybrechts, P.

    2009-01-01

    Himalayan glaciers are considered to be amongst the most sensitive glaciers to climate change. However, the response behaviour of these glaciers is not well understood. Here we use several approaches to estimate characteristic timescales of glacier AX010, a small valley glacier in the Nepal Himalaya, as a measure of glacier sensitivity. Assuming that temperature solely defines the mass budget, glacier AX010 waits for about 8 yr (r...

  9. Reconstructing the mass balance of Brewster Glacier, New Zealand, using MODIS-derived glacier-wide albedo

    OpenAIRE

    Sirguey, Pascal; Still, Holly; Cullen, Nicolas J.; Dumont, Marie; Arnaud, Yves; Conway, Jonathan P.

    2016-01-01

    In New Zealand, direct measurements of mass balance are sparse due to the inaccessibility of glaciers in the Southern Alps and the logistical difficulties associated with maintaining a mass balance record. In order to explore the benefit of remotely sensed imaging to monitor mass balance in the Southern Alps, this research assesses the relationship between measurements of glacier surface albedo derived from MODerate resolution Imaging Spectroradiometer (MODIS) and mass balance observations us...

  10. Hydrological response to climate change in a glacierized catchment in the Himalayas

    OpenAIRE

    Immerzeel, Walter W.; van Beek, L. P. H.; Konz, M.; Shrestha, A. B.; M. F. P. Bierkens

    2011-01-01

    The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high resolution combined cryospheric hydrological model was developed and calibrated that explicitly simulates glacier evolution and all major hydrological processes. The model was used to assess the future deve...

  11. Review article of the current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change

    Directory of Open Access Journals (Sweden)

    A. Rabatel

    2012-07-01

    Full Text Available The aim of this paper is to provide the community with a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the LIA (mid 17th–early 18th century. In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 yr, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the computed global average. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from −0.2 m w.e. in the period 1964–1975 to −0.76 m w.e. in the period 1976–2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that as a percentage, this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia showed that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance variability at the interannual to decadal time scale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10 °C decade−1 in the last 70 yr. The higher frequency of El Niño events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the

  12. ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru

    Science.gov (United States)

    Maussion, F.; Gurgiser, W.; Großhauser, M.; Kaser, G.; Marzeion, B.

    2015-08-01

    The El Niño/Southern Oscillation (ENSO) is a major driver of climate variability in the tropical Andes, where recent Niño and Niña events left an observable footprint on glacier mass balance. The nature and strength of the relationship between ENSO and glacier mass balance, however, varies between regions and time periods, leaving several unanswered questions about its exact mechanisms. The starting point of this study is a 4-year long time series of distributed surface energy and mass balance (SEB/SMB) calculated using a process-based model driven by observations at Shallap Glacier (Cordillera Blanca, Peru). These data are used to calibrate a regression-based downscaling model that links the local SEB/SMB fluxes to atmospheric reanalysis variables on a monthly basis, allowing an unprecedented quantification of the ENSO influence on the SEB/SMB at climatological time scales (1980-2013, ERA-Interim period). We find a stronger and steadier anti-correlation between Pacific sea-surface temperature (SST) and glacier mass balance than previously reported. This relationship is most pronounced during the wet season (December-May) and at low altitudes where Niño (Niña) events are accompanied with a snowfall deficit (excess) and a higher (lower) radiation energy input. We detect a weaker but significant ENSO anti-correlation with total precipitation (Niño dry signal) and positive correlation with the sensible heat flux, but find no ENSO influence on sublimation. Sensitivity analyses comparing several downscaling methods and reanalysis data sets resulted in stable mass balance correlations with Pacific SST but also revealed large uncertainties in computing the mass balance trend of the last decades. The newly introduced open-source downscaling tool can be applied easily to other glaciers in the tropics, opening new research possibilities on even longer time scales.

  13. Past and future sea-level change from the surface mass balance of glaciers

    OpenAIRE

    B. Marzeion; A. H. Jarosch; Hofer, M.

    2012-01-01

    We present estimates of sea-level change caused by the global surface mass balance of glaciers, based on the reconstruction and projection of the surface mass balance of all the individual glaciers of the world, excluding the ice sheets in Greenland and Antarctica. The model is validated using a leave-one-glacier-out cross-validation scheme against 3997 observed surface mass balances of 255 glaciers, and against 756 geodetically observed, temporally integrated volume and surface area changes ...

  14. Spatial patterns of North Atlantic Oscillation influence on mass balance variability of European glaciers

    OpenAIRE

    Marzeion, B.; A. Nesje

    2012-01-01

    We present and validate a set of minimal models of glacier mass balance variability. The most skillful model is then applied to reconstruct 7735 individual time series of mass balance variability for all glaciers in the European Alps and Scandinavia. Subsequently, we investigate the influence of atmospheric variability associated with the North Atlantic Oscillation (NAO) on the glaciers' mass balances.

    We find a spatial coherence in the glaciers' sensitivity to NA...

  15. Glacier area and mass changes since 1964 in the Ala Archa Valley, Kyrgyz Ala-Too, northern Tien Shan

    Directory of Open Access Journals (Sweden)

    T. Bolch

    2015-03-01

    Full Text Available Glaciers are an important source of fresh water for Central Asia as they release water during the summer months when precipitation is low and water demand highest. Many studies address glacier area changes but only changes in glacier mass can be directly linked to climate and runoff. Despite the importance, investigations of glacier mass changes have been restricted to only a few glaciers in the Tien Shan until now. Geodetic mass balance measurements are suitable to complement and extend existing in-situ measurements. In this study, both area and mass changes of the ~40 km² glacier ice in the Ala Archa Valley, Kyrgyz Tien Shan, were investigated using 1964 and 1971 stereo Corona, 2012 stereo ASTER, the SRTM digital terrain model and other optical data such as Landsat ETM+ or Rapid Eye. In addition, ice thickness was modeled taking the basal shear stress and the glacier surface topography into account. The results indicate an area loss of 18.3±5.0% from 1964 until 2010 with continuous shrinkage in all investigated periods. The glacier’s mass balance was −0.45±0.27 m w.e. a−1 for the period 1964–1999 and −0.42±0.66 m w.e. a−1 for 1999–2012. Golubin Glacier showed a possible slight mass gain for 1964– 1971 and a decelerated mass loss for the 1999–2012 period. This is in good agreement with existing in-situ measurements exiting from 1962 until 1994 and since 2010. The overall ice volume was estimated to be 1.56±0.47 km³ of ice in the year 2000. Hence, the entire ice would be lost by 2100 if the mass loss would continue at the same rate

  16. Modeling energy and mass balance of Shallap Glacier, Peru

    Directory of Open Access Journals (Sweden)

    W. Gurgiser

    2013-08-01

    Full Text Available We calculated the distributed surface mass and energy balance of Shallap Glacier, Cordillera Blanca, Peru (9° S, 77° W, 4700–5700 m a.s.l., ∼ 7 km2 on hourly time steps for two years (September 2006–August 2008 using a process-based model and meteorological measurements as input. Model parameter combinations were optimized against 21 temporal readings of 20 stakes in the ablation zone of the glacier. Uncertainty caused by model input parameters and parameterization schemes was estimated using a leave-one-out cross-validation scheme and yields values of root mean square deviation (RMSD of surface height change < 1m (< 10% of the measured amplitude for all stakes. With the best parameter combination (smallest RMSD applied, the modeled annual surface mass balance of the glacier was −0.32 ± 0.4 m w.e. for September 2006–August 2007 and 0.51 ± 0.56 m w.e. for September 2007–August 2008. While the mass balance above 5000 m was similar in both years (Δ 0.35 ± 0.68 m w.e. due to similar annual sums of solid precipitation, a difference of ∼ 2 ± 0.68 m w.e. was calculated for the lower parts of the glacier. This difference is associated with more frequent occurrence of higher snow line altitudes during the first year, which was mainly caused by a higher fraction of liquid precipitation due to higher mean air temperatures. As the net shortwave budget was found to be the main source for ablation throughout the year at Shallap Glacier, lower surface albedo caused by higher snow line altitudes explains most of the difference in modeled ablation and mass balance between the two years.

  17. Modeling energy and mass balance of Shallap Glacier, Peru

    Directory of Open Access Journals (Sweden)

    W. Gurgiser

    2013-11-01

    Full Text Available We calculated the distributed surface mass and energy balance of Shallap Glacier, Cordillera Blanca, Peru (9° S, 77° W, 4700–5700 m a.s.l., ~ 7 km2, on hourly time steps for two years (September 2006–August 2008 using a process-based model and meteorological measurements as input. Model parameter combinations were optimized against 21 temporal readings of 20 stakes in the ablation zone of the glacier. Uncertainty caused by model input parameters and parameterization schemes was estimated using a leave-one out cross-validation scheme, which yields values of root mean square deviation (RMSD of surface height change < 1 m (< 10% of the measured amplitude for all stakes. With the best parameter combination (smallest RMSD applied, the modeled annual surface mass balance of the glacier was −0.32 ± 0.4 m w.e. (water equivalent for September 2006–August 2007 and 0.51 ± 0.56 m w.e. for September 2007–August 2008. While the mass balance above 5000 m was similar in both years (Δ 0.33 ± 0.68 m w.e. due to similar annual sums of solid precipitation, a difference of 1.97 ± 0.68 m w.e. was calculated for the lower parts of the glacier. This difference is associated with more frequent occurrence of higher snow line altitudes during the first year, which was mainly caused by a higher fraction of liquid precipitation due to higher mean air temperatures. As the net shortwave budget was found to be the main source for ablation throughout the year at Shallap Glacier, lower surface albedo especially caused by lower solid precipitation amounts explains most of the difference in modeled ablation and mass balance between the two years.

  18. Bed topography under Antarctic outlet glaciers revealed by mass conservation and radar data

    Science.gov (United States)

    Morlighem, M.; Rignot, E. J.; Mouginot, J.; Seroussi, H. L.

    2015-12-01

    Bed topography, together with ice thickness, is an essential characteristic of glaciers and ice sheets for many glaciological applications. Despite significant technical advances, it remains challenging to measure ice thickness remotely, especially in deep troughs occupied by outlet glaciers. The method of mass conservation, that combines radar-derived ice thickness data with high-resolution InSAR-derived ice velocity vectors, provides an effective method for generating a high-resolution bed from sparse radar sounding profiles, and has been successfully applied along the coast of the Greenland Ice Sheet. Applying the same technique to the coast of the Antarctic Ice Sheet presents a number of challenges. The coverage of ice thickness data collected in Antarctica, for example, is much less comprehensive compared to Greenland, especially in the wake of NASA's Operation IceBridge (OIB) Mission in 2010-2015. Here, we combine radar sounder data collected by various centers (OIB/Center for Remote Sensing of Ice Sheets, the British Antarctic Survey and University of Texas) acquired between 1998 and 2011, with high-resolution ice motion data from interferometric SAR (ALOS PALSAR, RADARSAT-2 and Envisat ASAR) to reconstruct bed topography beneath major Antarctic outlet glaciers at an unprecedented level of detail. The results reveal some important features not known previously at that level of detail and shed light on the vulnerability of these glaciers in a warming climate. We find for example that Recovery glacier is deeper than in previous mappings and has long grooves parallel to the flow direction. Denman Glacier, East Antarctica, flow along a deep, narrow trough more than 2,000 m below sea level that extends more than 100 km inland. We find ridges and bumps in the vicinity of the grounding line of Thwaites Glacier, in the Amundsen Sea sector, that are consistent with the pattern of grounding line retreat. We have also a new mapping of the trough upstream of David

  19. Midlatitude Forcing Mechanisms for Glacier Mass Balance Investigated Using General Circulation Models

    NARCIS (Netherlands)

    Reichert, B.K.; Bengtsson, L.; Oerlemans, J.

    2001-01-01

    A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used

  20. Re-establishing seasonal mass balance observation at Abramov Glacier, Kyrgyzstan, from 1968 - 2012

    Science.gov (United States)

    Barandun, Martina; Huss, Matthias; Azisov, Erlan; Gafurov, Abror; Hoelzle, Martin; Merkushkin, Aleksandr; Salzmann, Nadine; Usubaliev, Ryskul

    2013-04-01

    The Abramov Glacier, located in the Pamir Alay in Kyrgyzstan, was subject to intense studies in the frame of various scientific programs under the former USSR. With the breakdown of the Soviet Union, the monitoring was abruptly abandoned in the late nineties. Well documented and continuous seasonal mass balance observations are available for 1968-1994. However, some inconsistencies between different publications lead to in-homogeneous data sets. Recently, the project CATCOS (Capacity Building and Twinning for Climate Observing Systems) was launched, aiming among other goals to re-establish mass balance observation on selected glaciers in Kyrgyzstan. At Abramov Glacier, a new stake network, an automatic weather station (AWS) and two automatic terrestrial cameras with instantaneous data transfer over satellite were installed in 2011. Measurements were repeated and intensified in 2012 and will be subject of a third field campaign in summer 2013. A complete re-analysis of the long-term mass balance series from 1968 to 1994 delivers corrected mass balance data for Abramov Glacier. To homogenize in-situ mass balance records, a spatially distributed mass balance model driven with local daily temperature and precipitation data was calibrated to each seasonal mass balance survey. The model resolves seasonal mass-balance measurements to a daily timescale and performs spatial inter- and extrapolation of data points based on a consistent algorithm, taking into account the principal factors of mass balance distribution. Summarizing the annually optimized parameters over the entire study period provides a robust model parameter set for years with less extensive direct measurements. From 1994 to 2011, neither direct point measurements nor meteorological data are available. In order to run the calibrated model developed for the 1960's to 90's, climate input variables were taken from bias corrected Re-analysis data (NCEP/NCAR and JRA). Evaluation of the model results was achieved

  1. Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100

    OpenAIRE

    Huss, M.

    2012-01-01

    This study addresses the extrapolation of in-situ glacier mass balance measurements to the mountain-range scale and aims at deriving time series of area-averaged mass balance and ice volume change for all glaciers in the European Alps for the period 1900–2100. Long-term mass balance series for 50 Swiss glaciers based on a combination of field data and modelling, and WGMS data for glaciers in Austria, France and Italy are used. A complete glacier inventory is available for the year 2003. Mass ...

  2. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland

    Science.gov (United States)

    Geirsdóttir, Áslaug; Miller, Gifford H.; Axford, Yarrow; Ólafsdóttir, Sædís

    2009-10-01

    Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961-1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250-1900) as representing the

  3. Reconstructing the annual mass balance of the Echaurren Norte glacier (Central Andes, 33.5° S) using local and regional hydroclimatic data

    Science.gov (United States)

    Masiokas, Mariano H.; Christie, Duncan A.; Le Quesne, Carlos; Pitte, Pierre; Ruiz, Lucas; Villalba, Ricardo; Luckman, Brian H.; Berthier, Etienne; Nussbaumer, Samuel U.; González-Reyes, Álvaro; McPhee, James; Barcaza, Gonzalo

    2016-04-01

    Despite the great number and variety of glaciers in southern South America, in situ glacier mass-balance records are extremely scarce and glacier-climate relationships are still poorly understood in this region. Here we use the longest (> 35 years) and most complete in situ mass-balance record, available for the Echaurren Norte glacier (ECH) in the Andes at ˜ 33.5° S, to develop a minimal glacier surface mass-balance model that relies on nearby monthly precipitation and air temperature data as forcing. This basic model is able to explain 78 % of the variance in the annual glacier mass-balance record over the 1978-2013 calibration period. An attribution assessment identified precipitation variability as the dominant forcing modulating annual mass balances at ECH, with temperature variations likely playing a secondary role. A regionally averaged series of mean annual streamflow records from both sides of the Andes between ˜ 30 and 37° S is then used to estimate, through simple linear regression, this glacier's annual mass-balance variations since 1909. The reconstruction model captures 68 % of the observed glacier mass-balance variability and shows three periods of sustained positive mass balances embedded in an overall negative trend over the past 105 years. The three periods of sustained positive mass balances (centered in the 1920s-1930s, in the 1980s and in the first decade of the 21st century) coincide with several documented glacier advances in this region. Similar trends observed in other shorter glacier mass-balance series suggest that the Echaurren Norte glacier reconstruction is representative of larger-scale conditions and could be useful for more detailed glaciological, hydrological and climatological assessments in this portion of the Andes.

  4. The Mass Balance of Glacier No. 1 at the Headwaters of the Urumqi River in Relation to Northern Hemisphere Teleconnection Patterns

    Directory of Open Access Journals (Sweden)

    Feifei Yuan

    2016-03-01

    Full Text Available Most small glaciers in the world have significantly decreased their volume during the last century, which has caused water shortage problems. Glacier No. 1, at the headwaters of the Urumqi River, Tianshan, China, has been monitored since 1959 and similarly has experienced significant mass and volume losses over the last few decades. Thus, we examined the trend and potential abrupt changes of the mass balance of Glacier No. 1. Principal component analysis and singular value decomposition were used to find significant relations between the mass balance of Glacier No. 1 and Northern Hemisphere teleconnection patterns using climate indices. It was found that the mass balance of Glacier No. 1 had a significantly decreasing trend corresponding to −14.5 mm/year from 1959 to 2010. A change point was detected in 1997 with 99% confidence level. Two time periods with different mass balances were identified as 1959–1996 and 1997–2010. The mass balance for the first period was −136.4 mm/year and up to −663.9 mm/year for the second period. The mass balance of Glacier No. 1 is positively related to the Scandinavian Pattern (SCA, and negatively related to the East Atlantic Pattern (EA. These relationships are useful in better understanding the interaction between glacier mass balance and climate variability.

  5. Mass loss of Greenland's glaciers and ice caps 2003-2008 revealed from ICES at laser altimetry data

    DEFF Research Database (Denmark)

    Bolch, T.; Sørensen, Louise Sandberg; Simonsen, Sebastian Bjerregaard;

    2013-01-01

    The recently finalized inventory of Greenland's glaciers and ice caps (GIC) allows for the first time to determine the mass changes of the GIC separately from the ice sheet using space-borne laser altimetry data. Corrections for firn compaction and density that are based on climatic conditions are...

  6. Reconstructing glacier-based climates of LGM Europe and Russia – Part 3: Comparison with GCM and pollen-based climate reconstructions

    Directory of Open Access Journals (Sweden)

    A. J. Payne

    2007-10-01

    Full Text Available Understanding past climates using GCM models is critical to confidently predicting future climate change. Although previous analysis of GCM simulations have shown them to under predicted European glacial temperature anomalies (the difference between modern and glacial temperatures such analyses have focused primarily on results from glacial simulations alone. Here we compare glacial maximum GCM results with the palaeoenvironment derived from glacier-climate modelling. The comparison confirms that GCM anomalies are under predicted, and that this is due to modern conditions that are modelled too cold and glacial temperatures that are too warm. The result is that CGM results, if applied to a glacier mass balance model, over predict the extent of glaciers today, and under predict their extent at the last glacial (as depicted in glacial geological reconstructions. Effects such as seasonality and model parameterisation change the magnitude of the under prediction but still fail to match expected glacial conditions.

  7. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    Science.gov (United States)

    Immerzeel, Walter; Wanders, Niko; Lutz, Arthur; Shea, Joseph; Bierkens, Marc

    2016-04-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  8. Reconciling high altitude precipitation in the upper Indus Basin with glacier mass balances and runoff

    Directory of Open Access Journals (Sweden)

    W. W. Immerzeel

    2015-05-01

    Full Text Available Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high altitude precipitation. Yet direct observations of high altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high altitude precipitation in the upper Indus Basin and show that the amount of precipitation required to sustain the observed mass balances of the large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation is up to a factor ten higher than previously thought. We conclude that these findings alter the present understanding of high altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs and the regional geopolitical situation in general.

  9. Glacier-derived climate for the Younger Dryas in Europe

    Science.gov (United States)

    Pellitero, Ramon; Rea, Brice R.; Spagnolo, Matteo; Hughes, Philip; Braithwaite, Roger; Renssen, Hans; Ivy-Ochs, Susan; Ribolini, Adriano; Bakke, Jostein; Lukas, Sven

    2016-04-01

    We have reconstructed and calculated the glacier equilibrium line altitudes (ELA) for 120 Younger Dryas palaeoglaciers from Morocco in the south to Svalbard in the north and from Ireland in the west to Turkey in the east. The chronology of these landform were checked and, when derived from cosmogenic dates, these were recalculated based on newer production rates. Frontal moraines/limits for the palaeoglaciers were used to reconstruct palaeoglacier extent by using a GIS tool which implements a discretised solution for the assumption of perfect-plasticity ice rheology for a single flowline and extents this out to a 3D ice surface. From the resulting equilibrium profile, palaeoglaciers palaeo-ELAs were calculated using another GIS tool. Where several glaciers were reconstructed in a region, a single ELA value was generated following the methodology of Osmaston (2005). In order to utilise these ELAs for quantitative palaeo-precipitation reconstructions an independent regional temperature analysis was undertaken. A database of 121 sites was compiled where the temperature was determined from palaeoproxies other than glaciers (e.g. pollen, diatoms, choleoptera, chironimids…) in both terrestrial and offshore environments. These proxy data provides estimates of average annual, summer and winter temperatures. These data were merged and interpolated to generate maps of average temperature for the warmest and coldest months and annual average temperature. From these maps the temperature at the ELA was obtained using a lapse rate of 0.65°C/100m. Using the ELA temperature range and summer maximum in a degree-day model allows determination of the potential melt which can be taken as equivalent to precipitation given the assumption a glacier is in equilibrium with climate. Results show that during the coldest part of the Younger Dryas precipitation was high in the British Isles, the NW of the Iberian Peninsula and the Vosges. There is a general trend for declining precipitation

  10. On the use of the point-mass modeling technique for assessing ice-mass variations in alpine glacier systems

    Science.gov (United States)

    Reimond, Stefan; Baur, Oliver; Krauss, Sandro

    2016-04-01

    Most scientific studies dealing with gravity-based ice-mass balance estimations focus on the Earth's continental glacier systems, namely the Greenland and the Antarctica ice sheets. Alpine glacier regions such as the Alps, Himalaya or Patagonia, on the other hand, seem to be less considered. According to the most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC), however, glacier shrinkage is one of the most dominant contributors to global sea level rise. In this context we investigate the capability of the point-mass modeling technique to assess ice-mass variations in small-scale alpine regions from space-borne gravimetric data. Two different approaches of this method can be distinguished: point-mass modeling with (i) predefined and fixed positions and (ii) with unknown locations of the surface mass changes. Approach (i) yields a linear functional model in which only the magnitudes of the point-masses are considered unknown. A highly non-linear optimization problem needs to be solved for approach (ii), since both the magnitudes and the coordinates of the point-masses are introduced as unknown parameters. In addition to that, owing to the effect of downward continuation, this problem is categorized as ill-posed and needs to be remedied by introducing regularization. The L-curve criterion or the generalized cross-validation method are typically used for selecting a suitable regularization factor. We conducted a series of close-loop simulation tests for various alpine glacier systems to compare the two approaches. In order to solve the global optimization problems in (i) and (ii), we make use of genetic algorithms.

  11. Glacial changes and glacier mass balance at Gran Campo Nevado, Chile during recent decades

    Science.gov (United States)

    Schneider, C.; Schnirch, M.; Kilian, R.; Acuña, C.; Casassa, G.

    2003-04-01

    Within the framework of the program Global Land Ice Measurements from Space (GLIMS) a glacier inventory of the Peninsula Muñoz Gamero in the southernmost Andes of Chile (53°S) has been generated using aerial photopgrahy and Landsat Thematic Mapper imagery. The Peninsula is partly covered by the ice cap of the Gran Campo Nevado (GCN), including several outlet glaciers plus some minor glaciers and firn fields. All together the ice covered areas sum up to 260 km2. GCN forms the only major ice body between the Southern Patagonia Icefield and the Strait of Magallan. Its almost unique location in a zone affected year-round by the westerlies makes it a region of key interest in terms of glacier and climate change studies of the west-wind zone of the Southern Hemisphere. A digital elevation model (DEM) was created for the area, using aerial imagery from 1942, 1984, and 1998 and a Chilean topographic map (1: 100 000). All information was incorporated into a GIS together with satellite imagery from 1986 and 2001. Delineation of glacier inflow from the central plateau of Gran Campo Nevado was accomplished using an automatic module for watershed delineation within the GIS. The GIS served to outline the extent of the present glaciation of the peninsula, as well as to evaluate the derived historic information. The comparison of historic and recent imagery reveals a dramatic glacier retreat during the last 60 years. Some of the outlet glaciers lost more than 20% of their total area during this period. In February and March 2000 a automatic weather station (AWS) was run on a nameless outlet glacier, inofficially Glaciar Lengua, of the Gran Campo Nevado Ice Cap. From the computed energy balance, it was possible to derive degree-day factors for the Glaciar Lengua. With data from the nearby AWS at fjord coast (Bahia Bahamondes) we computed ablation for the summer seasons of 1999/2000, 2000/2001 and 2001/2002. Ablation at 450 m a.s.l. sums up to about 7 m in 1999/2000, 5.5 m in 2000

  12. Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers

    Directory of Open Access Journals (Sweden)

    A. F. Lutz

    2013-09-01

    Full Text Available Central Asian water resources largely depend on melt water generated in the Pamir and Tien Shan mountain ranges. To estimate future water availability in this region, it is necessary to use climate projections to estimate the future glacier extent and volume. In this study, we evaluate the impact of uncertainty in climate change projections on the future glacier extent in the Amu and Syr Darya river basins. To this end we use the latest climate change projections generated for the upcoming IPCC report (CMIP5 and, for comparison, projections used in the fourth IPCC assessment (CMIP3. With these projections we force a regionalized glacier mass balance model, and estimate changes in the basins' glacier extent as a function of the glacier size distribution in the basins and projected temperature and precipitation. This glacier mass balance model is specifically developed for implementation in large scale hydrological models, where the spatial resolution does not allow for simulating individual glaciers and data scarcity is an issue. Although the CMIP5 ensemble results in greater regional warming than the CMIP3 ensemble and the range in projections for temperature as well as precipitation is wider for the CMIP5 than for the CMIP3, the spread in projections of future glacier extent in Central Asia is similar for both ensembles. This is because differences in temperature rise are small during periods of maximum melt (July–September while differences in precipitation change are small during the period of maximum accumulation (October–February. However, the model uncertainty due to parameter uncertainty is high, and has roughly the same importance as uncertainty in the climate projections. Uncertainty about the size of the decline in glacier extent remains large, making estimates of future Central Asian glacier evolution and downstream water availability uncertain.

  13. Meteorological and climatological feature around Potanin glacier, Mongolian Altai

    OpenAIRE

    紺屋, 恵子; 門田, 勤; 矢吹, 裕伯; Davaa, Gombo; Purevdagva, Khalzan; 大畑, 哲夫

    2010-01-01

    Fluctuation of glacier mass balance can be an indicator of climate change. Also, discharge from a glacier is necessary for water resources in arid region because glacier melt water is quasi-sustainable water resource. Asian glaciers show outstanding negative trend. There are many glaciers in Altai mountain range. It is revealed that glaciers in western Mongolia are retreating by Satellite image (Kadota and Gombo, 2007). However, less information has been obtained for Mongolian Altai because ...

  14. Re-analysis of seasonal mass balance at Abramov glacier 1968–2014

    OpenAIRE

    Martina Barandun; Matthias Huss; Leo Sold; D. Farinotti; Erlan Azisov; Nadine Salzmann; Ryskul Usubaliev; Alexandr Merkushkin; Martin Hoelzle

    2016-01-01

    Abramov glacier, located in the Pamir Alay, Kyrgyzstan, is a reference glacier within the Global Terrestrial Network for Glaciers. Long-term glaciological measurements exist from 1968 to 1998 and a mass-balance monitoring programme was re-established in 2011. In this study we re-analyse existing mass-balance data and use a spatially distributed mass-balance model to provide continuous seasonal time series of glacier mass balance covering the period 1968–2014. The model is calibrated to season...

  15. Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes

    Science.gov (United States)

    Nilsson, J.; Sandberg Sørensen, L.; Barletta, V. R.; Forsberg, R.

    2015-01-01

    The mass balance of glaciers and ice caps is sensitive to changing climate conditions. The mass changes derived in this study are determined from elevation changes derived measured by the Ice, Cloud, and land Elevation Satellite (ICESat) for the time period 2003-2009. Four methods, based on interpolation and extrapolation, are used to regionalize these elevation changes to areas without satellite coverage. A constant density assumption is then applied to estimate the mass change by integrating over the entire glaciated region. The main purpose of this study is to investigate the sensitivity of the regional mass balance of Arctic ice caps and glaciers to different regionalization schemes. The sensitivity analysis is based on studying the spread of mass changes and their associated errors, and the suitability of the different regionalization techniques is assessed through cross-validation. The cross-validation results shows comparable accuracies for all regionalization methods, but the inferred mass change in individual regions, such as Svalbard and Iceland, can vary up to 4 Gt a-1, which exceeds the estimated errors by roughly 50% for these regions. This study further finds that this spread in mass balance is connected to the magnitude of the elevation change variability. This indicates that care should be taken when choosing a regionalization method, especially for areas which exhibit large variability in elevation change.

  16. The climate memory of an Arctic polythermal glacier

    OpenAIRE

    Delcourt, C.; B. Van Liefferinge; M. Nolan; F. Pattyn

    2013-01-01

    Knowledge of glacier equilibrium-line altitude (ELA) changes and trends in time is essential for future predictions of glacier volumes. We present a novel method for determining trends in ELA change at McCall Glacier, Alaska, USA, over the last 50 years, based on mapping of the cold temperate transition surface (CTS), marking the limit between cold and temperate ice of a polythermal glacier. Latent heat release from percolating meltwater and precipitation keeps the ice column temperate in the...

  17. Interannual to decadal time-scale variations in glacier mass balance [abstract

    OpenAIRE

    Walters, Roy A.

    1996-01-01

    EXTRACT (SEE PDF FOR FULL ABSTRACT): The mass balance of glaciers depends on the seasonal variation in precipitation, temperature, and insolation. For glaciers in western North America, these meteorological variables are influenced by the large-scale atmospheric circulation over the northern Pacific Ocean. The purpose of this study is to gain a better understanding of the relationship between mass balance at glaciers in western North America and the large-scale atmospheric effects at inte...

  18. Mass balance and surface velocity reconstructions of two reference Caucasus glaciers

    Science.gov (United States)

    Rybak, Oleg; Kaminskaia, Mariia; Kutuzov, Stanislav; Lavrentiev, Ivan; Morozova, Polina; Popovnin, Victor; Rybak, Elena

    2016-04-01

    Total glacial volume of the Greater Caucasus exceeds 40 cubic km and its area exceeds 1 thousand square km. During the 20th century, mountain glaciers at the Greater Caucasus were continuously degrading. According to various estimates, their area reduced more than one-third and their volume almost by half. The process of degradation was accompanied by growing population and economical development on surrounding territories. In the 21st century under proceeding global warming, a tendency of shrinking of area and volume of glaciation is obviously expected to continue. Working out of strategy of sustainable economic development of the region is the main motivation for elaboration of predictions of glaciers' evolution in the changing environment. Growing demand of fresh water is the basic challenge for the local economy, and efficient planning of water resources is impossible without knowing future state of glaciation. Therefore our research aims at obtaining accurate evaluation of probable future change of the most prominent mountain glaciers of the Greater Caucasus in forthcoming decades and at studying impacts of changing characteristics of glaciation on the run-off in the area. Initially, we focus on two so-called reference glaciers - Marukh (Western Caucasus) and Djankuat (Central Caucasus). Intensive field observations on both of them have been conducted during the last half of the century and essential amount of detailed relevant information has been collected on their geometry change and on mass balance. Besides, meteorological measurements were episodically carried out directly on the glaciers providing enough data for correlation of the local weather conditions with the data from the closest meteorological stations. That is why studying of response of Marukh and Djankuat on the environmental change can be accurately verified, which is crucial for understanding mechanisms driving evolution of large glaciated area in the Caucasus. As the instrument of research

  19. Glacier Runoff and Human Vulnerability to Climate Change: The Case of Export Agriculture in Peru (Invited)

    Science.gov (United States)

    Carey, M.

    2013-12-01

    There is growing concern about the effects of climate change and ensuing glacier shrinkage on water supplies for mountain communities worldwide. The issue is only becoming more complex as researchers seek to quantify glacier contributions to streamflow and to pinpoint when and how much glacier runoff will likely change as a result of future climate change and glacier variation. Additionally, some researchers are beginning to recognize the importance of understanding the human dimensions of glacier retreat to identify which social groups (stakeholders) use glacier runoff and how much they use, as well as what socio-environmental forces affect both water supplies and water use. This presentation examines these societal aspects of glacier runoff to analyze human vulnerability to hydrological changes in Peru's Santa River watershed below the most glaciated tropical mountain range in the world, the Cordillera Blanca. Specifically, it focuses on the billion-dollar export-oriented agricultural industry within the Chavimochic irrigation project, which uses Santa River water to irrigate approximately 80,000 hectares in the coastal desert region. Since the 1980s, Santa River water has allowed Chavimochic to sustain a major export economy, provide jobs in the agro-industry and related services, stimulate human migration, enhance or alter livelihoods, generate hydroelectricity, supply drinking water, and shape urban growth and land use practices. All of these variables are dependent on glacier meltwater from the Cordillera Blanca, especially during the dry season when glaciers provide most of the Santa River's water. In short, hundreds of thousands of people have come to depend on glacier runoff, thus revealing their high level of vulnerability to hydrological fluctuations in a glacier-fed watershed. What's more, people worldwide rely on the asparagus, avocados, and artichokes grown with glacier runoff. Consequently, the export-oriented agriculture, through the "virtual water

  20. Glacier crevasses: Observations, models, and mass balance implications

    Science.gov (United States)

    Colgan, William; Rajaram, Harihar; Abdalati, Waleed; McCutchan, Cheryl; Mottram, Ruth; Moussavi, Mahsa S.; Grigsby, Shane

    2016-03-01

    We review the findings of approximately 60 years of in situ and remote sensing studies of glacier crevasses, as well as the three broad classes of numerical models now employed to simulate crevasse fracture. The relatively new insight that mixed-mode fracture in local stress equilibrium, rather than downstream advection alone, can introduce nontrivial curvature to crevasse geometry may merit the reinterpretation of some key historical observation studies. In the past three decades, there have been tremendous advances in the spatial resolution of satellite imagery, as well as fully automated algorithms capable of tracking crevasse displacements between repeat images. Despite considerable advances in developing fully transient three-dimensional ice flow models over the past two decades, both the zero stress and linear elastic fracture mechanics crevasse models have remained fundamentally unchanged over this time. In the past decade, however, multidimensional and transient formulations of the continuum damage mechanics approach to simulating ice fracture have emerged. The combination of employing damage mechanics to represent slow upstream deterioration of ice strength and fracture mechanics to represent rapid failure at downstream termini holds promise for implementation in large-scale ice sheet models. Finally, given the broad interest in the sea level rise implications of recent and future cryospheric change, we provide a synthesis of 10 mechanisms by which crevasses can influence glacier mass balance.

  1. Analyse du bilan d'énergie d'un glacier tropical : application à la relation glacier-climat

    OpenAIRE

    Wagnon, Patrick

    1999-01-01

    Les glaciers tropicaux sont des indicateurs climatiques très sensibles. Pour relier les fluctuations de leur bilan de masse aux changements climatiques, nous avons réalisé un bilan d'énergie à la surface du Glacier Zongo (16°S), en Bolivie, entre mars 96 et août 98. Cette thèse présente, d'une part les méthodes employées pour obtenir le cycle annuel du bilan d'énergie ponctuel, et d'autre part l'intérêt de cette étude pour la compréhension du fonctionnement du glacier et sa relation avec la c...

  2. Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: observations and modeling.

    Science.gov (United States)

    Zhao, Huabiao; Yang, Wei; Yao, Tandong; Tian, Lide; Xu, Baiqing

    2016-01-01

    Rapid climate change at high elevations has accelerated glacier retreat in the Himalayas and Tibetan Plateau. However, due to the lack of long-term glaciological measurements, there are still uncertainties regarding when the mass loss began and what the magnitude of mass loss is at such high elevations. Based on in situ glaciological observations during the past 9 years and a temperature-index mass balance model, this study investigates recent mass loss of the Naimona'nyi Glacier in the western Himalayas and reconstructs a 41-year (1973/74-2013/14) equilibrium line altitude (ELA) and glacier-wide mass loss. The result indicates that even at 6000 m above sea level (a.s.l.), the annual mass loss reaches ~0.73 m water equivalent (w.e.) during the past 9 years. Concordant with the abrupt climate shift in the end of 1980s, the ELA has dramatically risen from ~5969 ± 73 m a.s.l. during 1973/74-1988/89 to ~6193 ± 75 m a.s.l. during 1989/90-2013/14, suggesting that future ice cores containing uninterrupted climate records could only be recovered at least above 6200 m a.s.l. in the Naimona'nyi region. The glacier-wide mass balance over the past 41 years is averaged to be approximately -0.40 ± 0.17 m w.e., exhibiting a significant increase in the decadal average from -0.01 ± 0.15 to -0.69 ± 0.21 m w.e. PMID:27561411

  3. Sensitivity of glacier runoff projections to baseline climate data in the Indus River Basin

    Directory of Open Access Journals (Sweden)

    Michele eKoppes

    2015-10-01

    Full Text Available Quantifying the contribution of glacier runoff to water resources is particularly important in regions such High Mountain Asia, where glaciers provide a large percentage of seasonal river discharge and support large populations downstream. In remote areas, direct field measurements of glacier melt rates are difficult to acquire and rarely observed, so hydro-glaciological modeling and remote sensing approaches are needed. Here we present estimates of glacier melt contribution to the Upper Indus watershed over the last 40 years using a suite of seven reanalysis climate datasets that have previously been used in hydrological models for this region, a temperature-index melt model and > 29,000 km2 of ice cover. In particular, we address the uncertainty in estimates of meltwater flux that is introduced by the baseline climate dataset chosen, by comparing the results derived from each. Mean annual glacier melt contribution varies from 8 km3 yr-1 and 169 km3 yr-1, or between 4-78% of the total annual runoff in the Indus, depending on temperature dataset applied. Under projected scenarios of an additional 2-4°C of regional warming by 2100 AD, we find annual meltwater fluxes vary by >200% depending on the baseline climate dataset used and, importantly, span a range of positive and negative trends. Despite significant differences between climate datasets and the resulting spread in meltwater fluxes, the spatial pattern of melt is highly correlated and statistically robust across all datasets. This allows us to conclude with confidence that fewer than 10% of the >20,000 glaciers in the watershed contribute more than 80% of the total glacier runoff to the Indus. These are primarily large, low elevation glaciers in the Karakoram and Hindu Kush. Additional field observations to ground-truth modeled climate data will go far to reduce the uncertainty highlighted here and we suggest that efforts be focused on those glaciers identified to be most significant to

  4. Estimating the avalanche contribution to the mass balance of debris covered glaciers

    OpenAIRE

    Banerjee, A.; Shankar, R.

    2014-01-01

    Avalanche from high head walls dominates the net accumulation in many debris covered glaciers in the Himalaya. These avalanche contributions are difficult to directly measure and may cause a systematic bias in glaciological mass balance measurements. In this paper we develop a method to estimate the avalanche contribution using available data, within the context of an idealised flowline model of the glacier. We focus on Hamtah glacier in Western Himalaya ...

  5. Relative importance of glacier contributions to streamflow in a changing climate

    Science.gov (United States)

    The role of glaciers and snow in climate change-affected runoff is evaluated by taking into account the carryover of runoff and of unmelted snow from one hydrological year to another. This water balance is computed for the present climate and for future climates with changed temperatures and precip...

  6. Increased Mass Loss and Asynchronous Behavior of Marine-Terminating Outlet Glaciers at Upernavik Isstrøm, NW Greenland

    DEFF Research Database (Denmark)

    Larsen, Signe Hillerup; Khan, Shfaqat Abbas; Ahlstrøm, Andreas Peter;

    2016-01-01

    In order to model and predict future behavior of marine terminating glaciers, it is essential to understand the different factors that control a glaciers response to climate change. Here we present a detailed study of the asynchronous changes in dynamic behavior of four adjacent marine-terminatin......In order to model and predict future behavior of marine terminating glaciers, it is essential to understand the different factors that control a glaciers response to climate change. Here we present a detailed study of the asynchronous changes in dynamic behavior of four adjacent marine...... between 1992 and 2013. These observations point out the fact that the UI glaciers are reacting to climate change on different timescales. The asynchronous behavior of the four neighboring glaciers is explained in terms of the individual glaciersâĂŹ geometry and terminus position. The northernmost glacier...

  7. Regional estimates of glacier mass change from MODIS-derived equilibrium line altitudes

    OpenAIRE

    J. M. Shea; B. Menounos; R. Dan Moore; Tennant, C.

    2012-01-01

    We describe an automated method to extract regional snowline elevations and annual equilibrium line altitudes (ELAs) from daily MODIS imagery (MOD02QKM) on large glaciers and icefields in western North America. Regional MODIS-derived ELAs correlate significantly with observed net mass balance at six index glacier mass balance sites. Historical mass balance gradients were combined with MODIS-derived ELAs to estimate annual mass change at the Columbia, Lillooet, and Sittakanay icefields ...

  8. High-Resolution Modeling of Freshwater Discharge and Glacier Mass Balance in the Gulf of Alaska Drainage

    Science.gov (United States)

    Beamer, J. P.; Hill, D. F.; Arendt, A. A.; Liston, G. E.; Hood, E. W.

    2014-12-01

    A comprehensive study of the Gulf of Alaska (GOA) hydrology has been carried out in order to improve understanding of the coastal freshwater discharge (FWD) magnitude and spatial distribution, and mass changes from GOA glaciers. FWD along the coastline and surface mass balance (SMB) for all glacier surfaces in the GOA drainage were modeled using a suite of physically-based, spatially distributed weather, energy-balance snow/ice melt, and runoff-routing models at a high resolution (1-km horizontal grid; 3-h time step). SnowModel simulations of air temperature, precipitation, surface runoff, and glacier SMB were completed for the entire GOA drainage from 1979-2009. HydroFlow was used to route the SnowModel-derived runoff to the GOA coastline. Meteorological forcing was provided by the North American Regional Reanalysis (NARR) dataset. The NARR data was bias-corrected using monthly gridded climate data to more accurately reflect the strong spatial gradients in air temperature and precipitation, while retaining the temporal attributes of NARR. The most recent version of the Alaska Glacier Inventory was used to define the glacier cover for the model simulations. The modeling system was validated and calibrated in several glaciated catchments containing long-term streamflow and glacier mass balance datasets, as well as several non-glaciated catchments with only streamflow data. The overall GOA mean annual FWD volumes from HydroFlow agree well with previous estimates. Glacier SMB simulated by SnowModel from 2004-2009 produced seasonal storage changes and long term trends consistent with GRACE satellite-based estimates. Both SnowModel and GRACE data suggest a negative SMB trend which indicates that recent glacier volume loss contributes significantly to GOA FWD. The final product of this study is a 30-year record of daily streamflow at every coastal grid cell (1-km resolution) in the GOA drainage, which includes the runoff signal from glacier melt and volume loss. This

  9. The Response of Alpine Glaciers in Western Canada to Early 21st Century Climate Change

    Science.gov (United States)

    Menounos, B.; Beedle, M. J.; Lueders, S.

    2014-12-01

    Since 1998, the rate of global warming has slowed but the degree to which this slowdown has affected alpine glaciers in North America remains uncertain. Here we describe glacier fluctuations in the continental mountain ranges of British Columbia, Alberta, Yukon and the Northwest Territories for the period 1985-2013. Our manual digitization of over 3,000 glaciers mapped from 12 Landsat scenes builds upon a glacier inventory for the period 1985-2005 that utilized aerial photography and satellite imagery (Landsat) for the mountain ranges of British Columbia and Alberta. Landsat imagery allowed us to extend the spatial distribution of this inventory to include most alpine glaciers that straddle the Yukon and Northwest Territory border (Nahanni region) for the years 1985 and 2004. We also digitized glaciers from pan-sharpened Landsat 8 imagery for the year 2013. Glacier recession rates differ among regions between the early [1985-2005] and recent [2005-2013] periods. Recession rates during the recent period, for example, slowed by 43% and 15% for the Nahanni and Columbia Basin regions respectively. When compared to the early period, recent recession rates accelerated by 17% and 121% for glaciers in the Southern and Northern Rocky Mountains. Some of this regional variability is attributed to climate anomalies in the study area based on our analysis of instrumental (CRU 3.21) and reanalysis (ERA Interim) data, but the doubling of the recessional rate for the Northern Rocky Mountains is anomalous. Non-climatic factors that could explain this anomalous rapid retreat of Northern Rocky Mountain glaciers includes low minimum elevation of these glaciers, debris cover and shadowed terrain in the Landsat imagery.

  10. The equilibrium flow and mass balance of the Taku Glacier, Alaska 1950–2006

    Directory of Open Access Journals (Sweden)

    K. F. Sprenke

    2008-05-01

    Full Text Available The Taku Glacier, Alaska has advanced 7.5 km since the late nineteenth century, while all other primary outlet glaciers of the Juneau Icefield are in retreat. The Juneau Icefield Research Program has completed field work on the Taku Glacier annually since 1946. The collected observations of surface mass balance, glacier velocity and glacier thickness at Profile IV 29 km above the terminus and 4 km above the equilibrium line provide a means to assess the equilibrium nature of the Taku Glacier. Velocity measured over a twelve month span and annual summer velocity measurements completed at a Profile IV from 1950–2006 indicate insignificant variations in velocity seasonally or from year to year. The consistency of velocity over the 56-year period indicates that in the vicinity of the equilibrium line, the flow of the Taku Glacier has been in an equilibrium state. Surface mass balance was positive from 1946–1988 averaging +0.42 m a−1. This led to glacier thickening. From 1988–2006 an important change has occurred and annual balance has been −0.14 m a−1, and the glacier thickness has ceased increasing along Profile IV. Field measurements of ice depth and surface velocity allow calculation of the volume flux at Profile IV. Volume flux is then compared with the surface balance flux from the region of the glacier above Profile IV, determined annually in the field. Above Profile IV the observed mean surface flux is 5.50×108 m3/a (±5%, while the calculated volume flux range flowing through profile IV is 5.00–5.47×108 m3/a. The mean surface flux has been greater than the volume flux, which has led to slow thickening of the Taku Glacier up to 1988. The thickening has not led to a change in the flow of Taku Glacier at Profile IV.

  11. Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling

    Science.gov (United States)

    Carturan, L.; Cazorzi, F.; De Blasi, F.; Dalla Fontana, G.

    2015-05-01

    Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect) and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium to large glaciers so far, while observations on smaller ice bodies (< 0.5 km2) are scarce. Using a data set from eight on-glacier and four off-glacier weather stations, collected in the summers of 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and fragmentation. The methods proposed by Greuell and Bohm (1998) and Shea and Moore (2010) for calculating on-glacier temperature from off-glacier data did not fully reproduce our observations. Among them, the more physically based procedure of Greuell and Bohm (1998) provided the best overall results where the KBL prevails, but it was not effective elsewhere (i.e., on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability.

  12. Mass Change of Glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as Derived from Remote Sensing Data.

    Science.gov (United States)

    Zhang, Zhen; Liu, Shiyin; Wei, Junfeng; Xu, Junli; Guo, Wanqin; Bao, Weijia; Jiang, Zongli

    2016-01-01

    The assessment of glacier mass budget is crucial for assessing water reserves stored in glaciers. Derived glacier mass changes in the Muztag Ata and Kongur Tagh (MAKT) region in the eastern Pamir, northwestern China, is helpful in improving our knowledge of the dynamics of glaciers under a changing climate in High Mountain Asia. Here, glacier area and mass changes derived from remote sensing data are investigated for the period 1971/76-2013/14 for glaciers in MAKT. We have used ASTER images (2013/14), Cartosat-1 (2014) and Landsat, SRTM (Shuttle Radar Terrain Mission) digital elevation model (DEM) (2000), topographic maps (1971/76) and the first and second Chinese glacier inventories (CGIs). Our results indicated that the glacier area of MAKT decreased from 1018.3 ± 12.99 km(2) in 1971/76 to 999.2 ± 31.22 km(2) in 2014 (-1.9 ± 0.2%). Weak area shrinkage of glaciers by 2.5 ± 0.5 km(2) (0.2 ± 0.1%) happened after 2000 and the period 2009-2014 even saw a slight expansion by 0.5 ± 0.1 km(2) (0.1 ± 0.0%). The glaciers in this region have experienced an overall loss of -6.99 ± 0.80 km(3) in ice volume or -0.15 ± 0.12 m water equivalent (w.e.) a-1 from 1971/76 to 2013/14. The mass budget of MAKT was -0.19 ± 0.19 m w.e. a-1 for the period ~1971/76-1999 and -0.14 ± 0.24 m w.e. a-1 during 1999-2013/2014. Similar to previous studies, there has been little mass change in the Pamir over recent decades despite such uncertainties. Glacier mass change showed spatial and temporal heterogeneity, with strong mass loss on debris-covered glaciers with an average of -0.32 ± 0.12 m w.e. a-1 from the 1970s to 2013/14. PMID:26789404

  13. Mass Change of Glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as Derived from Remote Sensing Data.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available The assessment of glacier mass budget is crucial for assessing water reserves stored in glaciers. Derived glacier mass changes in the Muztag Ata and Kongur Tagh (MAKT region in the eastern Pamir, northwestern China, is helpful in improving our knowledge of the dynamics of glaciers under a changing climate in High Mountain Asia. Here, glacier area and mass changes derived from remote sensing data are investigated for the period 1971/76-2013/14 for glaciers in MAKT. We have used ASTER images (2013/14, Cartosat-1 (2014 and Landsat, SRTM (Shuttle Radar Terrain Mission digital elevation model (DEM (2000, topographic maps (1971/76 and the first and second Chinese glacier inventories (CGIs. Our results indicated that the glacier area of MAKT decreased from 1018.3 ± 12.99 km(2 in 1971/76 to 999.2 ± 31.22 km(2 in 2014 (-1.9 ± 0.2%. Weak area shrinkage of glaciers by 2.5 ± 0.5 km(2 (0.2 ± 0.1% happened after 2000 and the period 2009-2014 even saw a slight expansion by 0.5 ± 0.1 km(2 (0.1 ± 0.0%. The glaciers in this region have experienced an overall loss of -6.99 ± 0.80 km(3 in ice volume or -0.15 ± 0.12 m water equivalent (w.e. a-1 from 1971/76 to 2013/14. The mass budget of MAKT was -0.19 ± 0.19 m w.e. a-1 for the period ~1971/76-1999 and -0.14 ± 0.24 m w.e. a-1 during 1999-2013/2014. Similar to previous studies, there has been little mass change in the Pamir over recent decades despite such uncertainties. Glacier mass change showed spatial and temporal heterogeneity, with strong mass loss on debris-covered glaciers with an average of -0.32 ± 0.12 m w.e. a-1 from the 1970s to 2013/14.

  14. Simulation of historic glacier variations with a simple climate-glacier model

    NARCIS (Netherlands)

    Oerlemans, J.

    1988-01-01

    Glacier variations during the last few centuries have shown a marked coherence over the globe. Characteristic features are the maximum stand somewhere in the middle of the nineteenth century, and the steady retreat afterwards (with some minor interrruptions depending on the particular region). In ma

  15. The importance of glacier and forest change in hydrological climate-impact studies

    OpenAIRE

    N. Köplin; B. Schädler; D. Viviroli; R. Weingartner

    2012-01-01

    Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate s...

  16. The importance of glacier and forest change in hydrological climate-impact studies

    OpenAIRE

    Köplin, Nina; Schädler, Bruno; Viviroli, Daniel; Weingartner, Rolf

    2013-01-01

    Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenario...

  17. Glacier mass balance in high-arctic areas with anomalous gravity

    Science.gov (United States)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  18. Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains

    Directory of Open Access Journals (Sweden)

    S. Adhikari

    2013-04-01

    Full Text Available Evolution of glaciers in response to climate change has mostly been simulated using simplified dynamical models. Because these models do not account for the influence of high-order physics, corresponding results may exhibit some biases. For Haig Glacier in the Canadian Rocky Mountains, we test this hypothesis by comparing simulation results obtained from 3-D numerical models that deal with different assumptions concerning ice-flow physics, ranging from simple shear-deformation to comprehensive Stokes flow. In glacier retreat scenarios, we find a minimal role of high-order mechanics in glacier evolution, as geometric effects at our site (the presence of an overdeepened bed result in limited horizontal movement of ice (flow speed on the order of a few meters per year. Consequently, high-order and reduced models all predict that Haig Glacier ceases to exist by ca. 2080 under ongoing climate warming. The influence of high-order mechanics is evident, however, in glacier advance scenarios, where ice speeds are greater and ice dynamical effects become more important. To generalize these findings for other glacier applications, we advise that high-order mechanics are important and therefore should be considered while modelling the evolution of active glaciers. Reduced model predictions may, however, be adequate for other glaciologic and topographic settings, particularly where flow speeds are low.

  19. Processes governing the mass balance of Chhota Shigri Glacier (Western Himalaya, India assessed by point-scale surface energy balance measurements

    Directory of Open Access Journals (Sweden)

    M. F. Azam

    2014-06-01

    Full Text Available Recent studies revealed that Himalayan glaciers have been shrinking at an accelerated rate since the beginning of the 21st century. However the climatic causes for this shrinkage remain unclear given that surface energy balance studies are almost nonexistent in this region. In this study, a point-scale surface energy balance analysis was performed using in-situ meteorological data from the ablation zone of Chhota Shigri Glacier over two separate periods (August 2012 to February 2013 and July to October 2013 in order to understand the response of mass balance to climate change. Energy balance numerical modeling provides quantification of the surface energy fluxes and identification of the factors affecting glacier mass balance. The computed ablation was validated by stake observations. During summer-monsoon period, net radiation was the primary component of the surface energy balance with 82% of the total heat flux which was complimented with turbulent sensible and latent heat fluxes with a share of 13% and 5%, respectively. A striking feature of energy balance is the positive turbulent latent heat flux, thus condensation or re-sublimation of moist air at the glacier surface takes place, during summer-monsoon period which is characterized by relatively high air temperature, high relative humidity and almost permanent melting surface. The impact of Indian summer monsoon on Chhota Shigri Glacier mass balance has also been assessed. This analysis demonstrates that the intensity of snowfall events during the summer-monsoon season plays a key role on surface albedo, in turn on melting, and thus is among the most important drivers controlling the annual mass balance of the glacier. Summer-monsoon air temperature, controlling the precipitation phase (rain vs. snow and thus albedo, counts, indirectly, also among the most important drivers for the glacier mass balance.

  20. Adapting to the reality of climate change at Glacier National Park, Montana, USA

    Science.gov (United States)

    Fagre, Daniel B.

    2007-01-01

    The glaciers of Glacier National Park (GNP) are disappearing rapidly and likely will be gone by 2030. These alpine glaciers have been continuously present for approximately 7,000 years so their loss from GNP in another 25 years underscores the significance of current climate change. There are presently only 27 glaciers remaining of the 150 estimated to have existed when GNP was created in 1910. Mean annual temperature in GNP has increased 1.6 0 C during the past cen- tury, three times the global mean increase. The temperature increase has affected other parts of the mountain ecosystem, too. Snowpacks hold less water equivalent and melt 2+ weeks earlier in the spring. Forest growth rates have increased, alpine treelines have expanded upward and be- come denser, and subalpine meadows have been invaded by high elevation tree species. These latter responses can be mostly attributed to longer growing seasons and warmer temperatures.

  1. Quantifying the mass loss of peripheral Greenland glaciers and ice caps (1958-2014).

    Science.gov (United States)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; van den Broeke, Michiel

    2016-04-01

    Since the 2000s, mass loss from Greenland peripheral glaciers and ice caps (GICs) has accelerated, becoming an important contributor to sea level rise. Under continued warming throughout the 21st century, GICs might yield up to 7.5 to 11 mm sea level rise, with increasing dominance of surface runoff at the expense of ice discharge. However, despite multiple observation campaigns, little remains known about the contribution of GICs to total Greenland mass loss. Furthermore, the relatively coarse resolutions in regional climate models, i.e. 5 km to 20 km, fail to represent the small scale patterns of surface mass balance (SMB) components over these topographically complex regions including also narrow valley glaciers. Here, we present a novel approach to quantify the contribution of GICs to surface melt and runoff, based on an elevation dependent downscaling method. GICs daily SMB components at 1 km resolution are obtained by statistically downscaling the outputs of RACMO2.3 at 11 km resolution to a down-sampled version of the GIMP DEM for the period 1958-2014. This method has recently been successfully validated over the Greenland ice sheet and is now applied to GICs. In this study, we first evaluate the 1 km daily downscaled GICs SMB against a newly available and comprehensive dataset of ablation stake measurements. Then, we investigate present-day trends of meltwater production and SMB for different regions and estimate GICs contribution to total Greenland mass loss. These data are considered valuable for model evaluation and prediction of future sea level rise.

  2. Rapid response of Helheim Glacier in Greenland to climate variability over the past century

    DEFF Research Database (Denmark)

    Andresen, Camilla Snowman; Straneo, Fiammetta; Ribergaard, Mads Hvid;

    2012-01-01

    common climate forcing. Increasing air(6) and ocean(7,8) temperatures have been indicated as potential triggers. Here, we present a record of calving activity of Helheim Glacier, East Greenland, that extends back to about AD 1890, based on an analysis of sedimentary deposits from Sermilik Fjord, where...... Helheim Glacier terminates. Specifically, we use the annual deposition of sand grains as a proxy for iceberg discharge. Our record reveals large fluctuations in calving rates, but the present high rate was reproduced only in the 1930s. A comparison with climate indices indicates that high calving activity...

  3. Mass loss of Greenland's glaciers and ice caps 2003-2008 revealed from ICESat laser altimetry data

    OpenAIRE

    T. Bolch; L. Sandberg Sørensen; Simonsen, S.B.; Mölg, N.; Machguth, H.; Rastner, P.; Paul, F.

    2013-01-01

    The recently finalized inventory of Greenland's glaciers and ice caps (GIC) allows for the first time to determine the mass changes of the GIC separately from the ice sheet using space-borne laser altimetry data. Corrections for firn compaction and density that are based on climatic conditions are applied for the conversion from volume to mass changes. The GIC which are clearly separable from the icesheet (i.e., have a distinct ice divide or no connection) lost 27.9 ± 10.7 Gt a-1 or 0.08 ± 0....

  4. Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand

    Science.gov (United States)

    Conway, J. P.; Cullen, N. J.

    2016-02-01

    The effect of clouds on glacier surface energy balance (SEB) has received increased attention in the last decade, but how clouds interact with other meteorological forcing to influence surface mass balance (SMB) is not as well understood. This paper resolves the SEB and SMB at a site in the ablation zone of Brewster Glacier over a 22-month period, using high-quality radiation data to carefully evaluate SEB terms and define clear-sky and overcast conditions. A fundamental change in glacier SEB in cloudy conditions was driven by increased effective sky emissivity and surface vapour pressure, rather than a minimal change in air temperature and wind speed. During overcast conditions, positive net long-wave radiation and latent heat fluxes allowed melt to be maintained through a much greater length of time compared to clear-sky conditions, and led to similar melt in each sky condition. The sensitivity of SMB to changes in air temperature was greatly enhanced in overcast compared to clear-sky conditions due to more frequent melt and changes in precipitation phase that created a strong albedo feedback. During the spring and autumn seasons, the sensitivity during overcast conditions was strongest. To capture these processes, future attempts to explore glacier-climate interactions should aim to resolve the effects of atmospheric moisture (vapour, cloud, and precipitation) on melt as well as accumulation, through enhanced statistical or physically based methods.

  5. Modeling modern glacier response to climate changes along the Andes Cordillera: A multiscale review

    Science.gov (United States)

    Fernández, Alfonso; Mark, Bryan G.

    2016-03-01

    Here we review the literature preferentially concerned with modern glacier-climate modeling along the Andes. We find a diverse range of modeling approaches, from empirical/statistical models to relatively complex energy balance procedures. We analyzed these models at three different spatial scales. First, we review global approaches that have included the Andes. Second, we depict and analyze modeling exercises aimed at studying Andean glaciers as a whole. Our revision shows only two studies dealing with glacier modeling at this continental scale. We contend that this regional approach is increasingly necessary because it allows for connecting the "average-out" tendency of global studies to local observations or models, in order to comprehend scales of variability and heterogeneity. Third, we revise small-scale modeling, finding that the overwhelming number of studies have targeted glaciers in Patagonia. We also find that most studies use temperature-index models and that energy balance models are still not widely utilized. However, there is no clear spatial pattern of model complexity. We conclude with a discussion of both the limitations of certain approaches, as for example the use of short calibration periods for long-term modeling, and also the opportunities for improved understanding afforded by new methods and techniques, such as climatic downscaling. We also propose ways to future developments, in which observations and models can be combined to improve current understanding of volumetric glacier changes and their climate causes.

  6. Mass balance evolution of Martial Este Glacier, Tierra del Fuego (Argentina for the period 1960–2099

    Directory of Open Access Journals (Sweden)

    M. Buttstädt

    2009-12-01

    Full Text Available The Martial Este Glacier in southern Tierra del Fuego was studied in order to estimate the surface mass balance from 1960 until 2099. For this reason a degree-day model was calibrated. Air temperature and precipitation data obtained from 3 weather stations as well as glaciological measurements were applied. The model was driven using a vertical air temperature gradient of 0.69 K/100 m, a degree-day factor for snow of 4.7 mm w.e. K−1 day−1, a degree-day factor for ice of 9.4 mm w.e. K−1 day−1 and a precipitation gradient of 22%/100 m. For the purpose of surface mass balance reconstruction for the time period 1960 until 2006 a winter vertical air temperature gradient of 0.57 K/100 m and a summer vertical air temperature gradient of 0.71 K/100 m were added as well as a digital terrain model. The key finding is an almost continuous negative mass balance of −772 mm w.e. a−1 throughout this period. While the calculation of the mass balance for the period 1960–2006 is based on instrumental records, the mass balance for the years 2007 until 2099 was estimated based on the IPCC SRES A2-scenario. To accomplish this estimation, the dataset of the global climate model HadCM3 was statistically downscaled to fit local conditions at Martial Este Glacier. Subsequently, the downscaled air temperature and precipitation were applied to a volume-area scaling glacier change model. Findings reveal an enduring deglaciation resulting in a surface area reduction of nearly 93% until 2099. This implicates that the Martial Este Glacier might be melted off at the beginning of the 22nd century.

  7. Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers

    Science.gov (United States)

    Andreassen, Liss M.; Elvehøy, Hallgeir; Kjøllmoen, Bjarne; Engeset, Rune V.

    2016-03-01

    Glaciological and geodetic methods provide independent observations of glacier mass balance. The glaciological method measures the surface mass balance, on a seasonal or annual basis, whereas the geodetic method measures surface, internal, and basal mass balances, over a period of years or decades. In this paper, we reanalyse the 10 glaciers with long-term mass-balance series in Norway. The reanalysis includes (i) homogenisation of both glaciological and geodetic observation series, (ii) uncertainty assessment, (iii) estimates of generic differences including estimates of internal and basal melt, (iv) validation, and, if needed, (v) calibration of mass-balance series. This study comprises an extensive set of data (484 mass-balance years, 34 geodetic surveys, and large volumes of supporting data, such as metadata and field notes). In total, 21 periods of data were compared and the results show discrepancies between the glaciological and geodetic methods for some glaciers, which are attributed in part to internal and basal ablation and in part to inhomogeneity in the data processing. Deviations were smaller than 0.2 m w.e. a-1 for 12 out of 21 periods. Calibration was applied to 7 out of 21 periods, as the deviations were larger than the uncertainty. The reanalysed glaciological series shows a more consistent signal of glacier change over the period of observations than previously reported: six glaciers had a significant mass loss (14-22 m w.e.) and four glaciers were nearly in balance. All glaciers have lost mass after the year 2000. More research is needed on the sources of uncertainty to reduce uncertainties and adjust the observation programmes accordingly. The study confirms the value of carrying out independent high-quality geodetic surveys to check and correct field observations.

  8. Glaciological and geodetic mass balance of ten long-term glaciers in Norway

    Science.gov (United States)

    Andreassen, L. M.; Elvehøy, H.; Kjøllmoen, B.; Engeset, R. V.

    2015-11-01

    The glaciological and geodetic methods provide independent observations of glacier mass balance. The glaciological method measures the surface mass balance, on a seasonal or annual basis, whereas the geodetic method measures surface, internal and basal mass balances, over a period of years or decades. In this paper, we reanalyse the 10 glaciers with long-term mass balance series in Norway. The reanalysis includes (i) homogenisation of both glaciological and geodetic observation series, (ii) uncertainty assessment, (iii) estimates of generic differences including estimates of internal and basal melt, (iv) validation, and (v) partly calibration of mass balance series. This study comprises an extensive set of data (454 mass balance years, 34 geodetic surveys and large volumes of supporting data, such as metadata and field notes). In total, 21 periods of data were compared and the results show discrepancies between the glaciological and geodetic methods for some glaciers, which in part are attributed to internal and basal ablation and in part to inhomogeneity in the data processing. Deviations were smaller than 0.2 m w.e. a-1 for 12 out of 21 periods. Calibration was applied to seven out of 21 periods, as the deviations were larger than the uncertainty. The reanalysed glaciological series shows a more consistent signal of glacier change over the period of observations than previously reported: six glaciers had a significant mass loss (14-22 m w.e.) and four glaciers were nearly in balance. All glaciers have lost mass after year 2000. More research is needed on the sources of uncertainty, to reduce uncertainties and adjust the observation programmes accordingly. The study confirms the value of carrying out independent high-quality geodetic surveys to check and correct field observations.

  9. Glaciological and geodetic mass balance of ten long-term glaciers in Norway

    Directory of Open Access Journals (Sweden)

    L. M. Andreassen

    2015-11-01

    Full Text Available The glaciological and geodetic methods provide independent observations of glacier mass balance. The glaciological method measures the surface mass balance, on a seasonal or annual basis, whereas the geodetic method measures surface, internal and basal mass balances, over a period of years or decades. In this paper, we reanalyse the 10 glaciers with long-term mass balance series in Norway. The reanalysis includes (i homogenisation of both glaciological and geodetic observation series, (ii uncertainty assessment, (iii estimates of generic differences including estimates of internal and basal melt, (iv validation, and (v partly calibration of mass balance series. This study comprises an extensive set of data (454 mass balance years, 34 geodetic surveys and large volumes of supporting data, such as metadata and field notes. In total, 21 periods of data were compared and the results show discrepancies between the glaciological and geodetic methods for some glaciers, which in part are attributed to internal and basal ablation and in part to inhomogeneity in the data processing. Deviations were smaller than 0.2 m w.e. a−1 for 12 out of 21 periods. Calibration was applied to seven out of 21 periods, as the deviations were larger than the uncertainty. The reanalysed glaciological series shows a more consistent signal of glacier change over the period of observations than previously reported: six glaciers had a significant mass loss (14–22 m w.e. and four glaciers were nearly in balance. All glaciers have lost mass after year 2000. More research is needed on the sources of uncertainty, to reduce uncertainties and adjust the observation programmes accordingly. The study confirms the value of carrying out independent high-quality geodetic surveys to check and correct field observations.

  10. Mass losses from Svalbard land-terminating glaciers by the end of the 21st century under an RCP 8.5 scenario

    Science.gov (United States)

    Möller, Marco; Navarro, Francisco; Martín-Español, Alba

    2016-04-01

    The high Arctic archipelagos are among the most strongly glacierized landscapes on earth apart from the Greenland and Antarctic ice sheets. Svalbard, one of these archipelagos, holds about 36,000 km2 of glaciers and ice caps and is the region that has shown the least negative mass balance of all the high Arctic regions. However, future projections suggest that the archipelago will experience an unprecedented -for the Arctic- glacier recession over the 21st century. We here present a high-resolution modelling study of the future ice-mass evolution of 29 individual land-terminating glaciers on the Svalbard archipelago under an RCP 8.5 climate forcing, a rather pessimistic scenario that unfortunately seems to be becoming realistic. Our model calculates glacier mass balance and area/volume changes using a temperature-index approach in combination with a surface elevation change parameterization. The initial glacier topographies and volumes have been assessed from extensive ground-penetrating radar measurements carried out in recent years. The calculations are performed for the 21st century and are forced by statistically downscaled output of ten different global circulation models representing the RCP scenario 8.5. By a topography-based extrapolation of the simulation results to the entire archipelago we show that a complete loss of most of Svalbard's land-terminating glaciers and even a deglaciation of certain subregions of the archipelago might occur by the end of the 21st century. 98% of the land-terminating glaciers will have retreated to less than one tenth of their initial extent by 2100, resulting in a loss of 7392±2481 km2 of ice coverage.

  11. Regional estimates of glacier mass change from MODIS-derived equilibrium line altitudes

    Directory of Open Access Journals (Sweden)

    J. M. Shea

    2012-09-01

    Full Text Available We describe an automated method to extract regional snowline elevations and annual equilibrium line altitudes (ELAs from daily MODIS imagery (MOD02QKM on large glaciers and icefields in western North America. Regional MODIS-derived ELAs correlate significantly with observed net mass balance at six index glacier mass balance sites. Historical mass balance gradients were combined with MODIS-derived ELAs to estimate annual mass change at the Columbia, Lillooet, and Sittakanay icefields in British Columbia, Canada. Our approach yields estimates of mass change that are within 30% of traditional geodetic approaches over decadal time-scales, and reveals continued mass loss of glaciers in western North America. Between 2000 and 2009, mean annual rates of surface elevation change for the Columbia, Lillooet, and Sittakanay icefields are estimated to be −0.29 ± 0.15 m a−1, −0.57 ± 0.10 m a−1, and −0.90 ± 0.09 m a−1, respectively. This study provides a complementary approach to the development of regional estimates of glacier mass change, which are critical for studies of glacier contributions to both streamflow and global sea-level rise.

  12. Favorable climatic regime for maintaining the present-day geometry of the Gregoriev Glacier, Inner Tien Shan

    OpenAIRE

    Fujita, K.; Takeuchi, N.; S.A. Nikitin; A. B. Surazakov; Okamoto, S; V. B. Aizen; Kubota, J.

    2011-01-01

    We conducted 2 yr (2005–2007) of in situ meteorological and glaciological observations on the Gregoriev Glacier, a flat-top glacier within the Inner Tien Shan, Kyrgyzstan. Relative carrier-phase GPS surveys reveal a vertical lowering at the summit of the glacier. Based on snow density data and an energy-mass balance model, we estimate that the annual precipitation and summer mean temperature required to maintain the glacier in the current state are 289 mm and −3.8 °C at the glacier summit (46...

  13. Response of Glacier and Lake Covariations to Climate Change in Mapam Yumco Basin on Tibetan Plateau during 1974-2003

    Institute of Scientific and Technical Information of China (English)

    Ye Qinghua; Yao Tandong; Chen Feng; Kang Shichang; Zhang Xueqin; Wang Yi

    2008-01-01

    The study of spatial and temporal covariances of glaciers and lakes would help us to understand the impact of climate change within a basin in Tibet. This study focuses on glacier and lake variations in the Mapam Yumco(玛旁雍错)Basin (covering 7 786.44 km2)by Integrationg series of spatial data from topographic maps and digital satellite images at four different times: 1974, 1990, 1999,and 2003. The results indicate that: (1) decreased lakes, retreated glaciers, enlarged lakes and advanced glaciers co-exist in the basin during the last 30 years; (2) glacier recession was accelerated in recent years due to the warmer climate; (3) lake areas in the basin are both reduced and enlarged by an accelerated speed with more water supplies from speeding melt glaciers or frozen ground in the last three decades.

  14. Modeling the surface mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard

    Science.gov (United States)

    Kohler, J.; van Pelt, W. J. J.

    2014-12-01

    A coupled modeling approach is applied to simulate the long-term (1961-2012) surface mass balance and subsurface evolution of the Kongsvegen and Holtedahlfonna glacier systems in western Svalbard. Principle aims are: 1) to quantify and analyze the distributed surface mass balance evolution, 2) to estimate the contribution of melt water refreezing and internal accumulation to the mass balance, and 3) to detect changes in firn conditions over the simulation period. In order to achieve this, HIRLAM regional climate model output for 1961-2012 is projected onto the 100-m model grid and serves as input for a coupled model surface energy balance - firn model. Available stake measurements since 1987, together with weather station data and snow profiling observations, are used for parameter estimation, as well as validation of the model results. Extensive spin-up is performed to provide initialized subsurface conditions at the start of the experiments. Results indicate a slightly positive area-averaged surface mass balance of 0.08 m w.e. yr-1, which only fractionally compensates for mass loss by calving. Melt water refreezing (spatial mean 0.30 m w.e. yr-1) provides a strong buffer for mass loss, whereas substantial internal accumulation (up to 0.22 m w.e. yr-1) adds uncertainty to mass balance observations in the accumulation zone. An increasingly negative surface mass balance over the last two decades has led to a retreat of the firn line and a substantial reduction of the firn air content. Together with a negative trend in the albedo and elevated runoff this could mark the onset of accelerated near-future mass loss.

  15. Glacier recession in Iceland and Austria

    Science.gov (United States)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Bayr, Klaus J.

    1992-01-01

    It has been possible to measure glacier recession on the basis of Landsat data, in conjunction with comparisons of the magnitude of recession of a glacier margin with in situ measurements at fixed points along the same margin. Attention is presently given to the cases of Vatnajokull ice cap, in Iceland, and the Pasterze Glacier, in Austria, on the basis of satellite data from 1973-1987 and 1984-1990, respectively. Indications of a trend toward negative mass balance are noted. Nevertheless, while most of the world's small glaciers have been receding, some are advancing either due to local climate or the tidewater glacier cycle.

  16. Climate and glacier change in southwestern China during the past several decades

    International Nuclear Information System (INIS)

    Glaciers are distributed in the Nyainqntanglha Mountains, Himalayas, Tanggula Mountains, Gangdise Mountains and Hengduan Mountains in Southwestern China. Daily temperature and precipitation data from 111 stations, together with the records of glacier changes, indicate that temperature patterns during 1961–2008 were consistent with warming at a statistically significant level. Seasonal warming was greatest in autumn and winter. Temperature rise showed a significant relationship with sea surface temperature in the Western Pacific, net longwave radiation flux, altitude, sunshine hours, strengthening anticyclonic circulations in summer and anomalous cyclonic circulation in winter. The increase was more apparent in higher altitude areas than in lower ones. Precipitation variations were less marked than those of temperature, generally showing weak decreasing trends during 1961–2008. Increasing trends were apparent only in spring and winter, when regional trends of precipitation increases with altitude also were evident. The strengthening Western Pacific Subtropical Highs were related to precipitation variation. Against the background of increasing temperature, especially the increasing warming with altitude, the fronts of 32 glaciers and areas of 13 glacial basins have retreated, mass losses of 10 glaciers have been considerable, glacial lakes in six regions have expanded and melt water discharge of four basins has also increased, but these glaciers and basins in our study are only a fraction of the retreating glaciers over southwestern China.

  17. Glacier mass change projections and commitments resulting from the Paris Agreement

    Science.gov (United States)

    Marzeion, Ben; Kaser, Georg; Maussion, Fabien

    2016-04-01

    At COP21, the UNFCCC agreed to hold "the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels". Using an ensemble of global glacier model integrations, we estimate the glacier mass change commitment and its temporal evolution resulting from a hypothesized success of the Paris Agreement. Our preliminary results indicate that under 1.5°C global mean temperature increase, glaciers will eventually lose mass corresponding to 133 mm SLE (90 % confidence interval: 83 to 154 mm SLE), compared to 164 mm SLE (110 to 184 mm SLE) under 2.0°C warming. In order to stabilize glaciers at their current global mass, a temperature of 0.17°C (-0.13 to 0.43°C) above pre-industrial would be required. Only a fraction of the long-term mass loss would be realized within the 21st century. Based on scaling existing GCM integrations under the RCP2.6 scenario to 1.5°C global warming, 21st century mass loss of glaciers would correspond to 84 mm SLE (64 to 110 mm SLE). Under the original RCP2.6 scenario, this number climbs to 100 mm SLE (67 to 137 mm SLE).

  18. Little Ice Age glaciers in Britain: Glacier–climate modelling in the Cairngorm Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Harrison; Ann V. Rowan; Neil F. Glasser; Jasper Knight; Mitchell A. Plummer; Stephanie C. Mills

    2014-02-01

    It is widely believed that the last glaciers in the British Isles disappeared at the end of the Younger Dryas stadial (12.9–11.7 cal. kyr BP). Here, we use a glacier–climate model driven by data from local weather stations to show for the first time that glaciers developed during the Little Ice Age (LIA) in the Cairngorm Mountains. Our model is forced from contemporary conditions by a realistic difference in mean annual air temperature of -1.5 degrees C and an increase in annual precipitation of 10%, and confirmed by sensitivity analyses. These results are supported by the presence of small boulder moraines well within Younger Dryas ice limits, and by a dating programme on a moraine in one cirque. As a result, we argue that the last glaciers in the Cairngorm Mountains (and perhaps elsewhere in upland Britain) existed in the LIA within the last few hundred years, rather than during the Younger Dryas.

  19. A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen

    NARCIS (Netherlands)

    Oerlemans, J.; van Pelt, W. J. J.

    2015-01-01

    The climate sensitivity of Abrahamsenbreen, a 20 km long surge-type glacier in northern Spitsbergen, is studied with a simple glacier model. A scheme to describe the surges is included, which makes it possible to account for the effect of surges on the total mass budget of the glacier. A climate rec

  20. Spatial patterns of North Atlantic Oscillation influence on mass balance variability of European glaciers

    Directory of Open Access Journals (Sweden)

    B. Marzeion

    2012-06-01

    Full Text Available We present and validate a set of minimal models of glacier mass balance variability. The most skillful model is then applied to reconstruct 7735 individual time series of mass balance variability for all glaciers in the European Alps and Scandinavia. Subsequently, we investigate the influence of atmospheric variability associated with the North Atlantic Oscillation (NAO on the glaciers' mass balances.

    We find a spatial coherence in the glaciers' sensitivity to NAO forcing which is caused by regionally similar mechanisms relating the NAO forcing to the mass balance: in southwestern Scandinavia, winter precipitation causes a correlation of mass balances with the NAO. In northern Scandinavia, temperature anomalies outside the core winter season cause an anti-correlation between NAO and mass balances. In the western Alps, both temperature and winter precipitation anomalies lead to a weak anti-correlation of mass balances with the NAO, while in the eastern Alps, the influences of winter precipitation and temperature anomalies tend to cancel each other, and only on the southern side a slight anti-correlation of mass balances with the NAO prevails.

  1. A comparison of different methods of evaluating glacier response characteristics: application to glacier AX010, Nepal Himalaya

    Directory of Open Access Journals (Sweden)

    S. Adhikari

    2009-09-01

    Full Text Available Himalayan glaciers are considered to be amongst the most sensitive glaciers to climate change. However, the response behaviour of these glaciers is not well understood. Here we use several approaches to estimate characteristic timescales of glacier AX010, a small valley glacier in the Nepal Himalaya, as a measure of glacier sensitivity. Assuming that temperature solely defines the mass budget, glacier AX010 waits for about 8 yr (reaction time to exhibit its initial terminus response to changing climate. On the other hand, it takes between 29–56 yr (volume response time and 37–70 yr (length response time to adjust its volume and length following the changes in mass balance conditions, respectively. A numerical ice-flow model, the only method that yields both length and volume response time, confirms that a glacier takes longer to adjust its length than its volume.

  2. Early 21st-Century Mass loss of the North-Atlantic Glaciers and Ice Caps (Arne Richter Award for Outstanding Young Scientists Lecture)

    Science.gov (United States)

    Wouters, Bert; Ligtenberg, Stefan; Moholdt, Geir; Gardner, Alex S.; Noel, Brice; Kuipers Munneke, Peter; van den Broeke, Michiel; Bamber, Jonathan L.

    2016-04-01

    Historically, ice loss from mountain glaciers and ice caps has been one of the largest contributors to sea level rise over the last century. Of particular interest are the glaciers and ice caps in the North-Atlantic region of the Arctic. Despite the cold climate in this area, considerable melting and runoff occurs in summer. A small increase in temperature will have an immediate effect on these processes, so that a large change in the Arctic ice volume can be expected in response to the anticipated climate change in the coming century. Unfortunately, direct observations of glaciers are sparse and are biased toward glaciers systems in accessible, mostly maritime, climate conditions. Remote sensing is therefore essential to monitor the state of the the North-Atlantic glaciers and ice caps. In this presentation, we will discuss the progress that has been made in estimating the ice mass balance of these regions, with a particular focus on measurements made by ESA's Cryosat-2 radar altimeter mission (2010-present). Compared to earlier altimeter mission, Cryosat-2 provides unprecedented coverage of the cryosphere, with a resolution down to 1 km or better and sampling at monthly intervals. Combining the Cryosat-2 measurements with the laser altimetry data from ICESat (2003-2009) gives us a 12 yr time series of glacial mass loss in the North Atlantic. We find excellent agreement between the altimetry measurements and independent observations by the GRACE mission, which directly 'weighs' the ice caps, albeit at a much lower resolution. Mass loss in the region has increased from 120 Gigatonnes per year in 2003-2009 to roughly 140 Gt/yr in 2010-2014, with an important contribution from Greenland's peripheral glaciers and ice caps. Importantly, the mass loss is not stationary, but shows large regional interannual variability, with mass loss shifting between eastern and western regions from year to year. Comparison with regional climate models shows that these shifts can be

  3. Reconstruction of mass balance of Nevado Coropuna glaciers (Southern Peru) for Late Pleistocene, Little Ice Age and the present.

    Science.gov (United States)

    Ubeda, J.; Palacios, D.

    2009-04-01

    The Nevado Coropuna volcanic complex (15th 31'S-72 ° 39 ° W) is the quaternary stratovolcano northernmost of the central volcanic zone (CVZ) in the western flank of the Central Andes (Southern Peru). This consists in four adjacent volcanic buildings that are occupied over 5.100-5.700 masl by a system of glaciers covering an area of 47 Km2 in 2007 (Ubeda et al, 2008). The maximum expansion of glaciers during the Pleistocene affected an area of ~449 Km2, dropping to altitudes around 3.600-4800 m (Ubeda et al, 2007). In this work were mapped several hundreds of moraines which constitute a record of climate change since the last glacial maximum (LGM). Current glacier system is formed by dozen of glaciers descending slope down in all directions. Coropuna complex is an excellent laboratory for to investigate the control that climate change, tectonics and volcanism exert on the dynamics of glaciers, a scale of tens of years (by studying current glaciers) and also of tens of thousands of years (by analyzing the geomorphological evidence of its evolution in the past). Ubeda et al. (2008) analyzed the evolution of eighteen glaciers of Nevado Coropuna using indicators as surfaces and Equilibrium Line Altitudes (ELAs) of ice masses in 2007, 1986, 1955, Little the Ice Age (LIA) and Last Glacial Maximum (LGM). The glaciers were grouped into two sets: NE group (seven glaciers) and SE group (eleven glaciers). The work included statistical series of ELAs in each phase, estimates by Area x Altitud Balance Ratio (AABR) method, which was proposed by Osmaston (2005), in addition with estimates of timing (~17Cl36 Ka) and magnitude (~ 782-911 m) of ELA depression during LGM. The work included statistical series of ELAs in each phase, estimates by the method Area x Altitud Balance Ratio (AABR) proposed by Osmaston (2005), and in addition estimates of the timing (~17Cl36 Ka) and magnitude (~ 782-911 m) of ELA depression during LGM. The objective of this work is to estimate the current

  4. Assessing streamflow sensitivity to variations in glacier mass balance

    Science.gov (United States)

    O'Neel, Shad; Hood, Eran; Arendt, Anthony; Sass, Louis

    2014-01-01

    The mountains ringing the Gulf of Alaska (GOA) receive upwards of 4–8 m yr−1 of precipitation (Simpson et al.2005; Weingartner et al. 2005; O’Neel 2012), much of which runs off into productive coastal waters. The alpine landscape is heavily glacierized, and storage and turnover of water by glaciers substantially influences the regional surface water balance (Neal et al. 2010). In turn, the land-to-ocean flux of freshwater impacts the biogeochemistry, physical oceanography, freshwater and marine ecology of the downstream components of the GOA ecosystem (e.g., Royer et al. 2001; Hood and Scott 2008). In this way, the links between terrestrial and ocean ecosystems along the GOA have widespread impacts on regional socioeconomic issues including water and hydropower resources, fish populations, and sea level change (Dorava and Milner 2000; Royer and Grosch 2006; Cherry et al. 2010; Gardner et al. 2013). Moreover, predicting future changes in physical, chemical and biological processes in near-shore ecosystems along the GOA hinges, in part, on developing a robust understanding of water storage and transfer by glaciers through streams to the ocean.

  5. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier

    Directory of Open Access Journals (Sweden)

    T. Mölg

    2012-08-01

    Full Text Available Determinations of glacier-wide mass and energy balance are still scarce for the remote mountains of the Tibetan Plateau, where field measurements are challenging. Here we run and evaluate a physical, distributed mass balance model for Zhadang glacier (central Tibet, 30° N, based on in-situ measurements over 2009–2011 and an uncertainty estimate by Monte Carlo and ensemble strategies. The model application aims to provide the first quantification of how the Indian Summer Monsoon (ISM impacts an entire glacier over the various stages of the monsoon's annual cycle. We find a strong and systematic ISM footprint on the interannual scale. Early (late monsoon onset causes higher (lower accumulation, and reduces (increases the available energy for ablation primarily through changes in absorbed shortwave radiation. By contrast, only a weak footprint exists in the ISM cessation phase. Most striking though is the core monsoon season: local mass and energy balance variability is fully decoupled from the active/break cycle that defines large-scale atmospheric variability during the ISM. Our results demonstrate quantitatively that monsoon onset strongly affects the ablation season of glaciers in Tibet. However, we find no direct ISM impact on the glacier in the main monsoon season, which has not been acknowledged so far. This result also adds cryospheric evidence that regional modification of the large-scale monsoon flow prevails on the Tibetan Plateau in summer.

  6. The importance of glacier and forest change in hydrological climate-impact studies

    Directory of Open Access Journals (Sweden)

    N. Köplin

    2012-05-01

    Full Text Available Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenarios consist of ten regional climate models from the ENSEMBLES project; their respective temperature and precipitation deltas are used to run a hydrological model. The relative importance of each of the three types of scenarios (climate, glacier, forest is assessed through an analysis of variance (ANOVA. Altogether, 15 mountainous catchments in Switzerland are analysed, exhibiting different degrees of glaciation during the control period (0–51% and different degrees of forest cover increase under scenarios of change (12–55% of the catchment area. The results show that even an extreme change in forest cover is negligible with respect to changes in runoff, but it is crucial as soon as evaporation or soil moisture is concerned. For the latter two variables, the relative impact of forest change is proportional to the magnitude of its change. For changes that concern 35% of the catchment area or more, the effect of forest change on summer evapotranspiration is equally or even more important than the climate signal. For catchment with a glaciation of 10% or more in the control period, the glacier retreat significantly determines summer and annual runoff. The most important source of uncertainty in hydrological climate impact studies is the climate scenario, though, and it is highly recommended to apply an ensemble of climate scenarios in impact studies. The results presented here are valid for the climatic region they were tested for, i.e. a humid, mid

  7. Generation of the relationship between glacier area and volume for a tropical glacier in Bolivian Andes

    Science.gov (United States)

    Liu, T.; Kinouchi, T.; Hasegawa, A.; Tsuda, M.; Iwami, Y.; Asaoka, Y.; Mendoza, J.

    2015-12-01

    In Andes, retreat of tropical glaciers is rapid, thus water resources currently available from glacierized catchments would be changed in its volume and temporal variations due to climate change and glacier shrinkage. The relationship between glacier area and volume is difficult to define however which is important to monitor glaciers especially those are remote or inaccessible. Water resources in La Paz and El Alto in Bolivia, strongly depend on the runoff from glacierized headwater catchments in the Cordillera Real, Andes, which is therefore selected as our study region.To predict annual glacier mass balances, PWRI-Distributed Hydrological Model (PWRI-DHM) was applied to simulate runoff from the partially glacierized catchments in high mountains (i.e. Condoriri-Huayna West headwater catchment located in the Cordillera Real, Bolivian Andes). PWRI-DHM is based on tank model concept in a distributed and 4-tank configuration including surface, unsaturated, aquifer, and river course tanks. The model was calibrated and validated with observed meteorological and hydrological data from 2011 to 2014 by considering different phases of precipitation, various runoff components from glacierized and non-glacierized areas, and the retarding effect by glacial lakes and wetlands. The model is then applied with MRI-AGCM outputs from 1987 to 2003 considering the shrinkage of glacier outlines since 1980s derived from Landsat data. Annual glacier mass balance in each 100m-grid was reproduced, with which the glacier area-volume relationship was generated with reasonable initial volume setting. Out study established a method to define the relationship between glacier area and volume by remote sensing information and glacier mass balances simulated by distributed hydrological model. Our results demonstrated that the changing trend of local glacier had a consistency the previous observed glacier area-volume relationship in the Cordillera Real.

  8. 中国冰川系统对气候变化响应的敏感性分析%Sensitivity analysis of glacier systems to climate warming in China

    Institute of Scientific and Technical Information of China (English)

    王欣; 谢自楚; 李巧媛; 王淑红; 程磊

    2008-01-01

    Data of 44 glacier systems in China used in this paper were obtained from Chinese Glacier Inventories and the meteorological data were got from Meteorological Atlas of Plateau of west China. Based on the statistical analysis and functional model simulation results of the 44 glacier systems in China, the glacier systems were divided into extremely-sensitive glacier system, semi-sensitive glacier system, extremely-steady glacier system and semi-steady glacier system in terms of glacier system's level of water-energy exchange, rising gradient of the equilibrium line altitudes and retreating rate of area to climate warming, their median size and vertical span distribution, and their runoff characteristics to climate warming. Furthermore,the functional model of glacier system to climate warming was applied in this paper to predict the average variation trends of the 4 types of glacier systems, which indicate that different sensitivity types of glacier systems respond to the climate warming differently.

  9. Research advances on climate-induced slope instability in glacier and permafrost high-mountain environments

    OpenAIRE

    C. Huggel; Fischer, L.; Schneider, D.; Haeberli, W.

    2002-01-01

    High-mountain areas with glacier and permafrost occurrence are temperature sensitive environments. Climatic changes are, thus, likely to have an effect on slope stability. Several recent events have shown that rock and ice avalanches and related hazards can have severe consequences. For hazard analysis, the processes of slope failure and flow dynamics should therefore be better understood. In this article, recent advances in this field are presented, including high-res...

  10. Climate, glaciers and permafrost in the Swiss Alps 2050: scenarios, consequences and recommendations

    OpenAIRE

    Haeberli, W.; Hohmann, R.

    2008-01-01

    Climate scenarios for the time horizon of 2050 in the Swiss Alps as simulated by using high-resolution ensemble modeling indicate most likely changes in temperature /precipitation by + 2°C / + 10% in winter and + 3°C / - 20% in summer. Such a development would lead to the vanishing of about 75% of the existing glacier surface and deep warming of permafrost in mountain peaks. Corresponding impacts would mainly concern rather dramatic changes in landscape appearance, slope stability and the...

  11. Favorable climatic regime for maintaining the present-day geometry of the Gregoriev Glacier, Inner Tien Shan

    Directory of Open Access Journals (Sweden)

    K. Fujita

    2011-07-01

    Full Text Available We conducted 2 yr (2005–2007 of in situ meteorological and glaciological observations on the Gregoriev Glacier, a flat-top glacier within the Inner Tien Shan, Kyrgyzstan. Relative carrier-phase GPS surveys reveal a vertical lowering at the summit of the glacier. Based on snow density data and an energy-mass balance model, we estimate that the annual precipitation and summer mean temperature required to maintain the glacier in the current state are 289 mm and −3.8 °C at the glacier summit (4600 m a.s.l., respectively. The good agreement between dynamically derived precipitation and the long-term observed precipitation at a nearby station in the Tien Shan (296 mm at 3614 m a.s.l. for the period 1930–2002 suggests that the glacier has been in a near steady-state in terms of mass supply. The glacier mass-balance, reconstructed based on meteorological data from the Tien Shan station for the past 80 yr, explains the observed fluctuations in glacier extent, particularly the negative mass balance in the 1990s.

  12. An approach to derive regional snow lines and glacier mass change from MODIS imagery, western North America

    Directory of Open Access Journals (Sweden)

    J. M. Shea

    2013-04-01

    Full Text Available We describe a method to calculate regional snow line elevations and annual equilibrium line altitudes (ELAs from daily MODIS imagery (MOD02QKM on large glaciers and icefields in western North America. An automated cluster analysis of the cloud-masked visible and near-infrared bands at 250 m resolution is used to delineate glacier facies (snow and ice for ten glacierized regions between 2000–2011. For each region and season, the maximum observed value of the 20th percentile of snow-covered pixels (ZS(20 is used to define a regional ELA proxy (ELAest. Our results indicate significant increases in the regional ELA proxy at two continental sites (Peyto Glacier and Gulkana Glacier over the period of observation, though no statistically significant trends are identified at other sites. To evaluate the utility of regional ELA proxies derived from MOD02QKM imagery, we compare standard geodetic estimates of glacier mass change with estimates derived from historical mass balance gradients and observations of ZS(20 at three large icefields. Our approach yields estimates of mass change that more negative than traditional geodetic approaches, though MODIS-derived estimates are within the margins of error at all three sites. Both estimates of glacier mass change corroborate the continued mass loss of glaciers in western North America. Between 2000 and 2009, the geodetic change approach yields mean annual rates of surface elevation change for the Columbia, Lillooet, and Sittakanay icefields of −0.29 ± 0.05, −0.26 ± 0.05, and −0.63 ± 0.17 m a−1, respectively. This study provides a new technique for glacier facies detection at daily timescales, and contributes to the development of regional estimates of glacier mass change, both of which are critical for studies of glacier contributions to streamflow and global sea level rise.

  13. Re-analysis of Alaskan benchmark glacier mass-balance data using the index method

    Science.gov (United States)

    Van Beusekom, Ashely E.; O'Nell, Shad R.; March, Rod S.; Sass, Louis C.; Cox, Leif H.

    2010-01-01

    At Gulkana and Wolverine Glaciers, designated the Alaskan benchmark glaciers, we re-analyzed and re-computed the mass balance time series from 1966 to 2009 to accomplish our goal of making more robust time series. Each glacier's data record was analyzed with the same methods. For surface processes, we estimated missing information with an improved degree-day model. Degree-day models predict ablation from the sum of daily mean temperatures and an empirical degree-day factor. We modernized the traditional degree-day model and derived new degree-day factors in an effort to match the balance time series more closely. We estimated missing yearly-site data with a new balance gradient method. These efforts showed that an additional step needed to be taken at Wolverine Glacier to adjust for non-representative index sites. As with the previously calculated mass balances, the re-analyzed balances showed a continuing trend of mass loss. We noted that the time series, and thus our estimate of the cumulative mass loss over the period of record, was very sensitive to the data input, and suggest the need to add data-collection sites and modernize our weather stations.

  14. Sensitivity of glaciers and small ice caps to greenhouse warming

    International Nuclear Information System (INIS)

    Recent field programs on glaciers have supplied information that makes simulation of glacier mass balance with meteorological models meaningful. An estimate of world-wide glacier sensitivity based on a modeling study of 12 selected glaciers situated in widely differing climatic regimes shows that for a uniform 1 K warming the area-weighted glacier mass balance will decrease by 0.40 meter per year. This corresponds to a sea-level rise of 0.58 millimeter per year, a value significantly less than earlier estimates

  15. Glacier Retreat in the Southern Peruvian Andes: Climate Change, Environmental Impacts, Human Perception and Social Response

    Science.gov (United States)

    Orlove, B.

    2007-12-01

    This paper presents results from recent environmental and anthropological research near glacierized areas in the department of Cusco, Peru, home to the well-known Quelccaya Ice Cap and to the peak of Ausangate (6384 m). Glaciers in the region are in negative mass balance, losing volume and area, with upslope movement of the glacier fronts. Somewhat paradoxically, flows in many streams close to the glaciers are reduced, particularly in the dry season, due to a shift in the seasonal distribution of melting, to increased evaporation and to increased percolation into newly-exposed sands and gravels. Associated with this reduction in flow is a desiccation of some anthropogenic and natural wetlands, reducing the availability of dry season forage to wild (vicuna) and domesticated (alpaca, llama) ruminants. Interviews and ethnographic observations with local populations of Quechua-speaking herders at elevations of 4500-5200 meters provide detailed comments on these changes. They have an extensive vocabulary of terms for glacial features associated with retreat. They link this treat with environmental factors (higher temperatures, greater winds that deposit dust on lower portions of glaciers) and with religious factors (divine punishment for human wrong-doing, failure of humans to respect mountain spirits). They describe a variety of economic and extra-economic impacts of this retreat on different spatial, social and temporal scales. Though they face other issues as well (threats of pollution from new mining projects, inadequacy of government services), glacier retreat is their principal concern. Many herders express extreme distress over this unprecedented threat to their livelihoods and communities, though a few propose responses - out-migration, the formation of an association of neighboring communities, development of irrigation works - that could serve as adaptations.

  16. Listening to Glaciers: Passive hydroacoustics near marine-terminating glaciers

    Science.gov (United States)

    Pettit, E.C.; Nystuen, J.A.; O'Neel, Shad

    2012-01-01

    The catastrophic breakup of the Larsen B Ice Shelf in the Weddell Sea in 2002 paints a vivid portrait of the effects of glacier-climate interactions. This event, along with other unexpected episodes of rapid mass loss from marine-terminating glaciers (i.e., tidewater glaciers, outlet glaciers, ice streams, ice shelves) sparked intensified study of the boundaries where marine-terminating glaciers interact with the ocean. These dynamic and dangerous boundaries require creative methods of observation and measurement. Toward this effort, we take advantage of the exceptional sound-propagating properties of seawater to record and interpret sounds generated at these glacial ice-ocean boundaries from distances safe for instrument deployment and operation.

  17. Long term mass balance of the Helheim and Kangerdlugssuaq glaciers in

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Fitzner, Antje; Kjær, Kurt; Korsgaard, Niels; Aschwander, Andy; Bjørn, Anders; Bevan, Suzanne; Kjeldsen, Kristian; Bueler, Edward; Luckman, Adrian; van den Broeke, Michiel

    2013-01-01

    projection of future sea level rise, a long-term data record that reveals the mass balance between episodic events is required. Here, we extend the observational record of marginal thinning of Helheim glacier (HG) and Kangerdlugssuaq glacier (KG) from 7 to 30 years. Our measurements reveal that, although the...... frontal portion of HG thinned by more than 100 m during 2003–2006, it thickened by more than 50 m during 1981–1997. During the same periods, KG was stable until 1998 and experienced major thinning only after 2003. Analyses of their sensitivity to sea surface temperature (SST) anomalies and variations in...... air temperature suggest that both outlet glaciers respond immediately to small fluctuations in both the SST and air temperature. Furthermore, we compare our observations of ice flow speed and elevation changes with predictions based on the The Parallel Ice Sheet Model (PISM) software....

  18. Climate change effects on Glacier recession in Himalayas using Multitemporal SAR data and Automatic Weather Station observations

    Science.gov (United States)

    Kumar, V.; Singh, S. K.; Venkataraman, G.

    2009-04-01

    The Himalaya is the highest but the youngest mountain belt (20 to 60 million years B.P.) of the earth running in arc shape for about 2500 km. It has more than 90 peaks above 6000 m and contains about 50% of all glaciers outside of the polar environments (Bahadur, 1993). All glaciers in this region are in general recession since last 150 years (Paul et al.,1979). Gangotri, Siachen, Bara Shigri and Patsio are major glaciers in this region which are showing retreat with different rates and their respective tributary glaciers are completely disconnected from main body of glaciers. Spaceborne synthetic aperture radar data provide an important tool for monitoring the fluctuation of the glaciers. In this paper attempt has been made for quantifying the glacier retreat using multitemporal synthetic aperture radar (SAR) data. SAR intensity and phase information will be exploited separately under SAR intensity tracking and interferometric SAR (InSAR) coherence tracking (Strozzi et al., 2002) respectively. Glacier retreat study have been done using time series coregistered multi temporal SAR images. Simultaneously InSAR coherence thresholding is applied for tracking the snout of Gangotri glacier. It is observed that glacier is retreating at the rate of 21 m/a. Availability of high resolution spotlight mode TerraSAR-X SAR data will supplement the ENVISAT ASAR and ERS-1/2 based observations. The observatory in the proximity of Gangotri glacier has been made functional at Bhojbasa and all weather parameters viz. Snow fall, temperature, pressure, air vector, column water vapor and humidity are recorded twice a day as per WMO standards manually and automatically. Three Automatic Weather Stations (AWS) have been established in the glacier area at Bhojbasa , Kalindipass and Nandaban. Since Himalayan environment is presently under great stress of decay and degeneration, AWS data will be analyzed in the context of climate change effects on fluctuation of glaciers. References 1.Jagdish

  19. Mass-balance reconstruction for Glacier No. 354, Tien Shan, from 2003 to 2014

    OpenAIRE

    2016-01-01

    This study presents a reconstruction of the seasonal mass balance of Glacier No. 354, located in the Akshiirak range, Kyrgyzstan, from 2003 to 2014. We use a distributed accumulation and temperature-index melt model driven by daily air temperature and precipitation from a nearby meteorological station. The model is calibrated with in situ measurements of the annual mass balance collected from 2011 to 2014. The snow-cover depletion pattern observed using satellite imagery provides additional i...

  20. Global application of a surface mass balance model using gridded climate data

    OpenAIRE

    R. H. Giesen; Oerlemans, J.

    2012-01-01

    Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a simple surface mass balance model that only requires air temperature and precipitation as input data, to glaciers in different regions. In contrast to other models used in global applications...

  1. The Glaciers of HARMONIE

    Science.gov (United States)

    Mottram, Ruth; Gleeson, Emily; Pagh Nielsen, Kristian

    2016-04-01

    Developed by the large ALADIN-HIRLAM consortium, the numerical weather prediction (NWP) model system HARMONIE is run by a large number of national weather services and research institutions in Europe, the Middle East and North Africa for weather forecasting. It is now being adopted for climate research purposes as a limited area model in a form known as HCLIM. It is currently run for a number of domains, mostly in Europe but also including Greenland, at a very high resolution (~2.5 km). HARMONIE is a convection permitting non-hydrostatic model that includes the multi-purpose SURFEX surface model. By improving the characterization of glacier surfaces within SURFEX we show that weather forecast errors over both the Greenland ice sheet and over Icelandic glaciers can be significantly reduced. The improvements also facilitate increasingly accurate ice melt and runoff computations, which are important both for ice surface mass balance estimations and hydropower forecasting. These improvements will also benefit the operational HARMONIE domains that cover the Svalbard archipelago, the Alps and the Scandinavian mountain glaciers. Future uses of HCLIM for these regions, where accurately characterizing glacial terrain will be crucial for climate and glaciological applications, are also expected to benefit from this improvement. Here, we report the first results with a new glacier surface scheme in the HARMONIE model, validated with observations from the PROMICE network of automatic weather stations in Greenland. The scheme upgrades the existing surface energy balance over glaciers by including a new albedo parameterization for bare glacier ice and appropriate coefficients for calculating the turbulent fluxes. In addition the snow scheme from the SURFEX land surface module has been upgraded to allow the retention and refreezing of meltwater in the snowpack. These changes allow us to estimate surface mass balance over glaciers at a range of model resolutions that can take full

  2. Batura-Glacier - mass balance and 'Karakoram Anomaly' (Upper Hunza, Karakoram)

    Science.gov (United States)

    Boerst, U.; Winiger, M.; Bookhagen, B.

    2013-12-01

    In line with an almost worldwide trend the (non-surging) glaciers in the Hindukush-Karakoram-Himalaya Range manifest a remarkable down melting of their tongues and retreating of their terminuses in the last few decades. A series of recent studies prove an overall negative mass balance for most of the Himalayan glaciers. Contrary to these statements various publications register stable or positive mass balances for a number of glaciers located in the NW-Karakoram Mountains - postulating the so-called 'Karakoram-Anomaly'. Unlike the many investigations in the Himalaya, the Karakoram records very few detailed local investigations emphasizing the spatial and temporal development of glaciers. This presentation focuses on the Batura Glacier in NW-Karakorum in Gilgit-Baltistan (Pakistan). With a west-to-east extension of ~ 57 km and an elevation range of 5.3 km (2.500 - 7.800 masl), the Batura Glacier belongs to the worldwide largest glaciers in the mid and low latitudes. Detailed mapping and further ground-based investigations have been carried out in the 1920ies, 1953/59, 1974/5 and in the past few years by different research teams. In order to determine the glacier's mass balance for the last 50 years we relied on Digital Elevation Models (DEMs): digitized maps from 1959 and 1974 are compared to DEMs derived through stereogrammetry from ASTER-scenes for 2001, 2006, 2008, 2010 and 2011. The ASTER-DEMs were post-processed with various correction methods and techniques to insure the relative DEM comparability and include corrections for aspect, altitude, and tilt. Next, we calculated surface differences from the ice and snow-free areas with respect to the SRTM C-Band DEM. Our remote sensing techniques are supplemented by differential GPS measurements and ice-surface profiles from 2013 as well as by multi-temporal photography matching. Preliminary results indicate a significant down melting of the glacier tongue from 1959 to the present day and acceleration during the past

  3. Deriving historical equilibrium-line altitudes from a glacier length record by linear inverse modelling

    NARCIS (Netherlands)

    Klok, E.J.; Oerlemans, J.

    2003-01-01

    Glaciers have fluctuated in historic times and the length fluctuations of many glaciers are known. From these glacier length records, a climate reconstruction described in terms of a reconstruction of the equilibrium-line altitude (ELA) or the mass-balance can be extracted. In order to derive a clim

  4. Study on the glacier variation and its runoff responses in the arid region of Northwest China

    Institute of Scientific and Technical Information of China (English)

    刘潮海; 康尔泗; 刘时银; 陈建明; 刘宗香

    1999-01-01

    The glaciers in the arid region of Northwest China are viewed as an independent system, and glacier variation and mass balance fluctuation since the Little Ice Age and in the recent decades are estimated. Based on the estimation, the threshold time of glacier runoff against the backgrounds of the current and future varying climate conditions is simulated.

  5. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem.

    Science.gov (United States)

    Sahade, Ricardo; Lagger, Cristian; Torre, Luciana; Momo, Fernando; Monien, Patrick; Schloss, Irene; Barnes, David K A; Servetto, Natalia; Tarantelli, Soledad; Tatián, Marcos; Zamboni, Nadia; Abele, Doris

    2015-11-01

    The Antarctic Peninsula (AP) is one of the three places on Earth that registered the most intense warming in the last 50 years, almost five times the global mean. This warming has strongly affected the cryosphere, causing the largest ice-shelf collapses ever observed and the retreat of 87% of glaciers. Ecosystem responses, although increasingly predicted, have been mainly reported for pelagic systems. However, and despite most Antarctic species being benthic, responses in the Antarctic benthos have been detected in only a few species, and major effects at assemblage level are unknown. This is probably due to the scarcity of baselines against which to assess change. We performed repeat surveys of coastal benthos in 1994, 1998, and 2010, analyzing community structure and environmental variables at King George Island, Antarctica. We report a marked shift in an Antarctic benthic community that can be linked to ongoing climate change. However, rather than temperature as the primary factor, we highlight the resulting increased sediment runoff, triggered by glacier retreat, as the potential causal factor. The sudden shift from a "filter feeders-ascidian domination" to a "mixed assemblage" suggests that thresholds (for example, of tolerable sedimentation) and alternative equilibrium states, depending on the reversibility of the changes, could be possible traits of this ecosystem. Sedimentation processes will be increasing under the current scenario of glacier retreat, and attention needs to be paid to its effects along the AP. PMID:26702429

  6. A review of remote sensing methods for glacier mass balance determination

    Science.gov (United States)

    Bamber, Jonathan L.; Rivera, Andres

    2007-10-01

    Airborne and satellite remote sensing is the only practical approach for deriving a wide area, regional assessment of glacier mass balance. A number of remote sensing approaches are possible for inferring the mass balance from some sort of proxy estimate. Here, we review the key methods relevant, in particular to Andean glaciers, discussing their strengths and weaknesses, and data sets that could be more fully exploited. We also consider future satellite missions that will provide advances in our observational capabilities. The methods discussed include observation of elevation changes, estimation of ice flux, repeat measurement of changes in spatial extent, snowline elevation and accumulation-ablation area ratio estimation. The methods are illustrated utilising a comprehensive review of results obtained from a number of studies of South American glaciers, focusing specifically on the Patagonian Icefields. In particular, we present some new results from Glaciar Chico, Southern Patagonian Icefield, Chile, where a variety of different satellite and in-situ data have been combined to estimate mass balance using a geodetic or elevation change approach over about a 25 yr period.

  7. Brief Communication: Contending estimates of early 21st century glacier mass balance over the Pamir-Karakoram-Himalaya

    Directory of Open Access Journals (Sweden)

    A. Kääb

    2014-11-01

    Full Text Available We present glacier thickness changes over the entire Pamir-Karakoram-Himalaya arc based on ICESat satellite altimetry data for 2003–2008. The strongest thinning (−1 is observed for the East Nyainqêntanglha Shan. Conversely, glaciers of the West Kunlun Shan are slightly gaining volume, and Pamir and Karakoram seem to be on the western edge of an anomaly rather than its centre. For the Ganges, Indus and Brahmaputra basins, the glacier mass change reaches −22 ± 3 Gt yr−1, about 10% of the current glacier contribution to sea-level rise. For selected catchments over the study area we estimate glacier imbalance contributions to river runoff from a few percent to far over 10%. We highlight the importance of C-band penetration for studies based on the SRTM elevation model. To the very east and west of our study area, this penetration seems to be of larger magnitude and variability than previously assumed.

  8. Future glacier runoff at the global scale

    Science.gov (United States)

    Huss, Matthias; Hock, Regine

    2016-04-01

    Water resources in mountain areas worldwide importantly depend on the runoff contribution by glaciers. Glacial water storage acts as an equilibrating element in the global hydrological cycle on various temporal scales. With ongoing and future glacier retreat a growing concern regarding water supply security in glacier-fed basins arises. However, glacier runoff projections at the regional or global scale are still rare and better models are urgently needed for planning and adaptation measures to cope with a changing seasonal distribution of water yields. Moreover, it is still an open debate in which region "peak water" - the maximum contribution of melting glaciers to runoff - has already been reached, i.e. whether increasing or declining annual runoff volumes must be expected. Here, we present results of a novel global glacier model for calculating the 21st century response of surface mass balance, three-dimensional glacier geometry and monthly water discharge for each individual glacier around the globe. The current surface geometry and thickness distribution for each of the world's roughly 200'000 glaciers is extracted from the Randolph Glacier Inventory and terrain models. Our simulations are driven with 14 Global Circulation Models from the CMIP5 project using the RCP4.5, RCP8.5 and RCP2.6 scenarios. We focus on the timing of peak water from glacierized catchments in all climatic regions of the earth and the corresponding importance of changes in the runoff regime on hydrological stress. The maximum rate of water release from glacial storage is subject to a high spatio-temporal variability depending on glacier characteristics and the transient response to climatic change. Furthermore, we discuss the significance of projected variations in glacier runoff in relation to the hydrology of the world's large-scale drainage basins and population distribution, and highlight 'hot spot' regions where the wastage of current ice volume is particularly relevant.

  9. Application of terrestrial photogrammetry for the mass balance calculation on Montasio Occidentale Glacier (Julian Alps, Italy)

    Science.gov (United States)

    Piermattei, Livia; Carturan, Luca; Calligaro, Simone; Blasone, Giacomo; Guarnieri, Alberto; Tarolli, Paolo; Dalla Fontana, Giancarlo; Vettore, Antonio

    2014-05-01

    Digital elevation models (DEMs) of glaciated terrain are commonly used to measure changes in geometry and hence infer the mass balance of glaciers. Different tools and methods exist to obtain information about the 3D geometry of terrain. Recent improvements on the quality and performance of digital cameras for close-range photogrammetry, and the development of automatic digital photogrammetric processing makes the 'structure from motion' photogrammetric technique (SfM) competitive for high quality 3D models production, compared to efficient but also expensive and logistically-demanding survey technologies such as airborn and terrestrial laser scanner (TLS). The purpose of this work is to test the SfM approach, using a consumer-grade SLR camera and the low-cost computer vision-based software package Agisoft Photoscan (Agisoft LLC), to monitor the mass balance of Montasio Occidentale glacier, a 0.07km2, low-altitude, debris-covered glacier located in the Eastern Italian Alps. The quality of the 3D models produced by the SfM process has been assessed by comparison with digital terrain models obtained through TLS surveys carried out at the same dates. TLS technique has indeed proved to be very effective in determining the volume change of this glacier in the last years. Our results shows that the photogrammetric approach can produce point cloud densities comparable to those derived from TLS measurements. Furthermore, the horizontal and vertical accuracies are also of the same order of magnitude as for TLS (centimetric to decimetric). The effect of different landscape characteristics (e.g. distance from the camera or terrain gradient) and of different substrata (rock, debris, ice, snow and firn) was also evaluated in terms of SfM reconstruction's accuracy vs. TLS. Given the good results obtained on the Montasio Occidentale glacier, it can be concluded that the terrestrial photogrammetry, with the advantageous features of portability, ease of use and above all low costs

  10. Contrasting responses of Central Asian rock glaciers to global warming.

    Science.gov (United States)

    Sorg, Annina; Kääb, Andreas; Roesch, Andrea; Bigler, Christof; Stoffel, Markus

    2015-01-01

    While the responses of Tien Shan glaciers--and glaciers elsewhere--to climatic changes are becoming increasingly well understood, this is less the case for permafrost in general and for rock glaciers in particular. We use a novel approach to describe the climate sensitivity of rock glaciers and to reconstruct periods of high and low rock glacier activity in the Tien Shan since 1895. Using more than 1500 growth anomalies from 280 trees growing on rock glacier bodies, repeat aerial photography from Soviet archives and high-resolution satellite imagery, we present here the world's longest record of rock glacier movements. We also demonstrate that the rock glaciers exhibit synchronous periods of activity at decadal timescales. Despite the complex energy-balance processes on rock glaciers, periods of enhanced activity coincide with warm summers, and the annual mass balance of Tuyuksu glacier fluctuates asynchronously with rock glacier activity. At multi-decadal timescales, however, the investigated rock glaciers exhibit site-specific trends reflecting different stages of inactivation, seemingly in response to the strong increase in air temperature since the 1970s. PMID:25657095

  11. The current disequilibrium of North Cascade glaciers

    Science.gov (United States)

    Pelto, Mauri S.

    2006-03-01

    Three lines of evidence indicate that North Cascade (Washington, USA) glaciers are currently in a state of disequilibrium. First, annual balance measured on nine glaciers yields a mean cumulative balance for the 1984-2004 period of -8.58 m water equivalent (w.e.), a net loss of ice thickness exceeding 9.5 m. This is a significant loss for glaciers that average 30-50 m in thickness, representing 18-32% of their entire volume.Second, longitudinal profiles completed in 1984 and 2002 on 12 North Cascade glaciers confirm this volume change indicating a loss of -5.7 to -6.3 m in thickness (5.0-5.6 m w.e.) between 1984 and 2002, agreeing well with the measured cumulative balance of -5.52 m w.e. for the same period. The change in thickness on several glaciers has been equally substantial in the accumulation zone and the ablation zone, indicating that there is no point to which the glacier can retreat to achieve equilibrium. Substantial thinning along the entire length of a glacier is the key indicator that a glacier is in disequilibrium.Third, North Cascade glacier retreat is rapid and ubiquitous. All 47 glaciers monitored are currently undergoing significant retreat or, in the case of four, have disappeared. Two of the glaciers where mass balance observations were begun, Spider Glacier and Lewis Glacier, have disappeared. The retreat since 1984 of eight Mount Baker glaciers that were all advancing in 1975 has averaged 297 m. These observations indicate broad regional continuity in glacial response to climate.

  12. Climatic control on extreme sediment transfer from Dokriani Glacier during monsoon, Garhwal Himalaya (India)

    Science.gov (United States)

    Kumar, Amit; Verma, Akshaya; Dobhal, Dwarika Prasad; Mehta, Manish; Kesarwani, Kapil

    2014-02-01

    In the Himalayas, most of the glaciers are covered by thick debris, especially in the ablation zone. Supraglacial debris cover might play an important role for sediment budget of the glaciated area or for the ablation of ice masses mantled in debris. During summer season, proglacial meltwater carries considerable amount of suspended sediment. The deglaciated area provides a ready source of sediment during Indian Summer Monsoon (ISM). The heavy sediment load from the glaciers affects the hydropower generation, irrigation and drinking water supply. Therefore, to understand the sediment delivery from glaciated basins, characteristics and variation of the suspended sediment concentrations in the proglacial meltwater stream, Dokriani Glacier, have been monitored during the ablation season (May-September). Suspended sediment samples were collected near the snout of Dokriani Glacier, Garhwal Himalaya, in 2010 and 2011. Results show that mean monthly suspended sediment concentrations (SSC) were 1499, 2303, 3845 and 1649 mg/l for the months June, July, August, and September, respectively, indicating highest concentration in August followed by July. Over the period of recording, daily mean suspended concentration in the melt stream varied from 13-9798.2 mg/l, which is very high, caused due to a flash flood event during the monitoring period. The mean daily suspended sediment concentration was computed to be 2196 mg/l. The suspended sediment concentration begins to increase with discharge from May and reduces in September. Present study provides TRMM (Tropical Rainfall Measuring Mission) derived and field based hydro-meteorological insight about severe rainstorms during the years 2010 and 2011 in the study area, which transported large amounts of sediment.

  13. Climatic control on extreme sediment transfer from Dokriani Glacier during monsoon, Garhwal Himalaya (India)

    Indian Academy of Sciences (India)

    Amit Kumar; Akshaya Verma; Dwarika Prasad Dobhal; Manish Mehta; Kapil Kesarwani

    2014-02-01

    In the Himalayas, most of the glaciers are covered by thick debris, especially in the ablation zone. Supraglacial debris cover might play an important role for sediment budget of the glaciated area or for the ablation of ice masses mantled in debris. During summer season, proglacial meltwater carries considerable amount of suspended sediment. The deglaciated area provides a ready source of sediment during Indian Summer Monsoon (ISM). The heavy sediment load from the glaciers affects the hydropower generation, irrigation and drinking water supply. Therefore, to understand the sediment delivery from glaciated basins, characteristics and variation of the suspended sediment concentrations in the proglacial meltwater stream, Dokriani Glacier, have been monitored during the ablation season (May– September). Suspended sediment samples were collected near the snout of Dokriani Glacier, Garhwal Himalaya, in 2010 and 2011. Results show that mean monthly suspended sediment concentrations (SSC) were 1499, 2303, 3845 and 1649 mg/l for the months June, July, August, and September, respectively, indicating highest concentration in August followed by July. Over the period of recording, daily mean suspended concentration in the melt stream varied from 13–9798.2 mg/l, which is very high, caused due to a flash flood event during the monitoring period. The mean daily suspended sediment concentration was computed to be 2196 mg/l. The suspended sediment concentration begins to increase with discharge from May and reduces in September. Present study provides TRMM (Tropical Rainfall Measuring Mission) derived and field based hydro-meteorological insight about severe rainstorms during the years 2010 and 2011 in the study area, which transported large amounts of sediment.

  14. Integrated analysis of environmental drivers, spatiotemporal variability and rates of contemporary chemical and mechanical fluvial denudation in selected glacierized and non-glacierized cold climate catchment systems

    Science.gov (United States)

    Beylich, Achim A.

    2016-04-01

    There is, by today, an impressive number of quantitative process geomorphic studies presenting contemporary chemical or mechanical fluvial denudation rates from a wide range of cold climate catchment geo-systems worldwide. However, the number of quantitative studies that actually considers and includes all three main components of fluvial transport, i.e. solute transport, suspended sediment transport and bedload transport, is actually rather small. Most of the existing studies include one or, at best, two of these main components. At the same time, it is generally accepted that a knowledge of the quantitative shares of fluvial solute, suspended sediment and bedload transport of the total fluvial transport, together with detailed information on sediment sources and sediment storage, is needed for the reliable quantitative construction and understanding of present-day sedimentary budgets. In this contribution, results from longer-term process geomorphic work conducted in selected glacierized and non-glacierized high-latitude and high-altitude cold climate catchment systems in Norway, Iceland, Sweden and Finland are compared. The size of the six studied catchment geo-systems ranges from 7.0 km2 to 79.5 km2. Contemporary chemical and mechanical fluvial denudation rates measured in the defined catchment systems with different cold climates, varying degrees of glacier coverage, different lithologies and general sediment availabilities, different catchment morphometries, and varying degrees of vegetation cover are presented. By direct comparisons between the six different catchments environmental controls of the computed annual denudation rates are detected and the spatial variability of the contemporary chemical and mechanical fluvial denudation rates found across the different cold climate catchment systems is explained. Annual fluvial denudation rates generally increase with increasing topographic relief, increasing mean slope angles, increasing annual precipitation

  15. Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes

    Directory of Open Access Journals (Sweden)

    P. Ginot

    2006-01-01

    Full Text Available A 36 m long ice core down to bedrock from the Cerro Tapado glacier (5536 m a.s.l, 30°08' S, 69°55' W was analyzed to reconstruct past climatic conditions for Northern Chile. Because of the marked seasonality in the precipitation (short wet winter and extended dry summer periods in this region, major snow ablation and related post-depositional processes occur on the glacier surface during summer periods. They include predominantly sublimation and dry deposition. Assuming that, like measured during the field campaign, the enrichment of chloride was always related to sublimation, the chemical record along the ice core may be applied to reconstruct the history of such secondary processes linked to the past climatic conditions over northern Chile. For the time period 1962–1999, a mean annual net accumulation of 316 mm water equivalent (weq and 327 mm weq loss by sublimation was deduced by this method. This corresponds to an initial total annual accumulation of 539 mm weq. The annual variability of the accumulation and sublimation is related with the Southern Oscillation Index (SOI: higher net-accumulation during El-Niño years and more sublimation during La Niña years. The deepest part of the ice record shows a time discontinuity; with an ice body deposited under different climatic conditions: 290 mm higher precipitation but with reduced seasonal distribution (+470 mm in winter and –180 mm in summer and –3°C lower mean annual temperature. Unfortunately, its age is unknown. The comparison with regional proxy data however let us conclude that the glacier buildup did most likely occur after the dry mid-Holocene.

  16. On the impact of using downscaled reanalysis data instead of direct measurements for modeling the mass balance of a tropical glacier (Cordillera Blanca, Peru)

    Science.gov (United States)

    Galos, Stephan; Hofer, Marlis; Marzeion, Ben; Mölg, Thomas; Großhauser, Martin

    2013-04-01

    Due to their setting, tropical glaciers are sensitive indicators of mid-tropospheric meteorological variability and climate change. Furthermore these glaciers are of particular interest because they respond faster to climatic changes than glaciers located in mid- or high-latitudes. As long-term direct meteorological measurements in such remote environments are scarce, reanalysis data (e.g. ERA-Interim) provide a highly valuable source of information. Reanalysis datasets (i) enable a temporal extension of data records gained by direct measurements and (ii) provide information from regions where direct measurements are not available. In order to properly derive the physical exchange processes between glaciers and atmosphere from reanalysis data, downscaling procedures are required. In the present study we investigate if downscaled atmospheric variables (air temperature and relative humidity) from a reanalysis dataset can be used as input for a physically based, high resolution energy and mass balance model. We apply a well validated empirical-statistical downscaling model, fed with ERA-Interim data, to an automated weather station (AWS) on the surface of Glaciar Artesonraju (8.96° S | 77.63° W). The downscaled data is then used to replace measured air temperature and relative humidity in the input for the energy and mass balance model, which was calibrated using ablation data from stakes and a sonic ranger. In order to test the sensitivity of the modeled mass balance to the downscaled data, the results are compared to a reference model run driven solely with AWS data as model input. We finally discuss the results and present future perspectives for further developing this method.

  17. Modeling debris-covered glaciers: extension due to steady debris input

    OpenAIRE

    L. S. Anderson; Anderson, R. S.

    2015-01-01

    Debris-covered glaciers are common in rapidly-eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, mass balance gradients can be reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial advection. We ran 120 simulations in which a steady state debris-fr...

  18. Numerical modeling of Glacier d'Argentiere and its historic front variations

    OpenAIRE

    Huybrechts, Philippe; Nooze, P. de; Decleir, H.

    1989-01-01

    A numerical glacier model has been developed for Glacier d'Argentiere (France) in order to study its relation with climate and investigate possible causes forthe observed variations in the terminus record since the beginning of the Little Ice Age. At first results are presented from a basic sensitivity investigation,with plots of steady state glacier length versus perturbations in mass balance and glacier reaction with respect to sinusoidal net balance oscillations. An attemptis then made to ...

  19. Glacier shrinkage and climatic change in the Russian Altai from the mid-20th century: An assessment using remote sensing and PRECIS regional climate model

    Science.gov (United States)

    Shahgedanova, Maria; Nosenko, Gennady; Khromova, Tatyana; Muraveyev, Anton

    2010-08-01

    This paper examines changes in the surface area of glaciers in the North and South Chuya Ridges, Altai Mountains in 1952-2004 and their links with regional climatic variations. The glacier surface areas for 2004 were derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Data from the World Glacier Inventory (WGI) dating to 1952 and aerial photographs from 1952 were used to estimate the changes. 256 glaciers with a combined area of 253 ± 5.1 km2 have been identified in the region in 2004. Estimation of changes in extent of 126 glaciers with the individual areas not less than 0.5 km2 in 1952 revealed a 19.7 ± 5.8% reduction. The observed glacier retreat is primarily driven by an increase in summer temperatures since the 1980s when air temperatures were increasing at a rate of 0.10-0.13°C a-1 at the glacier tongue elevation. The regional climate projections for A2 and B2 CO2 emission scenarios developed using PRECIS regional climate model indicate that summer temperatures will increase in the Altai in 2071-2100 by 6-7°C and 3-5°C respectively in comparison with 1961-1990 while annual precipitation will increase by 15% and 5%. The length of the ablation season will extend from June-August to the late April-early October. The projected increases in precipitation will not compensate for the projected warming and glaciers will continue to retreat in the 21st century under both B2 and A2 scenarios.

  20. Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region

    OpenAIRE

    Wiltshire, A.J.

    2014-01-01

    The Hindu Kush, Karakoram, and Himalaya (HKH) region has a negative average glacial mass balance for the present day despite anomalous possible gains in the Karakoram. However, changes in climate over the 21st century may influence the mass balance across the HKH. This study uses regional climate modelling to analyse the implications of unmitigated climate change on precipitation, snowfall, air temperature and accumulated positive degree days for the Hindu Kush (HK), Karakor...

  1. Climate change implications for the glaciers of the Hindu-Kush, Karakoram and Himalayan region

    OpenAIRE

    Wiltshire, A.J.

    2013-01-01

    The Hindu-Kush, Karakoram Himalaya (HKKH) region has a negative average glacial mass balance despite anomalous possible gains in the Karakoram. However, changes in climate may influence the mass balance across the HKKH. We use high resolution climate modelling to analyse the implications of unmitigated climate change on precipitation, snowfall, air temperature and accumulated degree days for the Hindu Kush, Karakoram, Jammu-Kashmir, Himachal Pradesh and West Nepal regions, and East Nep...

  2. Repeat Photography of Alaskan Glaciers and Landscapes as Both Art and as a Means of Communicating Climat Change

    Science.gov (United States)

    Molnia, B. F.

    2013-12-01

    For nearly 15 years, I have used repeat photography of Alaskan glaciers and landscapes to communicate to fellow scientists, policymakers, the media, and society that Alaskan glaciers and landscapes have been experiencing significant change in response to post-Little Ice Age climate change. I began this pursuit after being contacted by a U.S. Department of the Interior senior official who requested unequivocal and unambiguous documentation that climate change was real and underway. After considering several options as to how best respond to this challenge, I decided that if a picture is worth a thousand words, then a pair of photographs, both with the same field of view, spanning a century or more, and showing dramatic differences, would speak volumes to documenting that dynamic climate change is occurring over a very broad region of Alaska. To me, understating the obvious with photographic pairs was the best mechanism to present irrefutable, unambiguous, nonjudgmental, as well as unequivocal visual documentation that climate change was both underway and real. To date, more than 150 pairs that meet these criteria have been produced. What has surprised me most is that the many of the photographs contained in the pairs present beautiful images of stark, remote landscapes that convey the majestic nature of this dynamic region with its unique topography and landscapes. Typically, over periods of just several decades, the photographed landscapes change from black and white to blue and green. White ice becomes blue water and dark rock becomes lush vegetation. Repeat photography is a technique in which a historical photograph and a modern photograph, both having the same field of view, are compared and contrasted to quantitatively and qualitatively determine their similarities and differences. I have used this technique from both ground-based photo stations and airborne platforms at Alaskan locations in Kenai Fjords National Park, Glacier Bay National Park and Preserve

  3. Global application of a surface mass balance model using gridded climate data

    Directory of Open Access Journals (Sweden)

    R. H. Giesen

    2012-04-01

    Full Text Available Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a simple surface mass balance model that only requires air temperature and precipitation as input data, to glaciers in different regions. In contrast to other models used in global applications, this model separately calculates the contributions of net solar radiation and the temperature-dependent fluxes to the energy balance. We derive a relation for these temperature-dependent fluxes using automatic weather station (AWS measurements from glaciers in different climates. With local, hourly input data, the model is well able to simulate the observed seasonal variations in the surface energy and mass balance at the AWS sites. Replacing the hourly local data by monthly gridded climate data removes summer snowfall and winter melt events and hence influences the modelled mass balance most on locations with a small seasonal temperature cycle. Representative values for the multiplication factor and vertical gradient of precipitation are determined by fitting modelled winter mass balance profiles to observations on 80 glaciers in different regions. For 72 of the 80 glaciers, the precipitation provided by the climate data set has to be multiplied with a factor above unity; the median factor is 2.55. The vertical precipitation gradient ranges from negative to positive values, with more positive values for maritime glaciers and a median value of 1.5 mm a−1 m. With calibrated precipitation, the modelled annual mass balance gradient closely resembles the observations on the 80 glaciers, the absolute values are matched by adjusting either the incoming solar radiation, the temperature-dependent flux or the air temperature. The mass balance sensitivity to

  4. Global application of a surface mass balance model using gridded climate data

    Science.gov (United States)

    Giesen, R. H.; Oerlemans, J.

    2012-04-01

    Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a simple surface mass balance model that only requires air temperature and precipitation as input data, to glaciers in different regions. In contrast to other models used in global applications, this model separately calculates the contributions of net solar radiation and the temperature-dependent fluxes to the energy balance. We derive a relation for these temperature-dependent fluxes using automatic weather station (AWS) measurements from glaciers in different climates. With local, hourly input data, the model is well able to simulate the observed seasonal variations in the surface energy and mass balance at the AWS sites. Replacing the hourly local data by monthly gridded climate data removes summer snowfall and winter melt events and hence influences the modelled mass balance most on locations with a small seasonal temperature cycle. Representative values for the multiplication factor and vertical gradient of precipitation are determined by fitting modelled winter mass balance profiles to observations on 80 glaciers in different regions. For 72 of the 80 glaciers, the precipitation provided by the climate data set has to be multiplied with a factor above unity; the median factor is 2.55. The vertical precipitation gradient ranges from negative to positive values, with more positive values for maritime glaciers and a median value of 1.5 mm a-1 m. With calibrated precipitation, the modelled annual mass balance gradient closely resembles the observations on the 80 glaciers, the absolute values are matched by adjusting either the incoming solar radiation, the temperature-dependent flux or the air temperature. The mass balance sensitivity to changes in temperature is

  5. Tidal Movement of Nioghalvfjerdsfjorden Glacier, Northeast Greenland: Observations and Modelling

    DEFF Research Database (Denmark)

    Reeh, Niels; Mayer, C.; Olesen, O. B.;

    2000-01-01

    Nioghalvfjerdsfjorden glacier is a > 60 km long and 20 km wide floating outlet glacier located at 79 degrees 30' N, 22 degrees W, draining a large area of the northeast Greenland ice sheet. Climate, mass-balance and dynamics studies were carried out on the glacier in three field seasons in 1996......, 1997 and 1998. As part of this work, tidal-movement observations were carried out by simultaneous differential global positioning system (GPS) measurements at several locations distributed on the glacier surface. The GPS observations were performed continuously over several tidal cycles. At the same...... time, tiltmeter measurements were carried out in the grounding zones along the glacier margins and upstream, where the glacier leaves the main ice sheet. A tide gauge installed in the sea immediately in front of the glacier front recorded the tide in the open sea during the field seasons. The...

  6. The future sea-level rise contribution of Greenland’s glaciers and ice caps

    OpenAIRE

    Machguth, H.; P. Rastner; Bolch, T.; Mölg, N; N. Mölg; Sørensen, L Sandberg; Sørensen, L Sandberg; Aðalgeirsdottir, G; Aðalgeirsdottir, G.; van Angelen, J.H.; van den Broeke, M. R.; X. Fettweis

    2013-01-01

    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland's glaciers and ice caps (GICs, ~90?000 km2) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR. Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 ...

  7. Estimating Permafrost Distribution in the Maritime Southern Alps, New Zealand, Based on Climatic Conditions at Rock Glacier Sites

    OpenAIRE

    Sattler, Katrin; Anderson, Brian; Mackintosh, Andrew; Norton, Kevin; de Róiste, Mairéad

    2016-01-01

    Alpine permafrost occurrence in maritime climates has received little attention, despite suggestions that permafrost may occur at lower elevations than in continental climates. To assess the spatial and altitudinal limits of permafrost in the maritime Southern Alps, we developed and tested a catchment-scale distributed permafrost estimate. We used logistic regression to identify the relationship between permafrost presence at 280 active and relict rock glacier sites and the independent variab...

  8. Estimating permafrost distribution in the maritime Southern Alps, New Zealand, based on climatic conditions at rock glacier sites

    OpenAIRE

    Katrin eSattler; Brian eAnderson; Andrew eMackintosh; Kevin eNorton; Mairéad ede Róiste

    2016-01-01

    Alpine permafrost occurrence in maritime climates has received little attention, despite suggestions that permafrost may occur at lower elevations than in continental climates. To assess the spatial and altitudinal limits of permafrost in the maritime Southern Alps, we developed and tested a catchment-scale distributed permafrost estimate. We used logistic regression to identify the relationship between permafrost presence at 280 active and relict rock glacier sites and the independent variab...

  9. Glacier area changes in Northern Eurasia

    International Nuclear Information System (INIS)

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies landscape changes in the glacial zone, the origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, etc. The absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies and their changes. The first estimation of glacier state and glacier distribution on the territory of the former Soviet Union has been done in the USSR Glacier Inventory (UGI) published in 1965–1982. The UGI is based on topographic maps and air photos and reflects the status of the glaciers in the 1940s–1970s. There is information about 28 884 glaciers with an area of 7830.75 km2 in the inventory. It covers 25 glacier systems in Northern Eurasia. In the 1980s the UGI has been transformed into digital form as a part of the World Glacier Inventory (WGI). Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of the 20th century. About 15 000 glacier outlines for the Caucasus, Polar Urals, Pamir Alay, Tien Shan, Altai, Kamchatka and Russian Arctic have been derived from ASTER and Landsat imagery and can be used for glacier change evaluation. Results of the analysis indicate the steady trend in glacier shrinkage in all mountain regions for the second part of the 20th century. Glacier area loss for the studied regions varies from 13% (Tien Shan) to 22.3% (Polar Urals). The common driver, most likely, is an increase in summer air temperature. There is also a very large variability in the degree of individual

  10. Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    H. Machguth

    2008-06-01

    Full Text Available By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was tuned to observed mass balance for the investigated time period and its robustness was tested by comparing observed and modelled mass balance over 11 years, yielding very small deviations. Both systematic and random uncertainties are assigned to twelve input parameters and their respective values estimated from the literature or from available meteorological data sets. The calculated overall uncertainty in the model output is dominated by systematic errors and amounts to 0.7 m w.e. or approximately 10% of total melt over the investigated time span. In order to provide a first order estimate on variability in uncertainty depending on the quality of input data, we conducted a further experiment, calculating overall uncertainty for different levels of uncertainty in measured global radiation and air temperature. Our results show that the output of a well calibrated model is subject to considerable uncertainties, in particular when applied for extrapolation in time and space where systematic errors are likely to be an important issue.

  11. Regional scale climatic trends derived from Younger Dryas glaciers in the U.K.

    Science.gov (United States)

    Pearce, D.; Rea, B. R.; Barr, I.; Small, D.; McDougall, D.

    2014-12-01

    In the U.K., the glacial geomorphological record has been utilised to infer paleo-glacier geometries and ice dynamics, with much of this work focussing on the Scottish Highlands during the Younger Dryas (YD; c. 12.9 - 11.7 ka BP). During the YD the West Highlands Ice-cap covered the majority of the Scottish Highlands (c. 13,000 sq mi), which is thought to have affected accumulation rates beyond the ice-cap margins, resulting in a steep (c. 80%) easterly decline in precipitation and smaller ice-masses. We present multi-proxy data investigating YD glaciation in the Tweedsmuir Hills, Southern Uplands, Scotland (55°46' N, 03°34' W), suggesting conditions were less arid. The area forms the most easterly upland region in the Southern Uplands and south of the West Highlands Ice-cap, reaching an altitude of 840 m and covering c. 200 sq mi. Results of air-photo interpretation and field mapping, which utilised a morphostratigraphic approach, have demonstrated a more extensive glaciation than previously mapped. The reconstruction consists of two separate icefields covering an area c. 40 sq mi. and new 14C dates of basal contact organics place the ice-mass within the context of the YD but new Cosmogenic Nuclide Analysis (CNA) of bedrock and in situ boulders are inconclusive, implying limited erosion and limited resetting during the YD. Equilibrium Line Altitudes are calculated to have ranged from c. 419 - 634 m. Paleo-precipitation values were derived using two precipitation-temperature relationships and suggest slightly lower totals than YD ice-masses located on the west coast of the U.K. but do not support a significant easterly reduction in precipitation. Analysis of present-day (c. 30 year) meteorological data across the U.K. demonstrates a pronounced reduction in precipitation of c. 50% on the east coast. This disparity between present-day and glacier-based YD precipitation patterns is partly attributable to the methodology employed in glacier reconstruction and

  12. A positive mass balance appeared at Urumuqi Glacier No.1 in 2009%乌鲁木齐河源1号冰川2009年出现物质正平衡

    Institute of Scientific and Technical Information of China (English)

    张国飞; 李忠勤; 王文彬; 王卫东

    2013-01-01

    Tianshan Mountains Glacier No. 1 experienced glacier nine times positive balance fluctuation and nine times negative balance fluctuation, the rates of negative balance years with positive balance years are 35:16. With global warming,the Urumqi Glacier No.l is retreating and thinning rapidly,especially from 1997 to 2009,there are continuous 12 negative balance observation years at Tianshan Mountains Glacier No.l. It shows that the Glacier No.l in a strong negative numerical balance, and the strongest negative balance, -931 mm. w.e., emerges from 2008 during the observation period. And what' s more, the cumulative mass balance reaches 13 709 mm. w.e. in 2008. But in 2009,the mass balance is positive,63 mm. w.e.,and the inter-annual change up to 1 062 mm. w.e.. Glacier mass balance is highly sensitive to changes in temperature and precipitation , which makes them become important indicators of climate change. When temperature reach the higher or lower, the mass balance of warm season supplied Glacier controlled by the temperature though the precipitation is great or small, Summer air temperature is the main control factors for the change of glacier mass balance. By analyzing the observation data of mass balances, air temperature and precipitation at Urumuqi Glacier No.l between 2007/08 and 2008/09, the lower summer temperature is the main factor to result in the phenomenon. The lower summer temperature caused the start time of glacial ablation period was delayed and the end time of glacier ablation was advanced, so the loss mass reduced. And, secondly, increase annual precipitation is one of factor represent addition of mass to the glacier.

  13. Climate Change, Glacier Retreat and Sediment Waves: Evidences from Fans in the Fox Glacial valley (New Zealand) and Analogical Modeling

    Science.gov (United States)

    Gomez, C. A.; Purdie, H.

    2015-12-01

    As global climate continues warm, mountain environments are changing, and rates of glacial retreat are unprecedented. The hydrologic implications of this rapid ice retreat and changing climate conditions have been the focus of numerous studies, but the consequent effects on the sediment cascade in valleys and tributaries has received considerably less attention. In the present study, we investigated the role of glacial recession on sediment mobilization and deposition in a mountain valley catchment at Fox Glacier, New Zealand. In particular, we analyze the role of glacier recession on the formation of sediment fans in the main valley. Emphasis was put on the role of sediment, impounded by the glacier in side tributaries, becoming rapidly available for remobilization as the glacier retreats. The method is based on field observations, and measurements using high resolution GNSS (Trimble R8 survey grade differential GNSS) and photogrammetric methods using Structure from Motion based on ground-, helicopter- and UAV- photographs. Field observations were conducted in the period 2014 - 2015, and have been complimented with analogic modeling in the laboratory, in order to comprehend the processes driving rapid fan formation. The analogic model reproduced the retreat of the glacier and the response of a tributary, with simulations for both glaciated and de-glaciated conditions. For similar hydrologic and slope parameters, the fans created after glacial retreat have shown an acceleration in their formation of up to 12 times compared to fanes created without glacial influence. Field observations within the period 2013 - 2015 of Straight Creek Fan (Fox Valley, New Zealand) have confirmed laboratory simulations, with the fan growing to a radius superior to 200 m and a valley-long width superior to 450 m. As glaciers continue to retreat, it can be expected that sediment surges will occur in affected valleys, without the requirements of other forcing like earthquake or extreme

  14. Scale effects impeding palaeoclimate reconstructions from mountain glaciers

    Science.gov (United States)

    Prinz, Rainer; Nicholson, Lindsey; Mölg, Thomas; Kaser, Georg

    2016-04-01

    Lewis Glacier on Mt. Kenya lost more than 80% of its area since its last stadial in the late 19th century (L19). Can we reconstruct climate conditions sustaining Lewis Glacier in its L19 extent? First, we optimized a physical based energy and mass balance model to the modern-day glacier extent with in situ observed climate observations. Second, from this record we constructed synthetic climate scenarios (based on coupled parameter perturbation applying a simple weather generator concept) as input for the mass balance model. These scenarios reflect the observed variability in precipitation and air temperature over recent decades, reproduce the observed mass balance variability for the modern-day glacier extent, and quantify the glacier's sensitivity to climate. Using the mass balance model as optimized for the modern-day glacier on the L19 extent, driven by climate perturbations most favourable to glaciation, results in negative mass balances. This would traditionally be interpreted to mean that even the extremes of the present-day climate are incapable of reproducing the L19 conditions. Alternatively or additionally, the modelling suggests that the L19 Lewis Glacier could be sustained if a favourable climate perturbation is applied in conjunction with a modification of the gradients used to extrapolate the climate observations over the glacier surface from those optimized for the very small modern-day glacier. Such a modification might be justifiable, where the modern-day glacier is so small that it is unlikely to generate significant microclimatological effects that would be expected for the larger L19 extent, when e.g. the glacier filled its cirque reducing long-wave emissions from surrounding terrain drastically. In a general sense this finding indicates that extracting proxy climate conditions from a particular glacier geometry, using a modelling system optimized on a dramatically different geometry, may invalidate the approach, particularly if changes in

  15. Assessing simulated ecosystem processes for climate variability research at Glacier National Park, USA

    Science.gov (United States)

    White, J.D.; Running, S.W.; Thornton, P.E.; Keane, R.E.; Ryan, K.C.; Fagre, D.B.; Key, C.H.

    1998-01-01

    Glacier National Park served as a test site for ecosystem analyses than involved a suite of integrated models embedded within a geographic information system. The goal of the exercise was to provide managers with maps that could illustrate probable shifts in vegetation, net primary production (NPP), and hydrologic responses associated with two selected climatic scenarios. The climatic scenarios were (a) a recent 12-yr record of weather data, and (b) a reconstituted set that sequentially introduced in repeated 3-yr intervals wetter-cooler, drier-warmer, and typical conditions. To extrapolate the implications of changes in ecosystem processes and resulting growth and distribution of vegetation and snowpack, the model incorporated geographic data. With underlying digital elevation maps, soil depth and texture, extrapolated climate, and current information on vegetation types and satellite-derived estimates of a leaf area indices, simulations were extended to envision how the park might look after 120 yr. The predictions of change included underlying processes affecting the availability of water and nitrogen. Considerable field data were acquired to compare with model predictions under current climatic conditions. In general, the integrated landscape models of ecosystem processes had good agreement with measured NPP, snowpack, and streamflow, but the exercise revealed the difficulty and necessity of averaging point measurements across landscapes to achieve comparable results with modeled values. Under the extremely variable climate scenario significant changes in vegetation composition and growth as well as hydrologic responses were predicted across the park. In particular, a general rise in both the upper and lower limits of treeline was predicted. These shifts would probably occur along with a variety of disturbances (fire, insect, and disease outbreaks) as predictions of physiological stress (water, nutrients, light) altered competitive relations and hydrologic

  16. Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance

    Science.gov (United States)

    Naegeli, Kathrin; Huss, Matthias; Damm, Alexander; de Jong, Rogier; Schaepman, Michael; Hoelzle, Martin

    2014-05-01

    The ice-albedo feedback plays a crucial role in various glaciological processes, but especially influences ice melt. Glacier surface albedo is one of the most important variables in the energy balance of snow and ice, but depends in a complicated way on many factors, such as cryoconite concentration, impurities due to mineral dust, soot or organic matter, grain size or ice surface morphology. Our understanding on how these various factors influence glacier albedo is still limited hindering a spatially and temporally explicit parameterization of energy balance models and requiring strongly simplified assumptions on actual albedo values. Over the last two decades, several studies have focused on glacier surface albedo using automatic in-situ weather stations in combination with radiation measurement setups or satellite images. Due to limitations of both approaches in matching either the spatial or the temporal length scale of glacier albedo, still fairly little is known about the state, changes and impact of glacier surface albedo in the Swiss Alps, although there are obvious changes in surface characteristics on most alpine glaciers over the last years. With use of the APEX (Airborne Prism EXperiment) image spectrometer, measurements of reflected radiation were acquired in high spatial and spectral resolution on Glacier de la Plaine Morte, Switzerland, to explicitly analyse the ice surface. In-situ radiometric measurements were acquired with an ASD field spectrometer in parallel to APEX overflights. These data are intended to be used for validation purposes as well as input data for the linear spectral unmixing analysis of the APEX data. Seasonal glacier mass balance is monitored since five years using the direct glaciological method. This contribution presents a first evaluation of the data collected in summer 2013. The obtained in-situ and airborne reflectance measurements were used in combination with a spectral mixture analysis (SMA) approach to assess the

  17. Climate Change Impact on Glaciers in the Langtang and Imja Sub-basins of Nepal from Late 70s to 2010

    Science.gov (United States)

    Bajracharya, S. R.; Bajracharya, O. R.; Baidya, S.; Maharjan, S. B.; Shrestha, F.

    2014-12-01

    Increase in glacier number and decrease in glacier area are perceived significantly in recent decades in Nepal. The observed glacier changes are one of the key indicators of climate change. In order to understand the impact of climate change on glaciers a repeat decadal glacier inventory since 1980s based on landsat images were carried out in the Langtang and Imja valleys. The recent glacier outlines were delineated semi-automatically from the images using object based image classification (obic) in Definien Developer. The glacier outlines of other decades were obtained by manual editing on the glacier polygons of semi-automatically derived glaciers polygons by overlaying separately on the images of respective years. The result shows that the glacier area has been decreased by 26% in Langtang valley in the period 1976-2009 and 28% in Imja valley in the period 1979-2010. The lowest elevation of glaciers has been shifted upward by 50m and 115m in Imja and Langtang valley respectively. The annual mean temperature from 1988 to 2008 were found to be 4.2oC and 0.3oC in Langtang valley and Imja valley respectively. The rate of temperature rise in this period was 0.116oC yr-1 and 0.09 oC yr-1 in Langtang valley and Imja valley respectively. The rise of mean decadal and annual mean temperature in Langtang and Imja valleys are one of the key factors of shrinking and retreating of glaciers.

  18. McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes

    Science.gov (United States)

    Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.

    2016-01-01

    We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.

  19. Internationally coordinated glacier monitoring - a timeline since 1894

    Science.gov (United States)

    Nussbaumer, Samuel U.; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Hoelzle, Martin; Machguth, Horst; Mölg, Nico; Paul, Frank; Raup, Bruce H.; Zemp, Michael

    2016-04-01

    Changes in glaciers and ice caps provide some of the clearest evidence of climate change, with impacts on sea-level variations, regional hydrological cycles, and natural hazard situations. Therefore, glaciers have been recognized as an Essential Climate Variable (ECV). Internationally coordinated collection and distribution of standardized information about the state and change of glaciers and ice caps was initiated in 1894 and is today organized within the Global Terrestrial Network for Glaciers (GTN-G). GTN-G ensures the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. A GTN-G Steering Committee coordinates, supports and advices the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. In this presentation, we trace the development of the internationally coordinated glacier monitoring since its beginning in the 19th century. Today, several online databases containing a wealth of diverse data types with different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. All glacier datasets are made freely available through the respective operational bodies within GTN-G, and can be accessed through the GTN-G Global Glacier Browser (http://www.gtn-g.org/data_browser.html). Glacier inventory data (e.g., digital outlines) are available for about 180,000 glaciers (GLIMS database, RGI - Randolph Glacier Inventory, WGI - World Glacier Inventory). Glacier front variations with about 45,000 entries since the 17th century and about 6,200 glaciological and geodetic mass (volume) change observations dating back to the 19th century are available in the Fluctuations of Glaciers (FoG) database. These datasets reveal clear evidence that

  20. Disappearance of the glacier on Mama Cotacachi: ethnoecological research and climate change in the Ecuadorian Andes

    Directory of Open Access Journals (Sweden)

    Rhoades, R.

    2008-12-01

    Full Text Available A first documented case study of a disappearing glacier in the snow capped volcano Cotacahi in Ecuador is presented with the studies belonging to the social sciences in relation to climate change and its impact on the population of the Equatorial Andes. With the use of multiple source methodology, including ethnographic analyzes, visual representations, repetitive photography, critical mapping by the local communities, longitudinal surveys, even archival research, as well as interviews to social actors and utilization of spatial data in a geographical information system (GIS. It is concluded that the documented disappearance of the glacier on the Cotacahi serves as an urgent call for action to the important dearth of social research related to global change from the ethnoecological perspective, with a cultural, local approach.

    Se presenta el primer estudio documentado de la desaparición del glaciar del nevado Cotacachi en el Ecuador, con los estudios que corresponden a las ciencias sociales en relación con el cambio climático y su impacto en la población de los Andes ecuatoriales. Mediante el uso de una metodología que incluye análisis etnográficos, representaciones visuales, fotografía repetitiva, mapeo crítico por parte de las comunidades locales, encuestas longitudinales e incluso investigación de archivos, así como también entrevistas a actores sociales, y utilización de los datos espaciales en un sistema de información geográfica (SIG. Se concluye que la desaparición documentada del glaciar del Cotacachi sirve como una llamada de atención urgente a la importante falta de investigaciones sociales relacionadas con el cambio global desde el punto de vista etnoecológico, con un enfoque cultural local.

  1. ASTER based velocity profile of glaciers in the Nanga Parbat region, western Himalaya

    Science.gov (United States)

    Parkes, A. T.; Haritashya, U. K.

    2011-12-01

    Glaciers, in general, are highly sensitive to climate fluctuations making them important indicators of climate change. Overall, lack of data on this region is troubling for the amount of hydrological importance and climatic forecasts these glaciers hold. Therefore, this study aims to measure glacier velocity on selected glaciers using cross-correlation techniques. One of the main problems with determining the amount of loss or perhaps gain in glacier mass is determining their velocity. The Himalayan glaciers are inaccessible in most areas and field measurements can be impossible, which creates a problem when determining the velocity of glaciers. Consequently, we generated velocity profiles of glaciers in the Nanga Parbat region of the western Himalaya using 2009 and 2010 ASTER satellite data. Our glacier fluctuation study have shown oscillating behavior of these glaciers; however, our preliminary velocity result indicates high velocity on most of these glaciers. These results are the first ever velocity profile generated for this region and would be able to help understand glacier dynamics in a much more comprehensive manner.

  2. Modelling glacier change in the Everest region, Nepal Himalaya

    Directory of Open Access Journals (Sweden)

    J. M. Shea

    2014-10-01

    Full Text Available In this study, we apply a glacier mass balance and ice redistribution model to simulate historical and future glacier change in the Everest region of Nepal. High-resolution temperature and precipitation fields derived from gridded APHRODITE data, and validated against independent station observations from the EVK2CNR network, are used to drive the historical model from 1961 to 2007. The model is calibrated against geodetically derived estimates of net glacier mass change from 1992 to 2008, termini position of four large glaciers at the end of the calibration period, average velocities observed on selected debris-covered glaciers, and total glacierized area. We integrate field-based observations of glacier mass balance and ice thickness with remotely-sensed observations of decadal glacier change to validate the model. Between 1961 and 2007, the mean modelled volume change over the Dudh Kosi basin is −6.4 ± 1.5 km3, a decrease of 15.6% from the original estimated ice volume in 1961. Modelled glacier area change between 1961 and 2007 is −101.0 ± 11.4 km2, a decrease of approximately 20% from the initial extent. Scenarios of future climate change, based on CMIP5 RCP4.5 and RCP8.5 end members, suggest that glaciers in the Everest region will continue to lose mass through the 21st century. Glaciers in the basin are concentrated between 5000 and 6000 m of elevation, and are thus expected to be sensitive to changes in temperature and equilibrium line altitude (ELA. Glacier volume reductions between −35 to −62% are possible by 2050, and sustained temperature increases to 2100 may result in total glacier volume losses of between −73 and −96%.

  3. Glacier changes in the Karakoram region mapped by multimission satellite imagery

    Science.gov (United States)

    Rankl, M.; Kienholz, C.; Braun, M.

    2014-05-01

    Positive glacier-mass balances in the Karakoram region during the last decade have fostered stable and advancing glacier termini positions, while glaciers in the adjacent mountain ranges have been affected by glacier recession and thinning. In addition to fluctuations induced solely by climate, the Karakoram is known for a large number of surge-type glaciers. The present study provides an updated and extended inventory on advancing, stable, retreating, and surge-type glaciers using Landsat imagery from 1976 to 2012. Out of 1219 glaciers the vast majority showed a stable terminus (969) during the observation period. Sixty-five glaciers advanced, 93 glaciers retreated, and 101 surge-type glaciers were identified, of which 10 are new observations. The dimensional and topographic characteristics of each glacier class were calculated and analyzed. Ninety percent of nonsurge-type glaciers are shorter than 10 km, whereas surge-type glaciers are, in general, longer. We report short response times of glaciers in the Karakoram and suggest a shift from negative to balanced/positive mass budgets in the 1980s or 1990s. Additionally, we present glacier surface velocities derived from different SAR (synthetic aperture radar) sensors and different years for a Karakoram-wide coverage. High-resolution SAR data enables the investigation of small and relatively fast-flowing glaciers (e.g., up to 1.8 m day-1 during an active phase of a surge). The combination of multitemporal optical imagery and SAR-based surface velocities enables an improved, Karakoram-wide glacier inventory and hence, provides relevant new observational information on the current state of glaciers in the Karakoram.

  4. Modeling and hazard mapping of complex cascading mass movement processes: the case of glacier lake 513, Carhuaz, Peru

    Science.gov (United States)

    Schneider, Demian; Huggel, Christian; García, Javier; Ludeña, Sebastian; Cochachin, Alejo

    2013-04-01

    The Cordilleras in Peru are especially vulnerable to, and affected by impacts from climate change. Local communities and cities often exist directly within the reach of major hazard potentials such as lake outburst floods (aluviones), mud-/debris flows (huaycos) or large rock-/ice avalanches. They have been repeatedly and strongly affected these regions over the last decades and since the last century, and thousands of people have been killed. One of the most recent events in the Cordillera Blanca occurred on 11 April 2010, when a rock/ice avalanche from the top of Hualcán mountain, NE of the town of Carhuaz impacted the glacier lake 513 (Laguna 513), caused displacement waves and triggered an outburst flood wave. The flow repeatedly transformed from debris flow to hyperconcentrated flow and eventually caused significant damage in Carhuaz. This event was motivation to start early warning and prevention efforts to reduce risks related to ice/rock avalanches and glacier lake outburst floods (GLOF). One of the basic components of an early warning system is the assessment, understanding and communication of relevant hazards and risks. Here we report on the methodology and results of generating GLOF related hazard maps for Carhuaz based on numerical modeling and field work. This exercise required an advanced concept and implementation of different mass movement models. Specifically, numerical models were applied for simulating avalanche flow, avalanche lake impact, displacement wave generation and lake overtopping, and eventually flow propagation of the outburst flood with changing rheology between debris flow and hyperconcentrated flows. We adopted a hazard mapping procedure slightly adjusted adjusted from guidelines developed in Switzerland and in the Andes region. A methodology has thereby been developed to translate results from numerical mass movement modeling into hazard maps. The resulting hazard map was verified and adjusted during field work. This study shows

  5. Modelling the hydrological response of debris-free and debris-covered glaciers to present climatic conditions in the semiarid Andes of central Chile

    Science.gov (United States)

    Ayala, Alvaro; Pellicciotti, Francesca; MacDonell, Shelley; McPhee, James; Vivero, Sebastián; Campos, Cristián; Egli, Pascal

    2016-04-01

    We investigate the main contributors to runoff of a 62 km2 glacierized catchment in the semiarid Andes of central Chile, where both debris-free and debris-covered glaciers are present, combining an extensive set of field measurements, remote sensing products and an advanced glacio-hydrological model (TOPKAPI-ETH). The catchment contains two debris-free glaciers reaching down to 3900 m asl (Bello and Yeso Glaciers) and one debris-covered avalanche-fed glacier reaching to 3200 m asl (Piramide Glacier). A unique dataset of field measurements collected in the ablation seasons 2013-14 and 2014-15 included four automatic weather stations, manual measurements of snow depth and debris cover thickness, discharge measurements at glaciers outlets, photographic monitoring of surface albedo as well as ablation stakes measurements and snow pits. TOPKAPI-ETH combines physically-oriented parameterizations of snow and ice ablation, gravitational distribution of snow, snow albedo evolution, glacier dynamics, runoff routing and the ablation of debris-covered ice.We obtained the first detailed estimation of mass balance and runoff contribution of debris-covered glaciers in this mountainous region. Results show that while the mass balance of Bello and Yeso Glaciers is mostly controlled by air temperature lapse rates, the mass balance of Piramide Glacier is governed by debris thickness and avalanches. In fact, gravitational distribution by avalanching on wet years plays a key role and modulates the mass balance gradient of all glaciers in the catchment and can turn local mass balance from negative to positive. This is especially the case for Piramide Glacier, which shows large amounts of snow accumulation below the steep walls surrounding its upper area. Despite the thermal insulation effect of the debris cover, the contribution to runoff from debris-free and debris-covered glaciers is similar, mainly due to elevation differences. At the catchment scale, snowmelt represents more than 60

  6. Ice flow dynamics and mass balance of Vatnajökull outlet glaciers observed by X-band SAR Data

    Science.gov (United States)

    Nagler, T.; Rott, H.; Magnússon, E.; Floricioiu, D.; Mueller, F.; Scharrer, K.

    2012-04-01

    Several outlet glaciers of the major ice caps in Iceland are affected by sub-glacial outburst floods, so-called jökulhlaups. Sources of these outbreaks are water accumulations beneath the glacier due to geothermal or volcanic activity. One component of the project NorthHydrology, carried out within the ESA STSE (Support to Science Element) programme, addresses techniques and applications of satellite data for studying drainage mechanisms and water outbreaks of sub-glacial lakes in Iceland. Such events are usually related to surface deformation and changes in ice velocities, sometimes occurring already well ahead of the peak of the flood wave. High resolution repeat pass SAR data are able to deliver spatially detailed information on surface motion and displacement, which are highly relevant for advancing the understanding of glacier hydraulics and jökulhlaup processes. A template matching technique is applied to data stacks of TerraSAR-X and Cosmo-SkyMed amplitude images acquired between summer 2008 to summer 2010 in order to study the ice dynamics and mass balance of outlet glaciers of Vatnajökull in Iceland. This technique requires distinct and stable surface features, as usually available on ice surfaces of glaciers. Main outlet glaciers, investigated in the project, are Breidamerkurjökull and Skeiderarjökull, with the fronts terminating close to the coast. The lower terminus of these glaciers exhibits significant melting during summer, and sometimes even during winter. At these glaciers in-situ data on ice velocity and surface elevation changes have been recorded at in situ GPS stations, operated by University of Iceland. The ice motion field was derived using ascending and descending repeat pass SAR images. In order to retrieve the 3D ice motion vector, effects of surface melt are taken into account by modelling the ablation. Combining maps of displacement shifts from ascending and descending passes and compensating for surface lowering due to melt, maps

  7. Linear modeling of glacier fluctuations

    NARCIS (Netherlands)

    Oerlemans, J.

    2012-01-01

    In this contribution a linear first-order differential equation is used to model glacier length fluctuations. This equation has two parameters describing the physical characteristics of a glacier: the climate sensitivity, expressing how the equilibrium glacier length depends on the climatic state, a

  8. Integrated glacier and snow hydrological modelling in the Urumqi No.1 Glacier catchment

    Science.gov (United States)

    Gao, Hongkai; Hrachowitz, Markus; Savenije, Hubert

    2015-04-01

    The glacier and snow melt water from mountainous area is an essential water resource in Northwest China, where the climate is arid. Therefore a hydrologic model including glacier and snow melt simulation is in an urgent need for water resources management and prediction under climate change in this region. In this study, the Urumqi No.1 Glacier catchment in Northwest China, with 51% area covered by glacier, was selected as the study site. An integrated daily hydrological model was developed to systematically simulate the hydrograph, runoff separation (glacier and non-glacier runoff), the glacier mass balance (GMB), the equilibrium line altitude (ELA), and the snow water equivalent (SWE). Only precipitation, temperature and sunshine hour data is required as forcing input. A combination method, which applies degree-day approach during dry periods and empirical energy balance formulation during wet seasons, was implemented to simulate snow and glacier melt. Detailed snow melt processes were included in the model, including the water holding capacity of snow pack, the liquid water refreezing process in snow pack, and the change of albedo with time. A traditional rainfall-runoff model (Xinanjiang) was applied to simulate the rainfall(snowmelt)-runoff process in non-glacierized area. Additionally, the influence of elevation on temperature and precipitation distribution, and the impact of different aspect on snow and glacier melting were considered. The model was validated, not only by long-term observed daily runoff data, but also by measured snow (SWE) and glacier data (GMB, ELA) of over 50 years. Furthermore, the calibrated model can be upscaled into a larger catchment, which further supports our proposed model and optimized parameter sets.

  9. Influences of Climate Warming and Facility Management on Continuous Permafrost at Matterhorn Glacier Paradise, Zermatt, Swiss Alps.

    Science.gov (United States)

    King, Lorenz; Duishonakunov, Murataly; Imbery, Stephan

    2014-05-01

    In many parts of the Alps, hazardous bedrock instabilities occur more often during the past 30 years. In many cases, permafrost degradation played a central role for instability (e.g. in 1987 the Val Pola rockslide, Italy). At other events, the role of permafrost degradation is more complex or unpredictable (e.g. in 1991 the Randa rockfall, Wallis, Swiss Alps). However, instabilities in perennially frozen bedrock may also be provoked by human influence. This is exemplarily shown at touristic facilities in the Alps. Human impact on permafrost is often underestimated, or even carelessly taken into account. The tourist resort Zermatt with more than 1.8 million overnight stays per year is located at 1600 m a.s.l. and is surrounded by high mountain ranges that often reach above 4000 m. The dry and sunny climate results in a high glacier equilibrium line thus leaving space for vast non-glaciated permafrost terrain. Numerous tourist facilities provide excellent logistics and easy access to permafrost sites, and the region is thus especially suitable for permafrost research. The infrastructure erected on permafrost consists of hotels, restaurants and mountain huts, station buildings of railways, funiculars, ski lifts and installations for artificial snowing the ski-runs. Some problems at these constructions due to permafrost degradation are shown. At the Matterhorn Glacier Paradise station at an altitude of 3820 meters, todays MAAT ranges between -6 °C and -8°C. During the construction of a tunnel in 1981 bedrock temperatures were at -12°C. Over the past 30 years, these bedrock temperatures have risen to -3 to -2°C, due to the heat brought into the tunnel by facilities and more than 490,000 visitors per year. In an elevator shaft, the temperature temporarily even rose above freezing point. Several new construction sites in continuous permafrost are described and new research data is presented. Another interesting site for permafrost and ice studies at Matterhorn

  10. Mass budgets of the Lambert, Mellor and Fisher Glaciers and basal fluxes beneath their flowbands on Amery Ice Shelf

    Institute of Scientific and Technical Information of China (English)

    WEN; JiaHong

    2007-01-01

    .Ann Glaciol,2002,34:269―276[14]Joughin I,Tulaczyk S.Positive mass balance of the Ross ice streams,West Antarctica,Science,2002,295:476―480[15]Rignot E.East Antarctic glaciers and ice shelves mass balance from satellite data.Ann Glaciol,2002,34:228―234[16]Liu H,Jezek K C,Li B.Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data:A geographic information system based approach,J Geophys Res,1999,104(B10):23199―23214[17]Zwally H J,Schutz B,Abdalati W,et al.ICESat's laser measurements of polar ice,atmosphere,ocean,and land.J Geodyn,2002,34 (3-4):405―445[18]Herzfeld U C,ed.Atlas of Antarctica:Topographic Maps From Geostatistical Analysis of Satellite Radar Altimeter Data.New York·Tokyo:Springer Verlag Heidelberg,2004.1―65[19]Joughin I,Padman L.Melting and freezing beneath Filchner-Ronne Ice Shelf,Antarctica.Geophys Res Lett,2003,30(9):1477[20]Vaughan D G,Bamber J L,Giovinetto M B,et al.Cooper reassessment of net surface mass balance in Antarctica.J Climate,1999,12(4):933―946[21]Giovinetto M B,Zwally H J.Spatial distribution of net surface accumulation on the Antarctic ice sheet.Ann Glaciol,2000,31:171― 178[22]Lythe M B,Vaughan D G.The BEDMAP Consortium.BEDMAP:A new ice thickness and subglacial topographic model of Antarctica.J Geophys Res,2001,106(B6):11335―11351[23]Fricker H A,Hyland G,Coleman R,et al.Digital elevation models for the Lambert Glacier-Amery Ice Shelf system,East Antarctica,from ERS-1 satellite radar altimetry.J Glaciol,2000,46(155):553―560[24]Fricker H A,Warner R C,Allison I.Mass balance of the Lambert Glacier-Amery Ice Shelf system,East Antarctica:a comparison of computed balance fluxes and measured fluxes.J Glaciol,2000,46(155):561―570[25]Jezek K C.Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery.Ann Glaciol,1999,29:286―290[26]Allison I.The mass budget of the Lambert Glacier drainage basin,Antarctica.J Glaciol,1979,22(87):223―235

  11. Glacier response to changing climate condition : the role of circulation variability and long-term trends over the Tibetan Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Caidong, C.

    2008-07-01

    This study focuses on glacier response to changing climatic condition, the role of atmospheric circulation variability and long-term trends over the Tibetan Plateau (TP). In particular, this study concerns circulation regimes over the TP and related precipitation and temperature variations in Tibet Autonomous Region; modelled mass balance response of the Xibu glacier (which is situated in the Nyainqentanglha mountain range) to the circulation variability and the mass balance response to long term trends that is not directly related to circulation variability. The research was motivated by the importance of understanding present-day climate condition over the Tibetan Plateau and to understand how much of last decade's increases in temperature and glacier retreat could be linked to circulation changes and how much was due to other causes. The first paper, the focus is on using the six years of the Tropical Rainfall Monitoring Mission (TRMM) satellite data (1998 - 2005) to identify the spatial pattern of the dry season (October - April) precipitation over the TP which is small, but important for snow accumulation over the plateau. The paper outline the use of k-mean clustering as a method for finding different weather types and the precipitation variability is tried explained with physical interpretation of the associated atmospheric circulation patterns using daily reanalysis from NCEP/NCAR (1957 - 2005). The results show how the topographic effect and flow direction plays an important role in controlling the distribution of precipitation rates over the plateau. The Himalayas and Karakorum Mountain ranges act as barriers for south and south-west moist air flow and deplete the air of much of its moisture before it reaches the Plateau. In addition, when the air begin to descend on the leeward side of the mountains, they are creating a rain shadow. According to the TRMM satellite estimates average October-April Tibetan Plateau (defined as areas higher than 4,000 m

  12. An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland

    DEFF Research Database (Denmark)

    Bjørk, Anders A.; Kjær, Kurt H.; Korsgaard, Niels J.; Khan, Shfaqat Abbas; Kjeldsen, Kristian K.; Andresen, Camilla S.; Box, Jason E.; Larsen, Nicolaj K.; Funder, Svend

    2012-01-01

    Widespread retreat of glaciers has been observed along the southeastern margin of Greenland. This retreat has been associated with increased air and ocean temperatures. However, most observations are from the satellite era; presatellite observations of Greenlandic glaciers are rare. Here we present...... a unique record that documents the frontal positions for 132 southeast Greenlandic glaciers from rediscovered historical aerial imagery beginning in the early 1930s. We combine the historical aerial images with both early and modern satellite imagery to extract frontal variations of marine- and land...... comparable increases in air temperature. We show that many land-terminating glaciers underwent a more rapid retreat in the 1930s than in the 2000s, whereas marine-terminating glaciers retreated more rapidly during the recent warming....

  13. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings

    Science.gov (United States)

    Truffer, Martin; Motyka, Roman J.

    2016-03-01

    Glacier change is ubiquitous, but the fastest and largest magnitude changes occur in glaciers that terminate in water. This includes the most rapidly retreating glaciers, and also several advancing ones, often in similar regional climate settings. Furthermore, water-terminating glaciers show a large range in morphology, particularly when ice flow into ocean water is compared to that into freshwater lakes. All water-terminating glaciers share the ability to lose significant volume of ice at the front, either through mechanical calving or direct melt from the water in contact. Here we present a review of the subaqueous melt process. We discuss the relevant physics and show how different physical settings can lead to different glacial responses. We find that subaqueous melt can be an important trigger for glacier change. It can explain many of the morphological differences, such as the existence or absence of floating tongues. Subaqueous melting is influenced by glacial runoff, which is largely a function of atmospheric conditions. This shows a tight connection between atmosphere, oceans and lakes, and glaciers. Subaqueous melt rates, even if shown to be large, should always be discussed in the context of ice supply to the glacier front to assess its overall relevance. We find that melt is often relevant to explain seasonal evolution, can be instrumental in shifting a glacier into a different dynamical regime, and often forms a large part of a glacier's mass loss. On the other hand, in some cases, melt is a small component of mass loss and does not significantly affect glacier response.

  14. Evolution of Popocatépetl volcano's glaciers in Mexico with and without volcanic activity: diagnosis from a minimal mass balance model

    Science.gov (United States)

    Ontiveros-Gonzalez, G.; Cortes Ramos, J.; Delgado Granados, H.

    2013-05-01

    This work describes the influence of eruptive activity on the evolution of the glacial cover on Popocatepetl volcano. Here, we try to answer a simple question: what had happened if this glacier had not been affected by the volcanic activity? In order to answer this question we modeled the mass balance evolution of this glacier using meteorological data and a minimal mass balance model developed for glaciers elsewhere. For this model we assumed no volcanic activity. These results were compared with measurements available for the actual situation at Popocatépetl Volcano. It was possible to separate the influence of the volcanic activity on the evolution of this glacier system considering two scenarios: one was modeled with a simulation of the mass balance where volcanic activity does not affect, and a second scenario is based on the documented studies developed around the glacial disappearance of the glaciers.

  15. The future sea-level rise contribution of Greenland’s glaciers and ice caps

    DEFF Research Database (Denmark)

    Machguth, H.; Rastner, P.; Bolch, T.;

    2013-01-01

    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland's glaciers and ice caps (GICs, ~90 000 km2) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR....... Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 m resolution digital elevation model yielding a high level of detail and ensuring that important...... Greenland is dominated by steadily decreasing summer mass balances. In addition we observe glaciers in the north-eastern part of Greenland changing their characteristics towards greater activity and mass turnover....

  16. Response of Kolahoi Glacier, Kashmir Himalaya to climate change: A preliminary Study

    Science.gov (United States)

    Jeelani, G.; Hasnain, S. I.

    2010-12-01

    Kolahoi Glacier (340 07-340 12 N: 75016- 750 23 E), Liddar Valley, Kashmir Himalaya is one of the largest glacier in the Kashmir valley. The glacier is nourished by westerly system during winter and ablation takes place during summer period with no impact of SW monsoon system. Liddar Valley covers an area of 1282.55 km2 and sustain about 48 glaciers with total ice covered area of about 39 km2. The melt water feeds the west and east Liddar rivers and downstream in the valley they joined and forms River Jhelum which is the main source of water and livelihood to entire Kashmir valley. The major concern is that melting glaciers in the Kashmir valley will have ‘cascading effects’ across ecosystems, creating chain reactions on the food and water security of marginalised communities. An analysis of the available records is presented in this study. It appears that considerable recession of the snout has taken place since 1857. The glacier has receded about 1.6 km from 1857-1909 (52 years ?), 0.82 km from 1912-1961 (50 years), and 1.0 km from 1962-2008 (47 years). The area of the glacier is decreased by about 15% (0.04 Km2/year) from 1962 to 2008. The data indicate that there is significant increase in the rate of glacier recession for last few decades. It appears that global and regional warming, below normal precipitation occurred during the period of snow accumulation are perhaps the main reasons for accelerating the rate of melting during recent times. The stream (West Liddar) fed by the Kolahoi glacier also shows an increase in the discharge for last few decades as compared to the other streams fed dominantly by snow melt.

  17. Glacier balance trends in the Kongsfjorden area, western Spitsbergen, Svalbard, in relation to the climate

    OpenAIRE

    Lefauconnier, Bernard; Hagen, Jon Ove; Børre Ørbæk, Jon; Melvold, Kjetil; Isaksson, Elisabeth

    1999-01-01

    For the last thirty years, the mean net balance of two glaciers, Austre Brøggerbreen and Midre Lovénbreen, has been -0.43 and -0.34 m of water equivalent (w.e.). respectively. The mean net balance of Kongsvegen, a tidewater glacier that has been measured since 1987, is 0.11 m w.e. The negative balances of the two first glaciers are driven by the increase in atmospheric temperature which occurred at the end of the Little Ice Age at the beginning of the century. The positive balance of Kongsveg...

  18. Glacier Surface Velocity Measurements from Radar Interferometry and the Principle of Mass Conservation

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels

    2002-01-01

    Presents a relation between the three glacier surface velocity components, the surface flux-divergence, glacier thickness and bottom melt and displacement. The relation can be used as an extension to the surface parallel flow assumption often used with interferometric synthetic aperture measureme...

  19. The Little Ice Age: glacier variations and climate since AD 1250 [abstract

    OpenAIRE

    Porter, Stephen C.

    1996-01-01

    EXTRACT (SEE PDF FOR FULL ABSTRACT): During the past hundred years, mountain glaciers throughout the world have retreated significantly from moraines built during the previous several centuries. In the 1930s, Francois Matthes of the U.S. Geological Survey concluded that the moraines represent the greatest advances of glaciers since the end of the last glacial age, some 10,000 years earlier, and informally referred to this late Holocene interval of expanded ice cover as the Little Ice Age.

  20. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    Directory of Open Access Journals (Sweden)

    Jill Crossman

    Full Text Available In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2 and two IPCC scenarios (A2 and B2 are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing

  1. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    Science.gov (United States)

    Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID

  2. A data set of worldwide glacier fluctuations

    OpenAIRE

    P. W. Leclercq; Oerlemans, J.; H. J. Basagic; I. Bushueva; Cook, A. J.; Le Bris, R.

    2014-01-01

    Glacier fluctuations contribute to variations in sea level and historical glacier length fluctuations are natural indicators of past climate change. To study these subjects, longterm information of glacier change is needed. In this paper we present a data set of global long-term glacier length fluctuations. The data set is a compilation of available information on changes in glacier length worldwide, including both measured and reconstructed glacier length fluctuations. All 471 length series ...

  3. Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements

    OpenAIRE

    Azam, M. F.; P. Wagnon; Vincent, C; Ramanathan, Al.; Favier, V.; Mandal, A; Pottakkal, J. G.

    2014-01-01

    Some recent studies revealed that Himalayan glaciers were shrinking at an accelerated rate since the beginning of the 21st century. However, the climatic causes for this shrinkage remain unclear given that surface energy balance studies are almost nonexistent in this region. In this study, a point-scale surface energy balance analysis was performed using in situ meteorological data from the ablation zone of Chhota Shigri Glacier over two separate periods (August 2012 to February 2013 and July...

  4. Processes governing the mass balance of Chhota Shigri Glacier (Western Himalaya, India) assessed by point-scale surface energy balance measurements

    OpenAIRE

    Azam, M. F.; P. Wagnon; Vincent, C; AL. Ramanathan; Mandal, A; Pottakkal, J. G.

    2014-01-01

    Recent studies revealed that Himalayan glaciers have been shrinking at an accelerated rate since the beginning of the 21st century. However the climatic causes for this shrinkage remain unclear given that surface energy balance studies are almost nonexistent in this region. In this study, a point-scale surface energy balance analysis was performed using in-situ meteorological data from the ablation zone of Chhota Shigri Glacier over two separate periods (Aug...

  5. Glacier Ecosystems of Himalaya

    Science.gov (United States)

    Kohshima, S.; Yoshimura, Y.; Takeuchi, N.; Segawa, T.; Uetake, J.

    2012-12-01

    Biological activity on glaciers has been believed to be extremely limited. However, we found various biotic communities specialized to the glacier environment in various part of the world, such as Himalaya, Patagonia and Alaska. Some of these glacier hosted biotic communities including various cold-tolerant insects, annelids and copepods that were living in the glacier by feeding on algae and bacteria growing in the snow and ice. Thus, the glaciers are simple and relatively closed ecosystems sustained by the primary production in the snow and ice. In this presentation, we will briefly introduce glacier ecosystems in Himalaya; ecology and behavior of glacier animals, altitudinal zonation of snow algal communities, and the structure of their habitats in the glacier. Since the microorganisms growing on the glacier surface are stored in the glacial strata every year, ice-core samples contain many layers with these microorganisms. We showed that the snow algae in the ice-core are useful for ice core dating and could be new environmental signals for the studies on past environment using ice cores. These microorganisms in the ice core will be important especially in the studies of ice core from the glaciers of warmer regions, in which chemical and isotopic contents are often heavily disturbed by melt water percolation. Blooms of algae and bacteria on the glacier can reduce the surface albedo and significantly affect the glacier melting. For example, the surface albedo of some Himalayan glaciers was significantly reduced by a large amount of dark-colored biogenic material (cryoconite) derived from snow algae and bacteria. It increased the melting rates of the surfaces by as much as three-fold. Thus, it was suggested that the microbial activity on the glacier could affect the mass balance and fluctuation of the glaciers.

  6. Glaciers and society

    DEFF Research Database (Denmark)

    Gagné, Karine; Rasmussen, Mattias Borg; Orlove, Ben

    2014-01-01

    As icons of a world set in motion by human action, glaciers are often highlighted as quintessential evidences of global climate change. Although there is a general agreement among scientists that glaciers around the world are receding, much of the discussions on the subject tend to be oriented...

  7. Mass balance, meteorological, and runoff measurements at South Cascade Glacier, Washington, 1992 balance year

    Science.gov (United States)

    Krimmel, R.M.

    1993-01-01

    Values of winter snow accumulation and summer snow, firn, and ice ablation were measured at South Cascade Glacier, WA, to determine the winter and net balance for the 1992 balance year. The 1992 winter balance, averaged over the glacier, was 1.91 m, and the net balance was -2.01 m. This extremely negative balance continued a trend of negative balance years beginning in 1977. Air temperature (at 1,615 m and 1,867 m), barometric pressure, precipitation, and runoff from this glacier basin and an adjacent non-glacierized basin were also continuously measured. This report makes all these data, in tabular, graphical, and machine-readable forms, available to users.

  8. Melting beneath Greenland outlet glaciers and ice streams

    Science.gov (United States)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  9. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region

    Science.gov (United States)

    Khadka, Dibesh; Babel, Mukand S.; Shrestha, Sangam; Tripathi, Nitin K.

    2014-04-01

    Glacier and snow covered area play an important role in the hydrology of glacierized basin. Climate change is likely to change the snow cover area and alter the water availability in future making long term water management more challenging. This study is aimed at predicting future changes in climatic parameters of the Tamakoshi basin of Nepal, estimating changes in snow covered area for changed climate, and subsequently quantifying temporal change in the runoff from the basin. Remote sensing is extensively used to determine the extent of snow covered area in the basin. Future climate of the basin is predicted by statistical downscaling outputs from two GCMs (HADCM3 for SRES A2 and B2 and CGCM3 for SRES A2 and A1B scenarios). Results show that temperature and precipitation will both increase in future under these scenarios. The relationship between the snow covered area with temperature and precipitation is developed from the observed data, and is used to predict snow covered area for future where it was found that spring and winter snow covers are more vulnerable to climate change. A temperature index based snowmelt runoff model is used to simulate basin runoff from the year 2000 to 2059. The analysis during observed period (2000-2009) shows that about 18% of the annual runoff in the basin is contributed by snow and ice melting. Snowmelt is largest during summer with an average melt of about 230 mm, which is about 17% of total water produced for runoff during this season. In terms of percentage contribution, snowmelt is found more significant during spring season where the average snowmelt is about 44 mm, which is about 25% of total water produced for runoff during the season. Along with snowmelt, basin runoff is also expected to increase in future at the rate of 5.6 mm/year. Findings of this study will serve as a reference for further studies and planning of future water management strategies in the Tamakoshi basin.

  10. A data set of worldwide glacier fluctuations

    NARCIS (Netherlands)

    Leclercq, P.W.; Oerlemans, J.; Basagic, H.J.; Bushueva, I.; Cook, A.J.; Le Bris, R.

    2014-01-01

    Glacier fluctuations contribute to variations in sea level and historical glacier length fluctuations are natural indicators of past climate change. To study these subjects, longterm information of glacier change is needed. In this paper we present a data set of global long-term glacier length fluct

  11. Spatial debris-cover effect on the maritime glaciers of Mount Gongga, south-eastern Tibetan Plateau

    Science.gov (United States)

    Zhang, Y.; Hirabayashi, Y.; Fujita, K.; Liu, S.; Liu, Q.

    2013-06-01

    The Tibetan Plateau and surroundings contain a large number of debris-covered glaciers, on which debris cover affects glacier response to climate change by altering ice melting rates and spatial patterns of mass loss. Insufficient spatial distribution of debris thickness data makes it difficult to analyze regional debris-cover effects. Mount Gongga glaciers, maritime glaciers in the south-eastern Tibetan Plateau, are characterized by a substantial reduction in glacier length and ice mass in recent decades. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived thermal property of the debris layer reveals that 68% of the glaciers have extensive mantles of supraglacial debris in their ablation zones, in which the proportion of debris cover to total glacier area varies from 1.74% to 53.0%. Using a surface energy-mass balance model accounting for the debris-cover effect applied at a regional scale, we find that although the presence of supraglacial debris has a significant insulating effect on heavily debris-covered glaciers, it accelerates ice melting on ~ 10.2% of the total ablation area and produces rapid wastage of ~ 25% of the debris-covered glaciers, resulting in the similar mass losses between debris-covered and debris-free glaciers. Widespread debris cover also facilitates the development of active terminus regions. Regional differences in the debris-cover effect are apparent, highlighting the importance of debris cover for understanding glacier status and hydrology in both the Tibetan Plateau and other mountain ranges around the world.

  12. Changes in glacier extent and surface elevations in the Depuchangdake region of northwestern Tibet, China

    Science.gov (United States)

    Li, Zhiguo; Tian, Lide; Wu, Hongbo; Wang, Weicai; Zhang, Shuhong; Zhang, Jingjing; Li, Xuexin

    2016-01-01

    Remote sensing data, including those from Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM +), the Shuttle Radar Topography Mission Digital Elevation Model (SRTM4.1 DEM), and the Geoscience Laser Altimeter System Ice, Cloud, and Land Elevation Satellite (Glas/ICESat), show that from 1991 to 2013 the glacier area in the Depuchangdake region of northwestern Tibet decreased from 409 to 393 km2, an overall loss of 16 km2, or 3.9% of the entire 1991 glacial area. The mean glacier-thinning rate was - 0.40 ± 0.16 m equivalent height of water per year (w.e./yr), equating to a glacier mass balance of - 0.16 ± 0.07 km3 w.e./yr. Total mass loss from 2003 to 2009 was - 1.13 ± 0.46 km3. Glacier retreat likely reflects increases in annual total radiation, annual positive degree days, and maximum temperature, with concurrent increases in precipitation insufficient to replenish glacial mass loss. The rate of glacier retreat in Depuchangdake is less than that for Himalayan glaciers in Indian monsoon-dominated areas, but greater than that for Karakoram glaciers in mid-latitude westerly-dominated areas. Glacier type, climate zone, and climate change all impact on the differing degrees of long-term regional glacial change rate; however, special glacier distribution forms can sometimes lead to exceptional circumstances.

  13. Long-term linkages between glaciers, permafrost and hydrology at two glacierized watersheds in Alaska

    Science.gov (United States)

    Gaedeke, A.; Liljedahl, A. K.; Gatesman, T.; Campbell, S. W.; Hock, R.; Oneel, S.

    2015-12-01

    Climate warming is expected to have considerable impact on the regional water balance of high latitude Arctic and sub-Arctic glacerized watersheds. In this study we combine field observations and the physically based Water Balance Simulation Model WaSiM to refine our understanding of the linkages between glaciers, permafrost and hydrology at two nearby basins with contrasting precipitation regimes: Jarvis Cr. watershed (630 km2) on the north (rain-shadow) side of Eastern Alaska Range and the south facing Phelan Cr. (32 km2), which include the US Geological Survey benchmark site Gulkana Glacier. Both are characterized by a semi-arid climate and are sub-watersheds of the Tanana River basin (12,000 km2). Our research questions include: How has glacier water storage and release varied in the past and how are they expected to change in the future? And what are the subsequent effects on lowland runoff and regional groundwater recharge? Our analyses show i) an increase in air temperature and summer warmth index (the sum of all mean monthly air temperature above 0 °C) in recent decades and ii) a continued negative glacier mass balance. Our findings suggest that, on the larger spatial scale (Tanana River basin), the reduced glacier coverage and increased glacier wastage has, in combination with limited changes in precipitation, lead to (i) increased mean annual and (ii) late winter (March) runoff. We postulate that this is due to increased groundwater recharge, which has been fueled by the 20% reduction in glacier coverage of the Tanana River basin. Here we aim to assess the combined effect of climate change, glacier shrinkage and thawing permafrost on the regional sub-arctic mountain- to lowland hydrologic system, which may transition into a regime with less surface and more subsurface water availability.

  14. Quantifying the influence of refreezing melt water on the mass balance and runoff of Freya Glacier in Northeast-Greenland

    Science.gov (United States)

    Resch, G.; Weyss, G.; Hynek, B.; Schöner, W.; Glade, T.

    2012-04-01

    Refreezing of melt water is known to play an important role in both the mass and energy budgets of Arctic glaciers as internal accumulation leads to a systematic error in mass balance calculation if it is not accounted for. A variety of measurements with the aim of quantification of refreezing of melt water have been done in August 2011 on Freya Glacier, 6 km long valley glacier situated on Clavering Island, 10 km southwest of the Zackenberg research station (ZERO), situated on the northeast coast of Greenland. Its surface area is 6,6km2, reaching from 330 m to 1250 m a.s.l. and is mainly oriented to NW. Since 2007, the mass balance of Freya-Glacier is measured directly, using around 15 stakes, which represents a unique database in this area. Besides surface mass balance, firn and ice stratigraphy in shallow cores and with GPR, also discharge measurements have been done. Thermistor strings have been drilled into the ice and mounted on poles for continuous data collection of ice- and snow temperatures during the winter season. Furthermore, an AWS near the ELA has been set-up for measuring all terms needed for energy balance calculations. Shallow ice cores (2m) and snow pits serve as point information in combination with data collected by a 900Mhz GPR-profile along the flow line and the SI-zone to identify annual SI-Layers. Mapping of the retreat of the snowline with GPS, frequent reading of the ablation stakes and snow depth in combination with discharge measurements have been carried out through the ablation season, to get information about meltwater retention on a basinscale. These data serve as input for a thermodynamic, physical based mass-balance and runoff model to investigate melt water retention and water balance on a basin scale. In this poster we present first results of data analysis, especially on bias and variability between discharge measurements and stake-based mass balance calculations. Besides that, a comparison between these measurements and data

  15. Glaciers dominate eustatic sea-level rise in the 21st century

    Science.gov (United States)

    Meier, Mark Frederick; Dyurgerov, M.B.; Rick, Ursula K.; Pfeffer, William Tad; Anderson, Suzanne P.; Glazovsky, Andrey F.

    2007-01-01

    Ice loss to the sea currently accounts for virtually all of the sea-level rise that is not attributable to ocean warming, and about 60% of the ice loss is from glaciers and ice caps rather than from the two ice sheets. The contribution of these smaller glaciers has accelerated over the past decade, in part due to marked thinning and retreat of marine-terminating glaciers associated with a dynamic instability that is generally not considered in mass-balance and climate modeling. This acceleration of glacier melt may cause 0.1 to 0.25 meter of additional sea-level rise by 2100.

  16. Towards an improved glacier monitoring program in the Kyrgyz Tien Shan and Pamir Mountains

    Science.gov (United States)

    Barandun, Martina; Huss, Matthias; Azisov, Erlan; Gafurov, Abror; Vorogushyn, Sergiy; Usubaliev, Ryskul; Kronenberg, Marlene; Hoelzle, Martin

    2014-05-01

    The monitoring of glacier mass balance in remote regions is important to understand the response of glaciers to climate change. The coverage of monitored glaciers in Central Asia has been very limited for the past 15 years; however the necessity of enhanced understanding regarding glacier dynamics and long term evolution in this particular region is crucial. Moisture availability importantly determines glacier response. Glaciers located in the Northern Tien Shan and Pamir Mountains are likely not to be directly influenced by monsoon such as most monitored Peri-Himalayan glaciers. However, not only scientific reasons make glacier monitoring to be of great relevance, also the link to political and socio-economic constraints on water scarcity carries high importance. First steps towards the establishment of a new glacier monitoring network were performed in 2010/2011 and since then modernization and extension of the monitoring strategies are continuously aspired. Close cooperation of international and local scientists build the basis of the program. Today four glaciers located in the Kyrgyz Tien Shan (Golubin Glacier, Suek Zapadniy Glacier, Glacier No. 354) and the North-Western Pamir (Abramov Glacier) are regularly monitored. The network is planned to be extended in the next years to cover selected glaciers in Uzbekistan and Tajikistan. Further, we intend to develop new approaches to remotely monitor sub-seasonal glacier mass balance at a regional scale. In-situ mass balance measurements are taken at all four glaciers continuously in late summer. Automatic weather stations installed at Abramov Glacier in 2011 and at Golubin Glacier in 2013 deliver daily meteorological data allowing the application of a simple mass balance model driven with local precipitation and temperature data. Model calibration is performed using glaciological measurements and results are validated with snowline observations based on remote imagery. Automatic cameras at Abramov Glacier take

  17. Glacier fluctuations, global temperature and sea-level change

    OpenAIRE

    P. W. Leclercq

    2012-01-01

    The current world-wide glacier retreat is a clear sign of global warming. In addition, glaciers contribute to sea-level rise as a consequence of the current retreat. In this thesis we use records of past glacier fluctuations to reconstruct past climate variations and the glacier contribution to sea-level change. Firstly, a coherent data set of world-wide glacier fluctuations over the past centuries is compiled. Most available information of glacier fluctuations concerns glacier length fluctua...

  18. Recent Glacier Recession – a New Source of Postglacial Treeline and Climate History in the Swedish Scandes

    Directory of Open Access Journals (Sweden)

    Lisa Öberg

    2011-12-01

    Full Text Available Climate warming during the past century has imposed recession of glaciers and perennial snow/ice patches along the entire Swedish Scandes. On the newly exposed forefields, subfossil wood remnants are being outwashed from beneath ice and snow bodies. In Scandinavia, this kind of detrital wood is a previously unused source of postglacial vegetation and climate history. The present study reports radiocarbon dates of a set of 78 wood samples, retrieved from three main sites, high above modern treelines and stretching along the Swedish Scandes. In accord with previous studies, pine (Pinus sylvestris colonized early emerging nunataks already during the Late Glacial. Around 9600-9500 cal. yr BP a first massive wave of tree establishment, birch and pine, took place in “empty” glacier cirques. Both species grew 400-600 m above their present-ay treeline position and the summer temperatures may have been 3.5 °C warmer than present. In respons to Neoglacial cooling, treelines of both birch and pine descended until their final disappearance from the record 4400 and 5900 cal. yr BP, respectively. During the entire interval 9600 to 4400 cal. yr BP, birch prospered in a 100-150 broad belt above the uppermost pines. The recent emergence of tree remnants in the current habitats relates to the contemporary episode of climate warming, possibly unprecedented for several past millennia. It is inferred, by an anology with the past, that in a future scenario with summers 3.5 ° warmer than present, the birch treeline may rise by 600 m or so.

  19. Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway

    Science.gov (United States)

    Engelhardt, M.; Schuler, T. V.; Andreassen, L. M.

    2014-02-01

    Glacierised catchments show a discharge regime that is strongly influenced by snow and glacier meltwaters. In this study, we modelled the mass balance and discharge rates for three highly glacierised catchments (>50% glacier cover) in western Norway over the period 1961-2012. The spatial pattern of the catchments follows a gradient in climate continentality from west to east. The model input were gridded temperature and precipitation values from seNorge (http://senorge.no) which are available at daily resolution. The model accounted for accumulation of snow, transformation of snow to firn and ice, evaporation and melt. Calibration and validation were performed for each catchment based on measurements of seasonal glacier mass balances and daily discharge rates, as additional validation data served daily melt rates from sonic rangers located in the ablation zones of two of the glaciers. The discharge sources snowmelt, glacier melt and rain were analysed with respect to spatial variations and temporal evolution. Model simulations reveal an increase in the relative contribution from glacier melt to total discharge for the three catchments from less than 10% in the early 1990s to 15-30% in the late 2000s. The decline in precipitation by 10-20% in the same period was therefore overcompensated, resulting in an increase in annual discharge by 5-20%. Annual discharge sums and annual glacier melt are most strongly correlated with annual and winter precipitation at the most maritime glacier and, with increased climate continentality, variations in both glacier melt contribution and annual discharge are becoming more strongly correlated with variations in summer temperatures. Therefore, glaciers in more continental climates are especially vulnerable to decrease in both annual and summer discharge with continued rise in summer temperatures and subsequent decrease in glacier extent. This may lead to significant changes to the discharge regime, with increase during spring but

  20. Glaciers of Asia

    Science.gov (United States)

    Williams, Richard S., Jr.; Ferrigno, Jane G.

    2010-01-01

    systems of the world including the Himalaya, Karakorum, Tien Shan and Altay mountain ranges. The glaciers are widely scattered and cover an area of about 59,425 km2. The mountain glaciers may be classified as maritime, subcontinental or extreme continental. In Afghanistan, more than 3,000 small glaciers occur in the Hindu Kush and Pamir mountains. Most glaciers occur on north-facing slopes shaded by mountain peaks and on east and southeast slopes that are shaded by monsoon clouds. The glaciers provide vital water resources to the region and cover an area of about 2,700 km2. Glaciers of northern Pakistan are some of the largest and longest mid-latitude glaciers on Earth. They are located in the Hindu Kush, Himalaya, and Karakoram mountains and cover an area of about 15,000 km2. Glaciers here are important for their role in providing water resources and their hazard potential. The glaciers in India are located in the Himalaya and cover about 8,500 km2. The Himalaya contains one of the largest reservoirs of snow and ice outside the polar regions. The glaciers are a major source of fresh water and supply meltwater to all the rivers in northern India, thereby affecting the quality of life of millions of people. In Nepal, the glaciers are located in the Himalaya as individual glaciers; the glacierized area covers about 5,324 km2. The region is the highest mountainous region on Earth and includes the Mt. Everest region. Glaciers in the Bhutan Himalaya have a total area of about 1,317 km2. Many recent glacier studies are focused on glacier lakes that have the potential of generating dangerous glacier lake outburst floods. Research on the glaciers of the middle-latitude, high-mountain glaciers of Asia has also focused on the information contained in the ice cores from the glaciers. This information helps in the reconstruction of paleoclimatic records, and the computer modeling of global climate change.

  1. Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru)

    Science.gov (United States)

    Carey, Mark; Baraer, Michel; Mark, Bryan G.; French, Adam; Bury, Jeffrey; Young, Kenneth R.; McKenzie, Jeffrey M.

    2014-10-01

    Glacier shrinkage caused by climate change is likely to trigger diminished and less consistent stream flow in glacier-fed watersheds worldwide. To understand, model, and adapt to these climate-glacier-water changes, it is vital to integrate the analysis of both water availability (the domain of hydrologists) and water use (the focus for social scientists). Drawn from a case study of the Santa River watershed below Peru’s glaciated Cordillera Blanca mountain range, this paper provides a holistic hydro-social framework that identifies five major human variables critical to hydrological modeling because these forces have profoundly influenced water use over the last 60 years: (1) political agendas and economic development; (2) governance: laws and institutions; (3) technology and engineering; (4) land and resource use; and (5) societal responses. Notable shifts in Santa River water use-including major expansions in hydroelectricity generation, large-scale irrigation projects, and other land and resource-use practices-did not necessarily stem from changing glacier runoff or hydrologic shifts, but rather from these human variables. Ultimately, then, water usage is not predictable based on water availability alone. Glacier runoff conforms to certain expected trends predicted by models of progressively reduced glacier storage. However, societal forces establish the legal, economic, political, cultural, and social drivers that actually shape water usage patterns via human modification of watershed dynamics. This hydro-social framework has widespread implications for hydrological modeling in glaciated watersheds from the Andes and Alps to the Himalaya and Tien Shan, as well as for the development of climate change adaptation plans.

  2. Towards a process-based understanding of Holocene polar climate change. Using glacier-fed lake sediments from Arctic Svalbard and Antarctic South Georgia

    OpenAIRE

    Bilt, Willem van der

    2016-01-01

    Earth`s polar regions are undergoing dramatic changes due to ongoing climate change as demonstrated by increasing temperatures, collapsing ice shelves, Arctic sea ice loss and rapid glacier retreat. Driving an accelerating rise in global sea level, this amplified regional response may have devastating global socio-economic consequences in the foreseeable future. Yet the causes and range of polar climate variability remain poorly understood as observational records are short and fragmentary, w...

  3. Estimating the ice thickness of mountain glaciers with an inverse approach using surface topography and mass-balance

    International Nuclear Information System (INIS)

    We present a numerical method to estimate the ice thickness distribution within a two-dimensional, non-sliding mountain glacier, given a transient surface geometry and a mass-balance distribution, which are relatively easy to obtain for a large number of glaciers. The inverse approach is based on the shallow ice approximation (SIA) of ice flow and requires neither filtering of the surface topography with a lower slope limit nor approximation of constant basal shear stress. We first address this problem for a steady-state surface geometry. Next, we use an apparent surface mass-balance description that makes the transient evolution quasi-stationary. Then, we employ a more elaborated fixed-point method in which the bedrock solution is iteratively obtained by adding the difference between the computed and known surface geometries at the end of the considered time interval. In a sensitivity study, we show that the procedure is much more susceptible to small perturbations in surface geometry than mass-balance. Finally, we present preliminary results for bed elevations in three space dimensions. (paper)

  4. Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya during the nineties preceded recent mass loss

    Directory of Open Access Journals (Sweden)

    C. Vincent

    2013-04-01

    Full Text Available The volume change of the Chhota Shigri Glacier (India, 32° 20 N, 77° 30' E between 1988 and 2010 has been determined using in situ geodetic measurements. This glacier has experienced only a slight mass loss between 1988 and 2010 (−3.8 ± 2.0 m w.e. (water equivalent corresponding to −0.17 ± 0.09 m w.e. yr−1. Using satellite digital elevation models (DEM differencing and field measurements, we measure a negative mass balance (MB between 1999 and 2010 (−4.8 ± 1.8 m w.e. corresponding to −0.44 ± 0.16 m w.e. yr−1. Thus, we deduce a slightly positive or near-zero MB between 1988 and 1999 (+1.0 ± 2.7 m w.e. corresponding to +0.09 ± 0.24 m w.e. yr−1. Furthermore, satellite DEM differencing reveals that the MB of the Chhota Shigri Glacier (−0.39 ± 0.15 m w.e. yr−1 has been only slightly less negative than the MB of a 2110 km2 glaciarized area in the Lahaul and Spiti region (−0.44 ± 0.09 m w.e. yr−1 during 1999−2011. Hence, we conclude that the ice wastage is probably moderate in this region over the last 22 yr, with near equilibrium conditions during the nineties, and an ice mass loss after. The turning point from balanced to negative mass budget is not known but lies probably in the late nineties and at the latest in 1999. This positive or near-zero MB for Chhota Shigri Glacier (and probably for the surrounding glaciers of the Lahaul and Spiti region during at least part of the 1990s contrasts with a recent compilation of MB data in the Himalayan range that indicated ice wastage since 1975. However, in agreement with this compilation, we confirm more negative balances since the beginning of the 21st century.

  5. Rapid Late Holocene glacier fluctuations reconstructed from South Georgia lake sediments using novel analytical and numerical techniques

    Science.gov (United States)

    van der Bilt, Willem; Bakke, Jostein; Werner, Johannes; Paasche, Øyvind; Rosqvist, Gunhild

    2016-04-01

    The collapse of ice shelves, rapidly retreating glaciers and a dramatic recent temperature increase show that Southern Ocean climate is rapidly shifting. Also, instrumental and modelling data demonstrate transient interactions between oceanic and atmospheric forcings as well as climatic teleconnections with lower-latitude regions. Yet beyond the instrumental period, a lack of proxy climate timeseries impedes our understanding of Southern Ocean climate. Also, available records often lack the resolution and chronological control required to resolve rapid climate shifts like those observed at present. Alpine glaciers are found on most Southern Ocean islands and quickly respond to shifts in climate through changes in mass balance. Attendant changes in glacier size drive variations in the production of rock flour, the suspended product of glacial erosion. This climate response may be captured by downstream distal glacier-fed lakes, continuously recording glacier history. Sediment records from such lakes are considered prime sources for paleoclimate reconstructions. Here, we present the first reconstruction of Late Holocene glacier variability from the island of South Georgia. Using a toolbox of advanced physical, geochemical (XRF) and magnetic proxies, in combination with state-of-the-art numerical techniques, we fingerprinted a glacier signal from glacier-fed lake sediments. This lacustrine sediment signal was subsequently calibrated against mapped glacier extent with the help of geomorphological moraine evidence and remote sensing techniques. The outlined approach enabled us to robustly resolve variations of a complex glacier at sub-centennial timescales, while constraining the sedimentological imprint of other geomorphic catchment processes. From a paleoclimate perspective, our reconstruction reveals a dynamic Late Holocene climate, modulated by long-term shifts in regional circulation patterns. We also find evidence for rapid medieval glacier retreat as well as a

  6. Response of Glacier Flash Flood to Climate Warming in the Tarim River Basin%塔里木河流域冰川洪水对气候变暖的响应

    Institute of Scientific and Technical Information of China (English)

    沈永平; 王国亚; 邵春

    2007-01-01

    In past 50 years, the air temperature fluctuation was raising trend in Tarim River Basin. The annual mean temperature has increased by 0.3℃ in the whole Tarim River Basin, and by 0.6℃ in the mountain areas. With global warming, the frequency of unstable and extreme climatic events increased, glaciers retreating accelerated and snow meltwater increased have resulted in the more frequency of snow-ice disasters such as glacier debrisflow and glacier flash flood etc. Since 1980s, in the process of intense climate warming, glaciers melting intensified, ice temperature rose and glaciers flows accelerated, and lead to more glacial lakes and extending water storage capacity and stronger glacial lake outburst floods occurrence. It is proposed that the monitoring and evaluating of the impact of climate change on water resources and floods should be enhanced.

  7. Constraints on southern hemisphere tropical climate change during the Little Ice Age and Younger Dryas based on glacier modeling of the Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Malone, Andrew G. O.; Pierrehumbert, Raymond T.; Lowell, Thomas V.; Kelly, Meredith A.; Stroup, Justin S.

    2015-10-01

    Improving the late Quaternary paleoclimate record through climate interpretations of low-latitude glacier length changes advances our understanding of past climate change events and the mechanisms for past, present, and future climate change. Paleotemperature reconstructions at low-latitude glaciers are uniquely fruitful because they can provide both site-specific information and enhanced understanding of regional-scale variations due to the structure of the tropical atmosphere. We produce Little Ice Age (LIA) and Younger Dryas (YD) paleoclimate reconstructions for the Huancané outlet glacier of the Quelccaya Ice Cap (QIC) and low-latitude southern hemisphere regional sea surface temperatures (SSTs) using a coupled ice-flow and energy balance model. We also model the effects of long-term changes in the summit temperature and precipitiation rate and the effects of interannual climate variability on the Huancané glacier length. We find temperature to be the dominant climate driver of glacier length change. Also, we find that interannual climate variability cannot adequately explain glacier advances inferred from the geomorphic record, necessitating that these features were formed during past colder climates. To constrain our LIA reconstruction, we incorporate the QIC ice core record, finding a LIA air temperature cooling at the ice cap of between ˜0.7 °C and ˜1.1 °C and ˜0.4 °C and regional SSTs cooling of ˜0.6 °C. For the YD paleoclimate reconstructions, we propose two limits on the precipitation rate, since the ice core record does not extend into the Pleistocene: 1) the precipitation rate scales with the Clausius-Clapeyron relationship (upper limit on cooling) and 2) the precipitation rate increases by 40% (lower limit on cooling), which is an increase about twice as great as the regional increases realized in GCM simulations for the period. The first limit requires ˜1.6 °C cooling in ice cap air temperatures and ˜0.9 °C cooling in SSTs, and the

  8. Application of a minimal glacier model to Hansbreen, Svalbard

    Directory of Open Access Journals (Sweden)

    J. Oerlemans

    2011-01-01

    Full Text Available Hansbreen is a well studied tidewater glacier in the southwestern part of Svalbard, currently about 16 km long. Since the end of the 19th century it has been retreating over a distance of 2.7 km. In this paper the global dynamics of Hansbreen are studied with a minimal glacier model, in which the ice mechanics are strongly parameterised and a simple law for iceberg calving is used. The model is calibrated by reconstructing a climate history in such a way that observed and simulated glacier length match. In addition, the calving law is tuned to reproduce the observed mean calving flux for the period 2000–2008.

    Equilibrium states are studied for a wide range of values of the equilibrium line altitude. The dynamics of the glacier are strongly nonlinear. The height-mass balance feedback and the water depth-calving flux feedback give rise to cusp catastrophes in the system.

    For the present climatic conditions Hansbreen cannot survive. Depending on the imposed climate change scenario, in AD 2100 Hansbreen is predicted to have a length between 10 and 12 km. The corresponding decrease in ice volume (relative to the volume in AD 2000 is 45 to 65%.

    Finally the late-Holocene history of Hansbreen is considered. We quote evidence from dated peat samples that Hansbreen did not exist during the Holocene Climatic Optimum. We speculate that at the end of the mid-Holocene Climatic Optimum Hansbreen could advance because the glacier bed was at least 50 m higher than today, and because the tributary glaciers on the western side may have supplied a significant amount of mass to the main stream. The excavation of the overdeepening and the formation of the shoal at the glacier terminus probably took place during the Little Ice Age.

  9. Mass gain of glaciers in Lahaul and Spiti region (North India during the nineties revealed by in-situ and satellite geodetic measurements

    Directory of Open Access Journals (Sweden)

    C. Vincent

    2012-09-01

    Full Text Available The volume change of Chhota Shigri Glacier (India, 32° N between 1988 and 2010 has been determined using in-situ geodetic measurements. This glacier has experienced only a slight mass loss over the last 22 yr (–3.8 ± 1.8 m w.e.. Using satellite digital elevation models (DEM differencing and field measurements, we measure a negative mass balance (MB between 1999 and 2011 (–4.7 ± 1.8 m w.e.. Thus, we deduce a positive MB between 1988 and 1999 (+1.0 ± 2.5 m w.e.. Furthermore, satellite DEM differencing reveals a good correspondence between the MB of Chhota Shigri Glacier and the MB of an over 2000 km2 glaciarized area in the Lahaul and Spiti region during 1999–2011. We conclude that there has been no large ice wastage in this region over the last 22 yr, ice mass loss being limited to the last decade. This contrasts to the most recent compilation of MB data in the Himalayan range that indicates ice wastage since 1975, accelerating after 1990. For the rest of western Himalaya, available observations of glacier MBs are too sparse and discontinuous to provide a clear and relevant regional pattern of glacier volume change over the last two decades.

  10. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    Science.gov (United States)

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  11. Peak water from glaciers: advances and challenges in a global perspective (Arne Richter Award for Outstanding Young Scientists Lecture)

    Science.gov (United States)

    Huss, Matthias; Hock, Regine

    2014-05-01

    Mountain glaciers show a high sensitivity to changes in climate forcing. In a global perspective, their anticipated retreat will pose far-reaching challenges to the manage- ment of fresh water resources and will raise sea levels significantly within only a few decades. Different model frameworks have been applied to simulate melt water con- tributions of glaciers outside the two ice sheets for the recent IPCC report. However, these models depend on strongly simplified, and often empirical descriptions of the driving processes hampering the reliability of the results. For example, glacier retreat is parameterized with volume-area scaling thus neglecting the glacier's actual geome- try and the surface elevation feedback. Frontal ablation of tidewater and lake-calving glaciers, an important mass loss component for a third of the world's glacier area, is not accounted for. Thus, a transition from the physically-based mass balance-ice flow models developed for single glaciers to the application at the global scale is urgently needed. The chal- lenges are manifold but can be tackled with the new data sets, methods and process- understanding that have emerged during the last years. Here, we present a novel glacier model for calculating the response of surface mass balance and 3D glacier geometry for each individual glacier around the globe. Our approach accounts for feedbacks due to glacier retreat and includes models for mass loss due to frontal ablation and the refreezing of water in the snow/firn. The current surface geometry and thickness distribution for each of the world's roughly 200'000 glaciers is extracted from the Randolph Glacier Inventory v3.2 and terrain models. Our simulations are driven with 14 Global Circulation Models from the CMIP5 project using the RCP4.5, RCP8.5 and RCP2.6 scenarios. Regionally specified cumulative global sea level rise due to glacier mass loss until 2100 is discussed in the light of model uncertainties and the advantages of using a

  12. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps

    Science.gov (United States)

    Fischer, Mauro; Huss, Matthias; Kummert, Mario; Hoelzle, Martin

    2016-06-01

    Due to the relative lack of empirical field data, the response of very small glaciers (here defined as being smaller than 0.5 km2) to current atmospheric warming is not fully understood yet. Investigating their mass balance, e.g. using the direct glaciological method, is a prerequisite to fill this knowledge gap. Terrestrial laser scanning (TLS) techniques operating in the near infrared range can be applied for the creation of repeated high-resolution digital elevation models and consecutive derivation of annual geodetic mass balances of very small glaciers. This method is promising, as laborious and potentially dangerous field measurements as well as the inter- and extrapolation of point measurements can be circumvented. However, it still needs to be validated. Here, we present TLS-derived annual surface elevation and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn, and Pizolgletscher) and two consecutive years (2013/14-2014/15). The scans were acquired with a long-range Riegl -6000 especially designed for surveying snow- and ice-covered terrain. Zonally variable conversion factors for firn and bare ice surfaces were applied to convert geodetic volume to mass changes. We compare the geodetic results to direct glaciological mass balance measurements coinciding with the TLS surveys and assess the uncertainties and errors included in both methods. Average glacier-wide mass balances were negative in both years, showing stronger mass losses in 2014/15 (-1.65 m w.e.) compared to 2013/14 (-0.59 m w.e.). Geodetic mass balances were slightly less negative but in close agreement with the direct glaciological ones (R2 = 0.91). Due to the dense in situ measurements, the uncertainties in the direct glaciological mass balances were small compared to the majority of measured glaciers worldwide (±0.09 m w.e. yr-1 on average), and similar to uncertainties in the TLS-derived geodetic mass

  13. Glacier shrinkage and water resources in the Andes

    Science.gov (United States)

    Francou, Bernard; Coudrain, Anne

    For more than a century glaciers around the world have been melting as air temperatures rise due to a combination of natural processes and human activity. The disappearance of these glaciers can have wide-ranging effects, such as the creation of new natural hazards or changes in stream flow that could threaten water suppliesSome of the most dramatic melting has occurred in the Andes mountain range in South America. To highlight the climatic and glacial change in the Andes and to encourage the scientific community to strengthen the glacier observation network that stretches from Colombia to the Patagonian ice fields, the Instituto Nacional de Recursos Naturales (INRENA), Perú, and the Institute of Research and Development (IRD), France, recently organized the second Symposium on Mass Balance of Andean Glaciers in Huaráz,Perú.

  14. Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory – Pyramid data and snow albedo changes over Himalayan glaciers

    Directory of Open Access Journals (Sweden)

    T. J. Yasunari

    2010-07-01

    Full Text Available The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC in the pre-monsoon period (March–May was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory – Pyramid (NCO-P sited at 5079 m a.s.l. in the Himalayan region. A total BC deposition rate was estimated as 2.89 μg m−2 day−1 providing a total deposition of 266 μg m−2 for March–May at the site, based on a calculation with a minimal deposition velocity of 1.0×10−4 m s−1 with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1–669.8 nm by correlation analyses between equivalent BC concentration and particulate size distributions in the atmosphere. The BC deposition from the size distribution data was also estimated. It was found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0–68.2 μg kg−1, assuming snow density variations of 195–512 kg m−3 of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0–5.2% albedo reductions. By assuming these albedo reductions continue throughout the year, and then applying simple numerical experiments with a glacier mass balance model, we estimated reductions would lead to runoff increases of 70–204 mm of water. This runoff is the equivalent of 11.6–33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season is comparable to those at similar altitudes in the Himalayan region, where glaciers and perpetual snow regions begin, in the vicinity of NCO-P. Our estimates from only BC are likely to

  15. Glacier change from the early Little Ice Age to 2005 in the Torngat Mountains, northern Labrador, Canada

    Science.gov (United States)

    Way, Robert G.; Bell, Trevor; Barrand, Nicholas E.

    2015-10-01

    The glaciers of the Torngat Mountains of northern Labrador are the southernmost of the Canadian Arctic and the easternmost of continental North America. Currently, 195 small mountain glaciers cover an area in excess of ~ 24 km2, confined mostly to small cirques and upland depressions. Using a combination of field and remote sensing methods this study reconstructs and dates the areal extent of Torngat glaciers at their Neoglacial maximums, enabling the first assessment of regional glacier change over the past several centuries. Mapped glacier paleomargins (n = 165) are compared to current (2005) glaciers and ice masses, showing a 52.5% reduction in glacier area, with at least 11 former glaciers altogether disappearing. Glacier change is spatially homogenous and independent of most geographic and topographic factors; however, glacier elevation and glacier size mitigated total change. Previously established lichen growth stations were revisited, and growth rates recalculated based on ~ 30-year-long records, enabling the construction of locally derived low- and high-altitude lichen growth curves. Using growth rates and in situ lichen measurements, the retreat from maximum Neoglacial moraine extents are suggested to have occurred between A.D. 1581 and 1673. These findings indicate a similar magnitude of post-LIA retreat to mountain glaciers elsewhere, yet a much earlier timing (~ 200 years) of retreat than other glaciers in the eastern Canadian Arctic. Though no definitive answer explaining this discrepancy is presented, evidence suggests that regional climate dynamics and the importance of solar radiation for Torngat glaciers may play an important role in local glacierization.

  16. Perturbation of dynamic response at short outlets glaciers of Jostedalsbreen, maritime South Norway?

    Science.gov (United States)

    Winkler, Stefan

    2010-05-01

    Mountain glaciers are key indicators of global climate change. Changes in glacier volume, area, and length are determined by the climate and related mass flux/glacier flow. For several aspects of sustainable development in high-mountain regions (hydro-electric energy, water supply, tourism, etc.) it is crucial to estimate future glacier variations. Therefore, the interactions and relationships between individual meteorological and glaciological parameters need to be known before any model can be applied. Due to their steep mass balance gradient and high mass turnover, maritime mountain glaciers might respond very sensitively to changes of predominant weather or climate conditions. The steep outlet glaciers of Jostedalsbreen, western South Norway, underwent two fairly contrasting periods during the past 20 years. Interpretation of this ‘extreme' behaviour presented here deserved special attention. Detailed analysis of mass-balance, length variation, and climate data from maritime Southern Norway reveals their variations are not entirely determined by air temperature changes. A considerable increase in ice mass and related frontal advance during the AD 1990s was caused by increased winter precipitation. By contrast, a frontal retreat starting around AD 2000 continued and accelerated in recent years. Although above-average summer air temperatures unambiguously were responsible for this retreat, its proportion significantly exceeded the slight contemporary glacier mass loss. Since 2000, length variations at the short outlets of Jostedalsbreen seem to be decoupled from the net mass-balance data series. Additionally, the dynamic response of the glacier front to net balance and mass flux variations has been disturbed. Previously applicable terminus reaction times of 3 to 4 years have been replaced by an immediate response to higher summer air temperatures. The correlation of net balance to length variation dropped significant since AD 2000. Comparable changes between

  17. A data set of worldwide glacier length fluctuations

    OpenAIRE

    P. W. Leclercq; Oerlemans, J.; H. J. Basagic; I. Bushueva; Cook, A. J.; Le Bris, R.

    2014-01-01

    Glacier fluctuations contribute to variations in sea level and historical glacier length fluctuations are natural indicators of past climate change. To study these subjects, long-term information of glacier change is needed. In this paper we present a data set of global long-term glacier length fluctuations. The data set is a compilation of available information on changes in glacier length worldwide, including both measured and reconstructed glacier length fluctuations. All...

  18. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 1. Effect of Percolating Meltwater on their Distribution in Glacier Ice.

    Science.gov (United States)

    Pavlova, Pavlina Aneva; Jenk, Theo Manuel; Schmid, Peter; Bogdal, Christian; Steinlin, Christine; Schwikowski, Margit

    2015-12-15

    In Alpine regions, glaciers act as environmental archives and can accumulate significant amounts of atmospherically derived pollutants. Due to the current climate-warming-induced accelerated melting, these pollutants are being released at correspondingly higher rates. To examine the effect of melting on the redistribution of legacy pollutants in Alpine glaciers, we analyzed polychlorinated biphenyls in an ice core from the temperate Silvretta glacier, located in eastern Switzerland. This glacier is affected by surface melting in summer. As a result, liquid water percolates down and particles are enriched in the current annual surface layer. Dating the ice core was a challenge because meltwater percolation also affects the traditionally used parameters. Instead, we counted annual layers of particulate black carbon in the ice core, adding the years with negative glacier mass balance, that is, years with melting and subsequent loss of the entire annual snow accumulation. The analyzed samples cover the time period 1930-2011. The concentration of indicator PCBs (iPCBs) in the Silvretta ice core follows the emission history, peaking in the 1970s (2.5 ng/L). High PCB values in the 1990s and 1930s are attributed to meltwater-induced relocation within the glacier. The total iPCB load at the Silvretta ice core site is 5 ng/cm(2). A significant amount of the total PCB burden in the Silvretta glacier has been released to the environment. PMID:26632967

  19. An approach to derive regional snow lines and glacier mass change from MODIS imagery, western North America

    OpenAIRE

    J. M. Shea; B. Menounos; Moore, R D; Tennant, C.

    2013-01-01

    We describe a method to calculate regional snow line elevations and annual equilibrium line altitudes (ELAs) from daily MODIS imagery (MOD02QKM) on large glaciers and icefields in western North America. An automated cluster analysis of the cloud-masked visible and near-infrared bands at 250 m resolution is used to delineate glacier facies (snow and ice) for ten glacierized regions between 2000–2011. For each region and season, the maximum observed value of the 20th percentil...

  20. Relative importance of glacier contributions to water supply in a changing climate

    Science.gov (United States)

    The Snowmelt Runoff Model (SRM) was designed for simulation, forecasting, and future assessments, such as the effects of climate change. The most recent version of SRM uses the Microsoft Windows operating system and operates efficiently in the PC environment. A formalized algorithm for assessing ...

  1. Linking two centuries of tree growth and glacier dynamics with climate changes in Kamchatka

    Czech Academy of Sciences Publication Activity Database

    Doležal, Jiří; Altman, Jan; Vetrova, V. P.; Hara, T.

    2014-01-01

    Roč. 124, 1-2 (2014), s. 207-220. ISSN 0165-0009 R&D Projects: GA ČR GA13-13368S Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : climate change * Little Ice Age * tree ring reconstruction Subject RIV: EH - Ecology, Behaviour Impact factor: 3.430, year: 2014

  2. Glacier Changes in the Cordillera Blanca, Peru, Derived From SPOT5 Imagery, GIS and Field- Based Measurements

    Science.gov (United States)

    Racoviteanu, A.; Arnaud, Y.; Williams, M. W.; Singh Khalsa, S.

    2007-12-01

    There is urgency in deriving an extensive dataset for deriving glacier changes within the Cordillera Blanca, Peru, in a cost-effective and timely manner. Rapid glacial retreat during the last decades in this area poses a threat for water resources, hydroelectric power and local traditions. While there is some information on decadal changes in glacier extents, there still remains a paucity of mass balance measurements and glacier parameters such as hypsometry, size distribution and termini elevations. Here we investigate decadal changes in glacier parameters for Cordillera Blanca of Peru using data from Système Probatoire d'Observation de la Terre (SPOT) sensor, an old glacier inventory from 1970 aerial photography, field-based mass balance measurements and meteorological observations. Here we focus on: constructing a geospatial glacier inventory from 2003 SPOT scenes; mass balance estimations using remote sensing and field data; frequency distribution of glacier area; changes in termini elevations; hypsometry changes over time; glacier topography (slope, aspect, length/width ratio); AAR vs. mass balance for Artesonraju and Yanamarey benchmark glaciers; precipitation and temperature trends in the region. Over the last 25 years, mean temperatures increases of 0.09 deg.C/yr were greater at lower elevation than the 0.01 deg.C/yr at higher elevations, with little change in precipitation. Comparison of the new SPOT-based glacier inventory with the 1970 inventory shows that glaciers in Cordillera Blanca retreated at a rate of 0.6% per year over the last three decades, with no significant differences in the rate of area loss between E and W side. At lower elevations there is an upward shift of glacier termini along with a decrease in glacier area. Small glaciers are losing more area than large glaciers. Based on the relationship between specific mass balance (bn) and accumulation area ratio (AAR) for the two benchmark glaciers, we predicted a steady-state equilibrium line

  3. New inventory of glaciers in southeastern part of the Eastern Sayan Mountains

    Directory of Open Access Journals (Sweden)

    E. Yu. Osipov

    2013-01-01

    Full Text Available Satellite images with high (Quick Bird, 2006, WorldView-1, 2008, 0.5–0.6 m and middle (Landsat-7 ETM +, 2001, 15–30 m resolution were used to map contemporary glaciers on two mountain peaks of south-eastern part of East Sayan Ridge – Munky Sardyk (3491 m a.s.l. and Topographov (3089 m a.s.l.. Topographic maps of 1978 and 1981 and Landsat-7 images (summer 2001 were used to assess glacier changes during second half of XX century. Modern terminal and lateral moraines near glacier snouts were used to reconstruct former outlines during the end of the Little Ice Age (middle of XIX century. Also SRTM data and GPS-surveys in Munku-Sardyk area were applied to measure glacier altitudes. GIS technologies allowed forming digital glacier data base with attribute information and new inventory was made. Totally 13 glaciers with area of 5.1 km² were investigated and mapped. Glaciers are located in vertical range from 2800–3490 m a.s.l. (Munku-Sardyk area and 2340–2950 m a.s.l. (Topographov area. Firn line on glaciers vary from 2540 to 3110 m a.s.l., rising to the southeast. On average, over the past 160 years (since the end of the Little Ice Age glaciers have significantly decreased. Ice area has decreased by 49%, length has diminished by 570 m, the glacier snouts has risen by 124 m. Analysis of regional climate data shows that the rate of deglaciation is well correlated with summer temperatures increasing in the second half of XX century, especially in 1980–1990s. A tendency to recover glacier mass balance was revealed during the last decade based on climatic data.

  4. Surface terrain characteristics and monsoon season mass balance of debris-covered glaciers in the Khumbu Himal, Nepal, obtained from high resolution Pléiades imagery.

    Science.gov (United States)

    Klug, Christoph; Nicholson, Lindsey; Rieg, Lorenzo; Sailer, Rudolf; Wirbel, Anna

    2016-04-01

    Debris-covered glaciers in the eastern Himalaya have pronounced surface relief consisting of hummocks and hollows, ice cliffs, lakes and former lake beds. This relief and spatially variable surface properties are expected to influence the spatially distributed surface energy balance and related ice mass loss and atmospheric interactions, but only a few studies have so far explicitly examined the nature of the surface terrain and its textures . In this work we present a new high-resolution digital terrain model (DTM) of a portion of the Khumbu Himal in the eastern Nepalese Himalaya, derived from Pléiades satellite imagery sampled in spring 2015. We use this DTM to study the terrain characteristics of five sample glaciers and analyse the inter- and intra- glacier variability of terrain characteristics in the context of glacier flow velocities and surface changes presented in previous studies in the area. In parallel to this analysis we also present the seasonal geodetic mass balance between spring and fall 2015, and relate it to the terrain properties, surface velocity and limited knowledge of the local lapse rates in meteorological conditions during this monsoon season.

  5. Glacier mass change evaluation in Lambert-Amery Area from 2002 to 2012 using ASTER stereo images and ICESat GLAS laser altimetry

    International Nuclear Information System (INIS)

    Currently, one of the major issues is to transform different remote sensing observations into a global reference for sustainable global-scale glacier change monitoring. In order to put glacier changes into a broader temporal context, it is desirable to extend the glacier observation time as far back as possible. In this paper, we present a case study of registering ASTER satellite stereo images to ICESat GLAS laser altimetry data, by matching terrain features identified from the ICESat measurements to those corresponding in the ASTER images. Features like ridges and nunatak can be extracted from ICESat data, and these features can also be measured in ASTER stereo images. A rigid body transformation (3 translations, 3 rotations) is applied for an optimal fit of these two sets of feature points. After transforming the ASTER photogrammetry measurements into the ICESat reference frame, we compute elevation change rates at each ICESat point by using a linear interpolation to obtain an estimate of surface elevation from ASTER. The surface firn/ice density model is used in converting the elevation changes to mass changes. Our study indicates that Lambert Glacier is close to being in mass balance between 2002 and 2012

  6. Glacier fluctuations, global temperature and sea-level change

    NARCIS (Netherlands)

    Leclercq, P.W.

    2012-01-01

    The current world-wide glacier retreat is a clear sign of global warming. In addition, glaciers contribute to sea-level rise as a consequence of the current retreat. In this thesis we use records of past glacier fluctuations to reconstruct past climate variations and the glacier contribution to sea-

  7. Peak water from glaciers: advances and challenges in a global perspective

    Science.gov (United States)

    Huss, M.; Hock, R.

    2014-12-01

    Mountain glaciers show a high sensitivity to changes in climate forcing. In a global perspective, their anticipated retreat will pose far-reaching challenges to the management of fresh water resources and will raise sea levels significantly within only a few decades. Different model frameworks have been applied to simulate melt water contributions of glaciers outside the two ice sheets for the recent IPCC report. However, these models depend on strongly simplified, and often empirical descriptions of the driving processes hampering the reliability of the results. Thus, a transition from the physically-based mass balance-ice flow models developed for single glaciers to the application at the global scale is urgently needed. The challenges are manifold but can be tackled with the new data sets, methods and process-understanding that have emerged during the last years. Here, we present a novel glacier model for calculating the response of surface mass balance and 3D glacier geometry for each individual glacier around the globe. Our approach accounts for feedbacks due to glacier retreat and includes models for mass loss due to frontal ablation and refreezing of water in the snow/firn. This allows the calculation of the components of proglacial runoff for each individual glacier in a process-based way. The current surface geometry and thickness distribution for each of the world's roughly 200'000 glaciers is extracted from the Randolph Glacier Inventory v3.3 and terrain models. Our simulations are driven with 14 Global Circulation Models from the CMIP5 project using the RCP4.5, RCP8.5 and RCP2.6 scenarios. We focus on the timing of peak water from glacierized catchments in all climatic regions of the earth and the corresponding importance of these regime changes on hydrological stress. Peak water represents a crucial tipping point for sustained water supply even for regions with only a minor glacier coverage, and is relevant to the dynamics of sea level rise. The

  8. Glaciers, ice sheets, and sea level: effect of a CO/sub 2/-induced climatic change

    Energy Technology Data Exchange (ETDEWEB)

    None

    1985-09-01

    The workshop examined the basic questions of how much water has been exchanged between land ice and ocean during the last century, what is happening now, and, given existing climate-modeling prediction, how much exchange can be expected in the next century. In addition, the evidence for exchange was examined and gaps in that evidence were identified. The report includes the 23 presentations made at the workshop, summarizes the workshop discussion, and presents the Committee's findings and recommendations. Separate abstracts have been prepared for the 23 presentations.

  9. Incorporation of the Mass Concentration and the New Snow Albedo Schemes into the Global Forecasting Model, GEOS-5 and the Impact of the New Schemes over Himalayan Glaciers

    Science.gov (United States)

    Yasunari, Teppei

    2012-01-01

    Recently the issue on glacier retreats comes up and many factors should be relevant to the issue. The absorbing aerosols such as dust and black carbon (BC) are considered to be one of the factors. After they deposited onto the snow surface, it will reduce snow albedo (called snow darkening effect) and probably contribute to further melting of glacier. The Goddard Earth Observing System version 5 (GEOS-5) has developed at NASA/GSFC. However, the original snowpack model used in the land surface model in the GEOS-5 did not consider the snow darkening effect. Here we developed the new snow albedo scheme which can consider the snow darkening effect. In addition, another scheme on calculating mass concentrations on the absorbing aerosols in snowpack was also developed, in which the direct aerosol depositions from the chemical transport model in the GEOS-5 were used. The scheme has been validated with the observed data obtained at backyard of the Institute of Low Temperature Science, Hokkaido University, by Dr. Teruo Aoki (Meteorological Research Institute) et aL including me. The observed data was obtained when I was Ph.D. candidate. The original GEOS-5during 2007-2009 over the Himalayas and Tibetan Plateau region showed more reductions of snow than that of the new GEOS-5 because the original one used lower albedo settings. On snow cover fraction, the new GEOS-5 simulated more realistic snow-covered area comparing to the MODIS snow cover fraction. The reductions on snow albedo, snow cover fraction, and snow water equivalent were seen with statistically significance if we consider the snow darkening effect comparing to the results without the snow darkening effect. In the real world, debris cover, inside refreezing process, surface flow of glacier, etc. affect glacier mass balance and the simulated results immediately do not affect whole glacier retreating. However, our results indicate that some surface melting over non debris covered parts of the glacier would be

  10. The surface energy balance of the Guanaco and Toro 1 glaciers in the Norte Chico region, Chile

    Science.gov (United States)

    MacDonell, Shelley; Mölg, Thomas; Nicholson, Lindsey; Kinnard, Christophe

    2010-05-01

    The ablation of the cold, arid, high-altitude glaciers of the Norte Chico region in Chile remains poorly constrained at present. The development of ablation features such as penitentes indicate that sublimation processes are prevalent, but equally the presence of ponds and cryoconite holes in the near-surface ice indicate that melt can also play a role in the ablation of these glaciers. In this paper we used meteorological data collected from the surfaces of the Guanaco and Toro 1 glaciers between October 2008 and July 2009 to determine the conditions that control the energy balance and the resulting mass loss by surface ablation. We investigate the diurnal and seasonal energy exchanges on each glacier to evaluate whether the processes on each are equivalent, before calculating the ratio of sublimation to melt on each. We found that melt was more important on Guanaco Glacier than on Toro 1 Glacier, and that the seasonal peak of ablation occurred on Guanaco Glacier between December and late January, whereas the ablation peak on Toro 1 Glacier between February and March. This ablation offset is probably related to differences in the terrain surrounding each climate station, such that on Guanaco Glacier, the surrounding terrain is planar, whereas on Toro 1 Glacier, whilst the immediate area around the climate station was free of penitentes for much of the modelled time, penitentes grew around the station, changing the roughness length, and hence the importance of sublimation. This study showed that the development of penitentes during an ablation season changes the importance of energy balance terms, and hence the types of ablation experienced on a glacier. In future we hope to be able to model ablation from penitente-covered regions more accurately, and to develop a distributed energy balance model for use on glaciers where penitentes exist.

  11. Response of regional climate and glacier ice proxies to El Niño-Southern Oscillation (ENSO in the subtropical Andes

    Directory of Open Access Journals (Sweden)

    E. Dietze

    2008-02-01

    Full Text Available El Niño-Southern Oscillation (ENSO is an important element of earth's ocean-climate system. To further understand its past variability, proxy records from climate archives need to be studied. Ice cores from high alpine glaciers may contain high resolution ENSO proxy information, given the glacier site is climatologically sensitive to ENSO. We investigated signals of ENSO in the climate of the subtropical Andes in the proximity of Cerro Tapado glacier (30°08' S, 69°55' W, 5550 m a.s.l., where a 36 m long ice core was drilled in 1999 (Ginot, 2001. We used annual and semi-annual precipitation and temperature time series from regional meteorological stations and interpolated grids for correlation analyses with ENSO indices and ice core-derived proxies (net accumulation, stable isotope ratio δ18O, major ion concentrations. The total time period investigated here comprises 1900 to 2000, but varies with data sets. Only in the western, i.e. Mediterranean Andes precipitation is higher (lower during El Niño (La Niña events, especially at higher altitudes, due to the latitudinal shift of frontal activity during austral winters. However, the temperature response to ENSO is more stable in space and time, being higher (lower during El Niño (La Niña events in most of the subtropical Andes all year long. From a northwest to southeast teleconnection gradient, we suggest a regional water vapour feedback triggers temperature anomalies as a function of ENSO-related changes in regional pressure systems, Pacific sea surface temperature and tropical moisture input. Tapado glacier ice proxies are found to be predominantly connected to eastern Andean summer rain climate, which contradicts previous studies and the modern mean spatial boundary between subtropical summer and winter rain climate derived from the grid data. The only ice core proxy showing a response to ENSO is the major ion concentrations, via local temperature indicating

  12. Changes of Monsoonal Temperate Glaciers in China during the Past Several Decades under the Background of Global Warming

    Institute of Scientific and Technical Information of China (English)

    Wilfred; H.Theakstone

    2008-01-01

    Based on various data,it can be concluded that eight monsoonal temperate glaciers in China were in stationary or ad-vancing between 1900s~1930s and 1960s~1980s,and were in retreating during 1930s~1960s and 1980s~present under the background of climate warming.The total glacier area has reduced by 3.11 km2 with a mean front altitude rise of 3.2 m/yr and 4 glaciers have disappeared in Mt.Yulong during 1957~1999.Mass balance records indicated that glaciers had suf-fered a constant mass loss of snow and ice during the last several decades,and the accumulated mass balance in Hailuogou basin in Mt.Gongga was 10.83 m water equivalent in the past 45 years with a annual mean value of-0.24 m,and the value at Baishui glacier No.1 was-11.38 m water equivalent in the past 52 years with-0.22 m/yr.The inverse variation between mass balance and temperature in China and the Northern Hemisphere reflected that climate warming is mainly corresponding to constant ice and snow mass loss in the past 50 years.The change of the glaciers’ surface mor-phology has occurred since the 1980s,such as enlargement of glacier-lake and ice falls,resulted from the accelrative cli-mate warming.

  13. Quantification and interpretation of glacier elevation changes

    OpenAIRE

    2011-01-01

    Glaciers, ice caps and ice sheets constitute a large reservoir in the global hydrological cycle and provide a coupling between climate and sea-level. Observations of glacial change is important for constraining their contribution to sea-level fluctuations and to better understand the interactions between glaciers and climate. This thesis focuses on glacier observations through measurements of elevation change. The research in this thesis is oriented towards the methodological detection of...

  14. The influence of snow cover thickness on the thermal regime of Tete Rousse Glacier (Mont Blanc range, 3200 m a.s.l.) : consequences for outburst flood hazards and glacier response to climate change

    OpenAIRE

    Gilbert, A.; Vincent, C.; Wagnon, Patrick; E. Thibert; A. Rabatel

    2012-01-01

    Tete Rousse Glacier (French Alps) was responsible for an outburst flood in 1892 that devastated the village of St Gervais-Le Fayet close to Chamonix, causing 175 fatalities. Changes in the hydrothermal configuration of the glacier are suspected to be the cause of this catastrophic outburst flood. In 2010, geophysical surveys of this glacier revealed a subglacial lake that was subsequently drained artificially. The processes controlling the thermal regime of the glacier have been investigated ...

  15. Post-LIA glacier changes along a latitudinal transect in the Central Italian Alps

    Science.gov (United States)

    Scotti, R.; Brardinoni, F.; Crosta, G. B.

    2014-12-01

    The variability of glacier response to atmospheric temperature rise in different topo-climatic settings is still a matter of debate. To address this question in the Central Italian Alps, we compile a post-LIA (Little Ice Age) multitemporal glacier inventory (1860-1954-1990-2003-2007) along a latitudinal transect that originates north of the continental divide in the Livigno Mountains and extends south through the Disgrazia and Orobie ranges, encompassing continental-to-maritime climatic settings. In these sub-regions, we examine the area change of 111 glaciers. Overall, the total glacierized area has declined from 34.1 to 10.1 km2, with a substantial increase in the number of small glaciers due to fragmentation. The average annual decrease (AAD) in glacier area has risen by about 1 order of magnitude from 1860-1990 (Livigno: 0.45; Orobie: 0.42; and Disgrazia: 0.39 % a-1) to 1990-2007 (Livigno: 3.08; Orobie: 2.44; and Disgrazia: 2.27 % a-1). This ranking changes when considering glaciers smaller than 0.5 km2 only (i.e., we remove the confounding caused by large glaciers in Disgrazia), so that post-1990 AAD follows the latitudinal gradient and Orobie glaciers stand out (Livigno: 4.07; Disgrazia: 3.57; and Orobie: 2.47 % a-1). More recent (2007-2013) field-based mass balances in three selected small glaciers confirm post-1990 trends showing the consistently highest retreat in continental Livigno and minimal area loss in maritime Orobie, with Disgrazia displaying transitional behavior. We argue that the recent resilience of glaciers in Orobie is a consequence of their decoupling from synoptic atmospheric temperature trends, a decoupling that arises from the combination of local topographic configuration (i.e., deep, north-facing cirques) and high winter precipitation, which ensures high snow-avalanche supply, as well as high summer shading and sheltering. Our hypothesis is further supported by the lack of correlations between glacier change and glacier attributes in

  16. Post-LIA glacier changes along a latitudinal transect in the Central Italian Alps

    Directory of Open Access Journals (Sweden)

    R. Scotti

    2014-07-01

    Full Text Available The variability of glacier response to atmospheric temperature rise in different topo-climatic settings is still matter of debate. To address this question in the Central Italian Alps we compile a post-LIA (Little Ice Age multitemporal glacier inventory (1860-1954-1990-2003-2007 along a latitudinal transect that originates north of the continental divide in the Livigno mountains, and extends south through the Disgrazia and Orobie ranges, encompassing continental-to-maritime climatic settings. In these sub-regions we examine area change of 111 glaciers. Overall, total glacierized area has declined from 34.1 to 10.1 km2, with a substantial increase in the number of small glaciers due to fragmentation. Average annual decrease (AAD in glacier area has risen of about an order of magnitude from 1860–1990 (Livigno: 0.45; Orobie: 0.42; and Disgrazia: 0.39 % a−1 to 1990–2007 (Livigno: 3.08; Orobie: 2.44; and Disgrazia: 2.27 % a−1. This ranking changes when considering glaciers 2 only (i.e., we remove the confounding caused by large glaciers in Disgrazia, so that post-1990 AAD follows the latitudinal gradient and Orobie glaciers stand out (Livigno: 4.07; Disgrazia: 3.57; and Orobie: 2.47 % a−1. More recent (2007–2013 field-based mass balances in three selected small glaciers confirm post-1990 trends showing consistent highest retreat in continental Livigno and minimal area loss in maritime Orobie, with Disgrazia displaying a transitional behaviour. We argue that the recent resilience of glaciers in Orobie is a consequence of their decoupling from synoptic atmospheric temperature trends. A decoupling that arises from the combination of local topographic configuration (i.e., deep, north-facing cirques and high winter precipitation, which ensures high snow-avalanche supply, as well as high summer shading and sheltering. Our hypothesis is further supported by the lack of correlations between glacier change and glacier attributes in Orobie, as well

  17. Cryosphere water balance in the HKH-system: case study Batura Glacier (Upper Hunza, Karakoram)

    Science.gov (United States)

    Winiger, M.; Boerst, U.

    2012-12-01

    Investigations on climate dynamics and related responses of the cryosphere in the Hindukush-Karakoram-Himalaya (HKH) increasingly result in regional different functional patterns. A predominant loss of ice and snow is documented for most of the region. Nevertheless, in the northwestern part, mainly in the Karakoram, several studies identified exemptions from the general HKH-pattern, either for individual glaciers or altitudinal ranges. Coordinated comparative studies, based on comparable methodological approaches and data bases might help to provide a better understanding of climate-cryosphere-runoff-systems. 'Third Pole Environment' (TEP), as well as the 'Upper Indus Basin' Initiative (UIB) of the 'International Centre for Integrated Mountain Development' (ICIMOD) promote and develop coordinated campaigns for the assessment of high altitude water balances in the HKH mountain ranges. As a first step, inventories of glaciers and snow-cover for HKH, the Tibetan Plateau, as well as its neighboring mountain ranges have been carried out. Glacier typology, climate related spatial and temporal dynamics, the impact of black carbon, dust and other influencing factors will further differentiate general inventories. In a next phase, case studies at selected sites, based on comparable approaches, thorough quality assessments of existing data series have been initiated by several research groups - up to now with only little coordination. Identification of case study sites should take advantage of previous studies. Although proper long-term monitoring is almost completely lacking, several glaciers in the Karakoram have repeatedly been investigated. Among them Raikot Glacier (Nanga Parbat), Biafo-Hispar glacier system, Baltoro Glacier (K2), and Batura Glacier (Gojal, Upper Hunza) are comparatively well documented examples. As part of the UIB-initiative, Batura, Passu and Baltoro Glaciers are in the process of repeat investigations of mass-balance. Selected first results of

  18. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    Science.gov (United States)

    Paul, F.

    2015-04-01

    Although animated images are very popular on the Internet, they have so far found only limited use for glaciological applications. With long time-series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable for a wide public. For this study animated image sequences were created from freely available image quick-looks of orthorectified Landsat scenes for four regions in the central Karakoram mountain range. The animations play automatically in a web-browser and might help to demonstrate glacier flow dynamics for educational purposes. The animations revealed highly complex patterns of glacier flow and surge dynamics over a 15-year time period (1998-2013). In contrast to other regions, surging glaciers in the Karakoram are often small (around 10 km2), steep, debris free, and advance for several years at comparably low annual rates (a few hundred m a-1). The advance periods of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few years to decades.

  19. Late Pleistocene ice-shelf, valley-glacier and ice-sheet interactions on Alexander Island, Antarctic Peninsula: implications for climatic and ice-volume changes

    Science.gov (United States)

    Davies, Bethan; Hambrey, Michael; Glasser, Neil; Smellie, John; Carrivick, Jonathan; Bentley, Michael

    2014-05-01

    Recent rapid warming across the Antarctic Peninsula has resulted in ice-sheet thinning, dramatic ice-shelf collapse, acceleration of ice-flow velocities and widespread glacier recession. Reconstructing past rates, volumes and magnitudes of cryospheric change, particularly with respect to the former configuration of ice sheets and ice shelves, and their response to changing oceanic and climatic regimes, is vital in providing a context for this change, in order to improve predictions of future ice-sheet behaviour, and to provide glacio-isostatic adjustment corrections for gravimetric measurements of contemporary ice loss. This research aimed to investigate valley glacier and ice-shelf interactions during the Last Glacial Maximum (LGM) and Holocene Epoch across George VI Sound and Alexander Island, western Antarctic Peninsula, an area with a well-preserved but poorly dated record. We identify four principal stratigraphic units: (1) a high-elevation drift with Alexander Island erratics only (interpreted as recording older advances of ice from the interior of the island), (2) a lower-elevation drift with exotic Palmer Land erratics (interpreted as ice-shelf moraine, representing incursions of George VI Ice Shelf onto Ablation Point Massif), (3) multiple overlapping sequences of valley glacier moraine and ice-shelf moraine, presumed to be Holocene in age, and (4) more recent processes and units, including frozen epishelf lakes, slope processes and alluvial fans. On-going cosmogenic nuclide dating on these sediments (in progress; 25 10Be exposure ages) has the potential to unlock the complex history and interactions of ice streams, valley glaciers and ice shelves in this area. This work will also provide the first long-term record of sea-level indicators, allowing the first estimates of glacial unloading, rates of uplift and ice-sheet thinning to be calculated. The Holocene record of the ice shelf, preserved in the younger ice-shelf moraines and in the overlapping

  20. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya

    OpenAIRE

    Kääb, A.; D. Treichler; C. Nuth; Berthier, E.

    2015-01-01

    We present glacier thickness changes over the entire Pamir–Karakoram–Himalaya arc based on ICESat satellite altimetry data for 2003–2008. We highlight the importance of C-band penetration for studies based on the SRTM elevation model. This penetration seems to be of potentially larger magnitude and variability than previously assumed. The most negative rate of region-wide glacier elevation change (

  1. Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area

    Science.gov (United States)

    Berthier, Etienne; Cabot, Vincent; Vincent, Christian; Six, Delphine

    2016-06-01

    Since 2000, a vast archive of stereo-images has been built by the Advanced Spaceborne Thermal Emission and Reflection (ASTER) satellite. Several studies already extracted glacier mass balances from multi-temporal ASTER digital elevation models (DEMs) but they lacked accurate independent data for validation. Here, we apply a linear regression to a time series of 3D-coregistered ASTER DEMs to estimate the rate of surface elevation changes (dh/dtASTER) and geodetic mass balances of Mont-Blanc glaciers (155 km²) between 2000 and 2014. Validation using field and spaceborne geodetic measurements reveals large errors at the individual pixel level (> 1 m a-1) and an accuracy of 0.2-0.3 m a-1 for dh/dtASTER averaged over areas larger than 1 km². For all Mont-Blanc glaciers, the ASTER region-wide mass balance (-1.05±0.37 m water equivalent (w.e.) a-1) agrees remarkably with the one measured using Spot5 and Pléiades DEMs (-1.06±0.23 m w.e. a-1) over their common 2003-2012 period. This multi-temporal ASTER DEM strategy leads to smaller errors than the simple differencing of two ASTER DEMs. By extrapolating dh/dtASTER to mid-February 2000, we infer a mean penetration depth of about 9±3 m for the C-band Shuttle Radar Topographic Mission (SRTM) radar signal, with a strong altitudinal dependency (range 0-12 m). This methodology thus reveals the regional pattern of glacier surface elevation changes and improves our knowledge of the penetration of the radar signal into snow and ice.

  2. 50 years of mass balance observations at Vernagtferner, Eastern Alps

    Science.gov (United States)

    Braun, Ludwig; Mayer, Christoph

    2016-04-01

    The determination and monitoring of the seasonal and annual glacier mass balances of Vernagtferner, Austria, started in 1964 by the Commission of Glaciology, Bavarian Academy of Sciences. Detailed and continuous climate- and runoff measurements complement this mass balance series since 1974. Vernagtferner attracted the attention of scientists since the beginning of the 17th century due to its rapid advances and the resulting glacier lake outburst floods in the Ötztal valley. This is one reason for the first photogrammetric survey in 1889, which was followed by frequent topographic surveys, adding up to more than ten digital elevation models of the glacier until today. By including the known maximum glacier extent at the end of the Little Ice Age in 1845, the geodetic glacier volume balances cover a time span of almost 170 years. The 50 years of glacier mass balance and 40 years of water balance in the drainage basin are therefore embedded in a considerably longer period of glacier evolution, allowing an interpretation within an extended frame of climatology and ice dynamics. The direct mass balance observations cover not only the period of alpine-wide strong glacier mass loss since the beginning of the 1990s. The data also contain the last period of glacier advances between 1970 and 1990. The combination of the observed surface mass exchange and the determined periodic volumetric changes allows a detailed analysis of the dynamic reaction of the glacier over the period of half a century. The accompanying meteorological observations are the basis for relating these reactions to the climatic changes during this period. Vernagtferner is therefore one of the few glaciers in the world, where a very detailed glacier-climate reaction was observed for many decades and can be realistically reconstructed back to the end of the Little Ice Age.

  3. Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981

    Science.gov (United States)

    López-Moreno, Juan Ignacio; Revuelto, Jesús; Rico, Ibai; Chueca-Cía, Javier; Julián, Asunción; Serreta, Alfredo; Serrano, Enrique; Martín Vicente-Serrano, Sergio; Azorin-Molina, Cesar; Alonso-González, Esteban; María García-Ruiz, José

    2016-03-01

    This paper analyzes the evolution of the Monte Perdido Glacier, the third largest glacier in the Pyrenees, from 1981 to the present. We assessed the evolution of the glacier's surface area by analysis of aerial photographs from 1981, 1999, and 2006, and changes in ice volume by geodetic methods with digital elevation models (DEMs) generated from topographic maps (1981 and 1999), airborne lidar (2010) and terrestrial laser scanning (TLS, 2011, 2012, 2013, and 2014) data. We interpreted the changes in the glacier based on climate data from nearby meteorological stations. The results indicate that the degradation of this glacier accelerated after 1999. The rate of ice surface loss was almost three times greater during 1999-2006 than during earlier periods. Moreover, the rate of glacier thinning was 1.85 times faster during 1999-2010 (rate of surface elevation change = -8.98 ± 1.80 m, glacier-wide mass balance = -0.73 ± 0.14 m w.e. yr-1) than during 1981-1999 (rate of surface elevation change = -8.35 ± 2.12 m, glacier-wide mass balance = -0.42 ± 0.10 m w.e. yr-1). From 2011 to 2014, ice thinning continued at a slower rate (rate of surface elevation change = -1.93 ± 0.4 m yr-1, glacier-wide mass balance = -0.58 ± 0.36 m w.e. yr-1). This deceleration in ice thinning compared to the previous 17 years can be attributed, at least in part, to two consecutive anomalously wet winters and cool summers (2012-2013 and 2013-2014), counteracted to some degree by the intense thinning that occurred during the dry and warm 2011-2012 period. However, local climatic changes observed during the study period do not seem sufficient to explain the acceleration of ice thinning of this glacier, because precipitation and air temperature did not exhibit statistically significant trends during the study period. Rather, the accelerated degradation of this glacier in recent years can be explained by a strong disequilibrium between the glacier and the current climate, and likely by other

  4. Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau

    Science.gov (United States)

    Li, Binquan; Yu, Zhongbo; Liang, Zhongmin; Acharya, Kumud

    2014-07-01

    Hydrologic cycles of most high altitude glacierized watersheds in the Tibetan Plateau are not closely monitored due to their inaccessibility. Understanding the hydrologic cycle in such a basin may provide insight into the role climate plays on changes in glacier mass. Thus, hydrologic simulations with a physical perspective in the Tibetan glacierized watershed are of great significance. A high altitude glacierized basin in the central Tibetan Plateau, Qugaqie basin, was investigated with an energy-balance based glacier-melt model and the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model. With these two models, glacier mass balance was estimated and basin runoff from glaciers was simulated at a daily time step. Results from the simulation period (October 1, 2006-September 30, 2011) demonstrated that the glaciers experienced a large negative surface mass balance with the cumulative value of - 300 cm w.e.. In other words, up to 13.93 × 106 m3 water volume was melting out from the glaciers during these five years. In the 2007/08 year, however, the glaciers experienced a surplus mass balance because of the low air temperature and increased precipitation in the summer season. Infiltration, evapotranspiration (ET), and overland flow were also calculated using the GSSHA model. Results showed that precipitation, the main water source, contributed roughly 95% to the total mass gain of the annual water balance in the Qugaqie basin during the study period, while the glacial runoff (snow/ice melting) contributed 5% water balance. In the water loss, 17% of annual water volume was consumed by the ET process. As a result, the remaining water volume (83%) converted to the basin river flow to the Lake Nam Co. In the summertime, the glacial runoff accounted for 15% of the total basin runoff volume, while this contribution increased in the upstream portion to 46% due to a large percentage of glacierized area. The analysis showed that the glacial runoff contributions to the

  5. Surface elevation changes on glaciers in 1974-2010 in the Mt. Naimona'Nyi region in the Himalayas

    Science.gov (United States)

    Zong, J.; YE, Q.; Tian, L.; Gou, P.

    2013-12-01

    Glaciers, especially those in mountain regions, are considered as one of the sensitive indicators of climate change nowadays. Glacier mass changes on the Tibetan Plateau significantly affect water resources and eco-systems in Asia. In this paper, surface elevation changes on glaciers were studied by DEMs and in-situ measurements. A DEM in Naimona'Nyi region was generated by Takeo Tanado at JAXA using stereo pairs from ALOS/PRISM in 2006, which was evaluated and calibrated by in-situ differential GPS points measured in 2012 and ICESat/GLAS points in non-glacier area. The 1:50,000 topographic maps and the base 1:50,000 DEM in 1974 was projected into WGS84 UTM 44N and then co-registered to PRISM DEM. The elevation change on glacier surface was calculated by PRISM DEM and 1974 DEM. The results suggested that the surface elevation was decreased rapidly on most glaciers, with an average downwasting rate of 0.7×0.2m per year. The in-situ measurement of glacier surface elevation indicated a decrease of ~1.4m (~0.7m per year) from 2008 to 2010 by Ground Penetrating Radar (GPR)differential GPS. It also showed that glacier ice on south slope downwasting faster than those on north slope. According to glacier surface elevation changes at different altitudes, the Equilibrium Line Altitude (ELA) might reach about 6300m a.s.l.

  6. Modelling the 20th and 21st century evolution of Hoffellsjökull glacier, SE-Vatnajökull, Iceland

    Science.gov (United States)

    Aðalgeirsdóttir, G.; Guðmundsson, S.; Björnsson, H.; Pálsson, F.; Jóhannesson, T.; Hannesdóttir, H.; Sigurðsson, S. Þ.; Berthier, E.

    2011-11-01

    The Little Ice Age maximum extent of glaciers in Iceland was reached about 1890 AD and most glaciers in the country have retreated during the 20th century. A model for the surface mass balance and the flow of glaciers is used to reconstruct the 20th century retreat history of Hoffellsjökull, a south-flowing outlet glacier of the ice cap Vatnajökull, which is located close to the southeastern coast of Iceland. The bedrock topography was surveyed with radio-echo soundings in 2001. A wealth of data are available to force and constrain the model, e.g. surface elevation maps from ~1890, 1936, 1946, 1989, 2001, 2008 and 2010, mass balance observations conducted in 1936-1938 and after 2001, energy balance measurements after 2001, and glacier surface velocity derived by kinematic and differential GPS surveys and correlation of SPOT5 images. The approximately 20% volume loss of this glacier in the period 1895-2010 is realistically simulated with the model. After calibration of the model with past observations, it is used to simulate the future response of the glacier during the 21st century. The mass balance model was forced with an ensemble of temperature and precipitation scenarios derived from 10 global and 3 regional climate model simulations using the A1B emission scenario. If the average climate of 2000-2009 is maintained into the future, the volume of the glacier is projected to be reduced by 30% with respect to the present at the end of this century. If the climate warms, as suggested by most of the climate change scenarios, the model projects this glacier to almost disappear by the end of the 21st century. Runoff from the glacier is predicted to increase for the next 30-40 yr and decrease after that as a consequence of the diminishing ice-covered area.

  7. A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen

    Science.gov (United States)

    Oerlemans, J.; van Pelt, W. J. J.

    2015-04-01

    The climate sensitivity of Abrahamsenbreen, a 20 km long surge-type glacier in northern Spitsbergen, is studied with a simple glacier model. A scheme to describe the surges is included, which makes it possible to account for the effect of surges on the total mass budget of the glacier. A climate reconstruction back to AD 1300, based on ice-core data from Lomonosovfonna and climate records from Longyearbyen, is used to drive the model. The model is calibrated by requesting that it produce the correct Little Ice Age maximum glacier length and simulate the observed magnitude of the 1978 surge. Abrahamsenbreen is strongly out of balance with the current climate. If climatic conditions remain as they were for the period 1989-2010, the glacier will ultimately shrink to a length of about 4 km (but this will take hundreds of years). For a climate change scenario involving a 2 m year-1 rise of the equilibrium line from now onwards, we predict that in the year 2100 Abrahamsenbreen will be about 12 km long. The main effect of a surge is to lower the mean surface elevation and thereby to increase the ablation area, causing a negative perturbation of the mass budget. We found that the occurrence of surges leads to a faster retreat of the glacier in a warming climate. Because of the very small bed slope, Abrahamsenbreen is sensitive to small perturbations in the equilibrium-line altitude. If the equilibrium line were lowered by only 160 m, the glacier would steadily grow into Woodfjorddalen until, after 2000 years, it would reach Woodfjord and calving would slow down the advance. The bed topography of Abrahamsenbreen is not known and was therefore inferred from the slope and length of the glacier. The value of the plasticity parameter needed to do this was varied by +20 and -20%. After recalibration the same climate change experiments were performed, showing that a thinner glacier (higher bedrock in this case) in a warming climate retreats somewhat faster.

  8. Mass balance, meteorological, ice motion, surface altitude, runoff, and ice thickness data at Gulkana Glacier, Alaska, 1995 balance year

    Science.gov (United States)

    March, Rod S.

    2000-01-01

    The 1995 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 0.94 meter on April 19, 1995, 0.6 standard deviation below the long-term average; the maximum winter snow balance, 0.94 meter, was reached on April 25, 1995; the net balance (from September 18, 1994 to August 29, 1995) was -0.70 meter, 0.76 standard deviation below the long-term average. The annual balance (October 1, 1994, to September 30, 1995) was -0.86 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 2.05 meters averaged over the basin, approximately equal to the long-term average. The 1976 ice-thickness data are reported from a single site near the highest measurement site (180 meters thick) and from two glacier cross profiles near the mid-glacier (270 meters thick on centerline) and low glacier (150 meters thick on centerline) measurement sites. A new area-altitude distribution determined from 1993 photogrammetry is reported. Area-averaged balances are reported from both the 1967 and 1993 area-altitude distribution so the reader may directly see the effect of the update. Briefly, loss of ablation area between 1967 and 1993 results in a larger weighting being applied to data from the upper glacier site and hence, increases calculated area-averaged balances. The balance increase is of the order of 15 percent for net balance.

  9. Assessment of interannual variations in the surface mass balance of 18 Svalbard glaciers from the Moderate Resolution Imaging Spectroradiometer/Terra albedo product

    OpenAIRE

    W. Greuell; Kohler, J.; F. Obleitner; Glowacki, P.; Melvold, K.; Bernsen, E.; J. Oerlemans

    2007-01-01

    We estimate annual anomalies of the surface mass balance of glaciers on Svalbard for the period 2000–2005 (six years), by calculating the so-called ‘‘satellite-derived mass balance’’ (Bsat) from time series of satellite-derived surface albedos. The method needs no other input variables. Surface albedos are extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra albedo product. We validate the MODIS albedos by comparing them with in situ measurements on Kongsvegen, and w...

  10. Glacier development and topographic context

    DEFF Research Database (Denmark)

    López-Moreno, J. I.; Nogués-Bravo, David; Chueca-Cía, J.;

    2006-01-01

    variables obtained from a digital elevation model. The use of generalized additive models and binary regression tree models enabled us (i) to quantify the spatial variability in the distribution of glaciers attributable to characteristics of the local terrain, (ii) to investigate the interaction between the...... variables that account for the ice cover distribution and (iii) to map the probability of glacier development. Our results show that although the development of glaciers depends on regional climate conditions, the topographic context is of paramount importance in determining the location, extent, shape and...

  11. Analysis of a GRACE Global Mascon Solution for Gulf of Alaska Glaciers

    Science.gov (United States)

    Arendt, Anthony; Luthcke, Scott B.; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of -6511 Gt a(exp.-1) for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of -6111 Gt a(exp. -1) from GRACE, which compares well with -6512 Gt a(exp. -1) from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June-August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements atWolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  12. Monitoring of time and space evolution of glaciers' flow at the scale of the Karakoram and Himalayas

    Science.gov (United States)

    Dehecq, Amaury; Gourmelen, Noel; Trouvé, Emmanuel; Wegmuller, Urs; Cheng, Xiao

    2014-05-01

    Climate warming over the 20th century has caused drastic changes in mountain glaciers globally, and of the Himalayan glaciers in particular. The stakes are high; glaciers and ice caps are the largest contributor to the increase in the mass of the world's oceans, and the Himalayas play a key role in the hydrology of the region, impacting on the economy, food safety and flood risk to a large population. Partial monitoring of the Himalayan glaciers has revealed a mixed picture; while many of the Himalayan glaciers are retreating, in some cases locally stable or advancing glaciers in this region have also been observed. But recent controversies have highlighted the need to understand the glaciers dynamic and its relationship with climate change in this region. Earth Observation provides a mean for global and long-term monitoring of mountain glaciers' dynamics. In the frame of the Dragon program, a partnership between the European Space Agency (ESA) and the Chinese Center for Earth Observation (NRSCC), we begun a monitoring program aimed at quantifying multidecadal changes in glaciers' flow at the scale of the entire Himalayas and Karakoram from a 40 years' archive of Earth Observation. Ultimately, the provision of a global and time-sensitive glaciers velocity product will help to understand the evolution of the Himalayan glaciers in lights of glaciological (e.g. presence of debris-cover, surges, proglacial lakes) and climatic conditions. In this presentation, we focus on the analysis of the Landsat archive spanning the 1972 to 2012 period, which is global and provide multidecadal and continuous observation. We present the processing strategy including preprocessing of the images, image-matching and merging of the various results obtained from the repetitivity of the acquisitions in order to obtain a more robust, precise and complete glaciers velocity fields. We show that the recent archive (Landsat 4, 5 and 7, from 1982 to 2013) allows an estimate of the velocity for

  13. Succession of algal and cyanobacterial communities after glacier retreats in alpine - high arctic climatic zones in northern Europe

    Czech Academy of Sciences Publication Activity Database

    Lukešová, Alena

    2015-01-01

    Roč. 50, Supp 1 (2015), s. 79. ISSN 0967-0262. [European Phycological Congress /6./. 23.08.2015-28.08.2015, London] R&D Projects: GA MŠk(CZ) LD13046 Institutional support: RVO:60077344 Keywords : algal communities * cyanobacterial communities * glacier retreats * northern Europe Subject RIV: EE - Microbiology, Virology

  14. Climate sensitivity of Abrahamsenbreen (northern Spitsbergen)

    Science.gov (United States)

    Oerlemans, Johannes; Van Pelt, Ward

    2014-05-01

    The climate sensitivity of Abrahamsenbreen, a 20 km long surge-type glacier in northern Spitsbergen, is studied with a simple glacier model. A scheme to describe the surges is included, which makes it possible to account for the effect of surges on the total mass budget of the glacier. A climate reconstruction back to 1300 AD, based on ice-core data from Lomonosovfonna and climate records from Longyearbyen, is used to drive the model. The model is calibrated by requesting that it produces the correct late-Holocene maximum glacier length and simulates the observed magnitude of the 1978-surge. We make a comparison of the glacier evolution with and without regular surges. The main effect of a surge is to lower the mean surface elevation and to increase the ablation area, thereby causing a negative perturbation of the mass budget. When the surging mechanism is switched off, long-term mean glacier length increases by typically 10%. Abrahamsenbreen is strongly out of balance with the current climate. If climatic conditions will remain as they were for the period 1989-2010, the glacier will ultimately shrink to a length of 8 km (but this will take hundreds of years). For a climate change scenario involving a 2 m per year rise of the equilibrium line from now onwards, we predict that in the year 2100 Abrahamsenbreen will be about 14 km long. Because of the very small bed slope, Abrahamsenbreen is sensitive to small perturbations in the equilibrium-line altitude E. For a decrease of E of only 60 m, the glacier would steadily grow into the Woodfjorddalen until after 2000 years it would reach the Woodfjord and calving could slow down the advance. Our study once more underlines the extreme sensitivity of the large and gently sloping Svalbard glaciers to climate change.

  15. Evolution of Ossoue Glacier (French Pyrenees) since the end of the Little Ice Age

    Science.gov (United States)

    Marti, R.; Gascoin, S.; Houet, T.; Ribière, O.; Laffly, D.; Condom, T.; Monnier, S.; Schmutz, M.; Camerlynck, C.; Tihay, J. P.; Soubeyroux, J. M.; René, P.

    2015-09-01

    Little is known about the fluctuations of the Pyrenean glaciers. In this study, we reconstructed the evolution of Ossoue Glacier (42°46' N, 0.45 km2), which is located in the central Pyrenees, from the Little Ice Age (LIA) onwards. To do so, length, area, thickness, and mass changes in the glacier were generated from historical data sets, topographical surveys, glaciological measurements (2001-2013), a ground penetrating radar (GPR) survey (2006), and stereoscopic satellite images (2013). The glacier has receded considerably since the end of the LIA, losing 40 % of its length and 60 % of its area. Three periods of marked ice depletion were identified: 1850-1890, 1928-1950, and 1983-2013, as well as two short periods of stabilization: 1890-1894, 1905-1913, and a longer period of slight growth: 1950-1983; these agree with other Pyrenean glacier reconstructions (Maladeta, Coronas, Taillon glaciers). Pyrenean and Alpine glaciers exhibit similar multidecadal variations during the 20th century, with a stable period detected at the end of the 1970s and periods of ice depletion during the 1940s and since the 1980s. Ossoue Glacier fluctuations generally concur with climatic data (air temperature, precipitation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation). Geodetic mass balance over 1983-2013 was -1.04 ± 0.06 w.e.a-1 (-31.3 ± 1.9 m w.e.), whereas glaciological mass balance was -1.45 ± 0.85 m w.e. a-1 (-17.3 ± 2.9 m w.e.) over 2001-2013, resulting in a doubling of the ablation rate in the last decade. In 2013 the maximum ice thickness was 59 ± 10.3 m. Assuming that the current ablation rate remains constant, Ossoue Glacier will disappear midway through the 21st century.

  16. Evolution of Ossoue Glacier (French Pyrenees since the end of the Little Ice Age

    Directory of Open Access Journals (Sweden)

    R. Marti

    2015-09-01

    Full Text Available Little is known about the fluctuations of the Pyrenean glaciers. In this study, we reconstructed the evolution of Ossoue Glacier (42°46' N, 0.45 km2, which is located in the central Pyrenees, from the Little Ice Age (LIA onwards. To do so, length, area, thickness, and mass changes in the glacier were generated from historical data sets, topographical surveys, glaciological measurements (2001–2013, a ground penetrating radar (GPR survey (2006, and stereoscopic satellite images (2013. The glacier has receded considerably since the end of the LIA, losing 40 % of its length and 60 % of its area. Three periods of marked ice depletion were identified: 1850–1890, 1928–1950, and 1983–2013, as well as two short periods of stabilization: 1890–1894, 1905–1913, and a longer period of slight growth: 1950–1983; these agree with other Pyrenean glacier reconstructions (Maladeta, Coronas, Taillon glaciers. Pyrenean and Alpine glaciers exhibit similar multidecadal variations during the 20th century, with a stable period detected at the end of the 1970s and periods of ice depletion during the 1940s and since the 1980s. Ossoue Glacier fluctuations generally concur with climatic data (air temperature, precipitation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation. Geodetic mass balance over 1983–2013 was −1.04 ± 0.06 w.e.a−1 (−31.3 ± 1.9 m w.e., whereas glaciological mass balance was −1.45 ± 0.85 m w.e. a−1 (−17.3 ± 2.9 m w.e. over 2001–2013, resulting in a doubling of the ablation rate in the last decade. In 2013 the maximum ice thickness was 59 ± 10.3 m. Assuming that the current ablation rate remains constant, Ossoue Glacier will disappear midway through the 21st century.

  17. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1992 balance year

    Science.gov (United States)

    March, R.S.; Trabant, D.C.

    1996-01-01

    The 1992 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data measured in the basin and are reported herein. Averaged over the glacier, the measured winter snow balance was 0.97 meters on March 26, 1992; the maximum winter snow balance was 1.05 meters on May 19, 1992; the net balance (from September 8, 1991 to August 17, 1992) was -0.29 meters; and the annual balance (October 1, 1991 to September 30, 1992) was -0.38 meters. Ice surface, motion, and altitude changes measured at three index sites document seasonal changes in ice speed and glacier thickness. Annual stream runoff was 1.24 meters averaged over the basin.

  18. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1994 balance year

    Science.gov (United States)

    March, Rod S.

    1998-01-01

    The 1994 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data obtained in the basin. Averaged over the glacier, the measured winter snow balance was 1.34 meters on April 29, 1994, 0.9 standard deviation above the long-term average; the maximum winter snow balance, 1.43 meters, was reached on April 18, 1994; the net balance (from September 8, 1993 to September 17, 1994) was -0.72 meter, 0.7 standard deviation below the long-term average. The annual balance (October 1, 1992, to September 30, 1993) was -0.88 meter. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier-thickness changes. Annual stream runoff was 1.93 meters averaged over the basin, approximately equal to the long-term average.

  19. Revealing basin and regional scale snow accumulation magnitude and variability on glaciers throughout Alaska

    Science.gov (United States)

    McGrath, D.; Oneel, S.; Sass, L. C., III; Gusmeroli, A.; Arendt, A. A.; Wolken, G. J.; Kienholz, C.; McNeil, C.

    2014-12-01

    Mass loss from Alaskan glaciers (-50 ± 17 Gt/a, 2003-2009) constitutes one of the largest contributions to global sea level rise outside of the Greenland and Antarctic ice sheets. The largest process-related uncertainties in this calculation arise from the difficulty in accurately measuring accumulation on glaciers and from the large variability of accumulation over a range of spatio-temporal scales. Further, the physical processes governing snow distribution in complex terrain elude model parameterization. Using ground-penetrating radar, constrained with probe and pit observations, we quantify the magnitude and variability of snow accumulation at six prominent glaciers throughout Alaska at the end of 2013 winter. We find that total SWE magnitude and variability are strongly controlled by the large-scale climate system (i.e. distance from the coastal moisture source along prevailing storm track). On average, total SWE decreases by 0.33 m per 100 km from the coast, while the SWE elevation gradient decreases by 0.06 m / 100 m per 100 km from the coast. SWE variability over small spatial scales (<200 m) is similar at most sites, although two glaciers exhibit notably low and high variability, likely related to their respective climatic provenance. On individual glaciers, strong elevation gradients, increasing from 0.07 m SWE / 100 m at the interior Gulkana Glacier to 0.30 m SWE / 100 m at the coastal Scott Glacier, exert the primary control on accumulation. Results from multi-variable linear regression models (based on topographic variables) find wind exposure/shelter is the most frequent secondary control on accumulation variability. Finally, we find strong agreement (<10% difference) between the radar derived and stake derived total SWE estimates at two glaciers in the USGS Benchmark Glacier Program.

  20. Mama Cotacachi: History, local perceptions, and social impacts of climate change and glacier retreat in the Ecuadorian Andes

    OpenAIRE

    Rhoades, Robert E.; Zapata Ríos, X.; Aragundy Ochoa, J.

    2007-01-01

    Through the lens of the complete loss of the glacier on Mount Cotacachi in northern Ecuador, this book chapter explores the human and environment interface between the impacts of global warming and the people living in the Andes Mountains. Using a transdisciplinary approach, the researchers analyze photographic records and sketches back to the late eighteen hundreds, oral histories of the local people, and scientific monitoring of changes in water level in local lakes and rivers. The response...

  1. Runoff Modelling of the Khumbu Glacier, Nepal: Incorporating Debris Cover and Retreat Dynamics.

    Science.gov (United States)

    Douglas, James; Huss, Matthias; Jones, Julie; Swift, Darrel; Salerno, Franco

    2016-04-01

    Detailed studies on the future evolution and runoff of glaciers in high mountain Asia are scarce considering the region is so reliant on on this essential water source. This study adapts a model well-proven in the European Alps, the Glacier Evolution and Runoff Model (GERM), to simulate the behaviour of the Khumbu glacier, Nepal. GERM calculates glacier mass balance and runoff using a distributed temperature index model which has been modified such that the unique dynamics of debris covered glaciers, namely stagnation, thinning, and melt-inhibiting debris surfaces, are incorporated. Debris thickness is derived from both remote sensing and model based approaches allowing a suite of experiments to be conducted using various levels of debris cover. The model is driven by CORDEX-South Asia regional climate model (RCM) simulations, bias corrected using a quantile mapping technique based on in-situ data from the Pyramid meteorological station. Here, results are presented showing the retreat of the Khumbu glacier and the corresponding changes for annual and seasonal discharge until 2100, using varying melt parameters and debris thicknesses to assess the impact of debris cover on glacier evolution and runoff.

  2. Climatic and environmental implications from organic matter in Dasuopu glacier in Xixiabangma in Qinghai-Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    谢树成; 姚檀栋; 康世昌; 段克勤; 徐柏青; L.; G.; Thompson

    1999-01-01

    A series of organic compounds in snow and ice were identified from Dasuopu glacier in Xixiabangma in Qinghai-Tibetan Plateau. Organic compounds derived from natural organisms include n-alkanes ranging from C15 to C33, normal monoearboxylie acids of C6—C18, n-alkan-2-ones of C24—C31 and esters. The unstable compounds widely present in lower troposphere disppear in the middle-upper troposphere. Lots of other organic compounds from petroleum residues were also unexpectedly identified from the glacier, covering pristane, phytane, extended tricyclie terpanes of C19—C29, C24 tetracyclic terpane, αβ hopane compounds of C27—C35, and cholestanes of C27—C29. The remote Xixiabangma region is unambiguously polluted from anthropology activities. The petroleum residues were proposed to be mainly from the Mideast and India, not from China. The organic pollutants from oil fires ignited during the well-known Gulf War which broke out in 1991 were also recorded in the glacier. S

  3. Climate change impacts on mass movements--case studies from the European Alps.

    Science.gov (United States)

    Stoffel, M; Tiranti, D; Huggel, C

    2014-09-15

    This paper addresses the current knowledge on climate change impacts on mass movement activity in mountain environments by illustrating characteristic cases of debris flows, rock slope failures and landslides from the French, Italian, and Swiss Alps. It is expected that events are likely to occur less frequently during summer, whereas the anticipated increase of rainfall in spring and fall could likely alter debris-flow activity during the shoulder seasons (March, April, November, and December). The magnitude of debris flows could become larger due to larger amounts of sediment delivered to the channels and as a result of the predicted increase in heavy precipitation events. At the same time, however, debris-flow volumes in high-mountain areas will depend chiefly on the stability and/or movement rates of permafrost bodies, and destabilized rock glaciers could lead to debris flows without historic precedents in the future. The frequency of rock slope failures is likely to increase, as excessively warm air temperatures, glacier shrinkage, as well as permafrost warming and thawing will affect and reduce rock slope stability in the direction that adversely affects rock slope stability. Changes in landslide activity in the French and Western Italian Alps will likely depend on differences in elevation. Above 1500 m asl, the projected decrease in snow season duration in future winters and springs will likely affect the frequency, number and seasonality of landslide reactivations. In Piemonte, for instance, 21st century landslides have been demonstrated to occur more frequently in early spring and to be triggered by moderate rainfalls, but also to occur in smaller numbers. On the contrary, and in line with recent observations, events in autumn, characterized by a large spatial density of landslide occurrences might become more scarce in the Piemonte region. PMID:24630951

  4. Role of glaciers in watershed hydrology: ''Himalayan catchment'' perspective

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2009-07-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and South-West monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as ''Himalayan catchment'', where the glacier melt water contributes to the river flow during the period of annual high flows produced by the monsoon. Other two major glacio-hydrological regimes of the Himalaya are winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range. Factors influencing the river flow variations in a ''Himalayan catchment'' were studied in a micro scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Discharge data generated from three hydrometric stations established at different altitudes of the Din Gad stream during the summer ablation period of 1998, 1999, 2000, 2001, 2003 and 2004. These data has been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of the glacier and precipitation in determining the runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. Study shows that the inter-annual runoff variations in a ''Himalayan glacier catchment'' is directly linked with the precipitation rather than mass balance changes of the glacier. Study suggest that warming induced initial increase of glacier degraded runoff and subsequent decline is a glaciers mass balance response and cannot be translated as river flow response in a ''Himalayan catchment'' as suggested by the IPCC, 2007. Study also suggest that the glacier runoff critically influence the headwater river flows during the years of low summer discharge and proposes that the Himalayan catchment could experience higher river flows and positive

  5. Changes in the Mass Balance of the Greenland Ice Sheet in a Warming Climate During 2003-2009

    Science.gov (United States)

    Zwally, H. Jay; Luthcke, Scott

    2010-01-01

    Mass changes of the Greenland ice sheet (GIS) derived from ICESat and GRACE data both show that the net mass loss from GIS during 2003-2009 is about 175 Gt/year, which contributes 0.5mm/yr global sea-level rise. The rate of mass loss has increased significantly since the 1990's when the GIS was close to mass balance. Even though the GIS was close to mass balance during the 1990's, it was already showing characteristics of responding to8 warmer climate, specifically thinning at the margins and thickening inland at higher elevations. During 2003-2009, increased ice thinning due to increases in melting and acceleration of outlet glaciers began to strongly exceed the inland thickening from increases in accumulation. Over the entire GIS, the mass loss between the two periods, from increased melting and ice dynamics, increased by about 190 Gt/year while the mass gain, from increased precipitation and accumulation, increased by only about 15Gt/year. These ice changes occurred during a time when the temperature on GIS changed at rate of about 2K/decade. The distribution of elevation and mass changes derived from ICESat have high spatial resolution showing details over outlet glaciers, by drainage systems, and by elevation. However, information on the seasonal cycle of changes from ICESat data is limited, because the ICESat lasers were only operated during two to three campaigns per year of about 35 days duration each. In contrast, the temporal resolution of GRACE data, provided by the continuous data collection, is much better showing details of the seasonal cycle and the inter-annual variability. The differing sensitivity of the ICESat altimetry and the GRACE gravity methods to motion of the underlying bedrock from glacial isostatic adjustment (GIA) is used to evaluate the GIA corrections provided by models. The two data types are also combined to make estimates of the partitioning of the mass gains and losses among accumulation, melting, and ice discharge from outlet

  6. An estimate of global glacier volume

    Directory of Open Access Journals (Sweden)

    A. Grinsted

    2013-01-01

    Full Text Available I assess the feasibility of using multivariate scaling relationships to estimate glacier volume from glacier inventory data. Scaling laws are calibrated against volume observations optimized for the specific purpose of estimating total global glacier ice volume. I find that adjustments for continentality and elevation range improve skill of area–volume scaling. These scaling relationships are applied to each record in the Randolph Glacier Inventory, which is the first globally complete inventory of glaciers and ice caps. I estimate that the total volume of all glaciers in the world is 0.35 ± 0.07 m sea level equivalent, including ice sheet peripheral glaciers. This is substantially less than a recent state-of-the-art estimate. Area–volume scaling bias issues for large ice masses, and incomplete inventory data are offered as explanations for the difference.

  7. The impact of a seasonally ice free Arctic Ocean on the climate and surface mass balance of Svalbard

    Directory of Open Access Journals (Sweden)

    J. J. Day

    2011-07-01

    Full Text Available General circulation models (GCMs predict a rapid decrease in Arctic sea ice extent in the 21st century. The decline of September sea ice is expected to continue until the Arctic Ocean is seasonally ice free, leading to a much perturbed Arctic climate with large changes in surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers which are extremely sensitive to changes in climate. Records of past accumulation indicate that the surface mass balance (SMB of Svalbard is also sensitive to changes in the position of the sea ice edge.

    To investigate the impact of 21st Century sea ice decline on the climate and surface mass balance of Svalbard a high resolution (25 km regional climate model (RCM was forced with a repeating cycle of sea surface temperatures (SSTs and sea ice conditions for the periods 1961–1990 and 2061–2090. By prescribing 20th Century SSTs and 21st Century sea ice for one simulation, the impact of sea ice decline is isolated. This study shows that the coupled impact of sea ice decline and SST increase results in a decrease in SMB, whereas the impact of sea ice decline alone causes an increase in SMB of similar magnitude.

  8. Using marine sediment archives to reconstruct past outlet glacier variability

    DEFF Research Database (Denmark)

    Andresen, Camilla Snowman; Straneo, Fiamma; Ribergaard, Mads;

    2013-01-01

    Ice-rafted debris in fjord sediment cores provides information about outlet glacier activity beyond the instrumental time period. It tells us that the Helheim Glacier, Greenland’s third most productive glacier, responds rapidly to short-term (3 to 10 years) climate changes....

  9. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

    Science.gov (United States)

    Janke, Jason R.; Bellisario, Antonio C.; Ferrando, Francisco A.

    2015-07-01

    In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content. Debris-covered glaciers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3 m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced

  10. 贡嘎山海螺沟冰川物质平衡、水交换特征 及其对径流的影响%Mass Balance and Water Exchange of Hailuoguo Glacier in Mount Gongga and Their Influence on Glacial Melt Runoff

    Institute of Scientific and Technical Information of China (English)

    谢自楚; 苏珍; 冯清华; 沈永平

    2001-01-01

    the original level just before increasing (critical level). The sensitivity analysis on the response of glacier mass balance to meteorological Variations shows that, a 1 K increase of air temperature or a 10 % reduction of precipitation, the responsive values for bn are -214 mm and 354 mm respectively. On the condition that the climate continues getting warmer and more meist, the time at which the discharge reaches to the critical level will proloug to about 2050's. Then the area and volume of the glacier will greatly decrease, which will have great impact on the ecological environment of the upper reach of the Yangtze River.

  11. Primary dispersal of supraglacial debris and debris cover formation on alpine glaciers

    Science.gov (United States)

    Kirkbride, M. P.; Deline, P.

    2009-04-01

    Debris-covered glaciers are receiving increased attention due to the modulation of runoff by supraglacial covers, and to the lake outburst flood hazard at many covered glacier termini. Observed increases in debris cover extents cannot presently be explained in terms of glaciological influences. The supply of englacial debris to the supraglacial zone has previously been understood only in terms of local dispersal due to differential ablation between covered and uncovered ice, for example on medial moraines. Here, we introduce the term primary dispersal to describe the process of migration of the outcrops of angled debris septa across melting, thinning ablation zones. Understanding primary debris dispersal is an essential step to understanding how supraglacial debris cover is controlled by glaciological variables, and hence is sensitive to climatically-induced fluctuation. Three measures of a glacier's ability to evacuate supraglacial debris are outlined: (1) a concentration factor describing the focussing of englacial debris into specific supraglacial mass loads; (2) the rate of migration of a septum outcrop relative to the local ice surface; and (3) a downstream velocity differential between a septum outcrop and the ice surface. (1) and (2) are inversely related, while (3) increases downglacier to explain why slow-moving, thinning ice rapidly becomes debris covered. Data from Glacier d'Estelette (Italian Alps) illustrate primary dispersal processes at a site where debris cover is increasing in common with many other shrinking alpine glaciers. We develop a model of the potential for debris cover formation and growth in different glaciological environments. This explains why glaciers whose termini are obstructed often have steep debris septa feeding debris covers which vary slowly in response to mass balance change. In contrast, at glaciers with gently-dipping debris-bearing foliation, the debris cover extent is sensitive to glaciological change. These findings

  12. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles

    Science.gov (United States)

    Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.

    2014-12-01

    Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.

  13. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards

    Science.gov (United States)

    Benn, D. I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L. I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S.

    2012-08-01

    In areas of high relief, many glaciers have extensive covers of supraglacial debris in their ablation zones, which alters both rates and spatial patterns of melting, with important consequences for glacier response to climate change. Wastage of debris-covered glaciers can be associated with the formation of large moraine-dammed lakes, posing risk of glacier lake outburst floods (GLOFs). In this paper, we use observations of glaciers in the Mount Everest region to present an integrated view of debris-covered glacier response to climate change, which helps provide a long-term perspective on evolving GLOF risks. In recent decades, debris-covered glaciers in the Everest region have been losing mass at a mean rate of ~ 0.32 m yr- 1, although in most cases there has been little or no change in terminus position. Mass loss occurs by 4 main processes: (1) melting of clean ice close to glacier ELAs; (2) melting beneath surface debris; (3) melting of ice cliffs and calving around the margins of supraglacial ponds; and (4) calving into deep proglacial lakes. Modelling of processes (1) and (2) shows that Everest-region glaciers typically have an inverted ablation gradient in their lower reaches, due to the effects of a down-glacier increase in debris thickness. Mass loss is therefore focused in the mid parts of glacier ablation zones, causing localised surface lowering and a reduction in downglacier surface gradient, which in turn reduce driving stress and glacier velocity, so the lower ablation zones of many glaciers are now stagnant. Model results also indicate that increased summer temperatures have raised the altitude of the rain-snow transition during the summer monsoon period, reducing snow accumulation and ice flux to lower elevations. As downwasting proceeds, formerly efficient supraglacial and englacial drainage networks are broken up, and supraglacial lakes form in hollows on the glacier surface. Ablation rates around supraglacial lakes are typically one or two

  14. Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1993 balance year

    Science.gov (United States)

    March, Rod; Trabant, Dennis

    1997-01-01

    The 1993 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier basin were evaluated on the basis of meteorological, hydrological, and glaciological data measured in the basin and are reported herein. Averaged over the glacier, the measured winter snow balance was 0.81 meter on March 31, 1993, 1.2 standard deviations below the long-term average; the maximum winter snow balance, 0.84 meter, was reached on May 10, 1993 and remained until May 11, 1993; the net balance (from August 18, 1992 to September 8, 1993) was 1.80 meters, the most negative balance year on record at 2.8 standard deviations below the long-term average. The annual balance (October 1, 1992 to September 30, 1993) was 1.64 meters. Ice-surface motion and altitude changes measured at three index sites document seasonal ice speed and glacier thickness changes. Annual stream runoff was 1.996 meters averaged over the basin, 0.2 standard deviations above the long-term average.

  15. Climate warming and stability of cold hanging glaciers: Lessons from the gigantic 1895 Altels break-off

    CERN Document Server

    Faillettaz, Jerome; Funk, Martin

    2011-01-01

    The Altels hanging glacier broke off on September 11, 1895. The ice volume of this catastrophic rupture was estimated at $\\rm 4.10^6$ cubic meters and is the largest ever observed ice fall event in the Alps. The causes of this collapse are however not entirely clear. Based on previous studies, we reanalyzed this break-off event, with the help of a new numerical model, initially developed by Faillettaz and others (2010) for gravity-driven instabilities. The simulations indicate that a break-off event is only possible when the basal friction at the bedrock is reduced in a restricted area, possibly induced by the storage of infiltrated water within the glacier. Moreover, our simulations reveal a two-step behavior: (i) A first quiescent phase, without visible changes, with a duration depending on the rate of basal changes; (ii) An active phase with a rapid increase of basal motion over a few days. The general lesson obtained from the comparison between the simulations and the available evidence is that visible si...

  16. A global assessment of the societal impacts of glacier outburst floods

    Science.gov (United States)

    Carrivick, Jonathan L.; Tweed, Fiona S.

    2016-09-01

    Glacier outburst floods are sudden releases of large amounts of water from a glacier. They are a pervasive natural hazard worldwide. They have an association with climate primarily via glacier mass balance and their impacts on society partly depend on population pressure and land use. Given the ongoing changes in climate and land use and population distributions there is therefore an urgent need to discriminate the spatio-temporal patterning of glacier outburst floods and their impacts. This study presents data compiled from 20 countries and comprising 1348 glacier floods spanning 10 centuries. Societal impacts were assessed using a relative damage index based on recorded deaths, evacuations, and property and infrastructure destruction and disruption. These floods originated from 332 sites; 70% were from ice-dammed lakes and 36% had recorded societal impact. The number of floods recorded has apparently reduced since the mid-1990s in all major world regions. Two thirds of sites that have produced > 5 floods (n = 32) have floods occurring progressively earlier in the year. Glacier floods have directly caused at least: 7 deaths in Iceland, 393 deaths in the European Alps, 5745 deaths in South America and 6300 deaths in central Asia. Peru, Nepal and India have experienced fewer floods yet higher levels of damage. One in five sites in the European Alps has produced floods that have damaged farmland, destroyed homes and damaged bridges; 10% of sites in South America have produced glacier floods that have killed people and damaged infrastructure; 15% of sites in central Asia have produced floods that have inundated farmland, destroyed homes, damaged roads and damaged infrastructure. Overall, Bhutan and Nepal have the greatest national-level economic consequences of glacier flood impacts. We recommend that accurate, full and standardised monitoring, recording and reporting of glacier floods is essential if spatio-temporal patterns in glacier flood occurrence, magnitude and

  17. Accelerated glacier shrinkage in the Ak-Shyirak massif, Inner Tien Shan, during 2003-2013.

    Science.gov (United States)

    Petrakov, Dmitry; Shpuntova, Alyona; Aleinikov, Alexandr; Kääb, Andreas; Kutuzov, Stanislav; Lavrentiev, Ivan; Stoffel, Markus; Tutubalina, Olga; Usubaliev, Ryskul

    2016-08-15

    The observed increase in summer temperatures and the related glacier downwasting has led to a noticeable decrease of frozen water resources in Central Asia, with possible future impacts on the economy of all downstream countries in the region. Glaciers in the Ak-Shyirak massif, located in the Inner Tien Shan, are not only affected by climate change, but also impacted by the open pit gold mining of the Kumtor Gold Company. In this study, glacier inventories referring to the years 2003 and 2013 were created for the Ak-Shyirak massif based on satellite imagery. The 193 glaciers had a total area of 351.2±5.6km(2) in 2013. Compared to 2003, the total glacier area decreased by 5.9±3.4%. During 2003-2013, the shrinkage rate of Ak-Shyirak glaciers was twice than that in 1977-2003 and similar to shrinkage rates in Tien Shan frontier ranges. We assessed glacier volume in 2013 using volume-area (VA) scaling and GlabTop modelling approaches. Resulting values for the whole massif differ strongly, the VA scaling derived volume is 30.0-26.4km(3) whereas the GlabTop derived volume accounts for 18.8-13.2km(3). Ice losses obtained from both approaches were compared to geodetically-derived volume change. VA scaling underestimates ice losses between 1943 and 2003 whereas GlabTop reveals a good match for eight glaciers for the period 2003-2012. In comparison to radio-echo soundings from three glaciers, the GlabTop model reveals a systematic underestimation of glacier thickness with a mean deviation of 16%. GlabTop tends to significantly underestimate ice thickness in accumulation areas, but tends to overestimate ice thickness in the lowermost parts of glacier snouts. Direct technogenic impact is responsible for about 7% of area and 5% of mass loss for glaciers in the Ak-Shyirak massif during 2003-2013. Therefore the increase of summer temperature seems to be the main driver of accelerated glacier shrinkage in the area. PMID:27100016

  18. A data set of world-wide glacier length fluctuations

    Directory of Open Access Journals (Sweden)

    P. W. Leclercq

    2013-09-01

    Full Text Available Glacier fluctuations contribute to variations in sea level and historical glacier length fluctuations are natural indicators of climate change. To study these subjects, long-term information of glacier change is needed. In this paper we present a~data set of global long-term glacier length fluctuations. The data set is a compilation of available information on changes in glacier length world-wide, including both measured and reconstructed glacier length fluctuations. All 471 length series start before 1950 and cover at least four decades. The longest record starts in 1534, but the majority of time series start after 1850. The number of available records decreases again after 1962. The data set has global coverage including records from all continents. However, the Canadian Arctic is not represented in the data set. The glacier length series show relatively small fluctuations until the mid-19th century followed by a global retreat that was strongest in the first half of the 20th century, although large variability in the length change of the different glaciers is observed. During the 20th century, calving glaciers retreated more than land terminating glaciers, but their relative length change was approximately equal. Besides calving, the glacier slope is the most important glacier property determining length change: steep glaciers have retreated less than glaciers with a gentle slope.

  19. Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean.

    Science.gov (United States)

    Favier, V; Verfaillie, D; Berthier, E; Menegoz, M; Jomelli, V; Kay, J E; Ducret, L; Malbéteau, Y; Brunstein, D; Gallée, H; Park, Y-H; Rinterknecht, V

    2016-01-01

    The ongoing retreat of glaciers at southern sub-polar latitudes is particularly rapid and widespread. Akin to northern sub-polar latitudes, this retreat is generally assumed to be linked to warming. However, no long-term and well-constrained glacier modeling has ever been performed to confirm this hypothesis. Here, we model the Cook Ice Cap mass balance on the Kerguelen Islands (Southern Indian Ocean, 49°S) since the 1850s. We show that glacier wastage during the 2000s in the Kerguelen was among the most dramatic on Earth. We attribute 77% of the increasingly negative mass balance since the 1960s to atmospheric drying associated with a poleward shift of the mid-latitude storm track. Because precipitation modeling is very challenging for the current generation of climate models over the study area, models incorrectly simulate the climate drivers behind the recent glacier wastage in the Kerguelen. This suggests that future glacier wastage projections should be considered cautiously where changes in atmospheric circulation are expected. PMID:27580801

  20. Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean

    Science.gov (United States)

    Favier, V.; Verfaillie, D.; Berthier, E.; Menegoz, M.; Jomelli, V.; Kay, J. E.; Ducret, L.; Malbéteau, Y.; Brunstein, D.; Gallée, H.; Park, Y.-H.; Rinterknecht, V.

    2016-01-01

    The ongoing retreat of glaciers at southern sub-polar latitudes is particularly rapid and widespread. Akin to northern sub-polar latitudes, this retreat is generally assumed to be linked to warming. However, no long-term and well-constrained glacier modeling has ever been performed to confirm this hypothesis. Here, we model the Cook Ice Cap mass balance on the Kerguelen Islands (Southern Indian Ocean, 49°S) since the 1850s. We show that glacier wastage during the 2000s in the Kerguelen was among the most dramatic on Earth. We attribute 77% of the increasingly negative mass balance since the 1960s to atmospheric drying associated with a poleward shift of the mid-latitude storm track. Because precipitation modeling is very challenging for the current generation of climate models over the study area, models incorrectly simulate the climate drivers behind the recent glacier wastage in the Kerguelen. This suggests that future glacier wastage projections should be considered cautiously where changes in atmospheric circulation are expected. PMID:27580801

  1. Monitoring of High Mountain Glaciers in the Vicinity of Everest (Himalaya) using Remote Sensing Capability

    Science.gov (United States)

    Thakuri, S.; Salerno, F.; Bolch, T.; Smiraglia, C.; Tartari, G.

    2014-12-01

    Himalayan glaciers are of crucial interest due to their role in the cryospheric system and hydrology. This contribution examines glacier changes between 1960s and 2013 using satellite data. The study is focused in 3 basins in Nepal: Upper Sun Koshi (USKB; 2850 km2), Dudh Koshi (DKB; 3720 km2), and Tamor (TB; 5875 km2). We observed an overall glacier surface loss of 0.19 ± 0.26 % a-1 (146.1 to 136.9 km2) in SKB for 1975-2013 period; 0.27 ± 0.06 % a-1 (404.6 to 351.8 km2) in the DKB for 1962-2011, and 8.4% (0.25 ± 0.29 % a-1; 610.9 to 559.3 km2) in the TB for 1975-2009 period. In the DKB, we observed an upward shift of snow-line altitude (ΔSLA) by more than 180 m, a terminus retreat of on average ~ 400 m, and an increase of 17.6 ± 3.1% in debris coverage between 1962 and 2011. Moreover, we observed that (i) glaciers with increased debris cover have experienced a reduced termini retreat; (ii) negative mass balances (i.e., ΔSLA) induce increases of debris coverage; (iii) slight, but statistically insignificant acceleration of the surface area loss since early 1990s; but a significant loss for the largest glaciers (>10 km2) that have accumulation zones at higher elevations and along the preferable south-north direction of the monsoon; (iv) a significant ΔSLA; moreover, the largest glaciers present median ΔSLA that are nearly double than that of the smallest; this finding leads to a hypothesis that these glaciers are shrinking, not only due to warming temperatures, but also as a result of decreasing precipitation due to a weakening Asian monsoons registered over the last few decades. Furthermore, we present first results on the geodetic glacier mass and velocity changes of selected glaciers, and climatic trends. In fact, less accumulation due to the observed decrease of precipitation should cause lower glacier flow velocity until to the ice stagnation of tongues as observed by other previous studies in the region. Finally, we compared our findings with other

  2. Changes in Djankuat Glacier budget and geometry since 1967/68

    Science.gov (United States)

    Popovnin, V.

    2012-04-01

    Judgements about the present glacier evolution pattern in the Caucasus are currently based mainly on a detailed and combined monitoring on the representative Djankuat Glacier. By 2011 its continuous series of annual mass balance values reached the total duration of 44 years, and the glacier was remapped in 1:10000 scale 7 times throughout this period. Combined glacio-hydro-meteorological observations and geodetic surveys, lasting several months, used to be annually carried out there. Djankuat became the most extensively studied Russian glacier now. Results of its long-term direct observations are presented with the principal goal to disclose the main tendencies in glacier evolution under the conditions of changing climate. The prevalence of degradation trends over the whole time span since 1967/68 is evident though the period under direct instrumental measurements can be subdivided into stages. In the Caucasus the period of relative improvement of glacier state in the late 1980s - early 1990s was followed by restoration of the tendency towards stable mass loss that can be regarded as quasi-stationary on a decadal time scale. True, signs of gradual withdrawal from this state and a certain acceleration of degradation processes have appeared in recent years. Its cumulative mass balance during the instrumental monitoring period since 1967/68 approached -8000 mm of water equivalent, whereas its area diminished by 10 per cent. After the 2010/11 balance year the glacier mass reached its least value, established ever since the LIA climax. Superposition of spatial patterns for external mass turnover (accumulation, ablation, mass balance) with those of internal turnover (ice motion) reveal the complicated process of alternation in ice flow velocity between the adjacent glacier branches. No strict cyclicity in acceleration of ice motion and hypsometrical surface rising can be discovered, but roughly periods, during which one of adjacent ice streams experiences dynamic and

  3. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2010-02-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and south-west monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007 is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is

  4. The future sea-level rise contribution of Greenland’s glaciers and ice caps

    International Nuclear Information System (INIS)

    We calculate the future sea-level rise contribution from the surface mass balance of all of Greenland’s glaciers and ice caps (GICs, ∼90 000 km2) using a simplified energy balance model which is driven by three future climate scenarios from the regional climate models HIRHAM5, RACMO2 and MAR. Glacier extent and surface elevation are modified during the mass balance model runs according to a glacier retreat parameterization. Mass balance and glacier surface change are both calculated on a 250 m resolution digital elevation model yielding a high level of detail and ensuring that important feedback mechanisms are considered. The mass loss of all GICs by 2098 is calculated to be 2016 ± 129 Gt (HIRHAM5 forcing), 2584 ± 109 Gt (RACMO2) and 3907 ± 108 Gt (MAR). This corresponds to a total contribution to sea-level rise of 5.8 ± 0.4, 7.4 ± 0.3 and 11.2 ± 0.3 mm, respectively. Sensitivity experiments suggest that mass loss could be higher by 20–30% if a strong lowering of the surface albedo were to take place in the future. It is shown that the sea-level rise contribution from the north-easterly regions of Greenland is reduced by increasing precipitation while mass loss in the southern half of Greenland is dominated by steadily decreasing summer mass balances. In addition we observe glaciers in the north-eastern part of Greenland changing their characteristics towards greater activity and mass turnover. (letter)

  5. Headwall erosion rates from cosmogenic (10) Be in supraglacial debris, Chhota Shigri Glacier, Indian Himalaya

    Science.gov (United States)

    Scherler, Dirk; Egholm, David

    2016-04-01

    Debris-covered glaciers are widespread within the Himalaya and other steep mountain ranges. They testify to active erosion of ice-free bedrock hillslopes that tower above valley glaciers, sometimes more than 1 km high. It is long known that debris cover significantly reduces surface ablation rates and thereby influences glacial mass balances; but its dynamic evolution along with climatic and topographic changes is poorly studied. Better understanding the coupling of ice-free bedrock hillslopes and glaciers in steep mountains requires means to assess headwall erosion rates. Here, we present headwall erosion rates derived from 10Be concentrations in the ablation-dominated medial moraine of the Chhota Shigri Glacier, Indian Himalaya. We combine our empirical, field-based approach with a numerical model of headwall erosion and glacial debris transport to assess permissible patterns of headwall erosion on the ice-free bedrock hillslopes surrounding the Chhota Shigri Glacier. Our five samples, each separated by approximately 500 m along the glacier, consist of an amalgamation of >1000 surface clasts with grain sizes between ˜1 and ˜30 mm that were taken from the medial moraine. Our results show that 10Be concentrations increase downglacier from ˜3×104 to ˜6×104 atoms g‑1, yielding headwall erosion rates of ˜1.3-0.6 mm yr‑1. The accumulation of 10Be during debris residence on the ice surface can only account for a small fraction (cracking, e.g., spatially uniform versus temperature dependent.

  6. Satellite Imagery, Aerial Photo and Field Data For The Survey of Zongo Glacier, Bolivia

    Science.gov (United States)

    Arnaud, Y.; Mendoza, J.

    Andean tropical glaciers are one of the most sensitive gauges of global climatic changes. The importance of the studies of such glaciers is not only scientific but also economic: Zongo glacier located in the Royal Cordillera of Bolivia is the main water reserve for La Paz city hydroelectricity supply. Landsat, Spot, aerial photos and field measurements are combined in order to observe the dynamic of the glacier from 1948 to 2000. Glacier boundaries were delineated manually on each images. An obvious retreat of the glacier tongue as well as a speeding up of this recession has been high- lighted since the late 1980Ss and continues into 90Ss. On the lower part of the tongue, several DEM were calculated from 1948 to 2000, based on stereo aerial photographs and recent SPOT panchromatic stereo-images. These DEM allow us to calculate vol- ume variations and show higher mass lost in the last decade. It appears that one of the reasons for the retreat is linked to ENSO phenomenon and in particular to the increase of El Niño frequency compared to Normal or La Niña situations.

  7. Insights into temporal variability of surface flow velocity of the Tasman Glacier, New Zealand, provided by optical satellite imagery

    Science.gov (United States)

    Sirguey, P. J.; Redpath, T.; Fitzsimons, S.; Kääb, A.

    2011-12-01

    The Tasman Glacier is the longest and largest glacier in New Zealand, containing almost a third of New Zealand's glacier ice by volume. Recent studies have applied digital image matching techniques to measure flow velocities on the surface of the Tasman Glacier from repeat satellite imagery. These studies have, however, utilized temporally limited data sets. Additionally, precise quantification of uncertainties is not common; with an accuracy of ± 1 pixel (15 m where ASTER imagery is used) assigned in earlier studies, while no previous work has accounted for inevitably anisotropic uncertainties. Large and ambiguous uncertainties make significance assessment of small inter- to sub-annual velocity changes difficult. This study provides a decade long (2000 - 2010) record of flow velocities for the Tasman Glacier. This record has been derived from a series of annually acquired Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery. Flow-fields were derived from pairs of consecutive images using Correlation Image Analysis Software (CIAS). Repeat GPS measurements of markers installed on the glacier surface were used for optimisation of image matching and flow-field validation. Co-registration of each image pair was carefully quantified at a sub-pixel level, enabling the calculation of confidence intervals for each map of flow velocity. Uncertainties presented here are anisotropic, accounting for unequal co-registration variance between images in the x and y directions, and unique to each individual velocity measurement. Quantification of uncertainties permitted the significance of temporal velocity changes to be assessed. The results identify two major units of flow, and, an apparent disconnection between the upper Tasman and Hochstetter glaciers. Despite the existence of this discontinuity, a previously suggested complete de-coupling between ice masses at the Hochstetter Confluence was not

  8. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    Science.gov (United States)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    strem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.

  9. Spatially Distributing a GRACE Mascon Solution Across Gulf of Alaska Glaciers

    Science.gov (United States)

    Young, J. C.; Arendt, A. A.; Luthcke, S. B.

    2014-12-01

    Glaciers of Alaska and Northwestern Canada are losing mass at one of the highest rates of any mountain glacier system globally. High-precision measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have revealed changes in the local gravitational field along the Gulf of Alaska due to changes in these ice masses since 2003. Previous efforts have spatially resolved these mass changes to 100 x 100 km grid cells or mass concentrations (mascons) as part of a global GRACE solution. While mass change estimates at the scale of entire mountain ranges (i.e. several geographically-grouped mascons) show strong temporal correlation to surface mass balance and air temperature, and while ice loss magnitudes for all Gulf of Alaska glaciers agree closely with geodetic estimates from ICESat, most GRACE-derived glacier mass loss magnitudes do not match ground observations at the level of individual mascons. In this study, we examine several approaches for partitioning the most recent GRACE mascon solution for glacier mass change along the Gulf of Alaska to individual mascons. We derive sets of scaling coefficients for every mascon, representing the local averages of different topographic or climatological characteristics, which essentially serve as different measures of continentality. These characteristics include mean ice elevation and distance from the coast, derived from the Randolph Glacier Inventory, and mean monthly temperature and precipitation, derived from the gridded climate product PRISM. Each set of scaling coefficients (representing each continentality index) is evaluated by comparing our derived timeseries' of mass change to independent estimates from available ground and remote sensing datasets. We focus our preliminary validation on mascons within the Juneau Icefield area in Southeast Alaska, for which we have independent constraints on mass change from hydrological models and laser altimetry, and which acts as a test case for future

  10. Volcano-Ice Interactions in Mexico: Extinction of Glaciers at Popocatépetl and the Fate of the Glaciers of Iztaccíhuatl and Citlaltépetl Volcanoes

    Science.gov (United States)

    Delgado Granados, H.

    2007-05-01

    In spite of the state of activity of the Mexican volcanoes (erupting, fumarolic, or dormant) study of volcano-ice interactions is of key importance because one of the main consequences of these interactions is the generation of lahars. Study of glaciers and volcanic activity help to prevent the possibility of devastating events at volcanoes in Mexico, especially because some explosive events at Popocatépetl volcano generated lahars during the past twelve years. Small-sized glaciers exist or existed at Iztaccíhuatl, Popocatépetl and Citlaltépetl whose volcanic activity is characterized by a different level of activity. The extinction of glaciers of Popocatépetl volcano was eruption-forced. 40% of climatic-related shrinkage occurred in 4 decades whereas 32% of eruption-related shrinkage occurred in 4 years. Long-term effects of glacier extinction include an imbalance between recharge and extraction of groundwater at surrounding aquifers provoked by disappearance of glacier-related melt water. The volcano started to erupt in 1994. Impact of the eruption on the glaciers was in several ways: immediate thermal effect of hot falling ash on snow and ice.; ballistic projectiles are also hot and yield high kinetic energy producing melting restricted to the impact areas; every event depositing 1cm of ash represents a load of ~102-104 tons; fumaroles of effect is difficult to assess. Iztaccíhuatl volcano's glaciers have been influenced by the same factors as at Popocatépetl, except the eruption. Citlaltépetl volcano's glaciers have been just affected by climatic changes. Both volcanoes show fumaroles or diffuse degassing. An eruptive event in the short term may cause the same effect as occurred at Popocatépetl volcano. The large ice masses of the world are claimed to be affected by global warming and local climatic variations. Tropical glaciers as those of Mexico are more vulnerable because of their size and exposure to eruptive processes. Even though their extinction

  11. The impact of glacier retreat from the Ross Sea on local climate: Characterization of mineral dust in the Taylor Dome ice core, East Antarctica

    Science.gov (United States)

    Aarons, S. M.; Aciego, S. M.; Gabrielli, P.; Delmonte, B.; Koornneef, J. M.; Wegner, A.; Blakowski, M. A.

    2016-06-01

    Recent declines in ice shelf and sea ice extent experienced in polar regions highlight the importance of evaluating variations in local weather patterns in response to climate change. Airborne mineral particles (dust) transported through the atmosphere and deposited on ice sheets and glaciers in Antarctica and Greenland can provide a robust set of tools for resolving the evolution of climatic systems through time. Here we present the first high time resolution radiogenic isotope (strontium and neodymium) data for Holocene dust in a coastal East Antarctic ice core, accompanied by rare earth element composition, dust concentration, and particle size distribution during the last deglaciation. We aim to use these combined ice core data to determine dust provenance, with variations indicative of shifts in either dust production, sources, and/or transport pathways. We analyzed a series of 17 samples from the Taylor Dome (77°47‧47″S, 158°43‧26″E) ice core, 113-391 m in depth from 1.1-31.4 ka. Radiogenic isotopic and rare earth element compositions of dust during the last glacial period are in good agreement with previously measured East Antarctic ice core dust records. In contrast, the Holocene dust dataset displays a broad range in isotopic and rare earth element compositions, suggesting a shift from long-range transported dust to a more variable, local input that may be linked to the retreat of the Ross Ice Shelf during the last deglaciation. Observed changes in the dust cycle inferred from a coastal East Antarctic ice core can thus be used to infer an evolving local climate.

  12. Twenty-first century changes in the hydrology, glaciers, and permafrost of the Susitna Basin, Alaska

    Science.gov (United States)

    Bliss, A. K.; Hock, R.; Wolken, G. J.; Zhang, J.; Whorton, E.; Braun, J. L.; Gusmeroli, A.; Liljedahl, A.; Schulla, J.

    2014-12-01

    In the face of climate change, the hydrology of the upper Susitna Basin in South-Central Alaska is expected to change. This would impact the quantity and seasonality of river flow into a proposed hydroelectric dam, if it were to be built. The upper Susitna Basin catchment area is 13,289 km², ranging from 450-4000 m a.s.l. It is 4% glacierized and is characterized by sparse vegetation, discontinuous permafrost, and little human development. We present field measurements and results from hydrological modeling. We present new field data from spring and fall 2014 along with field measurements from the 1980's, 2012, and 2013. These data are used to calibrate and validate the hydrological model. Traditional glacier mass balance measurements show that the glaciers lost more mass in 2012 and 2013 than in 1981, 1982, or 1983. Springtime snow radar surveys of the glaciers allow us to extrapolate from point measurements of snow depth to the whole glacier area. Snow depth measurements at tundra sites as well as tundra vegetation and soil characterizations help us choose appropriate model parameters for the tundra portions of the basin. Meteorological data (temperature, humidity, and precipitation) from over 20 stations in the basin show the summertime temperature lapse rate to be smaller over glacier surfaces compared to ice-free surfaces. Precipitation is highly variable across the basin. Energy balance measurements from two meteorological stations, one located on West Fork Glacier and one on a nunatak near Susitna Glacier, are used for more detailed modeling of summertime glacier melt and runoff. We run a physically-based hydrological model to project 21st century river discharge: Water Flow and Balance Simulation Model (WaSiM). Climate inputs come from a CCSM CMIP5 RCP6.0 scenario downscaled to a 20km-5km nested grid using the Weather Research and Forecasting (WRF) Model. From 2010-2029 to 2080-2099 the basin-wide mean-annual temperature will rise 2.5 degrees and total

  13. Climate modelling of mass-extinction events: a review

    Science.gov (United States)

    Feulner, Georg

    2009-07-01

    Despite tremendous interest in the topic and decades of research, the origins of the major losses of biodiversity in the history of life on Earth remain elusive. A variety of possible causes for these mass-extinction events have been investigated, including impacts of asteroids or comets, large-scale volcanic eruptions, effects from changes in the distribution of continents caused by plate tectonics, and biological factors, to name but a few. Many of these suggested drivers involve or indeed require changes of Earth's climate, which then affect the biosphere of our planet, causing a global reduction in the diversity of biological species. It can be argued, therefore, that a detailed understanding of these climatic variations and their effects on ecosystems are prerequisites for a solution to the enigma of biological extinctions. Apart from investigations of the paleoclimate data of the time periods of mass extinctions, climate-modelling experiments should be able to shed some light on these dramatic events. Somewhat surprisingly, however, only a few comprehensive modelling studies of the climate changes associated with extinction events have been undertaken. These studies will be reviewed in this paper. Furthermore, the role of modelling in extinction research in general and suggestions for future research are discussed.

  14. Processes driving rapid morphological changes observed on the Khumbu Glacier, Nepal

    Science.gov (United States)

    Quincey, Duncan; Rowan, Ann; Gibson, Morgan; Irvine-Fynn, Tristram; King, Owen; Watson, Scott

    2016-04-01

    The response of many Himalayan glaciers to climatic change is complicated by the presence of a supraglacial debris cover, which leads to a suite of processes controlling mass loss that are not commonly found where glaciers are debris-free. Here, we present a range of field, surface topographic and ice-dynamical observations acquired from Khumbu Glacier in Nepal, to describe and quantify these processes in fine spatial and temporal resolution. Like many other debris-covered glaciers in the Himalaya, the debris-covered tongue of the Khumbu Glacier is heavily in recession. For at least two decades, the lower ablation area has been stagnant as surface lowering in the mid-ablation zone has led to ever decreasing driving stresses. Contemporary velocity data derived from TerraSAR-X imagery confirms that the active-inactive ice boundary can now be found 5 km from the glacier terminus and that the maximum velocity, immediately below the icefall, is around 70 m per year. These data show that in this upper part of the ablation zone, the glacier velocity has not changed during the last 20 years, suggesting that at least above the icefall the glacier remains healthy. Across the stagnant debris-covered tongue there have been marked surface morphological changes. Mapping from 2004 shows relatively few surface ponds, a homogeneous debris-covered surface, and a small area towards the terminus supporting soil formation and low vegetation. Mapping from field observations in 2014 shows an abundance of surface meltwater, a more heterogeneous surface texture associated with many exposed ice cliffs, and a long (3 km) zone of stable terrain where soils are developing and, in places, low scrub can be found. Most dramatically, a string of surface ponds occupying the true-left lowermost 2 km of ice have expanded and coalesced, suggesting the glacier has crossed a threshold leading towards large glacial lake development. Two fine-resolution DEMs derived from Structure-from-Motion in spring

  15. Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006

    Directory of Open Access Journals (Sweden)

    C. Tennant

    2012-07-01

    Full Text Available We used Interprovincial Boundary Commission Survey (IBCS maps of the Alberta–British Columbia (BC border (1903–1924, BC Terrain Resource Information Management (TRIM data (1982–1987, and Landsat Thematic Mapper (TM and Enhanced Thematic Mapper (ETM+ imagery (2000–2002 and 2006 to document planimetric changes in glacier cover in the Central and Southern Canadian Rocky Mountains between 1919 and 2006. Total glacierized area decreased by 590 ± 100 km2 (40 ± 7%, with 17 of 523 glaciers disappearing and 124 glaciers fragmenting into multiple ice masses. Fourteen of the glaciers that disappeared were less than 0.5 km2, and glaciers smaller than 1.0 km2 experienced the greatest relative area loss (64 ± 17%. Variation in area loss increased with small glaciers, suggesting local topographic setting controls the response of these glaciers to climate change. Absolute area loss negatively correlates with slope and minimum elevation, and relative area change negatively correlates with mean and median elevations. Similar average rates of area change were observed for the periods 1919–1985 and 1985–2001, at −6.3 ± 0.9 km2 yr−1 (−0.4 ± 0.1% yr−1 and −5.0 ± 0.5 km2 yr−1 (−0.3 ± 0.1% yr−1, respectively. The rate of area loss significantly increased for the period 2001–2006, −19.3 ± 2.4 km2 yr−1 (−1.3 ± 0.2% yr−1, with continued high minimum and accumulation season temperature anomalies and variable precipitation anomalies.

  16. A novel multispectral glacier mapping method and its performance in Greenland

    Science.gov (United States)

    Citterio, M.; Fausto, R. S.; Ahlstrom, A. P.; Andersen, S. B.

    2014-12-01

    Multispectral land surface classification methods are widely used for mapping glacier outlines. Significant post-classification manual editing is typically required, and mapping glacier outlines over larger regions remains a rather labour intensive task. In this contribution we introduce a novel method for mapping glacier outlines from multispectral satellite imagery, requiring only minor manual editing.Over the last decade GLIMS (Global Land Ice Measurements from Space) improved the availability of glacier outlines, and in 2012 the Randolph Glacier Inventory (RGI) attained global coverage by compiling existing and new data sources in the wake of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). With the launch of Landsat 8 in 2013 and the upcoming ESA (European Space Agency) Sentinel 2 missions, the availability of multispectral imagery may grow faster than our ability to process it into timely and reliable glacier outline products. Improved automatic classification methods would enable a full exploitation of these new data sources.We outline the theoretical basis of the proposed classification algorithm, provide a step by step walk-through from raw imagery to finished ice cover grids and vector glacier outlines, and evaluate the performance of the new method in mapping the outlines of glaciers, ice caps and the Greenland Ice Sheet from Landsat 8 OLI imagery. The classification output is compared against manually digitized ice margin positions, the RGI vectors, and the PROMICE (Programme for Monitoring of the Greenland Ice Sheet) aerophotogrammetric map of Greenland ice masses over a sector of the Disko Island surge cluster in West Greenland, the Qassimiut ice sheet lobe in South Greenland, and the A.P. Olsen ice cap in NE Greenland.

  17. Distinct Seasonal Velocity Patterns Based on Ice-Sheet-Wide Analysis of Greenland Outlet Glaciers

    Science.gov (United States)

    Moon, T. A.; Joughin, I. R.; Smith, B. E.; van den Broeke, M. R.; Usher, M.

    2014-12-01

    Mass loss from the Greenland Ice Sheet increased significantly over the last several decades and current mass losses of 260-380 Gt ice/yr contribute 0.7-1.1 mm/yr to global sea-level rise. Greenland mass loss includes ice discharge via marine-terminating outlet glaciers and surface meltwater runoff, the former now making up a third to a half of total ice loss. The magnitude of ice discharge depends in part on ice-flow speed, which has broadly increased since 2000 but varies locally, regionally, and from year to year. Research on a limited set of Greenland glaciers also shows that speeds vary seasonally. However, for much of the west, northwest, and southeast coasts where ice loss is increasing most rapidly, there are few or no records of seasonal velocity variation. Ice velocity is influenced by several key components of the ice-sheet-ocean-climate system: subglacial environment, surface melt and runoff, and ice-ocean interaction at the ice-front (terminus). Thus, knowledge of seasonal velocity patterns is important for predicting annual ice discharge, understanding the effects of increased surface melt on total mass loss, and establishing how ice-flow responds to other climatic changes. We developed 5-year records of seasonal velocity measurements for 55 glaciers around the ice-sheet margin. Among glaciers with significant speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position, with seasonal summer speedup sustained through fall. The other two patterns appear to be meltwater controlled and indicate regional differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. These differences in dominant velocity control mechanisms reveal likely spatiotemporal variations in the dynamic response of the ice sheet to climate change.

  18. Modelling the advance–retreat cycle of a tidewater glacier with simple sediment dynamics

    NARCIS (Netherlands)

    Oerlemans, J.; Nick, Faezeh Maghami

    2006-01-01

    We present a simple coupled glacier-sediment model to simulate the evolution of a tidewater glacier. The model is based on a consideration of the total mass budget of a glacier, whereas ice mechanics are fully parameterized. The calving rate at the glacier terminus is assumed to be proportional to t

  19. Anthropogenic climate change impacts on ponds: a thermal mass perspective

    Directory of Open Access Journals (Sweden)

    John Matthews

    2010-12-01

    Full Text Available Small freshwater aquatic lentic systems (lakes and ponds are sensitive to anthropogenic climate change through shifts in ambient air temperatures and patterns of precipitation. Shifts in air temperatures will influence lentic water temperatures through convection and by changing evaporation rates. Shifts in the timing, amount, and intensity of precipitation will alter the thermal mass of lentic systems even in the absence of detectable ambient air temperature changes. These effects are likely to be strongest in ponds (standing water bodies primarily mixed by temperature changes than by wind, for whom precipitation makes up a large component of inflows. Although historical water temperature datasets are patchy for lentic systems, thermal mass effects are likely to outweigh impacts from ambient air temperatures in most locations and may show considerable independence from those trends. Thermal mass-induced changes in water temperature will thereby alter a variety of population- and community-level processes in aquatic macroinvertebrates.

  20. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    International Nuclear Information System (INIS)

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13C-DOC, Δ 14C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the Δ 14C-DOC of stream samples at the outflow (−181.7 to −355.3‰) was comparable to the Δ 14C-DOC for snow samples from the accumulation zone (−207.2 to −390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century. (papers)

  1. A Revised Glacier Inventory of Bhaga Basin Himachal Pradesh, India : Current Status and Recent Glacier Variations

    Science.gov (United States)

    Birajdar, F.; Venkataraman, G.; Bahuguna, I.; Samant, H.

    2014-11-01

    Himalayan glaciers show large uncertainty regarding their present and future state due to their sensitive reaction towards change in climatic condition. Himalayan glaciers are unique as they are located in tropical, high altitude regions, predominantly valley type and many are covered with debris. The great northern plains of India sustain on the perennial melt of glaciers meeting the water requirements of agriculture, industries, domestic sector even in the months of summer when large tracts of the country go dry. Therefore, it is important to monitor and assess the state of snow and glaciers and to know the sustainability of glaciers in view of changing global scenarios of climate and water security of the nation. Any information pertaining to Himalayan glaciers is normally difficult to be obtained by conventional means due to its harsh weather and rugged terrains. Due to the ecological diversity and geographical vividness, major part of the Indian Himalaya is largely un-investigated. Considering the fact that Himalayan glaciers are situated in a harsh environment, conventional techniques of their study is challenging and difficult both in terms of logistics and finances whereas the satellite remote sensing offers a potential mode for monitoring glaciers in long term. In order to gain an updated overview of the present state of the glacier cover and its changes since the previous inventories, an attempt has been made to generate a new remotesensing- derived glacier inventory on 1:50,000 scale for Bhaga basin (N32°28'19.7'' - N33°0'9.9'' ; E76°56'16.3'' - E77°25'23.7'' ) Western Himalaya covering an area of 1695.63 km2. having 231 glaciers and occupying glacierized area of 385.17 ±3.71 km2. ranging from 0.03 km2. to 29.28 km2. Glacier inventory has been carried out using high resolution IRS P6 LISS III data of 2011, ASTER DEM and other ancillary data. Specific measurements of mapped glacier features are the inputs for generating the glacier inventory data

  2. GLACIER and related R&D

    CERN Document Server

    Curioni, Alessandro

    2011-01-01

    Liquid argon detectors, with mass up to 100 kton, are being actively studied in the context of proton decay searches, neutrino astrophysics and for the next generation of long baseline neutrino oscillation experiments to study the neutrino mass hierarchy and CP violation in the leptonic sector. The proposed Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER) offers a well defined conceptual design for such a detector. In this paper we present the GLACIER design and some of the R&D activities pursued within the GLACIER.

  3. Glacier size changes in Kronotsky Peninsula and Alney-Chashakondzha Massif, Kamchatka Peninsula in the second half of XX century and the beginning of XXI century

    Directory of Open Access Journals (Sweden)

    A. Ya. Muravjev

    2015-03-01

    Full Text Available As it is known from recent investigations 448 glaciers are situated on the Kamchatka Peninsula, their total area are about 905 km2 [8]. More than 80% of them are glaciers of the Sredinny Range and the Klyuchevskaya group that is explained by large altitudes of them. Glaciers of the Kronotsky Penisula are less studied since this territory is practically not influenced by present-day volcanic processes. This paper presents results of investigation of changes in glaciations of the Kronotsky Peninsula and the mountain mass Alney-Chashakondzha (Fig. 1.The following materials are used: 1 the Landsat satellite picture of September 2nd, 2013; 2 pictures from satellite WorldView-2 of July 20th, 2010, and of August 1st, 2012 with spatial resolution of about 1 m; 3 aerial photographs made in August of 1950; 4 topographic maps of the 1:100 000 scale; 5 data from the USSR Glacier Inventory; 6 results of observations at hydrometeorological stations (HMS Klyuchi and Kronoki (1950–2006 (www.meteo.ru.According to data from the USSR Glacier Inventory 32 glaciers were situated on the Kronotsky Peninsula, their total area 91.9 km2. By 2013, six glaciers disintegrated. Deciphering of the Landsat pictures did show 50 glaciers. Among them 23 glaciers are presented in the Inventory and they still hold their wholeness; 13 glaciers are segments of six disintegrated ones; 14 glaciers found in the pictures are not presented in the Inventory. Changes in areas of the Kronotsky Peninsula glaciers for period 1950–2013 in dependence on their sizes and expositions are shown in Tables 1 and 2.According to the Inventory 26 glaciers were situated in region of the Alney-Chashakondzha massif, their total area 61.4 km2. By 2010, four of them disintegrated. Deciphering of the World-View-2 picture of July 2010 did show 45 glaciers: 20 glaciers are consistent with the Inventory, and they hold their wholeness; 9 glaciers are segments of four disintegrated ones; 16 glaciers found in

  4. Surface Albedo Variation and Its Influencing Factors over Dongkemadi Glacier, Central Tibetan Plateau

    OpenAIRE

    Jie Wang; Yuhuan Cui; Xiaobo He; Jian Zhang; Shijiang Yan

    2015-01-01

    Glacier albedo plays a critical role in surface-atmosphere energy exchange, the variability of which influences glacier mass balance as well as water resources. Dongkemadi glacier in central Tibetan Plateau was selected as study area; this research used field measurements to verify Landsat TM-derived albedo and MOD10A1 albedo product and then analyzed the spatiotemporal variability of albedo over the glacier according to them, as well as its influence factors and the relationship with glacier...

  5. 'Unlocking the archive': Using digital photogrammetry of modern and historic aerial photography to reconstruct 60 years of volumetric change on the Moider Glacier, Antarctic Peninsula

    Science.gov (United States)

    Clarke, Lucy; Miller, Pauline; Ireland, Louise; Fox, Adrian; Mills, Jon; Fieber, Karolina

    2016-04-01

    The Antarctic Peninsula is a mountain glacier system comprised of over 400 glaciers, and is an important contributor to historical and future sea level rise. Assessment and monitoring of AP glaciers is crucial for understanding sensitivity to climate change. Changes to glacier fronts and ice shelves and glacier acceleration are well documented, but there are almost no data on mass changes on the Antarctic Peninsula. Satellite data have been used to calculate change over the last 3 decades, but methods to quantify this over longer timescales have eluded researchers. However there is an archive of aerial photography dating back to the 1940s, this has been largely ignored due to the range of technical problems associated with deriving quantitative data from historic imagery and the lack of ground control data. This presentation demonstrates how advances in photogrammetric processing and capture of modern aerial photography has allowed this archive to be 'unlocked'. Accurate photogrammetric reconstruction from aerial photographs traditionally requires known ground control points acquired in the field; in remote and inaccessible areas, such as the Antarctic Peninsula, this is often impossible. A method for providing control for historic photos without fieldwork, by linking them to a newly acquired, highly accurate photogrammetric model adjusted through direct kinematic GPS positioning of the camera has been applied to a number of glaciers across the Antarctic Peninsula. This presentation will outline the photogrammetric workflow with focus on the Moider Glacier in the Marguerite Bay region of the western Antarctic Peninsula to investigate the quality of data that can be obtained. Volumetric changes on the glaciers from the 1950s to present day (2015) have been reconstructed and can be used to explore the spatial and temporal changes that have occurred on this glacier. In particular, there is near-annual data over the last 5 years recording a period when there has been

  6. Modeling debris-covered glaciers: response to steady debris deposition

    OpenAIRE

    Anderson, Leif S.; Anderson, Robert S.

    2016-01-01

    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris–glacier–climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 si...

  7. Glaciers between two drivers

    DEFF Research Database (Denmark)

    Machguth, Horst

    2014-01-01

    It is assumed that the monsoon is the dominant influence on Himalayan glaciers. However, a study now investigates the importance of the mid-latitude Westerlies and shows that glacier changes can be triggered from afar....

  8. Glacier Photograph Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Glacier Photograph Collection is a database of photographs of glaciers from around the world, some dating back to the mid-1850's, that provide an historical...

  9. World Glacier Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Glacier Inventory (WGI) contains information for over 130,000 glaciers. Inventory parameters include geographic location, area, length, orientation,...

  10. Evaluating Tourist Perception of Environmental Changes as a Contribution to Managing Natural Resources in Glacierized Areas: A Case Study of the Forni Glacier (Stelvio National Park, Italian Alps)

    Science.gov (United States)

    Garavaglia, Valentina; Diolaiuti, Guglielmina; Smiraglia, Claudio; Pasquale, Vera; Pelfini, Manuela

    2012-12-01

    Climate change effects are noticeably evident above the timberline where glacier and permafrost processes and mass movements drive the surface evolution. In particular, the cryosphere shrinkage is deeply changing the features and characteristics of several glacierized mountain areas of the world, and these modifications can also affect the landscape perception of tourists and mountaineers. On the one hand glacier retreat is increasing the interest of tourists and visitors in areas witnessing clear climate change impacts; on the other hand cryosphere shrinkage can impact the touristic appeal of mountain territories which, diminishing their ice and snow coverage, are also losing part of their aesthetic value. Then, to promote glacierized areas in a changing climate and to prepare exhaustive and actual proposals for sustainable tourism, it is important to deepen our knowledge about landscape perception of tourists and mountaineers and their awareness of the ongoing environmental modifications. Here we present the results from a pilot study we performed in summer 2009 on a representative glacierized area of the Alps, the Forni Valley (Stelvio National Park, Lombardy, Italy), a valley shaped by Forni, the largest Italian valley glacier. During the 2009 summer season we asked tourists visiting the Forni Valley to complete a questionnaire. This study was aimed at both describing the features and characteristics of tourists and mountaineers visiting this Alpine zone in summer and evaluating their landscape perception and their ability to recognize climate change impacts and evidence. Our results suggest that the dissemination strategies in a natural protected area have to take into account not only the main landscape features but also the sites where the information will be given. In particular considering the peculiarities of the huts located in the area, such as their different accessibility and the fact that they are included or not in a mountaineering network like that

  11. Evaluating tourist perception of environmental changes as a contribution to managing natural resources in glacierized areas: a case study of the Forni glacier (Stelvio National Park, Italian Alps).

    Science.gov (United States)

    Garavaglia, Valentina; Diolaiuti, Guglielmina; Smiraglia, Claudio; Pasquale, Vera; Pelfini, Manuela

    2012-12-01

    Climate change effects are noticeably evident above the timberline where glacier and permafrost processes and mass movements drive the surface evolution. In particular, the cryosphere shrinkage is deeply changing the features and characteristics of several glacierized mountain areas of the world, and these modifications can also affect the landscape perception of tourists and mountaineers. On the one hand glacier retreat is increasing the interest of tourists and visitors in areas witnessing clear climate change impacts; on the other hand cryosphere shrinkage can impact the touristic appeal of mountain territories which, diminishing their ice and snow coverage, are also losing part of their aesthetic value. Then, to promote glacierized areas in a changing climate and to prepare exhaustive and actual proposals for sustainable tourism, it is important to deepen our knowledge about landscape perception of tourists and mountaineers and their awareness of the ongoing environmental modifications. Here we present the results from a pilot study we performed in summer 2009 on a representative glacierized area of the Alps, the Forni Valley (Stelvio National Park, Lombardy, Italy), a valley shaped by Forni, the largest Italian valley glacier. During the 2009 summer season we asked tourists visiting the Forni Valley to complete a questionnaire. This study was aimed at both describing the features and characteristics of tourists and mountaineers visiting this Alpine zone in summer and evaluating their landscape perception and their ability to recognize climate change impacts and evidence. Our results suggest that the dissemination strategies in a natural protected area have to take into account not only the main landscape features but also the sites where the information will be given. In particular considering the peculiarities of the huts located in the area, such as their different accessibility and the fact that they are included or not in a mountaineering network like that

  12. Ice flux divergence anomalies on 79north Glacier, Greenland

    DEFF Research Database (Denmark)

    Seroussi, H.; Morlighem, M.; Rignot, E.;

    2011-01-01

    The ice flux divergence of a glacier is an important quantity to examine because it determines the rate of temporal change of its thickness. Here, we combine high-resolution ice surface velocity observations of Nioghalvfjerdsfjorden (79north) Glacier, a major outlet glacier in north Greenland, with...... a dense grid of ice thickness data collected with an airborne radar sounder in 1998, to examine its ice flux divergence. We detect large variations, up to 100 m/yr, in flux divergence on grounded ice that are incompatible with what we know of the glacier surface mass balance, basal mass balance and...... onto a regular grid using a scheme (here block kriging) that does not conserve mass or ice flux. This problem is not unique to 79north Glacier but is common to all conventional ice thickness surveys of glaciers and ice sheets; and fundamentally limits the application of ice thickness grids to high...

  13. Evolution of Ossoue Glacier (French Pyrenees since the end of the Little Ice Age

    Directory of Open Access Journals (Sweden)

    R. Marti

    2015-04-01

    Full Text Available Long-term climate records are rare at high elevations in Southern Europe. Here, we reconstructed the evolution of Ossoue Glacier (42°46' N, 0.45 km2, located in the Pyrenees (3404 m a.s.l., since the Little Ice Age (LIA. Glacier length, area, thickness and mass changes indicators were generated from historical datasets, topographic surveys, glaciological measurements (2001–2013, a GPR survey (2006 and stereoscopic satellite images (2013. The glacier has receded considerably since the end of the LIA, losing 40 % of its length and 60% of its area. Three periods of marked ice depletion can be identified: 1850–1890, 1928–1950 and 1983–2013, as well as two periods of stabilization or slightly growth: 1905–1928 and 1950–1983; these agree with climatic datasets (air temperature, precipitation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation. In the early 2000s, the area of the glacier dropped below 50% of its area at the end of the LIA. Geodetic mass balance measurements over 1983–2013 indicated −30.1 ± 1.7 m w.e. (−1 m w.e. yr−1 whereas glaciological mass balance measurements show −17.36 ± 2.9 m w.e. (−1.45 m w.e. yr−1 over 2001–2013, resulting in a doubling of the ablation rate in the last decade. In 2013 the maximum ice thickness was 59 ± 10.3 m. Assuming that the current ablation rate stays constant, Ossoue Glacier will disappear midway through the 21st century.

  14. Measuring the mass balance and contribution to sea level rise of North American glaciers using remote sensing techniques

    Science.gov (United States)

    Vanlooy, Jeffrey Adam

    Volume and surface elevation changes were calculated for six icefields throughout Alaska and British Columbia by differencing Digital Elevation Models (DEMs) that represent glacial elevations from different time periods. For the Harding Icefield on the Kenai Peninsula in southcentral Alaska, United States Geological Survey (USGS) DEMs from the 1950s were differenced with Shuttle Radar Topographic Mission (SRTM) DEMs from 2000 (effective 1999 elevations). Results indicated that the icefield had a volume loss of -72.1 +/-15.0 km3, which equates to 0.0033 +/- 0.0006 mm y-1 of sea level rise contribution. Along with these results, Light Detecting and Ranging (Lidar) elevation data of 13 Harding Icefield glaciers from the mid-1990s provided a third elevation data set for comparison with the USGS and SRTM DEMs. The results from these surface elevation change calculations indicated that surface elevation change rates increased by 1.5 times from the mid-1990s to 1999 (-0.72 +/- 0.13 m y-1) as compared to the 1950s to the mid-1900s (-0.47 +/- 0.01 m y-1). In southwest British Columbia, five icefields were studied: Monarch, Ha-Iltzuk, Mt. Waddington area, Homathko, and Lillooet. Terrain Resource Information Management (TRIM) DEMs from the mid-1980s were differenced from the SRTM DEMs to calculate the volume and surface elevation change of the five icefields. Results from these calculations indicate that between the mid-1980s and 1999 the total volume change of the five icefields was a loss of -47.72 +/- 14.62 km3, which equates to a potential sea level rise contribution of 0.0077 +/-0.0021 mm y-1. A DEM of a third time period was produced by kriging elevation points derived from 1970s topographic maps, and used to calculate volume and surface elevation changes of Ha-Iltzuk Icefield for the time period of 1970 to the mid-1980s. The results of this analysis indicate that Ha-Iltzuk Icefield had a volume loss of -5.87 +/- 2.89 km3 and a surface elevation change rate of -0

  15. Study on climate change in Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongxing

    2015-03-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  16. Study on climate change in Southwestern China

    International Nuclear Information System (INIS)

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  17. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large

    Science.gov (United States)

    Duethmann, Doris; Menz, Christoph; Jiang, Tong; Vorogushyn, Sergiy

    2016-05-01

    In the Tarim River Basin, water resources from the mountain areas play a key role due to the extremely arid climate of the lowlands. This study presents an analysis of future climate change impacts on glaciers and surface water availability for headwater catchments of the Aksu River, the most important tributary to the Tarim River. We applied a glacio-hydrological model that underwent a comprehensive multivariable and multiobjective model calibration and evaluation, based on daily and interannual discharge variations and glacier mass changes. Transient glacier geometry changes are simulated using the Δh-approach. For the ensemble-based projections, we considered three different emission scenarios, nine global climate models (GCMs) and two regional climate models, and different hydrological model parameters derived from the multiobjective calibration. The results show a decline in glacier area of ‑90% to ‑32% until 2099 (reference ∼2008) (based on the 5–95 percentile range of the ensemble). Glacier melt is anticipated to further increase or stay at a high level during the first decades of the 21st century, but then declines because of decreased glacier extents. Overall discharge in the Aksu headwaters is expected to be increased in the period 2010–2039 (reference 1971–2000), but decreased in 2070–2099. Seasonally, projections show an increase in discharge in spring and early summer throughout the 21st century. Discharge changes in mid to late summer are more variable, with increases or decreases depending on the considered period and GCM. Uncertainties are largely caused by differences between the different GCMs, with further important contributions from different emission scenarios in the second half of the 21st century. Contributions from the hydrological model parameters to the ensemble uncertainty were generally found to be small.

  18. Sensitivity and Response of Bhutanese Glaciers to Atmospheric Warming

    Science.gov (United States)

    Rupper, Summer; Schaefer, Joerg M.; Burgener, Landon K.; Koenig, Lora S.; Tsering, Karma; Cook, Edward

    2013-01-01

    Glacierized change in the Himalayas affects river-discharge, hydro-energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. However, the most conservative results indicate that, even if climate were to remain at the present-day mean values, almost 10% of Bhutan s glacierized area would vanish and the meltwater flux would drop by as much as 30%. Under the conservative scenario of an additional 1 C regional warming, glacier retreat is going to continue until about 25% of Bhutan s glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%. Citation

  19. Assessment of Regional Climatic and Hydrological Changes in the Eastern Himalayan Region

    Science.gov (United States)

    Agrawal, A.; Tayal, S.

    2014-12-01

    Understanding the changes in Himalayan glaciers is of importance for assessment of the future water availability and detection of anthropogenic greenhouse effect related trends. Terrain of eastern Himalayan glaciers is harder in comparison to western and central Himalayas. For this reason long term field based measurements are not available for the glaciers of this region. Hence a glacier from Sikkim has been studied using off-field methods. Volume, area, mass balance, glacial melt and runoff for the East Rathong glacier have been estimated for the time period 1963-2011. It has been observed that the glacier is summer-accumulation type. Time series analysis has been done for the annual mass balance. Annual mass balance of the glacier is showing statistically significant negative trend and shift. Cumulative net mass balance suggests that the glacier has lost ~11 m. w. e. during last 48 years. Runoff from the glacier has increased by ~30% in the present decade in comparison to the runoff observed in 1960s. The glacier has lost ~20% of its volume from 1962 to 2013. MERRA (Modern Era Retrospective-Analysis for Research and Applications) temperature satellite data, MODIS Terra Aerosol Optical Depth (AOD) data and water balance data from Hydrological information system for Sikkim region were analyzed. The temperature of Sikkim at an altitude of 5 kms has increased by 0.7 K during 1979-2011, AOD has shown a % change over mean of +14.42% during 2001-2012, and water yield of the region has shown a % change over mean of -46.77% during 1971-2005. The results suggest that it is important to understand aerosols-cloud interaction and their impact on precipitation and glacier-melt patterns over Himalayan region, regions dependent for their water needs on eastern Himalayan glaciers will soon have to adapt to use of scarce water resources, river flow reduction would come sooner as glacier area and volume are reduced more rapidly due to increasing air pollution, better predictive

  20. Observations of enhanced thinning in the upper reaches of Svalbard glaciers

    Directory of Open Access Journals (Sweden)

    T. D. James

    2012-11-01

    Full Text Available Changes in the volume and extent of land ice of the Svalbard archipelago have been the subject of considerable research since their sensitivity to changes in climate was first noted. However, the measurement of these changes is often necessarily based on point or profile measurements which may not be representative if extrapolated to a whole catchment or region. Combining high-resolution elevation data from contemporary laser-altimetry surveys and archived aerial photography makes it possible to measure historical changes across a glacier's surface without the need for extrapolation. Here we present a high spatial resolution time-series for six Arctic glaciers in the Svalbard archipelago spanning 1961 to 2005. We find high variability in thinning rates between sites with prevalent elevation changes at all sites averaging −0.59 ± 0.04 m a−1 between 1961–2005. Prior to 1990, ice surface elevation was changing at an average rate of −0.52 ± 0.09 m a−1 which decreased to −0.76 ± 0.10 m a−1 after 1990. Setting the elevation changes against the glaciers' altitude distribution reveals that significant increases in thinning rates are occurring most notably in the glaciers' upper reaches. We find that these changes are coincident with a decrease in winter precipitation at the Longyearbyen meteorological station and could reflect a decrease in albedo or dynamic response to lower accumulation. Further work is required to understand fully the causes of this increase in thinning rates in the glaciers' upper reaches. If on-going and occurring elsewhere in the archipelago, these changes will have a significant effect on the region's future mass balance. Our results highlight the importance of understanding the climatological context of geodetic mass balance measurements and demonstrate the difficulty of using index glaciers to represent regional changes in areas of strong climatological gradients.

  1. Bridging glacier and river catchment scales: an efficient representation of glacier dynamics in a hydrological model

    OpenAIRE

    Wortmann, Michel; Bolch, Tobias; Krysanova, Valentina; Buda, Su

    2016-01-01

    Glacierised river catchments have been shown to be highly sensitive to climate change, while large populations depend on the water resources originating from them. Hydrological models are used to aid water resource management, yet their treatment of glacier processes is either rudimentary in large applications or linked to fully distributed glacier models that prevent larger model domains. Also, data scarcity in mountainous catchments has hampered the implementation of physically based approa...

  2. Glacier dynamics and subsurface classification of Austfonna, Svalbard: : Inferences from observations and modelling

    OpenAIRE

    2011-01-01

    Ice loss from glaciers and ice caps in the Arctic constitute a major contribution to eustatic sea-level rise. Climate change is more pronounced in the Arctic than in other regions, because strong feedback mechanisms such as the albedo feedback lead to enhancement of the initial warming trend. Glaciers and ice caps serve as valuable indicators of past and present climate. However, extraction of climate signals from glaciers is not straightforward. The history, current state and future evolutio...

  3. Space Radar Image of San Rafael Glacier, Chile

    Science.gov (United States)

    1994-01-01

    A NASA radar instrument has been successfully used to measure some of the fastest moving and most inaccessible glaciers in the world -- in Chile's huge, remote Patagonia ice fields -- demonstrating a technique that could produce more accurate predictions of glacial response to climate change and corresponding sea level changes. This image, produced with interferometric measurements made by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) flown on the Space Shuttle last fall, has provided the first detailed measurements of the mass and motion of the San Rafael Glacier. Very few measurements have been made of the Patagonian ice fields, which are the world's largest mid-latitude ice masses and account for more than 60 percent of the Southern Hemisphere's glacial area outside of Antarctica. These features make the area essential for climatologists attempting to understand the response of glaciers on a global scale to changes in climate, but the region's inaccessibility and inhospitable climate have made it nearly impossible for scientists to study its glacial topography, meteorology and changes over time. Currently, topographic data exist for only a few glaciers while no data exist for the vast interior of the ice fields. Velocity has been measured on only five of the more than 100 glaciers, and the data consist of only a few single-point measurements. The interferometry performed by the SIR-C/X-SAR was used to generate both a digital elevation model of the glaciers and a map of their ice motion on a pixel-per-pixel basis at very high resolution for the first time. The data were acquired from nearly the same position in space on October 9, 10 and 11, 1994, at L-band frequency (24-cm wavelength), vertically transmitted and received polarization, as the Space Shuttle Endeavor flew over several Patagonian outlet glaciers of the San Rafael Laguna. The area shown in these two images is 50 kilometers by 30 kilometers (30 miles by 18 miles) in

  4. Motion of the Lambert Glacier estimated by using differential Interferometric Synthetic Aperture Radar

    International Nuclear Information System (INIS)

    Interferometric Synthetic Aperture Radar (InSAR) is one of the most promising remote sensing technologies and has been widely applied in constructing topographic information and estimating the deformation of the Earth's surface. Ice velocity is an important parameter for calculating the mass balance and modelling ice shelve dynamics. Ice velocity is also an important indicator for climate changes. Therefore, it plays an important role in studying the global climate change and global sea level rise. In this paper, the ERS-1/2 tandem data and the ASTER GDEM are combined together to obtained the deformation in line of sight by using the differential Interferometric SAR for the Lambert Amery glacier in Antarctica. Then the surface parallel assumption is adopted in order to achieve the ice flow velocity. The results showed that ice velocity would be increased along the Lambert glacier; the maximum ice velocity would be reach about 450m/year in the study area

  5. Progresses in the ice formation of glaciers in China

    Institute of Scientific and Technical Information of China (English)

    Xiangying LI; Shiyin LIU; ,Donghui SHANGGUAN1; Aigang LU

    2008-01-01

    Glaciers,formed by snowfall and characterized by movement and size,are the most sensitive indicators to climate change.The ice formation of glaciers(the processes,mechanisms and results of transformation from snow to ice)can indicate the growth condition,the formation process and the physical characteristics of glaciers.Its spatial variation can also reflect glacier change,and further reveal climate change.Studies on ice formation of glaciers in China were initiated in 1962,when Xie and others studied the ice formation of Glacier No.1 at the Urumqi River head,Tianshan Mountain.Other researchers followed suit and did studies on ice formation of glaciers in Qilian Mountain.As time goes by,the concept of ice formation came into being in China.This paper reviews the development history of glacier zones,and the studies of ice formation of glaciers in China since the 1960s.These studies mainly focus on Qilian Mountain,Tianshan Mountain,Altay Mountain,and the western Kunlun Mountain,Himalaya Mountain,the southeastern Tibetan and Hengduan Mountains.The paper also discusses the significance of ice formation studies,the limitation and deficiency of previous studies,and the prospects and suggestions for future studies.

  6. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile

    OpenAIRE

    Gascoin, S.; C. Kinnard; R. Ponce; S. Lhermitte; MacDonell, S; A. Rabatel

    2010-01-01

    Quantitative assessment of glacier contribution to present-day streamflow is a prerequisite to the anticipation of climate change impact on water resources in the Dry Andes. In this paper we focus on two glaciated headwater catchments of the Huasco Basin (Chile, 29° S). The combination of glacier monitoring data for five glaciers (Toro 1, Toro 2, Esperanza, Guanaco, Estrecho and Ortigas) with five automatic streamflow records at sites with glacier coverage of 0.4 to 11% allows the estimation ...

  7. Dendritic subglacial drainage systems in cold glaciers formed by cut-and-closure processes

    OpenAIRE

    Naegeli, Kathrin; Lovell, Harold; Zemp, Michael; Douglas I. Benn

    2015-01-01

    The routing and storage of meltwater and the configuration of drainage systems in glaciers exert a profound influence on glacier behaviour. However, little is known about the hydrological systems of cold glaciers, which form a significant proportion of the total glacier population in the climate sensitive region of the High Arctic. Using glacio-speleological techniques, we obtained direct access to explore and survey three conduit systems and one moulin within the tongue area of Tellbreen, a ...

  8. Modelled glacier equilibrium line altitudes during the mid-Holocene in the southern mid-latitudes

    Science.gov (United States)

    Bravo, C.; Rojas, M.; Anderson, B. M.; Mackintosh, A. N.; Sagredo, E.; Moreno, P. I.

    2015-11-01

    Glacier behaviour during the mid-Holocene (MH, 6000 years BP) in the Southern Hemisphere provides observational data to constrain our understanding of the origin and propagation of palaeoclimate signals. In this study we examine the climatic forcing of glacier response in the MH by evaluating modelled glacier equilibrium line altitudes (ELAs) and climatic conditions during the MH compared with pre-industrial time (PI, year 1750). We focus on the middle latitudes of the Southern Hemisphere, specifically Patagonia and the South Island of New Zealand. Climate conditions for the MH were obtained from PMIP2 model simulations, which in turn were used to force a simple glacier mass balance model to simulate changes in ELA. In Patagonia, the models simulate colder conditions during the MH in austral summer (-0.2 °C), autumn (-0.5 °C), and winter (-0.4), and warmer temperatures (0.2 °C) during spring. In the Southern Alps the models show colder MH conditions in autumn (-0.7 °C) and winter (-0.4 °C), warmer conditions in spring (0.3 °C), and no significant change in summer temperature. Precipitation does not show significant changes but exhibits a seasonal shift, with less precipitation from April to September and more precipitation from October to April during the MH in both regions. The mass balance model simulates a climatic ELA that is 15-33 m lower during the MH compared with PI conditions. We suggest that the main causes of this difference are driven mainly by colder temperatures associated with the MH simulation. Differences in temperature have a dual effect on glacier mass balance: (i) less energy is available for ablation during summer and early autumn and (ii) lower temperatures cause more precipitation to fall as snow rather than rain in late autumn and winter, resulting in more accumulation and higher surface albedo. For these reasons, we postulate that the modelled ELA changes, although small, may help to explain larger glacier extents observed by 6000

  9. Arctic glacier movement monitoring with GPS method on 2005

    Institute of Scientific and Technical Information of China (English)

    Ai Songtao; E Dongchen; Yan Ming; Ren Jiawen

    2006-01-01

    During the 2005 Arctic Yellow River Station expedition, the research on monitoring the movement and mass balance of two glaciers around Ny-Alesund,Station expedition were conducted. This paper analyzes the feasibility and advantage in using GPS method to monitor the Arctic glaciers'movement, estimates the precision of first time measured GPS data and discusses the relevant problems in surveying on the Arctic Glaciers with GPS.

  10. From Theory to Practice: How Mass Audubon Is Incorporating Strategic Framing about Climate Change

    Science.gov (United States)

    Fleischer, Amy

    2013-01-01

    Mass Audubon recognized that climate change was significantly impacting bird species distribution and seasonality. Unsure of how and when to engage visitors to their network of wildlife sanctuaries on the topic of climate change, its educators turned to the National Network of Ocean and Climate Change Interpreters' Study Circle (NNOCCI). Through…

  11. Recent Activity of Glaciers of Mount Rainier, Washington

    Science.gov (United States)

    Sigafoos, Robert S.; Hendricks, E.L.

    1972-01-01

    Knowing the ages of trees growing on recent moraines at Mount Rainier, Wash., permits the moraines to be dated. Moraines which are ridges of boulders, gravel, sand, and dust deposited at the margins of a glacier, mark former limits of a receding glacier. Knowing past glacial activity aids our understanding of past climatic variations. The report documents the ages of moraines deposited by eight glaciers. Aerial photographs and planimetric maps show areas where detailed field studies were made below seven glaciers. Moraines, past ice positions, and sample areas are plotted on the photographs and maps, along with trails, roads, streams, and landforms, to permit critical areas to be identified in the future. Ground photographs are included so that sample sites and easily accessible moraines can be found along trails. Tables present data about trees sampled in areas near the glaciers of Mount Rainier, Wash. The data in the tables show there are modern moraines of different age around the mountain; some valleys contain only one modern moraiine; others contain as many as nine. The evidence indicates a sequence of modern glacial advances terminating at about the following A.D. dates: 1525, 1550, 1625-60, 1715, 1730-65, 1820-60, 1875, and 1910. Nisqually River valley near Nisqually Glacier contains one moraine formed before A.D. 1842; Tahoma Creek valley near South Tahoma Glacier contains three moraines formed before A.D. 1528; 1843, and 1864; South Puyallup River valley near Tahoma Glacier, six moraines A.D. 1544, 1761, 1841, 1851, 1863, 1898; Puyallup Glacier, one moraine, A.D. 1846; Carbon Glacier, four moraines, 1519, 1763, 1847, 1876; Winthrop Glacier, four moraines, 1655, 1716, 1760, amid 1822; Emmons Glacier, nine moraines, 1596, 1613, 1661, 1738, 1825, 1850, 1865, 1870, 1901; and Ohanapecosh Glacier, three moraines, 1741, 1846, and 1878. Abandoned melt-water and flood channels were identified within moraine complexes below three glaciers, and their time of

  12. Creating improved ASTER DEMs over glacierized terrain

    Science.gov (United States)

    Raup, B. H.; Khalsa, S. S.; Armstrong, R.

    2006-12-01

    Digital elevation models (DEMs) produced from ASTER stereo imagery over glacierized terrain frequently contain data voids, which some software packages fill by interpolation. Even when interpolation is applied, the results are often not accurate enough for studies of glacier thickness changes. DEMs are created by automatic cross-correlation between the image pairs, and rely on spatial variability in the digital number (DN) values for this process. Voids occur in radiometrically homogeneous regions, such as glacier accumulation areas covered with uniform snow, due to lack of correlation. The same property that leads to lack of correlation makes possible the derivation of elevation information from photoclinometry, also known as shape-from-shading. We demonstrate a technique to produce improved DEMs from ASTER data by combining the results from conventional cross-correlation DEM-generation software with elevation information produced from shape-from-shading in the accumulation areas of glacierized terrain. The resulting DEMs incorporate more information from the imagery, and the filled voids more accurately represent the glacier surface. This will allow for more accurate determination of glacier hypsometry and thickness changes, leading to better predictions of response to climate change.

  13. Complex Greenland outlet glacier flow captured.

    Science.gov (United States)

    Aschwanden, Andy; Fahnestock, Mark A; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  14. Glaciers and hydrological changes in the Tien Shan: simulation and prediction

    International Nuclear Information System (INIS)

    In this study, we estimated the current glacier state and forecast the potential impact of global and regional climate change on the glaciers and glacier runoff in the Tien Shan. General (G) and detailed (D) simulations were developed based on assessment of the Tien Shan glacier recession between 1943 and 2003 using an iterative stepwise increase in the equilibrium line altitude of 20 m. The G simulation was developed for 2777 grids each of which covered over 1000 km2 of glacier surface and D for the 15 953 Tien Shan glaciers. Both simulations employed glacier morphometric characteristics derived from Digital Elevation Model based on remote sensing data, high resolution maps and in situ GPS validation. Simulated changes in glacier area demonstrated that a possible increase in air temperature of 1 deg. C at E-barLA must be compensated by a 100 mm increase in precipitation at the same altitude if Tien Shan glaciers are to be maintained in their current state. An increase in mean air temperature of 4 deg. C and precipitation of 1.1 times the current level could increase E-barLA by 570 m during the 21st century. Under these conditions, the number of glaciers, glacier covered area, glacier volume, and glacier runoff are predicted to be 94%, 69%, 75%, and 75% of current values. The maximum glacier runoff may reach as much as 1.25 times current levels while the minimum will likely equal zero

  15. Glaciers and hydrological changes in the Tien Shan: simulation and prediction

    Energy Technology Data Exchange (ETDEWEB)

    Aizen, V B [Department of Geography, University of Idaho, Moscow, ID 83844-3025 (United States); Aizen, E M [Department of Geography, University of Idaho, Moscow, ID 83844-3025 (United States); Kuzmichonok, V A [Institute of Water Problems and Hydro Power, Kyrgyz National Academy of Science, 533 Frunze Street, Bishkek 720033 (Kyrgyzstan)

    2007-10-15

    In this study, we estimated the current glacier state and forecast the potential impact of global and regional climate change on the glaciers and glacier runoff in the Tien Shan. General (G) and detailed (D) simulations were developed based on assessment of the Tien Shan glacier recession between 1943 and 2003 using an iterative stepwise increase in the equilibrium line altitude of 20 m. The G simulation was developed for 2777 grids each of which covered over 1000 km{sup 2} of glacier surface and D for the 15 953 Tien Shan glaciers. Both simulations employed glacier morphometric characteristics derived from Digital Elevation Model based on remote sensing data, high resolution maps and in situ GPS validation. Simulated changes in glacier area demonstrated that a possible increase in air temperature of 1 deg. C at E-barLA must be compensated by a 100 mm increase in precipitation at the same altitude if Tien Shan glaciers are to be maintained in their current state. An increase in mean air temperature of 4 deg. C and precipitation of 1.1 times the current level could increase E-barLA by 570 m during the 21st century. Under these conditions, the number of glaciers, glacier covered area, glacier volume, and glacier runoff are predicted to be 94%, 69%, 75%, and 75% of current values. The maximum glacier runoff may reach as much as 1.25 times current levels while the minimum will likely equal zero.

  16. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming; 2003-07 Versus 1992-2002

    Science.gov (United States)

    Zwally, H. Jay; Li, Jun; Benner, Anita C.; Beckley, Matthew; Cornejo, Helen G.; DiMarzio, John; Giovinetto, Mario B.; Neumann, Thomas A.; Robbins, John; Saba, Jack L.; Yi, Donghui; Wang, Weili

    2011-01-01

    We derive mass changes of the Greenland ice sheet (GIS) for 2003-07 from ICESat laser altimetry and compare them with results for 1992-2002 from ERS radar and airborne laser altimetry. The GIS continued to grow inland and thin at the margins during 2003 07, but surface melting and accelerated flow significantly increased the marginal thinning compared with the 1990s. The net balance changed from a small loss of 7 plus or minus 3 Gt a 1(sup -1) in the 1990s to 171 plus or minus 4 Gt a (sup -1) for 2003-07, contributing 0.5 mm a(sup -1) to recent global sea-level rise. We divide the derived mass changes into two components: (1) from changes in melting and ice dynamics and (2) from changes in precipitation and accumulation rate. We use our firn compaction model to calculate the elevation changes driven by changes in both temperature and accumulation rate and to calculate the appropriate density to convert the accumulation-driven changes to mass changes. Increased losses from melting and ice dynamics (17-206 Gt a(sup-1) are over seven times larger than increased gains from precipitation (10 35 Gt a(sup-1) during a warming period of approximately 2 K (10 a)(sup -1) over the GIS. Above 2000m elevation, the rate of gain decreased from 44 to 28 Gt a(sup-1), while below 2000m the rate of loss increased from 51 to 198 Gt a(sup-1). Enhanced thinning below the equilibrium line on outlet glaciers indicates that increased melting has a significant impact on outlet glaciers, as well as accelerating ice flow. Increased thinning at higher elevations appears to be induced by dynamic coupling to thinning at the margins on decadal timescales.

  17. Holocene glacier variability and Neoglacial hydroclimate at Ålfotbreen, western Norway

    Science.gov (United States)

    Gjerde, Marthe; Bakke, Jostein; Vasskog, Kristian; Nesje, Atle; Hormes, Anne

    2016-02-01

    Glaciers and small ice caps respond rapidly to climate perturbations (mainly winter precipitation, and summer temperature), and the mass-balance of glaciers located in western Norway is governed mainly by winter precipitation (Pw). Records of past Pw can offer important insight into long-term changes in atmospheric circulation, but few proxies are able to accurately capture winter climate variations in Scandinavia. Reconstructions of equilibrium-line-altitude (ELA) variations from glaciers that are sensitive to changes in Pw therefore provide a unique opportunity to quantify past winter climate in this region. Here we present a new, Holocene glacier activity reconstruction for the maritime ice cap Ålfotbreen in western Norway, based on investigations of distal glacier-fed lake sediments and modern mass balance measurements (1963-2010). Several lake sediment cores have been subject to a suite of laboratory analyses, including measurements of physical parameters such as dry bulk density (DBD) and loss-on-ignition (LOI), geochemistry (XRF), surface magnetic susceptibility (MS), and grain size distribution, to identify glacial sedimentation in the lake. Both radiocarbon (AMS 14C) and 210Pb dating were applied to establish age-depth relationships in the sediment cores. A novel approach was used to calibrate the sedimentary record against a simple ELA model, which allowed reconstruction of continuous ELA changes for Ålfotbreen during the Neoglacial (when Ålfotbreen was present, i.e. the last ˜1400 years). Furthermore, the resulting ELA variations were combined with an independent summer temperature record to calculate Neoglacial Pw using the 'Liestøl equation'. The resulting Pw record is of higher resolution than previous reconstructions from glaciers in Norway and shows the potential of glacier records to provide high-resolution data reflecting past variations in hydroclimate. Complete deglaciation of the Ålfotbreen occurred ˜9700 cal yr BP, and the ice cap was

  18. Modeling Runoff from Partially Glacierized Catchments in the Tropical Andes with Different Glacier Coverage and Land Cover Conditions

    Science.gov (United States)

    Kinouchi, T.; Mendoza, J.; Luna, J.; Asaoka, Y.

    2014-12-01

    In Bolivian Andes, retreats of tropical glaciers are rapid, thus water resources currently available from glacierized catchments for drinking, agriculture, industry and hydropower would be changed in its volume and variations due to changing climate. Water resources in La Paz and El Alto, the capital city areas of Bolivia, strongly depend on the runoff from partially glacierized catchments located in the Cordillera Real, which is a combined contribution of surface and subsurface flow from glacierized and non-glacierized areas due to rainfall, snow melt and glacier melt. To predict the long-term availability of water resources for the capital city areas, we developed a semi-distributed conceptual glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitudinal catchments located in the outer tropics. In the model, the retarding effect of lakes and wetlands was considered, based on the observed hydraulic functions and distribution of wetlands. The model was applied to three sub-catchments of the Tuni Lake watershed (98km2), from which the water resources for La Paz and El Alto are supplied. With calibrated parameters, the model reproduced well the observed seasonal variations of daily runoff during recent two years. Simulated results of water balance suggested that for the catchment with a larger glacier cover, more than 40% of the annual total runoff is contributed from glacierized areas due to glacier melt and snowmelt. The contribution from glacierized areas in other two sub-catchments, with relatively smaller areas covered by glacier ice, was calculated to be between 10-15%. We found that the role of wetlands and lakes are essential in retarding and regulating the runoff from partially glacierized high-mountain catchments.

  19. Integrated firn elevation change model for glaciers and ice caps

    Science.gov (United States)

    Saß, Björn; Sauter, Tobias; Braun, Matthias

    2016-04-01

    We present the development of a firn compaction model in order to improve the volume to mass conversion of geodetic glacier mass balance measurements. The model is applied on the Arctic ice cap Vestfonna. Vestfonna is located on the island Nordaustlandet in the north east of Svalbard. Vestfonna covers about 2400 km² and has a dome like shape with well-defined outlet glaciers. Elevation and volume changes measured by e.g. satellite techniques are becoming more and more popular. They are carried out over observation periods of variable length and often covering different meteorological and snow hydrological regimes. The elevation change measurements compose of various components including dynamic adjustments, firn compaction and mass loss by downwasting. Currently, geodetic glacier mass balances are frequently converted from elevation change measurements using a constant conversion factor of 850 kg m‑³ or the density of ice (917 kg m‑³) for entire glacier basins. However, the natural conditions are rarely that static. Other studies used constant densities for the ablation (900 kg m‑³) and accumulation (600 kg m‑³) areas, whereby density variations with varying meteorological and climate conditions are not considered. Hence, each approach bears additional uncertainties from the volume to mass conversion that are strongly affected by the type and timing of the repeat measurements. We link and adapt existing models of surface energy balance, accumulation and snow and firn processes in order to improve the volume to mass conversion by considering the firn compaction component. Energy exchange at the surface is computed by a surface energy balance approach and driven by meteorological variables like incoming short-wave radiation, air temperature, relative humidity, air pressure, wind speed, all-phase precipitation, and cloud cover fraction. Snow and firn processes are addressed by a coupled subsurface model, implemented with a non-equidistant layer

  20. Quantification of Seasonal and Interannual Variability of Proglacial Meltwater from a Tidewater Glacier

    Science.gov (United States)

    Darlington, E. F.; Hodgkins, R.; Jenkins, A.

    2014-12-01

    Ice - ocean interactions of tidewater glaciers remain poorly understood; yet 39% of the global glaciated area drains directly into the ocean via tidewater glaciers. As the Arctic cryosphere continues to lose mass in response to a warming climate, more detailed observations are needed to increase our understanding of ice - ocean processes, enabling improved model predictions of Arctic change. Svalbard hosts a high proportion of tidewater glaciers, including Kronebreen, the fastest flowing glacier on the archipelago. The proglacial meltwater exiting the base of Kronebreen transports fine grained sediment to Kongsfjorden, entrained in a buoyant plume which spreads laterally and is visible at the surface. In-situ measurements of the concentration and spectral reflectance of these surface sediments were used to calibrate spectral data from the MODIS instruments on the Terra and Aqua satellites. Temperature and salinity in front of the calving face, and throughout the meltwater plume, have been measured using a hand held CTD. The spatial surface pattern of total suspended sediment (TSS; g l-1) and plume area, has been quantified for every cloud free day between 1st June - 30th September from 2002 - 2013. High TSS sediment during the early melt season indicates flushing, whilst sediment exhaustion is apparent at the end. We show that the areal extent of these proglacial plumes responds to atmospheric temperature, with a 12 day lag. An underlying seasonal evolution of plume extent is apparent; plume area is small at the beginning and end of the melt season, peaking mid-July. Wind speed and direction also play a role in dictating the length of plume formation, with katabatic winds originating from the glacier, lengthening plumes. However, the overall extent of the sediment plume is dependent on meltwater inputs. As such, this method enables the daily to interannual quantification of proglacial meltwater release from tidewater glaciers, utilizing remote sensing.

  1. Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR

    Directory of Open Access Journals (Sweden)

    X. Fettweis

    2007-07-01

    Full Text Available Results from a 28-year simulation (1979–2006 over the Greenland ice sheet (GIS reveal an increase of the solid precipitation (+0.4±2.5 km3 yr−2 and the run-off (+7.9±3.3 km3 yr−2 of surface melt water. The net effect of these competing factors leads to a significant Surface Mass Balance (SMB loss rate of −7.2±5.1 km3 yr−2. The contribution of changes in the net water vapour fluxes (+0.02±0.09 km3 yr−2 and rainfall (+0.2±0.2 km3 yr−2 to the SMB variability is negligible. The melt water supply has increased because the GIS surface has been warming up +2.4°C since 1979. Latent heat flux, sensible heat flux and net solar radiation have not varied significantly over the last three decades. However, the simulated downward infra-red flux has increased by 9.3 W m−2 since 1979. The natural climate variability (e.g. the North Atlantic Oscillation does not explain these changes on the GIS. The recent global warming, due to the greenhouse gas concentration increase induced by the human activities, could be a cause of these changes. The doubling of the surface melt water flux into the ocean over the period 1979–2006 suggests that the overall ice sheet mass balance has been increasingly negative, given the probable meltwater-induced outlet glacier acceleration. This study suggests that an increased melting dominates over an increased accumulation in a warming scenario and that the GIS would likely continue to loose mass in the future. A GIS melting would have an effect on the stability of the thermohaline circulation (THC and the global sea level rise.

  2. Glacier topography and elevation changes from Pléiades very high resolution stereo images

    Directory of Open Access Journals (Sweden)

    E. Berthier

    2014-09-01

    Full Text Available In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of Pléiades sub-meter stereo imagery to derive digital elevation models (DEMs of glaciers and their elevation changes. Our five validation sites are located in Iceland, the European Alps, the Central Andes, Nepal and Antarctica. For all sites, nearly simultaneous field measurements were collected to evaluate the Pléiades DEMs. For Iceland, the Pléiades DEM is also compared to a Lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs are used, but reach up to 6 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1-sigma confidence level. We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better. The negative glacier-wide mass balances of the Argentière Glacier and Mer de Glace (−1.21 ± 0.16 and −1.19 ± 0.16 m.w.e. yr−1, respectively are revealed by differencing SPOT5 and Pléiades DEMs acquired in August 2003 and 2012 demonstrating the continuing rapid glacial wastage in the Mont-Blanc area.

  3. Life on a Changing Edge: Arctic-Alpine Plants at the Edges of Permanent Snowfields that are Receding Due to Climate Change at Glacier National Park

    Science.gov (United States)

    Apple, M. E.; Martin, A. C.; Moritz, D. J.

    2013-12-01

    Glaciers and snowfields are intrinsic parts of many alpine landscapes but they are retreating rapidly at Glacier National Park in Montana, USA. Plants that inhabit the edges of glaciers and snowfields are vulnerable to habitat changes wrought by the recession of these frozen bodies. Snowfields provide plants with frost protection in the winter and water in the form of melting snow during the summer. However, changes in snowfield and glacial edges may leave plants exposed to frost in the winter and subjected to water stress in the summer, which would likely have an impact on important processes, including emergence from the soil, leaf expansion, root growth, flowering, seed germination, seedling establishment, photosynthesis, and transpiration. Because these processes influence the survival of plants, responses of snowfield plants to changing edges will likely result in changes in species abundance, distribution and diversity, which will in turn influence community composition. In summer 2012, we initiated a study of Glacier National Park's snowfield plants by establishing 2m2 plots at geospatially referenced 50m transects extending outwards from the toe and perpendicularly outward from the lateral edges of currently permanent snowfields at Siyeh Pass, Piegan Pass, and Preston Park, with an additional 100m transect extending from an impermanent snowfield to treeline at Mt. Clements near Logan Pass. We constructed species lists and determined percent cover for each species in each 2m2 plot, and used high resolution photographs of each plot as records and for fine scale determinations of species presence and location. In addition, we searched for rare arctic-alpine plants which, due to their rarity, may be especially vulnerable to changes in snowfields and glaciers. Two species of rare arctic-alpine plants, Tofieldia pusilla and Pinguicula vulgaris, were found near snowmelt-fed springs, rivulets, and tarns but were not found adjacent to the snowfields. Thus, they may

  4. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjeldsen, Kristian Kjellerup; Kjær, Kurt H.;

    2014-01-01

    Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the...... projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion...... of Helheim Glacier thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40–50 m from 1981 to 1998 and major thinning of more than 100 m after 2003. Extending the record back...

  5. 纳木错流域近30年来湖泊-冰川变化对气候的响应%The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970-2000

    Institute of Scientific and Technical Information of China (English)

    吴艳红; 朱立平

    2008-01-01

    Based upon the 1970 aero-photo topographic map, and TM/ETM satellite images taken in 1991 and 2000, the authors artificially interpreted boundaries of lake and glaciers in Nam Co Catchment, and quantified lake-glacier area variations in different stages by "inte-grated method" with the support of GIS. Results show that from 1970 to 2000, lake area in-creased from 1942.34 km2 to 1979.79 km2 at a rate of 1.27 km2/a, while glacier area de-creased from 167.62 km2 to 141.88 km2 at a rate of 0.86 km2/a. The increasing rate of lake in 1991-2000 was 1.76 km2/a that was faster than 1.03 km2/a in 1970-1991, while in the same period of time, the shrinking rates of glaciers were 0.97 km2/a and 0.80 km2/a respectively.Important factors, relevant to lake and glacier response to the climate, such as air tempera-ture, precipitation, potential evapotranspiration and their values in warm and cold seasons,were discussed. The result suggests that temperature increasing is the main reason for the accelerated melting of glaciers. Lake expansion is mainly induced by the increase of the gla-cier melting water, increase of precipitation and obvious decrease of potential evapotranspi-ration. Precipitation, evaporation and their linkages with lake enlargement on regional scale need to be thoroughly studied under the background of global warming and glacier retreating.

  6. Earth system consequences of a Pine Island Glacier collapse

    Science.gov (United States)

    Green, Mattias; Schmittner, Andreas

    2016-04-01

    An intermediate complexity climate model is used to simulate the impact of an accelerated Pine Island Glacier mass loss on the large-scale ocean circulation and climate. Simulations are performed for pre-industrial conditions using hosing levels consistent with present day observation of 3,000 m3 s‑1, at an accelerated rate of 6,000 m3 s‑1, and at a total collapse rate of 100,000 m3 s‑1, and in all experiments the hosing lasted 100 years. It is shown that even a modest input of meltwater from the glacier can introduce an initial cooling over the upper part of the Southern Ocean due to increased stratification and ice cover leading to a reduced upward heat flux from Circumpolar Deep Water. This causes global ocean heat content to increase and global surface air temperatures to decrease. The Atlantic Meridional Overturning Circulation (AMOC) increases, presumably due to changes in the density difference between Antarctic Intermediate Water and North Atlantic Deep Water. Simulations with a simultaneous hosing and increases of atmospheric CO2 concentrations show smaller effects of the hosing on global surface air temperature and ocean heat content, which we attribute to the melting of Southern Ocean sea ice. The sensitivity of the AMOC to the hosing is also reduced as the warming by the atmosphere completely dominates the perturbations. Further consequences for oceanic biogeochemical cycles in realistic future warming scenarios are discussed.

  7. Quality controlled glacier inventory in high Asian mountains

    Science.gov (United States)

    Sakai, A.; Nuimura, T.; Taniguchi, K.; Lamsal, D.; Nagai, H.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; Tsunematsu, K.; Tshering, P.; Fujita, K.; Okamoto, S.

    2013-12-01

    Glacier inventories provide a basic information for the water resources, glacier mass balance and ice volume at continental areas. Although glaciers in the Asian mountain are thought to play an important role for the regional water resources (Immerzeel et al., 2010), glacier distribution in the Asia have been poorly understood. Our GAMDAM (Glacier Area Mapping for Discharge in Asian Mountains) project have conducted to establish a glacier inventory with the aim of estimating glacier runoff contribution to river runoff. Our target region covers the High Mountain Asia, extending from 27 to 52 degrees N and from 68 to 104 degrees E. Glacier outlines were manually delineated using more than 260 of LANDSAT images taken from 1999 to 2003. Thermal infrared band was also used to delineate termini of debris-covered glaciers with help of high resolution images on Google Earth. The manual delineation has been conducted for more than two years by 5-7 operators. We conducted several tests, along which the operators delineated the same regions, and assessed the quality and criteria, and fed them back to the operators. At the end of June 2013, the inventory was completed 80% with about 63000 glaciers covering 7.8 × 10^4 km^2. Median elevation of glaciers has been interpreted as a proxy for the equilibrium line altitude (ELA), at which the accumulation and ablation were equal and thus the mass balance was zero (Braithwaite and Raper, 2009). Distribution of the median altitude derived from the GAMDAM glacier inventory was well consistent with that previously reported (Shi et al., 1980).

  8. Reconstructing the glacier contribution to sea-level rise back to 1850

    NARCIS (Netherlands)

    Oerlemans, J.; Dyurgerov, M.; van de Wal, R.S.W.

    2007-01-01

    We present a method to estimate the glacier contribution to sea-level rise from glacier length records. These records form the only direct evidence of glacier changes prior to 1946, when the first systematic mass-balance observations began. A globally rep- resentative length signal is calculated fro

  9. Chicxulub impact, climate changes and mass-extinctions

    Science.gov (United States)

    Smit, J.

    2010-03-01

    sections mentioned above. At the K/Pg itself, no unambiguous indications for a sealevel change have been documented anywhere, although in the Gulf sometimes a tsunami or gravity flow deposit with Chicxulub ejecta has been mistaken for a transgressive sequence. Therefore, there is no obvious connection between any sealevel change and climate changes around K/PgB. The impact ejecta (Ir, shocked qz) are global and occur exactly at K/PgB. Thus far, only one impact, the Chicxulub impact has been identified. However, the occurrence of multiple impacts remains a distinct possibility, as double craters exist, and a shower of impacts, possibly as result of a breakup event (Baptistina, Bottke, 2007) in the asteroid belt is possible. However, such hypothesis requires extraordinary evidence because of the extremely small probability! Thus far, the evidence for an impact after K/PgB is based on ambiguous evidence in reworked sediments in Beloc, Haiti and Coxquihui, Mexico, but nowhere outside the Gulf of Mexico. Evidence for a Chicxulub impact about 0.3 Ma before another, equally large, impact at K/PgB likewise has been interpreted from disturbed sediments in the Gulf, and is therefore highly suspect (Keller, 2009). Widespread evidence from the double K/PgB ejecta layer in coal-swamp deposits in the US western interior demonstrates that the K/PgB impact and the Chicxulub impact are the same. This leaves the Chicxulub impact as the only agent that can be held responsible for the mass-extinctions. The question is, what environmental or climate changes were induced by the impact, and on what timescales? Pre-impact signals for change (diversity, stable isotope shifts) are influenced by leaching or bioturbation of the uppermost 10 cm of the Cretaceous. He-isotopes do not support a scenario where the Chicxulub impact occurs within a pedestal of cometary debris, the arrival of which could lead to environmental stress. The effects of the Chicxulub impact must have been almost immediate. Even

  10. Modelled climate sensitivity of the mass balance of Morteratschgletscher and its dependence on albedo parameterization

    NARCIS (Netherlands)

    Klok, E.J.; Oerlemans, J.

    2004-01-01

    This paper presents a study of the climate sensitivity of the mass balance of Morteratschgletscher in Switzerland, estimated from a two-dimensional mass balance model. Since the albedo scheme chosen is often the largest error source in mass balance models, we investigated the impact of using differe

  11. Meltwater runoff from Haig Glacier, Canadian Rocky Mountains, 2002–2013

    OpenAIRE

    Marshall, S. J.

    2014-01-01

    Observations of high-elevation meteorological conditions, glacier mass balance, and glacier runoff are sparse in western Canada and the Canadian Rocky Mountains, leading to uncertainty about the importance of glaciers to regional water resources. This needs to be quantified so that the impacts of ongoing glacier recession can be evaluated with respect to alpine ecology, hydroelectric operations, and water resource management. I assess the seasonal evolution of ...

  12. Meltwater run-off from Haig Glacier, Canadian Rocky Mountains, 2002–2013

    OpenAIRE

    Marshall, S.J.

    2014-01-01

    Observations of high-elevation meteorological conditions, glacier mass balance, and glacier run-off are sparse in western Canada and the Canadian Rocky Mountains, leading to uncertainty about the importance of glaciers to regional water resources. This needs to be quantified so that the impacts of ongoing glacier recession can be evaluated with respect to alpine ecology, hydroelectric operations, and water resource management. In this manuscript the seasonal evolution of gla...

  13. Glacier loss and emerging hydrologic vulnerabilities in the Peruvian Andes

    Science.gov (United States)

    Mark, B. G.; McKenzie, J. M.; Baraer, M.; Lagos, P.; Lautz, L.; Carey, M.; Bury, J.; Crumley, R.; Wigmore, O.; Somers, L. D.

    2015-12-01

    Accelerating glacier recession in the tropical Andes is transforming downstream hydrology, while increasing demands for water by end-users (even beyond the watershed limits) is complicating the assessment of vulnerability. Future scenarios of hydro-climatic vulnerability require a better understanding of coupled hydrologic and human systems, involving both multiscale process studies and more robust models of glacier-climate interactions. We synthesize research in two proglacial valleys of glacierized mountain ranges in different regions of Peru that are both in proximity to growing water usage from urban sectors, agriculture, hydroelectric generation, and mining. In both the Santa River watershed draining the Cordillera Blanca and the Shullcas River watershed below Hyuatapallana Mountain in Junin, glaciers have receded over 25% since the 1980s. Historical runoff and glacier data, combined with glacier-climate modeling, show a long-term decrease in discharge resulting from a net loss of stored water. We find evidence that this altered hydrology is transforming proglacial wetland ecology and water quality, even while water resource use has intensified. Beyond glaciers, our results show that over 60% of the dry season base flow in each watershed is groundwater sourced from heterogeneous aquifers. Municipal water supply in Huancayo already relies on 18 groundwater wells. Perceptions of water availability and actual water use practices remain relatively divorced from the actual water resources provided from each mountain range. Critical changes in glacier volume and water supply are not perceived or acknowledged consistently amongst different water users, nor reflected in water management decisions. In order to identify, understand, model, and adapt to climate-glacier-water changes, it is vital to integrate the analysis of water availability and groundwater processes (the domain of hydrologists) with that of water use (the focus for social scientists). Attention must be

  14. Growth of a post-Little Ice Age submarine fan, Glacier Bay, Alaska

    Science.gov (United States)

    Carlson, P.R.; Cowan, E.A.; Powell, R.D.; Cai, J.

    1999-01-01

    A small Holocene fan is forming where Queen Inlet, a hanging valley, enters West Arm fjord, Glacier Bay, Alaska. Queen fan formed in the last 80 years following retreat of the Little Ice Age glacier that filled Glacier Bay about 200 yr BP. It was built mainly by a turbidite system originating from Carroll Glacier delta, as the delta formed in the early 1900s at the head of Queen Inlet. The Late Holocene Queen fan is comparable to large Pleistocene fans that formed in the Gulf of Alaska and differs from trough-mouth fans formed by cooler climate glacier systems.

  15. A new model for global glacier change and sea-level rise

    OpenAIRE

    Huss, Matthias, ed.imp.lib; Hock, Regine

    2016-01-01

    The anticipated retreat of glaciers around the globe will pose far-reaching challenges to the management of fresh water resources and significantly contribute to sea-level rise within the coming decades. Here, we present a new model for calculating the twenty-first century mass changes of all glaciers on Earth outside the ice sheets. The Global Glacier Evolution Model (GloGEM) includes mass loss due to frontal ablation at marine-terminating glacier fronts and accounts for glacier advance/retr...

  16. Snow and glaciers in the tropics: the importance of snowfall level and snow line altitude in the Peruvian Cordilleras

    Science.gov (United States)

    Schauwecker, Simone; Rohrer, Mario; Huggel, Christian; Salzmann, Nadine; Montoya, Nilton; Endries, Jason; Perry, Baker

    2016-04-01

    altitude - ranging within only few hundreds of meters within one year - determines the observed high mass balance gradients. An increase in air temperature by for example 1°C during precipitation events may have even stronger impacts on glacier mass balances of tropical glacier than it would have on those of mid-latitude glaciers. This is an important reason for the high sensitivity of tropical glaciers on past and current climatic changes.

  17. Geometric evolution of the Horcones Inferior Glacier (Mount Aconcagua, Central Andes) during the 2002-2006 surge

    Science.gov (United States)

    Pitte, Pierre; Berthier, Etienne; Masiokas, Mariano H.; Cabot, Vincent; Ruiz, Lucas; Ferri Hidalgo, Lidia; Gargantini, Hernán.; Zalazar, Laura

    2016-01-01

    The Central Andes of Chile and Argentina (31-35°S) contain a large number and variety of ice masses, but only two surging glaciers have been studied in this region. We analyzed the 2002-2006 surge of the Horcones Inferior Glacier, Mount Aconcagua, Argentina, based on medium spatial resolution (15-30 m) satellite images and digital elevation models. During the buildup phase the glacier was stagnant, with velocities lower than 0.1 m/d. In the active-phase velocities reached 14 m/d and the glacier front advanced 3.1 km. At the peak of the active phase (2003-2004), the area-averaged elevation change was -42 m in the reservoir zone (2.53 km2) and +30 m in the receiving zone (3.31 km2). The estimated ice flux through a cross section located at 4175 meter above sea level was 108 m3 during a period of 391 days, a flux that suggests a mean glacier thickness at this location of ~90 m. The depletion phase showed a recovery of the reservoir zone elevation, the down wasting of the receiving zone (-17 m, 2007-2014), and a return to quiescent velocities. The short active phase, the abrupt change in the velocities, and the high level of the proglacial stream indicate a hydrological switch (Alaska type) trigger. The 2002-2006 and 1984-1990 surges of Horcones Inferior were synchronous with the surges of nearby Grande del Nevado Glacier. These events occurred after periods of positive mass balance, so we hypothesize a climate driver.

  18. Modelling runoff from a Himalayan debris-covered glacier

    Directory of Open Access Journals (Sweden)

    K. Fujita

    2014-02-01

    Full Text Available Although the processes by which glacial debris-mantles alter the melting of glacier ice have been well studied, the mass balance and runoff patterns of Himalayan debris-covered glaciers and the response of these factors to climate change are not well understood. Many previous studies have addressed mechanisms of ice melt under debris mantles by applying multiplicative parameters derived from field experiments, and other studies have calculated the details of heat conduction through the debris layer. However, those approaches cannot be applied at catchment scales because debris distributions are heterogeneous and difficult to measure. Here, we establish a runoff model for a Himalayan debris-covered glacier in which the spatial distribution of the thermal properties of the debris mantle is estimated from remotely sensed multi-temporal data. We validated the model for the Tsho Rolpa Glacial Lake–Trambau Glacier basin in the Nepal Himalaya, using hydro-meteorological observations obtained for a 3.5 yr period (1993–1996. We calculated long-term averages of runoff components for the period 1980–2007 using gridded reanalysis datasets. Our calculations suggest that excess meltwater from the debris-covered area contributes significantly to the total runoff, mainly because of its location at lower elevations. Uncertainties in runoff values due to estimations of the thermal properties and albedo of the debris-covered surface were assessed to be approximately 8% of the runoff from the debris-covered area. We evaluated the sensitivities of runoff components to changes in air temperature and precipitation. As expected, warmer air temperatures increase the total runoff by increasing the melting rate; however, increased precipitation slightly reduces the total runoff, as ice melting is suppressed by the increased snow cover and associated high albedo. The response of total runoff to changing precipitation is complex because of the different responses of

  19. Greenland ice mass balance from GPS, GRACE and ICESat

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjær, Kurt H.; Korsgaard, Niels Jákup;

    glacier speed-ups are a response to recent external forcing and the start of a long-term trend in increasing mass loss, or related to internal variability in the ice sheet-climate system that occurs over a range of timescales. Here, we report multi-decadal observations of ice mass change from northwestern......Global warming is predicted to have a profound impact on the Greenland Ice Sheet (GrIS) and its contribution to future sea-level rise. The GrIS has seen dramatic changes over the last two decades and mass loss has been accelerating, owing to a combination of increased runoff and discharge of ice...... across the grounding line. The acceleration of glaciers has been reported as pervasive and spreading with time. Prominent is the significant mass change of the southeast and northwest margins associated with glacier speed-up and dynamic thinning. It is unknown, however, whether the extensively documented...

  20. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling

    OpenAIRE

    Ettema, J.; M. R. van den Broeke; van Meijgaard, E.; Van De Berg, W. J.; Bamber, Jonathan L.; Box, J. E.; Bales, R. C.

    2009-01-01

    High-resolution (∼11 km) regional climate modeling shows total annual precipitation on the Greenland ice sheet for 1958-2007 to be up to 24% and surface mass balance up to 63% higher than previously thought. The largest differences occur in coastal southeast Greenland, where the much higher resolution facilitates capturing snow accumulation peaks that past five-fold coarser resolution regional climate models missed. The surface mass balance trend over the full 1958-2007 period reveals the cla...

  1. Melting Himalayan glaciers contaminated by legacy atmospheric depositions are important sources of PCBs and high-molecular-weight PAHs for the Ganges floodplain during dry periods.

    Science.gov (United States)

    Sharma, Brij Mohan; Nizzetto, Luca; Bharat, Girija K; Tayal, Shresth; Melymuk, Lisa; Sáňka, Ondřej; Přibylová, Petra; Audy, Ondřej; Larssen, Thorjørn

    2015-11-01

    Melting glaciers are natural redistributors of legacy airborne pollutants, affecting exposure of pristine proglacial environments. Our data shows that melting Himalayan glaciers can be major contributors of polychlorinated biphenyls (PCBs) and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) for surface water in the Gangetic Plain during the dry season. Glacial emissions can exceed in some cases inputs from diffuse sources within the catchment. We analyzed air, deposition and river water in several sections along the Ganges River and its major headwaters. The predominant glacial origin of these contaminants in the Himalayan reach was demonstrated using air-water fugacity ratios and mass balance analysis. The proportion of meltwater emissions compared to pollutant discharge at downstream sections in the central part of the Gangetic Plain was between 2 and 200%. By remobilizing legacy pollutants from melting glaciers, climate change can enhance exposure levels over large and already heavily impacted regions of Northern India. PMID:26312740

  2. Monitoring spatial and temporal variations of surface albedo on Saint Sorlin Glacier (French Alps using terrestrial photography

    Directory of Open Access Journals (Sweden)

    M. Dumont

    2011-01-01

    Full Text Available Accurate knowledge of temperate glacier mass balance is essential to understand the relationship between glacier and climate. Defined as the reflected fraction of incident radiation over the whole solar spectrum, the surface broadband albedo is one of the leading variable of their mass balance. This study presents a new method to retrieve the albedo of frozen surfaces from terrestrial photography at visible and near infrared wavelengths. This method accounts for the anisotropic reflectance of snow and ice surfaces and uses a radiative transfer model for narrow-to-broadband conversion. The accuracy of the method was assessed using concomitant measurements of albedo during the summers 2008 and 2009 on Saint Sorlin Glacier (Grandes Rousses, France. These albedo measurements are performed at two locations on the glacier, one in the ablation area and the other in the accumulation zone, with a net radiometer Kipp and Zonen CNR1. Main sources of uncertainty are associated with the presence of high clouds and the georeferencing of the photographs.

  3. On the role of buoyant flexure in glacier calving

    Science.gov (United States)

    Wagner, Till J. W.; James, Timothy D.; Murray, Tavi; Vella, Dominic

    2016-04-01

    Interactions between glaciers and the ocean are key for understanding the dynamics of the cryosphere in the climate system. Here we investigate the role of hydrostatic forces in glacier calving. We develop a mathematical model to account for the elastic deformation of glaciers in response to three effects: (i) marine and lake-terminating glaciers tend to enter water with a nonzero slope, resulting in upward flexure around the grounding line; (ii) horizontal pressure imbalances at the terminus are known to cause hydrostatic in-plane stresses and downward acting torque; (iii) submerged ice protrusions at the glacier front may induce additional buoyancy forces that can cause calving. Our model provides theoretical estimates of the importance of each effect and suggests geometric and material conditions under which a given glacier will calve from hydrostatic flexure.We find good agreement with observations. This work sheds light on the intricate processes involved in glacier calving and can be hoped to improve our ability to model and predict future changes in the ice-climate system.

  4. On the role of buoyant flexure in glacier calving

    Science.gov (United States)

    Wagner, Till J. W.; James, Timothy D.; Murray, Tavi; Vella, Dominic

    2016-01-01

    Interactions between glaciers and the ocean are key for understanding the dynamics of the cryosphere in the climate system. Here we investigate the role of hydrostatic forces in glacier calving. We develop a mathematical model to account for the elastic deformation of glaciers in response to three effects: (i) marine and lake-terminating glaciers tend to enter water with a nonzero slope, resulting in upward flexure around the grounding line; (ii) horizontal pressure imbalances at the terminus are known to cause hydrostatic in-plane stresses and downward acting torque; (iii) submerged ice protrusions at the glacier front may induce additional buoyancy forces that can cause calving. Our model provides theoretical estimates of the importance of each effect and suggests geometric and material conditions under which a given glacier will calve from hydrostatic flexure. We find good agreement with observations. This work sheds light on the intricate processes involved in glacier calving and can be hoped to improve our ability to model and predict future changes in the ice-climate system.

  5. Biodiversity under threat in glacier-fed river systems

    Science.gov (United States)

    Jacobsen, Dean; Milner, Alexander M.; Brown, Lee E.; Dangles, Olivier

    2012-05-01

    Freshwater biodiversity is under threat across the globe, with climate change being a significant contributor. One impact of climate change is the rapid shrinking of glaciers, resulting in a reduction in glacial meltwater contribution to river flow in many glacierized catchments. These changes potentially affect the biodiversity of specialized glacier-fed river communities. Perhaps surprisingly then, although freshwater biodiversity is a major conservation priority, the effects of shrinkage and disappearance of glaciers on river biodiversity have hitherto been poorly quantified. Here we focus on macroinvertebrates (mainly insect larvae) and demonstrate that local (α) and regional (γ) diversity, as well as turnover among reaches (β-diversity), will be consistently reduced by the shrinkage of glaciers. We show that 11-38% of the regional species pools, including endemics, can be expected to be lost following complete disappearance of glaciers in a catchment, and steady shrinkage is likely to reduce taxon turnover in proglacial river systems and local richness at downstream reaches where glacial cover in the catchment is less than 5-30%. Our analysis demonstrates not only the vulnerability of local biodiversity hotspots but also that extinction will probably greatly exceed the few known endemic species in glacier-fed rivers.

  6. Probabilistic estimation of glacier volume and glacier bed topography: the Andean glacier Huayna West

    OpenAIRE

    V. Moya Quiroga; Mano, A.; Asaoka, Y; K. Udo; Kure, S.; Mendoza, J.

    2013-01-01

    Glacier retreat will increase sea level and decrease fresh water availability. Glacier retreat will also induce morphologic and hydrologic changes due to the formation of glacial lakes. Hence, it is important not only to estimate glacier volume, but also to understand the spatial distribution of ice thickness. There are several approaches for estimating glacier volume and glacier thickness. However, it is not possible to select an optimal approach that works for all locations. It is important...

  7. Variability of the "glaciological regime" and its consequences for interpretation and modelling of glacier length changes - a case study from maritime South Norway

    Science.gov (United States)

    Winkler, S.; Nesje, A.

    2009-04-01

    Mountain glaciers are acknowledged as high-resolution indicators of short-, medium-, and long-term climate changes. Variations in glacier mass, area, length, and frontal position have important effects upon various aspects of sustainable development in mountain regions. Maritime mountain glaciers can react very sensitive to changes of the ‘glaciological regime', i.e. the relationship between mass-balance or length changes and predominant weather or climate conditions. The steep sensitive-reacting outlet glaciers of Jostedalsbreen, western South Norway, underwent two fairly contrasting periods during the past 20 years. Interpretation of this ‘extreme' behaviour deserved special attention. A considerable increase in ice mass and related frontal advance during the AD 1990s was caused by increased winter precipitation. Relative contributions of the winter balance to the annual net balance variations were high during the last decades of the 20th century AD. By contrast, glacier tongues experiences a sharp retreat in the most recent years since c. AD 2000. Above-average summer air temperatures unambiguously caused the most recent retreat. This retreat was, however, not clearly linked to mass-balance data as its proportion significantly exceeded the slight contemporary mass loss. The virtual absence of any time lag of frontal response indicates a regime change towards a ‘disturbed' dynamic response of the glacier tongue occurring around c. AD 2000. Detailed analysis of mass-balance, length variation, and climate data from maritime Southern Norway reveals their variations are not entirely determined by air temperature changes, as implicated by most existing models. Substantial changes occurred after AD 2000 with the correlation of different mass-balance parameters to length variations. The correlation of net balance to length variation dropped significant during to the most recent retreat. Comparable changes between long-term means and the most recent retreat phase

  8. A note on the water budget of temperate glaciers

    Directory of Open Access Journals (Sweden)

    J. Oerlemans

    2013-06-01

    Full Text Available In this note the total dissipative melting in temperate glaciers is studied. The analysis is based on the notion that the dissipation is determined by the loss of potential energy, due to the downward motion of mass (ice, snow, meltwater and rain. A mathematical formulation of the dissipation is developed and applied to a simple glacier geometry. In a next step, meltwater production resulting from enhanced ice motion during a glacier surge is calculated. The amount of melt energy available follows directly from the lowering of the centre of gravity of the glacier. To illustrate the concept, schematic calculations are presented for a number of glaciers with different geometric characteristics. Typical dissipative melt rates, expressed as water-layer depth averaged over the glacier, range from a few cm per year for smaller glaciers to half a meter per year for Franz-Josef Glacier, one of the most active glaciers in the world (in terms of mass turnover. The total generation of meltwater during a surge is typically half a meter. For Variegated Glacier a value of 70 cm is found, for Kongsvegen 20 cm. These values refer to water layer depth averaged over the entire glacier. The melt rate depends on the duration of the surge. It is generally an order of magnitude larger than the water production by "normal" dissipation. On the other hand, the additional basal melt rate during a surge is comparable in magnitude to the water input from meltwater and precipitation. This suggests that enhanced melting during a surge does not grossly change the total water budget of a glacier. Basal water generated by enhanced sliding is an important ingredient of many theories of glacier surges. It provides a positive feedback mechanism that actually makes the surge happen. The results found here suggest that this can only work if water generated by enhanced sliding is accumulating in a part of the glacier base where surface meltwater and rain has no or very limited access

  9. Multi-temporal study of BELVEDERE glacier for hydrologic hazard monitoring and water resource estimation using UAV: tests and first results

    Science.gov (United States)

    Piras, Marco; Cina, Alberto; De Michele, Carlo; Pinto, Livio; Barzaghi, Riccardo; Maschio, Paolo F.; Avanzi, Francesco; Bianchi, Alberto; Deidda, Cristina; Donizetti, Alberto; Giani, Giulia; Giarrizzo, Giuseppe; Negrini, Alessandro; Rampazzo, Alessandro; Savaia, Gianluca; Soria, Enrica

    2016-04-01

    Nowadays, expected effects of climate change at local, regional and global scales endanger hydrologic budgets of Alpine regions. An example is the massive shrinkage of mountain glaciers, with the consequent problem of water resources reduction for civil population and ecosystems. Therefore, it is very important to monitor glaciers' evolution, in order to allow an estimation of glaciers' reduction and possible effects on the hydrologic cycle. In 2015, a research team called DREAM (Drone Technology for Water Resources and hydrologic hazards Monitoring) has been created within the framework of "Alta Scuola Politecnica", joint initiative between Politecnico di Milano and Politecnico di Torino (Italy), and composed by 15 people among students, research associates and professors belonging to the two universities. The goal of the research team is to investigate new technologies and tools, including Unmanned Aerial Vehicle (UAVs), for monitoring natural hazard and evaluating water resources at different scales. In particular, in this first step, the DREAM team has selected as test site the eastern slopes of Monte Rosa and its long glacier tongue (Belvedere glacier). This area of Monte Rosa massif has an altitude range between 2000 m up to 4500 m ASL, while the glacier tongue has an extension greater than 3 km 2. Usually, glacier thickness and area evolution are monitored using, e.g., time-consuming field activities based on point stratigraphy and mass balances, or radar sounding, which do not allow to obtain a continuous-time, detailed and accurate information about surface and volume evolution at fine spatial resolutions. In this framework, we have used a fixed-wing UAV (eBee sensesly) to acquire RGB images, in order to generate a dense DSM (DDSM) and an orthophoto of the glacier, with a high resolution (4-6 cm). In this way, we aim at analyzing the variations of glacier volume in time. The acquisition was carried out with two different campaigns of measurement in October

  10. China's Glacier Inventory Completed

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ A 12-volume Chinese Glacier Inventory has recently been finished by a group of Chinese glaciologists headed by Prof. Shi Yafeng from the Cold and Arid Regions Environmental and Engineering Research Institute under CAS.

  11. Mass balance study of gravitational mass movements in proglacial systems

    Science.gov (United States)

    Rohn, Joachim; Vehling, Lucas; Moser, Michael

    2013-04-01

    additionally with tape dilatometer measurements. High resolution displacement- and temperature sensors installed in different depth of the rock and combined with electronic data collectors accomplish the data acquisition system. All these investigations will all