WorldWideScience

Sample records for climate effects open

  1. Successful Massive Open Online Climate Course on Climate Science and Psychology

    Science.gov (United States)

    Nuccitelli, D. A.; Cook, J.

    2015-12-01

    In 2015, the University of Queensland and edX launched a Massive Open Online Course (MOOC), 'Making Sense of Climate Science Denial.' The MOOC debunked approximately 50 common climate myths using elements of both physical science and psychology. Students learned how to recognise the social and psychological drivers of climate science denial, how to better understand climate change, how to identify the techniques and fallacies that climate myths employ to distort climate science, and how to effectively debunk climate misinformation. Contributors to the website Skeptical Science delivered the lectures, which were reinforced via interviews with climate science and psychology experts. Over 15,000 students from 167 countries enrolled in the course, and student feedback was overwhelmingly positive. This MOOC provides a model for effective climate science education.

  2. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    Science.gov (United States)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  3. Diversity climate enhances work outcomes through trust and openness in workgroup communication.

    Science.gov (United States)

    Hofhuis, Joep; van der Rijt, Pernill G A; Vlug, Martijn

    2016-01-01

    Diversity climate, defined as an organizational climate characterized by openness towards and appreciation of individual differences, has been shown to enhance outcomes in culturally diverse teams. To date, it remains unclear which processes are responsible for these findings. This paper presents two quantitative studies (n = 91; 246) that identify trust and openness in workgroup communication as possible mediators. We replicate earlier findings that perceived diversity climate positively relates to job satisfaction, sense of inclusion, work group identification and knowledge sharing in teams. In study 1, trust is shown to mediate the effects of perceived diversity climate on team members' sense of inclusion. In study 2, trust mediates the relationship between perceived diversity climate and workgroup identification and openness mediates its relationship with knowledge sharing.

  4. Open NASA Earth Exchange (OpenNEX): A Public-Private Partnership for Climate Change Research

    Science.gov (United States)

    Nemani, R. R.; Lee, T. J.; Michaelis, A.; Ganguly, S.; Votava, P.

    2014-12-01

    NASA Earth Exchange (NEX) is a data, computing and knowledge collaborative that houses satellite, climate and ancillary data where a community of researchers can come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform with access to large supercomputing resources. As a part of broadening the community beyond NASA-funded researchers, NASA through an agreement with Amazon Inc. made available to the public a large collection of Climate and Earth Sciences satellite data. The data, available through the Open NASA Earth Exchange (OpenNEX) platform hosted by Amazon Web Services (AWS) public cloud, consists of large amounts of global land surface imaging, vegetation conditions, climate observations and climate projections. In addition to the data, users of OpenNEX platform can also watch lectures from leading experts, learn basic access and use of the available data sets. In order to advance White House initiatives such as Open Data, Big Data and Climate Data and the Climate Action Plan, NASA over the past six months conducted the OpenNEX Challenge. The two-part challenge was designed to engage the public in creating innovative ways to use NASA data and address climate change impacts on economic growth, health and livelihood. Our intention was that the challenges allow citizen scientists to realize the value of NASA data assets and offers NASA new ideas on how to share and use that data. The first "ideation" challenge, closed on July 31st attracted over 450 participants consisting of climate scientists, hobbyists, citizen scientists, IT experts and App developers. Winning ideas from the first challenge will be incorporated into the second "builder" challenge currently targeted to launch mid-August and close by mid-November. The winner(s) will be formally announced at AGU in December of 2014. We will share our experiences and lessons learned over the past year from OpenNEX, a public-private partnership for

  5. World-wide anthropogenic climate changes: facts, uncertainties and open questions

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1994-01-01

    Various human activities are, without a doubt, leading to a steady increase world-wide in the emissions of trace gases which affect the climate into the atmosphere. As a result, the global climate is also forced to change. The evidence from climate models regarding this is uncertain, however, both with respect to the quantitative aspect and the regional aspect, especially concerning climatic elements apart from temperature. It is therefore important to examine the data of climate history for anthropogenic climate signals. It is difficult, though, to distinguish between natural and anthropogenic climate effects. Despite these uncertainties, however, which result in many questions remaining open, estimations of risk and the principle of responsibility lead to immediate, international climate protection measures being demanded. (orig.) [de

  6. The growth of finfish in global open-ocean aquaculture under climate change.

    Science.gov (United States)

    Klinger, Dane H; Levin, Simon A; Watson, James R

    2017-10-11

    Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds-Atlantic salmon ( Salmo salar ), gilthead seabream ( Sparus aurata ) and cobia ( Rachycentron canadum )-is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses. © 2017 The Author(s).

  7. A note on the perverse effects of actively open-minded thinking on climate-change polarization

    Directory of Open Access Journals (Sweden)

    Dan M. Kahan

    2016-11-01

    Full Text Available This research note presents evidence that political polarization over the reality of human-caused climate change increases in tandem with individuals’ scores on a standard measure of actively open-minded thinking. This finding is at odds with the position that attributes political conflict over facts to a personality trait of closed-mindedness associated with political conservatism.

  8. The Copernicus Climate Change Service (C3S): Open Access to a Climate Data Store

    Science.gov (United States)

    Thepaut, Jean-Noel; Dee, Dick

    2016-04-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we monitor and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its Climate Data Store will provide • global and regional climate data reanalyses; • multi-model seasonal forecasts; • customisable visual data to enable examination of wide range of scenarios and model the impact of changes; • access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. At the heart of the Service is the provision of open access to a one stop shop (the Climate Data Store) of climate data and modelling, analysing more than 20 Essential Climate Variables to build a global picture of our past, present and future climate and developing

  9. Large scale obscuration and related climate effects open literature bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  10. Large scale obscuration and related climate effects open literature bibliography

    International Nuclear Information System (INIS)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ''Nuclear Winter Controversy'' in the early 1980's. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest

  11. Climate Change and Health as Massive Open Online Courses.

    Science.gov (United States)

    Barteit, Sandra; Sié, Ali; Yé, Maurice; Depoux, Anneliese; Sauerborn, Reiner

    2018-01-01

    To teach the basics of climate change and health - such as the nature of health impacts, best practices in adoption strategies and promotion in health co-benefits, mitigation and adaptation strategies - we have developed three massive open online courses (MOOCs). We analysed the three MOOCs with regards to different factors such as course content, student motivation, instructor behaviour, co-learner effects, design and implementation effects. We conducted online surveys for all three MOOCs based on the research model of Hone et al., extended with regards to student's motivation and course outcomes. In total, we evaluated 6898 students, of which 101 students took part in the online survey. We found differences in completion rates and country of origin for the three MOOCs. The francophone MOOC was found to have a high number of participants from lower-income- and low-and-middle-income countries. The majority of participants were aged between 22 and 40 years of age and had mainly a graduate educational background. The primary motivation to join the MOOC was the knowledge and skills gained as a result of taking the course. The three MOOCs on climate change and health had a reach of almost 7000 students worldwide, as compared to the scope of a face-to-face course on the same topic of 30 students, including students from resource-low environments that are already vulnerable to current changes in climate. The evaluation of the MOOCs outlined the current impact. However, further research has to be conducted to be able to get insights into the impact over time.

  12. Climate Change and Sustainability Open Educational Resources: Lessons learned and challenges to tackle

    Science.gov (United States)

    Robinson, Zoe; Whitfield, Stephen; Gertisser, Ralf; Krause, Stefan; McKay, Deirdre; Pringle, Jamie; Szkornik, Katie; Waller, Richard

    2010-05-01

    The UK's Higher Education Academy Subject Centre for Geography, Earth and Environmental Sciences (GEES) is currently running a project entitled ‘C-Change in GEES: Open licensing of climate change and sustainability resources in the Geography, Earth and Environmental Sciences' as part of a national Open Educational Resource project. The C-Change project aims to explore the challenges involved in ‘repurposing' existing teaching materials on the topics of climate change and sustainability to make them open access. This project has produced an open access resource of diverse climate change and sustainability-related teaching materials across the subjects of Geography, Earth and Environmental Sciences. The process of repurposing existing face-to-face teaching resources requires consideration of a wide variety of issues including the Intellectual Property Rights (IPR) associated with images and other material included in the teaching resources, in addition to issues of quality, accessibility and usability of resources. Open access education is an issue that will have implications across the whole of the organizational structure of a university, from legal advisors with commitments to University research and enterprise activities, to the academics wishing to produce open access resources, through to all levels of senior management. The attitudes, concerns and openness to Open Educational Resources of stakeholders from all positions within a HE institution will have implications for the participation of that institution within the OER movement. The many barriers to the whole-scale adoption of Open Educational Resources within the UK Higher Education system and the willingness of UK Higher Education Institutions to engage in the OER movement include institutional perspectives on the IPR of teaching materials developed by members of staff within the institution and financial viability, in addition to more sceptical attitudes of potential contributors. Keele University is

  13. Empowering America's Communities to Prepare for the Effects of Climate Change: Developing Actionable Climate Science Under the President's Climate Action Plan

    Science.gov (United States)

    Duffy, P. B.; Colohan, P.; Driggers, R.; Herring, D.; Laurier, F.; Petes, L.; Ruffo, S.; Tilmes, C.; Venkataraman, B.; Weaver, C. P.

    2014-12-01

    Effective adaptation to impacts of climate change requires best-available information. To be most useful, this information should be easily found, well-documented, and translated into tools that decision-makers use and trust. To meet these needs, the President's Climate Action Plan includes efforts to develop "actionable climate science". The Climate Data Initiative (CDI) leverages the Federal Government's extensive, open data resources to stimulate innovation and private-sector entrepreneurship in support of actions to prepare for climate change. The Initiative forges commitments and partnerships from the private, NGO, academic, and public sectors to create data-driven tools. Open data from Federal agencies to support this innovation is available on Climate.Data.gov, initially focusing on coastal flooding but soon to expand to topics including food, energy, water, energy, transportation, and health. The Climate Resilience Toolkit (CRT) will facilitate access to data-driven resilience tools, services, and best practices, including those accessible through the CDI. The CRT will also include access to training and tutorials, case studies, engagement forums, and other information sources. The Climate Action Plan also calls for a public-private partnership on extreme weather risk, with the goal of generating improved assessments of risk from different types of extreme weather events, using methods and data that are transparent and accessible. Finally, the U.S. Global Change Research Program and associated agencies work to advance the science necessary to inform decisions and sustain assessments. Collectively, these efforts represent increased emphasis across the Federal Government on the importance of information to support climate resilience.

  14. Indoor climate, psychosocial work environment and symptoms in open-plan offices

    DEFF Research Database (Denmark)

    Pejtersen, J; Allermann, L; Kristensen, T S

    2006-01-01

    To study the indoor climate, the psychosocial work environment and occupants' symptoms in offices a cross-sectional questionnaire survey was made in 11 naturally and 11 mechanically ventilated office buildings. Nine of the buildings had mainly cellular offices; five of the buildings had mainly open...... irritation, skin irritation, central nervous system (CNS) symptoms and psychosocial factors. Occupants in open-plan offices are more likely to perceive thermal discomfort, poor air quality and noise and they more frequently complain about CNS and mucous membrane symptoms than occupants in multi......-person and cellular offices. The association between psychosocial factors and office size was weak. Open-plan offices may not be suited for all job types. PRACTICAL IMPLICATION: Open-plan offices may be a risk factor for adverse environmental perceptions and symptoms....

  15. School Climate as an Important Component in School Effectiveness

    Directory of Open Access Journals (Sweden)

    Dorina Rapti

    2013-07-01

    Full Text Available Expectations, values, faith, relationships with staff, the school leader, teachers and students behavior create school climate. The leader can promote or hinder a positive climate through his leadership model. The purpose of this study is to explore what are the climate types that appear in the school as well as to contribute to the expectations of different stakeholders on the school climate. The starting point for improving the performance of students and teachers is to improve school climate. Thus, this study will help leaders who for one reason or another have not been effective in keeping their responsibilities, and, as a result, did not work efficiently in improving school climate. It is assumed that a positive school climate enhances effective teaching, and as a result a better performance of student learning. This study will serve to further studies related to the expansion of the leaders’ roles on school climate. In conclusion, the research will assist policy makers in Albania to assess the content of the modules needed for training future managers and teachers to ensure they are equipped with the skills required to create a positive, open and collaborative climate in school. The school leader should be released from some managerial tasks, for paying more time to teachers and students.

  16. A Massive Open Online Course (MOOC) on Climate Change

    Science.gov (United States)

    Somerville, R. C. J.

    2015-12-01

    A climate change MOOC is a way to reach a global audience of many thousands of students. What was it like to teach climate change to an invisible class over the Internet, and how well did it work? The need to educate many people about climate change seems obvious. Climate change is one of the most important existential issues of our time. Sound science can inform wise policy, and coping successfully with climate change is surely an urgent global challenge that requires scientific input and a scientifically informed public. Today many scientists have opportunities to communicate what science has learned about climate and climate change. Yet being a scientific expert on these subjects does not necessarily mean having the skills to communicate effectively to a broad audience. Like learning to ski or to drive a car skillfully, learning to communicate climate science well takes time and effort. The MOOC format has its own special challenges. Effective communication should always resemble a conversation rather than a monologue, but a conversation can be difficult when the teacher will never see or hear from the great majority of students in the class. In addition, a well-funded and effective professional disinformation campaign has been successful in sowing widespread confusion about climate change. As a result, many people mistakenly think climate change science is unreliable or is controversial within the expert community. One can expect that some of the students taking the MOOC will have been influenced by this sort of erroneous information. Thus, one appealing topic to include in a MOOC on climate change is to give useful guidelines for recognizing and rejecting junk science and disinformation. This talk will describe one climate scientist's first-person participation in teaching a climate change MOOC.

  17. Opening Up Climate Research: A Linked Data Approach to Publishing Data Provenance

    Directory of Open Access Journals (Sweden)

    Arif Shaon

    2012-03-01

    Full Text Available Traditionally, the formal scientific output in most fields of natural science has been limited to peer-reviewed academic journal publications, with less attention paid to the chain of intermediate data results and their associated metadata, including provenance. In effect, this has constrained the representation and verification of the data provenance to the confines of the related publications. Detailed knowledge of a dataset’s provenance is essential to establish the pedigree of the data for its effective re-use, and to avoid redundant re-enactment of the experiment or computation involved. It is increasingly important for open-access data to determine their authenticity and quality, especially considering the growing volumes of datasets appearing in the public domain. To address these issues, we present an approach that combines the Digital Object Identifier (DOI – a widely adopted citation technique – with existing, widely adopted climate science data standards to formally publish detailed provenance of a climate research dataset as an associated scientific workflow. This is integrated with linked-data compliant data re-use standards (e.g. OAI-ORE to enable a seamless link between a publication and the complete trail of lineage of the corresponding dataset, including the dataset itself.

  18. Open access to Water Indicators for Climate Change Adaptation: proof-of-concept for the Copernicus Climate Change Service (C3S)

    Science.gov (United States)

    Lottle, Lorna; Arheimer, Berit; Gyllensvärd, Frida; Dejong, Fokke; Ludwig, Fulco; Hutjes, Ronald; Martinez, Bernat

    2017-04-01

    Copernicus Climate Change Service (C3S) is still in the development phase and will combine observations of the climate system with the latest science to develop authoritative, quality-assured information about the past, current and future states of the climate and climate dependent sectors in Europe and worldwide. C3S will provide key indicators on climate change drivers and selected sectorial impacts. The aim of these indicators will be to support adaptation and mitigation. This presentation will show one service already operational as a proof-of-concept of this future climate service. The project "Service for Water Indicators in Climate Change Adaptation" (SWICCA) has developed a sectorial information service for water management. It offers readily available climate-impact data, for open access from the web-site http://swicca.climate.copernicus.eu/. The development is user-driven with the overall goal to speed up the workflow in climate-change adaptation of water management across Europe. The service is co-designed by consultant engineers and agencies in 15 case-studies spread out over the continent. SWICCA has an interactive user-interface, which shows maps and graphs, and facilitates data download in user-friendly formats. In total, more than 900 open dataset are given for various hydrometeorological (and a few socioeconomical) variables, model ensembles, resolutions, time-periods and RCPs. The service offers more than 40 precomputed climate impact indicators (CIIs) and transient time-series of 4 essential climate variables ECVs) with high spatial and temporal resolution. To facilitate both near future and far future assessments, SWICCA provides the indicators for different time ranges; normally, absolute values are given for a reference period (e.g. 1971-2000) and the expected future changes for different 30-year periods, such as early century (2011-2040), mid-century (2041-2070) and end-century (2071-2100). An ensemble of model results is always given to

  19. Projecting hydropower production under future climates: a review of modelling challenges and open questions

    Science.gov (United States)

    Schaefli, Bettina

    2015-04-01

    Hydropower is a pillar for renewable electricity production in almost all world regions. The planning horizon of major hydropower infrastructure projects stretches over several decades and consideration of evolving climatic conditions plays an ever increasing role. This review of model-based climate change impact assessments provides a synthesis of the wealth of underlying modelling assumptions, highlights the importance of local factors and attempts to identify the most urgent open questions. Based on existing case studies, it critically discusses whether current hydro-climatic modelling frameworks are likely to provide narrow enough water scenario ranges to be included into economic analyses for end-to-end climate change impact assessments including electricity market models. This will be completed with an overview of not or indirectly climate-related boundary conditions, such as economic growth, legal constraints, national subsidy frameworks or growing competition for water, which might locally largely outweigh any climate change impacts.

  20. CORDEX - a treasure trove of open climate data for hydrological modelling

    Science.gov (United States)

    O'Rourke, Eleanor; Nikulin, Grigory; Kjellström, Erik

    2015-04-01

    The Coordinated Regional Downscaling Experiment (CORDEX) was initiated by the World Climate Research Programme (WCRP) to coordinate high-resolution Regional Climate Modelling and provide a set of regional climate projections for the majority of global land regions. Additionally making this data available, and importantly useable, to impact and adaptation communities was a fundamental goal. Phase I of CORDEX, which came to a close in November 2013, was successful in developing a framework in which scientists around the world adopted a common protocol to guide the development of high-resolution Regional Climate Model (RCM) and empirical statistical downscaling (ESD) projections, and the intercomparison of these projections, on each continent, with a particular focus on the African region. As a result of these intensive activities by groups across the globe more than 47000 quality checked open datasets are now freely available to users through the searchable Earth System Grid Federation (ESGF). The integration of this data into large scale hydrological modelling is in action within the Swedish Meteorological & Hydrological Institute (SMHI) exemplifying the great potential use of this resource to the hydrological community. The aim of CORDEX Phase II is to enhance the dialogue with end-users so as to meet the growing demand for tailored regional climate information. Here, greater interaction between the CORDEX and hydrological modelling community can only prove hugely beneficial leading to greater protection for those vulnerable to the impacts of a changing climate.

  1. Is Openness to Using Empirically Supported Treatments Related to Organizational Culture and Climate?

    Science.gov (United States)

    Patterson Silver Wolf Adelv Unegv Waya, David A; Dulmus, Catherine N; Maguin, Eugene

    2013-01-01

    The overall purpose of this study is to investigate workers' openness towards implementing a new empirically supported treatment (EST) and whether the workers' openness scores relate to their workplace culture and climate scores. Participants in this study (N=1273) worked in a total of 55 different programs in a large child and family services organization and completed a survey measuring their attitudes toward ESTs. Results indicate that work groups that measure themselves as being more open to using ESTs rated their organizational cultures as being significantly more proficient and significantly less resistant to change. With ESTs becoming the gold standard for professional social work practices, it is important to have accessible pathways to EST implementation.

  2. Research on climate effects. Effects of climate changes. Proceedings

    International Nuclear Information System (INIS)

    Fischer, W.; Stein, G.

    1991-01-01

    Global changes affecting the earth are at the forefront of public interest, possibly caused by climate alterations amongst other things. The public expects appropriate measures from politics to successfully adapt to unavoidable climate changes. As well as an investigation into the causes of climatic changes and the corollaries between the different scientific phenomena, the effects on the economy and society must also be examined. The Federal Minister for Research and Technology aims to make a valuable German contribution to international Global Change Research with the focal point ''Effects of Climate Changes on the Ecological and Civil System''. The aim of the workshop was to give an outline of current scientific knowledge, sketch out research requirements and give recommendations on the focal point with regard to the BMFT. (orig.) [de

  3. The Opening of the Arctic-Atlantic Gateway: Tectonic, Oceanographic and Climatic Dynamics - an IODP Initiative

    Science.gov (United States)

    Geissler, Wolfram; Knies, Jochen

    2016-04-01

    The modern polar cryosphere reflects an extreme climate state with profound temperature gradients towards high-latitudes. It developed in association with stepwise Cenozoic cooling, beginning with ephemeral glaciations and the appearance of sea ice in the late middle Eocene. The polar ocean gateways played a pivotal role in changing the polar and global climate, along with declining greenhouse gas levels. The opening of the Drake Passage finalized the oceanographic isolation of Antarctica, some 40 Ma ago. The Arctic Ocean was an isolated basin until the early Miocene when rifting and subsequent sea-floor spreading started between Greenland and Svalbard, initiating the opening of the Fram Strait / Arctic-Atlantic Gateway (AAG). Although this gateway is known to be important in Earth's past and modern climate, little is known about its Cenozoic development. However, the opening history and AAG's consecutive widening and deepening must have had a strong impact on circulation and water mass exchange between the Arctic Ocean and the North Atlantic. To study the AAG's complete history, ocean drilling at two primary sites and one alternate site located between 73°N and 78°N in the Boreas Basin and along the East Greenland continental margin are proposed. These sites will provide unprecedented sedimentary records that will unveil (1) the history of shallow-water exchange between the Arctic Ocean and the North Atlantic, and (2) the development of the AAG to a deep-water connection and its influence on the global climate system. The specific overarching goals of our proposal are to study: (1) the influence of distinct tectonic events in the development of the AAG and the formation of deep water passage on the North Atlantic and Arctic paleoceanography, and (2) the role of the AAG in the climate transition from the Paleogene greenhouse to the Neogene icehouse for the long-term (~50 Ma) climate history of the northern North Atlantic. Getting a continuous record of the

  4. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  5. Explaining topic prevalence in answers to open-ended survey questions about climate change

    Science.gov (United States)

    Tvinnereim, Endre; Fløttum, Kjersti

    2015-08-01

    Citizens’ opinions are crucial for action on climate change, but are, owing to the complexity of the issue, diverse and potentially unformed. We contribute to the understanding of public views on climate change and to knowledge needed by decision-makers by using a new approach to analyse answers to the open survey question `what comes to mind when you hear the words `climate change’?’. We apply automated text analysis, specifically structural topic modelling, which induces distinct topics based on the relative frequencies of the words used in 2,115 responses. From these data, originating from the new, nationally representative Norwegian Citizen Panel, four distinct topics emerge: Weather/Ice, Future/Impact, Money/Consumption and Attribution. We find that Norwegians emphasize societal aspects of climate change more than do respondents in previous US and UK studies. Furthermore, variables that explain variation in closed questions, such as gender and education, yield different and surprising results when employed to explain variation in what respondents emphasize. Finally, the sharp distinction between scepticism and acceptance of conventional climate science, often seen in previous studies, blurs in many textual responses as scepticism frequently turns into ambivalence.

  6. Greenhouse effect and climate; Effet de serre et climat

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, J

    2008-04-15

    In the framework of the climatic change, the author aims to explain the phenomena of greenhouse effect. He details the historical aspects of the scientific knowledge in the domain, the gases produced, some characteristic of the greenhouse effect, the other actors which contribute to the climate, the climate simulation, the different factors of climate change since 1750 and the signs of the global heating. (A.L.B.)

  7. Potential risk levels of invasive Neoleucinodes elegantalis (small tomato borer) in areas optimal for open-field Solanum lycopersicum (tomato) cultivation in the present and under predicted climate change.

    Science.gov (United States)

    da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; Picanço, Marcelo Coutinho

    2017-03-01

    Neoleucinodes elegantalis is one of the major insect pests of Solanum lycopersicum. Currently, N. elegantalis is present only in America and the Caribbean, and is a threat in the world's largest S. lycopersicum-producing countries. In terms of potential impact on agriculture, the impact of climate change on insect invasions must be a concern. At present, no research exists regarding the effects of climatic change on the risk level of N. elegantalis. The purpose of this study was to develop a model for S. lycopersicum and N. elegantalis, utilizing CLIMEX to determine risk levels of N. elegantalis in open-field S. lycopersicum cultivation in the present and under projected climate change, using the global climate model CSIRO-Mk3.0. Large areas are projected to be suitable for N. elegantalis and optimal for open-field S. lycopersicum cultivation at the present time. However, in the future these areas will become unsuitable for both species. Conversely, other regions in the future may become optimal for open-field S. lycopersicum cultivation, with a varying risk level for N. elegantalis. The risk level results presented here provide a useful tool to design strategies to prevent the introduction and establishment of N. elegantalis in open-field S. lycopersicum cultivation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Climate Effects on Health

    Science.gov (United States)

    ... Guidance and Trainings Webinars Data and Tools Publications Climate Effects on Health Recommend on Facebook Tweet Share ... effects has been excerpted from the Third National Climate Assessment’s Health Chapter . Additional information regarding the health ...

  9. The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations

    Science.gov (United States)

    Strassmann, Kuno M.; Joos, Fortunat

    2018-05-01

    The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  10. NCPP's Use of Standard Metadata to Promote Open and Transparent Climate Modeling

    Science.gov (United States)

    Treshansky, A.; Barsugli, J. J.; Guentchev, G.; Rood, R. B.; DeLuca, C.

    2012-12-01

    The National Climate Predictions and Projections (NCPP) Platform is developing comprehensive regional and local information about the evolving climate to inform decision making and adaptation planning. This includes both creating and providing tools to create metadata about the models and processes used to create its derived data products. NCPP is using the Common Information Model (CIM), an ontology developed by a broad set of international partners in climate research, as its metadata language. This use of a standard ensures interoperability within the climate community as well as permitting access to the ecosystem of tools and services emerging alongside the CIM. The CIM itself is divided into a general-purpose (UML & XML) schema which structures metadata documents, and a project or community-specific (XML) Controlled Vocabulary (CV) which constraints the content of metadata documents. NCPP has already modified the CIM Schema to accommodate downscaling models, simulations, and experiments. NCPP is currently developing a CV for use by the downscaling community. Incorporating downscaling into the CIM will lead to several benefits: easy access to the existing CIM Documents describing CMIP5 models and simulations that are being downscaled, access to software tools that have been developed in order to search, manipulate, and visualize CIM metadata, and coordination with national and international efforts such as ES-DOC that are working to make climate model descriptions and datasets interoperable. Providing detailed metadata descriptions which include the full provenance of derived data products will contribute to making that data (and, the models and processes which generated that data) more open and transparent to the user community.

  11. Potential climatic effects of anthropogenic aerosols

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1993-01-01

    Aerosols act as part of the climate system through their influence on solar and terrestrial radiation. The effect of anthropogenic aerosols on the reduction of visibility is explored in this chapter. Elemental carbon has been identified as the most effective visibility-reducing species. Most of the visibility reduction is due to particles with diameter smaller than 2.5 μm. Studies indicate that sulfate is also a very important aerosol species that results in low visibility and high turbidity. Radiative properties such as aerosol single-scattering albedo values and absorption-to-backscatter ratios purported to produce warming or cooling effects of aerosols are discussed. It is concluded that aerosol clouds have a tendency to cool when they are over a low-albedo surface and have a tendency to warm when they are over high-albedo surfaces such as snow. Anthropogenic aerosols have a tendency to warm the earth's atmospheric system, based on calculations and assumed aerosol optical properties. However, this effect is somewhat offset by the absorption and re-emission into space of infrared terrestrial radiation. The net effect depends on the ratio of the absorption coefficients in the visible and infrared and also on the surface albedo. The effects on infrared radiation are documented for two anthropogenic aerosol sources in the United States, the Denver metropolitan area and power plant plumes in New Mexico, through calculations and measurements. Measured cooling rates within an aerosol plume are not sufficient to offset the warming rate due to absorption of short-wave radiation. Research indicates that anthropogenic aerosols can possibly cause local-scale warming of the atmosphere, but global-scale climatic effects remain an open question

  12. An Investigation of Secondary Students' Mental Models of Climate Change and the Greenhouse Effect

    Science.gov (United States)

    Varela, Begoña; Sesto, Vanessa; García-Rodeja, Isabel

    2018-03-01

    There are several studies dealing with students' conceptions on climate change, but most of them refer to understanding before instruction. In contrast, this study investigates students' conceptions and describes the levels of sophistication of their mental models on climate change and the greenhouse effect. The participants were 40 secondary students (grade 7) in Spain. As a method of data collection, a questionnaire was designed with open-ended questions focusing on the mechanism, causes, and actions that could be useful in reducing climate change. Students completed the same questionnaire before and after instruction. The students' conceptions and mental models were identified by an inductive and iterative analysis of the participants' explanations. With regard to the students' conceptions, the results show that they usually link climate change to an increase in temperature, and they tend to mention, even after instruction, generic actions to mitigate climate change, such as not polluting. With regard to the students' mental models, the results show an evolution of models with little consistency and coherence, such as the models on level 1, towards higher levels of sophistication. The paper concludes with educational implications proposed for solving learning difficulties regarding the greenhouse effect and climate change.

  13. High School Teachers' Openness to Adopting New Practices: The Role of Personal Resources and Organizational Climate.

    Science.gov (United States)

    Johnson, Stacy R; Pas, Elise T; Loh, Deanna; Debnam, Katrina J; Bradshaw, Catherine P

    2017-03-01

    Although evidence-based practices for students' social, emotional, and behavioral health are readily available, their adoption and quality implementation in schools are of increasing concern. Teachers are vital to implementation; yet, there is limited research on teachers' openness to adopting new practices, which may be essential to successful program adoption and implementation. The current study explored how perceptions of principal support, teacher affiliation, teacher efficacy, and burnout relate to teachers' openness to new practices. Data came from 2,133 teachers across 51 high schools. Structural equation modeling assessed how organizational climate (i.e., principal support and teacher affiliation) related to teachers' openness directly and indirectly via teacher resources (i.e., efficacy and burnout). Teachers with more favorable perceptions of both principal support and teacher affiliation reported greater efficacy, and, in turn, more openness; however, burnout was not significantly associated with openness. Post hoc analyses indicated that among teachers with high levels of burnout, only principal support related to greater efficacy, and in turn, higher openness. Implications for promoting teachers' openness to new program adoption are discussed.

  14. The Bern Simple Climate Model (BernSCM v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle–climate simulations

    Directory of Open Access Journals (Sweden)

    K. M. Strassmann

    2018-05-01

    Full Text Available The Bern Simple Climate Model (BernSCM is a free open-source re-implementation of a reduced-form carbon cycle–climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs. The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate–carbon cycle response simulated by more complex and detailed models. Model code (in Fortran was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle–climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs, for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  15. Effective Use of Social Media in Communicating Climate Science

    Science.gov (United States)

    Sinclair, P. W.

    2012-12-01

    The internet and social media have been a critical vector for misinformation on climate change. Scientists have not always been proactive or effective in utilizing the medium to bring attention to the best science, to correct misinformation and overcome urban myths. Similarly, mainstream journalists have been handicapped in dealing with the wide open nature of the medium, and often muted by editorial concerns or budget restrictions. Independent communicators who are highly motivated can make inroads in this area by using the internet's immediacy and connectivity to consistently connect viewers and readers to reliable information. Over the last 4 years, I have developed a series of you tube videos, made deliberately provocative to engage the internet's confrontational culture, but carefully crafted to bring the best science into the freewheeling community. In doing so, I have won the confidence of leading climate scientists, and in some cases assisted them in clarifying their message. This presentation will share simple tips, useful practices, and effective strategies for making complex material more clear and user friendly, and help scientists better convey the stories hidden in their data.

  16. Opening up the societal debate on climate engineering; How newspaper frames are changing

    NARCIS (Netherlands)

    Scholte, S.; Vasileiadou, E.; Petersen, A.C.

    2013-01-01

    The use of climate engineering or geoengineering technologies to combat climate change has been a controversial topic, even in the scientific debate. In recent studies, it has been claimed that the debate on climate engineering technologies may be closing down prematurely, with detrimental effects

  17. Opening up the societal debate on climate engineering: How newspaper frames are changing

    NARCIS (Netherlands)

    Scholte, S.; Vasileiadou, E.; Petersen, A.C.

    2013-01-01

    The use of climate engineering or geoengineering technologies to combat climate change has been a controversial topic, even in the scientific debate. In recent studies, it has been claimed that the debate on climate engineering technologies may be closing down prematurely, with detrimental effects

  18. Talking About Climate: a simple tool for everyday climate conversations

    Science.gov (United States)

    Twedt, J. R.; White, R. H.; Tigchelaar, M.; Doroschak, K.; Buchanan, R.; Lundquist, D.

    2017-12-01

    Public opinion research from the Yale Climate Opinion Maps shows that more than half of Americans are worried about climate change, yet over 70% of Americans rarely or never discuss it with friends or family. Sociologist Kari Marie Norgaard has written about climate denial and how the subject of climate change kills conversation in her interviews, even among people who feel concerned. At the same time, news reporting on climate is often dense with information or scientific nuance and fails to make people feel personally invested in this global issue. This is problematic, because a fair and civil response to our climate crisis will require not only the personal commitment of many, but also collaborative public discourse. For these reasons, we have developed an app that aims to foster meaningful conversation about climate change. The app draws on a database we constructed of historic climate events and relates these events to people's own lives and experiences. Our database is broad and growing, and includes climate change facts, landmark cases in environmental law, social achievements such as the IPCC earning the Nobel Peace Prize, and the personal account from a 12-year old's blog post about FEMA relocation after Hurricane Katrina. Events are stated in plain language and accompanied by open-ended questions to spark discussion. The goal of ClimateConversations is not to inform or persuade, but to support reflective, open-ended conversation, to encourage personal storytelling about climate-related events, and to foster generative dialogue on an issue that all too often causes discomfort and social division. Here we present the climate science, social science, software, and design considerations that went into developing this app. We will also present early quantitative and qualitative metrics of it's use and effectiveness both in classroom and community settings.

  19. Rural perception to the effects of climate change in Otukpo, Nigeria

    OpenAIRE

    Roland Clement Abah

    2014-01-01

    The study has further examined rural perception to the effects of climate change. The study used rural settlements in Otukpo, Nigeria as a case study. Primary and secondary data were utilised for the study. Data collection was done through the use of a questionnaire with open-ended questions and questions with multiple answers. A total of 100 questionnaires were randomly distributed among household heads in 10 settlements selected from 58 rural settlements for the study. Spatial distribution ...

  20. The Data Platform for Climate Research and Action: Introducing Climate Watch

    Science.gov (United States)

    Hennig, R. J.; Ge, M.; Friedrich, J.; Lebling, K.; Carlock, G.; Arcipowska, A.; Mangan, E.; Biru, H.; Tankou, A.; Chaudhury, M.

    2017-12-01

    The Paris Agreement, adopted through Decision 1/CP.21, brings all nations together to take on ambitious efforts to combat climate change. Open access to climate data supporting climate research, advancing knowledge, and informing decision making is key to encourage and strengthen efforts of stakeholders at all levels to address and respond to effects of climate change. Climate Watch is a robust online data platform developed in response to the urgent needs of knowledge and tools to empower climate research and action, including those of researchers, policy makers, the private sector, civil society, and all other non-state actors. Building on the rapid growing technology of open data and information sharing, Climate Watch is equipped with extensive amount of climate data, informative visualizations, concise yet efficient user interface, and connection to resources users need to gather insightful information on national and global progress towards delivering on the objective of the Convention and the Paris Agreement. Climate Watch brings together hundreds of quantitative and qualitative indicators for easy explore, visualize, compare, download at global, national, and sectoral levels: Greenhouse gas (GHG) emissions for more than 190 countries over the1850-2014 time period, covering all seven Kyoto Gases following IPCC source/sink categories; Structured information on over 150 NDCs facilitating the clarity, understanding and transparency of countries' contributions to address climate change; Over 6500 identified linkages between climate actions in NDCs across the 169 targets of the sustainable development goals (SDG); Over 200 indicators describing low carbon pathways from models and scenarios by integrated assessment models (IAMs) and national sources; and Data on vulnerability and risk, policies, finance, and many more. Climate Watch platform is developed as part of the broader efforts within the World Resources Institute, the NDC Partnership, and in collaboration

  1. Sustained Large-Scale Collective Climate Action Supported by Effective Climate Change Education Practice

    Science.gov (United States)

    Niepold, F., III; Crim, H.; Fiorile, G.; Eldadah, S.

    2017-12-01

    Since 2012, the Climate and Energy Literacy community have realized that as cities, nations and the international community seek solutions to global climate change over the coming decades, a more comprehensive, interdisciplinary approach to climate literacy—one that includes economic and social considerations—will play a vital role in knowledgeable planning, decision-making, and governance. City, county and state leaders are now leading the American response to a changing climate by incubating social innovation to prevail in the face of unprecedented change. Cities are beginning to realize the importance of critical investments to support the policies and strategies that will foster the climate literacy necessary for citizens to understand the urgency of climate actions and to succeed in a resilient post-carbon economy and develop the related workforce. Over decade of federal and non-profit Climate Change Education effective methods have been developed that can support municipality's significant educational capabilities for the purpose of strengthening and scaling city, state, business, and education actions designed to sustain and effectively address this significant social change. Looking to foster the effective and innovative strategies that will enable their communities several networks have collaborated to identify recommendations for effective education and communication practices when working with different types of audiences. U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, the National Wildlife Federation, NOAA Climate Program Office, Tri-Agency Climate Change Education Collaborative and the Climate Literacy and Energy Awareness Network (CLEAN) are working to develop a new web portal that will highlight "effective" practices that includes the acquisition and use of climate change knowledge to inform decision-making. The purpose of the web portal is to transfer effective practice to support communities to be

  2. Can thermal perception in a building be predicted by the perceived spatial openness of a building in a hot and humid climate?

    NARCIS (Netherlands)

    Du, X.; Bokel, R.M.J.; van den Dobbelsteen, A.A.J.F.; Brotas, Luisa; Roaf, Susan; Nicol, Fergus

    2017-01-01

    The authors wanted to prove that there is a large correlation between the concepts spatial openness and comfort (visual, wind speed and thermal) perception in people’s minds in a hot and humid climate in summer in order to be able to use spatial configuration parameters such as openness,

  3. Advancing climate literacy in Idaho K-12 schools using STEM education approaches, open source electronics, and Maker culture as vehicles for teacher training

    Science.gov (United States)

    Flores, A. N.; Gelb, L.; Watson, K. A.; Steimke, A.; Chang, C.; Busche, C.; Breidenbach, J.

    2016-12-01

    A climate literate citizenry is essential to the long-term success of climate change adaptation and to enhancing resilience of communities to climate change impacts. In support of a National Science Foundation CAREER award, we developed a teacher training workshop on a project that engages students in creating functioning, low-cost weather stations using open source electronics. The workshop aims to improve climate literacy among K-12 students while providing an authentic opportunity to acquire and hone STEM skills. Each station measures temperature, humidity, barometric pressure, light level, soil moisture, and precipitation occurrence. Our day-long workshop focuses on three elements: (1) providing context on the scientific importance of climate observation, (2) equipping teachers with technical skills needed to assemble and use a station from provided components, and (3) highlighting relevant educational standards met by the weather station activities. The workshop was attended by twelve 4th-9th grade teachers from southwest Idaho, all of whom teach at rural and/or Title I schools. Attendees reported having minimal or no previous experience with open source electronics, but all were able to effectively use their weather station with less than two hours of hands-on training. In written and oral post-workshop reflections teachers expressed a strong desire to integrate these activities into classrooms, but also revealed barriers associated with rigid curricular constraints and risk-averse administrators. Continued evolution of the workshop will focus on: (1) extending the duration and exploratory depth of the workshop, (2) refining pre- and post-assessments and performing longitudinal monitoring of teacher participants to measure short- and long-term efficacy of the workshop, and (3) partnering with colleagues to engage school district administrators in dialog on how to integrate authentic activities like this one into K-12 curriculum.

  4. A roadmap to effective urban climate change adaptation

    Science.gov (United States)

    Setiadi, R.

    2018-03-01

    This paper outlines a roadmap to effective urban climate change adaptation built from our practical understanding of the evidence and effects of climate change and the preparation of climate change adaptation strategies and plans. This roadmap aims to drive research in achieving fruitful knowledge and solution-based achievable recommendations in adapting to climate change in urban areas with effective and systematic manner. This paper underscores the importance of the interplay between local government initiatives and a national government for effective adaptation to climate change and takes into account the policy process and politics. This paper argues that effective urban climate change adaptation has a contribution to build urban resilience and helps the achievement of national government goals and targets in climate change adaptation.

  5. Effects of Climate Change on Outdoor Skating in the Bei Hai Park of Beijing and Related Adaptive Strategies

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2017-06-01

    Full Text Available This paper reports findings derived from a study of the impacts of climate change on winter outdoor skating activities in the Chinese park of Bei Hai from 1989 to 2015. Based on field observation data and in-depth interviews, it was concluded that the outdoor skating activities, with a history of more than 1000 years, are being threatened by the warming climate. The opening dates and duration times of skating over the last 26 years showed periodic variations over three-year cycles. Increases of temperatures by 1 °C in December were associated with a 3.80-day delay in the skating-field opening dates and a 4.49-day decrease in the operation duration times. In particular, climate change has resulted in a loss of the skating field area and a reduction in the operation duration times, and tourists are moving north for skating-related recreation or conducting alternative activities. The current adaptive strategies are not very effective.

  6. [Effect of climate change on the fisheries conununity pattern in the overwintering ground of open waters of northern East China Sea].

    Science.gov (United States)

    Liu, Zun-lei; Yuan, Xing-wei; Yang, Lin-lin; Yan, Li-ping; Tian, Yong-jun; Chen, Jia-hua

    2015-03-01

    Data sets of 26 fisheries target species from the fishery-depen-dent and fishery-independent surveys in the overwintering ground of open waters of northern East China Sea (OW-NECS), combined sea surface temperature (SST), were used to examine the links between diversity index, pattern of common variability and climate changes based on the principal component analysis (PCA) and generalized additive model (GAM). The results showed that the shift from a cold regime to a warm regime was detected in SST during the 1970s-2011 with step changes around 1982/ 1983. SST increased during the cold regime and the warm regime before 1998 (warming trend period, 1972-1998), and decreased during the warm regime after 1998 (cooling trend period, 1999-2011). Shannon diversity index was largely dependent on the filefish, which contributed up to 50% of the total production as a single species, with low diversity in the waters of the OW-NECS, during the late 1980s and early 1990s. Excluding the filefish, the diversity index linearly increased and decreased during 1972-1998 and 1999-2011, respectively. The variation pattern generally corresponds with the trend in water temperature, strongly suggesting the effect of the SST on the diversity. The first two components (PC1 and PC2) of PCA for target species, which accounted for 32.43% of the total variance, showed evident decadal variation patterns with a step change during 1992-1999 and inter-annual variability with short-period fluctuation, respectively. It seems that PC1 was associated with large scale climatic change, while PC2 was related to inter-annual oceanographic variability such as ENSO events. Linear fitting results showed winEOF1 had significant effect on PC1, and GAM analysis for PC1 showed that winter EOF1 (winEOF1) and summer EOF2 (sumEOF2) can explain 88.9% of the total variance. Nonlinear effect was also found between PC2 and win EOF1, indicating that the fish community structure, which had predominantly decadal

  7. Utilizing Public Access Data and Open Source Statistical Programs to Teach Climate Science to Interdisciplinary Undergraduate Students

    Science.gov (United States)

    Collins, L.

    2014-12-01

    Students in the Environmental Studies major at the University of Southern California fulfill their curriculum requirements by taking a broad range of courses in the social and natural sciences. Climate change is often taught in 1-2 lectures in these courses with limited examination of this complex topic. Several upper division elective courses focus on the science, policy, and social impacts of climate change. In an upper division course focused on the scientific tools used to determine paleoclimate and predict future climate, I have developed a project where students download, manipulate, and analyze data from the National Climatic Data Center. Students are required to download 100 or more years of daily temperature records and use the statistical program R to analyze that data, calculating daily, monthly, and yearly temperature averages along with changes in the number of extreme hot or cold days (≥90˚F and ≤30˚F, respectively). In parallel, they examine population growth, city expansion, and changes in transportation looking for correlations between the social data and trends observed in the temperature data. Students examine trends over time to determine correlations to urban heat island effect. This project exposes students to "real" data, giving them the tools necessary to critically analyze scientific studies without being experts in the field. Utilizing the existing, public, online databases provides almost unlimited, free data. Open source statistical programs provide a cost-free platform for examining the data although some in-class time is required to help students navigate initial data importation and analysis. Results presented will highlight data compiled over three years of course projects.

  8. Ion climate and radon concentration

    International Nuclear Information System (INIS)

    Busbarna, L.

    1981-01-01

    Characteristic values of radon concentration in natural ion climate and in open air were compared and the effect of artificially produced negative ion excess on the radon concentration of air was studied. The results show that the radon concentration measurable at the rise of negative ion excess is smaller than that in the case of natural equilibrium. This effect can be utilized lowering the background of the scintillation chambers, thus increasing their sensitivity. The negative ions of the artificial ion climate lower radon concentration in closed space. The question arises whether only the ion climate is responsible for the effects on the organism and on the nervous system or the radon concentration of the air also contributes to them. (author)

  9. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    Science.gov (United States)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  10. Social climate in diverse university departments

    DEFF Research Database (Denmark)

    Lauring, Jakob; Selmer, Jan

    2011-01-01

    sharing engagement (sharing informal knowledge of a personal nature and the staff's application of each other's knowledge to task relevant problems) on diversity climate (openness to linguistic, visual, value and informational diversity) among university teachers. Sample: The study used questionnaire...... to diversity are known to be better integrated and to perform better. While the relation between a positive social climate and group functioning is well documented, we know much less about antecedents for such a climate. Purpose: The aim of this study is to examine the effect of internal learning and knowledge...... knowledge of a personal nature; and (2) their application of each other's knowledge to task relevant problems had strong positive associations with openness to linguistic, visible, value and informational diversity. We conclude that interaction and knowledge sharing among teachers in multicultural...

  11. Interaction between Cities and Climate Change: Modelling Urban Morphology and Local Urban Planning Scenarios from Open Datasets across European Cities

    Science.gov (United States)

    Thomas, Bart; Stevens, Catherine; Grommen, Mart

    2015-04-01

    Cities are characterised by a large spatiotemporal diversity of local climates induced by a superposition of various factors and processes interacting at global and regional scales but also at the micro level such as the urban heat island effect. As urban areas are known as 'hot spots' prone to climate and its variability over time leading to changes in the severity and occurrence of extreme events such as heat waves, it is of crucial importance to capture the spatial heterogeneity resulting from variations in land use land cover (LULC) and urban morphology in an effective way to drive local urban climate simulations. The first part of the study conducted in the framework of the NACLIM FP7 project funded by the European Commission focusses on the extraction of land surface parameters linked to urban morphology characteristics from detailed 3D city models and their relationship with openly accessible European datasets such as the degree of soil sealing and disaggregated population densities from the European Environment Agency (EEA) and the Joint Research Centre (JRC). While it has been demonstrated that good correlations can be found between those datasets and the planar and frontal area indices, the present work has expanded the research to other urban morphology parameters including the average and variation of the building height and the sky view factor. Correlations up to 80% have been achieved depending on the considered parameter and the specific urban area including the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Moreover, the transferability of the established relations has been investigated across the various cities. Secondly, a flexible and scalable approach as a function of the required the level of detail has been elaborated to update the various morphology parameters in case of integration with urban planning data to analyse the local impact of future land use scenarios

  12. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    Science.gov (United States)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  13. Effect of ethical leadership and climate on effectiveness

    Directory of Open Access Journals (Sweden)

    Amos S. Engelbrecht

    2017-01-01

    Full Text Available Orientation: The increasing prevalence of theft, sabotage and other deviant behaviours in the workplace has disastrous effects for organisations, such as lowered effectiveness, escalated costs and the organisation’s declining reputation. Research purpose: The purpose of the research was to design and investigate the relationships among perceived leader effectiveness, ethical climate and ethical leadership. A further objective of the investigation was to validate a conceptual model clarifying the structural associations among the latent constructs in the South African corporate domain. Motivation for the study: A successful leader is both an ethical and an effective leader. An organisation’s leadership is seen as the most critical element in establishing and maintaining an ethical climate in organisations. Research design, approach and method: A convenient and multi-cultural sample comprised of 224 employees from various organisations in South Africa. The structure and content of the variables were analysed through confirmatory factor analysis (CFA, beside item analysis. Main findings: Satisfactory reliability was found for all the measurement scales. The results of CFA demonstrated acceptable fit with the data for the refined measurement and structural models. The results of structural equation modelling (SEM indicated positive relationships among ethical leadership, ethical climate and leader effectiveness. Practical implications: Organisational leaders should take full responsibility for cultivating ethics through ethical leader behaviour and an ethical climate. By reinforcing these aspects, perceived leader effectiveness can be advanced, which will ultimately decrease corruption and other forms of counterproductive behaviour in South African organisations. Contribution: The study provides further theoretical and empirical evidence that leadership effectiveness can be realised through instilling an ethical organisational climate in which

  14. The Greenhouse Effect and Climate Feedbacks

    Science.gov (United States)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  15. Change Orientations: The Effects of Organizational Climate on Principal, Teacher, and Community Transformation

    Science.gov (United States)

    Smith, Page A.; Maika, Sean A.

    2008-01-01

    This research investigates the openness that teachers and principals have to change--specifically, the openness of the faculty to community pressure for change. Three dimensions of change are examined (teacher, principal, and community), as well as four aspects of organizational climate (institutional vulnerability, collegial leadership,…

  16. Climate consoles: Pieces in the puzzle of climate change adaptation

    Directory of Open Access Journals (Sweden)

    Dominique Bachelet

    2017-12-01

    Full Text Available Conservation Biology Institute (CBI has been developing web applications to centralize and serve credible and usable information that allows natural resource managers, as well as the general public, to better understand the challenges posed by on-going environmental change. In particular CBI has designed a series of climate consoles that provide natural resource managers the most recent 5th Climate Model Intercomparison Program (CMIP5 climate projections, landscape intactness, and soil sensitivity for a series of reporting units over the western United States. The publically available web sites were refined based on feedback from a variety of users. In this paper, we describe each of the tools developed as open-source applications and provide details of their infrastructure in the hope they can be used and possibly modified by a wider audience. They were designed to be used as stepping-stones towards planning effective climate change adaptation strategies.

  17. Climatically-mediated landcover change: impacts on Brazilian territory

    Directory of Open Access Journals (Sweden)

    MARINA ZANIN

    Full Text Available ABSTRACT In the face of climate change threats, governments are drawing attention to policies for mitigating its effects on biodiversity. However, the lack of distribution data makes predictions at species level a difficult task, mainly in regions of higher biodiversity. To overcome this problem, we use native landcover as a surrogate biodiversity, because it can represent specialized habitat for species, and investigate the effects of future climate change on Brazilian biomes. We characterize the climatic niches of native landcover and use ecological niche modeling to predict the potential distribution under current and future climate scenarios. Our results highlight expansion of the distribution of open vegetation and the contraction of closed forests. Drier Brazilian biomes, like Caatinga and Cerrado, are predicted to expand their distributions, being the most resistant to climate change impacts. However, these would also be affected by losses of their closed forest enclaves and their habitat-specific or endemic species. Replacement by open vegetation and overall reductions are a considerable risk for closed forest, threatening Amazon and Atlantic forest biomes. Here, we evidence the impacts of climate change on Brazilian biomes, and draw attention to the necessity for management and attenuation plans to guarantee the future of Brazilian biodiversity.

  18. Climatically-mediated landcover change: impacts on Brazilian territory.

    Science.gov (United States)

    Zanin, Marina; Tessarolo, Geiziane; Machado, Nathália; Albernaz, Ana Luisa M

    2017-01-01

    In the face of climate change threats, governments are drawing attention to policies for mitigating its effects on biodiversity. However, the lack of distribution data makes predictions at species level a difficult task, mainly in regions of higher biodiversity. To overcome this problem, we use native landcover as a surrogate biodiversity, because it can represent specialized habitat for species, and investigate the effects of future climate change on Brazilian biomes. We characterize the climatic niches of native landcover and use ecological niche modeling to predict the potential distribution under current and future climate scenarios. Our results highlight expansion of the distribution of open vegetation and the contraction of closed forests. Drier Brazilian biomes, like Caatinga and Cerrado, are predicted to expand their distributions, being the most resistant to climate change impacts. However, these would also be affected by losses of their closed forest enclaves and their habitat-specific or endemic species. Replacement by open vegetation and overall reductions are a considerable risk for closed forest, threatening Amazon and Atlantic forest biomes. Here, we evidence the impacts of climate change on Brazilian biomes, and draw attention to the necessity for management and attenuation plans to guarantee the future of Brazilian biodiversity.

  19. Minimizing the cost of keeping options open for conservation in a changing climate.

    Science.gov (United States)

    Mills, Morena; Nicol, Sam; Wells, Jessie A; Lahoz-Monfort, José J; Wintle, Brendan; Bode, Michael; Wardrop, Martin; Walshe, Terry; Probert, William J M; Runge, Michael C; Possingham, Hugh P; Madden, Eve McDonald

    2014-06-01

    Policy documents advocate that managers should keep their options open while planning to protect coastal ecosystems from climate-change impacts. However, the actual costs and benefits of maintaining flexibility remain largely unexplored, and alternative approaches for decision making under uncertainty may lead to better joint outcomes for conservation and other societal goals. For example, keeping options open for coastal ecosystems incurs opportunity costs for developers. We devised a decision framework that integrates these costs and benefits with probabilistic forecasts for the extent of sea-level rise to find a balance between coastal ecosystem protection and moderate coastal development. Here, we suggest that instead of keeping their options open managers should incorporate uncertain sea-level rise predictions into a decision-making framework that evaluates the benefits and costs of conservation and development. In our example, based on plausible scenarios for sea-level rise and assuming a risk-neutral decision maker, we found that substantial development could be accommodated with negligible loss of environmental assets. Characterization of the Pareto efficiency of conservation and development outcomes provides valuable insight into the intensity of trade-offs between development and conservation. However, additional work is required to improve understanding of the consequences of alternative spatial plans and the value judgments and risk preferences of decision makers and stakeholders. © 2014 Society for Conservation Biology.

  20. Assessing the effectiveness of climate adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-10-15

    As governments and other agencies spend more money on adaptation to climate change they want to know that their investments are effective — that adaptation will keep development on track, that there is a fair distribution of costs and benefits, and that climate resilience is being built. But monitoring and evaluating adaptation policy and practice is not easy. Some approaches are unhelpful because they fail to integrate adaptation and development, use purely quantitative methods and do not include the perspectives of climate-vulnerable groups in their assessments. Enabling countries and organisations to effectively evaluate adaptation requires an inclusive approach built on sharing knowledge among all stakeholders — one that can capture behavioural and institutional changes and that answers to the needs of the climate-vulnerable poor.

  1. Revisiting climate changes. Isotope studies open scientific windows to the past

    International Nuclear Information System (INIS)

    Gibson, John; Aggarwal, Pradeep

    2001-01-01

    present climate; Isotopes are being used to study the past climate from groundwater aquifers in Europe, Asia, Australia, Africa, and the Americas. Isotope-based research plays an important role in understanding past climate change. It is this understanding of past changes that holds the key to predicting future changes. These changes may not only influence global temperatures, but also energy needs, availability of drinking water, and adequate food supplies. In this sense, isotopes are invaluable tools that help scientists look 'back to the future' to develop options for minimizing adverse effects of the world's dynamic and changing climate

  2. Greenhouse effect and climatic consequences: a scientific evaluation

    International Nuclear Information System (INIS)

    1991-01-01

    The greenhouse effect and its causes and mechanisms are first recalled; anthropogenic contribution (CO2, CFC, ...) is evaluated and related to the biosphere temperature variation, without neglecting natural climatic variations. Based on climate models and energy scenarios, anthropogenic contribution effects on climatic variation, sea-level rise, etc. are evaluated and compared. Recommendations for improving precision of climate models are proposed [fr

  3. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  4. Creating Democratic Class Rooms in Asian Contexts: The Influences of Individual and School Level Factors on Open Classroom Climate

    Science.gov (United States)

    Kuang, Xiaoxue; Kennedy, Kerry J.; Mok, Magdalena Mo Ching

    2018-01-01

    Purpose: Literature indicates that open classroom climate (OCC) is a positive influence on civic outcomes. Few studies have explored factors that appear to facilitate OCC. Most research on OCC has focused on Western countries. The emphasis has been on individual student characteristics related to OCC with little attention made to school level…

  5. Regional greenhouse climate effects

    International Nuclear Information System (INIS)

    Hansen, J.; Rind, D.; Delgenio, A.; Lacis, A.; Lebedeff, S.; Prather, M.; Ruedy, R.; Karl, T.

    1990-01-01

    The authors discuss the impact of an increasing greenhouse effect on three aspects of regional climate: droughts, storms and temperature. A continuous of current growth rates of greenhouse gases causes an increase in the frequency and severity of droughts in their climate model simulations, with the greatest impacts in broad regions of the subtropics and middle latitudes. But the greenhouse effect enhances both ends of the hydrologic cycle in the model, that is, there is an increased frequency of extreme wet situations, as well as increased drought. Model results are shown to imply that increased greenhouse warming will lead to more intense thunderstorms, that is, deeper thunderstorms with greater rainfall. Emanual has shown that the model results also imply that the greenhouse warming leads to more destructive tropical cyclones. The authors present updated records of observed temperatures and show that the observations and model results, averaged over the globe and over the US, are generally consistent. The impacts of simulated climate changes on droughts, storms and temperature provide no evidence that there will be regional winners if greenhouse gases continue to increase rapidly

  6. The traffic climate in China: The mediating effect of traffic safety climate between personality and dangerous driving behavior.

    Science.gov (United States)

    Zhang, Qian; Ge, Yan; Qu, Weina; Zhang, Kan; Sun, Xianghong

    2018-04-01

    Traffic safety climate is defined as road users' attitudes and perceptions of traffic in a specific context at a given point in time. The current study aimed to validate the Chinese version of the Traffic Climate Scale (TCS) and to explore its relation to drivers' personality and dangerous driving behavior. A sample of 413 drivers completed the Big Five Inventory (BFI), the Chinese version of the TCS, the Dula Dangerous Driving Index (DDDI) and a demographic questionnaire. Exploratory factor analysis and confirmatory factor analysis were performed to confirm a three-factor (external affective demands, internal requirements and functionality) solution of the TCS. The reliability and validity of the Chinese version of TCS were verified. More importantly, the results showed that the effect of personality on dangerous driving behavior was mediated by traffic climate. Specifically, the functionality of the TCS mediated the effect of neuroticism on negative cognitive/emotional driving and drunk driving, while openness had an indirect impact on aggressive driving, risky driving and drunk driving based on the internal requirements of the TCS. Additionally, agreeableness had a negative direct impact on four factors of the DDDI, while neuroticism had a positive direct impact on negative cognitive/emotional driving, drunk driving and risky driving. In conclusion, the Chinese version of the TCS will be useful to evaluate drivers' attitudes towards and perceptions of the requirements of traffic environment in which they participate and will also be valuable for comparing traffic cultures and environments in different countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. SCHOOL CLIMATE AND TEACHERS’ PERCEPTIONS ON CLIMATE FACTORS:

    Directory of Open Access Journals (Sweden)

    İlhan GÜNBAYI

    2006-12-01

    Full Text Available This study examined the difference in the levels of the variables related to the schoolclimate factors among the teachers teaching social science courses, the teachers teaching natural science courses,and the teachers teaching art, music and physical education. The data collected from a sample of 204 teachersfrom 9 urban schools serving general high school education in the centre of Afyon and Usak cities in Turkey bymeans of the questionnaire developed by the researcher in the academic year of 2001-2002. The questionnaireasked the participants to report the perceived school climate levels of the variables related to the organizationalclimate factors - organizational clarity and standards, team commitment, autonomy, intimacy and support,member conflict, rewards, and risk - on the open-to-closed continuum. The data collected were analyzed by t-testfor Equality of Means and Analysis of Variance and Tukey post hoc tests. As a result of the analyzes, all theteachers reported open climate in relation to the factors of team commitment, organizational clarity andstandards, intimacy and support , autonomy, member conflict, medium climate in relation to the factors of riskand in reward. Additionally, the teachers teaching art, music and physical education reported higher open schoolclimate than others, man than women, single teachers than married ones, the teachers with more degree ofeducation than the ones with a lower degree of education, older teachers than younger ones, and the teacherswith less seniority than the ones with more seniority. Finally, some ideas were suggested about what should bedone in helping teachers to work in a more desirable open school climate

  8. Effects of climate variability and climate change on crop production in southern Mali

    NARCIS (Netherlands)

    Traore, B.; Corbeels, M.; Wijk, van M.T.; Rufino, M.C.; Giller, K.E.

    2013-01-01

    In West Africa predictions of future changes in climate and especially rainfall are highly uncertain, and up to now no long-term analyses are available of the effects of climate on crop production. This study analyses long-term trends in climate variability at N'Tarla and Sikasso in southern Mali

  9. General review on climate change problems: causes, potential effects

    International Nuclear Information System (INIS)

    Martellet, J.

    1991-01-01

    Greenhouse gases and greenhouse effect principles are reviewed and climate changes due to the human activities are discussed: identification of gases, human or natural causes, composition evolution in the atmosphere and relative roles of greenhouse gases. The various tools and calculations methods for evaluating the climate change due to greenhouse effect are presented. Several problems are stated: evolution of the climate structure in 2030, variations of the climatic extremes and the extreme phenomena, augmentation or diminution of the storms on a warmed planet, long term evolution of the climate. Some consequences of a climate change are reviewed: sea level raising, climate change effects on ecosystems. Precision and validity of these predictions are discussed; recommendations for diminishing the uncertainties are proposed

  10. Greenhouse effect and climate

    International Nuclear Information System (INIS)

    Flohn, H.

    1987-01-01

    Model calculations with different marginal conditions and different physical processes do, on the basis of realistic assumptions, result in a temperature rise of 3 ± 1.5degC at doubling carbon dioxide concentrations. Temperatures are increasing even more due to the presence of trace gases contributing to the greenhouse effect. They are assumed to be having a share of 100% in the carbon dioxide effect (additive) in 30-40 years from now. According to the model calculations the CO 2 increase from about 280 ppm around 1850 to 345 ppm (1985) is equal to a globally averaged temperature rise of 0.5-0.7degC. As the data obtained before 1900 were incomplete and little representative climatic analyses cannot be considered to have been effective but after that time. However, considering the additional influence of other climatic effects such as vulcanism the temperature rise satisfactorily corresponds to the values obtained since 1900. (orig./HP) [de

  11. Physical Characters of Trees And Their Effects on Micro-Climate (Case Study at Urban Forest and Green Open Space at Semarang City

    Directory of Open Access Journals (Sweden)

    Endes N Dahlan

    2016-08-01

    Full Text Available Air temperature in cities are increasing which can cause reduce the human comfort and productivity. Urban forest can make the environment comfortable. The objectiveof the researc hwere: (1. To Determine the effects of urban forest on air temperature and relative humidity, (2. To analyze the effects of physical characters of trees ont he micro-climate amelioration and(3. To Determine species of trees which are very effective for micro-climate amelioration.The results of the research revealed that the average of daily air temperature in the urban forest was 30.2 C with arelative humidityof 74.0%, while the daily air temperature around the urban forest was 31.8 Karakter Fisik Pohon ... (Dahlan E o C with relative humidityof 71.1%. Tree composisitin of all study sites consist of192trees, 29 speciesand 13families. The TinjomoyoForest Tourism has the highest density of trees(406trees/ha, while the lowest in the Parks Minister Supeno (316trees/ha. Value of Key Performance Indicator (KPI of trees based on calculation of tall of trees, diameter of canopies, total leaves area and canopy forms noticed that very effective trees for micro-climate amelioration were: Angsana(Pterocarpus indicus, beringin(Ficus benjamina, flamboyan(Delonix regia , ketapang(Terminalia catappa, mahoni (Swietenia mahogany, andtrembesi (Albizia saman.

  12. Assessing NARCCAP climate model effects using spatial confidence regions

    Directory of Open Access Journals (Sweden)

    J. P. French

    2017-07-01

    Full Text Available We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.

  13. Effects of climate changes in Norway

    International Nuclear Information System (INIS)

    Sygna, Linda; O'Brien, Karen

    2001-02-01

    This report presents the conclusions of a seminar on ''Effects of climate changes'' held in Norway in Oct. 2000. Too little is known about how climatic changes affect nature and society. This type of research is not well supported economically and there has been a lack of coordinated and long-term funds. This may change, however, as the development of strategies to meet climatic changes in the future requires a unified understanding of their impacts

  14. Creating Effective Dialogue Around Climate Change

    Science.gov (United States)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  15. Effect of greenhouse micro-climate on the selected summer vegetables

    International Nuclear Information System (INIS)

    Sethi, V.P.; Lal, T.; Gupta, Y.P.; Hans, V.S.

    2003-01-01

    The study deals with creating suitable environment for the germination and subsequent growth of plants in the greenhouse of size 7 m x 3 m x 2 m for raising early summer vegetable nursery. It was observed that the average air temperature inside the greenhouse was 10–12°C higher than the ambient air temperature. Inside average soil temperature was also 5–7°C higher than the corresponding temperature outside the greenhouse. Greenhouse night micro-climate was modified by covering its roof with a polyester sheet to cut down the effect of night sky radiation thereby raising the inside minimum temperature. The effect of elevated temperature was monitored on the germination and subsequent growth of “muskmelon” seedlings up to two true leaf stage. It was observed that the germination of seeds, sown inside the greenhouse occurred one week earlier as compared to the seeds sown in the open field. The rate of growth of the seedlings inside the greenhouse took only three weeks to attain two-leaf stage, whereas seedlings sown in the open field took five weeks to reach up to two-leaf stage. Thus, there was a clear saving of 15 days in raising the nursery under the greenhouse. (author)

  16. NASA's Climate in a Box: Desktop Supercomputing for Open Scientific Model Development

    Science.gov (United States)

    Wojcik, G. S.; Seablom, M. S.; Lee, T. J.; McConaughy, G. R.; Syed, R.; Oloso, A.; Kemp, E. M.; Greenseid, J.; Smith, R.

    2009-12-01

    NASA's High Performance Computing Portfolio in cooperation with its Modeling, Analysis, and Prediction program intends to make its climate and earth science models more accessible to a larger community. A key goal of this effort is to open the model development and validation process to the scientific community at large such that a natural selection process is enabled and results in a more efficient scientific process. One obstacle to others using NASA models is the complexity of the models and the difficulty in learning how to use them. This situation applies not only to scientists who regularly use these models but also non-typical users who may want to use the models such as scientists from different domains, policy makers, and teachers. Another obstacle to the use of these models is that access to high performance computing (HPC) accounts, from which the models are implemented, can be restrictive with long wait times in job queues and delays caused by an arduous process of obtaining an account, especially for foreign nationals. This project explores the utility of using desktop supercomputers in providing a complete ready-to-use toolkit of climate research products to investigators and on demand access to an HPC system. One objective of this work is to pre-package NASA and NOAA models so that new users will not have to spend significant time porting the models. In addition, the prepackaged toolkit will include tools, such as workflow, visualization, social networking web sites, and analysis tools, to assist users in running the models and analyzing the data. The system architecture to be developed will allow for automatic code updates for each user and an effective means with which to deal with data that are generated. We plan to investigate several desktop systems, but our work to date has focused on a Cray CX1. Currently, we are investigating the potential capabilities of several non-traditional development environments. While most NASA and NOAA models are

  17. Climate Change Effects on Respiratory Health: Implications for Nursing.

    Science.gov (United States)

    George, Maureen; Bruzzese, Jean-Marie; Matura, Lea Ann

    2017-11-01

    Greenhouse gases are driving climate change. This article explores the adverse health effects of climate change on a particularly vulnerable population: children and adults with respiratory conditions. This review provides a general overview of the effects of increasing temperatures, extreme weather, desertification, and flooding on asthma, chronic obstructive lung disease, and respiratory infections. We offer suggestions for future research to better understand climate change hazards, policies to support prevention and mitigation efforts targeting climate change, and clinical actions to reduce individual risk. Climate change produces a number of changes to the natural and built environments that may potentially increase respiratory disease prevalence, morbidity, and mortality. Nurses might consider focusing their research efforts on reducing the effects of greenhouse gases and in directing policy to mitigate the harmful effects of climate change. Nurses can also continue to direct educational and clinical actions to reduce risks for all populations, but most importantly, for our most vulnerable groups. While advancements have been made in understanding the impact of climate change on respiratory health, nurses can play an important role in reducing the deleterious effects of climate change. This will require a multipronged approach of research, policy, and clinical action. © 2017 Sigma Theta Tau International.

  18. The effect of climate change on urban drainage

    DEFF Research Database (Denmark)

    Grum, M.; Jørgensen, A.T.; Johansen, R.M.

    2006-01-01

    and consequences of climate change on urban drainage and urban runoff pollution issues. This study uses predictions from a regional climate model to look at the effects of climate change on extreme precipitation events. Results are presented in terms of point rainfall extremes. The analysis involves three steps......That we are in a period of extraordinary rates of climate change is today evident. These climate changes are likely to impact local weather conditions with direct impacts on precipitation patterns and urban drainage. In recent years several studies have focused on revealing the nature, extent...... to urban drainage. However, in spite of these uncertainties, and others raised in the discussion, the tendency is clear: extreme precipitation events effecting urban drainage and causing flooding will become more frequent as a result of climate change....

  19. Health Effects of Climate Change (Environmental Health Student Portal)

    Science.gov (United States)

    ... change can affect your health. Read About It Climate Change and Human Health (Public Broadcasting Services (including their teacher resources)) - Web ... Health Sciences) - Overview of the potential effects of climate change on human health. Climate and Health Program: Health Effects (Centers for ...

  20. Climate and greenhouse effect gas: glaciated archives data

    International Nuclear Information System (INIS)

    Lorius, C.

    1991-01-01

    Ice caps in Antarctica or Greenland have recorded the anthropogenic effect on atmospheric composition and especially on greenhouse effect gases such as carbon dioxide and methane. 2000 meter depth drilling samples allowed to study the climates for 150 000 years ago; hot and cold climates are ruled by periodic movement of the Earth around the sun and by more or less elevated concentration of greenhouse effect gases in the atmosphere. Prospects for to morrow climates and anthropogenic contribution are then possible [fr

  1. Manipulating ship fuel sulfur content and modeling the effects on air quality and climate

    Science.gov (United States)

    Partanen, Antti-Ilari; Laakso, Anton; Schmidt, Anja; Kokkola, Harri; Kuokkanen, Tuomas; Kerminen, Veli-Matti; Lehtinen, Kari E. J.; Laakso, Lauri; Korhonen, Hannele

    2013-04-01

    Aerosol emissions from international shipping are known to cause detrimental health effects on people mainly via increased lung cancer and cardiopulmonary diseases. On the other hand, the aerosol particles from the ship emissions modify the properties of clouds and are believed to have a significant cooling effect on the global climate. In recent years, aerosol emissions from shipping have been more strictly regulated in order to improve air quality and thus decrease the mortality due to ship emissions. Decreasing the aerosol emissions from shipping is projected to decrease their cooling effect, which would intensify the global warming even further. In this study, we use a global aerosol-climate model ECHAM5.5-HAM2 to test if continental air quality can be improved while still retaining the cooling effect from shipping. The model explicitly resolves emissions of aerosols and their pre-cursor gases. The model also calculates the interaction between aerosol particles and clouds, and can thus predict the changes in cloud properties due to aerosol emissions. We design and simulate a scenario where ship fuel sulfur content is strictly limited to 0.1% near all coastal regions, but doubled in the open oceans from the current global mean value of 2.7% (geo-ships). This scenario is compared to three other simulations: 1) No shipping emissions at all (no-ships), 2) present-day shipping emissions (std-ships) and 3) a future scenario where sulfur content is limited to 0.1% in the coastal zones and to 0.5% in the open ocean (future-ships). Global mean radiative flux perturbation (RFP) in std-ships compared to no-ships is calculated to be -0.4 W m-2, which is in the range of previous estimates for present-day shipping emissions. In the geo-ships simulation the corresponding global mean RFP is roughly equal, but RFP is spatially distributed more on the open oceans, as expected. In future-ships the decreased aerosol emissions provide weaker cooling effect of only -0.1 W m-2. In

  2. Rural perception to the effects of climate change in Otukpo, Nigeria

    Directory of Open Access Journals (Sweden)

    Roland Clement Abah

    2014-12-01

    Full Text Available The study has further examined rural perception to the effects of climate change. The study used rural settlements in Otukpo, Nigeria as a case study. Primary and secondary data were utilised for the study. Data collection was done through the use of a questionnaire with open-ended questions and questions with multiple answers. A total of 100 questionnaires were randomly distributed among household heads in 10 settlements selected from 58 rural settlements for the study. Spatial distribution of the rural settlements were analysed using the nearest neighbour statistical analysis while descriptive statistics such as graphs and tables were used to present data. Rural settlements in Otukpo are randomly distributed and may be tending towards clustering. This is indicated by an Rn index value of 0.96 from the nearest neighbour analysis. Most of the settlements (59% have a distance of two to three kilometres between them. There is an inadequacy of functional facilities and poor access to services in the rural settlements in Otukpo. Respondents in rural settlements in Otukpo are faced with the risk of agricultural occupational loss (22%, water shortages (42%, flooding (29%, land based conflicts (16%, health hazards (12%, erosion (26%, and migration (57%. With evidence of climate change ascertained globally including Nigeria, the study concludes that rural settlements in Otukpo and elsewhere are vulnerable to the effects of climate change which is evident in literature. Government should plan appropriately to optimize standard of living and provide basic functional facilities and services for rural settlements.

  3. Open Data, Jupyter Notebooks and Geospatial Data Standards Combined - Opening up large volumes of marine and climate data to other communities

    Science.gov (United States)

    Clements, O.; Siemen, S.; Wagemann, J.

    2017-12-01

    The EU-funded Earthserver-2 project aims to offer on-demand access to large volumes of environmental data (Earth Observation, Marine, Climate data and Planetary data) via the interface standard Web Coverage Service defined by the Open Geospatial Consortium. Providing access to data via OGC web services (e.g. WCS and WMS) has the potential to open up services to a wider audience, especially to users outside the respective communities. Especially WCS 2.0 with its processing extension Web Coverage Processing Service (WCPS) is highly beneficial to make large volumes accessible to non-expert communities. Users do not have to deal with custom community data formats, such as GRIB for the meteorological community, but can directly access the data in a format they are more familiar with, such as NetCDF, JSON or CSV. Data requests can further directly be integrated into custom processing routines and users are not required to download Gigabytes of data anymore. WCS supports trim (reduction of data extent) and slice (reduction of data dimension) operations on multi-dimensional data, providing users a very flexible on-demand access to the data. WCPS allows the user to craft queries to run on the data using a text-based query language, similar to SQL. These queries can be very powerful, e.g. condensing a three-dimensional data cube into its two-dimensional mean. However, the more processing-intensive the more complex the query. As part of the EarthServer-2 project, we developed a python library that helps users to generate complex WCPS queries with Python, a programming language they are more familiar with. The interactive presentation aims to give practical examples how users can benefit from two specific WCS services from the Marine and Climate community. Use-cases from the two communities will show different approaches to take advantage of a Web Coverage (Processing) Service. The entire content is available with Jupyter Notebooks, as they prove to be a highly beneficial tool

  4. Mixed Messages on Climate Science

    Science.gov (United States)

    Grifo, F.; Gutman, B. L.; Veysey, D.; El Gamal, A.

    2011-12-01

    While the private sector has a strong interest in climate science, and much at stake as the world comes to terms with the impacts of climate change, their legacy of climate denial has left the public confused. A few companies openly reject the basic science that ties emissions of greenhouse gases from human activities to warming temperatures and other consequences. Many companies play into the confusion by boasting of their green strategies while lobbying against climate bills. Still others joined pro-climate coalitions while donating heavily to politicians who openly reject the science of climate change. Many companies stand to see their business greatly affected by regulations to control greenhouse gas emissions or directly by changing weather patterns, rising sea levels, and varying water availability. Public statements, political activity, and corporate affiliations reveal inconsistent corporate postures. Congress, individuals, and the private sector can all play critical roles in holding corporate America to a higher standard bringing more clarity to science based climate policy discussions.

  5. Effects of climate change process on comfort climate of Shiraz station

    Energy Technology Data Exchange (ETDEWEB)

    Shakoor, A.; Roshan, G.R.; Khoshakhlagh, F.; Hejazizadeh, Z. [Islamic Azad Univ., Larestan (Iran)

    2008-09-30

    Dwelling in cities and city development together with quick increase of population and development of industrial activites with unplanned consumption of fossil fuels have intensively increased pollution with consequences whcih will cause different diseases in short periods, and will lead to some climatic oscillations and its environmental effects such as the change of desirable periods in view of comfort climate in long period. The objective point of view of this reasearch was to study the climate in Shiraz and its effect on comfort conditions for human physiology. In this research, using 55-year cliamtic data (1952-2006), the relative humidity and temperature through the application of Guni comfort climatic model, the desirable months for the comfort of human physiology have been determined in the five 11-year periods and the linear process of these changes have been estimated for the next 11 years. The results of this research show that the temperature trend in Shiraz station is increasing and most months have heating process in a way that it is expected in the future the cold months will have more favorable conditions for physiological comfort of residents and correspondingly in the warm months, heating tension will have remarkable increase.

  6. Old-field Community, Climate and Atmospheric Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Aimee Classen

    2009-11-01

    We are in the process of finishing a number of laboratory, growth chamber and greenhouse projects, analyzing data, and writing papers. The projects reported addressed these subjects: How do climate and atmospheric changes alter aboveground plant biomass and community structure; Effects of multiple climate changes factors on plant community composition and diversity: what did we learn from a 5-year open-top chamber experiment using constructed old-field communities; Do atmospheric and climatic change factors interact to alter woody seedling emergence, establishment and productivity; Soil moisture surpasses elevated CO{sub 2} and temperature in importance as a control on soil carbon dynamics; How do climate and atmospheric changes alter belowground root and fungal biomass; How do climate and atmospheric changes alter soil microarthropod and microbial communities; How do climate and atmospheric changes alter belowground microbial function; Linking root litter diversity and microbial functioning at a micro scale under current and projected CO{sub 2} concentrations; Multifactor climate change effects on soil ecosystem functioning depend on concurrent changes in plant community composition; How do climate and atmospheric changes alter aboveground insect populations; How do climate and atmospheric changes alter festuca endophyte infection; How do climate and atmospheric changes soil carbon stabilization.

  7. Effect of power engineering on the climate

    International Nuclear Information System (INIS)

    Legasov, V.A.; Kuz'min, I.I.; Chernoplekov, A.N.

    1984-01-01

    The influence on global, regional and local climate caused by power plants waste heat and carbon dioxide effluents by organic and nuclear fuel energetics development is investigated in the frame of summarized world energy product in growth long-term forecasts until the year 2100. Conclusion on the significance of energetics as a climate modification factor and necessity to form energy production development strategy is made with due regard for possible climatic consequences. Importance of investigation of possible climatic effects of atmospheric electroconductivity changes is stresses as caused by nuclear fuel cycle plants emission of 85 Kr. Climatic factors quantitative analysis methology is proposed in the problem of safe energy production development

  8. The Psychological Effects of Climate Change on Children.

    Science.gov (United States)

    Burke, Susie E L; Sanson, Ann V; Van Hoorn, Judith

    2018-04-11

    We review recent evidence on the psychological effects of climate change on children, covering both direct and indirect impacts, and discuss children's psychological adaptation to climate change. Both the direct and flow-on effects of climate change place children at risk of mental health consequences including PTSD, depression, anxiety, phobias, sleep disorders, attachment disorders, and substance abuse. These in turn can lead to problems with emotion regulation, cognition, learning, behavior, language development, and academic performance. Together, these create predispositions to adverse adult mental health outcomes. Children also exhibit high levels of concern over climate change. Meaning-focused coping promotes well-being and environmental engagement. Both direct and indirect climate change impacts affect children's psychological well-being. Children in the developing world will suffer the worst impacts. Mental health professionals have important roles in helping mitigate climate change, and researching and implementing approaches to helping children cope with its impacts.

  9. Climate change effects on forests: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. [Argonne National Lab., IL (United States); LeBlanc, D. [Ball State Univ., Muncie, IN (United States). Dept. of Biology

    1996-02-01

    While current projections of future climate change associated with increases in atmospheric greenhouse gases have a high degree of uncertainty, the potential effects of climate change on forests are of increasing concern. A number of studies based on forest simulation models predict substantial temperatures associated with increasing atmospheric carbon dioxide concentrations. However, the structure of these computer models may cause them to overemphasize the role of climate in controlling tree growth and mortality. We propose that forest simulation models be reformulated with more realistic representations of growth responses to temperature, moisture, mortality, and dispersal. We believe that only when these models more accurately reflect the physiological bases of the responses of tree species to climate variables can they be used to simulate responses of forests to rapid changes in climate. We argue that direct forest responses to climate change projected by such a reformulated model may be less traumatic and more gradual than those projected by current models. However, the indirect effects of climate change on forests, mediated by alterations of disturbance regimes or the actions of pests and pathogens, may accelerate climate-induced change in forests, and they deserve further study and inclusion within forest simulation models.

  10. Open innovation with an effective open innovation team.

    OpenAIRE

    Vanvoorden, Jonas

    2014-01-01

    This master's thesis explores how open innovation teams can successfully support open innovation inside of an organisation. Open innovation is a paradigm introduced by Henry Chesbrough (2003) a decade ago. It expands the innovation potential of organisations by opening them up to new ways of working with external partners. To implement open innovation, many companies rely on a small group of managers named open innovation teams. Although open innovation teams can potentially be vital for impl...

  11. Potential Environmental and Ecological Effects of Global Climate Change on Venomous Terrestrial Species in the Wilderness.

    Science.gov (United States)

    Needleman, Robert K; Neylan, Isabelle P; Erickson, Timothy

    2018-06-01

    Climate change has been scientifically documented, and its effects on wildlife have been prognosticated. We sought to predict the overall impact of climate change on venomous terrestrial species. We hypothesize that given the close relationship between terrestrial venomous species and climate, a changing global environment may result in increased species migration, geographical redistribution, and longer seasons for envenomation, which would have repercussions on human health. A retrospective analysis of environmental, ecological, and medical literature was performed with a focus on climate change, toxinology, and future modeling specific to venomous terrestrial creatures. Species included venomous reptiles, snakes, arthropods, spiders, and Hymenoptera (ants and bees). Animals that are vectors of hemorrhagic infectious disease (eg, mosquitos, ticks) were excluded. Our review of the literature indicates that changes to climatic norms will have a potentially dramatic effect on terrestrial venomous creatures. Empirical evidence demonstrates that geographic distributions of many species have already shifted due to changing climatic conditions. Given that most terrestrial venomous species are ectotherms closely tied to ambient temperature, and that climate change is shifting temperature zones away from the equator, further significant distribution and population changes should be anticipated. For those species able to migrate to match the changing temperatures, new geographical locations may open. For those species with limited distribution capabilities, the rate of climate change may accelerate faster than species can adapt, causing population declines. Specifically, poisonous snakes and spiders will likely maintain their population numbers but will shift their geographic distribution to traditionally temperate zones more often inhabited by humans. Fire ants and Africanized honey bees are expected to have an expanded range distribution due to predicted warming trends

  12. Climate Signals: An On-Line Digital Platform for Mapping Climate Change Impacts in Real Time

    Science.gov (United States)

    Cutting, H.

    2016-12-01

    Climate Signals is an on-line digital platform for cataloging and mapping the impacts of climate change. The CS platform specifies and details the chains of connections between greenhouse gas emissions and individual climate events. Currently in open-beta release, the platform is designed to to engage and serve the general public, news media, and policy-makers, particularly in real-time during extreme climate events. Climate Signals consists of a curated relational database of events and their links to climate change, a mapping engine, and a gallery of climate change monitors offering real-time data. For each event in the database, an infographic engine provides a custom attribution "tree" that illustrates the connections to climate change. In addition, links to key contextual resources are aggregated and curated for each event. All event records are fully annotated with detailed source citations and corresponding hyper links. The system of attribution used to link events to climate change in real-time is detailed here. This open-beta release is offered for public user testing and engagement. Launched in May 2016, the operation of this platform offers lessons for public engagement in climate change impacts.

  13. High-resolution paleolimnology opens new management perspectives for lakes adaptation to climate warming

    Directory of Open Access Journals (Sweden)

    Marie-Elodie ePerga

    2015-07-01

    Full Text Available Varved lake sediments provide opportunities for high-resolution paleolimnological investigations that may extend monitoring surveys in order to target priority management actions under climate warming. This paper provides the synthesis of an international research program relying on >150 years-long, varved records for three managed perialpine lakes in Europe (Lakes Geneva, Annecy and Bourget. The dynamics of the dominant, local human pressures, as well as the ecological responses in the pelagic, benthic and littoral habitats were reconstructed using classical and newly developed paleo-proxies. Statistical modelling achieved the hierarchization of the drivers of their ecological trajectories. All three lakes underwent different levels of eutrophication in the first half of the XXth century, followed by re-oligotrophication. Climate warming came along with a 2°C increase in air temperature over the last century, to which lakes were unequally thermally vulnerable. Unsurprisingly, phosphorous concentration has been the dominant ecological driver over the last century. Yet, other human-influenced, local environmental drivers (fisheries management practices, river regulations have also significantly inflected ecological trajectories. Climate change has been impacting all habitats at rates that, in some cases, exceeded those of local factors. The amplitude and ecological responses to similar climate change varied between lakes, but, at least for pelagic habitats, rather depended on the intensity of local human pressures than on the thermal effect of climate change. Deep habitats yet showed higher sensitivity to climate change but substantial influence of river flows. As a consequence, adapted local management strategies, fully integrating nutrient inputs, fisheries management and hydrological regulations, may enable mitigating the deleterious consequences of ongoing climate change on these ecosystems.

  14. The greenhouse effect and natural fluctuations of the climate

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1993-01-01

    There is a straight line connecting the first estimate in 1896 of worldwide climate changes due to the increasing use of fossil sources of energy with the Climate Convention of the United Nations at the 1992 Environmental Summit. Extensive model calculations exist of the 'greenhouse effect', in which the lower atmosphere is heated by manmade emissions of trace gases affecting the climate. However, the anticipated changes are not restricted to the temperature of the air; they affect the climate as a whole worldwide. As a consequence, the German Federal Government, in addition to its ban on CFCs, plans to reduce manmade carbon dioxide emissions by 25 or 30% by 2005. Natural fluctuations of the climate compete with the greenhouse effect: Volcanic and solar effects, but also random variations within the complicated interactions in the climatic system (atmosphere - oceans - ice regions - biosphere - land surface). Mathematical and statistical analyses of the superposition of such climatic mechanisms, which are based on data from observations, result in a risk analysis at a high level of probability. (orig.) [de

  15. New Water Management Institutions in Mexico’s ‘New Culture of Water’: Emerging Opportunities and Challenges for Effective Use of Climate Knowledge and Climate Science

    Science.gov (United States)

    Wilder, M.; Varady, R. G.; Pineda Pablos, N.; Browning-Aiken, A.; Diaz Caravantes, R.; Garfin, G.

    2007-05-01

    Since 1992, Mexico has developed a new set of water management institutions to usher in a ‘new culture of water’ that focuses on decentralized governance and formalized participation of local water users. Reforms to the national water legislation in April 2004 regionalized the governance of water and highlighted the importance of river basin councils as a mechanism for integrated management of major watersheds across Mexico. As a result of the dramatic national water policy reforms, water service delivery in Mexico has been decentralized to the state and municipal level, resulting in a critical new role for municipal governments charged with this important function. A network of river basin councils accompanied and sub-basin councils has been developed to undertake watershed planning. Decentralization and local participation policies embody numerous significant goals and promises, including greater efficiency, more financial accountability, fostering the beginnings of a sense of local stewardship of precious resources, and enhanced environmental sustainability. This paper examines the implications of municipalized water services and emerging river basin councils for utilization of climate knowledge and climate science. We analyze whether these changes open new windows of opportunity for meaningful use of climate science (e.g., forecasts; models). How effectively are municipal water managers and river basin councils utilizing climate knowledge and climate science, and for what purposes? Are there ways to improve the fit between the needs of water managers and river basin councils and the science that is currently available? What is the role of local participation in water policy making in urban settings and river basin councils? The study found overall that the promises and potential for effective utilization of climate science/knowledge to enhance sustainability exists, but is not yet being adequately realized. Binational efforts to develop climate science and

  16. Beyond Open Data: the importance of data standards and interoperability - Experiences from ECMWF's Open Data Week

    Science.gov (United States)

    Wagemann, Julia; Siemen, Stephan

    2017-04-01

    The European Centre for Medium-Range Weather Forecasts (ECMWF) has been providing an increasing amount of data to the public. One of the most widely used datasets include the global climate reanalyses (e.g. ERA-interim) and atmospheric composition data, which are available to the public free of charge. The centre is further operating, on behalf of the European Commission, two Copernicus Services, the Copernicus Atmosphere Monitoring Service (CAMS) and Climate Change Service (C3S), which are making up-to-date environmental information freely available for scientists, policy makers and businesses. However, to fully benefit from open data, large environmental datasets also have to be easily accessible in a standardised, machine-readable format. Traditional data centres, such as ECMWF, currently face challenges in providing interoperable standardised access to increasingly large and complex datasets for scientists and industry. Therefore, ECMWF put open data in the spotlight during a week of events in March 2017 exploring the potential of freely available weather- and climate-related data and to review technological solutions serving these data. Key events included a Workshop on Meteorological Operational Systems (MOS) and a two-day hackathon. The MOS workshop aimed at reviewing technologies and practices to ensure efficient (open) data processing and provision. The hackathon focused on exploring creative uses of open environmental data and to see how open data is beneficial for various industries. The presentation aims to give a review of the outcomes and conclusions of the Open Data Week at ECMWF. A specific focus will be set on the importance of data standards and web services to make open environmental data a success. The presentation overall examines the opportunities and challenges of open environmental data from a data provider's perspective.

  17. Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health.

    Science.gov (United States)

    Gutierrez, Kristie S; LePrevost, Catherine E

    2016-02-03

    Climate justice is a local, national, and global movement to protect at-risk populations who are disproportionately affected by climate change. The social context for this review is the Southeastern region of the United States, which is particularly susceptible to climate change because of the geography of the area and the vulnerabilities of the inhabiting populations. Negative human health effects on variable and vulnerable populations within the Southeast region due to changing climate are concerning, as health threats are not expected to produce parallel effects among all individuals. Vulnerable communities, such as communities of color, indigenous people, the geographically isolated, and those who are socioeconomically disadvantaged and already experiencing poor environmental quality, are least able to respond and adapt to climate change. Focusing on vulnerable populations in the Southeastern United States, this review is a synthesis of the recent (2010 to 2015) literature-base on the health effects connected to climate change. This review also addresses local and regional mitigation and adaptation strategies for citizens and leaders to combat direct and indirect human health effects related to a changing climate.

  18. The effects of aerosols on climate

    International Nuclear Information System (INIS)

    Boucher, O.

    1997-01-01

    Atmospheric aerosols (fine particles suspended in the atmosphere) can play two roles in the Earth’s radiation budget. In cloud-free air, aerosols scatter sunlight, some of which is reflected back to space (direct effect). Aerosols also determine the microphysical and optical properties of clouds (indirect effect). Whereas changes in natural aerosols are probably small during the last 100 years, there has been a large increase in the concentration of anthropogenic aerosols. The magnitude of their radiative effects is still very uncertain but seems to be sufficient to mask part of the global warming expected to stem from anthropogenic greenhouse gases. This paper presents the physical mechanisms of aerosol influence on climate. We then estimate the anthropogenic aerosol radiative effects and assess the climate response to these perturbations. (author) [fr

  19. Climatic Effects of Regional Nuclear War

    Science.gov (United States)

    Oman, Luke D.

    2011-01-01

    We use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and longlasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes seem to be more persistent because of improvements in representing aerosol processes and microphysical/dynamical interactions, including radiative heating effects, in newer global climate system models. The assumptions and calculations that go into these conclusions will be described.

  20. Review of recent research on the climatic effect of aerosols

    International Nuclear Information System (INIS)

    Charlock, T.P.; Kondratyev, K.; Prokofyev, M.

    1993-01-01

    A review of relatively recent research on the climatic effects of aerosols is presented. Most of the inferences of the climatic effects of aerosols have been obtained through assuming a certain aerosol model in conjunction with a particular climate model. The following radiative effects of aerosols are identified: The planetary albedo is generally increased due to the backscatter of solar radiation by aerosols, with the exception of aerosols situated above a highly reflecting surface. Solar radiation absorption by some aerosols can offset the cooling due to aerosol backscatter. Although aerosol effects dominate for short-wave radiation, absorption and emission of terrestrial radiation by aerosols produces a warming effect. Various climate models are used to assess the impact of aerosols on climate. A two-stream approximation to the radiation transfer equation is adequate for optically thin layers where single scattering is applicable. Improved models to include aerosol terrestrial radiation effects, important feedback mechanisms, and the prediction of globally and seasonally averaged surface and atmospheric temperatures are provided by the so-called radiative-convective models (RCM's). The basic structure of the RCM's, which is regarded as adequate for many aerosol climate applications, is described. The general circulation model (GCM) is also described briefly. A full-scale GCM incorporating realistic aerosol inputs is yet to be formulated to include regional variability of the aerosol. Moreover, detailed computer modeling associated with GCM climate models can often confuse the basic physics. Because volcanic aerosols injected into the stratosphere have long residence times, they provide a good case study of the climate response to a change in the atmospheric aerosol. The chapter gives a critique of modeling work done to establish climatic effects of stratospheric aerosols

  1. Climatic effects on the phenology of geophytes

    OpenAIRE

    Eppich, Boglárka; Dede, Lilla; Ferenczy, Antal; Garamvölgyi , Ágnes; Horváth , Levente; Isépy , István; Priszter , Szaniszló; Hufnagel, Levente

    2009-01-01

    Nowadays, the scientific and social significance of the research of climatic effects has become outstanding. In order to be able to predict the ecological effects of the global climate change, it is necessary to study monitoring databases of the past and explore connections. For the case study mentioned in the title, historical weather data series from the Hungarian Meteorological Service and Szaniszló Priszter’s monitoring data on the phenology of geophytes have been used. These ...

  2. Open data mining for Taiwan's dengue epidemic.

    Science.gov (United States)

    Wu, ChienHsing; Kao, Shu-Chen; Shih, Chia-Hung; Kan, Meng-Hsuan

    2018-07-01

    By using a quantitative approach, this study examines the applicability of data mining technique to discover knowledge from open data related to Taiwan's dengue epidemic. We compare results when Google trend data are included or excluded. Data sources are government open data, climate data, and Google trend data. Research findings from analysis of 70,914 cases are obtained. Location and time (month) in open data show the highest classification power followed by climate variables (temperature and humidity), whereas gender and age show the lowest values. Both prediction accuracy and simplicity decrease when Google trends are considered (respectively 0.94 and 0.37, compared to 0.96 and 0.46). The article demonstrates the value of open data mining in the context of public health care. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effective Engagement of Hostile Audiences on Climate Change

    Science.gov (United States)

    Denning, A.

    2011-12-01

    In 2010 and 2011, I gave invited presentations of mainstream climate science to large conferences dismissive of climate change organized by the HEartland Institute. In this presentation I review some of the common objections raised by such audiences and outline effective strategies to rebut them in public venues or the media. Respectful engagement on a human level is much more effective than appeals from authority, scientific consensus, or numerical models. Starting from a base of agreement on basic facts helps establish a basis of trust, which is then nurtured through personal anecdotes and humor. The basic science of climate change is presented in a non-confrontational way with frequent use of examples from everyday life to explain physical principles. Although a hard core of hostile individuals may not be swayed by such an approach, my experience was that this type of engagement can be very effective with ordinary people. I strongly encourage more climate scientists to work with public audiences and the media.

  4. Effects of human activities on global climate. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, W W

    1977-10-01

    Various influences of mankind on the climate and the time scale for the corresponding changes to take place are discussed. A number of anthropogenic causes of climate change are described in terms of their effects on mean surface temperature, and in some cases their effects on precipitation as well. It can be seen that, even given the uncertainties about our understanding of the behaviour of the climate system and the factors that determine climate, the effect of the atmospheric carbon dioxide increase emerges as by far the dominant one. Furthermore, many of the other factors (notably direct generation of heat and possible additions of chlorofluoromethanes and nitrous oxide) also contribute to a temperature change in the same direction--a warming.

  5. Effective climate-energy solutions, escape routes and peak oil

    International Nuclear Information System (INIS)

    Bergh, Jeroen C.J.M. van den

    2012-01-01

    Many well-intended climate-energy strategies are ineffective in the absence of serious environmental regulation. This holds, among others, for direct support of clean energy, voluntary energy conservation, technical standards on a limited set of products, unilateral stringent carbon pricing, and awaiting peak oil as a climate strategy. All of these suffer from “escape routes” that indirectly increase CO 2 emissions and thus make the original strategy ineffective. On the other hand, environmental regulation alone may lead to a myopia-bias, stimulating early dominance of cost-effective technologies and a focus on incremental innovations associated with such technologies rather than on radical innovations. Although adopting a partial viewpoint keeps the analysis simple, we urgently need a more inclusive systems perspective on climate solutions. This will allow the formulation of an effective climate policy package that addresses the various escape routes. - Highlights: ► Many well-intended climate-energy strategies are ineffective because of escape routes. ► In this context the relationship between peak oil and climate policy receives attention. ► Environmental regulation alone creates myopia-bias, the resolution of which requires technology-specific policies. ► To formulate an effective climate policy package an inclusive systems perspective is needed.

  6. Meteorology and Climate Inspire Secondary Science Students

    Science.gov (United States)

    Charlton-Perez, Andrew; Dacre, Helen; Maskell, Kathy; Reynolds, Ross; South, Rachel; Wood, Curtis

    2010-01-01

    As part of its National Science and Engineering Week activities in 2009 and 2010, the University of Reading organised two open days for 60 local key stage 4 pupils. The theme of both open days was "How do we predict weather and climate?" Making use of the students' familiarity with weather and climate, several concepts of relevance to secondary…

  7. The effect of education on climate change risks

    Science.gov (United States)

    O'Neill, B. C.; KC, S.; Jiang, L.; Fuchs, R.; Pachauri, S.; Ren, X.; Zhang, T.; Laidlaw, E.

    2017-12-01

    Changes in the demographic and socio-economic compositions of populations are relevant to the climate change issue because these characteristics can be important determinants both of the capacity to adapt to climate change impacts as well as of energy use and greenhouse gas emissions, and therefore climate change. However, the incorporation of major trends such as aging, urbanization, and changes in household size into projections of future energy use and emissions is rare. Here we build on our previous work in this area by exploring the implications of future changes in educational attainment for the climate issue. Changes in the educational composition of the population may reduce the vulnerability of the population to climate change impacts, reducing risks. However they may also have effects on energy use and land use, and the resulting greenhouse gas emissions that drive climate change and increase risks. The direction of the effect of education on emissions is itself ambiguous. On the one hand, improvements in education can be expected to lead to faster fertility decline and slower population growth which, all else equal, would be expected to reduce emissions. On the other hand, education can also be expected to lead to faster economic growth, which would tend to increase emissions, and also to changes in consumption patterns. We employ iPETS, an integrated assessment model that includes a multi-region model of the world economy, driven with a new set of country-specific projections of future educational composition, to test the net effect of education on energy use and emissions on four world regions (China, India, Latin America, and Rest of Asia + Middle East) and therefore on climate. We also calculate the Human Development Index (HDI) for each region resulting from these scenarios, as an indicator of vulnerability to climate impacts. We find that the net effect of improved education is to increase emissions in the medium term driven primarily by increased

  8. Climate change and health effects in Northwest Alaska

    Directory of Open Access Journals (Sweden)

    Michael Brubaker

    2011-10-01

    Full Text Available This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities.In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects.The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses.The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska.Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate.The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures.

  9. Climate change and its marginalizing effect on agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Mestre-Sanchis, Fernando [Agriculture and Food Department, University of La Rioja (Spain); Feijoo-Bello, Maria Luisa [Economics Department, University of Zaragoza (Spain)

    2009-01-15

    The agriculture of some areas considered marginal in the EU agricultural context is being questioned due to its low productivity and growing dependence on economic aid programs Common Agricultural Policy (CAP). This study shows that climate change increases these areas marginalisation of since worsens crop growth conditions. The influence of climate change on the agricultural sector is analyzed using the Multicriteria Decision Paradigm with information provided by the Erosion-Productivity Impact Calculator (EPIC) and a General Circulation Model (GCM) as inputs for multicriteria mathematical programming models. The results obtained show climate change effects on the crop portfolio. Further results suggest that climate change effects are not only economics and environmental, reducing the suitable area for crops, but also social as it causes loss of jobs in the agricultural sector. (author)

  10. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants.

    Science.gov (United States)

    Reinmuth-Selzle, Kathrin; Kampf, Christopher J; Lucas, Kurt; Lang-Yona, Naama; Fröhlich-Nowoisky, Janine; Shiraiwa, Manabu; Lakey, Pascale S J; Lai, Senchao; Liu, Fobang; Kunert, Anna T; Ziegler, Kira; Shen, Fangxia; Sgarbanti, Rossella; Weber, Bettina; Bellinghausen, Iris; Saloga, Joachim; Weller, Michael G; Duschl, Albert; Schuppan, Detlef; Pöschl, Ulrich

    2017-04-18

    Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.

  11. Interactions of Policies for Renewable Energy and Climate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper explores the relationships between climate policy and renewable energy policy instruments. It shows that, even where CO2 emissions are duly priced, specific incentives for supporting the early deployment of renewable energy technologies are justified by the steep learning curves of nascent technologies. This early investment reduces costs in the longer term and makes renewable energy affordable when it needs to be deployed on a very large scale to fully contribute to climate change mitigation and energy security. The paper also reveals other noteworthy interaction effects of climate policy and renewable policy instruments on the wholesale electricity prices in deregulated markets, which open new areas for future research.

  12. Effective Climate Refugia for Cold-water Fishes

    Science.gov (United States)

    Ebersole, J. L.; Morelli, T. L.; Torgersen, C.; Isaak, D.; Keenan, D.; Labiosa, R.; Fullerton, A.; Massie, J.

    2015-12-01

    Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in mid-latitude salmonid distributions under future climates range from modest to severe, depending on modeling approaches, assumptions, and spatial context of analyses. Given these projected losses, increased emphasis on management for ecosystem resilience to help buffer cold-water fish populations and their habitats against climate change is emerging. Using terms such as "climate-proofing", "climate-ready", and "climate refugia", such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, such approaches will need to address critical uncertainties in both the physical basis for projected landscape changes in water temperature and streamflow, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on projected streamflows, air temperatures, and associated water temperature changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local hydrological responses and thermal dynamics. Yet important questions remain. Drawing on case studies throughout the Pacific Northwest, we illustrate some key uncertainties in the responses of salmonids and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. Key uncertainties include biotic interactions, organismal adaptive capacity, local climate decoupling due to groundwater-surface water interactions, the influence of human engineering responses, and synergies between climatic and other stressors. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted

  13. Multi-factor climate change effects on insect herbivore performance

    DEFF Research Database (Denmark)

    Scherber, Christoph; Gladbach, David J; Stevnbak, Karen

    2013-01-01

    The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO...... suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under...... the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen...

  14. Effects of corpuscular radiation on weather and climate

    International Nuclear Information System (INIS)

    Bucha, V.

    1989-01-01

    There is no doubt that the antropogenic effect play an important role in the effects of corpuscular radiation on weather and climate. The task, however, is to distinguish between antropogenic effect in the atmosphere due to human activities and natural climatic fluctuations influencing biological systems. The increase in global temperature during the past 100 years is in relatively good coincidence with the increase in geomagnetic (corpuscular) activity. It is concluded that it could have been the increase in temperature on the Northern Hemisphere, due to the processes occurring in the auroral oval under enhanced corpuscular radiation which led to an increased atmospheric concentration of CO2 in the past. Both processes, i.e., antropogenic and solar activity effects, should be therefore intensively studied due to their important role for elucidating the past and present global change mainly in temperature, climate and biological systems

  15. Effects of Climate Change on Aquatic Invasive Species and ...

    Science.gov (United States)

    This draft report reviews available literature on climate change effects on aquatic invasive species (AIS) and examines state level AIS management activities. This draft report assesses the state of the science of climate change effects on AIS and examines state level AIS management activities.

  16. Modelling the regional effects of climate change on air quality

    International Nuclear Information System (INIS)

    Giorgi, F.; Meleux, F.

    2007-01-01

    The life cycle of pollutants is affected by chemical as well as meteorological factors, such as wind, temperature, precipitation, solar radiation. Therefore, climatic changes induced by anthropogenic emissions of greenhouse gases may be expected to have significant effects on air quality. Because of the spatial variability of the pollutant emissions and climate-change signals, these effects are particularly relevant at the regional to local scales. This paper first briefly reviews modelling tools and methodologies used to study regional climate-change impacts on air quality. Patterns of regional precipitation, temperature, and sea-level changes emerging from the latest set of general circulation model projections are then discussed. Finally, the specific case of climate-change effects on summer ozone concentrations over Europe is presented to illustrate the potential impacts of climate change on pollutant amounts. It is concluded that climate change is an important factor that needs to be taken into account when designing future pollution-reduction policies. (authors)

  17. The greenhouse effect: will we change the climate?

    International Nuclear Information System (INIS)

    Le Treut, H.

    2004-01-01

    This book presents the great climate factors, the changes resulting from the greenhouse effect and the corresponding human factors part, the atmosphere chemical composition and the biological and geo-political risks bound to the climatic changes. (A.L.B.)

  18. Psychological responses to the proximity of climate change

    Science.gov (United States)

    Brügger, Adrian; Dessai, Suraje; Devine-Wright, Patrick; Morton, Thomas A.; Pidgeon, Nicholas F.

    2015-12-01

    A frequent suggestion to increase individuals' willingness to take action on climate change and to support relevant policies is to highlight its proximal consequences, that is, those that are close in space and time. But previous studies that have tested this proximizing approach have not revealed the expected positive effects on individual action and support for addressing climate change. We present three lines of psychological reasoning that provide compelling arguments as to why highlighting proximal impacts of climate change might not be as effective a way to increase individual mitigation and adaptation efforts as is often assumed. Our contextualization of the proximizing approach within established psychological research suggests that, depending on the particular theoretical perspective one takes on this issue, and on specific individual characteristics suggested by these perspectives, proximizing can bring about the intended positive effects, can have no (visible) effect or can even backfire. Thus, the effects of proximizing are much more complex than is commonly assumed. Revealing this complexity contributes to a refined theoretical understanding of the role that psychological distance plays in the context of climate change and opens up further avenues for future research and for interventions.

  19. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    Science.gov (United States)

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  20. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    Science.gov (United States)

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  1. Effect of ethical leadership and climate on effectiveness

    OpenAIRE

    Amos S. Engelbrecht; Janneke Wolmarans; Bright Mahembe

    2017-01-01

    Orientation: The increasing prevalence of theft, sabotage and other deviant behaviours in the workplace has disastrous effects for organisations, such as lowered effectiveness, escalated costs and the organisation’s declining reputation. Research purpose: The purpose of the research was to design and investigate the relationships among perceived leader effectiveness, ethical climate and ethical leadership. A further objective of the investigation was to validate a conceptual model clarify...

  2. Climate change and ocean acidification effects on seagrasses and marine macroalgae.

    Science.gov (United States)

    Koch, Marguerite; Bowes, George; Ross, Cliff; Zhang, Xing-Hai

    2013-01-01

    Although seagrasses and marine macroalgae (macro-autotrophs) play critical ecological roles in reef, lagoon, coastal and open-water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro-autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2 ], and lower carbonate [CO3 (2-) ] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2 ]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro-autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3 (-) ; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2 -only users, lead us to conclude that photosynthetic and growth rates of marine macro-autotrophs are likely to increase under elevated [CO2 ] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up-regulate stress-response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2 ] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2 ] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2 ] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H(+) and DIC. These fluxes control micro-environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA

  3. Overview of climate information needs for ecological effects models

    Energy Technology Data Exchange (ETDEWEB)

    Peer, R.L.

    1990-01-01

    Atmospheric scientists engaged in climate change research require a basic understanding of how ecological effects models incorporate climate. The report provides an overview of existing ecological models that might be used to model climate change effects on vegetation. Some agricultural models and statistical methods are also discussed. The weather input data requirements, weather simulation methods, and other model characteristics relevant to climate change research are described for a selected number of models. The ecological models are classified as biome, ecosystem, or tree models; the ecosystem models are further subdivided into species dynamics or process models. In general, ecological modelers have had to rely on readily available meteorological data such as temperature and rainfall. Although models are becoming more sophisticated in their treatment of weather and require more kinds of data (such as wind, solar radiation, or potential evapotranspiration), modelers are still hampered by a lack of data for many applications. Future directions of ecological effects models and the climate variables that will be required by the models are discussed.

  4. NW European shelf under climate warming: implications for open ocean – shelf exchange, primary production, and carbon absorption

    Directory of Open Access Journals (Sweden)

    M. Gröger

    2013-06-01

    Full Text Available Shelves have been estimated to account for more than one-fifth of the global marine primary production. It has been also conjectured that shelves strongly influence the oceanic absorption of anthropogenic CO2 (carbon shelf pump. Owing to their coarse resolution, currently applied global climate models are inappropriate to investigate the impact of climate change on shelves and regional models do not account for the complex interaction with the adjacent open ocean. In this study, a global ocean general circulation model and biogeochemistry model were set up with a distorted grid providing a maximal resolution for the NW European shelf and the adjacent northeast Atlantic. Using model climate projections we found that already a~moderate warming of about 2.0 K of the sea surface is linked with a reduction by ~ 30% of the biological production on the NW European shelf. If we consider the decline of anthropogenic riverine eutrophication since the 1990s, the reduction of biological production amounts is even larger. The relative decline of NW European shelf productivity is twice as strong as the decline in the open ocean (~ 15%. The underlying mechanism is a spatially well confined stratification feedback along the continental shelf break. This feedback reduces the nutrient supply from the deep Atlantic to about 50%. In turn, the reduced productivity draws down CO2 absorption in the North Sea by ~ 34% at the end of the 21st century compared to the end of the 20th century implying a strong weakening of shelf carbon pumping. Sensitivity experiments with diagnostic tracers indicate that not more than 20% of the carbon absorbed in the North Sea contributes to the long-term carbon uptake of the world ocean. The rest remains within the ocean's mixed layer where it is exposed to the atmosphere. The predicted decline in biological productivity, and decrease of phytoplankton concentration (in the North Sea by averaged 25% due to reduced nutrient imports from

  5. Effects of Educational Attainment on Climate Risk Vulnerability

    Directory of Open Access Journals (Sweden)

    Erich Striessnig

    2013-03-01

    Full Text Available In the context of still uncertain specific effects of climate change in specific locations, this paper examines whether education significantly increases coping capacity with regard to particular climatic changes, and whether it improves the resilience of people to climate risks in general. Our hypothesis is that investment in universal primary and secondary education around the world is the most effective strategy for preparing to cope with the still uncertain dangers associated with future climate. The empirical evidence presented for a cross-country time series of factors associated with past natural disaster fatalities since 1980 in 125 countries confirms this overriding importance of education in reducing impacts. We also present new projections of populations by age, sex, and level of educational attainment to 2050, thus providing an appropriate tool for anticipating societies' future adaptive capacities based on alternative education scenarios associated with different policies.

  6. Indirect Climatic Effects of Major Volcanic Eruptions

    Science.gov (United States)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  7. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... spaces. From Henri LeFebvre’s thinking we learn that the production of space is a feed back loop, where the space is constructed when we attach meaning to it, and when the space offers meaning to us. Spatial identity is thus not the same as identifying with space. Without indentifying with space, space...... doesn’t become place, and thus not experienced as a common good. Many Danish towns are situated by the sea; this has historically supported a strong spatial, functional and economically identity of the cities, with which people have identified. Effects of globalization processes and a rising sea level...

  8. Climate - Greenhouse effect - Energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    This book explains what is understood by climate systems and the concept of greenhouse effect. It also gives a survey of the world's energy consumption, energy reserves and renewable energy sources. Today, 75 - 80 per cent of the world's energy consumption involves fossil fuel. These are the sources that cause the CO 2 emissions. What are the possibilities of reducing the emissions? The world's population is increasing, and to provide food and a worthy life for everybody we have to use more energy. Where do we get this energy from without causing great climate changes and environmental changes? Should gas power plants be built in Norway? Should Swedish nuclear power plants be shut down, or is it advisable to concentrate on nuclear power, worldwide, this century, to reduce the CO 2 emissions until the renewable energy sources have been developed and can take over once the petroleum sources have been depleted? The book also discusses the global magnetic field, which protects against particle radiation from space and which gives rise to the aurora borealis. The book is aimed at students taking environmental courses in universities and colleges, but is also of interest for anybody concerned about climate questions, energy sources and living standard

  9. The changing world of climate change: Oregon leads the states

    International Nuclear Information System (INIS)

    Carver, P.H.; Sadler, S.; Kosloff, L.H.; Trexler, M.C.

    1997-01-01

    Following on the heels of recent national and international developments in climate change policy, Oregon's open-quote best-of-batch close-quote proceeding has validated the use of CO 2 offsets as a cost-effective means of advancing climate change mitigation goals. The proceeding was a first in several respects and represents a record commitment of funds to CO 2 mitigation by a private entity. In December 1995, the Intergovernmental Panel on Climate Change (IPCC), issued its Second Assessment Report. The IPCC's conclusion that open-quotes[t]he balance of evidence suggests a discernible human influence on global climateclose quotes fundamentally changed the tenor of the policy debate regarding potential threats associated with global climate change. At the Climate Change Convention's Conference of the Parties (COP) in Geneva in July 1996, most countries, including the United States, advocated adopting the IPCC report as the basis for swift policy movement toward binding international emissions targets. The next COP, in December 1997, is scheduled to be the venue for the signing of a treaty protocol incorporating such targets. Binding targets would have major consequences for power plant operators in the US and around the world. Recent developments in the state of Oregon show the kinds of measures that may become commonplace at the state level in addressing climate change mitigation. First, Oregon recently completed the first administrative proceeding in the US aimed at offsetting the greenhouse gas emissions of a new power plant. Second, a legislatively mandated energy facility siting task force recently recommended that Oregon adopt a carbon dioxide (CO 2 ) standard for new power plant construction and drop use of the open-quotes need for powerclose quotes standard. This article reviews these two policy milestones and their implications for climate change mitigation in the United States

  10. Effect of climate change on temperate forest ecosystems

    NARCIS (Netherlands)

    Brolsma, R.J.

    2010-01-01

    In temperate climates groundwater can have a strong effect on vegetation, because it can influence the spatio-temporal distribution of soil moisture and therefore water and oxygen stress of vegetation. Current IPCC climate projections based on CO2 emission scenarios show a global temperature rise

  11. The effect of climate change on electricity expenditures in Massachusetts

    International Nuclear Information System (INIS)

    Véliz, Karina D.; Kaufmann, Robert K.; Cleveland, Cutler J.; Stoner, Anne M.K.

    2017-01-01

    Climate change affects consumer expenditures by altering the consumption of and price for electricity. Previous analyses focus solely on the former, which implicitly assumes that climate-induced changes in consumption do not affect price. But this assumption is untenable because a shift in demand alters quantity and price at equilibrium. Here we present the first empirical estimates for the effect of climate change on electricity prices. Translated through the merit order dispatch of existing capacity for generating electricity, climate-induced changes in daily and monthly patterns of electricity consumption cause non-linear changes in electricity prices. A 2 °C increase in global mean temperature increases the prices for and consumption of electricity in Massachusetts USA, such that the average household’s annual expenditures on electricity increase by about 12%. Commercial customers incur a 9% increase. These increases are caused largely by higher prices for electricity, whose impacts on expenditures are 1.3 and 3.6 fold larger than changes in residential and commercial consumption, respectively. This suggests that previous empirical studies understate the effects of climate change on electricity expenditures and that policy may be needed to ensure that the market generates investments in peaking capacity to satisfy climate-driven changes in summer-time consumption. - Highlights: • Climate change increases summer peak of load curve in US state of Massachusetts. • Climate change increases electricity prices more than consumption. • Previous studies understate the effect of climate change on electricity expenditures. • Adaptation that reduces electricity demand may reduce the price effect. • Adaptation may raise prices by increasing capacity but lowering utilization rate.

  12. Long term effects on potential repository sites: climatic and geomorphological changes

    International Nuclear Information System (INIS)

    Seddon, M.B.; Worsley, P.

    1985-05-01

    A study of the effects of climatic variability on the geomorphological processes operating on the landscape are important in the study of radioactive waste repository sites. The effects of glacial erosion and deposition are fundamental to an examination of repository safety, particularly in North Britain. Rates of climatic shift need to be examined. Predictive simulation models, based on a knowledge of past climatic events, for future global climates are proposed. (UK)

  13. Sea Ice, Climate and Fram Strait

    Science.gov (United States)

    Hunkins, K.

    1984-01-01

    When sea ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between sea, air and ice.

  14. Adapting to the effects of climate change [Chapter 14

    Science.gov (United States)

    Jessica E. Halofsky

    2018-01-01

    Adapting to climate change, or adjusting to current or future climate and its effects (Noble et al. 2014), is critical to minimizing the risks associated with climate change impacts. Adaptation actions can vary from passive (e.g., a "wait and see" approach), to relatively simple (e.g., increasing harvest rotation age), to complex (e.g., managing forest...

  15. Open-Access Electronic Textbooks: An Overview

    Science.gov (United States)

    Ovadia, Steven

    2011-01-01

    Given the challenging economic climate in the United States, many academics are looking to open-access electronic textbooks as a way to provide students with traditional textbook content at a more financially advantageous price. Open access refers to "the free and widely available information throughout the World Wide Web. Once an article's…

  16. The greenhouse effect and climate warming up

    International Nuclear Information System (INIS)

    Leygonie, R.

    1992-01-01

    The present article is a follow-up to a previous article, under the same title, which describes the scientific bases of the greenhouse effect and the prospect, based on climatic global models, of a potential climate warming up. The conclusions of the Intergovernmental Panel on Climate Change (IPCC, August 1990) were summarized, predicting a mean global temperature increase between 2.4 and 5.1 deg C in 2070, among other changes. The recent IPCC work confirms 1990 conclusions but states that the decline of ozone in the lower stratosphere could neutralize the radiative forcing of chlorofluorocarbons. At least ten more years of investigation are needed to ascertain an increase of the greenhouse effect. Information is given on recent events which may be connected with the global climate problem, in particular the spectacular eruption of the Pinatubo volcano, in mid 1991, cause of a probable cooling of the atmosphere and a potential decrease of radiative forcing due to anthropogenic dioxide emissions. The most important recent events in the political field is a directive proposal by the European Commission aimed at a taxation of both energy in general and of carbon dioxide emissions by fossil fuels. Another event is the United Nations Convention on climate change, signed by 155 countries at the Rio de Janeiro Conference on Environment and Development, which pledges signatories to decrease their greenhouse gas - emissions but no figures are given on percentages and calendar of reduction. At last, a short chapter is devoted to the French ECLAT programme on climate change which consists both in participating in world programmes and in performing original investigations by French Scientists

  17. The Spillover Effects on Employees’ Life of Construction Enterprises’ Safety Climate

    Directory of Open Access Journals (Sweden)

    Xiang Wu

    2017-11-01

    Full Text Available Organizational safety climate will produce spillover effects and thus affect the individuals’ performance in their family life. As a mainstay industry in many countries, the construction industry has a considerable number of employees and the research on the spillover effects from the safety climate of construction enterprises has important theoretical and practical significance to improve the safety behavior of construction employees in their family life. In this study, we thoroughly reviewed the literature to identify the dimensions of the safety climate spillover, obtain empirical data of the construction employees through a questionnaire survey, and use the data analysis method to study the spillover effects of the safety climate of the construction enterprises from the perspective of work–family integration, and reveal its influence mechanism. This study developed a questionnaire to measure the safety climate spillover of the construction enterprises including two dimensions, namely values and behaviors, with nine measured items. Management commitment and safety attitude in the safety climate were positively related to the spillover, and management commitment had the greatest impact on the spillover, while the other components were not significantly related to the spillover. The two forms of spillover, values and behaviors, were mutually influential, and the safety climate had a more significant impact on the values. This paper contributes to the current safety research by developing a factor structure of spillover effects of the safety climate on the lives of construction employees, thus providing a more profound interpretation of this crucial construct in the safety research domain. The spillover effects of the safety climate’s measurement questionnaire serve as an important tool for spillover among construction enterprises. Findings can facilitate improvement in both theories and practices related to the spillover effects of the

  18. Climate equivalence scales and the effects of climate change on Russian welfare and well-being

    Energy Technology Data Exchange (ETDEWEB)

    Frijters, P. [Tinbergen Institute, University of Amsterdam, Amsterdam (Netherlands)] Van Praag, B.M.S. [Foundation for Economic Research SEO, Faculty of Economics and Econometrics, University of Amsterdam, Amsterdam (Netherlands)

    1996-12-31

    The concepts of welfare and well-being are made operational and are measured for two large Russian household surveys, carried out in 1993 and 1994. Welfare refers to satisfaction with income and well-being refers to satisfaction with life as a whole. The main question in this paper is how different climatic conditions in various parts of Russia affect the cost of living and well-being. This approach yields climate equivalence scales for both welfare and well-being. Finally we apply the result to assess the impact of a climate change. Under the assumption that the climate cost structure is invariant under climate change, an increase of 2 Celsius in average temperature could mean an effective decrease in the cost of living of 32% on average in Russia. 5 tabs., 1 app., 28 refs.

  19. Observations from old forests underestimate climate change effects on tree mortality.

    Science.gov (United States)

    Luo, Yong; Chen, Han Y H

    2013-01-01

    Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.

  20. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  1. Climatic effects of nuclear war

    International Nuclear Information System (INIS)

    Covey, C.

    1985-01-01

    Global climatic consequences of a nuclear war have, until recently, been assumed to be insignificant compared with the obviously devastating direct effects from blast, heat, and short-term fallout. But a number of investigations carried out over the past few years indicate that climatic impact could actually be severe enough to threaten the global ecosystem significantly, including regions that may not have been directly involved in the war. This change in perception comes as researchers realize that the fires ignited by nuclear explosions would generate so much smoke that, even spread over a large portion of Earth's surface, densities could be high enough to block most of the sunlight normally reaching the ground. As a result, temperatures could decrease below freezing in a nuclear winter lasting weeks to months. Smoke from fires is what would make nuclear winter so severe. Of necessity, theoretical models are relied upon to estimate the climatic impact of nuclear war. The models incorporate many uncertain assumptions, particularly regarding the small-scale details of smoke production by fires

  2. America's Climate Choices: Cross-Cutting Research Themes to Support Effective Responses to Climate Change

    Science.gov (United States)

    Moser, S. C.; America'S Climate Choices Science Panel

    2010-12-01

    The Science Panel of the America’s Climate Choices project concluded that the climate science research enterprise has to make substantial shifts to better meet the needs of the emerging policy and decision landscape in the US. While much scientific attention in the past necessarily and to great success focused on the physical and biogeochemical aspects of understanding the climate-Earth system, much greater focus is now needed in also developing a science of responses to climate change. To that end, the ACC Science report recommended seven cross-cutting themes, three of which will be highlighted in this talk as they touch on topics the physical science community tends to be less familiar with: (1) vulnerability and adaptation analyses of coupled human-environment systems; (2) research on strategies for limiting climate change; and (3) effective information and decision support systems. The presentation will define and sketch out the potential scope of each of these areas and provide examples from various sectors highlighted in the Science panel report.

  3. Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    DEFF Research Database (Denmark)

    van der Fels-Klerx, H J; van Asselt, E D; Madsen, M S

    2013-01-01

    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling...... the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards....... two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering...

  4. Undergraduate Students As Effective Climate Change Communicators

    Science.gov (United States)

    Sharif, H. O.; Joseph, J.; Mullendore, G. L.

    2014-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. The program is in its third year. More than 75 students participated in a guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Three Colleges were involved in the program: Engineering, Education, and Science.

  5. THE IMPACT OF STRUCTURAL, PETROGRAPHIC AND CLIMATIC FACTORS ON THE SLOPE STABILITY IN THE OPEN CAST MINE OF GRADNA

    Directory of Open Access Journals (Sweden)

    Ivan Tomašić

    1992-12-01

    Full Text Available This paper presents an analysis of a complexity of interrelated structural, petrologic and climatic factors that considerably affect the instabilities in the open cast mine of Gradna, near Samobor. The instabilities provoke the slope failures such as slides and slumps of rock material. During the protracted periodical investigations, the relationship among the factors of regional geology, tectonics, structural geology, petrography, engineering geology, rock mechanics and the rock mining technology was observed in the area. The local control of hydrogeologic properties, as well as climatic fluctuations of temperature and precipitation on the slope stability, was also recognized. It turned out that the structural relationships, characteristic of the manifold cataclased dolomite, stimulated the development of local instabilities, particularly during the period of low temperatures affecting the process of ground-water accumulation. When the temperatures are worm, the ground-water circulation is slow, exerting only the small-scale influence on the local instabilities (the paper is published in Croatian.

  6. Towards a Comparative Index of Seaport Climate-Risk: Development of Indicators from Open Data

    Science.gov (United States)

    McIntosh, R. D.; Becker, A.

    2016-02-01

    Seaports represent an example of coastal infrastructure that is at once critical to global trade, constrained to the land-sea interface, and exposed to weather and climate hazards. Seaports face impacts associated with projected changes in sea level, sedimentation, ocean chemistry, wave dynamics, temperature, precipitation, and storm frequency and intensity. Port decision-makers have the responsibility to enhance resilience against these impacts. At the multi-port (regional or national) scale, policy-makers must prioritize adaptation efforts to maximize the efficiency of limited physical and financial resources. Prioritization requires comparing across seaports, and comparison requires a standardized assessment method, but efforts to date have either been limited in scope to exposure-only assessments or limited in scale to evaluate one port in isolation from a system of ports. In order to better understand the distribution of risk across ports and to inform transportation resilience policy, we are developing a comparative assessment method to measure the relative climate-risk faced by a sample of ports. Our mixed-methods approach combines a quantitative, data-driven, indicator-based assessment with qualitative data collected via expert-elicitation. In this presentation, we identify and synthesize over 120 potential risk indicators from open data sources. Indicators represent exposure, sensitivity, and adaptive capacity for a pilot sample of 20 ports. Our exploratory data analysis, including Principal Component Analysis, uncovered sources of variance between individual ports and between indicators. Next steps include convening an expert panel representing the perspectives of multiple transportation system agencies to find consensus on a suite of robust indicators and metrics for maritime freight node climate risk assessment. The index will be refined based on expert feedback, the sample size expanded, and additional indicators sought from closed data sources

  7. climate change: causes, effects and mitigation measures-a review

    African Journals Online (AJOL)

    BARTH EKWUEME

    Both natural and human causes of climate change including the earth's orbital changes, solar variations .... analysis supported by climate models have revealed that cloud ... clouds could actually exert a small cooling effect as temperature ...

  8. Healthcare waste management during disasters and its effects on climate change: Lessons from 2010 earthquake and cholera tragedies in Haiti.

    Science.gov (United States)

    Raila, Emilia M; Anderson, David O

    2017-03-01

    Despite growing effects of human activities on climate change throughout the world, and global South in particular, scientists are yet to understand how poor healthcare waste management practices in an emergency influences the climate change. This article presents new findings on climate change risks of healthcare waste disposal during and after the 2010 earthquake and cholera disasters in Haiti. The researchers analysed quantities of healthcare waste incinerated by the United Nations Mission in Haiti for 60 months (2009 to 2013). The aim was to determine the relationship between healthcare waste incinerated weights and the time of occurrence of the two disasters, and associated climate change effects, if any. Pearson product-moment correlation coefficient indicated a weak correlation between the quantities of healthcare waste disposed of and the time of occurrence of the actual emergencies (r (58) = 0.406, p = 0.001). Correspondingly, linear regression analysis indicated a relatively linear data trend (R 2 = 0.16, F (1, 58) = 11.42, P = 0.001) with fluctuating scenarios that depicted a sharp rise in 2012, and time series model showed monthly and yearly variations within 60 months. Given that the peak healthcare waste incineration occurred 2 years after the 2010 disasters, points at the need to minimise wastage on pharmaceuticals by improving logistics management. The Government of Haiti had no data on healthcare waste disposal and practised smoky open burning, thus a need for capacity building on green healthcare waste management technologies for effective climate change mitigation.

  9. EFFECTS OF CLIMATE CHANGE ON POULTRY PRODUCTION IN ONDO STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    G.B. Adesiji

    2013-02-01

    Full Text Available The study assesses the effects of climate change on poultry production in Ondo State, Nigeria. Eighty three (83 poultry farmers were interviewed to elicit relevant information in line with the objectives of the study. Descriptive statistics and inferential statistical tools were used for data analysis. Findings revealed that majority (93.3% of the respondents are aware of climate change, 78%, 98.8% and 86.7% of the respondents agreed that temperature fluctuation, increased in sunshine intensity and global warming has a negative effects on poultry production, 72.4% of the respondents agreed that prices of feed grains are usually high in hot and dry seasons which may affect cost of production and number of birds to raise for egg and meat production in the farm, 73.5% of the respondents agreed that climate change has effect on feed grain availability, this implies that high temperature and low rainfall are climatic factors that affect general grain harvest, their supply to the market and ultimately cost of poultry production. the findings further revealed that 94% of the respondents agreed that climate change affects egg and meat production pattern and 95.2% of the respondents agreed that moist climatic conditions encouraged the distribution and development of diseases. Infrential statistics shows that there is a significant relationship between respondents' socio-economic characteristics and perception of poultry farmers on effects of climate change on poultry production since p > 0.05 (r = 0.454, p= 0.001, the findings also shows that there is a significant relationship between socio-economic characteristics of respondents and their level of awareness of climate change since the p > 0.05 (r = 0.652, p = 0.001. it is recomended extension agents and other development agencies need to educate the poultry farmers more about the effects posed by climate change on poultry production and intensify awareness campaign to poultry farmers on how to reduce

  10. Experimental effects of climate messages vary geographically

    Science.gov (United States)

    Zhang, Baobao; van der Linden, Sander; Mildenberger, Matto; Marlon, Jennifer R.; Howe, Peter D.; Leiserowitz, Anthony

    2018-05-01

    Social science scholars routinely evaluate the efficacy of diverse climate frames using local convenience or nationally representative samples1-5. For example, previous research has focused on communicating the scientific consensus on climate change, which has been identified as a `gateway' cognition to other key beliefs about the issue6-9. Importantly, although these efforts reveal average public responsiveness to particular climate frames, they do not describe variation in message effectiveness at the spatial and political scales relevant for climate policymaking. Here we use a small-area estimation method to map geographical variation in public responsiveness to information about the scientific consensus as part of a large-scale randomized national experiment (n = 6,301). Our survey experiment finds that, on average, public perception of the consensus increases by 16 percentage points after message exposure. However, substantial spatial variation exists across the United States at state and local scales. Crucially, responsiveness is highest in more conservative parts of the country, leading to national convergence in perceptions of the climate science consensus across diverse political geographies. These findings not only advance a geographical understanding of how the public engages with information about scientific agreement, but will also prove useful for policymakers, practitioners and scientists engaged in climate change mitigation and adaptation.

  11. Climate and chemistry effects of a regional scale nuclear conflict

    OpenAIRE

    Stenke A.; Hoyle C. R.; Luo B.; Rozanov E.; Groebner J.; Maag L.; Broennimann S.; Peter T.

    2013-01-01

    Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a...

  12. Past and predicted future effects of housing growth on open space conservation opportunity areas and habitat connectivity around National Wildlife Refuges

    Science.gov (United States)

    Hamilton, Christopher M.; Baumann, Matthias; Pidgeon, Anna M.; Helmers, David P.; Thogmartin, Wayne E.; Heglund, Patricia J.; Radeloff, Volker C.

    2016-01-01

    ContextHousing growth can alter suitability of matrix habitats around protected areas, strongly affecting movements of organisms and, consequently, threatening connectivity of protected area networks.ObjectivesOur goal was to quantify distribution and growth of housing around the U.S. Fish and Wildlife Service National Wildlife Refuge System. This is important information for conservation planning, particularly given promotion of habitat connectivity as a climate change adaptation measure.MethodsWe quantified housing growth from 1940 to 2000 and projected future growth to 2030 within three distances from refuges, identifying very low housing density open space, “opportunity areas” (contiguous areas with habitat corridors within these opportunity areas in 2000.ResultsOur results indicated that the number and area of open space opportunity areas generally decreased with increasing distance from refuges and with the passage of time. Furthermore, total area in habitat corridors was much lower than in opportunity areas. In addition, the number of corridors sometimes exceeded number of opportunity areas as a result of habitat fragmentation, indicating corridors are likely vulnerable to land use change. Finally, regional differences were strong and indicated some refuges may have experienced so much housing growth already that they are effectively too isolated to adapt to climate change, while others may require extensive habitat restoration work.ConclusionsWildlife refuges are increasingly isolated by residential housing development, potentially constraining the movement of wildlife and, therefore, their ability to adapt to a changing climate.

  13. Inducing a health-promoting change process within an organization: the effectiveness of a large-scale intervention on social capital, openness, and autonomous motivation toward health.

    Science.gov (United States)

    van Scheppingen, Arjella R; de Vroome, Ernest M M; Ten Have, Kristin C J M; Bos, Ellen H; Zwetsloot, Gerard I J M; van Mechelen, W

    2014-11-01

    To examine the effectiveness of an organizational large-scale intervention applied to induce a health-promoting organizational change process. A quasi-experimental, "as-treated" design was used. Regression analyses on data of employees of a Dutch dairy company (n = 324) were used to examine the effects on bonding social capital, openness, and autonomous motivation toward health and on employees' lifestyle, health, vitality, and sustainable employability. Also, the sensitivity of the intervention components was examined. Intervention effects were found for bonding social capital, openness toward health, smoking, healthy eating, and sustainable employability. The effects were primarily attributable to the intervention's dialogue component. The change process initiated by the large-scale intervention contributed to a social climate in the workplace that promoted health and ownership toward health. The study confirms the relevance of collective change processes for health promotion.

  14. A review of climate change effects on terrestrial rangeland birds

    Science.gov (United States)

    D. M. Finch; K. E. Bagne; M. M. Friggens; D. M. Smith; K. M. Brodhead

    2011-01-01

    We evaluated existing literature on predicted and known climate change effects on terrestrial rangeland birds. We asked the following questions: 1) How does climate change affect birds? 2) How will birds respond to climate change? 3) Are species already responding? 4) How will habitats be impacted?

  15. Climate-chemical interactions and greenhouse effects of trace gases

    Science.gov (United States)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  16. The effect of climate policy on the impacts of climate change on river flows in the UK

    Science.gov (United States)

    Arnell, Nigel W.; Charlton, Matthew B.; Lowe, Jason A.

    2014-03-01

    This paper compares the effects of two indicative climate mitigation policies on river flows in six catchments in the UK with two scenarios representing un-mitigated emissions. It considers the consequences of uncertainty in both the pattern of catchment climate change as represented by different climate models and hydrological model parameterisation on the effects of mitigation policy. Mitigation policy has little effect on estimated flow magnitudes in 2030. By 2050 a mitigation policy which achieves a 2 °C temperature rise target reduces impacts on low flows by 20-25% compared to a business-as-usual emissions scenario which increases temperatures by 4 °C by the end of the 21st century, but this is small compared to the range in impacts between different climate model scenarios. However, the analysis also demonstrates that an early peak in emissions would reduce impacts by 40-60% by 2080 (compared with the 4 °C pathway), easing the adaptation challenge over the long term, and can delay by several decades the impacts that would be experienced from around 2050 in the absence of policy. The estimated proportion of impacts avoided varies between climate model patterns and, to a lesser extent, hydrological model parameterisations, due to variations in the projected shape of the relationship between climate forcing and hydrological response.

  17. The Health Effects of Climate Change in the WHO European Region

    Directory of Open Access Journals (Sweden)

    Tanja Wolf

    2015-11-01

    Full Text Available The evidence of observed health effects as well as projections of future health risks from climate variability and climate change is growing. This article summarizes new knowledge on these health risks generated since the IPCC fourth assessment report (AR4 was published in 2007, with a specific focus on the 53 countries comprising the WHO European Region. Many studies on the effects of weather, climate variability, and climate change on health in the European Region have been published since 2007, increasing the level of certainty with regard to already known health threats. Exposures to temperature extremes, floods, storms, and wildfires have effects on cardiovascular and respiratory health. Climate- and weather-related health risks from worsening food and water safety and security, poor air quality, and ultraviolet radiation exposure as well as increasing allergic diseases, vector- and rodent-borne diseases, and other climate-sensitive health outcomes also warrant attention and policy action to protect human health.

  18. Indoor climate optimization with limited resources

    DEFF Research Database (Denmark)

    Santos, A.; Gunnarsen, Lars Bo

    This report presents experimental data and models for optimisation of the indoor climate parameters temperature, noise, draught and window opening. Results are based on experiments with human subjects performed in climate chambers at University of the Philippines. The report may assist building...... designers to balance attention and resources between the parameters of the indoor climate when resources are less than optimal....

  19. The moderating effects of school climate on bullying prevention efforts.

    Science.gov (United States)

    Low, Sabina; Van Ryzin, Mark

    2014-09-01

    Bullying prevention efforts have yielded mixed effects over the last 20 years. Program effectiveness is driven by a number of factors (e.g., program elements and implementation), but there remains a dearth of understanding regarding the role of school climate on the impact of bullying prevention programs. This gap is surprising, given research suggesting that bullying problems and climate are strongly related. The current study examines the moderating role of school climate on the impacts of a stand-alone bullying prevention curriculum. In addition, the current study examined 2 different dimensions of school climate across both student and staff perceptions. Data for this study were derived from a Steps to Respect (STR) randomized efficacy trial that was conducted in 33 elementary schools over a 1-year period. Schools were randomly assigned to intervention or wait-listed control condition. Outcome measures (pre-to-post) were obtained from (a) all school staff, (b) a randomly selected subset of 3rd-5th grade teachers in each school, and (c) all students in classrooms of selected teachers. Multilevel analyses revealed that psychosocial climate was strongly related to reductions in bullying-related attitudes and behaviors. Intervention status yielded only 1 significant main effect, although, STR schools with positive psychosocial climate at baseline had less victimization at posttest. Policies/administrative commitment to bullying were related to reduced perpetration among all schools. Findings suggest positive psychosocial climate (from both staff and student perspective) plays a foundational role in bullying prevention, and can optimize effects of stand-alone programs. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Climate dependence of the CO2 fertilization effect on terrestrial net primary production

    International Nuclear Information System (INIS)

    Alexandrov, G.A.; Yamagata, Y.; Oikawa, T.

    2003-01-01

    The quantitative formulation of the fertilization effect of CO 2 enrichment on net primary production (NPP) introduced by Keeling and Bacastow in 1970s (known as Keeling's formula) has been recognized as a summary of experimental data and has been used in various assessments of the industrial impact on atmospheric chemistry. Nevertheless, the magnitude of the formula's key coefficient, the so-called growth factor, has remained open to question. Some of the global carbon cycle modelers avoid this question by tuning growth factor and choosing the value that fits the observed course of atmospheric CO 2 changes. However, for mapping terrestrial sinks induced by the CO 2 fertilization effect one needs a geographical pattern of the growth factor rather than its globally averaged value. The earlier approach to this problem involved formulating the climate dependence of the growth factor and the derivation of its global pattern from climatic variables (whose geographical distribution is known). We use a process-based model (TsuBiMo) for this purpose and derive the values of growth factor for major biomes for comparison our approach with the earlier studies. Contrary to the earlier prevailing opinion, TsuBiMo predicts that these values decrease with mean annual temperature (excluding biomes of limited water supply). We attribute this result to the effect of light limitation caused by mutual shading inside a canopy, which was considered earlier as unimportant, and conclude that current hypotheses about CO 2 fertilization effect (and thus projections of the related carbon sink) are very sensitive to the choice of driving forces taken into account

  1. Has climate change opened new opportunities for wheat cropping in Argentina

    NARCIS (Netherlands)

    Asseng, S.; Travasso, M.; Ludwig, F.

    2013-01-01

    As a result of climate change, and in particular rainfall changes, agricultural production is likely to change across the globe. Until now most research has focused on areas which will become unsustainable for agricultural production. However, there are also regions where climate change might

  2. School climate, family structure, and academic achievement: a study of moderation effects.

    Science.gov (United States)

    O'Malley, Meagan; Voight, Adam; Renshaw, Tyler L; Eklund, Katie

    2015-03-01

    School climate has been lauded for its relationship to a host of desirable academic, behavioral, and social-emotional outcomes for youth. The present study tested the hypothesis that school climate counteracts youths' home-school risk by examining the moderating effects of students' school climate perceptions on the relationship between family structure (i.e., two-parent, one-parent, foster-care, and homeless households), and academic performance (i.e., self-reported [grade point average] GPA). The present sample consisted of 902 California public high schools, including responses from over 490,000 students in Grades 9 and 11. Results indicated that, regardless of family structure, students with more positive school climate perceptions self-reported higher GPAs. Youths with two-parent, one-parent, and homeless family structures displayed stepwise, linear improvements in self-reported GPA as perceptions of climate improved. Foster-care students' positive school climate perceptions had a weaker effect on their self-reported GPA compared with students living in other family structures. A unique curvilinear trend was found for homeless students, as the relationship between their school climate perceptions and self-reported GPA was stronger at lower levels. Overall, the moderation effect of positive school climate perceptions on self-reported GPA was strongest for homeless youth and youth from one-parent homes, suggesting that school climate has a protective effect for students living in these family structures. A protective effect was not found for youth in foster-care. Implications for research and practice are discussed.

  3. Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health

    OpenAIRE

    Gutierrez, Kristie S.; LePrevost, Catherine E.

    2016-01-01

    Climate justice is a local, national, and global movement to protect at-risk populations who are disproportionately affected by climate change. The social context for this review is the Southeastern region of the United States, which is particularly susceptible to climate change because of the geography of the area and the vulnerabilities of the inhabiting populations. Negative human health effects on variable and vulnerable populations within the Southeast region due to changing climate are ...

  4. The effect of room acoustics on the measured speech privacy in two typical European open plan offices

    NARCIS (Netherlands)

    Wenmaekers, R.H.C.; Hout, van N.H.A.M.; Luxemburg, van L.C.J.; Hak, C.C.J.M.

    2009-01-01

    The reverberation time and the background noise level are often used as the most important design parameters in European open plan offices to achieve a comfortable acoustic climate and to control speech intelligibility. Good speech intelligibility is desired for people working together, but bad

  5. Influence of the Haizhou Open Pit Coal Mine on the atmospheric flow over Fuxin, China.

    Science.gov (United States)

    Chen, He; Yang, Zhi-Feng; Wang, Xuan

    2004-01-01

    The influence of the Haizhou Open Pit Mine on the atmospheric flow in nearby Fuxin City in China was analyzed with the aid of the steady-state Navier-Stokes equations. The finite element method was used to obtain numerical solutions to these equations. The results showed that the Haizhou Open Pit Coal Mine contributes to the turbulent flow in the Fuxin City and its surroundings. However, when compared with the climatic effects, the open pit mine has a relatively small impact on the atmospheric flow over Fuxin.

  6. An open-source textbook for teaching climate-related risk analysis using the R computing environment

    Science.gov (United States)

    Applegate, P. J.; Keller, K.

    2015-12-01

    Greenhouse gas emissions lead to increased surface air temperatures and sea level rise. In turn, sea level rise increases the risks of flooding for people living near the world's coastlines. Our own research on assessing sea level rise-related risks emphasizes both Earth science and statistics. At the same time, the free, open-source computing environment R is growing in popularity among statisticians and scientists due to its flexibility and graphics capabilities, as well as its large library of existing functions. We have developed a set of laboratory exercises that introduce students to the Earth science and statistical concepts needed for assessing the risks presented by climate change, particularly sea-level rise. These exercises will be published as a free, open-source textbook on the Web. Each exercise begins with a description of the Earth science and/or statistical concepts that the exercise teaches, with references to key journal articles where appropriate. Next, students are asked to examine in detail a piece of existing R code, and the exercise text provides a clear explanation of how the code works. Finally, students are asked to modify the existing code to produce a well-defined outcome. We discuss our experiences in developing the exercises over two separate semesters at Penn State, plus using R Markdown to interweave explanatory text with sample code and figures in the textbook.

  7. Climate Literacy: Springboard to Action

    Science.gov (United States)

    Long, B.; Bader, D.

    2011-12-01

    Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation (Ocean Project, 2009). The Aquarium of the Pacific is using NOAA's Science on a Sphere (SOS)° and linked flat screens to convey climate concepts to the public and serve as a model for how aquariums can promote climate literacy. The Ocean Science Center houses the SOS and is designed to immerse our visitors in an experience that extends from the sphere, to our live animals, and to our public programming. The first SOS exhibit, the sea level rise story, opened as the cornerstone of an aquarium-wide climate literacy strategy. Large panels next to the SOS prompts visitors to pledge actions to reduce their personal carbon footprint. The exhibit objectives were to provide a visual presentation that conveys a dramatic story about sea level rise, and to engage the audience in confronting the impact of sea level rise, and the local implications. The Aquarium utilized Yale's Six Americas survey instrument during summer 2010 to measure our audience interpretations of and responses to climate change. The survey showed that 78% of visitors categorized themselves as either alarmed or concerned about climate change, greater than the national average. Thus our climate literacy programs do not focus on convincing visitors of climate change and its causes, but on encouraging adaptive responses to varying scenarios. University of California, Berkeley, Lawrence Hall of Science Center for Research Evaluation and Assessment (REA) conducted a pre-opening evaluation of the exhibit's impact. The participants, 58% of whom were families with children, did not want to know more about climate change, but wanted tangible activities they could engage in to mitigate human induced effects, and more details about the impact of climate change on marine animals. REA stated that, "the sea level rise programs (both facilitated and non-facilitated) are well positioned to be

  8. Effect of Climate Change on the Food Supply System: Implications ...

    African Journals Online (AJOL)

    Climate change has become an issue of great concern in recent years due to its effect on every aspect of life. The ecosystem, agriculture, industry, households and human well-being are all intertwined with climate change issues. The food supply system worldwide has been affected and is also contributing to climate ...

  9. Workshop in political institutions - institutional analysis and global climate change: Design principles for robust international regimes

    International Nuclear Information System (INIS)

    McGinnis, M.

    1992-01-01

    Scientific evidence suggests that human activities have a significant effect on the world's climate. Political pressures are growing to establish political institutions at the global level that would help manage the social and economic consequences of climate change. Disagreements remain about the magnitude of these effects, as well as the regional distribution of the detrimental consequences of climate change. In this paper we do not wish to enter into the complexities of these technical debates. Instead, we wish to challenge a seemingly widespread consensus about the nature of the political response appropriate to this global dilemma. Specifically, we question the extent to which the open-quotes answerclose quotes can be said to reside primarily in the establishment of the new global institutions likely to emerge from the first open-quotes Earth Summitclose quotes - the United Nations (UN) Conference on Environment and Development - scheduled for June of 1992 in Rio de Janeiro

  10. Adaptation: Planning for climate change and its effects on federal lands

    Science.gov (United States)

    Marie Oliver; David L. Peterson; Michael J. Furniss

    2012-01-01

    National forest managers are charged with tackling the effects of climate change on the natural resources under their care. The Forest Service National Roadmap for Responding to Climate Change and the Climate Change Performance Scorecard require managers to make significant progress in addressing climate change by 2015. To help land managers meet this challenge,...

  11. Effect of limestone dust on vegetation in an area with a Mediterranean climate

    Energy Technology Data Exchange (ETDEWEB)

    Gale, J; Easton, J

    1979-01-01

    Possible effects of limestone dust on photosynthesis and transpiration throughout the summer season were assessed. Calculations were based on measurements of the dust accumulating on the leaves during the summer season, photosynthesis light curves of representative species, effect of dust on the optical characteristics of the leaves and stomatal diffusion resistances in the region of the quarry based on meteorological data. On a seasonal basis the dust was calculated to have only a very small effect in reducing photosynthesis and transpiration. A field experiment in which irrigated Xanthium strumarium plants were grown at different distances downwind from the quarry showed no deleterious effect of the dust even when plants close to the quarry were heavily coated. Comparison of aerial photographs taken just before the quarry was opened and 22 years later revealed no changes in the size, number or distribution pattern of the perennial, tree and shrub vegetation. It is concluded that, in an area with a Mediterranean climate, limestone dust, whilst being aesthetically offensive, does not significantly affect the growth of the natural vegetation. 13 references, 5 figures, 3 tables.

  12. Shallow Horizontal GCHP Effectiveness in Arid Climate Soils

    Science.gov (United States)

    North, Timothy James

    Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.

  13. Interactive effects of climate change and biodiversity loss on ecosystem functioning.

    Science.gov (United States)

    Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F

    2018-05-01

    Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.

  14. Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects

    Science.gov (United States)

    Makowski, David; Asseng, Senthold; Ewert, Frank; Bassu, Simona; Durand, Jean-Louis; Martre, Pierre; Adam, Myriam; Aggarwal, Pramod K.; Angulo, Carlos; Baron, Chritian; hide

    2015-01-01

    Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex

  15. Effective Climate Communication with Difficult Audiences

    Science.gov (United States)

    Denning, S.

    2015-12-01

    Climate communication is often fraught with ideological baggage ("noise") that makes it very difficult to connect to audiences. In these cases, it is helpful to use "best practices" known from other fields of communication. Engaging audiences with authenticity, using plain language, respecting cultural and political differences, and a sprinkling of humor can go a long way toward establishing a connection. It's important to avoid common but polarizing tropes from popular media, and often quite helpful to frame climate issues in novel or unexpected ways that cut across entrenched political discourse. Emerging social science research Beyond ideology, climate change is Simple, Serious, and Solvable. Effective communication of these three key ideas can succeed when the science argument is carefully framed to avoid attack of the audience's ethical identity. Simple arguments from common sense and everyday experience are more successful than data. Serious consequences to values that resonate with the audience can be avoided by solutions that don't threaten those values.

  16. Monetary compensations in climate policy through the lens of a general equilibrium assessment: The case of oil-exporting countries

    International Nuclear Information System (INIS)

    Waisman, Henri; Rozenberg, Julie; Hourcade, Jean Charles

    2013-01-01

    This paper investigates the compensations that major oil producers have claimed for since the Kyoto Protocol in order to alleviate the adverse impacts of climate policy on their economies. The amount of these adverse impacts is assessed through a general equilibrium model which endogenizes both the reduction of oil exportation revenues under international climate policy and the macroeconomic effect of carbon pricing on Middle-East's economy. We show that compensating the drop of exportation revenues does not offset GDP and welfare losses because of the time profile of the general equilibrium effects. When considering instead compensation based on GDP losses, the effectiveness of monetary transfers proves to be drastically limited by general equilibrium effects in opened economies. The main channels of this efficiency gap are investigated and its magnitude proves to be conditional upon strategic and policy choices of the Middle-East. This leads us to suggest that other means than direct monetary compensating transfers should be discussed to engage the Middle-East in climate policies. - Highlights: • We endogenize the interplay between climate policy, oil markets and the macroeconomy. • We quantify the transfers to compensate climate policy losses in oil-exporting countries. • We assess the general equilibrium effect of monetary transfers in opened economies. • The macroeconomic efficiency of transfers is altered by general equilibrium effects. • Monetary compensation schemes are not efficient for oil exporters in climate policy

  17. Soil ecosystem functioning under climate change: plant species and community effects

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  18. Estimating the effects of regional political climate on Russian tourists to Spain

    OpenAIRE

    ALVAREZ DIAZ MARCOS; MANUEL GONZÁLEZ-GÓMEZ; OTERO-GIRÁLDEZ MARÍA SOLEDAD

    2017-01-01

    Regional political climate has become an increasingly significant force influencing travel behaviour in many tourist destinations. This paper attempts to address impacts of regional political stability on Russian inbound tourism into Spain within a demand model framework and using a cointegration approach. The results show that visa openness as well as political instability and civil unrest in substitute destinations attract more Russian tourists boosting economic growth and reducing unemploy...

  19. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036, Rende (CS) (Italy); Vecchio, Antonio, E-mail: tommaso.alberti@unical.it, E-mail: tommasoalberti89@gmail.com [LESIA—Observatoire de Paris, PSL Research University, 5 place Jules Janssen, F-92190, Meudon (France)

    2017-07-20

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  20. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    International Nuclear Information System (INIS)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio; Vecchio, Antonio

    2017-01-01

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  1. The health effects of climate change: a survey of recent quantitative research.

    Science.gov (United States)

    Grasso, Margherita; Manera, Matteo; Chiabai, Aline; Markandya, Anil

    2012-05-01

    In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases.

  2. Effects of climate change on US agriculture

    International Nuclear Information System (INIS)

    Guillet, L.

    2007-08-01

    The USA are a major producer of food and fiber products in the world. The US agriculture represents more than 25% of the world trades of wheat, corn, soy and cotton. The cultivated surfaces and the pasture lands represent 210 million Ha (17% of the US territory) and 300 million Ha (26% of the US territory), respectively. The agricultural production represents less than 2% of the US GDP, put the agriculture products make about 5% of the US exports. The climate change may have some impacts on the overall agriculture industry, from the plant growth to the conditions of competition on international markets. In 2001, the US global change research program, published an evaluation report about the potential consequences of the climate change on the US agriculture. The conclusions of the panel of experts, based on climate, cultivation and economical models, was that the CO 2 levels and climate changes of the 21. century would have no negative impact on the US agriculture. The average effects, on the contrary, would be rather positive, depending on the type of culture and on the region considered. Today, the experts have entertained lot of doubts about the 2001 forecasts: the fertilizing effect of CO 2 is more and more criticized and an efficient supply of water appears as seriously compromised for many regions. Experts stress also on the lack of consideration for extreme climatic events, and for crop vermin and diseases. This document reanalyzes the conclusions of the 2001 report in the light of the works carried out more recently at the Agriculture Research Service (ARS). The proceedings of expert's interviews are attached in appendixes. (J.S.)

  3. Effects of adjusting cropping systems on utilization efficiency of climatic resources in Northeast China under future climate scenarios

    Science.gov (United States)

    Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian

    Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize

  4. Greenhouse effect and its climatic consequences: scientific evaluation

    International Nuclear Information System (INIS)

    1994-11-01

    The greenhouse effect plays a major role in climate evolution and the increase observed at present in the concentration of the main gases causing the greenhouse effect (carbon dioxide, chlorofluorocarbons, methane) stems very definitely from human activities. The global warming potential by the various greenhouse effect gases is calculated through restrictive hypotheses. An essential element in the importance given to the growth of the greenhouse effect phenomena was the regular rise in the concentration of carbon dioxide in the atmosphere. The overall carbon cycle balance still needs to be worked out. The aerosols caused by sulfurous releases have grown. The decrease in the amount of ozone in the stratosphere brings on a slight cooling of the surface of the Earth. The local increase of tropospheric ozone brings on a slight local warming with a comparable order of magnitude. Despite all the progress that has been achieved in modelling the phenomena, we cannot affirm today that these predictions are accurate. Recent work involving analyses of the polar ice-caps along with other indications of past climates have given a better understanding of the North Atlantic climate over the past 200,000 years. 119 refs., 10 figs., 6 tabs

  5. Effects of climate change on seashores; Effekter av klimaendringer for havstrand

    Energy Technology Data Exchange (ETDEWEB)

    Follestad, Arne; Evju, Marianne; Oedegaard, Frode

    2011-04-15

    , thermopile species, and the distribution range can be expected to be increased with increased temperatures and a prolonged growth period. The largest changes in occurrences and population sizes are likely to be in arctic plants with restricted, northern distributions. For invertebrates, the effects of climate change will be largely determined by the state of the habitats after a change. Species favouring open, partly vegetation free areas in the backshore parts of the seashore habitats will probably decline. Particularly vulnerable are species found in sand dune habitats. Species being favoured by mild winters and a prolonged growth period are expected to increase their abundance, given that the state of the habitats is not significantly changed. For birds, climate change will affect the distribution and occurrence of several species. This may bring about needs for change in protection plans, as important breeding and feeding areas for sea birds and other waterfowl may become unsuitable with increasing sea levels. This is also valid for moulting sites and breeding sites of Harbour seal and Grey seal, which are often located in remote areas offshore. Several countries have implemented measures to prevent negative impacts on seashores, such as coastal protection measures, both to protect particular localities, nature types or important social structures. Coastal protection measures may impair natural dynamic processes operating in coastal areas and thus reduce the ability of the ecosystems to adapt to the effects of climate change. It is therefore recommended that strategies are developed relatively quickly in order to meet the challenges that coastal protection measures may result in for nature types and threatened species. An assessment of the necessity of law change may be advisable in order to be able to prevent irreversible interventions in seashore ecosystems. It is recommended to further investigate the effects on seashores, based on new prognoses for sea level rise

  6. Beyond yields: Climate change effects on specialty crop quality and agroecological management

    Directory of Open Access Journals (Sweden)

    Selena Ahmed

    2016-03-01

    Full Text Available Abstract Climate change is impacting the sustainability of food systems through shifts in natural and human dimensions of agroecosystems that influence farmer livelihoods, consumer choices, and food security. This paper highlights the need for climate studies on specialty crops to focus not only on yields, but also on quality, as well as the ability of agroecological management to buffer climate effects on quality parameters. Crop quality refers to phytonutrient and secondary metabolite profiles and associated health and sensory properties that influence consumer buying decisions. Through two literature reviews, we provide examples of specialty crops that are vulnerable to climate effects on quality and examples of climate-resilient agroecological strategies. A range of specialty crops including fruits, vegetables, tree nuts, stimulants, and herbs were identified to respond to climate variables with changes in quality. The review on climate-resilient strategies to mitigate effects on crop quality highlighted a major gap in the literature. However, agricultural diversification emerged as a promising strategy for climate resilience more broadly and highlights the need for future research to assess the potential of diversified agroecosystems to buffer climate effects on crop quality. We integrate the concepts from our literature review within a socio-ecological systems framework that takes into account feedbacks between crop quality, consumer responses, and agroecosystem management. The presented framework is especially useful for two themes in agricultural development and marketing, nutrition-sensitive agriculture and terroir, for informing the design of climate-change resilient specialty crop systems focused on management of quality and other ecosystem services towards promoting environmental and human wellbeing.

  7. Redesigning mental healthcare delivery : Is there an effect on organizational climate?

    NARCIS (Netherlands)

    Joosten, T.C.M.; Bongers, I.M.B.; Janssen, R.T.J.M.

    2014-01-01

    Objective Many studies have investigated the effect of redesign on operational performance; fewer studies have evaluated the effects on employees' perceptions of their working environment (organizational climate). Some authors state that redesign will lead to poorer organizational climate, while

  8. Climate mediates the effects of disturbance on ant assemblage structure

    Science.gov (United States)

    Gibb, Heloise; Sanders, Nathan J.; Dunn, Robert R.; Watson, Simon; Photakis, Manoli; Abril, Silvia; Andersen, Alan N.; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Castracani, Cristina; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Enríquez, Martha L.; Fayle, Tom M.; Feener, Donald H.; Fitzpatrick, Matthew C.; Gómez, Crisanto; Grasso, Donato A.; Groc, Sarah; Heterick, Brian; Hoffmann, Benjamin D.; Lach, Lori; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Majer, Jonathan; Menke, Sean B.; Mezger, Dirk; Mori, Alessandra; Munyai, Thinandavha C.; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; de Souza, Jorge L. P.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Parr, Catherine L.

    2015-01-01

    Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk. PMID:25994675

  9. Integrated Climate Change Modelling and Policy Linkages for ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Similarly, planners and policymakers face barriers in applying and using climate ... Advancing the application of climate and hydrological information and its ... Call for new OWSD Fellowships for Early Career Women Scientists now open.

  10. Projected effects of climate change on the carbon stocks of European beech (Fagus sylvatica L. forests in Zala County, Hungary

    Directory of Open Access Journals (Sweden)

    Somogyi Zoltán

    2016-03-01

    Full Text Available Recent studies suggest that climate change will lead to the local extinction of many tree species from large areas during this century, affecting the functioning and ecosystem services of many forests. This study reports on projected carbon losses due to the assumed local climate change-driven extinction of European beech (Fagus sylvatica L. from Zala County, South-Western Hungary, where the species grows at the xeric limit of its distribution. The losses were calculated as a difference between carbon stocks in climate change scenarios assuming an exponentially increasing forest decline over time, and those in a baseline scenario assuming no climate change. In the climate change scenarios, three different sets of forest management adaptation measures were studied: (1 only harvesting damaged stands, (2 additionally salvaging dead trees that died due to climate change, and (3 replacing, at an increasing rate over time, beech with sessile oak (Quercus petraea Matt. Lieb. after final harvest. Projections were made using the open access carbon accounting model CASMOFOR based on modeling or assuming effects of climate change on mortality, tree growth, root-to-shoot ratio and decomposition rates. Results demonstrate that, if beech disappears from the region as projected by the end of the century, over 80% of above-ground biomass carbon, and over 60% of the carbon stocks of all pools (excluding soils of the forests will be lost by 2100. Such emission rates on large areas may have a discernible positive feedback on climate change, and can only partially be offset by the forest management adaptation measures.

  11. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web

    DEFF Research Database (Denmark)

    Niiranen, S.; Yletyinen, J.; Tomczak, M.T.

    2013-01-01

    approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional...... biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future......Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed...

  12. The Health Effects of Climate Change: A Survey of Recent Quantitative Research

    Directory of Open Access Journals (Sweden)

    Anil Markandya

    2012-04-01

    Full Text Available In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases.

  13. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    Directory of Open Access Journals (Sweden)

    Engels Stefan

    2012-07-01

    Full Text Available Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of the processes that drive the global climate system. In this review paper, we present palaeoclimatological evidence for the past influence of solar variability on Earth’s climate, highlighting the effects of solar forcing on a range of timescales. On a decadal timescale, instrumental measurements as well as historical records show the effects of the 11-year Schwabe cycle on climate. The variation in total solar irradiance that is associated with a Schwabe cycle is only ~1 W m−2 between a solar minimum and a maximum, but winter and spring temperatures on the Northern Hemisphere show a response even to this small-scale variability. There is a large body of evidence from palaeoclimatic reconstructions that shows the influence of solar activity on a centennial to millennial timescale. We highlight a period of low solar activity starting at 2800 years before present when Europe experienced a shift to colder and wetter climate conditions. The spatial pattern of climate change that can be recognized in the palaeoclimatological data is in line with the suggested pattern of climate change as simulated by climate models. Millennial-scale climate oscillations can be recognized in sediment records from the Atlantic Ocean as well as in records of lake-level fluctuations in southeastern France. These oscillations coincide with variation in 14C production as recognized in the atmospheric 14C record (which is a proxy-record for solar activity, suggesting that Earth’s climate is sensitive to changes in solar activity on a millennial timescale as well.

  14. Views on alternative forums for effectively tackling climate change

    Science.gov (United States)

    Hjerpe, Mattias; Nasiritousi, Naghmeh

    2015-09-01

    This year (2015) marks the 21st formal anniversary of the United Nations Framework Convention on Climate Change (UNFCCC) and in December a new climate treaty is expected to be reached. Yet, the UNFCCC has not been successful in setting the world on a path to meet a target to prevent temperatures rising by more than 2 °C above pre-industrial levels. Meanwhile, other forums, such as the G20 and subnational forums, have increasingly become sites of climate change initiatives. There has, however, so far been no systematic evaluation of what forums climate change policymakers and practitioners perceive to be needed to effectively tackle climate change. Drawing on survey data from two recent UNFCCC Conference of the Parties (COP), we show that there exists an overall preference for state-led, multilateral forums. However, preferences starkly diverge between respondents from different geographical regions and no clear alternative to the UNFCCC emerges. Our results highlight difficulties in coordinating global climate policy in a highly fragmented governance landscape.

  15. The Effects of Climate Change on Cardiac Health.

    Science.gov (United States)

    De Blois, Jonathan; Kjellstrom, Tord; Agewall, Stefan; Ezekowitz, Justin A; Armstrong, Paul W; Atar, Dan

    2015-01-01

    The earth's climate is changing and increasing ambient heat levels are emerging in large areas of the world. An important cause of this change is the anthropogenic emission of greenhouse gases. Climate changes have a variety of negative effects on health, including cardiac health. People with pre-existing medical conditions such as cardiovascular disease (including heart failure), people carrying out physically demanding work and the elderly are particularly vulnerable. This review evaluates the evidence base for the cardiac health consequences of climate conditions, with particular reference to increasing heat exposure, and it also explores the potential further implications. © 2015 S. Karger AG, Basel.

  16. Anxiolytic effects of lavender oil inhalation on open-field behaviour in rats.

    Science.gov (United States)

    Shaw, D; Annett, J M; Doherty, B; Leslie, J C

    2007-09-01

    To establish a valid animal model of the effects of olfactory stimuli on anxiety, a series of experiments was conducted using rats in an open-field test. Throughout, effects of lavender oil were compared with the effects of chlordiazepoxide (CDP), as a reference anxiolytic with well-known effects on open-field behaviour. Rats were exposed to lavender oil (0.1-1.0 ml) for 30 min (Experiment 1) or 1h (Experiment 2) prior to open-field test and in the open field or injected with CDP (10 mg/kg i.p.). CDP had predicted effects on behaviour, and the higher doses of lavender oil had some effects on behaviour similar to those of CDP. In Experiment 3, various combinations of pre-exposure times and amounts of lavender oil were used. With sufficient exposure time and quantity of lavender the same effects were obtained as in Experiment 2. Experiment 4 demonstrated that these behavioural effects of lavender could be obtained following pre-exposure, even if no oil was present in the open-field test. In Experiments 2-4, lavender oil increased immobility. Together, these experiments suggest that lavender oil does have anxiolytic effects in the open field, but that a sedative effect can also occur at the highest doses.

  17. Micro climate Simulation in new Town `Hashtgerd' using downscaled climate data

    Science.gov (United States)

    Sodoudi, S.

    2010-12-01

    One of the objectives of climatological part of project Young Cities ‘Developing Energy-Efficient Urban Fabric in the Tehran-Karaj Region’ is to simulate the micro climate (with 1m resolution) in 35ha of new town Hashtgerd, which is located 65 km far from mega city Tehran. The Project aims are developing, implementing and evaluating building and planning schemes and technologies which allow to plan and build sustainable, energy-efficient and climate sensible form mass housing settlements in arid and semi-arid regions (energy-efficient fabric). Climate sensitive form also means designing and planning for climate change and its related effects for Hashtgerd New Town. By configuration of buildings and open spaces according to solar radiation, wind and vegetation, climate sensitive urban form can create outdoor thermal comfort. To simulate the climate on small spatial scales, the micro climate model Envi-met has been used to simulate the micro climate in 35 ha. The Eulerian model ENVI-met is a micro-scale climate model which gives information about the influence of architecture and buildings as well as vegetation and green area on the micro climate up to 1 m resolution. Envi-met has been run with information from topography, downscaled climate data with neuro-fuzzy method, meteorological measurements, building height and different vegetation variants (low and high number of trees) The first results were compared with each other and show In semi-arid climates the protection from solar radiation is of major importance. This can be achieved by implementation of vegetation and geometry of buildings. Due to the geographical location and related sun’s orbit the degree of shading in this area is rather low. Technical construction such awnings have to be implemented. A second important factor is wind. The design follows the idea to block the prevailing winds from west and northwest as well as the hot and dusty winds in summer time from the southeast but at the same time

  18. Effects of climate change on agricultural production and rural ...

    African Journals Online (AJOL)

    Nigeria is still practicing rain fed agriculture which renders her vulnerable to the adverse effects of climate change. Extreme climatic events such as flooding, extreme heat, and drought has led to soil degradation which results in low crop yields. Decline in agricultural productivity discourages the farmers and may lead to ...

  19. The climate controversy demands substantive discussion. 'Climatic change sceptics' opposite 'greenhouse effect believers'

    International Nuclear Information System (INIS)

    Thoenes, D.; Labohm, H.

    2006-01-01

    With the aim to inform policymakers an overview is given of the arguments that are used by climatic change sceptics and greenhouse effect believers, and on which arguments do they agree or disagree [nl

  20. PAVICS: A Platform for the Analysis and Visualization of Climate Science

    Science.gov (United States)

    Gauvin St-Denis, B.; Landry, T.; Huard, D. B.; Byrns, D.; Chaumont, D.; Foucher, S.

    2016-12-01

    Climate service providers are boundary organizations working at the interface of climate science research and users of climate information. Users include academics in other disciplines looking for credible, customized future climate scenarios, government planners, resource managers, asset owners, as well as service utilities. These users are looking for relevant information regarding the impacts of climate change as well as informing decisions regarding adaptation options. As climate change concerns become mainstream, the pressure on climate service providers to deliver tailored, high quality information in a timely manner increases rapidly. To meet this growing demand, Ouranos, a climate service center located in Montreal, is collaborating with the Centre de recherche informatique de Montreal (CRIM) to develop a climate data analysis web-based platform interacting with RESTful services covering data access and retrieval, geospatial analysis, bias correction, distributed climate indicator computing and results visualization. The project, financed by CANARIE, relies on the experience of the UV-CDAT and ESGF-CWT teams, as well as on the Birdhouse framework developed by the German Climate Research Center (DKRZ) and French IPSL. Climate data is accessed through OPEnDAP, while computations are carried through WPS. Regions such as watersheds or user-defined polygons, used as spatial selections for computations, are managed by GeoServer, also providing WMS, WFS and WPS capabilities. The services are hosted on independent servers communicating by high throughput network. Deployment, maintenance and collaboration with other development teams are eased by the use of Docker and OpenStack VMs. Web-based tools are developed with modern web frameworks such as React-Redux, OpenLayers 3, Cesium and Plotly. Although the main objective of the project is to build a functioning, usable data analysis pipeline within two years, time is also devoted to explore emerging technologies and

  1. effects of climate change on agricultural productivity in the federal

    African Journals Online (AJOL)

    Osondu

    2012-10-18

    Oct 18, 2012 ... The effects of the dynamics of climate on agricultural production are the thrust of this paper. Temperature .... climatic conditions that influence agricultural production in ... temperature when there are few clouds in the. FCT.

  2. Organisational Climate And Teachers' Job Performance In Primary ...

    African Journals Online (AJOL)

    Organisational Climate And Teachers' Job Performance In Primary Schools In Ondo ... The instrument used to collect data was a questionnaire on organisational ... revealed that most of the schools run an open climate type of organisation.

  3. Effect analysis of core barrel openings under CEFR normal condition

    International Nuclear Information System (INIS)

    Zhang Yabo; Yang Hongyi

    2008-01-01

    Openings on the bottom of core barrel are important part of the decay heat removal system of China Experimental Fast Reactor (CEFR), which are designed to discharge the decay heat from reactor under accident condition. This paper analyses the effect of the openings design on the normal operation condition using the famouse CFD code CFX. The result indicates that the decay heat can be discharged safely and at the same time the effect of core barrel openings on the normal operation condition is acceptable. (authors)

  4. Effects of seasonal and climate variations on calves' thermal comfort and behaviour.

    Science.gov (United States)

    Tripon, Iulian; Cziszter, Ludovic Toma; Bura, Marian; Sossidou, Evangelia N

    2014-09-01

    The aim of this study was to measure the effect of season and climate variations on thermal comfort and behaviour of 6-month-old dairy calves housed in a semi-opened shelter to develop animal-based indicators for assessing animal thermal comfort. The ultimate purpose was to further exploit the use of those indicators to prevent thermal stress by providing appropriate care to the animals. Measurements were taken for winter and summer seasons. Results showed that season significantly influenced (P ≤ 0.01) the lying down behaviour of calves by reducing the time spent lying, from 679.9 min in winter to 554.1 min in summer. Moreover, season had a significant influence (P ≤ 0.01) on feeding behaviour. In detail, the total length of feeding periods was shorter in winter, 442.1 min in comparison to 543.5 min in summer. Time spent drinking increased significantly (P ≤ 0.001), from 11.9 min in winter to 26.9 min in summer. Furthermore, season had a significant influence (P ≤ 0.001) on self grooming behaviour which was 5.5 times longer in duration in winter than in summer (1,336 s vs 244 s). It was concluded that calves' thermal comfort is affected by seasonal and climate variations and that this can be assessed by measuring behaviour with animal-based indicators, such as lying down, resting, standing up, feeding, rumination, drinking and self grooming. The indicators developed may be a useful tool to prevent animal thermal stress by providing appropriate housing and handling to calves under seasonal and climate challenge.

  5. Technology and climate change

    International Nuclear Information System (INIS)

    Morrison, R.; Layzedl, D.; McLean, G.

    2002-01-01

    This paper was the major one of the opening plenary session at the Climate Change 2 conference. The paper provides a context for assessing the needs for technologies to reduce the concentration of GHG in the atmosphere. It looks at sources, sinks and trends for GHG, in the world at large and in Canada, and at efforts to develop new technologies to achieve the goals of climate change policy. The paper focusses on transport, electricity and biomass as sectors of interest, both because of their potential for contributing to climate change policy goals within Canada, and also because of research interests

  6. Climate change and wildlife health: direct and indirect effects

    Science.gov (United States)

    Hofmeister, Erik K.; Moede Rogall, Gail; Wesenberg, Katherine; Abbott, Rachel C.; Work, Thierry M.; Schuler, Krysten; Sleeman, Jonathan M.; Winton, James

    2010-01-01

    Climate change will have significant effects on the health of wildlife, domestic animals, and humans, according to scientists. The Intergovernmental Panel on Climate Change projects that unprecedented rates of climate change will result in increasing average global temperatures; rising sea levels; changing global precipitation patterns, including increasing amounts and variability; and increasing midcontinental summer drought (Intergovernmental Panel on Climate Change, 2007). Increasing temperatures, combined with changes in rainfall and humidity, may have significant impacts on wildlife, domestic animal, and human health and diseases. When combined with expanding human populations, these changes could increase demand on limited water resources, lead to more habitat destruction, and provide yet more opportunities for infectious diseases to cross from one species to another.

  7. Modeling the effect of climate change on the indoor climate

    NARCIS (Netherlands)

    Schijndel, van A.W.M.; Schellen, H.L.

    2010-01-01

    Within the new EU project ‘Climate for Culture’ researchers are investigating climate change impacts on UNESCO World Heritage Sites. Simulation results are expected to give information on the possible impact of climate change on the built cultural heritage and its indoor environment. This paper

  8. The greenhouse effect: will we change the climate?; L'effet de serre: allons-nous changer le climat?

    Energy Technology Data Exchange (ETDEWEB)

    Le Treut, H

    2004-07-01

    This book presents the great climate factors, the changes resulting from the greenhouse effect and the corresponding human factors part, the atmosphere chemical composition and the biological and geo-political risks bound to the climatic changes. (A.L.B.)

  9. Upper Colorado River Basin Climate Effects Network

    Science.gov (United States)

    Belnap, Jayne; Campbell, Donald; Kershner, Jeff

    2011-01-01

    The Upper Colorado River Basin (UCRB) Climate Effects Network (CEN) is a science team established to provide information to assist land managers in future decision making processes by providing a better understanding of how future climate change, land use, invasive species, altered fire cycles, human systems, and the interactions among these factors will affect ecosystems and the services they provide to human communities. The goals of this group are to (1) identify science needs and provide tools to assist land managers in addressing these needs, (2) provide a Web site where users can access information pertinent to this region, and (3) provide managers technical assistance when needed. Answers to the team's working science questions are intended to address how interactions among climate change, land use, and management practices may affect key aspects of water availability, ecosystem changes, and societal needs within the UCRB.

  10. Cost-effectiveness of open versus arthroscopic rotator cuff repair.

    Science.gov (United States)

    Adla, Deepthi N; Rowsell, Mark; Pandey, Radhakant

    2010-03-01

    Economic evaluation of surgical procedures is necessary in view of more expensive newer techniques emerging in an increasingly cost-conscious health care environment. This study compares the cost-effectiveness of open rotator cuff repair with arthroscopic repair for moderately size tears. This was a prospective study of 30 consecutive patients, of whom 15 had an arthroscopic repair and 15 had an open procedure. Clinical effectiveness was assessed using Oxford and Constant shoulder scores. Costs were estimated from departmental and hospital financial data. At last follow-up, no difference Oxford and Constant shoulder scores was noted between the 2 methods of repair. There was no significant difference between the groups in the cost of time in the operating theater, inpatient time, amount of postoperative analgesia, number of postoperative outpatient visits, physiotherapy costs, and time off work. The incremental cost of each arthroscopic rotator cuff repair was pound675 ($1248.75) more than the open procedure. This was mainly in the area of direct health care costs, instrumentation in particular. Health care policy makers are increasingly demanding evidence of cost-effectiveness of a procedure. This study showed both methods of repair provide equivalent clinical results. Open cuff repair is more cost-effective than arthroscopic repair and is likely to have lower cost-utility ratio. In addition, the tariff for the arthroscopic procedure in some health care systems is same as open repair. Copyright 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  11. Ruang Terbuka Hijau Dalam Mitigasi Perubahan Iklim Green Open Space in Climate Change Mitigation

    OpenAIRE

    Dewi, Yusriani Sapta

    2010-01-01

    Climate change is any substantial change in Earth's climate that lasts for an extended period oftime. Global warming refers to climate change that causes an increase in the average temperature of thelower atmosphere. Global warming is the combined result of anthropogenic (human-caused) emissionsof greenhouse gases and changes in solar irradiance, while climate change refers to any change in thestate of the climate that can be identified by changes in the average and/or the variability of its ...

  12. Parliamentary role and relationship in effectively addressing climate change issues - Swaziland

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R

    2011-01-15

    Climate change is defined as any long-term and significant change in the expected patterns of a specific region's average weather for an appropriately significant period of time. It is the result of several factors, including Earth?s dynamic processes, external forces, and more recently, human activity. External factors that shape climate include such processes as variations in solar radiation, deviations in Earth's orbit, and variations in the level of greenhouse gas concentrations. Evidence of climatic change taken from a variety of sources can, in turn, be used to reconstruct past climates. Most climate evidence is inferred from changes in key climate indicators, including vegetation, ice cores, dendrochronology, sea-level change, and glacial geology. Climate change represents one of the greatest environmental, social, and economic threats facing the planet today. In developing countries, Swaziland included, climate change will likely have a significant impact on the livelihoods and living conditions of the poor. It is a particular threat to the attainment of the Millennium Development Goals (MDGs) and progress in sustainable development in Sub-Saharan Africa. Increasing temperatures and shifting rain patterns across Africa reduce access to food and create effects that impact regions, farming systems, households, and individuals in varying ways. Additional global changes, including changed trade patterns and energy policies, have the potential to exacerbate the negative effects of climate change on some of these systems and groups.

  13. Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic

    Science.gov (United States)

    Parkinson, Claire L.; Stirling Ian

    2006-01-01

    Polar bears are dependent on sea ice for survival. Climate warming in the Arctic has caused significant declines in coverage and thickness of sea ice in the polar basin and progressively earlier breakup in some areas. In four populations of polar bears in the eastern Canadian Arctic (including Western Hudson Bay), Inuit hunters report more bears near settlements during the open water period in recent years. These observations have been interpreted as evidence of increasing population size, resulting in increases in hunting quotas. However, long-term data on the population size and condition of polar bears in Western Hudson Bay, and population and harvest data from Baffin Bay, make it clear that those two populations at least are declining, not increasing. While the details vary in different arctic regions, analysis of passive-microwave satellite imagery, beginning in the late 1970s, indicates that the sea ice is breaking up at progressively earlier dates, so that bears must fast for longer periods during the open water season. Thus, at least part of the explanation for the appearance of more bears in coastal communities is likely that they are searching for alternative food sources because their stored body fat depots are being exhausted. We hypothesize that, if the climate continues to warm as projected by the IPCC, then polar bears in all five populations discussed in this paper will be stressed and are likely to decline in numbers, probably significantly so. As these populations decline, there will likely also be continuing, possibly increasing, numbers of problem interactions between bears and humans as the bears seek alternate food sources. Taken together, the data reported in this paper suggest that a precautionary approach be taken to the harvesting of polar bears and that the potential effects of climate warming be incorporated into planning for the management and conservation of this species throughout the Arctic.

  14. The IS-ENES climate4impact portal: bridging the CMIP5 and CORDEX data to impact users

    Science.gov (United States)

    Som de Cerff, Wim; Plieger, Maarten; Page, Christian; Tatarinova, Natalia; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin; Vega Saldarriaga, Manuel; Santiago Cofiño Gonzalez, Antonio

    2015-04-01

    The aim of climate4impact (climate4impact.eu) is to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. The portal is based on 17 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. It has been developed within the IS-ENES European project and is currently operated and further developed in the IS ENES2 project. As the climate impact community is very broad, the focus is mainly on the scientific impact community. Climate4impact is connected to the Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and regional climate model data (RCM) data from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services using OpenID, and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task is to describe the available model data and how it can be used. The portal informs users about possible caveats when using climate model data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. Climate4impact currently has two main objectives. The first one is to work on a web interface which automatically generates a graphical user interface on WPS endpoints. The WPS calculates climate indices and subset data using OpenClimateGIS/icclim on data stored in ESGF data nodes. Data is then transmitted from ESGF nodes over secured OpenDAP and becomes available in a new, per user, secured OpenDAP server. The results can then be visualized again using ADAGUC WMS. Dedicated wizards for processing of climate indices will be developed in close

  15. The Announcement Effect: Evidence from Open Market Desk Data

    OpenAIRE

    Oscar Jorda; Selva Demiralp; Holly Liu; Jeffrey Williams

    2003-01-01

    This paper investigates the ability of the Federal Reserve to manipulate the overnight rate without open market operations (which Demiralp and Jorda (2000) term the announcement effect), using high-frequency, open-market-desk data. Using similar data, Hamilton (1997) takes advantage of forecast errors in the Treasury balance to compute the elasticity of the federal funds rate to these errors and thus to obtain a measure of the liquidity effect. Similarly, one can view daily deviations of the ...

  16. Effective operator formalism for open quantum systems

    DEFF Research Database (Denmark)

    Reiter, Florentin; Sørensen, Anders Søndberg

    2012-01-01

    We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...... involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method...

  17. Climate-chemical interactions and effects of changing atmospheric trace gases

    Science.gov (United States)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  18. Trade Openness Effect on Income Inequality: Empirical Evidence from Indonesia

    Directory of Open Access Journals (Sweden)

    Lestari Agusalim

    2018-01-01

    Full Text Available This research analyzed the effect of international trade openness to income inequality in Indonesia using Vector Error Correction Model (VECM. The data used is the secondary data, which are the export-import value, gross domestic product (GDP, GDP per capita, open unemployment rate, and Gini index. The results of this study indicate that in the short term the trade openness has negative impact significantly on the income inequality. However, in the long-run, it does not show any significant effect in decreasing the income inequality rate. The impulse response function (IRF concluded that income inequality gives a positive response, except on the third year. Based on the forecast error variance decomposition (FEDV, the trade openness does not provide any significant contribution in effecting the income inequality in Indonesia, but economic growth does. Nevertheless, in long-term, the economic growth makes the income inequality getting worse than in the short-term.DOI: 10.15408/sjie.v7i1.5527

  19. Climate implications of including albedo effects in terrestrial carbon policy

    Science.gov (United States)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo

  20. Open-channel effects on heavy-quarkonium spectra: a phenomenological study within a one-open-channel approximation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Kato, K.; Yabusaki, N.; Hirano, M.; Nakanishi, R.; Sakai, M.

    1997-01-01

    Open-channel effects on charmonium (S- and D-waves) and bottomonium (S-wave) J P = 1 - spectra are investigated within a one-open-channel approximation. Mass shifts and decay widths of these states just above the threshold are obtained by taking into account a coupling between confined quarkonium states and decaying states of the open channel. The final-state interaction (FSI) between the decaying meson and antimeson plays a very important role in producing a reasonable magnitude of coupling; the FSI provides the open-channel poles (R 1 , R 2 ) at the appropriate positions on the complex energy plane. The result is found to be independent of the detailed form of the transition potential and the final-state interaction. (author)

  1. Towards a regional climate model coupled to a comprehensive hydrological model

    Science.gov (United States)

    Rasmussen, S. H.; Drews, M.; Christensen, J. H.; Butts, M. B.; Jensen, K. H.; Refsgaard, J.; Hydrological ModellingAssessing Climate Change Impacts At Different Scales (Hyacints)

    2010-12-01

    When planing new ground water abstractions wells, building areas, roads or other land use activities information about expected future groundwater table location for the lifetime of the construction may be critical. The life time of an abstraction well can be expected to be more than 50 years, while if for buildings may be up to 100 years or more. The construction of an abstraction well is expensive and it is important to know if clean groundwater is available for its expected life time. The future groundwater table is depending on the future climate. With climate change the hydrology is expected to change as well. Traditionally, this assessment has been done by driving hydrological models with output from a climate model. In this way feedback between the groundwater hydrology and the climate is neglected. Neglecting this feedback can lead to imprecise or wrong results. The goal of this work is to couple the regional climate model HIRHAM (Christensen et al. 2006) to the hydrological model MIKE SHE (Graham and Butts, 2006). The coupling exploits the new OpenMI technology that provides a standardized interface to define, describe and transfer data on a time step basis between software components that run simultaneously (Gregersen et al., 2007). HIRHAM runs on a UNIX platform whereas MIKE SHE and OpenMI are under WINDOWS. Therefore the first critical task has been to develop an effective communication link between the platforms. The first step towards assessing the coupled models performance are addressed by looking at simulated land-surface atmosphere feedback through variables such as evapotranspiration, sensible heat flux and soil moisture content. Christensen, O.B., Drews, M., Christensen, J.H., Dethloff, K., Ketelsen, K., Hebestadt, I. and Rinke, A. (2006) The HIRHAM Regional Climate Model. Version 5; DMI Scientific Report 0617. Danish Meteorological Institute. Graham, D.N. and Butts, M.B. (2005) Flexible, integrated watershed modelling with MIKE SHE, In

  2. The effect of natural disturbances on the risk from hydrogeomorphic hazards under climate change

    Science.gov (United States)

    Scheidl, Christian; Thaler, Thomas; Seidl, Rupert; Rammer, Werner; Kohl, Bernhard; Markart, Gerhard

    2017-04-01

    Recent storm events in Austria show once more how floods, sediment transport processes and debris flows constitute a major threat in alpine regions with a high density of population and an increasing spatial development. As protection forests have a major control function on runoff and erosion, they directly affect the risk from such hydrogeomorphic processes. However, research on future climate conditions, with an expected increase of the global average surface temperature of 3-5°C by 2100, compared to the first decade of the 20th century, raises a number of open questions for a sustainable and improved hazard management in mountain forests. For Europe, for instance, a climate-induced increase in forest disturbances like wildfire, wind, and insect's outbreaks is highly likely for the coming decades. Especially in protection forests, future scenarios of such climate induced natural disturbances and their impact on the protective effect remain an unresolved issue. Combining methods from forestry, hydrology and geotechnical engineering our project uses an integral approach to simulate possible effects of natural disturbances on hydrogeomorphic hazards in the perspective of future protection forest developments. With the individual-based forest landscape and disturbance model (iLand) we conduct an ensemble of forest landscape simulations, assessing the impact of future changes in natural disturbance regimes in four selected torrential catchments. These catchments are situated in two different forest growth areas. Drainage rate simulations are based on the conceptual hydrological model (ZEMOKOST), whereas simulations of the effect of forest disturbances on hillslope erosion processes are conducted by the Distributed Hydrology Soil Vegetation Model (DHSVM). Beside process based simulations, we also emphasis to identify the risk perception and adaptive capacity to mitigate a probable loss of protection functions in forests. For this reason, a postal survey among

  3. Viewpoint On the Climate Change Effects of High Oil Prices

    International Nuclear Information System (INIS)

    Vielle, M.; Viguier, L.

    2005-11-01

    Some commentators claim that the oil market has achieved within a few months what international bureaucrats have struggled to obtain in a decade of international climate negotiations. The fallacy of the oil price argument is that substitutions and income effects that would result from higher oil prices are not considered. Using a computable general equilibrium model, we show that high oil prices cannot serve as substitutes for effective climate policies.

  4. Ozone impacts on vegetation in a nitrogen enriched and changing climate

    International Nuclear Information System (INIS)

    Mills, Gina; Harmens, Harry; Wagg, Serena; Sharps, Katrina; Hayes, Felicity; Fowler, David; Sutton, Mark; Davies, Bill

    2016-01-01

    This paper provides a process-oriented perspective on the combined effects of ozone (O_3), climate change and/or nitrogen (N) on vegetation. Whereas increasing CO_2 in controlled environments or open-top chambers often ameliorates effects of O_3 on leaf physiology, growth and C allocation, this is less likely in the field. Combined responses to elevated temperature and O_3 have rarely been studied even though some critical growth stages such as seed initiation are sensitive to both. Under O_3 exposure, many species have smaller roots, thereby enhancing drought sensitivity. Of the 68 species assessed for stomatal responses to ozone, 22.5% were unaffected, 33.5% had sluggish or increased opening and 44% stomatal closure. The beneficial effect of N on root development was lost at higher O_3 treatments whilst the effects of increasing O_3 on root biomass became more pronounced as N increased. Both responses to gradual changes in pollutants and climate and those under extreme weather events require further study. - Highlights: • CO_2 amelioration of O_3 effects on leaf physiology are less likely in the field. • Both extremes of temperature and O_3 impact on critical growth stages. • Many species are more sensitive to drought as a result of exposure to O_3 pollution. • The beneficial effect of N on root development is lost at higher O_3 treatments. • The effects of O_3 on root biomass are higher at high than low N. - A process-oriented perspective on the combined effects of ozone, climate change and/or nitrogen on vegetation.

  5. Effect of motivational climate profiles on motivational indices in team sport.

    Science.gov (United States)

    Ommundsen, Y; Roberts, G C

    1999-12-01

    Contemporary perspectives of achievement motivation have been based on social cognitive theories which give motivational climate a central place in the regulation of subsequent affective states, cognitions and behaviour in achievement contexts. This study examined the relationship between different profiles of the motivational climate in teamsport and achievement, and socially related cognitions among Norwegian team sport athletes. Players (N= 148) assessed their perception of the motivational climate using the Norwegian version of the Motivational climate in sport questionnaire, sources of satisfaction in team sport, achievement strategies, perceived purposes of sport, and conceptions of ability. Multivariate analysis of variance (2x2) showed both main effects for profiles of the motivational climate and an interaction effect. Athletes perceiving the climate as high in mastery and high in performance oriented criteria reported psychological responses that were more adaptative than those perceiving the climate as low in mastery and high in performance criteria. With one exception, the findings showed that those high in mastery and low in performance were more likely to emphasise self-referenced criteria when judging perceived ability in team sport. For both social responsibility and lifetime skills as purposes in sport, it was the high performance and low mastery athletes who were least likely to endorse these purposes. And importantly, the high mastery climate seemed to moderate the impact of being in a high performance climate. The pattern of findings suggests that perceiving the motivational climate as performance oriented may not be motivationally maladaptive when accompanied by mastery oriented situational cues.

  6. Vulnerability of roads and associated structures to the effects of climate change

    International Nuclear Information System (INIS)

    Arisz, H.; Therrien, M.; Burrell, B.C.; LeBlanc, M.M.

    2009-01-01

    The vulnerability of roads and associated structures in the City of Greater Sudbury to the effects of climate change was evaluated using the Public Infrastructure Vulnerability Committee (PIEVC) Engineering Protocol for Climate Change Infrastructure Assessment. Study objectives were to evaluate the vulnerability of road-related infrastructure in Greater Sudbury to climate change, and to identify potential impediments to the application of the protocol in other municipalities. Based on the experience gained during this study, recommendations were provided with respect to the vulnerabilities of roads and associated structures to the predicted effects of climate change and the performance of vulnerability assessments. (author)

  7. Climate Policy in Terms of Open Energy Market

    International Nuclear Information System (INIS)

    Granic, G.

    2015-01-01

    This paper describes the objectives and approach to the climate policy impact analysis on the development of energy sector. The analysis included the goals for CO2 emission reduction until 2050, by sectors and in total, with reference to last 5-10 years. The analysis of energy market development in terms of CO2 emission reduction is given, and also the analysis of the final consumption for Croatia in period until 2050. The analysis of measures, of the manner in which the measures are carried out and of the potential of measures for CO2 emission reduction is presented. Estimations of economic and financial indicators for measurement implementation are given. Technological, energy, economic, organizational and institutional limitations are specifically analysed as part of objectives realisation of CO2 emission reduction, as is the risk of measurement implementation. The important parts of CO2 emission reduction policy are: technological development, expectations and possible risks of not achieving the set objectives. The important assumption of CO2 emission reduction objective realisation is institutional organisation of creation of energy policy and measurement implementation, in which the important measure is the forming of Ministry of energy, environment protection and climate change. At the end, recommendations are given, based on the performed analysis. (author).

  8. Toward an Ethical Framework for Climate Services

    Science.gov (United States)

    Wilby, R.; Adams, P.; Eitland, E.; Hewitson, B.; Shumake, J.; Vaughan, C.; Zebiak, S. E.

    2015-12-01

    Climate services offer information and tools to help stakeholders anticipate and/or manage risks posed by climate change. However, climate services lack a cohesive ethical framework to govern their development and application. This paper describes a prototype, open-ended process to form a set of ethical principles to ensure that climate services are effectively deployed to manage climate risks, realize opportunities, and advance human security.We begin by acknowledging the multiplicity of competing interests and motivations across individuals and institutions. Growing awareness of potential climate impacts has raised interest and investments in climate services and led to the entrance of new providers. User demand for climate services is also rising, as are calls for new types of services. Meanwhile, there is growing pressure from funders to operationalize climate research.Our proposed ethical framework applies reference points founded on diverse experiences in western and developing countries, fundamental and applied climate research, different sectors, gender, and professional practice (academia, private sector, government). We assert that climate service providers should be accountable for both their practices and products by upholding values of integrity, transparency, humility, and collaboration.Principles of practice include: communicating all value judgements; eschewing climate change as a singular threat; engaging in the co-exploration of knowledge; establishing mechanisms for monitoring/evaluating procedures and products; declaring any conflicts of interest. Examples of principles of products include: clear and defensible provenance of information; descriptions of the extent and character of uncertainties using terms that are meaningful to intended users; tools and information that are tailored to the context of the user; and thorough documentation of methods and meta-data.We invite the community to test and refine these points.

  9. Long-term effects of climate change on Europe's water resources

    NARCIS (Netherlands)

    Domnisoru, A.

    2006-01-01

    Climate variations from last century show a global warming trend. Evidence from the past reveals that the anthropogenic greenhouse effect caused changes in climate parameters (temperature, precipitation and evaporation) at the European scale as well. On long-term this might have essential impact on

  10. Effects of climate and corrosion on concrete behaviour

    Science.gov (United States)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  11. Micro Climate Simulation in new Town 'Hashtgerd'

    Science.gov (United States)

    Sodoudi, S.; Langer, I.; Cubasch, U.

    2012-04-01

    One of the objectives of climatological part of project Young Cities 'Developing Energy-Efficient Urban Fabric in the Tehran-Karaj Region' is to simulate the micro climate (with 1m resolution) in 35ha of new town Hashtgerd, which is located 65 km far from mega city Tehran. The Project aims are developing, implementing and evaluating building and planning schemes and technologies which allow to plan and build sustainable, energy-efficient and climate sensible form mass housing settlements in arid and semi-arid regions ("energy-efficient fabric"). Climate sensitive form also means designing and planning for climate change and its related effects for Hashtgerd New Town. By configuration of buildings and open spaces according to solar radiation, wind and vegetation, climate sensitive urban form can create outdoor thermal comfort. To simulate the climate on small spatial scales, the micro climate model Envi-met has been used to simulate the micro climate in 35 ha. The Eulerian model ENVI-met is a micro-scale climate model which gives information about the influence of architecture and buildings as well as vegetation and green area on the micro climate up to 1 m resolution. Envi-met has been run with information from topography, downscaled climate data with neuro-fuzzy method, meteorological measurements, building height and different vegetation variants (low and high number of trees) Through the optimal Urban Design and Planning for the 35ha area the microclimate results shows, that with vegetation the microclimate in streets will be change: • 2 m temperature is decreased by about 2 K • relative humidity increase by about 10 % • soil temperature is decreased by about 3 K • wind speed is decreased by about 60% The style of buildings allows free movement of air, which is of high importance for fresh air supply. The increase of inbuilt areas in 35 ha reduces the heat island effect through cooling caused by vegetation and increase of air humidity which caused by

  12. Evaluation of economic impact of climatic change on agro-forestry systems

    Directory of Open Access Journals (Sweden)

    Vittorio Gallerani

    Full Text Available Climate change has a strong influence on agro-forestry systems. Present estimations evisage that changes in climate patterns and extreme events connected to climate change will have greater impacts in the future. This paper seeks to illustrate the articulation of the problems concerning the economic evaluation of climate change, with particularly attention to open problems and future lines of research. Research on this topic, though using methods and approaches consolidated in the disciplines of resource economics and evaluation, still have several open problems, particularly in the field of multidisciplinary studies of the man-environmental relations, policy evaluation and development of decision support systems for decision makers.

  13. DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.

    Science.gov (United States)

    Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.

    2012-04-01

    At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate

  14. Redesigning mental healthcare delivery: is there an effect on organizational climate?

    Science.gov (United States)

    Joosten, T C M; Bongers, I M B; Janssen, R T J M

    2014-02-01

    Many studies have investigated the effect of redesign on operational performance; fewer studies have evaluated the effects on employees' perceptions of their working environment (organizational climate). Some authors state that redesign will lead to poorer organizational climate, while others state the opposite. The goal of this study was to empirically investigate this relation. Organizational climate was measured in a field experiment, before and after a redesign intervention. At one of the sites, a redesign project was conducted. At the other site, no redesign efforts took place. Two Dutch child- and adolescent-mental healthcare providers. Professionals that worked at one of the units at the start and/or the end of the intervention period. The main intervention was a redesign project aimed at improving timely delivery of services (modeled after the breakthrough series). Scores on the four models of the organizational climate measure, a validated questionnaire that measures organizational climate. Our analysis showed that climate at the intervention site changed on factors related to productivity and goal achievement (rational goal model). The intervention group scored worse than the comparison group on the part of the questionnaire that focuses on sociotechnical elements of organizational climate. However, observed differences were so small, that their practical relevance seems rather limited. Redesign efforts in healthcare, so it seems, do not influence organizational climate as much as expected.

  15. Functional group, biomass, and climate change effects on ecological drought in semiarid grasslands

    Science.gov (United States)

    Wilson, Scott D.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Duniway, Michael C.; Hall, Sonia A.; Jamiyansharav, Khishigbayar; Jia, Gensuo; Lkhagva, Ariuntsetseg; Munson, Seth M.; Pyke, David A.; Tietjen, Britta

    2018-01-01

    Water relations in plant communities are influenced both by contrasting functional groups (grasses, shrubs) and by climate change via complex effects on interception, uptake and transpiration. We modelled the effects of functional group replacement and biomass increase, both of which can be outcomes of invasion and vegetation management, and climate change on ecological drought (soil water potential below which photosynthesis stops) in 340 semiarid grassland sites over 30‐year periods. Relative to control vegetation (climate and site‐determined mixes of functional groups), the frequency and duration of drought were increased by shrubs and decreased by annual grasses. The rankings of shrubs, control vegetation, and annual grasses in terms of drought effects were generally consistent in current and future climates, suggesting that current differences among functional groups on drought effects predict future differences. Climate change accompanied by experimentally‐increased biomass (i.e. the effects of invasions that increase community biomass, or management that increases productivity through fertilization or respite from grazing) increased drought frequency and duration, and advanced drought onset. Our results suggest that the replacement of perennial temperate semiarid grasslands by shrubs, or increased biomass, can increase ecological drought both in current and future climates.

  16. Complementary or competing climates? Examining the interactive effect of service and ethical climates on company-level financial performance.

    Science.gov (United States)

    Myer, Adam T; Thoroughgood, Christian N; Mohammed, Susan

    2016-08-01

    By bending rules to please their customers, companies with high service climates may be less ethical but ultimately more profitable. In this article, we pose the question of whether being ethical comes at a cost to profits in customer-oriented firms. Despite the organizational reality that multiple climates coexist at a given time, research has largely ignored these types of questions, and the simultaneous analysis of multiple climate dimensions has received little empirical attention to date. Given their scientific and practical importance, this study tested complementary and conflicting perspectives regarding interactions between service (outcome-focused) and ethical (process-focused) climates on company-level financial performance. Drawing on a sample of 16,862 medical sales representatives spread across 77 subsidiary companies of a large multinational corporation in the health care product industry, we found support for a complementary view. More precisely, results revealed that profitability was enhanced, not diminished, in service-oriented firms that also stressed the importance of ethics. Results suggest studying the interactive effects of multiple climates is a more fruitful approach than examining main effects alone. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Patient safety climate (PSC) perceptions of frontline staff in acute care hospitals: examining the role of ease of reporting, unit norms of openness, and participative leadership.

    Science.gov (United States)

    Zaheer, Shahram; Ginsburg, Liane; Chuang, You-Ta; Grace, Sherry L

    2015-01-01

    Increased awareness regarding the importance of patient safety issues has led to the proliferation of theoretical conceptualizations, frameworks, and articles that apply safety experiences from high-reliability industries to medical settings. However, empirical research on patient safety and patient safety climate in medical settings still lags far behind the theoretical literature on these topics. The broader organizational literature suggests that ease of reporting, unit norms of openness, and participative leadership might be important variables for improving patient safety. The aim of this empirical study is to examine in detail how these three variables influence frontline staff perceptions of patient safety climate within health care organizations. A cross-sectional study design was used. Data were collected using a questionnaire composed of previously validated scales. The results of the study show that ease of reporting, unit norms of openness, and participative leadership are positively related to staff perceptions of patient safety climate. Health care management needs to involve frontline staff during the development and implementation stages of an error reporting system to ensure staff perceive error reporting to be easy and efficient. Senior and supervisory leaders at health care organizations must be provided with learning opportunities to improve their participative leadership skills so they can better integrate frontline staff ideas and concerns while making safety-related decisions. Finally, health care management must ensure that frontline staff are able to freely communicate safety concerns without fear of being punished or ridiculed by others.

  18. Political economy of climate change, ecological destruction and uneven development

    International Nuclear Information System (INIS)

    O'Hara, Phillip Anthony

    2009-01-01

    The purpose of this paper is to analyze climate change and ecological destruction through the prism of the core general principles of political economy. The paper starts with the principle of historical specificity, and the various waves of climate change through successive cooler and warmer periods on planet Earth, including the most recent climate change escalation through the open circuit associated with the treadmill of production. Then we scrutinize the principle of contradiction associated with the disembedded economy, social costs, entropy and destructive creation. The principle of uneven development is then explored through core-periphery dynamics, ecologically unequal exchange, metabolic rift and asymmetric global (in)justice. The principles of circular and cumulative causation (CCC) and uncertainty are then related to climate change dynamics through non-linear transformations, complex interaction of dominant variables, and threshold effects. Climate change and ecological destruction are impacting on most areas, especially the periphery, earlier and more intensely than previously thought likely. A political economy approach to climate change is able to enrich the analysis of ecological economics and put many critical themes in a broad context. (author)

  19. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  20. A national upgrade of the climate monitoring grid in Sri Lanka. The place of Open Design, OSHW and FOSS.

    Science.gov (United States)

    Chemin, Yann; Bandara, Niroshan; Eriyagama, Nishadi

    2015-04-01

    The National Climate Observatory of Sri lanka is a proposition designed for the Government of Sri Lanka in September and discussed with private and public stakeholders in November 2014. The idea was initially to install a networked grid of weather instruments from locally-made open source hardware technology, on land and seas, that report live the state of climate. After initial stakeholder meetings, it was agreed to first try to connect any existing weather stations from different governmental and private sector agencies. This would bring existing information to a common ground through the Internet. At this point, it was realized that extracting information from various vendors set up would take a large amount of efforts, that is still the best and fastest anyway, as considerations from ownership and maintenance are the most important issues in a tropical humid country as Sri Lanka. Thus, the question of Open Design, open source hardware (OSHW) and free and open source software (FOSS) became a pivotal element in considering operationalization of any future elements of a national grid. Reasons range from ownership, to low-cost and customization, but prominently it is about technology ownership, royalty-free and local availability. Building on previous work from (Chemin and Bandara, 2014) we proposed to open design specifications and prototypes for weather monitoring for various kinds of needs, the Meteorological Department clearly specified that the highest variability observed spatially in Sri Lanka is rainfall, and their willingness to investigate OSHW electronics using their new team of electronics and sensors specialists. A local manufacturer is providing an OSHW micro-controller product, a start up is providing additional sensor boards under OSHW specifications and local manufacture of the sensors (tipping-bucket and other wind sensors) is under development and blueprints have been made available in the Public Domain for CNC machine, 3D printing or Plastic

  1. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    Science.gov (United States)

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the

  2. Radiation effects on polyethylene foam of open cell type

    International Nuclear Information System (INIS)

    Tang Beilin; Kanako Kaji; Iwao Yoshizawa; Choji Kohara; Motoyoshi Hatada

    1991-01-01

    The effects of electron beam irradiation on polyethylene foam of open cell type have been studied. Experiments for determining of gel fraction and physical-mechanical properties of irradiated polyethylene foam of open cell type as a function of dose, respectively, were carried out. The dimensional stability of irradiated specimens at elevated temperatures was measured. It was found that tensile strength did not change and gel fraction increased when the specimen was irradiated in nitrogen atmosphere with increasing dose up to 300 kGy. The result shows that dimensional stability of polyethylene foam of open cell type after being kept in an oven at 70 deg C and 110 deg C for 22 h is improved by irradiation in nitrogen atmosphere. The similar results of irradiated EVA foam of open cell type irradiated foam of open cell type were obtained

  3. Cosmic rays and space weather: effects on global climate change

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2012-01-01

    Full Text Available We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate.

  4. Cosmic rays and space weather. Effects on global climate change

    International Nuclear Information System (INIS)

    Dorman, L.I.; Israel Space Agency; Russian Academy of Sciences

    2012-01-01

    We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate. (orig.)

  5. Common metrics. Comparing the warming effect of climate forcers in climate policy; Common metrics. Laempenemiseen vaikuttavien paeaestoejen yhteismitallistaminen ilmastopolitiikassa

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, T. J.; Ekholm, T.; Savolainen, I.

    2012-11-15

    Climate policy needs a relatively simple method to compare the warming effect of different greenhouse gases (GHGs). Otherwise it would be necessary to negotiate a different reduction target for each gas. At the moment, Global Warming Potential (GWP) concept is used to compare different GHGs. Numerical values of GWP factors have been updated alongside with scientific understanding and majority seems content to the GWP. From 2005 onwards there have been many proposals of optional metrics. The most well known is Global Temperature change Potential (GTP) concept which measures the change of temperature as does global climate policies. The decision between metrics is a multicriteria decision which should include at least the coherence with climate policy and cost efficiency. The GWP concept may be a little more difficult to understand than the GTP but it is more cost efficient. Alongside with new metrics, scientists and politicians have started to discuss of new emission which have an effect on warming. These Short Lived Climate Forcers (SLCFs) have either warming or cooling effect. Their effect can be presented with GWP and GTP but the uncertainties in the emission factors are large. In total, SLCFs reduce overall emissions of EU approximately 1% in year 2000. NO{sub x}, SO{sub x} (cooling) and black carbon (warming) emissions were the biggest factors. EU is planning to reduce the SLCF emissions to achieve health and environmental benefits, but at the same time this reduces the effect of EU's climate policies by approximately 10%. Uncertainties in the estimates are large. (orig.)

  6. Overview of climatic effects of nuclear winter

    International Nuclear Information System (INIS)

    Jones, E.M.; Malone, R.C.

    1985-01-01

    A general description of the climatic effects of a nuclear war are presented. This paper offers a short history of the subject, a discussion of relevant parameters and physical processes, and a description of plausible nuclear winter scenario. 9 refs

  7. Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem.

    Science.gov (United States)

    Maphangwa, Khumbudzo Walter; Musil, Charles F; Raitt, Lincoln; Zedda, Luciana

    2012-05-01

    Elevated temperatures and diminished precipitation amounts accompanying climate warming in arid ecosystems are expected to have adverse effects on the photosynthesis of lichen species sensitive to elevated temperature and/or water limitation. This premise was tested by artificially elevating temperatures (increase 2.1-3.8°C) and reducing the amounts of fog and dew precipitation (decrease 30.1-31.9%), in an approximation of future climate warming scenarios, using transparent hexagonal open-top warming chambers placed around natural populations of four lichen species (Xanthoparmelia austroafricana, X. hyporhytida , Xanthoparmelia. sp., Xanthomaculina hottentotta) at a dry inland site and two lichen species (Teloschistes capensis and Ramalina sp.) at a humid coastal site in the arid South African Succulent Karoo Biome. Effective photosynthetic quantum yields ([Formula: see text]) were measured hourly throughout the day at monthly intervals in pre-hydrated lichens present in the open-top warming chambers and in controls which comprised demarcated plots of equivalent open-top warming chamber dimensions constructed from 5-cm-diameter mesh steel fencing. The cumulative effects of the elevated temperatures and diminished precipitation amounts in the open-top warming chambers resulted in significant decreases in lichen [Formula: see text]. The decreases were more pronounced in lichens from the dry inland site (decline 34.1-46.1%) than in those from the humid coastal site (decline 11.3-13.7%), most frequent and prominent in lichens at both sites during the dry summer season, and generally of greatest magnitude at or after the solar noon in all seasons. Based on these results, we conclude that climate warming interacting with reduced precipitation will negatively affect carbon balances in endemic lichens by increasing desiccation damage and reducing photosynthetic activity time, leading to increased incidences of mortality.

  8. Changes in forest habitat classes under alternative climate and land-use change scenarios in the northeast and midwest, USA

    Science.gov (United States)

    Brian G. Tavernia; Mark D. Nelson; Michael E. Goerndt; Brian F. Walters; Chris Toney

    2013-01-01

    Large-scale and long-term habitat management plans are needed to maintain the diversity of habitat classes required by wildlife species. Planning efforts would benefit from assessments of potential climate and land-use change effects on habitats. We assessed climate and land-use driven changes in areas of closed- and open-canopy forest across the Northeast and Midwest...

  9. Open Distant Learning: Pedagogical Terms of Reference and Dilemmas

    Science.gov (United States)

    Tatkovic, Nevenka; Ruzic, Maja; Tatkovic, Sanja

    2006-01-01

    The paper first presents the essential viewpoints of general characteristics of open distance learning (OLD) and the short historical origins. The second part presents some pedagogical terms of reference for Open distance learning as the quality of ODL, the criteria of successful ODL (planning, successful interaction, work and emotional climate,…

  10. Climate Change in Africa: Impacts and Effects on the Inhabitants of the Lake Chad Region.

    Science.gov (United States)

    Abubakar, B.; Tahir, S. M.; Olisa, O.

    2009-05-01

    The Department of Energy and Climate Change defined climate as the average weather experienced over a long period. This includes temperature, wind and rainfall patterns. The climate of the Earth is not static, and has changed many times in response to a variety of natural causes. Due to human activities in emmiting green house gases has resulted the Earth to get warmed by 0.74°C over the last hundred years. Around 0.4°C of this warming has occurred since the 1970s. Climate is now one of the major phenomenon threatening lives and humanity in general since the beginning of industrial revolution. Climate exerts a profound influence on the lives of poor populations in the Lake Chad region of Africa who depend on fishing and crop cultivation for livelihood and sustenance, who are unprotected against climate-related diseases, who lacked secure access to water and food and who are vulnerable to hydro meteorological hazard. The effects of climate change on the study area are many and include diminishing resources and conflicts over the available limited water resources. The Lake Chad region is a fragile area with high climate variability and extremes of weather. As this inland water is used for domestic and agricultural purposes, salt mining, as well as transportation by Nigerians, Nigeriens, Chadian and Cameroonians, it is an area of trans-boundary water conflicts. This paper examines the part played by climate change in the decline of fishery resources and livelihood activities in the Lake Chad region. Data from field studies, structured interview and secondary sources show that fish catches and livelihood activities have declined tremendously in recent times due to several factors including overexploitation and increasing demands on the aquatic resources. Findings from the study show that droughty periods have resulted in the reduction of open lake water surface from about 25,000 km2 in 1973 to less than 2,000 km2 in the 1990s. This has led to the diminishing aquatic

  11. Farmers' perception on the effects of climate change on groundnut ...

    African Journals Online (AJOL)

    The study analyzed farmer's perception on the effect of climate change on groundnut production in Obi Local Government Area of Benue State, Nigeria. Despite the fact that efforts have been made towards combating climate change, research and policies directed towards understanding of local perception are useful in ...

  12. Effect of some climatic parameters on tropospheric and total ozone ...

    Indian Academy of Sciences (India)

    Effect of some climatic parameters on tropospheric and total ozone column over Alipore (22.52°N, 88.33°E), India ... insolation obtained from Solar Geophysical Data Book and El-ñ index collected from National Climatic Data Center, US Department of Commerce, National Oceanic and Atmospheric Administration, USA.

  13. Direct and Indirect Effects of Climate Change on Amphibian Populations

    Directory of Open Access Journals (Sweden)

    Stephanie S. Gervasi

    2010-02-01

    Full Text Available As part of an overall decline in biodiversity, populations of many organisms are declining and species are being lost at unprecedented rates around the world. This includes many populations and species of amphibians. Although numerous factors are affecting amphibian populations, we show potential direct and indirect effects of climate change on amphibians at the individual, population and community level. Shifts in amphibian ranges are predicted. Changes in climate may affect survival, growth, reproduction and dispersal capabilities. Moreover, climate change can alter amphibian habitats including vegetation, soil, and hydrology. Climate change can influence food availability, predator-prey relationships and competitive interactions which can alter community structure. Climate change can also alter pathogen-host dynamics and greatly influence how diseases are manifested. Changes in climate can interact with other stressors such as UV-B radiation and contaminants. The interactions among all these factors are complex and are probably driving some amphibian population declines and extinctions.

  14. The climatic effects of nuclear war

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, C.

    1984-01-01

    The effects of various US-USSR nuclear-exchange scenarios on global climate are investigated by means of computer simulations, summarizing the results of Turco et al. (1983) and follow-up studies using 3D global-circulation models. A nuclear-scenario model is used to determine the amounts of dust, smoke, radioactivity, and pyrotoxins generated by a particular type of nuclear exchange (such as a general 5,000-Mt exchange, a 1,000-Mt limited exchange, a 5,000-Mt hard-target counterforce attack, and a 100-Mt attack on cities only): a particle-microphysics model predicts the evolution of the dust and smoke particles; and a radiative-convective climate model estimates the effects of the dust and smoke clouds on the global radiation budget. The findings are presented in graphs, diagrams, and a table. Thick clouds blocking most sunlight over the Northern Hemisphere midlatitudes for weeks or months and producing ground-temperature reductions of 20-40 C, disruption of global circulation patterns, and rapid spread of clouds to the Southern Hemisphere are among the 'nuclear-winter' effects predicted for the 5,000-Mt baseline case. The catastrophic consequences for plant, animal, and human populations are considered, and the revision of superpower nuclear strategies is urged.

  15. The climate4impact portal: bridging the CMIP5 and CORDEX data infrastructure to impact users

    Science.gov (United States)

    Plieger, Maarten; Som de Cerff, Wim; Pagé, Christian; Tatarinova, Natalia; Cofiño, Antonio; Vega Saldarriaga, Manuel; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Sjökvist, Elin

    2015-04-01

    The aim of climate4impact is to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. The portal is based on 21 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. It has been developed within the European projects IS-ENES and IS-ENES2 for more than 5 years, and its development currently continues within IS-ENES2 and CLIPC. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in the ENES portal interface for climate impact communities and can be visited at www.climate4impact.eu. The climate4impact is connected to the Earth System Grid Federation (ESGF) nodes containing global climate model data (GCM data) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and regional climate model data (RCM) data from the Coordinated Regional Climate Downscaling Experiment (CORDEX). This global network of climate model data centers offers services for data description, discovery and download. The climate4impact portal connects to these services using OpenID, and offers a user interface for searching, visualizing and downloading global climate model data and more. A challenging task was to describe the available model data and how it can be used. The portal tries to inform users about possible caveats when using climate model data. All impact use cases are described in the documentation section, using highlighted keywords pointing to detailed information in the glossary. During the project, the content management system Drupal was used to enable partners to contribute on the documentation section. In this presentation the architecture and following items will be detailed: - Visualization: Visualize data from ESGF data nodes using ADAGUC Web Map Services. - Processing: Transform data, subset, export into other formats, and perform climate indices calculations using

  16. Sharing Lessons-Learned on Effective Open Data, Open-Source Practices from OpenAQ, a Global Open Air Quality Community.

    Science.gov (United States)

    Hasenkopf, C. A.

    2017-12-01

    Increasingly, open data, open-source projects are unearthing rich datasets and tools, previously impossible for more traditional avenues to generate. These projects are possible, in part, because of the emergence of online collaborative and code-sharing tools, decreasing costs of cloud-based services to fetch, store, and serve data, and increasing interest of individuals to contribute their time and skills to 'open projects.' While such projects have generated palpable enthusiasm from many sectors, many of these projects face uncharted paths for sustainability, visibility, and acceptance. Our project, OpenAQ, is an example of an open-source, open data community that is currently forging its own uncharted path. OpenAQ is an open air quality data platform that aggregates and universally formats government and research-grade air quality data from 50 countries across the world. To date, we make available more than 76 million air quality (PM2.5, PM10, SO2, NO2, O3, CO and black carbon) data points through an open Application Programming Interface (API) and a user-customizable download interface at https://openaq.org. The goal of the platform is to enable an ecosystem of users to advance air pollution efforts from science to policy to the private sector. The platform is also an open-source project (https://github.com/openaq) and has only been made possible through the coding and data contributions of individuals around the world. In our first two years of existence, we have seen requests for data to our API skyrocket to more than 6 million datapoints per month, and use-cases as varied as ingesting data aggregated from our system into real-time models of wildfires to building open-source statistical packages (e.g. ropenaq and py-openaq) on top of the platform to creating public-friendly apps and chatbots. We will share a whirl-wind trip through our evolution and the many lessons learned so far related to platform structure, community engagement, organizational model type

  17. Farmers' Perception of the Effects of Climate Change and Coping ...

    African Journals Online (AJOL)

    Farmers were fully aware of the effect of climate change and possible coping strategies such as the need for agricultural insurance, planting of drought and flood tolerant varieties and reduction of water loss through practices such as mulching and rearing of heat tolerant livestock. General perception was that climate change ...

  18. Awareness and effects of climate change on cocoa production in ...

    African Journals Online (AJOL)

    This, according to reports, resulted from climate failure, among other factors. In the light of this, this study examined awareness and effects of climate change on cocoa production in Ondo State, the Nigeria's leading cocoa producing state. Specifically, the study decribed socio-‐economic characteristics of cocoa farmers in ...

  19. Mediterranean climate modelling: variability and climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-12-01

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  20. Energy taxes, resource taxes and quantity rationing for climate protection

    Energy Technology Data Exchange (ETDEWEB)

    Eisenack, Klaus [Oldenburg Univ. (Germany). Dept. of Economics; Edenhofer, Ottmar; Kalkuhl, Matthias [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany)

    2010-11-15

    Economic sectors react strategically to climate policy, aiming at a re-distribution of rents. Established analysis suggests a Pigouvian emission tax as efficient instrument, but also recommends factor input or output taxes under specific conditions. However, existing studies leave it open whether output taxes, input taxes or input rationing perform better, and at best only touch their distributional consequences. When emissions correspond to extracted ressources, it is questionable whether taxes are effective at all. We determine the effectiveness, efficiency and functional income distribution for these instruments in the energy and resource sector, based on a game theoretic growth model with explicit factor markets and policy instruments. Market equilibrium depends on a government that acts as a Stackelberg leader with a climate protection goal. We find that resource taxes and cumulative resource quantity rationing achieve this objective efficiently. Energy taxation is only second best. Mitigation generates a substantial ''climate rent'' in the resource sector that can be converted to transfer incomes by taxes. (orig.)

  1. Predicting the effects of climate change on marine communities and the consequences for fisheries

    DEFF Research Database (Denmark)

    Jennings, Simon; Brander, Keith

    2010-01-01

    for the community under the same climate scenario. The main weakness of the community approach is that the methods predict abundance and production by size-class rather than taxonomic group, and society would be particularly concerned if climate driven changes had a strong effect on the relative production...... of fishable and non-fishable species in the community. The main strength of the community approach is that it provides widely applicable ‘null’ models for assessing the biological effects of climate change and a baseline for model comparisons.......Climate effects on the structure and function of marine communities have received scant attention. The few existing approaches for predicting climate effects suggest that community responses might be predicted from the responses of component populations. These approaches require a very complex...

  2. Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition

    Science.gov (United States)

    Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.

    2013-01-01

    Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096

  3. Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective

    International Nuclear Information System (INIS)

    Bytnerowicz, Andrzej; Omasa, Kenji; Paoletti, Elena

    2007-01-01

    Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies. - Simultaneous addressing air pollution and climate change effects on forests is an opportunity for capturing synergies in future research and monitoring

  4. School Climate, Family Structure, and Academic Achievement: A Study of Moderation Effects

    Science.gov (United States)

    O'Malley, Meagan; Voight, Adam; Renshaw, Tyler L.; Eklund, Katie

    2015-01-01

    School climate has been lauded for its relationship to a host of desirable academic, behavioral, and social-emotional outcomes for youth. The present study tested the hypothesis that school climate counteracts youths' home-school risk by examining the moderating effects of students' school climate perceptions on the relationship between family…

  5. Effects of heat stress on working populations when facing climate change.

    Science.gov (United States)

    Lundgren, Karin; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2013-01-01

    It is accepted that the earth's climate is changing in an accelerating pace, with already documented implications for human health and the environment. This literature review provides an overview of existing research findings about the effects of heat stress on the working population in relation to climate change. In the light of climate change adaptation, the purpose of the literature review was to explore recent and previous research into the impacts of heat stress on humans in an occupational setting. Heat stress in the workplace has been researched extensively in the past however, in the contemporary context of climate change, information is lacking on its extent and implications. The main factors found to exacerbate heat stress in the current and future workplace are the urban 'heat island effect', physical work, individual differences, and the developing country context where technological fixes are often not applicable. There is also a lack of information on the effects on vulnerable groups such as elderly people and pregnant women. As increasing temperatures reduce work productivity, world economic productivity could be condensed, affecting developing countries in the tropical climate zone disproportionately. Future research is needed taking an interdisciplinary approach, including social, economic, environmental and technical aspects.

  6. Autonomous Control, Climate and Environmental Changes Effects ...

    African Journals Online (AJOL)

    Autonomous Control, Climate and Environmental Changes Effects on Trypanosomiasis in Sub-Saharan Africa: A Review. ... African trypanosomiasis is a parasitic disease that causes serious economic losses in livestock due to anemia, loss of condition and emaciation. The disease when neglected is lethal and untreated ...

  7. The global effects of subglobal climate policies

    NARCIS (Netherlands)

    Boehringer, Christoph; Fischer, Carolyn; Rosendahl, Knut Einar

    2010-01-01

    Individual countries are in the process of legislating responses to the challenges posed by climate change. The prospect of rising carbon prices raises concerns in these nations about the effects on the competitiveness of their own energy-intensive industries and the potential for carbon leakage,

  8. Combating the effects of climatic change on forests by mitigation strategies

    Directory of Open Access Journals (Sweden)

    Dieter Matthias

    2010-11-01

    Full Text Available Abstract Background Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions. Results We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES. We used the scenarios A1B (rapid and successful economic development and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development. Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management. Conclusions The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.

  9. Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K. [eds.

    1994-05-01

    A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

  10. Single-institution effectiveness assessment of open-heart surgery in octogenarians

    NARCIS (Netherlands)

    de Mol, B. A.; Kallewaard, M.; Lewin, F.; van Gaalen, G. L.; van den Brink, R. B.

    1997-01-01

    To determine short- and long-term outcome of open-heart surgery in octogenarians. We reviewed the medical charts of 130 consecutive octogenarians undergoing open-heart surgery. Patients with significant comorbidity were excluded from the study. The effect of cardiac and operative risk factors on

  11. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to

  12. Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade.

    Science.gov (United States)

    Wei, Ting; Dong, Wenjie; Moore, John; Yan, Qing; Song, Yi; Yang, Zhiyong; Yuan, Wenping; Chou, Jieming; Cui, Xuefeng; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Yang, Shili; Tian, Di; Lin, Pengfei; Yang, Song; Wen, Zhiping; Lin, Hui; Chen, Min; Feng, Guolin; Jiang, Yundi; Zhu, Xian; Chen, Juan; Wei, Xin; Shi, Wen; Zhang, Zhiguo; Dong, Juan; Li, Yexin; Chen, Deliang

    2016-06-22

    Carbon transfer via international trade affects the spatial pattern of global carbon emissions by redistributing emissions related to production of goods and services. It has potential impacts on attribution of the responsibility of various countries for climate change and formulation of carbon-reduction policies. However, the effect of carbon transfer on climate change has not been quantified. Here, we present a quantitative estimate of climatic impacts of carbon transfer based on a simple CO2 Impulse Response Function and three Earth System Models. The results suggest that carbon transfer leads to a migration of CO2 by 0.1-3.9 ppm or 3-9% of the rise in the global atmospheric concentrations from developed countries to developing countries during 1990-2005 and potentially reduces the effectiveness of the Kyoto Protocol by up to 5.3%. However, the induced atmospheric CO2 concentration and climate changes (e.g., in temperature, ocean heat content, and sea-ice) are very small and lie within observed interannual variability. Given continuous growth of transferred carbon emissions and their proportion in global total carbon emissions, the climatic effect of traded carbon is likely to become more significant in the future, highlighting the need to consider carbon transfer in future climate negotiations.

  13. Quantitative Estimation of the Climatic Effects of Carbon Transferred by International Trade

    Science.gov (United States)

    Wei, Ting; Dong, Wenjie; Moore, John; Yan, Qing; Song, Yi; Yang, Zhiyong; Yuan, Wenping; Chou, Jieming; Cui, Xuefeng; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Yang, Shili; Tian, Di; Lin, Pengfei; Yang, Song; Wen, Zhiping; Lin, Hui; Chen, Min; Feng, Guolin; Jiang, Yundi; Zhu, Xian; Chen, Juan; Wei, Xin; Shi, Wen; Zhang, Zhiguo; Dong, Juan; Li, Yexin; Chen, Deliang

    2016-06-01

    Carbon transfer via international trade affects the spatial pattern of global carbon emissions by redistributing emissions related to production of goods and services. It has potential impacts on attribution of the responsibility of various countries for climate change and formulation of carbon-reduction policies. However, the effect of carbon transfer on climate change has not been quantified. Here, we present a quantitative estimate of climatic impacts of carbon transfer based on a simple CO2 Impulse Response Function and three Earth System Models. The results suggest that carbon transfer leads to a migration of CO2 by 0.1-3.9 ppm or 3-9% of the rise in the global atmospheric concentrations from developed countries to developing countries during 1990-2005 and potentially reduces the effectiveness of the Kyoto Protocol by up to 5.3%. However, the induced atmospheric CO2 concentration and climate changes (e.g., in temperature, ocean heat content, and sea-ice) are very small and lie within observed interannual variability. Given continuous growth of transferred carbon emissions and their proportion in global total carbon emissions, the climatic effect of traded carbon is likely to become more significant in the future, highlighting the need to consider carbon transfer in future climate negotiations.

  14. The detection of climate change due to the enhanced greenhouse effect

    Science.gov (United States)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  15. The detection of climate change due to the enhanced greenhouse effect

    International Nuclear Information System (INIS)

    Schiffer, R.A.; Unninayar, S.

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record

  16. Climate and air quality trade-offs in altering ship fuel sulfur content

    Science.gov (United States)

    Partanen, A.-I.; Laakso, A.; Schmidt, A.; Kokkola, H.; Kuokkanen, T.; Pietikäinen, J.-P.; Kerminen, V.-M.; Lehtinen, K. E. J.; Laakso, L.; Korhonen, H.

    2013-08-01

    Aerosol particles from shipping emissions both cool the climate and cause adverse health effects. The cooling effect is, however, declining because of shipping emission controls aiming to improve air quality. We used an aerosol-climate model ECHAM-HAMMOZ to test whether by altering ship fuel sulfur content, the present-day aerosol-induced cooling effect from shipping could be preserved while at the same time reducing premature mortality rates related to shipping emissions. We compared the climate and health effects of a present-day shipping emission scenario with (1) a simulation with strict emission controls in the coastal waters (ship fuel sulfur content of 0.1%) and twofold ship fuel sulfur content compared to current global average of 2.7% elsewhere; and (2) a scenario with global strict shipping emission controls (ship fuel sulfur content of 0.1% in coastal waters and 0.5% elsewhere) roughly corresponding to international agreements to be enforced by the year 2020. Scenario 1 had a slightly stronger aerosol-induced radiative flux perturbation (RFP) from shipping than the present-day scenario (-0.43 W m-2 vs. -0.39 W m-2) while reducing premature mortality from shipping by 69% (globally 34 900 deaths avoided per year). Scenario 2 decreased the RFP to -0.06 W m-2 and annual deaths by 96% (globally 48 200 deaths avoided per year) compared to present-day. A small difference in radiative effect (global mean of 0.04 W m-2) in the coastal regions between Scenario 1 and the present-day scenario imply that shipping emission regulation in the existing emission control areas should not be removed in hope of climate cooling. Our results show that the cooling effect of present-day emissions could be retained with simultaneous notable improvements in air quality, even though the shipping emissions from the open ocean clearly have a significant effect on continental air quality. However, increasing ship fuel sulfur content in the open ocean would violate existing

  17. Integrating environmental and genetic effects to predict responses of tree populations to climate.

    Science.gov (United States)

    Wang, Tongli; O'Neill, Gregory A; Aitken, Sally N

    2010-01-01

    Climate is a major environmental factor affecting the phenotype of trees and is also a critical agent of natural selection that has molded among-population genetic variation. Population response functions describe the environmental effect of planting site climates on the performance of a single population, whereas transfer functions describe among-population genetic variation molded by natural selection for climate. Although these approaches are widely used to predict the responses of trees to climate change, both have limitations. We present a novel approach that integrates both genetic and environmental effects into a single "universal response function" (URF) to better predict the influence of climate on phenotypes. Using a large lodgepole pine (Pinus contorta Dougl. ex Loud.) field transplant experiment composed of 140 populations planted on 62 sites to demonstrate the methodology, we show that the URF makes full use of data from provenance trials to: (1) improve predictions of climate change impacts on phenotypes; (2) reduce the size and cost of future provenance trials without compromising predictive power; (3) more fully exploit existing, less comprehensive provenance tests; (4) quantify and compare environmental and genetic effects of climate on population performance; and (5) predict the performance of any population growing in any climate. Finally, we discuss how the last attribute allows the URF to be used as a mechanistic model to predict population and species ranges for the future and to guide assisted migration of seed for reforestation, restoration, or afforestation and genetic conservation in a changing climate.

  18. Country-Specific Effects of Climate Variability on Human Migration

    Science.gov (United States)

    Gray, Clark; Wise, Erika

    2016-01-01

    Involuntary human migration is among the social outcomes of greatest concern in the current era of global climate change. Responding to this concern, a growing number of studies have investigated the consequences of short to medium-term climate variability for human migration using demographic and econometric approaches. These studies have provided important insights, but at the same time have been significantly limited by lack of expertise in the use of climate data, access to cross-national data on migration, and attention to model specification. To address these limitations, we link data on internal and international migration over a 6-year period from 9,812 origin households in Kenya, Uganda, Nigeria, Burkina Faso and Senegal to high-resolution gridded climate data from both station and satellite sources. Analyses of these data using several plausible specifications reveal that climate variability has country-specific effects on migration: Migration tends to increase with temperature anomalies in Uganda, tends to decrease with temperature anomalies in Kenya and Burkina Faso, and shows no consistent relationship with temperature in Nigeria and Senegal. Consistent with previous studies, precipitation shows weak and inconsistent relationships with migration across countries. These results challenge generalizing narratives that foresee a consistent migratory response to climate change across the globe. PMID:27092012

  19. Country-Specific Effects of Climate Variability on Human Migration.

    Science.gov (United States)

    Gray, Clark; Wise, Erika

    2016-04-01

    Involuntary human migration is among the social outcomes of greatest concern in the current era of global climate change. Responding to this concern, a growing number of studies have investigated the consequences of short to medium-term climate variability for human migration using demographic and econometric approaches. These studies have provided important insights, but at the same time have been significantly limited by lack of expertise in the use of climate data, access to cross-national data on migration, and attention to model specification. To address these limitations, we link data on internal and international migration over a 6-year period from 9,812 origin households in Kenya, Uganda, Nigeria, Burkina Faso and Senegal to high-resolution gridded climate data from both station and satellite sources. Analyses of these data using several plausible specifications reveal that climate variability has country-specific effects on migration: Migration tends to increase with temperature anomalies in Uganda, tends to decrease with temperature anomalies in Kenya and Burkina Faso, and shows no consistent relationship with temperature in Nigeria and Senegal. Consistent with previous studies, precipitation shows weak and inconsistent relationships with migration across countries. These results challenge generalizing narratives that foresee a consistent migratory response to climate change across the globe.

  20. A Multilevel Analysis of the Effects of Disciplinary Climate Strength on Student Reading Performance

    Science.gov (United States)

    Guo, Siwen; Li, Lingyan; Zhang, Danhui

    2018-01-01

    Climate strength was first conceptualised in the organisational psychology literature as the within-group agreement on the perceptions of climate. In contrast to the deep study of climate level, climate strength has not been clarified by school climate research. The purpose of this cross-cultural study is to identify the main effect of…

  1. ORGANIZATIONAL CLIMATE FOR A QUALITY CULTURE

    Directory of Open Access Journals (Sweden)

    Elsy Thamara Visbal Pérez

    2014-11-01

    Full Text Available Employee development, on calibration and testing laboratories at university to improve quality services, has become one of the most important problems despite efforts to improve the work environment. The objective of the research is to assess the organizational climate of a calibration and testing laboratory at a public university of the Venezuelan state. The non-experimental and correlational study (organizational climate survey was applied, generated an organizational climate of 63.7%, with 55% of open questions answered. It is concluded on the need to design sustainable long-term strategies.

  2. Economy of climatic change. From mitigation to adaptation policies

    International Nuclear Information System (INIS)

    Rousset, N.

    2012-01-01

    Climate change adaptation policies are the subject of this thesis. It has been showed that the United Nations Framework Convention on Climate Change (1992) and the response strategies construction are characteristic of a pollutionist approach. This approach led to envision the question of climate change as a classic pollution and environment issue. As a result, this approach has generated a double bias to the disadvantage of adaptation compared to mitigation policies: adaptation has been confined in a secondary and marginal role in climate policies structuring, and with an inoperative conceptual and methodological framework for its implementation. The thesis proposes a deconstruction of this climate change conceptualization. Moreover, the major limits that characterize mitigation policies call into question the predominance given to them in climate policies construction. The 'pollutionist' approach deconstruction allows at first to show that adaptation policies definition and operationalization need to go beyond (i) the standard analytic framework of climate policies and, (ii) the climate change conceptualization as a classic pollution and environment management issue. The thesis then argues that adaptation has to be integrated in development promoting policies, which means that adaptation needs to be conceptualized no longer as an ad hoc management of pollution effects issue, but as a development issue. Whether in the proper context of adaptation policies, or more largely of climate policies, the thesis leaves open the questions of the viability, but also of the organization and financing modalities, of a climate regime which fits within development promoting. (author)

  3. Catalyzing Open and Collaborative Science to Address Global ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate change, environmental degradation, emerging infectious diseases, ... Examples include crowdsourcing to map and monitor deforestation in Brazil to support conservation efforts in the Amazon. ... The costs and risks of open science

  4. Effects of climate change on timber supply and possible management responses

    International Nuclear Information System (INIS)

    Comeau, P.G.

    1991-01-01

    Potential effects of climate change on Pacific Northwest forests include increases in net primary production of some high-elevation or high-latitude forests due to temperature increases; reduced net primary production or tree mortality due to increased water stress or failure to meet chilling requirements; and increased risk of damage from insects and fires. The net effects of climate change will vary depending on the species involved, current environmental conditions, and the nature, magnitude, and rate of climate change. Risks are likely to differ substantially for regeneration, young established forests, and mature established forests. Decisions about responses have to be made in the face of considerable uncertainty about future climate, resources, and market conditions. A proactive option involves developing flexible, adaptive approaches to forest management that serve to reduce future risk. Strategic decisions could include decisions about land purchases or sales based on assessments of risk of impact from climate change. Selection of species least vulnerable to potential climate change, increased investment in fire control and pest management in vulnerable areas, and other operational decisions can be made. Timing of actions will be important, and a substantial body of information is required as a basis for making informed decisions, some of which is already available. 8 refs

  5. Climate Change Effects and Impacts Assessment. A guidance manual for Local Government in New Zealand

    International Nuclear Information System (INIS)

    Wratt, D.; Mullan, B.; Salinger, J.; Allan, S.; Morgan, T.; Kenny, G.

    2004-05-01

    Climate change is a real and internationally recognised outcome of increased amounts of greenhouse gases in the atmosphere. It will have effects over the next decades that are predictable with some level of certainty, but which will vary from place to place throughout New Zealand. The climate will also change from year to year and decade to decade due to natural processes. For example, some parts of the country often have dry summers and autumns when an El Nino climate pattern is present. Both natural fluctuations and human-induced climate changes need to be considered when developing adaptation plans and policies, rather than just 'greenhouse warming' effects on their own. Councils already address extreme weather events and climate variations as they develop plans and provide services. Climate change effects need also to be considered as part of these regulatory, assessment and planning activities. It is not necessary to develop a set of procedures for dealing separately with effects and impacts of climate change - they can be built into existing practices. Over time, climate change responses will involve iterative planning processes, keeping up-to-date with new information, monitoring changes, and reviewing the effectiveness of responses. The response to climate change involves international, national, regional, district and community consideration and action. The Guidance Manual aims to assist local government in working with its communities and making appropriate decisions.

  6. Making the climate part of the human world: Why addressing beliefs and biases is necessary part of effective climate change education

    Science.gov (United States)

    Donner, S. D.

    2009-12-01

    Efforts to raise public awareness and understanding of the social, cultural and economic consequences of climate change often encounter skepticism. The primary causes of this skepticism, whether in the form of a mild rejection of proposed policy responses or an outright rejection of the basic scientific findings, is often cited to be the poor framing of issues by the scientific community, the quality of science education or public science literacy, disinformation campaigns by representatives of the coal and gas industry, individual resistance to behavioral change, and the hyperactive nature of the modern information culture. However, the root cause may be that the weather and climate, and by association climate change, is viewed as independent of the sphere of human influence in ancient and modern societies. In this presentation, I will outline how long-standing human beliefs in the separation between the earth and the sky and the modern framing of climate change as an “environmental” issue are limiting efforts to education the public about the causes, effects and possible response to climate change. First, sociological research in the Pacific Islands (Fiji, Kiribati, Tuvalu) finds strong evidence that beliefs in divine control of the weather and climate limit public acceptance of human-induced climate change. Second, media analysis and polling data from North America supports the role of belief and provides further evidence that climate change is viewed as a threat to an “other” labeled “the environment”, rather than a threat to people or society. The consequences of these mental models of the climate can be an outright reject of scientific theory related to climate change, a milder distrust of climate change predictions, a lack of urgency about mitigation, and an underestimate of the effort required to adapt to climate change. In order to be effective, public education about climate change needs to directly address the two, critical beliefs held by

  7. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    results of the earlier decisions, as simulated by C-ROADS. Preliminary evaluations show that both exercises have the potential to provide powerful learning experiences. University students who played World Climate in a climate change course cited it as one of the course activities "promoting the most learning." Students' responses on anonymous surveys and open-ended questions revealed that the experience affected them at visceral, as well as intellectual levels. All of the students recommended that the exercise be continued in future years and many felt that it was the most important learning experience of the semester. Similarly, understanding of climate change and the dynamics of the climate improved for the majority of Future Climate participants, and 90% of participants stated that they were more likely to take action to address climate change on a personal level because of their experience.

  8. Effects of Institutional Climate and Culture on the Perceptions of the Working Environments of Public Community Colleges

    Science.gov (United States)

    Jones, Stephanie J.; Taylor, Colette M.

    2012-01-01

    Researchers have found that, although community colleges continue to remain gendered organizations, their climates and cultures are perceived to be more open to women than are their college and university peers. Community colleges may in fact still have the male orientation of the higher education system despite their efforts to be…

  9. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO 2 , DMS and H 2 SO 4 species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed

  10. Joint effects of climate variability and socioecological factors on dengue transmission: epidemiological evidence.

    Science.gov (United States)

    Akter, Rokeya; Hu, Wenbiao; Naish, Suchithra; Banu, Shahera; Tong, Shilu

    2017-06-01

    To assess the epidemiological evidence on the joint effects of climate variability and socioecological factors on dengue transmission. Following PRISMA guidelines, a detailed literature search was conducted in PubMed, Web of Science and Scopus. Peer-reviewed, freely available and full-text articles, considering both climate and socioecological factors in relation to dengue, published in English from January 1993 to October 2015 were included in this review. Twenty studies have met the inclusion criteria and assessed the impact of both climatic and socioecological factors on dengue dynamics. Among those, four studies have further investigated the relative importance of climate variability and socioecological factors on dengue transmission. A few studies also developed predictive models including both climatic and socioecological factors. Due to insufficient data, methodological issues and contextual variability of the studies, it is hard to draw conclusion on the joint effects of climate variability and socioecological factors on dengue transmission. Future research should take into account socioecological factors in combination with climate variables for a better understanding of the complex nature of dengue transmission as well as for improving the predictive capability of dengue forecasting models, to develop effective and reliable early warning systems. © 2017 John Wiley & Sons Ltd.

  11. The effect of climate change on plant diseases | Yáñez-López ...

    African Journals Online (AJOL)

    ... related to the effects of climate change on plant diseases. Taking into account the work done, this review addresses the impact of climate change on plant diseases, considering the effect on crop grown, development and the impact on crop production. Key words: CO2, global warming, temperature effect on diseases.

  12. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    Science.gov (United States)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  13. Relationship between organisational climate and effectiveness of ...

    African Journals Online (AJOL)

    Findings suggest that SSCs should create a climate that is conducive for employee commitment to work, increased productivity and goal achievement which are means to effectiveness of the councils. Also the management of the SSCs must consider the age and experience of employees when putting in place necessary ...

  14. Climate change effects on North American inland fish populations and assemblages

    Science.gov (United States)

    Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.

  15. Effects of city expansion on heat stress under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Daniel Argüeso

    Full Text Available We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009 and future (2040-2059 simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  16. Developing a module for estimating climate warming effects on hydropower pricing in California

    International Nuclear Information System (INIS)

    Guégan, Marion; Uvo, Cintia B.; Madani, Kaveh

    2012-01-01

    Climate warming is expected to alter hydropower generation in California through affecting the annual stream-flow regimes and reducing snowpack. On the other hand, increased temperatures are expected to increase hydropower demand for cooling in warm periods while decreasing demand for heating in winter, subsequently altering the annual hydropower pricing patterns. The resulting variations in hydropower supply and pricing regimes necessitate changes in reservoir operations to minimize the revenue losses from climate warming. Previous studies in California have only explored the effects of hydrological changes on hydropower generation and revenues. This study builds a long-term hydropower pricing estimation tool, based on artificial neural network (ANN), to develop pricing scenarios under different climate warming scenarios. Results suggest higher average hydropower prices under climate warming scenarios than under historical climate. The developed tool is integrated with California's Energy-Based Hydropower Optimization Model (EBHOM) to facilitate simultaneous consideration of climate warming on hydropower supply, demand and pricing. EBHOM estimates an additional 5% drop in annual revenues under a dry warming scenario when climate change impacts on pricing are considered, with respect to when such effects are ignored, underlining the importance of considering changes in hydropower demand and pricing in future studies and policy making. - Highlights: ► Addressing the major gap in previous climate change and hydropower studies in California. ► Developing an ANN-based long-term hydropower price estimation tool. ► Estimating climate change effects on hydropower demand and pricing in California. ► Investigating the sensitivity of hydropower operations to future price changes. ► Underlining the importance of consideration of climate change impacts on electricity pricing.

  17. The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

    2013-08-01

    A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different

  18. On climate prediction: how much can we expect from climate memory?

    Science.gov (United States)

    Yuan, Naiming; Huang, Yan; Duan, Jianping; Zhu, Congwen; Xoplaki, Elena; Luterbacher, Jürg

    2018-03-01

    Slowing variability in climate system is an important source of climate predictability. However, it is still challenging for current dynamical models to fully capture the variability as well as its impacts on future climate. In this study, instead of simulating the internal multi-scale oscillations in dynamical models, we discussed the effects of internal variability in terms of climate memory. By decomposing climate state x(t) at a certain time point t into memory part M(t) and non-memory part ɛ (t) , climate memory effects from the past 30 years on climate prediction are quantified. For variables with strong climate memory, high variance (over 20% ) in x(t) is explained by the memory part M(t), and the effects of climate memory are non-negligible for most climate variables, but the precipitation. Regarding of multi-steps climate prediction, a power law decay of the explained variance was found, indicating long-lasting climate memory effects. The explained variances by climate memory can remain to be higher than 10% for more than 10 time steps. Accordingly, past climate conditions can affect both short (monthly) and long-term (interannual, decadal, or even multidecadal) climate predictions. With the memory part M(t) precisely calculated from Fractional Integral Statistical Model, one only needs to focus on the non-memory part ɛ (t) , which is an important quantity that determines climate predictive skills.

  19. Effective Teacher Practice on the Plausibility of Human-Induced Climate Change

    Science.gov (United States)

    Niepold, F.; Sinatra, G. M.; Lombardi, D.

    2013-12-01

    Climate change education programs in the United States seek to promote a deeper understanding of the science of climate change, behavior change and stewardship, and support informed decision making by individuals, organizations, and institutions--all of which are summarized under the term 'climate literacy.' The ultimate goal of climate literacy is to enable actors to address climate change, both in terms of stabilizing and reducing emissions of greenhouse gases, but also an increased capacity to prepare for the consequences and opportunities of climate change. However, the long-term nature of climate change and the required societal response involve the changing students' ideas about controversial scientific issues which presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). This session will explore how the United States educational efforts focus on three distinct, but related, areas: the science of climate change, the human-climate interaction, and using climate education to promote informed decision making. Each of these approaches are represented in the Atlas of Science Literacy (American Association for the Advancement of Science, 2007) and in the conceptual framework for science education developed at the National Research Council (NRC) in 2012. Instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) has been called for by the Next Generation Science Standards (NGSS) (Achieve, 2013), an innovative and research based way to address climate change education within the decentralized U.S. education system. However, the promise of the NGSS is that students will have more time to build mastery on the subjects, but the form of that instructional practice has been show to be critical. Research has show that effective instructional activities that promote evaluation of evidence improve students' understanding and acceptance toward the scientifically accepted model of human

  20. Climate finance, climate investors and assets for low emission development

    Directory of Open Access Journals (Sweden)

    Collins C Ngwakwe

    2015-05-01

    Full Text Available This research examines the relationship between climate finance, growth in climate investors and growth in climate assets for low emission development. It also evaluates the effect of climate policy evolution on the growth of climate investors and climate assets. Adopting a positivist paradigm, the paper makes use of a quantitative research approach and applies the causal and correlational research design. The paper made use of secondary data from the World Bank Carbon Finance Unit and from the Carbon Disclosure Project (ADP. The major objective was to examine the combined effect of climate finance and climate policy on the growth of carbon investors and carbon assets for the companies in the Carbon Disclosure Project which includes the 100 JSE companies. Findings from the test reveal that the combined effect of growth in climate finance and climate policy evolution has a significant relationship with growth in climate investors and climate assets. Given this result the paper proceeded to examine if the growth in climate finance has any correlation with South Africa’s emission reduction trend. Results however indicate that South Africa’s GHG emission trend does not correlate with climate finance availability; GHG emissions in South Africa have continued to soar despite a seeming growth in climate finance. The paper reasoned that the global climate finance might not be effectively available to corporates in South Africa at the expected level of financing to initiate the expected level of climate investment to effect a significant reduction in greenhouse gas emissions. This confirms literature assertions that global climate finance might not easily be accessible, at least to entities in developing countries. In conclusion, the paper suggests the establishment of a Southern African Climate Finance pool where the public and private sector can contribute and that such pool should be made easily available to carbon investors at a cheap rate with

  1. Cumulative effects of planned industrial development and climate change on marine ecosystems

    Directory of Open Access Journals (Sweden)

    Cathryn Clarke Murray

    2015-07-01

    Full Text Available With increasing human population, large scale climate changes, and the interaction of multiple stressors, understanding cumulative effects on marine ecosystems is increasingly important. Two major drivers of change in coastal and marine ecosystems are industrial developments with acute impacts on local ecosystems, and global climate change stressors with widespread impacts. We conducted a cumulative effects mapping analysis of the marine waters of British Columbia, Canada, under different scenarios: climate change and planned developments. At the coast-wide scale, climate change drove the largest change in cumulative effects with both widespread impacts and high vulnerability scores. Where the impacts of planned developments occur, planned industrial and pipeline activities had high cumulative effects, but the footprint of these effects was comparatively localized. Nearshore habitats were at greatest risk from planned industrial and pipeline activities; in particular, the impacts of planned pipelines on rocky intertidal habitats were predicted to cause the highest change in cumulative effects. This method of incorporating planned industrial development in cumulative effects mapping allows explicit comparison of different scenarios with the potential to be used in environmental impact assessments at various scales. Its use allows resource managers to consider cumulative effect hotspots when making decisions regarding industrial developments and avoid unacceptable cumulative effects. Management needs to consider both global and local stressors in managing marine ecosystems for the protection of biodiversity and the provisioning of ecosystem services.

  2. Assessing debris flow activity in a changing climate : open access

    NARCIS (Netherlands)

    Turkington, T.; Remaitre, A.; Ettema, J.; Hussin, H.Y.; van Westen, C.J.

    2016-01-01

    Future trends in debris flow activity are constructed based on bias-corrected climate change projections using two meteorological proxies: daily precipitation and Convective Available Potential Energy (CAPE) combined with specific humidity for two Alpine areas. Along with a comparison between

  3. EFFECT OF CLIMATE CHANGE ON COCOA PRODUCTIVITY IN ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The study examined the relative effect of climate change on the productivity of cocoa in Nigeria. Data employed were national ... balance and harm agricultural sectors. However, .... and animal life which will inexorably affect productivity of ...

  4. Contrasting effects of climate change on rabbit populations through reproduction.

    Science.gov (United States)

    Tablado, Zulima; Revilla, Eloy

    2012-01-01

    Climate change is affecting many physical and biological processes worldwide. Anticipating its effects at the level of populations and species is imperative, especially for organisms of conservation or management concern. Previous studies have focused on estimating future species distributions and extinction probabilities directly from current climatic conditions within their geographical ranges. However, relationships between climate and population parameters may be so complex that to make these high-level predictions we need first to understand the underlying biological processes driving population size, as well as their individual response to climatic alterations. Therefore, the objective of this study is to investigate the influence that climate change may have on species population dynamics through altering breeding season. We used a mechanistic model based on drivers of rabbit reproductive physiology together with demographic simulations to show how future climate-driven changes in breeding season result in contrasting rabbit population trends across Europe. In the Iberian Peninsula, where rabbits are a native species of high ecological and economic value, breeding seasons will shorten and become more variable leading to population declines, higher extinction risk, and lower resilience to perturbations. Whereas towards north-eastern countries, rabbit numbers are expected to increase through longer and more stable reproductive periods, which augment the probability of new rabbit invasions in those areas. Our study reveals the type of mechanisms through which climate will cause alterations at the species level and emphasizes the need to focus on them in order to better foresee large-scale complex population trends. This is especially important in species like the European rabbit whose future responses may aggravate even further its dual keystone/pest problematic. Moreover, this approach allows us to predict not only distribution shifts but also future

  5. Understanding climate

    International Nuclear Information System (INIS)

    1995-01-01

    In this article the following question is answered. What is the climate? What factors do determine our climate? What is solar radiation? How does solar radiation relate to the earth's energy? What is greenhouse effect? What role does the greenhouse effect play in the global ecosystem? How does the water cycle affect climate? What is drought? What role do oceans play in influencing climate. (author)

  6. Effects of Climate Change and Human Activities on Surface Runoff in the Luan River Basin

    Directory of Open Access Journals (Sweden)

    Sidong Zeng

    2015-01-01

    Full Text Available Quantifying the effects of climate change and human activities on runoff changes is the focus of climate change and hydrological research. This paper presents an integrated method employing the Budyko-based Fu model, hydrological modeling, and climate elasticity approaches to separate the effects of the two driving factors on surface runoff in the Luan River basin, China. The Budyko-based Fu model and the double mass curve method are used to analyze runoff changes during the period 1958~2009. Then two types of hydrological models (the distributed Soil and Water Assessment Tool model and the lumped SIMHYD model and seven climate elasticity methods (including a nonparametric method and six Budyko-based methods are applied to estimate the contributions of climate change and human activities to runoff change. The results show that all quantification methods are effective, and the results obtained by the nine methods are generally consistent. During the study period, the effects of climate change on runoff change accounted for 28.3~46.8% while those of human activities contributed with 53.2~71.7%, indicating that both factors have significant effects on the runoff decline in the basin, and that the effects of human activities are relatively stronger than those of climate change.

  7. Climate change: Implications for water and ecological resources

    International Nuclear Information System (INIS)

    Wall, G.; Sanderson, M.

    1990-01-01

    A conference was held to discuss the implications of climate change on water and ecological resources. The meeting consisted of a number of plenary sessions, luncheon speeches, an open forum, and five workshops. Presentations concerned regional and global issues, climate modelling, international aspects of climate change, water resources supply and demand, wetlands, wildlife and fisheries, agriculture and forests, and conservation strategies. Separate abstracts have been prepared for 32 presentations from the conference

  8. Topographical effects of climate dataset and their impacts on the estimation of regional net primary productivity

    Science.gov (United States)

    Sun, L. Qing; Feng, Feng X.

    2014-11-01

    In this study, we first built and compared two different climate datasets for Wuling mountainous area in 2010, one of which considered topographical effects during the ANUSPLIN interpolation was referred as terrain-based climate dataset, while the other one did not was called ordinary climate dataset. Then, we quantified the topographical effects of climatic inputs on NPP estimation by inputting two different climate datasets to the same ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS), to evaluate the importance of considering relief when estimating NPP. Finally, we found the primary contributing variables to the topographical effects through a series of experiments given an overall accuracy of the model output for NPP. The results showed that: (1) The terrain-based climate dataset presented more reliable topographic information and had closer agreements with the station dataset than the ordinary climate dataset at successive time series of 365 days in terms of the daily mean values. (2) On average, ordinary climate dataset underestimated NPP by 12.5% compared with terrain-based climate dataset over the whole study area. (3) The primary climate variables contributing to the topographical effects of climatic inputs for Wuling mountainous area were temperatures, which suggest that it is necessary to correct temperature differences for estimating NPP accurately in such a complex terrain.

  9. Ancillary benefits of climate policy in a small open economy: The case of Sweden

    International Nuclear Information System (INIS)

    Krook Riekkola, Anna; Ahlgren, Erik O.; Soederholm, Patrik

    2011-01-01

    It is increasingly recognised that GHG reduction policies can have important ancillary benefits in the form of positive local and regional environmental impacts. The purpose of this paper is to estimate the domestic ancillary pollution benefits of climate policy in Sweden, and investigate how these are affected by different climate policy designs. The latter differ primarily in terms of how the country chooses to meet a specific target and where the necessary emission reductions take place. The analysis relies on simulations within the energy system optimisation model TIMES-Sweden, and focuses on four non-GHG pollutants: Nitrogen Oxides (NO X ), Non Methane Volatile Organic Compounds (NMVOC), inhalable particles (PM 2.5 ), and Sulphur dioxide (SO 2 ). The simulations permit detailed assessments of the respective technology and fuel choices that underlie any net changes in the estimated ancillary effects. The results indicate that the ancillary benefits constitute a far from insignificant share of total system costs, and this share appears to be highest in the scenarios that entail the largest emission reductions domestically. This result reflects the fact that carbon dioxide emission reductions abroad also implies a lost opportunity of achieving substantial domestic welfare gain from the reductions of regional and local environmental pollutants. - Highlights: → We estimate the domestic ancillary pollution benefits of climate policy in Sweden. → These constitute a sizeable share of total system costs. → The ancillary benefits are highest in the policy scenarios that entail the largest emission reductions domestically.

  10. Relationship between organizational climate and management effectiveness

    Directory of Open Access Journals (Sweden)

    Arsenijević Olja

    2017-01-01

    Full Text Available The subject of this research is the connection between management effectiveness in economic organizations of Vojvodina and creative organizational climate. According to that, scientific objective of our research is checking one of the most widely used model of measuring management effectiveness - Baldrige's model, on which is based system of management quality incentives in USA. Problem of this research can be expressed with following questions: Whether is possible that the company management in modern market conditions in AP Vojvodina, which has been designed as per traditional Taylor's model that started from the early stage of capitalism development, can be considered as effective? The key finding of this study can be expressed by the following conclusion: in a sample of observed organization the level of organizational creativity is at zero level. Ideas and behaviors inherent to creative organizational climate only born (average rating of level of creativity that all surveyed respondents gave was 0.396, and the median is 0.428. In an effort to concretize this finding, correlation analysis was undertaken between grouped variables of organizational creativity and potential factorial variables of organizational creativity.

  11. The effect of vaccination coverage and climate on Japanese encephalitis in Sarawak, Malaysia.

    Directory of Open Access Journals (Sweden)

    Daniel E Impoinvil

    Full Text Available Japanese encephalitis (JE is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control.Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month, minimum temperature (lag 6-months and SOI (lag 6-months were positively associated with JE cases.This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects are ignored.

  12. The effect of vaccination coverage and climate on Japanese encephalitis in Sarawak, Malaysia.

    Science.gov (United States)

    Impoinvil, Daniel E; Ooi, Mong How; Diggle, Peter J; Caminade, Cyril; Cardosa, Mary Jane; Morse, Andrew P; Baylis, Matthew; Solomon, Tom

    2013-01-01

    Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control. Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases. This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects are ignored.

  13. Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects

    NARCIS (Netherlands)

    Makowski, D.; Asseng, S.; Ewert, F.; Bassu, S.; Durand, J.L.; Martre, P.; Adam, M.; Aggarwal, P.K.; Angulo, C.; Baron, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Boogaard, H.; Boote, K.J.; Brisson, N.; Cammarano, D.; Challinor, A.J.; Conijn, J.G.; Corbeels, M.; Deryng, D.; Sanctis, De G.; Doltra, J.; Gayler, S.; Goldberg, R.; Grassini, P.; Hatfield, J.L.; Heng, L.; Hoek, S.B.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, C.; Jongschaap, R.E.E.; Jones, J.W.; Kemanian, R.A.; Kersebaum, K.C.; Kim, S.H.; Lizaso, J.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.J.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Pravia, M.V.; Priesack, E.; Ripoche, D.; Rosenzweig, C.; Ruane, A.C.; Sau, F.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Teixeira, E.; Thorburn, P.; Timlin, D.; Travasso, M.; Roetter, R.P.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2015-01-01

    Many simulation studies have been carried out to predict the effect of climate change on crop yield. Typically, in such study, one or several crop models are used to simulate series of crop yield values for different climate scenarios corresponding to different hypotheses of temperature, CO2

  14. Abstract Collection of 25th Forum: Energy Day in Croatia: A Unique Energy and Climate Policy in Open Energy Market - A Year After COP 21

    International Nuclear Information System (INIS)

    2016-01-01

    Ever since Croatian Energy Association was founded and became a member of the World Energy Council (WEC), a total of 25 Forums were organised, with subjects of utter importance for the energy sector. Experts and the public were familiarized with problems, trends, visions and experiences from different countries through papers and presentations presented on those forums, which were also an outlook to the future. The subjects of the forums already held were as following: 1992, Croatian Energy During and After the War; 1993, New Technologies and Energy Management; 1994, Problems of the Energy Sector Transition; 1995, Prices and Tariff Policy in the Energy Industry; 1996, Expectations in the Energy Consumption until 2020; 1997, Goals, Methodology and Experiences of Regional Planning as a part of a National Energy Sector; 1998, Future of the Energy Industry After the Kyoto Protocol; 1999, Energy Market and Energy Efficiency in the Transition Countries; 2000, Restructure, Privatisation and Market Change of Linked Energy Systems; 2001, Liberalisation and Privatisation of the Energy Sector in Transition Countries and in the European Union - Experiences and Perspective; 2002, Regulation Problem on the Energy Services Market; 2003, Energy Consumers in the Open Market Conditions; 2004, Long-term Planning and Supply Security in the Open Market Conditions; 2005, Energy Perspectives Today and Tomorrow - WORLD EUROPE CROATIA; 2006, Energy Perspectives to 2050 - WORLD EUROPE CROATIA; 2007, Energy Future in the Light of Conditions and Integration Processes in Europe; 2008, Europe, Region and Croatia in 2030; 2009, Quo Vadis Energy in the Period of Climate Change; 2010, Energy Future - Vision Until 2050; 2011, Third package and other energy directives - What they do and do not bring, and what we can expect in the future; 2012, Reducing CO2 Emissions by 80 percent by 2050 - Reality or Utopia; 2013, How to Accomplish Goals of Reducing CO2 Emissions by 2050; 2014, How to Define and

  15. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Tchebakova, N M; Parfenova, E [V N Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Academgorodok, Krasnoyarsk, 660036 (Russian Federation); Soja, A J, E-mail: ncheby@forest.akadem.r, E-mail: Amber.J.Soja@nasa.go [National Institute of Aerospace (NIA), NASA Langley Research Center, Climate Sciences, 21 Langley Boulevard, Mail Stop 420, Hampton, VA 23681-2199 (United States)

    2009-10-15

    Observations and general circulation model projections suggest significant temperature increases in Siberia this century that are expected to have profound effects on Siberian vegetation. Potential vegetation change across Siberia was modeled, coupling our Siberian BioClimatic Model with several Hadley Centre climate change scenarios for 2020, 2050 and 2080, with explicit consideration of permafrost and fire activity. In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over half of Siberia due to the dryer climate by 2080. Despite the large predicted increases in warming, permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats by 2080. Potential fire danger evaluated with the annual number of high fire danger days (Nesterov index is 4000-10 000) is predicted to increase by 2080, especially in southern Siberia and central Yakutia. In a warming climate, fuel load accumulated due to replacement of forest by steppe together with frequent fire weather promotes high risks of large fires in southern Siberia and central Yakutia, where wild fires would create habitats for grasslands because the drier climate would no longer be suitable for forests.

  16. Effect of Climate Variability on Crop Income in Central Ethiopia

    Directory of Open Access Journals (Sweden)

    Arega Shumetie Ademe

    2017-12-01

    Full Text Available Ethiopian agriculture is a vulnerable sector from effects of climate variability. This study identified how strong is the effect of climate variability on smallholders’ crop income in Central highlands and Arssi grain plough farming systems of the country. The unbalanced panel data (1994-2014 of the study collected for eight rounds analysed through fixed effect regression. The model result shows that successive increment of crop season rainfall keeping the temperature constant has negative and significant effect on households’ crop income in the study area. The crop income responds similarly for temperature increment if the rainfall remains constant. Given this, simultaneous increment of the two climate related inputs has positive and significant effect on crop income. Other variables like flood, frost, storm, and rainfall inconsistency in the onset and cessation time affected households’ crop income negatively and significantly. Similarly, draught power and human labour, which are critical inputs in the crop production of Ethiopian smallholders, have positive and significant effect on crop income as to the model result. Thus, this study recommended that there should be supplementing the rainfall through irrigation, check dam and other activities to have consistent water supply for the crop production that enable smallholders to collect better income. Additionally, negative effect of temperature increment should be curved through adopting long lasting strategies like afforestation.

  17. Effect of STOP technique on safety climate in a construction company.

    Science.gov (United States)

    Darvishi, Ebrahim; Maleki, Afshin; Dehestaniathar, Saeed; Ebrahemzadih, Mehrzad

    2015-01-01

    Safety programs are a core part of safety management in workplaces that can reduce incidents and injuries. The aim of this study was to investigate the influence of Safety Training Observation Program (STOP) technique as a behavior modification program on safety climate in a construction company. This cross-sectional study was carried out on workers of the Petrochemical Construction Company, western Iran. In order to improve safety climate, an unsafe behavior modification program entitled STOP was launched among workers of project during 12 months from April 2013 and April 2014. The STOP technique effectiveness in creating a positive safety climate was evaluated using the Safety Climate Assessment Toolkit. 76.78% of total behaviors were unsafe. 54.76% of total unsafe acts/ at-risk behaviors were related to the fall hazard. The most cause of unsafe behaviors was associated with habit and unavailability of safety equipment. After 12 month of continuous implementation the STOP technique, 55.8% of unsafe behaviors reduced among workers. The average score of safety climate evaluated using of the Toolkit, before and after the implementation of the STOP technique was 5.77 and 7.24, respectively. The STOP technique can be considered as effective approach for eliminating at-risk behavior, reinforcing safe work practices, and creating a positive safety climate in order to reduction incidents/injuries.

  18. Effect of climate change on sea water intrusion in coastal aquifers

    Science.gov (United States)

    Sherif, Mohsen M.; Singh, Vijay P.

    1999-06-01

    There is increasing debate these days on climate change and its possible consequences. Much of this debate has focused in the context of surface water systems. In many arid areas of the world, rainfall is scarce and so is surface runoff. These areas rely heavily on groundwater. The consequences of climate change on groundwater are long term and can be far reaching. One of the more apparent consequences is the increased migration of salt water inland in coastal aquifers. Using two coastal aquifers, one in Egypt and the other in India, this study investigates the effect of likely climate change on sea water intrusion. Three realistic scenarios mimicking climate change are considered. Under these scenarios, the Nile Delta aquifer is found to be more vulnerable to climate change and sea level rise.

  19. Effects of climatic variability and change

    Science.gov (United States)

    Michael G. Ryan; James M. Vose

    2012-01-01

    Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of projecting the response of forests to changing climate, elevated atmospheric carbon dioxide (CO2)...

  20. Anticipating the Emerging of Some Strategical Infectious Animal Diseases in Indonesia Related to The Effect of Global Warming and Climate Change

    Directory of Open Access Journals (Sweden)

    Sjamsul Bahri

    2011-03-01

    Full Text Available The effect of global warming and climate change is changing the season, included flooding in one area and very dry in other area, changing the temperature and humidity. These changes will trigger changing of the life of biological agent (virus, bacteria, parasites and so on, variety of animal species, variety of vectors as reservoir host of animal with the role of transmitting the disease to other animal species, This condition will trigger the new animal disease (emerging disease or old disease will be re-emerged (re-emerging diseases. This paper will discuss the effect of global warming and climate change on animal diseases in Indonesia such as Bluetongue (BT, Nipah, Japanese encephalitis (JE, West Nile (WN, and Rift Valley fever (RVF. The climate changes such as increasing the earth temperature and rainfall will cause extremely increase of vector population for BT, JE, WN and RVF. In addition, animal transportation and bird migration from one country to others or region will cause changing of ecological system and will open the chance to distribute the diseases. Hence, anticipation on those disease outbreaks should be taken by conducting the surveilance and early detection to those diseases. The possibility of entering Nipah disease in Indonesia should be anticipated because the avaibility of Nipah virus and the reservoir host (Pteropus spp and also pigs as amplifier host in the surrounding area. Other diseases such as, leptospirosis, anthrax and avian influenza (H5N1 are also have a wider potential to distributing the disease related to the climate change in Indonesia.

  1. An effective drift correction for dynamical downscaling of decadal global climate predictions

    Science.gov (United States)

    Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen

    2018-04-01

    Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

  2. Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective.

    Science.gov (United States)

    Bytnerowicz, Andrzej; Omasa, Kenji; Paoletti, Elena

    2007-06-01

    Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies.

  3. Construction and Validation of the Lesbian, Gay, Bisexual, and Transgendered Climate Inventory

    Science.gov (United States)

    Liddle, Becky J.; Luzzo, Darrell Anthony; Hauenstein, Anita L.; Schuck, Kelly

    2004-01-01

    Workplace climate refers to formal and informal organizational characteristics contributing to employee welfare. Workplace climates for lesbian, gay, bisexual, and transgendered (LGBT) employees range from actively supportive to openly hostile. An instrument measuring LGBT workplace climate will enable research on vocational adjustment of LGBT…

  4. Emission from open burning of municipal solid waste in India.

    Science.gov (United States)

    Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh

    2017-07-27

    Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.

  5. Improving organizational climate for quality and quality of care: does membership in a collaborative help?

    Science.gov (United States)

    Nembhard, Ingrid M; Northrup, Veronika; Shaller, Dale; Cleary, Paul D

    2012-11-01

    The lack of quality-oriented organizational climates is partly responsible for deficiencies in patient-centered care and poor quality more broadly. To improve their quality-oriented climates, several organizations have joined quality improvement collaboratives. The effectiveness of this approach is unknown. To evaluate the impact of collaborative membership on organizational climate for quality and service quality. Twenty-one clinics, 4 of which participated in a collaborative sponsored by the Institute for Clinical Systems Improvement. Pre-post design. Preassessments occurred 2 months before the collaborative began in January 2009. Postassessments of service quality and climate occurred about 6 months and 1 year, respectively, after the collaborative ended in January 2010. We surveyed clinic employees (eg, physicians, nurses, receptionists, etc.) about the organizational climate and patients about service quality. Prioritization of quality care, high-quality staff relationships, and open communication as indicators of quality-oriented climate and timeliness of care, staff helpfulness, doctor-patient communication, rating of doctor, and willingness to recommend doctor's office as indicators of service quality. There was no significant effect of collaborative membership on quality-oriented climate and mixed effects on service quality. Doctors' ratings improved significantly more in intervention clinics than in control clinics, staff helpfulness improved less, and timeliness of care declined more. Ratings of doctor-patient communication and willingness to recommend doctor were not significantly different between intervention and comparison clinics. Membership in the collaborative provided no significant advantage for improving quality-oriented climate and had equivocal effects on service quality.

  6. Seismic effects on underground openings

    International Nuclear Information System (INIS)

    Marine, I.W.; Pratt, H.R.; Wahi, K.K.; Science Applications, Inc., La Jolla, CA; Science Applications, Inc., Albuquerque, NM)

    1982-01-01

    Numerical modeling techniques were used to determine the conditions required for seismic waves generated by an earthquake to cause instability to an underground opening or create fracturing and joint movement that would lead to an increase in the permeability of the rock mass. Three different rock types (salt, granite, and shale) were considered as host media for the repository located at a depth of 600 m. Special material models were developed to account for the nonlinear material behavior of each rock type. The sensitivity analysis included variations in the in situ stress ratio, joint geometry, and pore pressures, and the presence or absence of large fractures. Three different sets of earthquake motions were used to excite the rock mass. The methodology applied was found to be suitable for studying the effects of earthquakes on underground openings. In general, the study showed that moderate earthquakes (up to 0.41 g) did not cause instability of the tunnel or major fracturing of the rock mass; however, a tremor with accelerations up to 0.95 g was amplified around the tunnel, and fracturing occurred as a result of the seismic loading in salt and granite. In situ stress is a critical parameter in determining the subsurface effects of earthquakes but is nonexistent in evaluating the cause for surface damage. In shale with the properties assumed, even the moderate seismic load resulted in tunnel instability. These studies are all generic in nature and do not abrogate the need for site and design studies for specific facilities. 30 references, 14 figures, 8 tables

  7. Complexity Science and the Dynamics of Climate and Communication: Reducing Nursing Home Turnover

    Science.gov (United States)

    Anderson, Ruth A.; Corazzini, Kirsten N.; McDaniel, Reuben R.

    2008-01-01

    Purpose Turnover in nursing homes is a widespread problem adversely affecting care quality. Using complexity theory, we tested the effect of administrative climate, communication patterns, and the interaction between the two on turnover, controlling for facility context. Design and Methods Perceptions of administrative climate and communication were collected from 3,449 employees in 164 randomly sampled nursing homes, and they were linked to secondary data on facility characteristics, resource allocation, and turnover. We used hierarchical regression to test the hypotheses. Results Climate and communication both affected turnover, but lower turnover was dependent on the interaction between climate and communication. In nursing homes with reward-based administrative climates, higher levels of communication openness and accuracy explained lower turnover of licensed vocational nurses and certified nurse assistants, relative to nursing homes with an ambiguous climate. Adequate staffing and longer tenure of the nursing director were also important predictors of turnover. Implications Although context is important, managers can also influence turnover by addressing climate and communication patterns and by encouraging stable nursing leadership. PMID:15197292

  8. Enhancing the Value of the Federal Climate-Relevant Data Through the Climate Data Initiative

    Science.gov (United States)

    Meyer, D. J.; Pinheiro Privette, A. C.; Bugbee, K.

    2016-12-01

    The Climate Data Initiative (CDI), launched by the Obama Administration in March of 2014, is an effort to leverage the extensive open Federal data to spur innovation and private-sector entrepreneurship around climate resilience. As part of this initiative the federal agencies identified key climate-relevant datasets and made them discoverable through an online catalog at data.gov/climate. Although this was a critical and foundational step to improve the discoverability to these federal data, enhancements to its accessibility and usability require a deeper understanding of the data needs of the different user communities. More recently, the focus of the CDI project has evolved toward extended engagement with communities of resilience trough the identification of use-cases. This effort aims to guide the next steps of the CDI project to make the CDI resources more easily integrated into decision support systems

  9. Climate Education at the University of Hamburg

    Science.gov (United States)

    Dilly, Oliver; Stammer, Detlef; Pfeiffer, Eva-Maria

    2010-05-01

    The new graduate School of Integrated Climate Sciences (www.sicss.de) at the KlimaCampus of the University of Hamburg was opened at October 20, 2009 and includes a 2-yr MSc (120 ECTS, 30 compulsory, 90 eligible) and 3-yr doctoral program (12 ECTS). About 40 students were enrolled in early 2010. The interdisciplinary MSc program is based on a number of disciplines such as meteorology, geophysics, oceanography, geosciences and also economics and social sciences. These disciplines are required to address the faced key issues related to climate change effectively. The graduate school is guiding pupils and BSc students with competence in maths and physics on how to become a climate expert. Acquisition is done internationally at fairs, uni days and dircectly at schools and intuitions for higher education. BSc degree in the disciplines listed above is set for positive application. Climate experts are needed for both research and the professional world outside the university and research institutions. In accordance, connection within and outside the university are continuously explored and soft skills for the communication to politics and the public's are included in the MSc and PhD curricula. Since the graduate school was established within the cluster of excellence ‘Integrated Climate Analysis and Predication' (www.clisap.de), this school represents a prototype for graduate programs at the University of Hamburg. Advantages and limitations of this Climate System School concept will be discussed.

  10. Assessing Team Climate by Qualitative and Quantitative Approaches: Building the Learning Organization

    Science.gov (United States)

    Loewen, Pamela; Loo, Robert

    2004-01-01

    This study used the team climate inventory (TCI) to create awareness of the multidimensional nature of team climate, to diagnose the climate of teams, and to present specific actions to improve team climate. Management undergraduates from 81, four-person teams completed the TCI and an open-ended question at week 3 and week 12 of their team…

  11. CLIMATE PATTERNS OF HABITABLE EXOPLANETS IN ECCENTRIC ORBITS AROUND M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei; Hu, Yongyun [Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871 China (China); Tian, Feng, E-mail: yyhu@pku.edu.cn [Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084 (China)

    2014-08-10

    Previous studies show that synchronous rotating habitable exoplanets around M dwarfs should have an ''eyeball'' climate pattern—a limited region of open water on the day side and ice on the rest of the planet. However, exoplanets with nonzero eccentricities could have spin-orbit resonance states different from the synchronous rotation state. Here, we show that a striped-ball climate pattern, with a global belt of open water at low and middle latitudes and ice over both polar regions, should be common on habitable exoplanets in eccentric orbits around M dwarfs. We further show that these different climate patterns can be observed by future exoplanet detection missions.

  12. Assessing the sensitivity of avian species abundance to land cover and climate

    Science.gov (United States)

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  13. Climate Change and Air Pollution: Effects on Respiratory Allergy.

    Science.gov (United States)

    D'Amato, Gennaro; Pawankar, Ruby; Vitale, Carolina; Lanza, Maurizia; Molino, Antonio; Stanziola, Anna; Sanduzzi, Alessandro; Vatrella, Alessandro; D'Amato, Maria

    2016-09-01

    A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by anthropogenic factors, have impact on the biosphere and human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, such as meteorological variables, airborne allergens, and air pollution. Urbanization with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases and bronchial asthma observed over recent decades in most industrialized countries. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in the general population and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could also be an effect of air pollution and climate change. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last 5 decades. Pollen allergy is frequently used to study the relationship between air pollution and respiratory allergic diseases, such as rhinitis and bronchial asthma. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions, and westernized lifestyle are correlated with an increased frequency of respiratory allergy prevalently in people who live in urban areas in comparison with people living in rural areas. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc.) can affect both components (biological and chemical) of this interaction.

  14. Climate-chemical interactions and effects of changing atmospheric trace gases

    International Nuclear Information System (INIS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Lacis, A.; Kuhn, W.; Luther, F.; Mahlman, J.; Reck, R.; Schlesinger, M.

    1992-01-01

    The problem concerning the greenhouse effects of human activities has broadened in scope from the CO 2 -climate problem to the trace gas-climate problem. The climate effects of non-CO 2 trace gases are strongly governed by interactions between chemistry, radiation, and dynamics. The authors discuss in detail the nature of the trace gas radiative heating and describe the importance of radiative-chemical interactions within the troposphere and the stratosphere. They make an assessment of the trace gas effects on troposphere-stratosphere temperature trends for the period covering the preindustrial era to the present and for the next several decades. Non-CO 2 greenhouse gases in the atmosphere are now adding to the greenhouse effect by an amount comparable to the effect of CO 2 . The rate of decadal increase of the total greenhouse forcing is now 3-6 times greater than the mean rate for the period 1850-1960. Time-dependent calculations with a simplified one-dimensional diffusive ocean model suggest that a surface warming about 0.4-0.8 K should have occurred during 1850 to 1980. For the various trace gas scenarios considered in this study, the equilibrium surface warming for the period 1980 to 2030 ranges from 0.8 to 4.1 K. This wide range in the projected warming is due to the range in the assumed scenario as well as due to the threefold uncertainty in the sensitivity of climate models. For the 180-year period from 1850 to 2030, their analysis suggests a trace gas-induced cumulative equilibrium surface warming in the range of 1.5 to 6.1 K

  15. The CLEAN Workshop Series: Promoting Effective Pedagogy for Teaching Undergraduate Climate Science

    Science.gov (United States)

    Kirk, K. B.; Bruckner, M. Z.; Manduca, C. A.; Buhr, S. M.

    2012-12-01

    To prepare students to understand a changing climate, it is imperative that we equip educators with the best possible tools and methods for reaching their audience. As part of the Climate Literacy and Energy Awareness Network (CLEAN) professional development efforts, two workshops for undergraduate faculty were held in 2012. These workshops used a variety of activities to help faculty learn about recent climate research, take part in demonstrations of successful activities for teaching climate topics, and collaborate to create new teaching materials. The workshops also facilitated professional networking among participants. Both workshops were held online, eliminating the need for travel, encouraging participants without travel funds to attend, and allowing international collaborations and presentations. To create an authentic experience, the workshop used several technologies such as the Blackboard Collaborate web conferencing platform, SERC's web-based collaboration tools and online discussion threads, and conference calls. The workshop Communicating Climate Science in the Classroom, held in April 2012, explored practices for communicating climate science and policy in the classroom and provided strategies to improve student understanding of this complex and sensitive topic. Workshop presentations featured public opinion research on Americans' perceptions of climate change, tactics for identifying and resolving student misconceptions, and methods to address various "backfire effects" that can result from attempts to correct misinformation. Demonstrations of teaching approaches included a role-playing simulation of emissions negotiations, Princeton's climate stabilization wedges game, and an activity that allows students to use scientific principles to tackle misinformation. The workshop Teaching Climate Complexity was held in May 2012. Teaching the complexities of climate science requires an understanding of many facets of the Earth system and a robust pedagogic

  16. Reactive nitrogen in the environment and its effect on climate change

    International Nuclear Information System (INIS)

    Erisman, J.W.; Bleeker, A.; Galloway, J.; Seitzinger, S.; Butterbach-Bahl, K.

    2011-01-01

    Humans have doubled levels of reactive nitrogen in circulation, largely as a result of fertilizer application and fossil fuel burning. This massive alteration of the nitrogen cycle affects climate, food security, energy security, human health and ecosystem services. Our estimates show that nitrogen currently leads to a net-cooling effect on climate with very high uncertainty. The many complex warming and cooling interactions between nitrogen and climate need to be better assessed, taking also into account the other effects of nitrogen on human health, environment and ecosystem services. Through improved nitrogen management substantial reductions in atmospheric greenhouse gas concentrations could be generated, also allowing for other co-benefits, including improving human health and improved provision of ecosystem services, for example clean air and water, and biodiversity.

  17. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  18. Cost-effectiveness of laparoscopic versus open distal pancreatectomy for pancreatic cancer.

    Science.gov (United States)

    Gurusamy, Kurinchi Selvan; Riviere, Deniece; van Laarhoven, C J H; Besselink, Marc; Abu-Hilal, Mohammed; Davidson, Brian R; Morris, Steve

    2017-01-01

    A recent Cochrane review compared laparoscopic versus open distal pancreatectomy for people with for cancers of the body and tail of the pancreas and found that laparoscopic distal pancreatectomy may reduce the length of hospital stay. We compared the cost-effectiveness of laparoscopic distal pancreatectomy versus open distal pancreatectomy for pancreatic cancer. Model based cost-utility analysis estimating mean costs and quality-adjusted life years (QALYs) per patient from the perspective of the UK National Health Service. A decision tree model was constructed using probabilities, outcomes and cost data from published sources. A time horizon of 5 years was used. One-way and probabilistic sensitivity analyses were undertaken. The probabilistic sensitivity analysis showed that the incremental net monetary benefit was positive (£3,708.58 (95% confidence intervals (CI) -£9,473.62 to £16,115.69) but the 95% CI includes zero, indicating that there is significant uncertainty about the cost-effectiveness of laparoscopic distal pancreatectomy versus open distal pancreatectomy. The probability laparoscopic distal pancreatectomy was cost-effective compared to open distal pancreatectomy for pancreatic cancer was between 70% and 80% at the willingness-to-pay thresholds generally used in England (£20,000 to £30,000 per QALY gained). Results were sensitive to the survival proportions and the operating time. There is considerable uncertainty about whether laparoscopic distal pancreatectomy is cost-effective compared to open distal pancreatectomy for pancreatic cancer in the NHS setting.

  19. Climate change impacts on human health over Europe through its effect on air quality.

    Science.gov (United States)

    Doherty, Ruth M; Heal, Mathew R; O'Connor, Fiona M

    2017-12-05

    This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O 3 air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O 3 but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O 3 entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate. However, under the extreme pathway RCP8.5 higher (more than double) methane (CH 4 ) abundances lead to increases in background O 3 that offset the O 3 decrease due to climate change especially for the 2100 period. Regionally, in polluted areas with high levels of nitrogen oxides (NO x ), elevated surface temperatures and humidities yield increases in surface O 3 - termed the O 3 climate penalty - especially in southern Europe. The O 3 response is larger for metrics that represent the higher end of the O 3 distribution, such as daily maximum O 3 . Future changes in PM concentrations due to climate change are much less certain, although several recent studies also suggest a PM climate penalty due to high temperatures and humidity and reduced precipitation in northern mid-latitude land regions in 2100.A larger number of studies have examined both future climate and emissions changes under the RCP scenarios. Under these pathways the impact of emission changes on air quality out to the 2050s will be larger than that due to climate change, because of large reductions in emissions of O 3 and PM pollutant precursor emissions and the more limited climate change response itself. Climate change will also affect climate extreme events such as heatwaves. Air pollution episodes are associated with stagnation events and sometimes heat waves. Air quality during

  20. Effect of climatic changes on the prevalence of zoonotic diseases

    Directory of Open Access Journals (Sweden)

    Neelam Sachan and V.P.Singh

    Full Text Available Combustion of fossil fuels and human activities has led to sharp increase in greenhouse gases in the atmosphere. These climate changes have tremendous effect on prevalence of zoonotic diseases. The changes in climate may increase the insect vectors, prolong transmission cycles or increase the importation of vectors or animal reservoirs. It may also have an adverse effect on biodiversity, distribution of animals and microflora which may lead to emergence of zoonotic disease outbreaks. A historical perspective on major vector-borne diseases such as arboviral encephalitides, dengue fever and Rift Valley fever, Lyme disease, West Nile virus, malaria, plague, hantavirus pulmonary syndrome and dengue fever have been shown to have a distinct seasonal pattern and in some instances their frequency has been shown to be weather sensitive. Because of the sensitivities of the vectors and animal hosts of these diseases to climactic factors, climate change-driven ecological changes such as variations in rainfall and temperature could significantly alter the range, seasonality and human incidence of many zoonotic and vector-borne diseases. The evolution of emerging zoonotic diseases globally during the period 1996 to 2007 was Ebola haemorrhagic fever, Rift Valley fever, avian influenza H5N1, plague and Nipah virus. Whereas, bird flu and swine flu like diseases are still creating havoc for human and animal health worldwide. It is a today’s and tomorrow’s demand that interdisciplinary communication between health professionals, veterinarians, environmental scientists, ecologists, geographers and economists seeking to understand climate change will be key to protecting people in India and worldwide against these threats. Rigorous cross-disciplinary studies using a variety of methodological tools will enable us to predict the transmission dynamics of diseases under different climate scenarios and estimate the cost-effectiveness of mitigation strategies. In this

  1. Bottom-up effects of climate on fish populations: data from the Continuous Plankton Recorder

    DEFF Research Database (Denmark)

    Pitois, S.G.; Lynam, C.P.; Jansen, Teunis

    2012-01-01

    The Continuous Plankton Recorder (CPR) dataset on fish larvae has an extensive spatio-temporal coverage that allows the responses of fish populations to past changes in climate variability, including abrupt changes such as regime shifts, to be investigated. The newly available dataset offers...... in the plankton ecosystem, while the larvae of migratory species such as Atlantic mackerel responded more to hydrographic changes. Climate variability seems more likely to influence fish populations through bottom-up control via a cascading effect from changes in the North Atlantic Oscillation (NAO) impacting...... with fishing effects interacting with climate effects and this study supports furthering our under - standing of such interactions before attempting to predict how fish populations respond to climate variability...

  2. Effect of Integrated Feedback on Classroom Climate of Secondary School Teachers

    Science.gov (United States)

    Patel, Nilesh Kumar

    2018-01-01

    This study aimed at finding out the effect of Integrated feedback on Classroom climate of secondary school teachers. This research is experimental in nature. Non-equivalent control group design suggested by Stanley and Campbell (1963) was used for the experiment. Integrated feedback was treatment and independent variable, Classroom climate was…

  3. The effects of climate change and land-use change on demographic rates and population viability.

    Science.gov (United States)

    Selwood, Katherine E; McGeoch, Melodie A; Mac Nally, Ralph

    2015-08-01

    Understanding the processes that lead to species extinctions is vital for lessening pressures on biodiversity. While species diversity, presence and abundance are most commonly used to measure the effects of human pressures, demographic responses give a more proximal indication of how pressures affect population viability and contribute to extinction risk. We reviewed how demographic rates are affected by the major anthropogenic pressures, changed landscape condition caused by human land use, and climate change. We synthesized the results of 147 empirical studies to compare the relative effect size of climate and landscape condition on birth, death, immigration and emigration rates in plant and animal populations. While changed landscape condition is recognized as the major driver of species declines and losses worldwide, we found that, on average, climate variables had equally strong effects on demographic rates in plant and animal populations. This is significant given that the pressures of climate change will continue to intensify in coming decades. The effects of climate change on some populations may be underestimated because changes in climate conditions during critical windows of species life cycles may have disproportionate effects on demographic rates. The combined pressures of land-use change and climate change may result in species declines and extinctions occurring faster than otherwise predicted, particularly if their effects are multiplicative. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  4. Understanding interaction effects of climate change and fire management on bird distributions through combined process and habitat models

    Science.gov (United States)

    White, Joseph D.; Gutzwiller, Kevin J.; Barrow, Wylie C.; Johnson-Randall, Lori; Zygo, Lisa; Swint, Pamela

    2011-01-01

    Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process-based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf-area index values were lower in shrubland. This high probability of occurrence likely is related to the species' use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.

  5. The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f.

    Science.gov (United States)

    Shields, Aomawa L; Barnes, Rory; Agol, Eric; Charnay, Benjamin; Bitz, Cecilia; Meadows, Victoria S

    2016-06-01

    As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013 ), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of

  6. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    Science.gov (United States)

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global

  7. Quantitative land-cover change in space and time over the last 11 000 years in the Baltic Sea catchment area and Norway - implications for studies on vegetation-climate interactions and land-use as a forcing of climate change

    Science.gov (United States)

    Trondman, Anna-Kari; Gaillard, Marie-José; Nielsen, Anne Birgitte; Shinya, Sugita; John, Birks; Anne, Bjune; Mihkel, Kangur; Per, Lagerås; Malgorzata, Latalowa; Matts, Lindbladh; Anneli, Poska; Siim, Veski

    2016-04-01

    Quantification of the effect of human-induced land-cover change (land-use) on climate in the past is still a subject of debate. Although we know that both biogeochemical and biogeophysical processes between the land surface and the atmosphere due to anthropogenic land-cover change lead to significant effects on climate, we still know little on the net effect of both types of processes. For instance climate modelling studies have shown that the extent of deforestation in Europe between 6k and 0.2k - as proposed by the KK scenarios of Anthropogenic Land Cover Change (ALCC) of Kaplan et al (2009) - has either warming or cooling biogeophysical effects on the geographical location (Strandberg et al., 2014). Further progress in our understanding of the effects of land-use change on climate greatly depends on the availability of reliable, empirical data on past land-use changes in quantitative terms. We present here pollen-based estimates of regional vegetation cover over the Holocene in the catchment of the Baltic Sea and in Norway. The regional abundance of individual plant species, genus, and groups of taxa were estimated at a 0.5k - to 0.1k - calender year time resolution using 339 pollen records and the REVEALS model (Sugita, 2007). Although there are very large differences between pollen percentages and REVEALS estimates of plant cover in terms of percentage values, the general trends in relative changes of the large landscape units (coniferous trees, deciduous trees, and open land) over time are comparable between the two. However, the ages obtained for the establishment of all tree taxa using a "REVEALS estimate threshold" of 1% are almost all older (by 0.5k years or more) than the ages inferred earlier from pollen percentages, and the times of maximum abundances of the tree taxa, as well as the relationships trees/openland and coniferous/deciduous are different between pollen percentages and plant cover. The pollen-based REVEALS cover of open land confirms the

  8. Climate change, human health, and biomedical research: analysis of the National Institutes of Health research portfolio.

    Science.gov (United States)

    Jessup, Christine M; Balbus, John M; Christian, Carole; Haque, Ehsanul; Howe, Sally E; Newton, Sheila A; Reid, Britt C; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P

    2013-04-01

    According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH's strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health.

  9. Which way forward : issues in developing an effective climate regime after 2012

    International Nuclear Information System (INIS)

    Cosbey, A.; Bell, W.; Murphy, D.; Parry, J.E.; Drexhage, J.; Hammill, A.; Van Ham, J.

    2005-01-01

    This book proposed that a post-2012 climate regime will need to balance the needs of all countries while aiming to prevent the potentially serious economic and social consequences of the impacts of climate change. Four elements were presented to support the emergence of an internationally acceptable approach: (1) the need to ensure sustainable economic development; (2) the effective development and penetration of clean technologies; (3) the establishment of an effective international carbon market over the long term; and (4) the integration of adaptation in development and natural resource management decision-making. A series of discussion papers were presented which reviewed options on how best to create an effective and inclusive international climate regime that will achieve large reductions in global emissions and equitably reflect the diverse circumstances of countries while promoting sustainable economic development. The first paper highlighted some of the characteristics of an international policy framework for cooperatively engaging the best tools of the scientific and policy communities to address challenges over the long and short term. The second paper examined how a post-2012 global climate regime could promote the development, deployment and diffusion of the appropriate technologies expected to play a critical role in mitigating and adapting to climate change. The third paper examined market-based approaches to enable cost-effective reductions and increase the feasibility of achieving long-term reductions as well as the promotion and development of low carbon energy technologies. The final paper examined research and policy developments relevant to determining how a future regime could support a long-term, integrated approach to addressing adaptation to climate change by all countries. refs., tabs., figs

  10. Fisheries regulatory regimes and resilience to climate change.

    Science.gov (United States)

    Ojea, Elena; Pearlman, Isaac; Gaines, Steven D; Lester, Sarah E

    2017-05-01

    Climate change is already producing ecological, social, and economic impacts on fisheries, and these effects are expected to increase in frequency and magnitude in the future. Fisheries governance and regulations can alter socio-ecological resilience to climate change impacts via harvest control rules and incentives driving fisher behavior, yet there are no syntheses or conceptual frameworks for examining how institutions and their regulatory approaches can alter fisheries resilience to climate change. We identify nine key climate resilience criteria for fisheries socio-ecological systems (SES), defining resilience as the ability of the coupled system of interacting social and ecological components (i.e., the SES) to absorb change while avoiding transformation into a different undesirable state. We then evaluate the capacity of four fisheries regulatory systems that vary in their degree of property rights, including open access, limited entry, and two types of rights-based management, to increase or inhibit resilience. Our exploratory assessment of evidence in the literature suggests that these regulatory regimes vary widely in their ability to promote resilient fisheries, with rights-based approaches appearing to offer more resilience benefits in many cases, but detailed characteristics of the regulatory instruments are fundamental.

  11. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages.

    Directory of Open Access Journals (Sweden)

    Peter C Jacobson

    Full Text Available Eutrophication and climate warming are profoundly affecting fish in many freshwater lakes. Understanding the specific effects of these stressors is critical for development of effective adaptation and remediation strategies for conserving fish populations in a changing environment. Ecological niche models that incorporated the individual effects of nutrient concentration and climate were developed for 25 species of fish sampled in standard gillnet surveys from 1,577 Minnesota lakes. Lake phosphorus concentrations and climates were hindcasted to a pre-disturbance period of 1896-1925 using existing land use models and historical temperature data. Then historical fish assemblages were reconstructed using the ecological niche models. Substantial changes were noted when reconstructed fish assemblages were compared to those from the contemporary period (1981-2010. Disentangling the sometimes opposing, sometimes compounding, effects of eutrophication and climate warming was critical for understanding changes in fish assemblages. Reconstructed abundances of eutrophication-tolerant, warmwater taxa increased in prairie lakes that experienced significant eutrophication and climate warming. Eutrophication-intolerant, warmwater taxa abundance increased in forest lakes where primarily climate warming was the stressor. Coolwater fish declined in abundance in both ecoregions. Large changes in modeled abundance occurred when the effects of both climate and eutrophication operated in the same direction for some species. Conversely, the effects of climate warming and eutrophication operated in opposing directions for other species and dampened net changes in abundance. Quantifying the specific effects of climate and eutrophication will allow water resource managers to better understand how lakes have changed and provide expectations for sustainable fish assemblages in the future.

  12. Critical Studies on Integrating Land-Use Induced Effects on Climate Regulation Services into Impact Assessment for Human Well-Being

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-01-01

    Full Text Available It is commonly acknowledged that land use changes (LUC and climate changes have exerted significant effects on ecosystem services which are essential and vital to human well-being. Among all the services provided by ecosystem, climate regulation services are relatively sensitive to LUC and climate changes. This study aims to comprehensively review studies on the complex effects of LUC and climate changes on climate regulation services and further integrates the effects on climate regulation services into impact assessment for human well-being. In this study, we firstly introduced research efforts in which the drivers of and their corresponding effects on climate regulation services are briefly identified. Then, we explicitly reviewed the researches on the effects of LUC and climate changes on climate regulation services, especially focused on the certain methods and models used to quantify the effects on the major drivers of climate regulation services. After that, the effects of LUC and climate changes on human well-being via climate regulation services were revisited and commented accordingly. Finally, this paper discussed the current research gaps and proposed some research prospects in future studies.

  13. Training NOAA Staff on Effective Communication Methods with Local Climate Users

    Science.gov (United States)

    Timofeyeva, M. M.; Mayes, B.

    2011-12-01

    Since 2002 NOAA National Weather Service (NWS) Climate Services Division (CSD) offered training opportunities to NWS staff. As a result of eight-year-long development of the training program, NWS offers three training courses and about 25 online distance learning modules covering various climate topics: climate data and observations, climate variability and change, NWS national and local climate products, their tools, skill, and interpretation. Leveraging climate information and expertise available at all NOAA line offices and partners allows delivery of the most advanced knowledge and is a very critical aspect of the training program. NWS challenges in providing local climate services includes effective communication techniques on provide highly technical scientific information to local users. Addressing this challenge requires well trained, climate-literate workforce at local level capable of communicating the NOAA climate products and services as well as provide climate-sensitive decision support. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-unimpaired messages and amiable communication techniques such as story telling approach are important in developing an engaged dialog between the climate service providers and users. Several pilot projects NWS CSD conducted in the past year applied the NWS climate services training program to training events for NOAA technical user groups. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring the instructions to the potential applications of each group of users. Training technical user identified the following critical issues: (1) Knowledge of target audience expectations, initial knowledge status, and potential use of climate

  14. Using an interdisciplinary MOOC to teach climate science and science communication to a global classroom

    Science.gov (United States)

    Cook, J.

    2016-12-01

    MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.

  15. Simulation of landscape disturbances and the effect of climatic change

    International Nuclear Information System (INIS)

    Baker, W.L.

    1993-01-01

    The purpose of this research is to understand how changes in climate may affect the structure of landscapes that are subject to periodic disturbances. A general model useful for examining the linkage between climatic change and landscape change has been developed. The model makes use of synoptic climatic data, a geographical information system (GRASS), field data on the location of disturbance patches, simulation code written in the SIMSCRIPT language, and a set of landscape structure analysis programs written specifically for this research project. A simplified version of the model, lacking the climatic driver, has been used to analyze how changes in disturbance regimes (in this case settlement and fire suppression) affect landscape change. Landscape change lagged in its response to changes in the disturbance regime, but the lags differed depending upon the character of the change and the particular measure considered. The model will now be modified for use in a specific setting to analyze the effects of changes in climate on the structure of flood-disturbed patches along the Animas River, Colorado

  16. Chapter 4. Economic Considerations: Cost-Effective and Efficient Climate Policies

    Directory of Open Access Journals (Sweden)

    Maximilian Auffhammer

    2016-12-01

    Full Text Available In this chapter we discuss the economics of climate change. We begin with a discussion of economic considerations that are important to take into account when designing and evaluating climate policy, including cost effectiveness and efficiency. We then discuss specific policies at the state, national, and international level in light of these economic considerations.  We have several recommendations for the path forward for climate policy. First, the goal of climate policy should be to reduce the damages caused by greenhouse gases. In addition to mitigation policy to reduce greenhouse gas concentrations in the atmosphere, one can also reduce the damages causes by greenhouse gases by adaptation measures that reduce our vulnerability to climate change impacts.  Second, policy-makers should use incentive- (or market- based instruments as opposed to command and control policies (including quantity-based mandates whenever possible. Whenever unpriced emissions are the sole market failure, incentive-based instruments such as a carbon tax or cap and trade program are more likely to achieve the social optimum and maximize social net benefits [1, 2]. Lin and Prince [3] calculate that the optimal gasoline tax for the state of California is $1.37 per gallon.  Our third recommendation is to address the risk of emissions leakage, which arises when only one jurisdiction (e.g., California imposes climate policy, but not the entire world. One way to reduce emissions leakage is to use the strategic distribution of emissions allowances to local producers. This method, known as “output-based allocation” or benchmarking, effectively subsidizes local producers and at least partially offsets the increase in their costs caused by an emissions cap [4]. Importantly, only local production is eligible for an allocation of valuable allowances, providing a counterweight to the incentive for emission leakage. Our fourth recommendation is that if they are used instead

  17. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, P.; Rahman, S.; Wilkowski, G. [and others

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  18. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    International Nuclear Information System (INIS)

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-01-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses

  19. Does the public deserve free access to climate system science?

    Science.gov (United States)

    Grigorov, Ivo

    2010-05-01

    Some time ago it was the lack of public access to medical research data that really stirred the issue and gave inertia for legislation and a new publishing model that puts tax payer-funded medical research in the hands of those who fund it. In today's age global climate change has become the biggest socio-economic challenge, and the same argument resonates: climate affects us all and the publicly-funded science quantifying it should be freely accessible to all stakeholders beyond academic research. Over the last few years the ‘Open Access' movement to remove as much as possible subscription, and other on-campus barriers to academic research has rapidly gathered pace, but despite significant progress, the climate system sciences are not among the leaders in providing full access to their publications and data. Beyond the ethical argument, there are proven and tangible benefits for the next generation of climate researchers to adapt the way their output is published. Through the means provided by ‘open access', both data and ideas can gain more visibility, use and citations for the authors, but also result in a more rapid exchange of knowledge and ideas, and ultimately progress towards a sought solution. The presentation will aim to stimulate discussion and seek progress on the following questions: Should free access to climate research (& data) be mandatory? What are the career benefits of using ‘open access' for young scientists? What means and methods should, or could, be incorporated into current European graduate training programmes in climate research, and possible ways forward?

  20. Climatic effects on decomposing litter and substrate chemistry along climatological gradients.

    Science.gov (United States)

    Berg, B.

    2009-04-01

    Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.

  1. Climate change due to greenhouse effects in China as simulated by a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.J.; Zhao, Z.C.; Ding, Y.H.; Huang, R.H.; Giorgi, F. [National Climate Centre, Beijing (China)

    2001-07-01

    Impacts of greenhouse effects (2 x CO{sub 2}) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 x CO{sub 2}) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 x CO{sub 2} showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO{sub 2} doubling.

  2. Effects of climate change on evapotranspiration over the Okavango Delta water resources

    Science.gov (United States)

    Moses, Oliver; Hambira, Wame L.

    2018-06-01

    In semi-arid developing countries, most poor people depend on contaminated surface or groundwater resources since they do not have access to safe and centrally supplied water. These water resources are threatened by several factors that include high evapotranspiration rates. In the Okavango Delta region in the north-western Botswana, communities facing insufficient centrally supplied water rely mainly on the surface water resources of the Delta. The Delta loses about 98% of its water through evapotranspiration. However, the 2% remaining water rescues the communities facing insufficient water from the main stream water supply. To understand the effects of climate change on evapotranspiration over the Okavango Delta water resources, this study analysed trends in the main climatic parameters needed as input variables in evapotranspiration models. The Mann Kendall test was used in the analysis. Trend analysis is crucial since it reveals the direction of trends in the climatic parameters, which is helpful in determining the effects of climate change on evapotranspiration. The main climatic parameters required as input variables in evapotranspiration models that were of interest in this study were wind speeds, solar radiation and relative humidity. Very little research has been conducted on these climatic parameters in the Okavango Delta region. The conducted trend analysis was more on wind speeds, which had relatively longer data records than the other two climatic parameters of interest. Generally, statistically significant increasing trends have been found, which suggests that climate change is likely to further increase evapotranspiration over the Okavango Delta water resources.

  3. The effects of global climate variability on water resources and agriculture

    International Nuclear Information System (INIS)

    Adibe, E.C.

    1990-06-01

    Widespread improvements in agricultural productivity have been achieved over the last century using a wide range of technological advances. Future improvements, however, are likely to be constrained by the decreasing quality of new lands brought into production, growing limitations on capital for crop expansion and mechanization, and increasing population pressures. On top of these constraints are new uncertainties about future climatic conditions and the effects of anthropogenic climatic changes on water availability. In order to better understand some of the impacts of climatic changes on food security, plausible changes in water supply are explored and the possible effects on food production investigated. The cases discussed here include increases and decreases in both the average and the variability of water resource availability. (author). 30 refs, 5 figs, 3 tabs

  4. Large-scale climatic effects on traditional Hawaiian fishpond aquaculture.

    Directory of Open Access Journals (Sweden)

    Daniel McCoy

    Full Text Available Aquaculture accounts for almost one-half of global fish consumption. Understanding the regional impact of climate fluctuations on aquaculture production thus is critical for the sustainability of this crucial food resource. The objective of this work was to understand the role of climate fluctuations and climate change in subtropical coastal estuarine environments within the context of aquaculture practices in He'eia Fishpond, O'ahu Island, Hawai'i. To the best of our knowledge, this was the first study of climate effects on traditional aquaculture systems in the Hawaiian Islands. Data from adjacent weather stations were analyzed together with in situ water quality instrument deployments spanning a 12-year period (November 2004 -November 2016. We found correlations between two periods with extremely high fish mortality at He'eia Fishpond (May and October 2009 and slackening trade winds in the week preceding each mortality event, as well as surface water temperatures elevated 2-3°C higher than the background periods (March-December 2009. We posit that the lack of trade wind-driven surface water mixing enhanced surface heating and stratification of the water column, leading to hypoxic conditions and stress on fish populations, which had limited ability to move within net pen enclosures. Elevated water temperature and interruption of trade winds previously have been linked to the onset of El Niño in Hawai'i. Our results provide empirical evidence regarding El Niño effects on the coastal ocean, which can inform resource management efforts about potential impact of climate variation on aquaculture production. Finally, we provide recommendations for reducing the impact of warming events on fishponds, as these events are predicted to increase in magnitude and frequency as a consequence of global warming.

  5. Climate Data Initiative: A Geocuration Effort to Support Climate Resilience

    Science.gov (United States)

    Ramachandran, Rahul; Bugbee, Kaylin; Tilmes, Curt; Pinheiro Privette, Ana

    2015-01-01

    Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. In this paper, we introduce the concept of geocuration and define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful compendium We present the Climate Data Initiative (CDI) project as an exemplar example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. We describe the geocuration process used in CDI project, lessons learned, and suggestions to improve similar geocuration efforts in the future.

  6. Climate data initiative: A geocuration effort to support climate resilience

    Science.gov (United States)

    Ramachandran, Rahul; Bugbee, Kaylin; Tilmes, Curt; Privette, Ana Pinheiro

    2016-03-01

    Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. In this paper, we introduce the concept of geocuration and define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful collection. We present the Climate Data Initiative (CDI) project as a prototypical example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. We describe the geocuration process used in the CDI project, lessons learned, and suggestions to improve similar geocuration efforts in the future.

  7. Contrasting effects of climate change on rabbit populations through reproduction.

    Directory of Open Access Journals (Sweden)

    Zulima Tablado

    Full Text Available BACKGROUND: Climate change is affecting many physical and biological processes worldwide. Anticipating its effects at the level of populations and species is imperative, especially for organisms of conservation or management concern. Previous studies have focused on estimating future species distributions and extinction probabilities directly from current climatic conditions within their geographical ranges. However, relationships between climate and population parameters may be so complex that to make these high-level predictions we need first to understand the underlying biological processes driving population size, as well as their individual response to climatic alterations. Therefore, the objective of this study is to investigate the influence that climate change may have on species population dynamics through altering breeding season. METHODOLOGY/PRINCIPAL FINDINGS: We used a mechanistic model based on drivers of rabbit reproductive physiology together with demographic simulations to show how future climate-driven changes in breeding season result in contrasting rabbit population trends across Europe. In the Iberian Peninsula, where rabbits are a native species of high ecological and economic value, breeding seasons will shorten and become more variable leading to population declines, higher extinction risk, and lower resilience to perturbations. Whereas towards north-eastern countries, rabbit numbers are expected to increase through longer and more stable reproductive periods, which augment the probability of new rabbit invasions in those areas. CONCLUSIONS/SIGNIFICANCE: Our study reveals the type of mechanisms through which climate will cause alterations at the species level and emphasizes the need to focus on them in order to better foresee large-scale complex population trends. This is especially important in species like the European rabbit whose future responses may aggravate even further its dual keystone/pest problematic. Moreover

  8. The climatic out of control. the climatic forcing

    International Nuclear Information System (INIS)

    Bony-Lena, S.; Dufresne, J.L.; Acot, P.; Friedlingstein, P.; Berger, A.; Loutre, M.L.; Raynaud, D.; Thuiller, W.; Le Treut, H.; Houssais, M.N.; Duplessy, J.C.; Royer, J.F.; Douville, H.; Barberousse, A.; Quinon, P.

    2007-01-01

    The expert group on the climate evolution affirms that the global warming is unequivocal and that the human being is the main responsible. This document broaches the climatic change under many aspects: the principle, the historical aspect of the greenhouse effect, the GIEC, the carbon cycle, the paleo-climate theory, the antarctic ices and the impacts of the climatic change on the biodiversity, the simulations and the models, the climatic indicators and the climatic forcing by human activities. (A.L.B.)

  9. The Strategic Combination of Open-Access Peer-Review, Mainstream Media and Social Media to Improve Public Climate Literacy (Invited)

    Science.gov (United States)

    Cook, J.; Nuccitelli, D. A.; Jacobs, P.

    2013-12-01

    The Skeptical Science website began in 2007, with the goal of refuting climate misinformation with peer-reviewed science. It achieved this by embracing a diversity of message formats and delivery methods. Myth rebuttals are available at beginner, intermediate and advanced levels, spanning from long, technical treatments to tweetable one-liners. Content has been translated into 20 different languages and made available via the web, an iPhone app and books while adopted by third parties in textbooks, university and MOOC curricula, books, Senate testimonies and TV documentaries. While social media has been a fruitful medium, we experimented with a new model in 2013, employing the strategic combination of open-access peer-review, mainstream media outreach and social media marketing. This strategy was adopted with the release of a paper quantifying the level of scientific consensus in published climate papers, resulting in broad mainstream media attention as well as acknowledgement from key public figures such as Al Gore, the UK Minister for Energy Edward Davey and President Obama. Our approach was informed by psychological research into both the importance of scientific consensus and how to reduce the influence of misconceptions. While multiple methods of delivery are important, equally important is the construction of the messages themselves. I will examine the science of crafting compelling messages and how combination with diverse message delivery can lead to impactful outcomes.

  10. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  11. China and India: Openness, Trade and Effects on Economic Growth

    Directory of Open Access Journals (Sweden)

    Marelli, Enrico

    2011-06-01

    Full Text Available The purpose of this paper is to analyse the economic growth of China and India in terms of their integration in the global economy. We begin with a discussion of some stylized facts concerning their recent economic growth, the most significant institutional reforms, with particular reference to trade relations, and their impact on their economic development. We then propose a descriptive analysis of economic growth, opening up of the economies and trade specialisation, by comparing the features and trends of the two countries (by considering trade and foreign direct investment data. We have also estimated some econometric relations between economic growth and trade/openness, with the addition of control variables (such as the gross fixed capital formation. We initially used a panel data model for the two countries, to be estimated with fixed effects; to test for reverse causality, we re-estimated the fixed effects model by 2SLS (with the inclusion of specific instrumental variables. The effect on economic growth (in terms of GDP per capita of our variables of interest - Openness and FDI - remains positive and statistically significant in all specifications, which confirms our findings even if we treat these variables as endogenous variables. The results prove the positive growth effects, for the two countries, of opening up and integrating in the world economy. Note that the robust growth of these two "giants" has contained the initial impact of the recent global crisis and is now sustaining the recovery of the entire world economy. Other policy relevant implications are discussed in the concluding section.

  12. Overview of the Implementation of the Climate Data Initiative

    Science.gov (United States)

    Tilmes, C.; Goodman, H. M.; Privette, A. P.

    2014-12-01

    One of the efforts described in the President's Climate Action Plan is the Climate Data Initiative, a broad effort to leverage the federal government's extensive, freely-available climate-relevant data resources data to spur innovation and private-sector entrepreneurship in order to advance awareness of and preparedness for the impacts of climate change. The Climate Data Initiative, launched in March 2014, leverages commitments from government and the private sector to unleash data and make it accessible in ways that can be used by communities and companies to prepare for climate change. It builds on the White House's other Open Data Initiatives—in areas such as health, education, and safety. The Climate Data Initiative unleashes federal data relevant to addressing climate-related risks and vulnerabilities through the Climate.Data.gov web site. This talk will describe the Climate Data Initiative and its support and interactions with the Climate Resilience Toolkit.

  13. Direct and Indirect Effects of Climate Change on Amphibian Populations

    OpenAIRE

    Blaustein, Andrew R.; Walls, Susan C.; Bancroft, Betsy A.; Lawler, Joshua J.; Searle, Catherine L.; Gervasi, Stephanie S.

    2010-01-01

    As part of an overall decline in biodiversity, populations of many organisms are declining and species are being lost at unprecedented rates around the world. This includes many populations and species of amphibians. Although numerous factors are affecting amphibian populations, we show potential direct and indirect effects of climate change on amphibians at the individual, population and community level. Shifts in amphibian ranges are predicted. Changes in climate may affect survival, growth...

  14. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate

    Science.gov (United States)

    Kröner, Nico; Kotlarski, Sven; Fischer, Erich; Lüthi, Daniel; Zubler, Elias; Schär, Christoph

    2017-05-01

    Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer

  15. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    Science.gov (United States)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect

  16. Evidence of climatic effects on soil, vegetation and landform in temperate forests of south-eastern Australia

    Science.gov (United States)

    Inbar, Assaf; Nyman, Petter; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Water and radiation are unevenly distributed across the landscape due to variations in topography, which in turn causes water availability differences on the terrain according to elevation and aspect orientation. These differences in water availability can cause differential distribution of vegetation types and indirectly influence the development of soil and even landform, as expressed in hillslope asymmetry. While most of the research on the effects of climate on the vegetation and soil development and landscape evolution has been concentrated in drier semi-arid areas, temperate forested areas has been poorly studied, particularly in South Eastern Australia. This study uses soil profile descriptions and data on soil depth and landform across climatic gradients to explore the degrees to which coevolution of vegetation, soils and landform are controlled by radiative forcing and rainfall. Soil depth measurements were made on polar and equatorial facing hillslopes located at 3 sites along a climatic gradient (mean annual rainfall between 700 - 1800 mm yr-1) in the Victorian Highlands, where forest types range from dry open woodland to closed temperate rainforest. Profile descriptions were taken from soil pits dag on planar hillslopes (50 m from ridge), and samples were taken from each horizon for physical and chemical properties analysis. Hillslope asymmetry in different precipitation regimes of the study region was quantified from Digital Elevation Models (DEMs). Significant vegetation differences between aspects were noted in lower and intermediate rainfall sites, where polar facing aspects expressed higher overall biomass than the drier equatorial slope. Within the study domain, soil depth was strongly correlated with forest type and above ground biomass. Soil depths and chemical properties varied between topographic aspects and along the precipitation gradient, where wetter conditions facilitate deeper and more weathered soils. Furthermore, soil depths showed

  17. Ecological contingency in the effects of climatic warming on forest herb communities

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen Ingman; Grace, James B.

    2010-01-01

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951–2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500–1.200 m above sea level) and primary upper montane to subalpine forests (1,500–2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  18. Electron and ion magnetohydrodynamic effects in plasma opening switches

    International Nuclear Information System (INIS)

    Grossmann, J.M.; DeVore, C.R.; Ottinger, P.F.

    1993-01-01

    Preliminary results are presented of a numerical code designed to investigate electron and ion magnetohydrodynamic effects in plasma erosion opening switches. The present model is one-dimensional and resolves effects such as the JxB deformation of the plasma, and the penetration of magnetic field either by anomalous resistivity or electron magnetohydrodynamics (Hall effect). Comparisons with exact analytic results and experiment are made

  19. Effects of learning climate and registered nurse staffing on medication errors.

    Science.gov (United States)

    Chang, YunKyung; Mark, Barbara

    2011-01-01

    Despite increasing recognition of the significance of learning from errors, little is known about how learning climate contributes to error reduction. The purpose of this study was to investigate whether learning climate moderates the relationship between error-producing conditions and medication errors. A cross-sectional descriptive study was done using data from 279 nursing units in 146 randomly selected hospitals in the United States. Error-producing conditions included work environment factors (work dynamics and nurse mix), team factors (communication with physicians and nurses' expertise), personal factors (nurses' education and experience), patient factors (age, health status, and previous hospitalization), and medication-related support services. Poisson models with random effects were used with the nursing unit as the unit of analysis. A significant negative relationship was found between learning climate and medication errors. It also moderated the relationship between nurse mix and medication errors: When learning climate was negative, having more registered nurses was associated with fewer medication errors. However, no relationship was found between nurse mix and medication errors at either positive or average levels of learning climate. Learning climate did not moderate the relationship between work dynamics and medication errors. The way nurse mix affects medication errors depends on the level of learning climate. Nursing units with fewer registered nurses and frequent medication errors should examine their learning climate. Future research should be focused on the role of learning climate as related to the relationships between nurse mix and medication errors.

  20. Short Lived Climate Pollutants cause a Long Lived Effect on Sea-level Rise: Analyzing climate metrics for sea-level rise

    Science.gov (United States)

    Sterner, E.; Johansson, D. J.

    2013-12-01

    Climate change depends on the increase of several different atmospheric pollutants. While long term global warming will be determined mainly by carbon dioxide, warming in the next few decades will depend to a large extent on short lived climate pollutants (SLCP). Reducing emissions of SLCPs could contribute to lower the global mean surface temperature by 0.5 °C already by 2050 (Shindell et al. 2012). Furthermore, the warming effect of one of the most potent SLCPs, black carbon (BC), may have been underestimated in the past. Bond et al. (2013) presents a new best estimate of the total BC radiative forcing (RF) of 1.1 W/m2 (90 % uncertainty bounds of 0.17 to 2.1 W/m2) since the beginning of the industrial era. BC is however never emitted alone and cooling aerosols from the same sources offset a majority of this RF. In the wake of calls for mitigation of SLCPs it is important to study other aspects of the climate effect of SLCPs. One key impact of climate change is sea-level rise (SLR). In a recent study, the effect of SLCP mitigation scenarios on SLR is examined. Hu et al (2013) find a substantial effect on SLR from mitigating SLCPs sharply, reducing SLR by 22-42% by 2100. We choose a different approach focusing on emission pulses and analyse a metric based on sea level rise so as to further enlighten the SLR consequences of SLCPs. We want in particular to understand the time dynamics of SLR impacts caused by SLCPs compared to other greenhouse gases. The most commonly used physical based metrics are GWP and GTP. We propose and evaluate an additional metric: The global sea-level rise potential (GSP). The GSP is defined as the sea level rise after a time horizon caused by an emissions pulse of a forcer to the sea level rise after a time horizon caused by an emissions pulse of a CO2. GSP is evaluated and compared to GWP and GTP using a set of climate forcers chosen to cover the whole scale of atmospheric perturbation life times (BC, CH4, N2O, CO2 and SF6). The study

  1. Resource rents: The effects of energy taxes and quantity instruments for climate protection

    International Nuclear Information System (INIS)

    Eisenack, Klaus; Edenhofer, Ottmar; Kalkuhl, Matthias

    2012-01-01

    Carbon dioxide emissions correspond to fossil resource use. When considering this supply side of climate protection, crucial questions come to fore. It seems likely that owners of fossil resources would object to emission reductions. Moreover, policy instruments such as taxes may not be effective at all: it seems individually rational to leave no fossil resources unused. In this context, it can be expected that economic sectors will react strategically to climate policy, aiming at a re-distribution of rents. To address these questions, we investigate the effectiveness, efficiency, and resource rents for energy taxes, resource taxes, and quantity rationing of emissions. The analysis is based on a game theoretic growth model with explicit factor markets and policy instruments. Market equilibrium depends on a government that acts as a Stackelberg leader with a climate protection goal. We find that resource taxes and quantity rationing achieve this objective efficiently, energy taxation is only second-best. The use of quantity rationing to achieve climate protection generates substantial rents for resource owners. - Highlights: ► Resource taxes and quantity rationing (carbon budgets) are efficient. ► Carbon budgets increase resource rents, while taxes decrease rents. ► Resource owners may support climate protection. ► Climate protection introduces a climate rent.

  2. Protein adsorption onto nanozeolite: effect of micropore openings.

    Science.gov (United States)

    Wu, Jiamin; Li, Xiang; Yan, Yueer; Hu, Yuanyuan; Zhang, Yahong; Tang, Yi

    2013-09-15

    A clear and deep understanding of protein adsorption on porous surfaces is desirable for the reasonable design and applications of porous materials. In this study, the effect of surface micropores on protein adsorption was systematically investigated by comparing adsorption behavior of cytochrome c (Cyto-c) and Candida antarctica Lipase B (CALB) on porous and non-porous nanozeolites silicalite-1 and Beta. It was found that micropore openings on the surface of nanozeolites played a key role in determining adsorption affinity, conformations, and activities of proteins. Both Cyto-c and CALB showed higher affinity to porous nanozeolites than to non-porous ones, resulting in greater conformational change of proteins on porous surfaces which in turn affected their bio-catalytic performance. The activity of Cyto-c improved while that of CALB decreased on porous nanozeolites. Recognition of certain amino acid residues or size-matching secondary structures by micropore openings on the surface of nanozeolites was proposed to be the reason. Moreover, the pore opening effect of porous nanozeolites on protein behavior could be altered by changing protein coverage on them. This study gives a novel insight into the interaction between proteins and microporous materials, which will help to guide the rational fabrication and bio-applications of porous materials in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Climatic effects of nuclear war

    International Nuclear Information System (INIS)

    Crutzen, P.J.

    1987-01-01

    Although considerable further research has been conducted since the writing of the Scientific Committee on Problems of the Environment (SCOPE) study, the main conclusions reached in early 1986 about the potential climatic, atmospheric, chemical, ecological, and agricultural consequences of a nuclear war are still valid, also taking into account the latest research results by Thompson and Schneider (1986). The main finding of the SCOPE study is that severe, large-scale, possibly global, climatic disturbances could result from a nuclear war in which a substantial fraction (10% or more) of the combustible materials in the NATO and Warsaw Pact nations would burn, producing several tens of million tonnes of soot. This could be caused by nuclear attacks on less than a hundred of the most important urban and industrial centres of these nations. As a consequence, it is estimated that surface temperatures might drop by more than 10 deg. C over a large fraction of the continents in the northern hemisphere and that rainfall could also be strongly reduced. These effects could last for weeks, maybe years. In many parts of the northern hemisphere agricultural productivity would be severely reduced, contributing to serious food shortages. 37 refs, 5 figs, 4 tabs

  4. Climatic effects of nuclear war

    International Nuclear Information System (INIS)

    Turco, R.P.; Toon, O.B.; Ackerman, T.P.; Pollack, J.B.; Sagan, C.

    1984-01-01

    Recent findings by this group confirmed by workers in Europe, the US and the USSR, suggest that the long-term climatic effects of a major nuclear war are likely to be much severer and farther-reaching than had been supposed. In the aftermath of such a war vast areas of the earth could be subjected to prolonged darkness, abnormally low temperatures, violent windstorms, toxic smog and persistent radioactive fallout - in short, the combination of conditions that has come to be known as nuclear winter. In brief, the authors' initial results, published in Science in December, 1983, showed that the potential global atmospheric and climatic consequences of nuclear war...are serious. Significant hemispherical attenuation of the solar radiation flux and subfreezing land temperatures may be caused by fine dust raised in high-yield nuclear surface bursts and by smoke from city and forest fires ignited by airbursts of all yields. Subsequent studies, based on more powerful models of the general circulation of the earth's atmosphere, have tended to confirm both the validity of the authors' investgative approach and the main thrust of their findings. Most of this article is devoted to reviewing the current state of knowledge on this vital issue

  5. Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Bridgham, Scott D. [Univ. of Oregon, Eugene, OR (United States); Johnson, Bart [Univ. of Oregon, Eugene, OR (United States)

    2013-09-26

    Pacific Northwest (PNW) prairies are an imperiled ecosystem that contain a large number of plant species with high fidelity to this habitat. The few remaining high-quality PNW prairies harbor a number of sensitive, rare, and endangered plant species that may be further at-risk with climate change. Thus, PNW prairies are an excellent model system to examine how climate change will affect the distribution of native plant species in grassland sites. Our experimental objectives were to determine: (i) how climate change will affect the range distribution of native plant species; (ii) what life history stages are most sensitive to climate change in a group of key indicator native species; (iii) the robustness of current restoration techniques and suites of species to changing climate, and in particular, the relative competitiveness of native species versus exotic invasive species; and (iv) the effects of climate change on carbon and nutrient cycling and soil-microbial-plant feedbacks. We addressed these objectives by experimentally increasing temperature 2.5 to 3.0 ºC above ambient with overhead infrared lamps and increasing wet-season precipitation by 20% above ambient in three upland prairie sites in central-western Washington, central-western Oregon, and southwestern Oregon from fall 2010 through 2012. Additional precipitation was applied within 2 weeks of when it fell so precipitation intensity was increased, particularly during the winter rainy season but with minimal additions during the summer dry season. These three sites also represent a 520-km natural climate gradient of increasing degree of severity of Mediterranean climate from north to south. After removing the extant vegetation, we planted a diverse suite of 12 native species that have their northern range limit someplace within the PNW in each experimental plot. An additional 20 more wide-spread native species were also planted into each plot. We found that recruitment of plant species within their ranges

  6. Climatic effects of air pollutants over china: A review

    Science.gov (United States)

    Liao, Hong; Chang, Wenyuan; Yang, Yang

    2015-01-01

    Tropospheric ozone (O3) and aerosols are major air pollutants in the atmosphere. They have also made significant contributions to radiative forcing of climate since preindustrial times. With its rapid economic development, concentrations of air pollutants are relatively high in China; hence, quantifying the role of air pollutants in China in regional climate change is especially important. This review summarizes existing knowledge with regard to impacts of air pollutants on climate change in China and defines critical gaps needed to reduce the associated uncertainties. Measured monthly, seasonal, and annual mean surface-layer concentrations of O3 and aerosols over China are compiled in this work, with the aim to show the magnitude of concentrations of O3 and aerosols over China and to provide datasets for evaluation of model results in future studies. Ground-based and satellite measurements of O3 column burden and aerosol optical properties, as well as model estimates of radiative forcing by tropospheric O3 and aerosols are summarized. We also review regional and global modeling studies that have investigated climate change driven by tropospheric O3 and/or aerosols in China; the predicted sign and magnitude of the responses in temperature and precipitation to O3/aerosol forcings are presented. Based on this review, key priorities for future research on the climatic effects of air pollutants in China are highlighted.

  7. Climate change effects on the hydrological regime of small non-perennial river basins

    International Nuclear Information System (INIS)

    Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Noto, Leonardo V.

    2016-01-01

    Recent years have been witnessing an increasing interest on global climate change and, although we are only at the first stage of the projected trends, some signals of climate alteration are already visible. Climate change encompasses modifications in the characteristics of several interrelated climate variables, and unavoidably produces relevant effects on almost all the natural processes related to the hydrological cycle. This study focuses on potential impacts of climate variations on the streamflow regime of small river basins in Mediterranean, seasonally dry, regions. The paper provides a quantitative evaluation of potential modifications in the flow duration curves (FDCs) and in the partitioning between surface and subsurface contributions to streamflow, induced by climate changes projected over the next century in different basins, also exploring the role exerted by different soil–vegetation compositions. To this aim, it is used a recent hydrological model, which is calibrated at five Sicilian (Italy) basins using a past period with available streamflow observations. The model is then forced by daily precipitation and reference evapotranspiration series representative of the current climatic conditions and two future temporal horizons, referring to the time windows 2045–2065 and 2081–2100. Future climatic series are generated by a weather generator, based on a stochastic downscaling of an ensemble of General Circulation Models. The results show how the projected climatic modifications are differently reflected in the hydrological response of the selected basins, implying, in general, a sensible downshift of the FDCs, with a significant reduction in the mean annual streamflow, and substantial alterations in streamflow seasonality and in the relative importance of the surface and subsurface components. The projected climate change impact on the hydrological regime of ephemeral rivers could have important implications for the water resource management and

  8. Climate change effects on the hydrological regime of small non-perennial river basins

    Energy Technology Data Exchange (ETDEWEB)

    Pumo, Dario, E-mail: dario.pumo@unipa.it; Caracciolo, Domenico, E-mail: domenico.caracciolo@unipa.it; Viola, Francesco, E-mail: francesco.viola77@unipa.it; Noto, Leonardo V., E-mail: leonardo.noto@unipa.it

    2016-01-15

    Recent years have been witnessing an increasing interest on global climate change and, although we are only at the first stage of the projected trends, some signals of climate alteration are already visible. Climate change encompasses modifications in the characteristics of several interrelated climate variables, and unavoidably produces relevant effects on almost all the natural processes related to the hydrological cycle. This study focuses on potential impacts of climate variations on the streamflow regime of small river basins in Mediterranean, seasonally dry, regions. The paper provides a quantitative evaluation of potential modifications in the flow duration curves (FDCs) and in the partitioning between surface and subsurface contributions to streamflow, induced by climate changes projected over the next century in different basins, also exploring the role exerted by different soil–vegetation compositions. To this aim, it is used a recent hydrological model, which is calibrated at five Sicilian (Italy) basins using a past period with available streamflow observations. The model is then forced by daily precipitation and reference evapotranspiration series representative of the current climatic conditions and two future temporal horizons, referring to the time windows 2045–2065 and 2081–2100. Future climatic series are generated by a weather generator, based on a stochastic downscaling of an ensemble of General Circulation Models. The results show how the projected climatic modifications are differently reflected in the hydrological response of the selected basins, implying, in general, a sensible downshift of the FDCs, with a significant reduction in the mean annual streamflow, and substantial alterations in streamflow seasonality and in the relative importance of the surface and subsurface components. The projected climate change impact on the hydrological regime of ephemeral rivers could have important implications for the water resource management and

  9. Effect of climatic variability on malaria trends in Baringo County, Kenya.

    Science.gov (United States)

    Kipruto, Edwin K; Ochieng, Alfred O; Anyona, Douglas N; Mbalanya, Macrae; Mutua, Edna N; Onguru, Daniel; Nyamongo, Isaac K; Estambale, Benson B A

    2017-05-25

    Malaria transmission in arid and semi-arid regions of Kenya such as Baringo County, is seasonal and often influenced by climatic factors. Unravelling the relationship between climate variables and malaria transmission dynamics is therefore instrumental in developing effective malaria control strategies. The main aim of this study was to describe the effects of variability of rainfall, maximum temperature and vegetation indices on seasonal trends of malaria in selected health facilities within Baringo County, Kenya. Climate variables sourced from the International Research Institute (IRI)/Lamont-Doherty Earth Observatory (LDEO) climate database and malaria cases reported in 10 health facilities spread across four ecological zones (riverine, lowland, mid-altitude and highland) between 2004 and 2014 were subjected to a time series analysis. A negative binomial regression model with lagged climate variables was used to model long-term monthly malaria cases. The seasonal Mann-Kendall trend test was then used to detect overall monotonic trends in malaria cases. Malaria cases increased significantly in the highland and midland zones over the study period. Changes in malaria prevalence corresponded to variations in rainfall and maximum temperature. Rainfall at a time lag of 2 months resulted in an increase in malaria transmission across the four zones while an increase in temperature at time lags of 0 and 1 month resulted in an increase in malaria cases in the riverine and highland zones, respectively. Given the existence of a time lag between climatic variables more so rainfall and peak malaria transmission, appropriate control measures can be initiated at the onset of short and after long rains seasons.

  10. Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation

    Science.gov (United States)

    Levin, Lisa A.

    2018-01-01

    Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50-100 years, but with greater oxygen declines in intermediate waters (100-600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15-25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.

  11. Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation.

    Science.gov (United States)

    Levin, Lisa A

    2018-01-03

    Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50-100 years, but with greater oxygen declines in intermediate waters (100-600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15-25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.

  12. Climatic effects during passage of the solar system through interstellar clouds

    International Nuclear Information System (INIS)

    Talbot, R.J. Jr.; Butler, D.M.; Newman, M.J.

    1976-01-01

    It is thought likely that the solar system passes through regions where there are a large number of dense interstellar clouds. When this occurs several processes may cause significant changes in the climate of the Earth and other planets. Matters here discussed include the influences of compression of the solar wind cavity, accretion of matter by the Sun, and particulate input into the Earth's atmosphere. Gravitational energy released by the accretion of interstellar material by the Sun may enhance the solar luminosity, and considerations of terrestrial heat balance suggest that luminosity enhancements of 1% or more will produce significant variations of climate. Observational evidence suggests that there is some mechanism producing a relationship between solar wind flow and climate. One proposed mechanism is that contemporary solar wind modulation of galactic cosmic rays influences climate, and the fact that the Earth would be outside the solar wind cavity for all or part of the year may have an effect on terrestrial climate. Relatively small variations of solar UV radiation input may have perceptible influences on climate, and if a 1% variation in radiation input to the stratosphere has a significant effect then accretion may have a large impact on terrestrial conditions, even though the change in the total heat balance is negligible.With regard to dust input into the Earth's atmosphere it is estimated that during the lifetime of the solar system the mass of dust grains accreted by the Earth should have been about 10 16 to 10 18 g; the matter of evidence for their presence is discussed. It is concluded that the processes proposed have very complex implications for global weather patterns; and at present it is not possible to evaluate which, if any, will unquestionably affect the Earth's climate. (U.K.)

  13. Antioxidant effects of nerolidol in mice hippocampus after open field test.

    Science.gov (United States)

    Nogueira Neto, José Damasceno; de Almeida, Antonia Amanda Cardoso; da Silva Oliveira, Johanssy; Dos Santos, Pauline Sousa; de Sousa, Damião Pergentino; de Freitas, Rivelilson Mendes

    2013-09-01

    The aim of this study was to evaluate the neuroprotective effects of nerolidol in mice hippocampus against oxidative stress in neuronal cells compared to ascorbic acid (positive control) as well as evaluated the nerolidol sedative effects by open field test compared to diazepam (positive control). Thirty minutes prior to behavioral observation on open field test, mice were intraperitoneally treated with vehicle, nerolidol (25, 50 and 75 mg/kg), diazepam (1 mg/kg) or ascorbic acid (250 mg/kg). To clarify the action mechanism of of nerolidol on oxidative stress in animals subjected to the open field test, Western blot analysis of Mn-superoxide dismutase and catalase in mice hippocampus were performed. In nerolidol group, there was a significant decrease in lipid peroxidation and nitrite levels when compared to negative control (vehicle). However, a significant increase was observed in superoxide dismutase and catalase activities in this group when compared to the other groups. Vehicle, diazepam, ascorbic acid and nerolidol groups did not affected Mn-superoxide dismutase, catalase mRNA or protein levels. Our findings strongly support the hypothesis that oxidative stress occurs in hippocampus. Nerolidol showed sedative effects in animals subjected to the open field test. Oxidative process plays a crucial role on neuronal pathological consequence, and implies that antioxidant effects could be achieved using this sesquiterpene.

  14. The effect of climate change on rural livestock farming: case study of ...

    African Journals Online (AJOL)

    The current paper further identifies the effect of climate change (e.g. drought, temperature and rainfall) on farmers and key stakeholders while establishing how they handle challenges associated with climate change in the study district. Data were collected from 22 participants, including officials associated with Veterinary ...

  15. Climate Change, Human Health, and Biomedical Research: Analysis of the National Institutes of Health Research Portfolio

    Science.gov (United States)

    Balbus, John M.; Christian, Carole; Haque, Ehsanul; Howe, Sally E.; Newton, Sheila A.; Reid, Britt C.; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P.

    2013-01-01

    Background: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. Objectives: In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. Methods: A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. Results: This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Conclusions: Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH’s strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health. PMID:23552460

  16. The role of internal coupling activities in explaining the effectiveness of open innovation

    DEFF Research Database (Denmark)

    Burcharth, Ana Luiza de Araújo; Knudsen, Mette Præst; Søndergaard, Helle Alsted

    2013-01-01

    This paper investigates the role of internal contingencies in explaining performance implications of open innovation by addressing the questions: does openness drive innovation performance? And if so, what organizational activities impact the effectiveness of both the inbound and the outbound...... finds that the effect of openness is mediated by the use of internal coupling activities that give employees latitude, information and skills to work autonomously. A key result is that the benefits of open innovation are fully captured only when firms adopt a number of activities that provide employees...... with autonomy and empowerment to conduct their work. The paper concludes with implications to theory and practice....

  17. Using internal coupling activities to enhance the effectiveness of open innovation

    DEFF Research Database (Denmark)

    Burcharth, Ana Luiza de Araújo; Knudsen, Mette Præst; Søndergaard, Helle Alsted

    This paper investigates the role of specific intra-organizational mechanisms in analyzing performance implications of openness by addressing two questions: does openness to innovation influence innovation performance? And if so, what organizational activities facilitate increased effectiveness...... of both inbound and outbound open innovation practices? The paper identifies a set of internal management mechanisms that allows the firm to couple the outside-in and inside-out knowledge flows in support of integrating external knowledge and internal competencies. The empirical basis of the study...... is a survey carried out in 321 Danish SMEs in manufacturing industries. The paper cannot substantiate the thus far, seemingly positive evidence of openness on innovation performance. Rather, the paper finds that inbound open innovation is related to the introduction of new products, whereas the adoption...

  18. Effects of climate change on landslide hazard in Europe (Invited)

    Science.gov (United States)

    Nadim, F.; Solheim, A.

    2009-12-01

    Landslides represent a major threat to human life, property and constructed facilities, infrastructure and natural environment in most mountainous and hilly regions of the world. As a consequence of climatic changes and potential global warming, an increase of landslide activity is expected in some parts of the world in the future. This will be due to increased extreme rainfall events, changes of hydrological cycles, meteorological events followed by sea storms causing coastal erosion and melting of snow and of frozen soils in the high mountains. During the past century, Europe experienced many fatalities and significant economic losses due to landslides. Since in many parts of Europe landslides are the most serious natural hazard, several recent European research projects are looking into the effects of climate change on the risk associated with landslides. Examples are the recently initiated SafeLand project, which looks into this problem across the continent, and GeoExtreme, which focused on Norway. The ongoing project SafeLand (www.safeland-fp7.eu) is a large, integrating project financed by the European Commission. It involves close to 30 organizations from 13 countries in Europe, and it looks into the effects of global change (mainly changes in demography and climate change) on the pattern of landslide risk in Europe. The SafeLand objectives are to (1) provide policy-makers, public administrators, researchers, scientists, educators and other stakeholders with improved harmonized framework and methodology for the assessment and quantification of landslide risk in Europe's regions; (2) evaluate the changes in risk pattern caused by climate change, human activity and policy changes; and (3) provide guidelines for choosing the most appropriate risk management strategies, including risk mitigation and prevention measures. To assess the changes in the landslide risk pattern in Norway over the next 50 years, the four-year integrated research project GeoExtreme (www

  19. Reproductive responses to climatic heat induced by management systems in swamp buffaloes

    International Nuclear Information System (INIS)

    Dollah, M.A.; Ramakrishnan, N.; Nordin, Y.; Abdullah Sani, R.

    1990-01-01

    Climatic heat is one of the factors influencing the reproductive performance of swamp buffaloes. Any management system that imposes high climatic heat stress tends to reduce reproductive performance. Buffaloes grazing in an open hilly ranch system reached puberty later (at an age of 33 months) and at heavier body weight (365 kg) than animals raised in confinement (26 months and 289 kg). Physiological data (water metabolism and thyroid activity) indicated that grazing animals had to tolerate a higher heat load. High climatic temperatures were found to depress ovarian activity, especially during the dry season. The effect was observed only in cycling buffaloes denied wallow. Buffaloes having access to wallows were able to maintain their heat balance under various levels of heat load by adjusting their water requirements, mobilizing their body water and adjusting their metabolic rate (thyroid activity). It is concluded that stressful climatic temperatures can depress the reproductive performance of young heifers and adult swamp buffaloes, and that climatic heat stress directly depresses ovarian activity in swamp buffaloes. (author). 16 refs, 1 fig., 4 tabs

  20. Assessment of climate change effects on Canada's National Park system.

    Science.gov (United States)

    Suffling, Roger; Scott, Daniel

    2002-03-01

    To estimate the magnitude of climate change anticipated for Canada's 38 National Parks (NPs) and Park Reserves, seasonal temperature and precipitation scenarios were constructed for 2050 and 2090 using the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled model (CGCM1). For each park, we assessed impacts on physical systems, species, ecosystems and people. Important, widespread changes relate to marine and freshwater hydrology, glacial balance, waning permafrost, increased natural disturbance, shorter ice season, northern and upward altitudinal species and biome shifts, and changed visitation patterns. Other changes are regional (e.g., combined East coast subsidence and sea level rise increase coastal erosion and deposition, whereas, on the Pacific coast, tectonic uplift negates sea level rise). Further predictions concern individual parks (e.g., Unique fens of Bruce Peninsular NP will migrate lakewards with lowered water levels, but structural regulation of Lake Huron for navigation and power generation would destroy the fens). Knowledge gaps are the most important findings. For example: we could not form conclusions about glacial mass balance, or its effects on rivers and fjords. Likewise, for the East Coast Labrador Current we could neither estimate temperature and salinity effects of extra iceberg formation, nor the further effects on marine food chains, and breeding park seabirds. We recommend 1) Research on specific large knowledge gaps; 2) Climate change information exchange with protected area agencies in other northern countries; and 3) incorporating climate uncertainty into park plans and management. We discuss options for a new park management philosophy in the face of massive change and uncertainty.

  1. Cosmic rays and space weather: effects on global climate change

    OpenAIRE

    L. I. Dorman; L. I. Dorman

    2012-01-01

    We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence ...

  2. Direct and indirect effects of climate change on the risk of infection by water-transmitted pathogens.

    Science.gov (United States)

    Sterk, Ankie; Schijven, Jack; de Nijs, Ton; de Roda Husman, Ana Maria

    2013-11-19

    Climate change is likely to affect the infectious disease burden from exposure to pathogens in water used for drinking and recreation. Effective intervention measures require quantification of impacts of climate change on the distribution of pathogens in the environment and their potential effects on human health. Objectives of this systematic review were to summarize current knowledge available to estimate how climate change may directly and indirectly affect infection risks due to Campylobacter, Cryptosporidium, norovirus, and Vibrio. Secondary objectives were to prioritize natural processes and interactions that are susceptible to climate change and to identify knowledge gaps. Search strategies were determined based on a conceptual model and scenarios with the main emphasis on The Netherlands. The literature search resulted in a large quantity of publications on climate variables affecting pathogen input and behavior in aquatic environments. However, not all processes and pathogens are evenly covered by the literature, and in many cases, the direction of change is still unclear. To make useful predictions of climate change, it is necessary to combine both negative and positive effects. This review provides an overview of the most important effects of climate change on human health and shows the importance of QMRA to quantify the net effects.

  3. Quantifying the effects of climate and post-fire landscape change on hydrologic processes

    Science.gov (United States)

    Steimke, A.; Han, B.; Brandt, J.; Som Castellano, R.; Leonard, A.; Flores, A. N.

    2016-12-01

    Seasonally snow-dominated, forested mountain watersheds supply water to many human populations globally. However, the timing and magnitude of water delivery from these watersheds has already and will continue to change as the climate warms. Changes in vegetation also affect the runoff response of watersheds. The largest driver of vegetation change in many mountainous regions is wildfire, whose occurrence is affected by both climate and land management decisions. Here, we quantify how direct (i.e. changes in precipitation and temperature) and indirect (i.e. changing fire regimes) effects of climate change influence hydrologic parameters such as dates of peak streamflow, annual discharge, and snowpack levels. We used the Boise River Basin, ID as a model laboratory to calculate the relative magnitude of change stemming from direct and indirect effects of climate change. This basin is relevant to study as it is well-instrumented and major drainages have experienced burning at different spatial and temporal intervals, aiding in model calibration. We built a hydrology-based integrated model of the region using a multiagent simulation framework, Envision. We used a modified HBV (Hydrologiska Byråns Vattenbalansavdelning) rainfall-runoff model and calibrated it to historic streamflow and snowpack observations. We combined a diverse set of climate projections with wildfire scenarios (low vs. high) representing two distinct intervals in the regional historic fire record. In fire simulations, we altered land cover coefficients to reflect a burned state post-fire, which decreased overall evapotranspiration rates and increased water yields. However, direct climate effects had a larger signal on annual variations of hydrologic parameters. By comparing and analyzing scenario outputs, we identified links and sensitivities between land cover and regional hydrology in the context of a changing climate, with potential implications for local land and water managers. In future

  4. The role of school organizational climate in occupational stress among secondary school teachers in Tehran.

    Science.gov (United States)

    Ahghar, Ghodsy

    2008-01-01

    This paper aims at studying the influence of the organizational climate of a school on the occupational stress of the teachers. The study population were all secondary schools teachers in Tehran in 2007. Using a multi-stage random sampling method, a sample volume of 220 people was determined using the Cochran formula. Two main instruments were used to measure the study variables: a 27-item questionnaire on organizational climate (four scales: open, engaged, disengaged and closed organizational climate, and a 53-item occupational stress questionnaire by Vingerhoets, employing 11 scales: Skill Discretion, Decision Authority, Task Control, Work and Time Pressure, Role Ambiguity, Physical Exertion, Hazardous Exposure, Job Insecurity, Lack of Meaningfulness, Social Support from Supervisor and Social Support from Coworkers. The frequency, percentage, and mean values were calculated and a stepwise regression analysis was performed to evaluate the statistical significance of the findings. The study results revealed that: (a) 40.02% of secondary school teachers experience occupational stress at a moderate or higher level; (b) the rate of occupational stress among teachers can be predicted. using the scores on the school organizational climate; this predictability is highest for the open climate and gradually decreases through the engaged, and disengaged to the closed climate; (c) among the teachers working in the disengaged and closed climate, the rate of occupational stress significantly exceeds that recorded among the teachers working in the open climate.

  5. Major economies Forum on energy and climate

    International Nuclear Information System (INIS)

    2009-01-01

    The Major Economies Forum is intended to facilitate an open dialogue among major developed and developing economies, help generate the political leadership necessary to achieve a successful outcome at the United Nations climatic change conference in Copenhagen, and advance the exploration of concrete initiatives and joint ventures that increase the supply of clean energy while cutting greenhouse gas emissions. The Forum's second preparatory meeting was held in Paris in May 2009, mainly focused on greenhouse gas emissions reduction actions and objectives, the diffusion of clean technologies, the financing of activities for climate protection and adaptation to climatic change impacts

  6. Assessment of long-term effects of climate change on biodiversity and vulnerability of terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Oene, H.; Berendse, F.; De Kovel, C.G.F. [Nature Consevation and Plant Ecology Group, Wageningen University, Wageningen (Netherlands); Alkemade, J.R.M.; Bakkenes, M.; Ihle, F. [National Institute of Public Health and the Environment RIVM, Bilthoven (Netherlands)

    1999-07-01

    The aim of this project was to analyze the effects of climatic change on plant species diversity and ecosystem functioning. The direct effects of climatic change on plant species diversity are analyzed using a species based probabilistic Model (EUROMOVE) that relates the probability of occurrence of ca 1400 European plant species to climatic variables as the mean temperature of the coldest month, the effective temperature sum, the annual precipitation, the annual potential and actual evapotranspiration, the length of the growing season, and the mean growing season temperature. The indirect effects of raised C0{sub 2} levels and increased temperatures on ecosystem functioning and the consequences of these indirect effects for plant diversity are analyzed by combining a mechanistic simulation model (NUCOM) with regression models. NUCOM predicts the effects of environmental changes on dominant plant species composition and ecosystem variables. The predicted ecosystem variables are linked to plant species diversity of subordinate species by regression models, using Ellenberg indices for N availability, soil acidity, soil moisture, and light intensity. With these two approaches, the consequences of climatic change scenarios (IPCC Baseline A, IPCC Stabilization 450) and N deposition scenarios (reduced, constant) are analyzed for Europe (EUROMOVE) and part of the Netherlands (NUCOM). The results showed that the direct effects of climatic change may have large impact on plant species diversity and distribution. The indirect effects of climatic change on plant diversity appeared minor but effects of changes in soil moisture are not included. Other environmental changes like eutrofication and human impact have large effect on ecosystem variables and plant species diversity. Reductions in nitrogen emission have a positive effect but take time to become apparent. 49 refs.

  7. Effects of climate changes on forest ecosystems. Final report

    International Nuclear Information System (INIS)

    Lasch, P.; Lindner, M.; Bellmann, K.

    1995-08-01

    The report evalutates the current state of knowledge on the effects of site-related climate factors (temperature sum in the vegetation period, frost, water supply and arid phases) on the growth and distribution of different tree species. The effects of increasing CO2 levels in the atmosphere are discussed as well. ( orig./MG) [de

  8. Team innovation climate and knowledge sharing among healthcare managers: mediating effects of altruistic intentions.

    Science.gov (United States)

    Liu, Feng-Chuan; Cheng, Kai-Lin; Chao, Minston; Tseng, Hsu-Min

    2012-01-01

    This paper aims to provide empirical evidence concerning the impact of team climate on knowledge sharing behavior and the mediating effects of individuals' altruistic intentions in the context of healthcare settings. Questionnaire data were collected from 212 administrators employed at a medical center in Taiwan. Team climate was assessed by the Team Climate Inventory composed of four factors, participative safety, support for innovation, vision, and task orientation. The proposed hypotheses were tested using structural equation modeling. The influence of the team innovation climate on knowledge sharing behavior was evident. Furthermore, individuals' altruistic intentions played a full mediating role in the relationship between team innovation climate and knowledge sharing behavior. These results contribute to the field of the people-orientated perspective in knowledge management. The full mediating effect of employees' altruistic intentions provides healthcare team managers the direction to accelerate knowledge sharing behavior.

  9. New insight into California’s drought through open data

    Science.gov (United States)

    Read, Emily K.; Bucknell, Mary; Hines, Megan K.; Kreft, James M.; Lucido, Jessica M.; Read, Jordan S.; Schroedl, Carl; Sibley, David M.; Stephan, Shirley; Suftin, Ivan; Thongsavanh, Phethala; Van Den Hoek, Jamon; Walker, Jordan I.; Wernimont, Martin R; Winslow, Luke A.; Yan, Andrew N.

    2015-01-01

    Historically unprecedented drought in California has brought water issues to the forefront of the nation’s attention. Crucial investigations that concern water policy, management, and research, in turn, require extensive information about the quality and quantity of California’s water. Unfortunately, key sources of pertinent data are unevenly distributed and frequently hard to find. Thankfully, the vital importance of integrating water data across federal, state, and tribal, academic, and private entities, has recently been recognized and addressed through federal initiatives such as the Climate Data Initiative of President Obama’s Climate Action Plan and the Advisory Committee on Water Information’sOpen Water Data Initiative. Here, we demonstrate an application of integrated open water data, visualized and made available online using open source software, for the purpose of exploring the impact of the current California drought. Our collaborative approach and technical tools enabled a rapid, distributed development process. Many positive outcomes have resulted: the application received recognition within and outside of the Federal Government, inspired others to visualize open water data, spurred new collaborations for our group, and strengthened the collaborative relationships within the team of developers. In this article, we describe the technical tools and collaborative process that enabled the success of the application. 

  10. Climate effect on forest fire static risk assessment

    Science.gov (United States)

    Bodini, Antonella; Cossu, Antonello; Entrade, Erika; Fiorucci, Paolo; Gaetani, Francesco; Parodi, Ulderica

    2010-05-01

    The availability of a long data series of fire perimeters combined with a detailed knowledge of topography and land cover allow to understand which are the main features involved in forest fire occurrences and their behaviour. In addition, climate indexes obtained from the analysis of time series with more than 20 years of complete records allow to understand the role of climate on fire regime, both in terms of direct effects on fire behaviour and the effect on vegetation cover. In particular, indices of extreme events have been considered like CDD (maximum number of consecutive dry days) and HWDI (heat wave duration index: maximum period > 5 consecutive days with Tmax >5°C above the 1961-1990 daily Tmax normal), together with the usual indices describing rainfall and temperature regimes. As a matter of fact, based on this information it is possible to develop statistical methods for the objective classification of forest fire static risk at regional scale. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is almost absent in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to consider almost all the species and the climate conditions that characterize the Mediterranean region. More than 10000 fire perimeters that burnt about 800 km2 were considered in the analysis

  11. The qualitative effects of climate change on health in France

    International Nuclear Information System (INIS)

    2008-04-01

    This report aims at giving a general basis for the possible effects of climate change within a context defined by data on possible climate change defined in collaboration with Meteo France. After a brief description of climate change in France, the authors describe the health consequences of different phenomena like: more frequent hotter days and nights and a lesser number of cold days and nights, heat waves and dryness, heavy precipitation events, increase of storm and hurricane activity, more frequent sea level rise. For each of these classes of consequences, they consider different more particular consequences, i.e. the increase of river and lake temperature and of sea surface temperature, increase of summer hours of sunshine, decrease of snow coverage duration, soft winters and early spring, decrease of frost, weak winds over longer periods, forest fire, decrease of river water level, decrease of ground waters, effects on microbial activities, floods, and so on. Then the author reports some observations made during the heat wave in France in 2003 (mortality, risk factors, interactions between temperature and air pollution, national planning) and in 2006

  12. An Empirical Examination of the Effects of Personality Traits and Transfer Climate Factors on Transfer of Training

    Directory of Open Access Journals (Sweden)

    Khan Imran

    2017-12-01

    Full Text Available Personality has been considered an important factor influencing trainee efficiency & organizational productivity. Similarly, work climate factors have been recognized as primary influencers in post training context influencing productivity. But research concerning the impact of personality and work climate on trainees’ learning motivation has been very scant and mostly conducted in the western context. The present study was an attempt therefore, to extend this line of research in the Indian context involving educational sector of the State of Jammu & Kashmir. A sample of 517 teacher trainees was drawn for the present study using convenience sampling method. Results indicate that personality traits (i.e., conscientiousness, openness to experience, and internal locus of control do not influence training transfer directly or indirectly, while, transfer climate factors do affect training transfer both directly as well as indirectly via learning motivation. The implications of the results are discussed and the limitations of the study are noted, along with suggested avenues for future research.

  13. Helium-air exchange flows through partitioned opening and two-opening

    International Nuclear Information System (INIS)

    Kang, T. I.

    1997-01-01

    This paper describes experimental investigations of helium-air exchange flows through partitioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature engineering test reactor. A test vessel with the two types of small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed to measure the exchange flow rate. Upward flow of the helium and downward flow of the air in partitioned opening system interact out of entrance and exit of the opening. Therefore, an experiment with two-opening system is made to investigate effect of the fluids interaction of partitioned opening system. As a result of comparison of the exchange flow rates between two types of the opening system, it is demonstrated that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system because of absence of the effect of fluids interaction. (author)

  14. Braking effect of climate and topography on global change-induced upslope forest expansion.

    Science.gov (United States)

    Alatalo, Juha M; Ferrarini, Alessandro

    2017-03-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  15. environmental/climatic effect on stand-alone solar energy supply

    African Journals Online (AJOL)

    This paper investigates the climatic effects and environmental variations on the perfor- mance of a ... inter-connected arrays due to shades from clouds, tress and ... Modeling of Solar Module .... needs. The earth revolves around the sun in an.

  16. Modelling Regional Climate Change Effects On Potential Natural Ecosystems in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Koca, D.; Smith, B.; Sykes, M.T. [Centre for GeoBiosphere Science, Department of Physical Geography and Ecosystems Analysis, Lund University, Soelvegatan 12, S-223 62 Lund (Sweden)

    2006-10-15

    This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) - HadAM3H and ECHAM4/OPYC3 - were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st

  17. Modelling Regional Climate Change Effects On Potential Natural Ecosystems in Sweden

    International Nuclear Information System (INIS)

    Koca, D.; Smith, B.; Sykes, M.T.

    2006-01-01

    This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) - HadAM3H and ECHAM4/OPYC3 - were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st

  18. Effects of sandbar openings on the zooplankton community of coastal lagoons with different conservation status

    Directory of Open Access Journals (Sweden)

    Rayanne Barros Setubal

    Full Text Available AIM: Artificial sandbar openings are a common management practice in coastal lagoons but they can be a threat when negative effects to the quality of water and to the aquatic biota are observed. The current study compared sandbar opening effects in two coastal lagoons located close to each other, but differing on trophic status and on sandbar openings' background. METHODS:Limnological variables and zooplankton community were recorded monthly during one year before and one year after sandbar openings that occurred in the same month for both lagoons, giving 24 samples. We compared the effects of sandbar opening on response variables, according to the two types of system. RESULTS: The sandbar openings determined changes in some limnological features - depth and salinity - but such effects were different in the two types of system. The zooplankton structure displayed dramatic changes in the eutrophic and commonly opened lagoon. The occurrence and abundance of some species were closely related to changes in limnological variables. CONCLUSIONS: Our data indicated that zooplankton communities are more resistant to sandbar openings in coastal lagoons historically less disturbed. The direction and magnitude of changes promoted by sandbar openings might be specific to each lagoon, due to different backgrounds of disturbances that, in the long term, modify the water quality and the structure of zooplankton communities, and consequently, their resistance and resilience.

  19. Modeling climatic effects of anthropogenic CO2 emissions: Unknowns and uncertainties

    Science.gov (United States)

    Soon, W.; Baliunas, S.; Idso, S.; Kondratyev, K. Ya.; Posmentier, E. S.

    2001-12-01

    Environmental Programme's Intergovernmental Panel on Climate Change, IPCC, reports (1990, 1995 and 2001). Our review highlights only the enormous scientific difficulties facing the calculation of climatic effects of added atmospheric CO2 in a GCM. The purpose of such a limited review of the deficiencies of climate model physics and the use of GCMs is to illuminate areas for improvement. Our review does not disprove a significant anthropogenic influence on global climate.

  20. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions

    International Nuclear Information System (INIS)

    Bizec, R.F.

    2006-01-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  1. IMPACT, VULNERABILITY AND INURING TO THE CLIMATE CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    Mazilu Mirela; Buce Gabriela; Ciobanu Mariana [University of Craiova, University Centre of Drobeta Turnu Severin, Mehedinti (Romania)

    2008-09-30

    The adverse effects of the climate changes caused or not by the human being are on the international politic agenda for more than a decade. All over the world the discussions on the climate changes are intensifying and heading new directions, with a larger opening. The climate changes were subject of the agenda of the most important regional and international meetings this year, many of these asking the ending with positive results of the U.N.O. Conference on Climate Changes that is taking place these days in Bali, between the 3rd and 14th of December 2007. The Bali Conference will give the possibility of getting involved in the future into the multilateral processes of climate change under the auspices of the United Nations and into the process of shaping a global approaching plan of the climate changes. The climate changes represent one of the major challenges in our century--a complex field about what we have to improve our knowledge and understanding in order to take immediate and correct actions for a lasting and efficient approach from the point of view of the costs and challenges in the climate changes field respecting the precaution and climate changes inuring principle. The inuring is a process which allows societies to learn to react to the risks associated to the climate changes. These risks are real and already present in many systems and essential sectors of the human existence--the hydrological resources, alimentary security and health. The inuring options are multiple and vary from the technical ones--protection against the water gown level or dwellings protected against the floods by being hanged up on pontoons--to the change of the behavior of the individuals, such as the reduce of the water or energy consumption and/or a more efficient consumption. Other strategies suppose: signaling systems of the meteorological phenomenon, improvements of the risk management, ways to assure and preserve the biodiversity in order to reduce the impact of the

  2. Forestal measures against climate change. Review and status after the Fourth Conference of the Parties of the Climate Convention; Skogtiltak mot klimaendringer. Oversikt og status etter fjerde partskonferanse til Klimakonvensjonen

    Energy Technology Data Exchange (ETDEWEB)

    Naess, Lars Otto

    1999-08-01

    The Kyoto Protocol of December 1997 opens up the possibility that forestal measures can be used to meet parts of the commitments of the industrialized countries to achieve a net reduction of emission of climate gases. The present report summarizes the issues involved in forestal measures that will mitigate global climate changes. The emphasis is on forestal measures in the climate negotiations and technical carbon binding potential. There is also a brief review of economic, environmental and social aspects. The next decades will be crucial to the many of the world`s forests. The forests contain a large part of the biological diversity. Above all this is true of tropical forests. But untouched areas in tempered and boreal areas are also experiencing various types of threats, including the effects of a possible global heating. It is a main conclusion that, in spite of many complex challenges, climate measures in the forests may play a constructive role both in counteracting global climate changes and in improving the management of the world`s forest resources. 89 refs., 3 figs., 7 tabs.

  3. Effects of Simulated Forest Cover Change on Projected Climate Change – a Case Study of Hungary

    Directory of Open Access Journals (Sweden)

    GÁLOS, Borbála

    2011-01-01

    Full Text Available Climatic effects of forest cover change have been investigated for Hungary applying theregional climate model REMO. For the end of the 21st century (2071–2100 case studies have beenanalyzed assuming maximal afforestation (forests covering all vegetated area and completedeforestation (forests replaced by grasslands of the country. For 2021–2025, the climatic influence ofthe potential afforestation based on a detailed national survey has been assessed. The simulationresults indicate that maximal afforestation may reduce the projected climate change through coolerand moister conditions for the entire summer period. The magnitude of the simulated climate changemitigating effect of the forest cover increase differs among regions. The smallest climatic benefit wascalculated in the southwestern region, in the area with the potentially strongest climate change. Thestrongest effects of maximal afforestation are expected in the northeastern part of the country. Here,half of the projected precipitation decrease could be relieved and the probability of summer droughtscould be reduced. The potential afforestation has a very slight feedback on the regional climatecompared to the maximal afforestation scenario.

  4. The impact of an extreme climatic disturbance and different fertilization treatments on plant development, phenology, and yield of two cultivar groups of Solanum betaceum Cav.

    Directory of Open Access Journals (Sweden)

    Joffre V Tandazo-Yunga

    Full Text Available Changing climatic conditions impose a challenge both to biodiversity and food security. The effects of climate change affect different aspects of the plant or crop, such as morphological and phenological aspects, as well as yield. The effects of greenhouse conditions might be comparable in some cases to a permanent extreme disturbance in climate and weather, thus, contributing to our knowledge on climate change impacts on plant species. We have investigated the differences for 23 traits in two cultivar groups of an Andean traditional crop, Solanum betaceum, under two different environmental conditions that correspond to the traditional practices in the open field and three cultural managements under greenhouse conditions (no fertilization or control, organic, and mineral. We found that traditional practices in the open field are the less productive. Moreover, in warmer and drier conditions the treatment with organic fertilization was the most productive. Greenhouse conditions, however, delay production. We further identified traits that differentiate both cultivar groups and traits that are linked to either the new climate conditions or the fertilization treatments. Fruit characteristics were quite homogeneous between the two cultivar groups. Overall, our results provide insight on the consequences that climate change effects might exert on crops such as tree tomato, reveal that greenhouses can be a robust alternative for tree tomato production, and highlight the need to understand how different managements are linked to different solutions to fulfil the farmers' demands.

  5. Effects of climate on size structure and functioning of aquatic food webs

    NARCIS (Netherlands)

    Lacerot, G.

    2010-01-01

    In aquatic food webs, the role of body size is notoriously strong. It is also well known that temperature has an effect on body size. For instance, Bergmann’s rule states that body size increases from warm to cold climates. This thesis addresses the question how climate shapes the size structure of

  6. Climatic change effects on agriculture. A future scenario; Auswirkungen des Klimawandels auf die Landwirtschaft. Ein Zukunftsszenario

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Udo [Deutscher Wetterdienst, Offenbach (Germany). Abt. Agrarmeteorologie

    2014-07-01

    The contribution on the effect of the climatic change on agriculture covers the topics meteorology - agriculture, modeling of the climate, observation of projected changes - temperature, precipitation and extreme weather conditions; effects of the climatic change on selected agro-meteorological parameters in agriculture - surface temperature, shift of the growing period, corn and other energy plants for biogas production, droughts.

  7. Combined effect of kinetin and radiation treatment on the cap opening of Agaricus bisporus

    International Nuclear Information System (INIS)

    Kovacs, E.

    1982-01-01

    Cultivated mushrooms (Agaricus bisporus) with a cap diameter of 3-5 cm were incubated at 20 deg C during the experimental period (30-72 h). The degree of cap opening was determined and the data were evaluated. It was found that kinetin solutions in the 0 to 32 mg kg -1 range stimulated the opening of the mushroom cap. The shorter the time elapsed between picking and treating the mushrooms, the greater was the effect. A kinetin solution with a concentration of 100 mg kg -1 inhibited the opening of the cap. Cap opening in irradiated mushrooms cannot be induced even with kinetin concentrations that stimulate cap opening. Treatment with 0, 2.5 and 10 kGy doses of radiation the stimulating effect on cap opening decreased as a function of the rising dose. The radiation effects in kinetin solutions and various natural cytokinins (zeatin, 2iP and 2iPA) were studied and it was found that cytokinin solutions lost 50-60% of their activity after a radiation dose of only 1 kGy. (author)

  8. Potential and economic efficiency of using reduced tillage to mitigate climate effects in Danish agriculture

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Jørgensen, Sisse Liv; Nainggolan, Doan

    2016-01-01

    , research also suggests that soil carbon stocks are declining. The scope of Payment for Ecosystem Service (PES) approaches to effectively and efficiently address climate regulation will depend on the spatial distribution of the carbon assimilation capacity, current land use, the value of avoided emissions...... and compare these to the marginal abatement costs curve used in Danish climate policy. The cost effectiveness of reduced tillage as a climate mitigation PES scheme critically depends on the current debate on the net effects of carbon sequestration in reduced tillage practices. Based on existing IPCC...

  9. High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals

    Science.gov (United States)

    WANG, X.; Huang, G.

    2017-12-01

    Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.

  10. Increasing Communities Capacity to Effectively Address Climate Change Through Education, Civic Engagement and Workforce Development

    Science.gov (United States)

    Niepold, F., III; Ledley, T. S.; Stanton, C.; Fraser, J.; Scowcroft, G. A.

    2017-12-01

    Understanding the causes, effects, risks, and developing the social will and skills for responses to global change is a major challenge of the 21st century that requires coordinated contributions from the sciences, social sciences, humanities, arts, and beyond. There have been many effective efforts to implement climate change education, civic engagement and related workforce development programs focused on a multitude of audiences, topics and in multiple regions. This talk will focus on how comprehensive educational efforts across our communities are needed to support cities and their primary industries as they prepare for, and embrace, a low-carbon economy and develop the related workforce.While challenges still exist in identifying and coordinating all stakeholders, managing and leveraging resources, and resourcing and scaling effective programs to increase impact and reach, climate and energy literacy leaders have developed initiatives with broad input to identify the understandings and structures for climate literacy collective impact and to develop regional/metropolitan strategy that focuses its collective impact efforts on local climate issues, impacts and opportunities. This Climate Literacy initiative envisions education as a central strategy for community's civic actions in the coming decades by key leaders who have the potential to foster the effective and innovative strategies that will enable their communities to seize opportunity and prosperity in a post-carbon and resilient future. This talk discusses the advances and collaborations in the Climate Change Education community over the last decade by U.S. federal and non-profit organization that have been made possible through the partnerships of the Climate Literacy & Energy Awareness Network (CLEAN), U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, and the Tri-Agency Climate Change Education Collaborative.

  11. Climate change effects at your doorstep

    DEFF Research Database (Denmark)

    Neset, Tina Simone; Glaas, Erik; Ballantyne, Anne Gammelgaard

    2016-01-01

    The complexity of climate information, particularly as related to climate scenarios, impacts, and action alternatives, poses significant challenges for science communication. This study presents a geographic visualization approach involving lay audiences to address these challenges. VisAdapt™ is ...

  12. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    Science.gov (United States)

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  13. Effective single scattering albedo estimation using regional climate model

    CSIR Research Space (South Africa)

    Tesfaye, M

    2011-09-01

    Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...

  14. Effects of open- and self-pollination treatments on genetic estimations in maize diallel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kahriman, F.; Egesel, C.O.; Zorlu, E.

    2015-07-01

    This study investigated the effects of open- and self-pollination treatments on genetic estimations and kernel biochemical content in a maize diallel experiment. A 7×7 complete reciprocal diallel set (7 parents and 42 hybrids) was used as plant material. Measured traits were: kernel weight per plant, protein content, oil content and carbohydrate content. General combining ability (GCA), specific combining ability (SCA), maternal effects (MAT), non-maternal effects (NMAT) and heterosis values were compared in open- and self-pollination treatments for measured traits. Results showed that the pollination treatments had a significant effect on all investigated traits. Parental lines and hybrid combinations gave different responses. Parents had relatively higher protein and oil content in self-pollination but hybrids had lower values in self-pollination compared with open-pollination. A considerable number of genotypes showed significant differences for genetic estimations (GCA, SCA, MAT, NMAT) and heterosis between open- and self-pollination treatments. Overall, findings suggest that evaluation of kernel quality traits should be made on selfed ear samples; however, evaluation for yield should be carried out on open-pollinated samples. (Author)

  15. Open Source Parallel Image Analysis and Machine Learning Pipeline, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Continuum Analytics proposes a Python-based open-source data analysis machine learning pipeline toolkit for satellite data processing, weather and climate data...

  16. The appeasement effect of a United Nations climate summit on the German public

    Science.gov (United States)

    Brüggemann, Michael; de Silva-Schmidt, Fenja; Hoppe, Imke; Arlt, Dorothee; Schmitt, Josephine B.

    2017-11-01

    The annual UN climate summits receive intense global media coverage, and as such could engage local publics around the world, stimulate debate and knowledge about climate politics, and, ultimately, mobilize people to combat climate change. Here we show that, in contrast to these hopes, although the German public were exposed to news about the 2015 Paris summit, they did not engage with it in a more active way. Comparing knowledge and attitudes before, during and after the summit using a three-wave online panel survey (quota sample, N = 1,121), we find that respondents learnt a few basic facts about the conference but they continue to lack basic background knowledge about climate policy. Trust in global climate policy increased a little, but citizens were less inclined to support a leading role for Germany in climate politics. Moreover, they were not more likely to engage personally in climate protection. These results suggest that this global media event had a modest appeasing rather than mobilizing effect.

  17. Potential impact of climate change on air pollution-related human health effects.

    Science.gov (United States)

    Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G

    2009-07-01

    The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies).

  18. The changing effects of Alaska’s boreal forests on the climate system

    Science.gov (United States)

    Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.

  19. Greenhouse gas policy influences climate via direct effects of land-use change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Torn, Margaret S.; Janetos, Anthony C.; Calvin, Katherine V.; Thomson, Allison M.; Chini, Louise M.; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter; Hurtt, George; Wise, Marshall A.

    2013-06-01

    Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for the 5th Climate Model Intercomparison Project (CMIP5) Representative Concentration Pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover compared to the baseline, standard RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W/m2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate due to increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a 21st century warming trend that is 0.5 °C cooler than baseline, driven by a 1 W/m2 mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing are uniquely related to atmospheric forcing targets such as those found in the RCP’s, but rather depend on particulars of the socioeconomic pathways followed to meet each target.

  20. Investigating Welfare Effect of Climate Change on the Wheat Products in Iran

    Directory of Open Access Journals (Sweden)

    S. Khalilian

    2015-05-01

    Full Text Available Agricultural sector will be most affected by climate change due to its extensive interaction with the environment. and as a result of changing production conditions, community welfare is changed. This study attempted at understanding the welfare effects of changes in climate parameters on the wheat product. Therefore, the yield functions were initially estimated. Supply, demand and import functions were secondly estimated by Simultaneous equations system. Finally, to study the welfare effects resulting from changes in temperature and precipitation, a price-endogenous mathematical programming model in three different scenarios of climate was used. The results showed that in the case of reducing precipitation with increasing temperature, consumer surplus, producer surplus and therefore society surplus will be reduced . Loss of welfare for consumers are higher than what is for producers.

  1. Effects of human activities on global climate

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, W W

    1977-01-01

    At present it is difficult to make any predictions for the natural course of climate in the next several decades. However by using climate models, predictions of the cause of climate changes as a result of anthropogenic influences can be made, other external factors remaining the same. Experiments with a number of different models have converged on approximately the same conclusions: the largest single effect of human activities on climate is due to an increase in atmospheric carbon dioxide concentration through fossil fuel combustion, i.e., air and thermal pollution, which contributes to a warming of the lower atmosphere; the best estimate of the warming of the mean surface temperature of the earth is about 1C by 2000 AD and 3C by 2050 AD with 3 to 5 times that increase in polar regions, and an uncertainty of roughly a factor of two. These conclusions assume a continued quasi exponential rate of release of carbon dioxide to the atmosphere. Absorption of the added carbon dioxide is expected to take between 1000 and 1500 years. If all economically recoverable fossil fuel is burned in the next few centuries, the atmospheric concentration of carbon dioxide would increase by 5 to 8 times. An example of a natural warming on a similar scale to that expected in the middle of the next century occurred 4000 to 8000 years ago. Generally there was more rainfall especially over the present sub-tropical deserts, but some regions in middle and high latitudes were drier than now. The extent of Arctic and Antarctic sea ice would be influenced. The total volume of the major ice sheets would change, but a change in sea level cannot yet be predicted with any confidence.

  2. Estimating the Effects of Climate Change on Federal Hydropower and Power Marketing

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J [ORNL; Kao, Shih-Chieh [ORNL; Uria Martinez, Rocio [ORNL; Wei, Yaxing [ORNL

    2011-01-01

    The U.S. Department of Energy is currently preparing an assessment of the effects of climate change on federal hydropower, as directed by Congress in Section 9505 of the Secure Water Act of 2009 (P.L. 111-11). This paper describes the assessment approach being used in a Report to Congress currently being prepared by Oak Ridge National Laboratory. The 9505 assessment will examine climate change effects on water available for hydropower operations and the future power supplies marketed from federal hydropower projects. It will also include recommendations from the Power Marketing Administrations (PMAs) on potential changes in operation or contracting practices that could address these effects and risks of climate change. Potential adaption and mitigation strategies will also be identified. Federal hydropower comprises approximately half of the U.S. hydropower portfolio. The results from the 9505 assessment will promote better understanding among federal dam owners/operators of the sensitivity of their facilities to water availability, and it will provide a basis for planning future actions that will enable adaptation to climate variability and change. The end-users of information are Congressional members, their staff, the PMAs and their customers, federal dam owners/operators, and the DOE Water Power Program.

  3. Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth

    Science.gov (United States)

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent. PMID:24670981

  4. Effects of different reaction mediums on ring opening polymerization ...

    African Journals Online (AJOL)

    This work examined the effects of reaction conditions on ring opening ... of this study was to observe molecular weight distribution, conversion rates, and thermal ... M monomer and 0.56 M solvent), 10 mg lipase were used in the experiments.

  5. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  6. Estimation of the global climate effect of brown carbon

    Science.gov (United States)

    Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.

    2017-12-01

    Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.

  7. Network-based approaches to climate knowledge discovery

    Science.gov (United States)

    Budich, Reinhard; Nyberg, Per; Weigel, Tobias

    2011-11-01

    Climate Knowledge Discovery Workshop; Hamburg, Germany, 30 March to 1 April 2011 Do complex networks combined with semantic Web technologies offer the next generation of solutions in climate science? To address this question, a first Climate Knowledge Discovery (CKD) Workshop, hosted by the German Climate Computing Center (Deutsches Klimarechenzentrum (DKRZ)), brought together climate and computer scientists from major American and European laboratories, data centers, and universities, as well as representatives from industry, the broader academic community, and the semantic Web communities. The participants, representing six countries, were concerned with large-scale Earth system modeling and computational data analysis. The motivation for the meeting was the growing problem that climate scientists generate data faster than it can be interpreted and the need to prepare for further exponential data increases. Current analysis approaches are focused primarily on traditional methods, which are best suited for large-scale phenomena and coarse-resolution data sets. The workshop focused on the open discussion of ideas and technologies to provide the next generation of solutions to cope with the increasing data volumes in climate science.

  8. Identifying Effective Strategies for Climate Change Education: The Coastal Areas Climate Change Education (CACCE) Partnership Audiences and Activities

    Science.gov (United States)

    Ryan, J. G.; Feldman, A.; Muller-Karger, F. E.; Gilbes, F.; Stone, D.; Plank, L.; Reynolds, C. J.

    2011-12-01

    Many past educational initiatives focused on global climate change have foundered on public skepticism and disbelief. Some key reasons for these past failures can be drawn directly from recognized best practices in STEM education - specifically, the necessity to help learners connect new knowledge with their own experiences and perspectives, and the need to create linkages with issues or concerns that are both important for and relevant to the audiences to be educated. The Coastal Areas Climate Change Education (CACCE) partnership has sought to follow these tenets as guiding principles in identifying critical audiences and developing new strategies for educating the public living in the low-lying coastal areas of Florida and the Caribbean on the realities, risks, and adaptation and mitigation strategies for dealing with the regional impacts of global climate change. CACCE is currently focused on three key learner audiences: a) The formal education spectrum, targeting K-12 curricula through middle school marine science courses, and student and educator audiences through coursework and participatory research strategies engaging participants in a range of climate-related investigations. b) Informal science educators and outlets, in particular aquaria and nature centers, as an avenue toward K-12 teacher professional development as well as for public education. c) Regional planning, regulatory and business professionals focused on the built environment along the coasts, many of whom require continuing education to maintain licensing and/or other professional certifications. Our current activities are focused on bringing together an effective set of educational, public- and private-sector partners to target the varied needs of these audiences in Florida and the U.S. Caribbean, and tailoring an educational plan aimed at these stakeholder audiences that starts with the regionally and topically relevant impacts of climate change, and strategies for effective adaptation and

  9. Why 'Science + Solutions' Is An Effective & Essential Climate Communications Strategy (Invited)

    Science.gov (United States)

    Haines-Stiles, G.; Alley, R. B.; Akuginow, E.

    2013-12-01

    , universities and church groups have used the project in this way. Alley is working with Penn State and Coursera on a MOOC (Massive Open Online Course) focused on energy, economics and the environment and linking to several ETOM YouTube videos. As important as new media, however, is the core message-featured most prominently in the third ETOM program, 'Energy Quest USA'-that regardless of national policies states and cities are moving ahead on clean energy solutions with consequent beneficial impacts on climate change. By cutting demand through conservation and efficiency, Baltimore has avoided a new coal-fired generating plant. Through 30 years of wise urban planning and the support of mass transit, Portland, Oregon, has reduced an average family's transportation costs by some $2,500, while improving health by encouraging cycling and walking. There are proven ways both to adapt to a changing climate and to begin to mitigate its most severe impacts. The ETOM project shows that when presented in a wide and diverse set of media, and in an authoritative and apolitical framework, those messages are received and appreciated by large public audiences. This presentation will report on the success of several of the strategies adopted by the ETOM project, and how they contrast with, or complement, other communications efforts on clean energy and climate change.

  10. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    Science.gov (United States)

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  11. The economics of climate change and the change of climate in economics

    International Nuclear Information System (INIS)

    Marechal, Kevin

    2007-01-01

    Economics is an unavoidable decision-making tool in the field of climate policy. At the same time, traditional economics is being challenged both empirically and theoretically by scholars in different fields. Its non-neutrality in dealing with climate-related issues-which is illustrated by the controversy over the 'no-regret potential'-would thus call for an opening of economics to insights from other disciplines. Within that context, we show that an evolutionary-inspired line of thought coupled with a systemic and historical perspective of technological change provides a very insightful alternative to traditional economics. More particularly, it follows from that framework that the picture of the climate challenge ahead looks very different from what traditional economic analyses would suggest. For instance, the lock-in process makes it unlikely that traditional cost-efficient measures (such as carbon taxation or tradable emission rights) will be sufficient to bring about the required radical changes in the field of energy as they fail to address structural barriers highlighted in our approach

  12. Geological support for the Umbrella Effect as a link between geomagnetic field and climate

    Science.gov (United States)

    Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L.; Sato, Hiroshi

    2017-01-01

    The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect. PMID:28091595

  13. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination

    Science.gov (United States)

    Tao, Fulu; Feng, Zhaozhong; Tang, Haoye; Chen, Yi; Kobayashi, Kazuhiko

    2017-03-01

    Air pollution and climate change are increasing threats to agricultural production and food security. Extensive studies have focused on the effect of climate change, but the interactive effects of multiple global change factors are poorly understood. Here, we incorporate the interactions between climate change, carbon dioxide (CO2) and ozone (O3) into an eco-physiological mechanistic model based on three years of O3 Free-Air Concentration Elevation (O3-FACE) experiments. We then investigate the effects of climate change, elevated CO2 concentration ([CO2]) and rising O3 concentration ([O3]) on wheat growth and productivity in eastern China in 1996-2005 (2000s) and 2016-2025 (2020s) under two climate change scenarios, singly and in combination. We find the interactive effects of climate change, CO2 and O3 on wheat productivity have spatially explicit patterns; the effect of climate change dominates the general pattern, which is however subject to the large uncertainties of climate change scenarios. Wheat productivity is estimated to increase by 2.8-9.0% due to elevated [CO2] however decline by 2.8-11.7% due to rising [O3] in the 2020s, relative to the 2000s. The combined effects of CO2 and O3 are less than that of O3 only, on average by 4.6-5.2%, however with O3 damage outweighing CO2 benefit in most of the region. This study demonstrates a more biologically meaningful and appropriate approach for assessing the interactive effects of climate change, CO2 and O3 on crop growth and productivity. Our findings promote the understanding on the interactive effects of multiple global change factors across contrasting climate conditions, cast doubt on the potential of CO2 fertilization effect in offsetting possible negative effect of climate change on crop productivity as suggested by many previous studies.

  14. Synergistic effects of climate change and harvest on extinction risk of American ginseng.

    Science.gov (United States)

    Souther, Sara; McGraw, James B

    Over the next century, the conservation of biodiversity will depend not only on our ability to understand the effect of climate change, but also on our capacity to predict how other factors interact with climate change to influence species viability. We used American ginseng (Panax quinquefolius L.), the United States' premier wild-harvested medicinal, as a model system to ask whether the effect of harvest on extinction risk depends on changing climatic conditions. We performed stochastic projections of viability response to an increase in maximum growing-season temperature of 1°C over the next 70 years by sampling matrices from long-term demographic studies of 12 populations (representing 75 population-years of data). In simulations that included harvest and climate change, extinction risk at the median population size (N = 140) was 65%, far exceeding the additive effects of the two factors (extinction risk = 8% and 6% for harvest and climate change, respectively; quasi-extinction threshold = 20). We performed a life table response experiment (LTRE) to determine underlying causes of the effect of warming and harvest on deterministic λ (λd). Together, these factors decreased λd values primarily by reducing growth of juvenile and small adult plants to the large-adult stage, as well as decreasing stasis of the juveniles and large adults. The interaction observed in stochastic model results followed from a nonlinear increase in extinction risk as the combined impact of harvest and warming consistently reduced λ values below the demographic tipping point of λ = 1. While further research is needed to create specific recommendations, these findings indicate that ginseng harvest regulations should be revised to account for changing climate. Given the possibility of nonlinear response like that reported here, pre-emptive adaptation of management strategies may increase efficacy of biodiversity conservation by allowing behavior modification prior to precipitous

  15. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2018-01-01

    Currently, the temperate forest biome cools the earth’s climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  16. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-11-01

    Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  17. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  18. Climate change and water scarcity effects on the rural income distribution in the Mediterranean

    Science.gov (United States)

    Quiroga, Sonia; Suárez, Cristina

    2015-04-01

    This paper examines the effects of climate change and water scarcity on the agricultural outputs in the Mediterranean region. By now the effects of water scarcity as a response to climate change or policy restrictions has been analyzed with response functions considering the direct effects on crop productivity. Here we consider a complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of the Gini coefficient to estimate the impact of climate change and water scarcity on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptation of certain adaptation measures in a context of water scarcity. We provide the empirical estimations for the marginal effects on the two considered direct and indirect impacts. In our estimates we consider both bio-physical and socio-economic aspects to conclude that there are long term implications on both competitiveness and social disparities. We find disparities in the adaptation strategies depending on the crop and the region analyzed.

  19. Modelling extreme climatic events in Guadalquivir Estuary ( Spain)

    Science.gov (United States)

    Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo

    2017-04-01

    Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.

  20. Overview of different aspects of climate change effects on soils

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  1. INTRODUCTION: Focus on Climate Engineering: Intentional Intervention in the Climate System

    Science.gov (United States)

    2009-12-01

    Geoengineering techniques for countering climate change have been receiving much press recently as a `Plan B' if a global deal to tackle climate change is not agreed at the COP15 negotiations in Copenhagen this December. However, the field is controversial as the methods may have unforeseen consequences, potentially making temperatures rise in some regions or reducing rainfall, and many aspects remain under-researched. This focus issue of Environmental Research Letters is a collection of research articles, invited by David Keith, University of Calgary, and Ken Caldeira, Carnegie Institution, that present and evaluate different methods for engineering the Earth's climate. Not only do the letters in this issue highlight various methods of climate engineering but they also detail the arguments for and against climate engineering as a concept. Further reading Focus on Geoengineering at http://environmentalresearchweb.org/cws/subject/tag=geoengineering IOP Conference Series: Earth and Environmental Science is an open-access proceedings service available at www.iop.org/EJ/journal/ees Focus on Climate Engineering: Intentional Intervention in the Climate System Contents Modification of cirrus clouds to reduce global warming David L Mitchell and William Finnegan Climate engineering and the risk of rapid climate change Andrew Ross and H Damon Matthews Researching geoengineering: should not or could not? Martin Bunzl Of mongooses and mitigation: ecological analogues to geoengineering H Damon Matthews and Sarah E Turner Toward ethical norms and institutions for climate engineering research David R Morrow, Robert E Kopp and Michael Oppenheimer On the possible use of geoengineering to moderate specific climate change impacts Michael C MacCracken The impact of geoengineering aerosols on stratospheric temperature and ozone P Heckendorn, D Weisenstein, S Fueglistaler, B P Luo, E Rozanov, M Schraner, L W Thomason and T Peter The fate of the Greenland Ice Sheet in a geoengineered

  2. Academic Optimism and Organizational Climate: An Elementary School Effectiveness Test of Two Measures

    Science.gov (United States)

    Reeves, Jonathan Bart

    2010-01-01

    This study examined the relationship of two climate constructs in academic optimism and organizational climate as each relates to school effectiveness. Academic optimism is an academic environment comprised of three dimensions: academic emphasis, collective efficacy, and faculty trust (Hoy, Tarter, & Hoy, 2006). The Organizational Climate…

  3. Aerosol climate effects and air quality impacts from 1980 to 2030

    International Nuclear Information System (INIS)

    Menon, Surabi; Sednev, Igor; Unger, Nadine; Koch, Dorothy; Shindell, Drew; Francis, Jennifer; Garrett, Tim; Streets, David

    2008-01-01

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and, additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 W m -2 and the total aerosol forcing decreases from -0.10 to -0.94 W m -2 (AIE decreases from -0.13 to -0.68 W m -2 ) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 W m -2 ), but the magnitude decreases (-0.3 W m -2 ) considerably for the future scenario. Over Asia, we evaluate the role of biofuel- and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of 2) in biofuel- and transport-based emissions for 2030 A1B over Asia. Projected changes from present day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggests that

  4. Compressibility effects in packed and open tubular gas and supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Snijders, H.M.J.; Cramers, C.A.; Schoenmakers, P.J.

    1992-01-01

    The influence of the pressure drop on the efficiency and speed of anal. in packed and open tubular supercrit. fluid chromatog. (SFC) is described: methods previously developed to describe the effects of mobile phase compressibility on the performance of open tubular columns in SFC have been extended

  5. Building an Open Data Portal for the European Space Agency Climate Change Initiative based on an Iterative Development Methodology and Linked Data Technologies

    Science.gov (United States)

    Kershaw, P.; Bennett, V. L.; Stephens, A.; Wilson, A.; Waterfall, A. M.; Petrie, R.; Iwi, A.; Donegan, S.; Juckes, M. N.; Parton, G.

    2016-12-01

    The Climate Change Initiative (CCI) programme was initiated by the European Space Agency (ESA) in 2009 to address the GCOS Essential Climate Variable (ECV) requirements to provide stable, long-term, satellite-based data products to characterise the climate system and its changes. CEDA, working as part of a project consortium, were awarded the contract to build the Open Data Portal, consisting collectively of a central archive and single point of access for dissemination of the data to the international user community. Reflecting climate and earth observation community requirements, the system needed to support a range of access services in use by this domain and specifically, to integrate into existing infrastructure in the form of the Earth System Grid Federation (ESGF). This range of requirements together with the heterogeneity of the ECV datasets presented significant challenges. However, the use of Linked Data technologies and an iterative approach to data model development and data publishing have been instrumental in meeting the objectives and building a cohesive system. The portal supports data discovery based on the OGC CSW specification and on ESGF's powerful faceted search. These services provide complementary content at different levels of granularity and it therefore became clear that a common data model was needed. Key terms are defined in vocabularies serialised in SKOS and OWL and are accessible from a central vocabulary server to provide a single authoritative source for applications consuming metadata content. Exploiting the vocabulary service therefore, it has been possible to develop an innovative solution tagging ISO 19115 records for the CSW with the equivalent vocabulary terms used for the ESGF faceted search system. In this way it has been possible to create a rich user interface for the portal combining search results from both search services and the ability to dynamically populate facet selection and context-based help information from the

  6. A Evaluation of Effects on a Ecosystem and Countermeasures in accordance with Climate Change I- Forest Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Ha; Jeon, Seong Woo; Choi, Jae Yong; Jeong Hwi Chol; Kim, Jeong Won [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Climate change requests a lot of changes in the existing life style and economic developing system, which form the foundation of modern culture and economic/social development. Especially, in Korea, whose economic basis is mainly dependent on fossil energy, it is expected that the change of policies on climate change have a bigger effect on many-sided fields including ecosystem than other nations. Therefore, even though all of the Government, academic organizations, and private organizations have made efforts to estimate effects of climate change and to prepare countermeasures, the focus has been on forecast and evaluation of the mutual effect between industrial/economic activities and climate change. Forecast of ecosystem change and preservation of ecosystem according to climate change is another political field to promote. However, such a field has not been promoted systematically in Korea. The Institute recognizing such a current state, as part of the policy on ecosystem preservation according to climate change, forecasted the effect on forest ecosystem, analyzed the economic effects according to the effect of forest ecosystem, and started this study to prepare the countermeasures of the Government-level. This study collected and analyzed international trend and necessary data to develop the model, which would be executed in future, and then suggested the selection and development of the model fitted to Korea. There could be differences between Institute's view and the Government/other institutes. However, such differences are caused by the different methods in capturing the effects of various ecosystems. Such various approaching methods will be of great help to estimate the correct effects and to establish the Government's policies as base data. I hope that this study cannot only be applied to analyze the effects of forest ecosystem according to climate change but contribute to enlarging the understanding of various problems according to climate

  7. Do differences in attitudes explain differences in national climate change policies?

    International Nuclear Information System (INIS)

    Tjernstroem, E.; Tietenberg, T.

    2008-01-01

    In meeting the threat posed by climate change nations have responded quite differently. Using an extensive data set this study explores factors that affect individuals' attitudes towards climate change and how those attitudes ultimately affect national climate change policy. The results show that attitudes do indeed matter in implementing policy and that attitudes are shaped not only by how individuals react to the specific attributes of climate change, but also by information, by the openness of society and by attitudes toward the trustworthiness of government. (author)

  8. Effects of climate change on Pacific Northwest water-related resources: Summary of preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Sands, R.D.; Vail, L.W.; Chatters, J.C.; Neitzel, D.A.; Shankle, S.A.

    1993-12-01

    The Pacific Northwest Case Study is a multi-agency analysis of atmospheric/climatic change impacts on the Pacific Northwest (which includes Washington, Oregon, Idaho, and portions of the Columbia River Basin in Western Montana). The purpose of the case study, which began in fiscal year 1991, was to develop and test analytical tools, as well as to develop an assessment of the effects of climate change on climate-sensitive natural resources of the Pacific Northwest and economic sectors dependent on them. The overall study, jointly funded by the US Department of Energy (DOE) and the US Environmental Protection Agency, was a broad-based, reconnaissance-level study to identify potential climate impacts on agriculture, coastal resources, forest resources, and irrigation in the Pacific Northwest. DOE participated in the reconnaissance study, with responsibility for hydroelectric and water supply issues. While this report briefly discusses a broader array of water issues, attention is mainly focused on three aspects of the water study: (1) the effects of the region`s higher temperatures on the demand for electric power (which in turn puts additional demand on hydroelectric resources of the region); (2) the effects of higher temperatures and changes, both in precipitation amounts and seasonality, on river flows and hydroelectric supply; and (3) the effect of higher temperatures and changed precipitation amounts and seasonality on salmonid resources -- particularly the rearing conditions in tributaries of the Columbia River Basin. Because the meaning of regional climate forecasts is still quite uncertain, most of the preliminary findings are based on sensitivity analyses and historical analog climate scenarios.

  9. The physics and dynamics of the climate system simulation of climate change

    International Nuclear Information System (INIS)

    Mitchell, J.F.B.

    1991-01-01

    The use of climate models is described, using examples related to: the greenhouse effect, the principal absorbers, past, present and future, climate feedbacks in CO2 experiments, equilibrium climate change due to increased CO2, modelling the transient response to increases in trace gases, uncertainties in the simulation and detection of the climatic effect of increased trace gas, simulations for 9000 years before present

  10. Climate Change Policy in European Countries and its effects on industry

    International Nuclear Information System (INIS)

    Proost, S.; Van Regemorter, D.

    2004-01-01

    In this paper we discuss the effects of different climate change policies on industrial activity and on welfare. We compare the effects of carbon taxes and grandfathered permits and the effects of exemptions for energy-intensive industries. We survey first the insights from economic theory and from model experiments for the US. Next we use a general equilibrium model to assess the effect of different climate change policies on industrial activity per sector and per member country in the EU. We pay particular attention to the effects of policies where one EU member state exempts its energy-intensive sectors from abatement efforts. The main findings are that, in the EU, the effects on industrial activity and the welfare costs of tradable permits or carbon taxes are small when no industrial sectors are exempted. When one member country exempts its energy intensive sector, this will reduce somewhat the impact on its activity level but will generate an extra welfare cost for the EU

  11. International Climate Migration: Evidence for the Climate Inhibitor Mechanism and the Agricultural Pathway.

    Science.gov (United States)

    Nawrotzki, Raphael J; Bakhtsiyarava, Maryia

    2017-05-01

    Research often assumes that, in rural areas of developing countries, adverse climatic conditions increase (climate driver mechanism) rather than reduce (climate inhibitor mechanism) migration, and that the impact of climate on migration is moderated by changes in agricultural productivity (agricultural pathway). Using representative census data in combination with high-resolution climate data derived from the novel Terra Populus system, we explore the climate-migration relationship in rural Burkina Faso and Senegal. We construct four threshold-based climate measures to investigate the effect of heat waves, cold snaps, droughts and excessive precipitation on the likelihood of household-level international outmigration. Results from multi-level logit models show that excessive precipitation increases international migration from Senegal while heat waves decrease international mobility in Burkina Faso, providing evidence for the climate inhibitor mechanism. Consistent with the agricultural pathway, interaction models and results from a geographically weighted regression (GWR) reveal a conditional effect of droughts on international outmigration from Senegal, which becomes stronger in areas with high levels of groundnut production. Moreover, climate change effects show a clear seasonal pattern, with the strongest effects appearing when heat waves overlap with the growing season and when excessive precipitation occurs prior to the growing season.

  12. Climate programs update: USDA Southwest Regional Climate Hub update

    Science.gov (United States)

    PROGRAM OVERVIEW: The overarching goal of the USDA SW Climate Hub is to assist farmers, ranchers and foresters in addressing the effects of climate change including prolonged drought, increased insect outbreaks and severe wildfires. In the first year of operations, the SW Climate Hub (est. Februa...

  13. Interpreting the Climatic Effects on Xylem Functional Traits in Two Mediterranean Oak Species: The Role of Extreme Climatic Events.

    Science.gov (United States)

    Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio

    2016-01-01

    In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting

  14. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events

    Directory of Open Access Journals (Sweden)

    Angelo Rita

    2016-08-01

    Full Text Available In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale and Shape (GAMLSS technique and Bayesian modeling procedures to xylem traits data set, with the aim of i detecting non-linear long-term responses to climate and ii exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks rises at extreme values of Standardized Precipitation Index (SPI. Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport

  15. Open innovation in urban energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M. [Technische Universitaet Muenchen, TUM School of Management, Freising (Germany); Barth, V. [Carl von Ossietzky Universitaet Oldenburg, Ecological Economics, Oldenburg (Germany)

    2012-08-15

    Despite recent efforts, existing urban energy systems still hardly meet the demands of sustainable development or climate change. Meeting these targets thus will require innovations that use energy much more efficiently and emit far less greenhouse gases. These innovations need to be made on the production as well as the consumption side, on all levels, and need to cover not only technical aspects, but even more service solutions. While many of these solutions still need to be developed, some are already invented but only exist in limited market segments. Opening closed urban planning processes and using open innovation tools can foster bottom-up urban energy system transformation by addressing the interactive ways of decision-making integrating company representatives and citizens. While open innovation tools like (open) innovation workshops or ideas competitions are already used by several companies to find and develop new designs and products, there is yet little experience with energy efficiency ideas and bottom-up changes. Therefore, we analyse energy-efficient ideas generated in three different ideas competitions. We discuss the findings for theory and research on open innovation approaches and bottom-up urban changes. Our results show that there are a vast number of ideas available in the public. Open innovation tools offer advanced possibilities to generate energy-efficient solutions.

  16. Cost effectiveness of open versus laparoscopic living-donor nephrectomy

    DEFF Research Database (Denmark)

    Hamidi, Vida; Andersen, Marit Helen; Oyen, Ole

    2009-01-01

    , and a consequent potential to increase the pool of kidney donors. However, the cost effectiveness of LLDN remains unknown. The aim of this study was to explore the health and cost consequences of replacing open-donor nephrectomy by LLDN. METHODS: Kidney donors were randomized to laparoscopic (n=63) or open surgery...... (n=59). We obtained data on operating time, personnel costs, length of stay, cost of analgesic, disposable instruments and complications, and indirect costs. Quality of life was captured before the operation and at 1, 6, and 12 months postdonation by means of short form-36. The scores were translated...... into utilities by means of Brazier's 6D algorithm. RESULTS: The cost per patient was U.S. $55,292 with laparoscopic and U.S. $29,886 with open surgery. The greatest cost difference was in costs attributed to complications (U.S. $33,162 vs. U.S. $4,573). The 1-year quality-adjusted life years (QALYs) were 0...

  17. The effects of anthropogenous on atmosphere and climate. Anthropogene Beeinflussung des Klimas

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany, F.R.) Hamburg Univ. (Germany, F.R.). Meteorologisches Inst.

    1989-11-01

    The mostly uncontrolled emission of trace gases varies the composition of the atmosphere. Since some of the trace gases are emitted belong to the group of greenhouse gases and many of them are quite stable, and thus spread world wide, a global change to the radiation balance is inevitable. The present state of knowledge can be summarized by presenting the basic physical effects, the growth rates of the gases and their sources, the relative proportion of additional greenhouse effects and climatic variations calculated using models of the climate. (orig.).

  18. The changing effects of Alaska's boreal forests on the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Euskirchen, E.S.; Chapin, F.S. III [Alaska Univ., Fairbanks, AK (United States). Dept. of Biology, Inst. of Arctic Biology; McGuire, A.D. [United Sates Geological Survey, Fairbanks, AK (United States). Alaska Cooperative Fish and Wildlife Research Unit; Alaska Univ., Fairbanks, AK (United States); Rupp, T.S. [Alaska Univ., Fairbanks, AK (United States). Dept. of Forest Sciences

    2010-07-15

    The boreal forest is the northernmost forested biome and is expected to be sensitive to global warming. Recent climate warming in the boreal forests of Alaska has influenced the exchange of trace gases, water, and energy between the forests and the atmosphere. In turn, these changes in the structure and function of boreal forests can influence regional and global climates. This study examined the type and magnitude of the climate feedbacks from boreal forests in Alaska. Biogeophysical and biogeochemical feedbacks were examined with particular reference to surface energy balance across boreal ecosystems and over the full annual cycle. The impact of ground heat exchange on permafrost was studied in terms of vegetation dynamics and disturbance regimes such as fires and insect outbreaks. In general, research has indicated that the net effect of a warming climate is a positive regional feedback to warming. The main positive climate feedbacks are currently related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most dominant at the regional scale and reduce the resilience of the boreal vegetation by amplifying the rate of regional warming. This paper also described carbon and methane release from permafrost degradation, changes in lake area, changes in land use and snow season changes. The role of earth system models in representing climate feedbacks from Alaskan boreal forests was discussed. It was concluded that although the boreal forest provides climate regulation as an ecosystem service, the net effect of the climate feedbacks to climate warming are not fully understood. As such, there is a need to continue to evaluate feedback pathways, given the recent warming in Alaska and the large variety of associated mechanisms that can change terrestrial ecosystems and affect the climate system. 59 refs

  19. Working with invalid boundary conditions: lessons from the field for communicating about climate change with public audiences

    Science.gov (United States)

    Gunther, A.

    2015-12-01

    There is an ongoing need to communicate with public audiences about climate science, current and projected impacts, the importance of reducing greenhouse gas emissions, and the requirement to prepare for changes that are likely unavoidable. It is essential that scientists are engaged and active in this effort. Scientists can be more effective communicators about climate change to non-scientific audiences if we recognize that some of the normal "boundary conditions" under which we operate do not need to apply. From how we are trained to how we think about our audience, there are some specific skills and practices that allow us to be more effective communicators. The author will review concepts for making our communication more effective based upon his experience from over 60 presentations about climate change to public audiences. These include expressing how your knowledge makes you feel, anticipating (and accepting) questions unconstrained by physics, respecting beliefs and values while separating them from evidence, and using the history of climate science to provide a compelling narrative. Proper attention to presentation structure (particularly an opening statement), speaking techniques for audience engagement, and effective use of presentation software are also important.

  20. Work–family climate, organizational commitment, and turnover: Multilevel contagion effects of leaders ⋆

    Science.gov (United States)

    O’Neill, John W.; Harrison, Michelle M.; Cleveland, Jeannette; Almeida, David; Stawski, Robert; Crouter, Anne C.

    2009-01-01

    This paper presents empirical research analyzing the relationship between work–family climate (operationalized in terms of three work–family climate sub-scales), organizational leadership (i.e., senior manager) characteristics, organizational commitment and turnover intent among 526 employees from 37 different hotels across the US. Using multilevel modeling, we found significant associations between work–family climate, and both organizational commitment and turnover intent, both within and between hotels. Findings underscored the importance of managerial support for employee work–family balance, the relevance of senior managers’ own work–family circumstances in relation to employees’ work outcomes, and the existence of possible contagion effects of leaders in relation to work–family climate. PMID:19412351

  1. Butterfly effect: understanding and mitigating the local consequences of climate change impacts

    International Nuclear Information System (INIS)

    Lorenz, Donna

    2007-01-01

    Full text: The Butterfly Effect is the notion that tiny differences in initial conditions are amplified in the evolution of a dynamic system and directly affect the eventual outcome. In 1963 mathematician and meteorologist Edward Lorenz proposed that the flapping of a butterfly's wing would cause a disturbance that becomes exponentially amplified so as to eventually affect large-scale atmospheric motion. This was to illustrate the 'sensitive dependence on initial conditions'; sensitivity also true in affecting the extent of damages experienced as a result of climate change. In a climate change context, The Butterfly Effect suggests the local consequences of climate change impacts will depend on their interaction with the economic, environmental, institutional, technological and demographic attributes unique to a city or region. It is this mix of factors that will determine the extent, both positively and negatively, to which climate change will be experienced locally. For a truly effective climate change response, it is imperative that regional risk assessments and adaptation strategies take into account not only the projected impacts but the full range of flow-on implications of those impacts and their sensitivity factors. Understanding of the sensitivity factors that will amplify or mitigate climate change impacts and implications enables government and business leaders to calculate the likely extent of localised damages if no adaptation is undertaken. This allows industries and communities to evaluate the likely significance of a particular impact and to consider how to adjust or counter the sensitivity factor to build resilience and reduce vulnerability. Thus, it also assists in the local prioritisation of issues and responses. Such a strategic response can also mean the required adaptation measures may be less extensive and thereby require less cost and time to implement. This paper discusses the flow-on implications of Australia's projected climate change

  2. Open Polar Server (OPS—An Open Source Infrastructure for the Cryosphere Community

    Directory of Open Access Journals (Sweden)

    Weibo Liu

    2016-03-01

    Full Text Available The Center for Remote Sensing of Ice Sheets (CReSIS at the University of Kansas has collected approximately 1000 terabytes (TB of radar depth sounding data over the Arctic and Antarctic ice sheets since 1993 in an effort to map the thickness of the ice sheets and ultimately understand the impacts of climate change and sea level rise. In addition to data collection, the storage, management, and public distribution of the dataset are also primary roles of the CReSIS. The Open Polar Server (OPS project developed a free and open source infrastructure to store, manage, analyze, and distribute the data collected by CReSIS in an effort to replace its current data storage and distribution approach. The OPS infrastructure includes a spatial database management system (DBMS, map and web server, JavaScript geoportal, and MATLAB application programming interface (API for the inclusion of data created by the cryosphere community. Open source software including GeoServer, PostgreSQL, PostGIS, OpenLayers, ExtJS, GeoEXT and others are used to build a system that modernizes the CReSIS data distribution for the entire cryosphere community and creates a flexible platform for future development. Usability analysis demonstrates the OPS infrastructure provides an improved end user experience. In addition, interpolating glacier topography is provided as an application example of the system.

  3. Modelling the effects of climate change on the energy system-A case study of Norway

    International Nuclear Information System (INIS)

    Seljom, Pernille; Rosenberg, Eva; Fidje, Audun; Haugen, Jan Erik; Meir, Michaela; Rekstad, John; Jarlset, Thore

    2011-01-01

    The overall objective of this work is to identify the effects of climate change on the Norwegian energy system towards 2050. Changes in the future wind- and hydro-power resource potential, and changes in the heating and cooling demand are analysed to map the effects of climate change. The impact of climate change is evaluated with an energy system model, the MARKAL Norway model, to analyse the future cost optimal energy system. Ten climate experiments, based on five different global models and six emission scenarios, are used to cover the range of possible future climate scenarios and of these three experiments are used for detailed analyses. This study indicate that in Norway, climate change will reduce the heating demand, increase the cooling demand, have a limited impact on the wind power potential, and increase the hydro-power potential. The reduction of heating demand will be significantly higher than the increase of cooling demand, and thus the possible total direct consequence of climate change will be reduced energy system costs and lower electricity production costs. The investments in offshore wind and tidal power will be reduced and electric based vehicles will be profitable earlier. - Highlights: → Climate change will make an impact on the Norwegian energy system towards 2050. → An impact is lower Norwegian electricity production costs and increased electricity export. → Climate change gives earlier profitable investments in electric based vehicles. → Climate change reduces investments in offshore wind and tidal power.

  4. With an Open Mind: Openness to Experience Moderates the Effect of Interethnic Encounters on Support for Immigration

    DEFF Research Database (Denmark)

    Danckert, Bolette; Dinesen, Peter Thisted; Klemmensen, Robert

    2017-01-01

    to new experiences, react more positively/less negatively to interethnic encounters. We test this conjecture on two surveys collected in Denmark and Canada. In line with our expectations, the analyses suggest that openness positively moderates the effect of interethnic encounters on immigration attitudes...

  5. Studies of Day Care Center Climate and Its Effect on Children's Social and Emotional Behavior.

    Science.gov (United States)

    Ekholm, Bodil; Hedin, Anna

    School climates at 12 day care centers in Sweden were compared to investigate effects of center climates on children's social and emotional behavior. Observations and interviews conducted at the day care centers revealed differences in center climates related to child-rearing patterns, patterns of interaction, the distribution of power, and in…

  6. Work climate and work load measurement in production room of Batik Merak Manis Laweyan

    Science.gov (United States)

    Suhardi, Bambang; Simanjutak, Sry Yohana; Laksono, Pringgo Widyo; Herjunowibowo, Dewanto

    2017-11-01

    The work environment is everything around the labours that can affect them in the exercise of duties and work that is charged. In a work environment, there are workplace climate and workload which affect the labour in force carrying out its work. The working climate is one of the physical factors that could potentially cause health problems towards labour at extreme conditions of hot and cold that exceed the threshold limit value allowed by the standards of health. The climate works closely related to the workload accepted by workers in the performance of their duties. The influence of workload is pretty dominant against the performance of human resources and may cause negative effects to the safety and health of the labours. This study aims to measure the effect of the work climate and the workload against workers productivity. Furthermore, some suggestions to increase the productivity also been recommended. The research conducted in production room of Batik Merak Manis Laweyan. The results showed that the workplace climate and the workload at eight stations in production room of Merak Manis does not agree to the threshold limit value that has been set. Therefore, it is recommended to add more opening windows to add air velocity inside the building thus the humidity and temperature might be reduced.

  7. Weather uncertainty versus climate change uncertainty in a short television weather broadcast

    Science.gov (United States)

    Witte, J.; Ward, B.; Maibach, E.

    2011-12-01

    For TV meteorologists talking about uncertainty in a two-minute forecast can be a real challenge. It can quickly open the way to viewer confusion. TV meteorologists understand the uncertainties of short term weather models and have different methods to convey the degrees of confidence to the viewing public. Visual examples are seen in the 7-day forecasts and the hurricane track forecasts. But does the public really understand a 60 percent chance of rain or the hurricane cone? Communication of climate model uncertainty is even more daunting. The viewing public can quickly switch to denial of solid science. A short review of the latest national survey of TV meteorologists by George Mason University and lessons learned from a series of climate change workshops with TV broadcasters provide valuable insights into effectively using visualizations and invoking multimedia-learning theories in weather forecasts to improve public understanding of climate change.

  8. The Climate Services Partnership (CSP): Working Together to Improve Climate Services Worldwide

    Science.gov (United States)

    Zebiak, S.; Brasseur, G.; Members of the CSP Coordinating Group

    2012-04-01

    -searchable database that allows users to see what climate services activities are underway in what locations, to gather and analyze information. As part of the knowledge capture system, more than 10 CSP members are currently developing case studies to describe specific climate services activities; in a few cases, this involves in-depth evaluations of the service in question. Finally, the Economics Working Group of the Climate Services Partnership is analyzing previous methods to economically value climate services in hopes of generating knew knowledge regarding the methods are best suited to assessing the benefits associated with various climate services. Other groups are working to develop guidance materials for the development and use of climate information to support decision and policy-making. The Climate Services Partnership is an open, informal network that builds on activities that are already underway and works to create synergies to improve the provision and development for climate services. Its members currently number more than 50 organizations; it seeks new participants and new initiatives.

  9. Effects of Inhalation of Lavender Essential Oil on Open-heart Surgery Pain.

    Science.gov (United States)

    Salamati, Armaiti; Mashouf, Soheyla; Sahbaei, Faezeh; Mojab, Faraz

    2014-01-01

    This study evaluated the effects of inhalation of lavender essential oil on the pain of open-heart surgery. The main complaint of patients after open-heart surgery is chest pain. Due to the side effects of opioids, it is important to use a non-invasive way to effectively relieve pain including aromatherapy with analgesics. This study was a clinical single-blind trial and was conducted on 40 patients who had open-heart surgery in the cardiac ICU of 2 Hospitals of Tehran University of Medical Sciences, 2012. Criteria included: full consciousness, spontaneous breathing ability and not using synthetic opioids within 2 hours before extubation. After extubation, the patients were asked to mark the intensity of their pain using the visual analogue scale. Then, a cotton swab which was impregnated with 2 drops of lavender essential oil 2% was placed in their oxygen mask, and they got breath for 10 minutes. 30 minutes after aromatherapy, they were asked to re-mark their pain intensity. The level of patient's pain before and after aroma therapy were compared. The pain mean level before and after inhaling lavender essential oil was 5.60 (SD = 2.262) and 4.98 (SD = 2.293), respectively (p-value>0.05). Therefore, there is no significant difference and the result of study proves that lavender essential oil inhalation has no effect on reducing the pain of open-heart surgery.

  10. Cost-effectiveness of endovascular repair, open repair, and conservative management of splenic artery aneurysms

    NARCIS (Netherlands)

    Hogendoorn, Wouter; Lavida, Anthi; Hunink, M. G Myriam; Moll, Frans L.; Geroulakos, George; Muhs, Bart E.; Sumpio, Bauer E.

    2015-01-01

    Objective Open repair (OPEN) and conservative management (CONS) have been the treatments of choice for splenic artery aneurysms (SAAs) for many years. Endovascular repair (EV) has been increasingly used with good short-term results. In this study, we evaluated the cost-effectiveness of OPEN, EV, and

  11. Global Climate Models Intercomparison of Anthropogenic Aerosols Effects on Regional Climate over North Pacific

    Science.gov (United States)

    Hu, J.; Zhang, R.; Wang, Y.; Ming, Y.; Lin, Y.; Pan, B.

    2015-12-01

    Aerosols can alter atmospheric radiation and cloud physics, which further exert impacts on weather and global climate. With the development and industrialization of the developing Asian countries, anthropogenic aerosols have received considerable attentions and remain to be the largest uncertainty in the climate projection. Here we assess the performance of two stat-of-art global climate models (National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5) and Geophysical Fluid Dynamics Laboratory Atmosphere Model 3 (AM3)) in simulating the impacts of anthropogenic aerosols on North Pacific storm track region. By contrasting two aerosol scenarios, i.e. present day (PD) and pre-industrial (PI), both models show aerosol optical depth (AOD) enhanced by about 22%, with CAM5 AOD 40% lower in magnitude due to the long range transport of anthropogenic aerosols. Aerosol effects on the ice water path (IWP), stratiform precipitation, convergence and convection strengths in the two models are distinctive in patterns and magnitudes. AM3 shows qualitatively good agreement with long-term satellite observations, while CAM5 overestimates convection and liquid water path resulting in an underestimation of large-scale precipitation and IWP. Due to coarse resolution and parameterization in convection schemes, both models' performance on convection needs to be improved. Aerosols performance on large-scale circulation and radiative budget are also examined in this study.

  12. Spatial Heterogeneity of Climate Change Effects on Dominant Height of Larch Plantations in Northern and Northeastern China

    Directory of Open Access Journals (Sweden)

    Hao Zang

    2016-07-01

    Full Text Available Determining the response of dominant height growth to climate change is important for understanding adaption strategies. Based on 550 permanent plots from a national forest inventory and climate data across seven provinces and three climate zones, we developed a climate-sensitive dominant height growth model under a mixed-effects model framework. The mean temperature of the wettest quarter and precipitation of the wettest month were found to be statistically significant explanatory variables that markedly improved model performance. Generally, future climate change had a positive effect on stand dominant height in northern and northeastern China, but the effect showed high spatial variability linked to local climatic conditions. The range in dominant height difference between the current climate and three future BC-RCP scenarios would change from −0.61 m to 1.75 m (−6.9% to 13.5% during the period 2041–2060 and from −1.17 m to 3.28 m (−9.1% to 41.0% during the period 2061–2080 across provinces. The impacts of climate change on stand dominant height decreased as stand age increased. Forests in cold and warm temperate zones had a smaller decrease in dominant height, owing to climate change, compared with those in the mid temperate zone. Overall, future climate change could impact dominant height growth in northern and northeastern China. As spatial heterogeneity of climate change affects dominant height growth, locally specific mitigation measures should be considered in forest management.

  13. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    Science.gov (United States)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    contribution to ESGF and contributes to the ESGF open source effort, notably through the development of search, monitoring, quality control, and metadata services. In its second phase, IS-ENES2 supports the implementation of regional climate model results from the international Coordinated Regional Downscaling Experiments (CORDEX). These services were extended within the European FP7 Climate Information Portal for Copernicus (CLIPC) project, and some could be later integrated into the European Copernicus platform.

  14. Does climate policy lead to relocation with adverse effects for GHG emissions or not? A first assessment of the spillovers of climate policy for energy intensive industry

    International Nuclear Information System (INIS)

    Oikonomou, V.; Patel, M.; Worrell, E.

    2004-12-01

    Energy-intensive industries play a special role in climate policy. World-wide, industry is responsible for about 50% of greenhouse gas emissions. The emission intensity makes these industries an important target for climate policy. At the same time these industries are particularly vulnerable if climate policy would lead to higher energy costs, and if they would be unable to offset these increased costs. The side effects of climate policy on GHG emissions in foreign countries are typically referred to as 'spillovers'. Negative spillovers reduce the effectiveness of a climate policy, while positive spillovers increase its effectiveness. This paper provides a review of the literature on the spillover effects of climate policy for carbon intensive industries. Reviews of past trends in production location of energy-intensive industries show an increased share of non-Annex 1 countries. However, this trend is primarily driven by demand growth, and there is no empirical evidence for a role of environmental policy in these development patterns. In contrast, climate models do show a strong carbon leakage of emissions from these industries. Even though that climate policy may have a more profound impact than previous environmental policies, the results of the modelling are ambiguous. The energy and carbon intensity of energy-intensive industries is rapidly declining in most developing countries, and reducing the 'gap' between industrialized and developing countries. Still, considerable potential for emission reduction exists, both in developing and industrialized countries. Technology development is likely to deliver further reductions in energy use and CO2 emissions. Despite the potential for positive spillovers in the energy-intensive industries, none of the models used in the analysis of spillovers of climate policies has an endogenous representation of technological change for the energy-intensive industries. This underlines the need for a better understanding of

  15. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    Science.gov (United States)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    example, in certain arid ecosystems of southern California, elevated nitrogen has promoted invasions of annual non-native grasses. At the same time, a period of above-normal precipitation years has exacerbated the grass invasions. Increased grass cover has altered the hydrologic cycle of these areas and increased fire risk, ultimately leading to conversion of the ecosystem from diverse shrublands to less diverse grasslands. In addition to empirical studies, modeling can be used to simulate climate change and nitrogen interactions. The ForSAFE-VEG model, for example, has been used to examine climate change and nitrogen interactions in Rocky Mountain alpine vegetation communities. Results from both empirical studies and modeling indicate that nitrogen and climate change interact to drive losses in biodiversity greater than those caused by either stressor alone. Reducing inputs of anthropogenic reactive nitrogen may be an effective mitigation strategy for protecting biodiversity in the face of climate change.

  16. Climate change effects on design floods for dams in Sweden

    International Nuclear Information System (INIS)

    Andreasson, J.; Bergstroem, S.

    2008-01-01

    Since 1990 new guidelines for hydrological design of the Swedish hydropower system are being implemented. The technique is based on a critical combination of extreme precipitation, extreme snowmelt and an operation strategy for multi-reservoir systems. Hydrological modeling is a central component, as is a prescribed design precipitation sequence. At the time when the guidelines were developed it was not possible to account for possible consequences of a changing climate. Sensitivity analyses using four different regional climate change scenarios (2071-2100) has been carried out for four important Swedish dams and also for the largest lake in Sweden, Lake Vanern. The research project was financed by Elforsk and the Swedish Dam Safety Authority (Svenska Kraftnat) and it was reported in 2006/2007. Some summarizing conclusions are: Changes in the mean climate results in smaller design snow pack according to all scenarios. This component acts towards decreased design inflows and water levels at most locations. Extreme precipitation can be expected to increase at most places in Sweden according to the climate scenarios. This component acts towards increased design inflows and water levels at most locations. Depending on how changes in the mean climate and in the extremes interact, the change in design inflows and water levels can be either an increase or a decrease. The effect depends both on the location of the dam and on the choice of climate scenario. This calls for site-specific analysis for each dam. In 2007 the second edition of the guidelines for hydrological design was issued in which also the question of climate change have been addressed. The first sensitivity analyses are now being extended within a new 2-year research project also funded jointly by Elforsk and the Swedish Dam Safety Authority (Svenska Kraftnat). The aim is to increase the number of regional climate scenarios and the number of high hazard dams in the analysis, but also to move the scenarios

  17. Effects of climate change on the production and consumption of electricity in Finland

    International Nuclear Information System (INIS)

    Kuivalainen, P.; Forsius, J.; Maekinen, P.

    1996-01-01

    The purpose of this study was to use the latest knowledge about the greenhouse effect and its impact on electricity production and consumption in Finland and so to update the former study of Aittoniemi made at IVO in 1990. This research used the new climate change scenarios which were drawn up in the Nordic research project entitled Climate Change and Energy Production, financed by the Nordic Council of Ministers, and in the Finnish Research Programme on Climate Change, SILMU. These scenarios have been specially made for Finland, and are thus more suitable than the former global models. The base scenario was chosen to be the year 2025 with no climate change, and the climate change-affected years studied were 2025 and 2100. The base scenario of electricity consumption and production took advantage of the scenario of Ministry of Trade and Industry made at the end of the 1980s. Some changes were essential, however, since the present development proves that some of the assumptions concerning power production forms will not be relevant in 2025. Based on the known dependencies between electricity consumption and temperature, impacts were calculated for each affected consumption sector: electric heating, household consumption and industrial consumption, process industry excluded. The total effect on the supply system was estimated with the KAPAS model, developed for capacity planning of Finland. According to the results, the effects of the projected climate change on the total consumption and production of electricity will be limited. The structure of both electricity consumption and production will remain rather similar, the most important changes applying to hydro power. (13 refs.)

  18. [effectiveness of open reduction and internal fixation without opening joint capsule on tibial plateau fracture].

    Science.gov (United States)

    Chen, Qi; Xu, Xiaofeng; Huang, Yonghui; Cao, Xingbing; Meng, Chen; Cao, Xueshu; Wei, Changbao

    2014-12-01

    To introduce the surgery method to reset and fix tibial plateau fracture without opening joint capsule, and evaluate the safety and effectiveness of this method. Between July 2011 and July 2013, 51 patients with tibial plateau fracture accorded with the inclusion criteria were included. All of 51 patients, 17 cases underwent open reduction and internal fixation without opening joint capsule in trial group, and 34 cases underwent traditional surgery method in control group. There was no significant difference in gender, age, cause of injury, time from injury to admission, side of injury, and types of fracture between 2 groups (P > 0.05). The operation time, intraoperative blood loss, incision length, incision healing, and fracture healing were compared between 2 groups. The tibial-femoral angle and collapse of joint surface were measured on X-ray film. At last follow-up, joint function was evaluated with Hospital for Special Surgery (HSS) knee function scale. The intraoperative blood loss in trial group was significantly less than that in control group (P time and the rate of incision healing between 2 groups (P > 0.05). The patients were followed up 12-30 months (mean, 20.4 months) in trial group and 12-31 months (mean, 18.2 months) in control group. X-ray films indicated that all cases in 2 groups obtained fracture healing; there was no significant difference in the fracture healing time between 2 groups (t=1.382, P=0.173). On X-ray films, difference was not significant in tibial-femoral angle and collapse of joint surface between 2 groups (P > 0.05). HSS score of the knee in trial group was significantly higher than that of control group (t=3.161, P=0.003). It can reduce the intraoperative blood loss and shorten the incision length to use open reduction and internal fixation without opening joint capsule for tibial plateau fracture. Traction of joint capsule is helpful in the reduction and good recovery of joint surface collapse. In addition, the surgery without

  19. Effects of future climate change, CO2 enrichment, and vegetation structure variation on hydrological processes in China

    Science.gov (United States)

    Zhu, Qiuan; Jiang, Hong; Peng, Changhui; Liu, Jinxun; Fang, Xiuqin; Wei, Xiaohua; Liu, Shirong; Zhou, Guomo

    2012-01-01

    Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff, evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.

  20. Projecting climate effects on birds and reptiles of the Southwestern United States

    Science.gov (United States)

    van Riper, Charles; Hatten, James R.; Giermakowski, J. Tomasz; Mattson, David; Holmes, Jennifer A.; Johnson, Matthew J.; Nowak, Erika M.; Ironside, Kirsten; Peters, Michael; Heinrich, Paul; Cole, K.L.; Truettner, C.; Schwalbe, Cecil R.

    2014-01-01

    are presently considered candidates for prospective endangerment. We project range losses of over 40 percent, from its current extent of occurrence, for the plateau striped whiptail, Arizona black rattlesnake, and common lesser earless lizard. Currently, these reptile species are thought to be common or at least locally abundant throughout their ranges. The total contribution of plants in each distribution model was very small, but models that contained at least one plant always outperformed models with only physical variables (climatic or landscape). The magnitude of change in projected range increased further into the future, especially when a plant was in the model. Among bird species, those that had the strongest association with a landscape feature during the breeding season, such as terrain ruggedness and insolation, exhibited the smallest contractions in projected breeding range in the future. In contrast, bird species that had weak associations with landscape features, but strong climatic associations, suffered the greatest breeding range contractions. Thus, landscape effects appeared to buffer some of the negative effects of climate change for some species. Among bird species, magnitude of change in projected breeding range was positively related to the annual average temperature of their baseline distribution, thus species with the warmest breeding ranges exhibited the greatest changes in future breeding ranges. This pattern was not evident for reptiles, but might exist if additional species were included in the model. Our results provide managers with a series of projected range maps that will enable scientists, concerned citizens, and wildlife managers to identify what the potential effects of climate change will be on bird and reptile distributions in the Western United States. We hope that our results can be used in proactive ways to mitigate some of the potential effects of climate change on selected species.